Sample records for develop distributed thermoelectric

  1. Recent Device Developments with Advanced Bulk Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Device Developments with Advanced Bulk Thermoelectric Materials at RTI Recent Device Developments with Advanced Bulk Thermoelectric Materials at RTI Reviews work in engineered...

  2. Development of Thermoelectric Technology for Automotive Waste...

    Energy Savers [EERE]

    Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Presentation from the U.S....

  3. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat...

  4. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications...

  5. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct...

  6. Development of a Thermoelectric Device for an Automotive Zonal...

    Energy Savers [EERE]

    Development of a Thermoelectric Device for an Automotive Zonal HVAC System Development of a Thermoelectric Device for an Automotive Zonal HVAC System Presents development of a...

  7. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  8. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement. deer08gundlach.pdf More...

  9. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Thermoelectric (TE) HVAC Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE)...

  10. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric (TE) HVAC Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC...

  11. Progress toward Development of a High-Efficiency Zonal Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC...

  12. Development of Cost-Competitive Advanced Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development of Cost-Competitive Advanced Thermoelectric...

  13. Development of a High-Efficiency Zonal Thermoelectric HVAC System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications...

  14. Thermoelectric materials development. Final report

    SciTech Connect (OSTI)

    Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

    1998-09-01T23:59:59.000Z

    A systematic search for advanced thermoelectric materials was initiated at JPL several years ago to evaluate candidate materials which includes consideration of the following property attributes: (1) semiconducting properties; (2) large Seebeck coefficient; (3) high carrier mobility and high electrical conductivity; (4) low lattice thermal conductivity; and (5) chemical stability and low vapor pressure. Through this candidate screening process, JPL identified several families of materials as promising candidates for improved thermoelectric materials including the skutterudite family. There are several programs supporting various phases of the effort on these materials. As part of an ongoing effort to develop skutterudite materials with lower thermal conductivity values, several solid solutions and filled skutterudite materials were investigated under the effort sponsored by DOE. The efforts have primarily focused on: (1) study of existence and properties of solid solutions between the binary compounds CoSb{sub 3} and IrSb{sub 3}, and RuSb{sub 2}Te, and (2) CeFe{sub 4{minus}x}Sb{sub 12} based filled compositions. For the solid solutions, the lattice thermal conductivity reduction was expected to be reduced by the introduction of the Te and Ru atoms while in the case of CeFe{sub 4{minus}x}Ru{sub x}Sb{sub 12} based filled compositions. For the solid solutions, the lattice thermal conductivity reduction was expected to be reduced by the introduction of the Te and Ru atoms while in the case of CeFe{sub 4{minus}x}Ru{sub x}Sb{sub 12} filled compositions, the reduction would be caused by the rattling of Ce atoms located in the empty voids of the skutterudite structure and the substitution of Fe for Ru. The details of the sample preparation and characterization of their thermoelectric properties are reported in this report.

  15. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions. deer09yang2.pdf More Documents & Publications...

  16. Development of a 500 Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat Conversion to Power Program...

  17. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from 300K to 800K", International Conference of Thermoelectrics (ICT2007) Jeju Island, South Korea, June4-7 2007. 23. H. Wang, "Thermoelectrics Power Generation: A Review of DOE...

  18. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery Development for commercialization of...

  19. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

  20. Design and development of thermoelectric generator

    SciTech Connect (OSTI)

    Prem Kumar, D. S., E-mail: rcmallik@physics.iisc.ernet.in; Mahajan, Ishan Vardhan, E-mail: rcmallik@physics.iisc.ernet.in; Anbalagan, R., E-mail: rcmallik@physics.iisc.ernet.in; Mallik, Ramesh Chandra, E-mail: rcmallik@physics.iisc.ernet.in [Thermoelectric Materials and Devices Laboratory, Department of Physics, Indian Institute of Science, Bangalore-560012 (India)

    2014-04-24T23:59:59.000Z

    In this paper we discuss the fabrication, working and characteristics of a thermoelectric generator made up of p and n type semiconductor materials. The device consists of Fe{sub 0.2}Co{sub 3.8}Sb{sub 11.5}Te{sub 0.5} (zT = 1.04 at 818 K) as the n-type and Zn4Sb3 (zT=0.8 at 550 K) as the p-type material synthesized by vacuum hot press method. Carbon paste has been used to join the semiconductor legs to metal (Molybdenum) electrodes to reduce the contact resistance. The multi-couple (4 legs) generator results a maximum output power of 1.083 mW at a temperature difference of 240 K between the hot and cold sides. In this investigation, an I-V characteristic, maximum output power of the thermoelectric module is presented. The efficiency of thermoelectric module is obtained as ? = 0.273 %.

  1. Development of an Underamor 1-kW Thermoelectric Generator Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for Military Vehicles Development of an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for...

  2. Recent Progress in the Development of High Efficiency Thermoelectrics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up...

  3. Development of a 100-Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat...

  4. Radioisotope thermoelectric generator transportation system subsystem 143 software development plan

    SciTech Connect (OSTI)

    King, D.A.

    1994-11-10T23:59:59.000Z

    This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

  5. Thermoelectrics Partnership: High Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric...

  6. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive...

  7. Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).

    SciTech Connect (OSTI)

    Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas; Zimmerman, Mark D.; Radermacher, Reinhard; Martin, Cara; Nasuta, Dennis; Kalinowski, Paul; Hoffman, William

    2014-12-01T23:59:59.000Z

    This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

  8. Thermoelectric Alloys and Devices for Radioisotope Space Power Systems: State of the Art and Current Developments

    SciTech Connect (OSTI)

    Barnett, W.; Dick, P.; Beaudry, B.; Gorsuch, P.; Skrabek, E.

    1989-01-01T23:59:59.000Z

    Lead telluride and silicon germanium type alloys have served over the past several decades as the preferred thermoelectric conversion materials for U. S. radioisotope thermoelectric generator (RTG) power systems for planetary deep space exploration missions. The Pioneer missions to Jupiter and Jupiter/Saturn and the Viking Mars Lander missions employed TAGS-2N (lead and germanium telluride derivatives) power conversion devices. Since 1976, silicon germanium (SiGe) alloys, incorporated into the unicouple device, have evolved as the thermoelectric materials of choice for U. S. RTG powered space missions. These include the U. S. Air Force Lincoln Experimental Satellites 8 & 9 for communications, in 1976, followed in 1977 by the National Aeronautics and Space Administration Voyager 1 and 2 planetary missions. In 1989, advanced SiGe RTGs were used to power the Galileo exploration of Jupiter and, in 1990, will be used to power the Ulysses investigation of the Sun. In addition, SiGe technology has been chosen to provide RTG power for the 1995 Comet Rendezvous and Asteroid Flyby mission and the 1996 Cassini Saturn orbiter mission. Summaries of the flight performance data for these systems are presented.; Current U. S. Department of Energy thermoelectric development activities include (1) the development of conversion devices based on hi-density, close packed couple arrays and (2) the development of improved performance silicon germanium type thermoelectric materials. The silicon germanium type "multicouple", being developed in conjunction with the Modular RTG program, is discussed in a companion paper. A lead telluride type close-packed module, discussed herein, offers the promise of withstanding high velocity impacts and, thus, is a candidate for a Mars Penetrator application.; Recent projects sponsored by the U. S. Department of Energy, including the Improved Thermoelectric Materials and Modular Radioisotope Thermoelectric Generator programs, have shown that improvements in silicon germanium thermoelectric energy conversion capabilities of at least 50 percent can be achieved by tailoring the characteristics of the silicon germanium alloy materials and devices. This paper compares the properties and characteristics of the SiGe alloys now being developed with those used in the operational space power system.

  9. Thermal Strategies for High Efficiency Thermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations...

  10. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Broader source: Energy.gov (indexed) [DOE]

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Gregory P. Meisner General Motors Global Research & Development March 21, 2012 3rd Thermoelectric...

  11. Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system

    SciTech Connect (OSTI)

    Naito, H.; Kohsaka, Y.; Cooke, D.; Arashi, H. [Tohoku Univ., Aramaki (Japan)] [Tohoku Univ., Aramaki (Japan)

    1996-10-01T23:59:59.000Z

    Solar energy is one of the most promising energy resources on Earth and in space, because it is clean and inexhaustible. Therefore, we have been developing a solar-powered high-efficiency thermionic-thermoelectric conversion system which combines a thermionic converter (TIC) with a thermoelectric converter (TEC) to use thermal energy efficiently and to achieve high efficiency conversion. The TIC emitter must uniformly heat up to 1800 K. The TIC emitter can be heated using thermal radiation from a solar receiver maintained at a high temperature by concentrated solar irradiation. A cylindrical cavity-type solar receiver constructed from graphite was designed and heated in a vacuum by using the solar concentrator at Tohoku University. The maximum temperature of the solar receiver enclosed by a molybdenum cup reached 1965 K, which was sufficiently high to heat a TIC emitter using thermal radiation from the receiver. 4 refs., 6 figs., 1 tab.

  12. Thermoelectric Generators 1. Thermoelectric generator

    E-Print Network [OSTI]

    Lee, Ho Sung

    1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 effects are called the thermoelectric effects. The mechanisms of thermoelectricity were not understood. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large

  13. Development of a 100-Watt High Temperature Thermoelectric Generator

    Broader source: Energy.gov (indexed) [DOE]

    performance TEG thermal and electrical interfaces modified to withstand high temperature environment Development of a 100 watt High Temperature TE Generator DEER 2008 11 Prototype...

  14. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace067goodson2011o.pdf More Documents & Publications Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel...

  15. Recent Device Developments with Advanced Bulk Thermoelectric Materials at

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified11Department ofMeeting EnergyDevelopments inRTI |

  16. Recent Progress in the Development of High Efficiency Thermoelectrics |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+18, 2012 Qualified11Department ofMeeting EnergyDevelopments4,

  17. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01T23:59:59.000Z

    developments in bulk thermoelectric materials", M. Mater.and M. D. Drsselhaus, "Thermoelectric figure of merit of aO'Quinn, " Thin-film thermoelectric devices with high room-

  18. High-Performance Thermoelectric Devices Based on Abundant Silicide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric...

  19. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    SciTech Connect (OSTI)

    Gregory Meisner

    2011-08-31T23:59:59.000Z

    We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

  20. The thermoelectric process

    SciTech Connect (OSTI)

    Vining, C.B.

    1997-07-01T23:59:59.000Z

    The efficiency of thermoelectric technology today is limited by the properties of available thermoelectric materials and a wide variety of new approaches to developing better materials have recently been suggested. The key goal is to find a material with a large ZT, the dimensionless thermoelectric figure of merit. However, if an analogy is drawn between thermoelectric technology and gas-cycle engines then selecting different materials for the thermoelements is analogous to selecting a different working gas for the mechanical engine. And an attempt to improve ZT is analogous to an attempt to improve certain thermodynamic properties of the working-gas. An alternative approach is to focus on the thermoelectric process itself (rather than on ZT), which is analogous to considering alternate cycles such as Stirling vs. Brayton vs. Rankine etc., rather than merely considering alternative gases. Focusing on the process is a radically different approach compared to previous studies focusing on ZT. Aspects of the thermoelectric process and alternative approaches to efficient thermoelectric conversion are discussed.

  1. Novel thermoelectric materials development, existing and potential applications, and commercialization routes

    E-Print Network [OSTI]

    Bertreau, Philippe

    2006-01-01T23:59:59.000Z

    Thermoelectrics (TE) are devices which can convert heat in the form of a temperature gradient into electricity, or alternatively generate and absorb heat when an electrical current is run through them. It was established ...

  2. Thermoelectric module

    DOE Patents [OSTI]

    Kortier, William E. (Columbus, OH); Mueller, John J. (Columbus, OH); Eggers, Philip E. (Columbus, OH)

    1980-07-08T23:59:59.000Z

    A thermoelectric module containing lead telluride as the thermoelectric mrial is encapsulated as tightly as possible in a stainless steel canister to provide minimum void volume in the canister. The lead telluride thermoelectric elements are pressure-contacted to a tungsten hot strap and metallurgically bonded at the cold junction to iron shoes with a barrier layer of tin telluride between the iron shoe and the p-type lead telluride element.

  3. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Publications Commercialization of Bulk Thermoelectric Materials for Power Generation Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation Distributed Bio-Oil...

  4. Thermoelectric system

    DOE Patents [OSTI]

    Reiners, Eric A. (Washington, IL); Taher, Mahmoud A. (Peoria, IL); Fei, Dong (Peoria, IL); McGilvray, Andrew N. (East Peoria, IL)

    2007-10-30T23:59:59.000Z

    In one particular embodiment, an internal combustion engine is provided. The engine comprises a block, a head, a piston, a combustion chamber defined by the block, the piston, and the head, and at least one thermoelectric device positioned between the combustion chamber and the head. In this particular embodiment, the thermoelectric device is in direct contact with the combustion chamber. In another particular embodiment, a cylinder head configured to sit atop a cylinder bank of an internal combustion engine is provided. The cylinder head comprises a cooling channel configured to receive cooling fluid, valve seats configured for receiving intake and exhaust valves, and thermoelectric devices positioned around the valve seats.

  5. Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation

    SciTech Connect (OSTI)

    None

    2010-03-01T23:59:59.000Z

    Thermoelectric power plants use large volumes of water for condenser cooling and other plant operations. Traditionally, this water has been withdrawn from the cleanest water available in streams and rivers. However, as demand for electrical power increases it places increasing demands on freshwater resources resulting in conflicts with other off stream water users. In July 2002, NETL and the Governor of Pennsylvania called for the use of water from abandoned mines to replace our reliance on the diminishing and sometimes over allocated surface water resource. In previous studies the National Mine Land Reclamation Center (NMLRC) at West Virginia University has demonstrated that mine water has the potential to reduce the capital cost of acquiring cooling water while at the same time improving the efficiency of the cooling process due to the constant water temperatures associated with deep mine discharges. The objectives of this project were to develop and demonstrate a user-friendly computer based design aid for assessing the costs, technical and regulatory aspects and potential environmental benefits for using mine water for thermoelectric generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering and environmental factors to be considered in using mine water as an alternative to traditional freshwater supply. A field investigation and case study was conducted for the proposed 300 MW Beech Hollow Power Plant located in Champion, Pennsylvania. The field study based on previous research conducted by NMLRC identified mine water sources sufficient to reliably supply the 2-3,000gpm water supply requirement of Beech Hollow. A water collection, transportation and treatment system was designed around this facility. Using this case study a computer based design aid applicable to large industrial water users was developed utilizing water collection and handling principals derived in the field investigation and during previous studies of mine water and power plant cooling. Visual basic software was used to create general information/evaluation modules for a range of power plant water needs that were tested/verified against the Beech Hollow project. The program allows for consideration of blending mine water as needed as well as considering potential thermal and environmental benefits that can be derived from using constant temperature mine water. Users input mine water flow, quality, distance to source, elevations to determine collection, transport and treatment system design criteria. The program also evaluates low flow volumes and sustainable yields for various sources. All modules have been integrated into a seamless user friendly computer design aid and user's manual for evaluating the capital and operating costs of mine water use. The framework will facilitate the use of mine water for thermoelectric generation, reduce demand on freshwater resources and result in environmental benefits from reduced emissions and abated mine discharges.

  6. High temperature thermoelectrics

    DOE Patents [OSTI]

    Moczygemba, Joshua E.; Biershcenk, James L.; Sharp, Jeffrey W.

    2014-09-23T23:59:59.000Z

    In accordance with one embodiment of the present disclosure, a thermoelectric device includes a plurality of thermoelectric elements that each include a diffusion barrier. The diffusion barrier includes a refractory metal. The thermoelectric device also includes a plurality of conductors coupled to the plurality of thermoelectric elements. The plurality of conductors include aluminum. In addition, the thermoelectric device includes at least one plate coupled to the plurality of thermoelectric elements using a braze. The braze includes aluminum.

  7. NSF/DOE Thermoelectric Partnership: High-Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery NSFDOE Thermoelectric Partnership: High-Performance Thermoelectric...

  8. Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1

    E-Print Network [OSTI]

    Chen, Gang

    Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1 conductivity led to a large increase in the thermoelectric figure of merit in several superlattice systems. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices

  9. Energy Efficient HVAC System for Distributed Cooling/Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices 2012 DOE...

  10. Modular Isotopic Thermoelectric Generator (MITG) Design and Development, Part A-E. Original was presented at 1983 Intersociety Energy Conversion Engineering Conference (IECEC)

    SciTech Connect (OSTI)

    Schock, A.

    1983-04-29T23:59:59.000Z

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing 24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Detailed analysis indicates that the present generation of RTGs, using the same heat source modules. There is a duplicate copy of this document. OSTI has a copy of this paper.

  11. Thermoelectric Materials, Devices and Systems:

    Broader source: Energy.gov (indexed) [DOE]

    -DRAFT - FOR OFFICIAL USE ONLY - DRAFT Thermoelectric Materials, Devices and Systems: 1 Technology Assessment 2 Contents 3 1. Thermoelectric Generation ......

  12. Scalable Routes to Efficient Thermoelectric Materials

    E-Print Network [OSTI]

    Feser, Joseph Patrick

    2010-01-01T23:59:59.000Z

    thermoelectric materials consisting of epitaxially-grownefficient thermoelectric materials," Nature, vol. 451, pp.superlattice thermoelectric materials and devices," Science,

  13. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  14. Silicon-Based Thermoelectrics: Harvesting Low Quality Heat Using Economically Printed Flexible Nanostructured Stacked Thermoelectric Junctions

    SciTech Connect (OSTI)

    None

    2010-03-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: UIUC is experimenting with silicon-based materials to develop flexible thermoelectric deviceswhich convert heat into energythat can be mass-produced at low cost. A thermoelectric device, which resembles a computer chip, creates electricity when a different temperature is applied to each of its sides. Existing commercial thermoelectric devices contain the element tellurium, which limits production levels because tellurium has become increasingly rare. UIUC is replacing this material with microscopic silicon wires that are considerably cheaper and could be equally effective. Improvements in thermoelectric device production could return enough wasted heat to add up to 23% to our current annual electricity production.

  15. Concentrated Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by MIT, is working to demonstrate concentrating solar thermoelectric generators with >10% solar-to-electrical energy conversion efficiency while limiting optical concentration to less than a factor of 10 and potentially less than 4. When combined with thermal storage, CSTEGs have the potential to provide electricity day and night using no moving parts at both the utility and distributed scale.

  16. Nanocomposites as thermoelectric materials

    E-Print Network [OSTI]

    Hao, Qing

    2010-01-01T23:59:59.000Z

    Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

  17. Thermoelectric Temperature Control

    E-Print Network [OSTI]

    Saffman, Mark

    NOTE 201TM TECHNICAL Optimizing Thermoelectric Temperature Control Systems #12;2 May 1995 92-040000A 1995 Wavelength Electronics, Inc. Thermoelectric coolers (TECs) are used in a variety understanding of thermal management techniques and carefully select the thermoelectric module, temperature

  18. Commercialization of Bulk Thermoelectric Materials for Power Generation

    Broader source: Energy.gov [DOE]

    Critical aspects of technology commercialization of preproduction high performance thermoelectric materials available for device developers, data analysis, and future plans are discussed

  19. Measurement of Thermoelectric Properties of a Single Nanowire...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Add to Calendar SHARE With growing worldwide demand for energy harvesting, capturing waste heat with thermoelectric coolers and generators has driven the development of high...

  20. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2006deerschock.pdf More Documents & Publications Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Development of Thermoelectric...

  1. Device testing and characterization of thermoelectric nanocomposites

    E-Print Network [OSTI]

    Muto, Andrew (Andrew Jerome)

    2008-01-01T23:59:59.000Z

    It has become evident in recent years that developing clean, sustainable energy technologies will be one of the world's greatest challenges in the 21st century. Thermoelectric materials can potentially make a contribution ...

  2. General-purpose heat source: Research and development program. Radioisotope thermoelectric generator impact tests: RTG-1 and RTG-2

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.; George, T.G.

    1996-07-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  3. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01T23:59:59.000Z

    The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  4. An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles

    Broader source: Energy.gov [DOE]

    Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

  5. Development of High…ZT, Bulk Thermoelectric (New Program) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H IMaterials DevelopmentDepartmentEnergy

  6. Development of a High-Efficiency Zonal Thermoelectric HVAC System for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries withAbstract Development|MEQ

  7. Development of an Underamor 1-kW Thermoelectric Generator Waste Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries1000: Development of aanValvetrain

  8. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05T23:59:59.000Z

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  9. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Development for commercialization of automotive thermoelectric generators from high-ZT TE materials with using low-cost, widely available materials, system design and modeling to maximize temperature differential across TE modules and maximize power output

  10. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14T23:59:59.000Z

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  11. Rare earth thermoelectrics

    SciTech Connect (OSTI)

    Mahan, G.D.

    1997-07-01T23:59:59.000Z

    A review is presented of the thermoelectric properties of rare earth compounds: A discussion is presented of the prospects for future improvements in the figure of merit.

  12. Vehicular Thermoelectric Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modules Available Energy in Engine Exhaust BMW Series 5 , Model Year 2011, 3.0 Liter Gasoline Engine w Thermoelectric Generator Funding Opportunity Announcement...

  13. Solar Thermoelectric Energy Conversion

    Broader source: Energy.gov [DOE]

    Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

  14. Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov (indexed) [DOE]

    CONCENTRATING SOLAR POWER PROGRAM REVIEW 2013 Concentrated Solar Thermoelectric Power Principal Investigator: Prof. Gang Chen Massachusetts Institute of Technology Cambridge, MA...

  15. Vehicular Applications of Thermoelectrics

    Broader source: Energy.gov (indexed) [DOE]

    gas. Thermoelectric Element at Toshiba Material Nov. 2007 Shuichi Hase Sango Co. Ltd. Heat-Recovery for ICE Automobiles and Thermal Electric Generation Komatsu Diesel Engine with...

  16. Review of State of the Art Technologies used to Improve Performance of Thermoelectric Devices

    E-Print Network [OSTI]

    Walker, D. Greg

    Review of State of the Art Technologies used to Improve Performance of Thermoelectric Devices 19 th University Nashville, TN 37221 greg.walker@vanderbilt.edu Thermoelectric devices have gained importance focused towards developing both thermoelectric structures and materials that have high efficiency

  17. Characterizing the thermal efficiency of thermoelectric modules

    E-Print Network [OSTI]

    Phillips, Samuel S

    2009-01-01T23:59:59.000Z

    An experimental setup was designed and utilized to measure the thermoelectric properties as functions of temperature of a commercially available, bismuth telluride thermoelectric module. Thermoelectric modules are solid ...

  18. Scalable Routes to Efficient Thermoelectric Materials

    E-Print Network [OSTI]

    Feser, Joseph Patrick

    2010-01-01T23:59:59.000Z

    P. D. Yang, "Enhanced thermoelectric performance of roughHigh efficiency thermoelectric materials consisting ofG. Chen, and Z. F. Ren, "High-thermoelectric performance of

  19. Holey Silicon as an Efficient Thermoelectric Material

    E-Print Network [OSTI]

    Tang, Jinyao

    2011-01-01T23:59:59.000Z

    Silicon as Efficient Thermoelectric Material Jinyao Tang 1,This work investigated the thermoelectric properties of thinat room temperature, the thermoelectric performance of HS is

  20. High Temperature Integrated Thermoelectric Ststem and Materials

    SciTech Connect (OSTI)

    Mike S. H. Chu

    2011-06-06T23:59:59.000Z

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

  1. Development of an Integrated Distribution Management System

    SciTech Connect (OSTI)

    Schatz, Joe E.

    2010-10-20T23:59:59.000Z

    This final report details the components, functionality, costs, schedule and benefits of developing an Integrated Distribution Management System (IDMS) for power distribution system operation. The Distribution Automation (DA) and Supervisory Control and Data Acquisition (SCADA) systems used by electric power companies to manage the distribution of electric power to retail energy consumers are vital components of the Nations critical infrastructure. Providing electricity is an essential public service and a disruption in that service, if not quickly restored, could threaten the public safety and the Nations economic security. Our Nations economic prosperity and quality of life have long depended on the essential services that utilities provide; therefore, it is necessary to ensure that electric utilities are able to conduct their operations safely and efficiently. A fully integrated technology of applications is needed to link various remote sensing, communications and control devices with other information tools that help guide Power Distribution Operations personnel. A fully implemented IDMS will provide this, a seamlessly integrated set of applications to raise electric system operating intelligence. IDMS will enhance DA and SCADA through integration of applications such as Geographic Information Systems, Outage Management Systems, Switching Management and Analysis, Operator Training Simulator, and other Advanced Applications, including unbalanced load flow and fault isolation/service restoration. These apps are capable of utilizing and obtaining information from appropriately installed DER, and by integrating disparate systems, the Distribution Operators will benefit from advanced capabilities when analyzing, controlling and operating the electric system.

  2. Complex oxides useful for thermoelectric energy conversion

    DOE Patents [OSTI]

    Majumdar, Arunava (Orinda, CA); Ramesh, Ramamoorthy (Moraga, CA); Yu, Choongho (College Station, TX); Scullin, Matthew L. (Berkeley, CA); Huijben, Mark (Enschede, NL)

    2012-07-17T23:59:59.000Z

    The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

  3. Proactive Strategies for Designing Thermoelectric Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Thermoelectric Couple Demonstration of (In,...

  4. Trends in Thermoelectric Properties with Nanostructure: Ferecrystals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Properties with Nanostructure: Ferecrystals with Designed Nanoarchitecture Trends in Thermoelectric Properties with Nanostructure: Ferecrystals with Designed...

  5. Proactive Strategies for Designing Thermoelectric Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric...

  6. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  7. Ferecrystals: Thermoelectric Materials Poised Between the Crystalline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ferecrystals: Thermoelectric Materials Poised Between the Crystalline and Amorphous States Ferecrystals: Thermoelectric Materials Poised Between the Crystalline and Amorphous...

  8. Engineering and Materials for Automotive Thermoelectric Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Materials for Automotive Thermoelectric Applications Engineering and Materials for Automotive Thermoelectric Applications Design and optimization of TE exhaust generator,...

  9. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  10. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application...

  11. Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO{sub 3??} ceramics originating from nonuniform distribution of Pr dopants

    SciTech Connect (OSTI)

    Dehkordi, Arash Mehdizadeh, E-mail: amehdiz@g.clemson.edu [Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634 (United States); Bhattacharya, Sriparna; He, Jian [Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634 (United States); Alshareef, Husam N. [Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Tritt, Terry M., E-mail: ttritt@clemson.edu [Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634 (United States); Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634 (United States)

    2014-05-12T23:59:59.000Z

    Recently, we have reported a significant enhancement (>70% at 500?C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO{sub 3} ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO{sub 3}. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr{sub 1?x}Pr{sub x}TiO{sub 3} ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500?C.

  12. Determination of Thermoelectric Module Efficiency A Survey

    SciTech Connect (OSTI)

    Wang, Hsin [ORNL; McCarty, Robin [Marlow Industries, Inc; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Yamamoto, Atsushi [AIST, Japan; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany

    2014-01-01T23:59:59.000Z

    The development of thermoelectrics (TE) for energy conversion is in the transition phase from laboratory research to device development. There is an increasing demand to accurately determine the module efficiency, especially for the power generation mode. For many thermoelectrics, the figure of merit, ZT, of the material sometimes cannot be fully realized at the device level. Reliable efficiency testing of thermoelectric modules is important to assess the device ZT and provide the end-users with realistic values on how much power can be generated under specific conditions. We conducted a general survey of efficiency testing devices and their performance. The results indicated the lack of industry standards and test procedures. This study included a commercial test system and several laboratory systems. Most systems are based on the heat flow meter method and some are based on the Harman method. They are usually reproducible in evaluating thermoelectric modules. However, cross-checking among different systems often showed large errors that are likely caused by unaccounted heat loss and thermal resistance. Efficiency testing is an important area for the thermoelectric community to focus on. A follow-up international standardization effort is planned.

  13. Bipolar thermoelectric devices

    E-Print Network [OSTI]

    Pipe, Kevin P. (Kevin Patrick), 1976-

    2004-01-01T23:59:59.000Z

    The work presented here is a theoretical and experimental study of heat production and transport in bipolar electrical devices, with detailed treatment of thermoelectric effects. Both homojunction and heterojunction devices ...

  14. Solar Thermoelectric Energy Conversion

    Broader source: Energy.gov (indexed) [DOE]

    SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

  15. Solar Thermoelectrics Mercouri Kanatzidis,

    E-Print Network [OSTI]

    Kanatzidis, Mercouri G

    Solar Thermoelectrics Mercouri Kanatzidis, Materials Science Division December 15, 2009 #12;2 Heat #12;13 What is the dot made of? Cook, Kramer #12;14 Nanostructures reduce the lattice thermal

  16. Thermoelectric transport in superlattices

    SciTech Connect (OSTI)

    Reinecke, T.L.; Broido, D.A.

    1997-07-01T23:59:59.000Z

    The thermoelectric transport properties of superlattices have been studied using an exact solution of the Boltzmann equation. The role of heat transport along the barrier layers, of carrier tunneling through the barriers, of valley degeneracy and of the well width and energy dependences of the carrier-phonon scattering rates on the thermoelectric figure of merit are given. Calculations are given for Bi{sub 2}Te{sub 3} and for PbTe, and the results of recent experiments are discussed.

  17. Electrical Model Development and Validation for Distributed Resources

    SciTech Connect (OSTI)

    Simoes, M. G.; Palle, B.; Chakraborty, S.; Uriarte, C.

    2007-04-01T23:59:59.000Z

    This project focuses on the development of electrical models for small (1-MW) distributed resources at the National Renewable Energy Laboratory's Distributed Energy Resources Test Facility.

  18. Band structure engineering through orbital interaction for enhanced thermoelectric power factor

    E-Print Network [OSTI]

    Zhu, Hong

    Band structure engineering for specific electronic or optical properties is essential for the further development of many important technologies including thermoelectrics, optoelectronics, and microelectronics. In this ...

  19. Measurements and Standards for Thermoelectric Materials

    E-Print Network [OSTI]

    the development of these materials for applications involving waste heat recovery and solid-state cooling. Our for vehicular waste heat recovery would lead to a 10% improvement in fuel efficiency, translating to a fuel heat recovery and solid-state cooling applications. The widespread use of thermoelectric converters

  20. The Electrodeposition of PbTe Nanowires for Thermoelectric Applications

    E-Print Network [OSTI]

    Hillman, Peter

    2012-01-01T23:59:59.000Z

    of thermoelectrics. Radioisotope Thermoelectric Generatorthermoelectric generators use radiation from the sun instead of a radioisotope

  1. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01T23:59:59.000Z

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  2. Synthetic thermoelectric materials comprising phononic crystals

    DOE Patents [OSTI]

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13T23:59:59.000Z

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  3. Thermoelectrically cooled water trap

    DOE Patents [OSTI]

    Micheels, Ronald H. (Concord, MA)

    2006-02-21T23:59:59.000Z

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  4. Development of Distributed Programming Developing Tool-Kit Based on Object Group Model

    E-Print Network [OSTI]

    Joo, Su-Chong

    Development of Distributed Programming Developing Tool-Kit Based on Object Group Model Jeong of the grouped distributed objects[10-14], as a logical unit of distributed application service, and developed a distributed programming developing tool-kit based on object group model(OGM-DPD Tool-Kit). This Tool- Kit can

  5. A microscopic mechanism for increasing thermoelectric efficiency

    E-Print Network [OSTI]

    Keiji Saito; Giuliano Benenti; Giulio Casati

    2010-05-26T23:59:59.000Z

    We study the coupled particle and energy transport in a prototype model of interacting one-dimensional system: the disordered hard-point gas, for which numerical data suggest that the thermoelectric figure of merit ZT diverges with the system size. This result is explained in terms of a microscopic mechanism, namely the local equilibrium is characterized by the emergence of a broad stationary "modified Maxwell-Boltzmann velocity distribution", of width much larger than the mean velocity of the particle flow.

  6. Green thermoelectrics: Observation and analysis of plant thermoelectric response

    E-Print Network [OSTI]

    Goupil, C; Khamsing, A; Apertet, Y; Bouteau, F; Mancuso, S; Patino, R; Lecoeur, Ph

    2015-01-01T23:59:59.000Z

    Plants are sensitive to thermal and electrical effects; yet the coupling of both, known as thermoelectricity, and its quantitative measurement in vegetal systems never were reported. We recorded the thermoelectric response of bean sprouts under various thermal conditions and stress. The obtained experimental data unambiguously demonstrate that a temperature difference between the roots and the leaves of a bean sprout induces a thermoelectric voltage between these two points. Basing our analysis of the data on the force-flux formalism of linear response theory, we found that the strength of the vegetal equivalent to the thermoelectric coupling is one order of magnitude larger than that in the best thermoelectric materials. Experimental data also show the importance of the thermal stress variation rate in the plant's electrophysiological response. Therefore, thermoelectric effects are sufficiently important to partake in the complex and intertwined processes of energy and matter transport within plants.

  7. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Thermoelectric Energy Conversion for Efficient Waste Heat Recovery PI - Chris Caylor, GMZ Director of Thermoelectric Systems GMZ Team: Bed Poudel, Giri Joshi, Jonathan D'Angelo,...

  8. Correlation Between Structure and Thermoelectric Properties of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion Correlation Between Structure and Thermoelectric Properties of...

  9. Advanced Thermoelectric Materials and Generator Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM...

  10. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions...

  11. Integrated Design and Manufacturing of Thermoelectric Generator...

    Office of Environmental Management (EM)

    High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery High-Performance Thermoelectric Devices Based on Abundant Silicide...

  12. Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste...

  13. Investigations of Interfacial Structure in Thermoelectric Tellurides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Thermoelectric Materials by Design, Computational Theory and Structure Strategies for High Thermoelectric zT in Bulk Materials Strategies for...

  14. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop distributed HVAC components to supplement the central HVAC system to reduce the energy required by current compressed gas air conditioners by at least one-third....

  15. Total thermoelectric-power withdrawals Freshwater thermoelectric-power withdrawals Saline-water thermoelectric-power withdrawals

    E-Print Network [OSTI]

    Total thermoelectric-power withdrawals Freshwater thermoelectric-power withdrawals Saline-water thermoelectric-power withdrawals Louisiana New Hampshire Florida Idaho Washington Oregon Nevada California New,000 9,000 to 13,000 Thermoelectric-power withdrawals by water quality and State, 2005. Estimated Use

  16. High Temperature Experimental Characterization of Microscale Thermoelectric Effects

    E-Print Network [OSTI]

    Favaloro, Tela

    2014-01-01T23:59:59.000Z

    Mission Radioisotope Thermoelectric Generator (MMRTG) FactFigure 1.1: Radioisotope thermoelectric generator used byhand side radioisotope thermoelectric generator reflectivity

  17. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

  18. Thermoelectric effect in very thin film Pt/Au thermocouples

    E-Print Network [OSTI]

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown, I.G.

    2006-01-01T23:59:59.000Z

    TABLE I. Measured thermoelectric power S for samples ofThermoelectric effect in very thin film Pt/Au thermocouplesthickness dependence of the thermoelectric power of Pt films

  19. Thermoelectric transport in the coupled valence-band model

    E-Print Network [OSTI]

    Ramu, Ashok; Cassels, Laura; Hackman, Nathan; Lu, Hong; Zide, Joshua; Bowers, John E.

    2011-01-01T23:59:59.000Z

    109, 033704 ?2011? Thermoelectric transport in the coupledapplied to the problem of thermoelectric transport in p-typeef?ciency p-type thermoelectric material, are calculated and

  20. Design of bulk thermoelectric modules for integrated circuit thermal management

    E-Print Network [OSTI]

    Fukutani, K; Shakouri, A

    2006-01-01T23:59:59.000Z

    cooling enhancement with thermoelectric coolers, Trans.M. S. Dresselhaus, Thermoelectric ?gure of merit of a one-A. Shakouri, Improved thermoelectric power factor in metal-

  1. Effect of Nanoparticles on Electron and Thermoelectric Transport

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    on Electron and Thermoelectric Transport MONA ZEBARJADI, 1,5can enhance the thermoelectric performance by reducing thepredictions for the thermoelectric properties such as the

  2. NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  3. NSF/DOE Thermoelectrics Partnership: Purdue ? GM Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purdue GM Partnership on Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectrics Partnership: Purdue GM Partnership on Thermoelectrics for Automotive Waste...

  4. Quantum interference in thermoelectric molecular junctions: A toy model perspective

    SciTech Connect (OSTI)

    Nozaki, Daijiro, E-mail: daijiro.nozaki@gmail.com, E-mail: research@nano.tu-dresden.de [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Avdoshenko, Stas M. [Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, 100 E. 24th St. A1590, Austin, Texas 78712 (United States); Sevinli, Hldun [Department of Materials Science and Engineering, Izmir Institute of Technology, Gulbahce Kampusu 35430 Urla, Izmir (Turkey); Cuniberti, Gianaurelio [Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science (DCCMS), TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden (cfAED), TU Dresden, 01062 Dresden (Germany)

    2014-08-21T23:59:59.000Z

    Quantum interference (QI) phenomena between electronic states in molecular circuits offer a new opportunity to design new types of molecular devices such as molecular sensors, interferometers, and thermoelectric devices. Controlling the QI effect is a key challenge for such applications. For the development of single molecular devices employing QI effects, a systematic study of the relationship between electronic structure and the quantum interference is needed. In order to uncover the essential topological requirements for the appearance of QI effects and the relationship between the QI-affected line shape of the transmission spectra and the electronic structures, we consider a homogeneous toy model where all on-site energies are identical and model four types of molecular junctions due to their topological connectivities. We systematically analyze their transmission spectra, density of states, and thermoelectric properties. Even without the degree of freedom for on-site energies an asymmetric Fano peak could be realized in the homogeneous systems with the cyclic configuration. We also calculate the thermoelectric properties of the model systems with and without fluctuation of on-site energies. Even under the fluctuation of the on-site energies, the finite thermoelectrics are preserved for the Fano resonance, thus cyclic configuration is promising for thermoelectric applications. This result also suggests the possibility to detect the cyclic configuration in the homogeneous systems and the presence of the QI features from thermoelectric measurements.

  5. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05T23:59:59.000Z

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  6. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, John D. (Eaton's Neck, NY); El-Genk, Mohamed S. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  7. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01T23:59:59.000Z

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  8. Geographically Distributed Development : trends, challenges and best practices

    E-Print Network [OSTI]

    Yin, Yuhong

    2007-01-01T23:59:59.000Z

    Economic and market forces as well as technological progress emerging throughout the last decade signifies the Geographically Distributed Development (GDD) or Global Software Development (GSD) as a software industry norm ...

  9. Thermoelectric powered wireless sensors for spent fuel monitoring

    SciTech Connect (OSTI)

    Carstens, T.; Corradini, M.; Blanchard, J. [Dept. of Engineering Physics, Univ. of Wisconsin-Madison, Madison, WI 53706 (United States); Ma, Z. [Dept. of Electrical and Computer Engineering, Univ. of Wisconsin-Madison, Madison, WI 53706 (United States)

    2011-07-01T23:59:59.000Z

    This paper describes using thermoelectric generators to power wireless sensors to monitor spent nuclear fuel during dry-cask storage. OrigenArp was used to determine the decay heat of the spent fuel at different times during the service life of the dry-cask. The Engineering Equation Solver computer program modeled the temperatures inside the spent fuel storage facility during its service life. The temperature distribution in a thermoelectric generator and heat sink was calculated using the computer program Finite Element Heat Transfer. From these temperature distributions the power produced by the thermoelectric generator was determined as a function of the service life of the dry-cask. In addition, an estimation of the path loss experienced by the wireless signal can be made based on materials and thickness of the structure. Once the path loss is known, the transmission power and thermoelectric generator power requirements can be determined. This analysis estimates that a thermoelectric generator can produce enough power for a sensor to function and transmit data from inside the dry-cask throughout its service life. (authors)

  10. Alternative Fuel Sources for Radioisotope Thermoelectric Generators

    E-Print Network [OSTI]

    Parker, Trevor Drake

    2014-09-18T23:59:59.000Z

    configurations and materials would ideally be examined as well. Possible fuel assembly designs have been hypothesized by Ambrosi at the Nuclear and Emerging Technologies for Space Conference (2012) [4]. Preliminary research has shown that Am-241, Cm-242, Po.... AMBROSI, et al., Development and Testing of Americium-241 Radioisotope Thermoelectric Generator: Concept Designs and Breadboard System, Nuclear and Emerging Technologies for Space, (2012). 5. M. RAGHEB, Radioisotopes Power Production, mragheb...

  11. Alternaive Fuel Sources For Radioisotope Thermoelectric Generators

    E-Print Network [OSTI]

    Gonzalez, Evan Sebastain

    2015-04-23T23:59:59.000Z

    configurations and materials would ideally be examined as well. Possible fuel assembly designs have been hypothesized by Ambrosi at the Nuclear and Emerging Technologies for Space Conference (2012) [4]. Preliminary research has shown that Am-241, Cm-242, Po.... AMBROSI, et al., Development and Testing of Americium-241 Radioisotope Thermoelectric Generator: Concept Designs and Breadboard System, Nuclear and Emerging Technologies for Space, (2012). 5. M. RAGHEB, Radioisotopes Power Production, mragheb...

  12. High performance thermoelectric nanocomposite device

    DOE Patents [OSTI]

    Yang, Jihui (Lakeshore, CA); Snyder, Dexter D. (Birmingham, MI)

    2011-10-25T23:59:59.000Z

    A thermoelectric device includes a nanocomposite material with nanowires of at least one thermoelectric material having a predetermined figure of merit, the nanowires being formed in a porous substrate having a low thermal conductivity and having an average pore diameter ranging from about 4 nm to about 300 nm.

  13. High temperature thermoelectric characterization of III-V semiconductor thin films by oxide bonding

    E-Print Network [OSTI]

    Bowers, John

    bonding Je-Hyeong Bahka) , Gehong Zenga) , Joshua M. O. Zide b) , Hong Luc) , Rajeev Singhd) , Di Lianga bonding technique is developed for high temperature thermoelectric characterization of the thin film III-W-N diffusion barrier. A thermoelectric material, thin film ErAs:InGaAlAs metal/semiconductor nanocomposite

  14. Thermoelectric system for an engine

    DOE Patents [OSTI]

    Mcgilvray, Andrew N.; Vachon, John T.; Moser, William E.

    2010-06-22T23:59:59.000Z

    An internal combustion engine that includes a block, a cylinder head having an intake valve port and exhaust valve port formed therein, a piston, and a combustion chamber defined by the block, the piston, and the head. At least one thermoelectric device is positioned within either or both the intake valve port and the exhaust valve port. Each of the valves is configured to move within a respective intake and exhaust valve port thereby causing said valves to engage the thermoelectric devices resulting in heat transfer from the valves to the thermoelectric devices. The intake valve port and exhaust valve port are configured to fluidly direct intake air and exhaust gas, respectively, into the combustion chamber and the thermoelectric device is positioned within the intake valve port, and exhaust valve port, such that the thermoelectric device is in contact with the intake air and exhaust gas.

  15. Work distribution in global product development organizations

    E-Print Network [OSTI]

    Tripathy, Anshuman

    2010-01-01T23:59:59.000Z

    The evolution of the internet, digital design tools, and more importantly, increasing access to global markets and workforce, has increased the interest of firms in offshoring their engineering and product development ...

  16. Radioisotope thermoelectric generator reliability and safety

    SciTech Connect (OSTI)

    Campbell, R.; Klein, J.

    1989-01-01T23:59:59.000Z

    There are numerous occasions when a planetary mission requires energy in remote areas of the solar system. Anytime power is required much beyond Mars or the Asteroid Belts, solar power is not an option. The radioisotope thermoelectric generator (RTG) was developed for such a mission requirement. It is a relatively small and lightweight power source that can produce power under adverse conditions. Just this type of source has become the backbone of the power system for far outer plant exploration. Voyagers I and II are utilizing RTGs, which will soon power the Galileo spacecraft to Jupiter and the Ulysses spacecraft to study the solar poles. The paper discusses RTG operation including thermoelectric design, converter design, general-purpose heat source; RTG reliability including design, testing, experience, and launch approval; and RTG safety issues and methods of ensuring safety.

  17. Manufacture of thermoelectric generator structures by fiber drawing

    DOE Patents [OSTI]

    McIntyre, Timothy J; Simpson, John T; West, David L

    2014-11-18T23:59:59.000Z

    Methods of manufacturing a thermoelectric generator via fiber drawing and corresponding or associated thermoelectric generator devices are provided.

  18. NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE...

  19. New materials and devices for thermoelectric applications

    SciTech Connect (OSTI)

    Fleurial, J.P.; Borshchevsky, A.; Caillat, T.; Ewell, R. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1997-12-31T23:59:59.000Z

    The development of new, more efficient materials and devices is the key to expanding the range of application of thermoelectric generators and coolers. In the last couple of years, efforts to discover breakthrough thermoelectric materials have intensified, in particular in the US. Recent results on novel materials have already demonstrated that dimensionless figure of merit ZT values 40 to 50% larger than 1.0, the current limit, could be obtained in the 475 to 950 K temperature range. New terrestrial power generation applications have been recently described in the literature. There exists a wide range of heat source temperatures for these applications, from low grade waste heat, at 325--350 K, up to 850 to 1,100 K, such as in the heat recovery from a processing plant of combustible solid waste. The automobile industry has also recently developed a strong interest in a waste exhaust heat recovery power source operating in the 375--750 K temperature range to supplement or replace the alternator and thus decrease fuel consumption. Based on results achieved to date at the Jet Propulsion Laboratory (JPL) on novel materials, the performance of an advanced segmented generator design operating in a large 300--945 K temperature gradient is predicted to achieve about 15% conversion efficiency. This would be a very substantial improvement over state-of-the-art (SOA) thermoelectric power converters. Such a terrestrial power generator could be using waste heat or liquid fuels as a heat source. High performance radioisotope generators (RTG) are still of interest for deep space missions but the shift towards small, light spacecraft has developed a need for advanced power sources in the watt to milliwatt range. The powerstick concept would provide a study, compact, lightweight and low cost answer to this need. The development of thin film thermoelectric devices also offer attractive possibilities. The combination of semiconductor technology, thermoelectric films and high thermal conductivity materials could lead to the fabrication of light weight, high voltage devices with high cooling or high electrical power density characteristics. The use of microcoolers for the thermal management of power electronics is of particular interest.

  20. Methodology for Service Development in a Distributed Smart Home Environment

    E-Print Network [OSTI]

    Methodology for Service Development in a Distributed Smart Home Environment Master Thesis by Cezary the author of this thesis, titled "Methodology for Service Devel- opment in a distributed Smart Home Technology in Munich. Furthermore I would like to thanks to whole Smart Home team for giving me valuable

  1. Characterization of Lung's Emphysema Distribution: Numerical Assessment of Disease Development

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Characterization of Lung's Emphysema Distribution: Numerical Assessment of Disease Development M, Egypt. Abstract--Chronic Obstructive Pulmonary Disease (COPD) refers to a group of lung diseases bronchitis. Pulmonary emphysema is defined as a lung disease characterized by "abnormal enlargement

  2. Thermoelectric generator for motor vehicle

    DOE Patents [OSTI]

    Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

    1997-04-29T23:59:59.000Z

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  3. Thermoelectric device characterization and solar thermoelectric system modeling

    E-Print Network [OSTI]

    Muto, Andrew (Andrew Jerome)

    2011-01-01T23:59:59.000Z

    Recent years have witnessed a trend of rising electricity costs and an emphasis on energy efficiency. Thermoelectric (TE) devices can be used either as heat pumps for localized environmental control or heat engines to ...

  4. Modeling the thermoelectric properties of bulk and nanocomposite thermoelectric materials

    E-Print Network [OSTI]

    Minnich, Austin (Austin Jerome)

    2008-01-01T23:59:59.000Z

    Thermoelectric materials are materials which are capable of converting heat directly into electricity. They have long been used in specialized fields where high reliability is needed, such as space power generation. Recently, ...

  5. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect (OSTI)

    Adam Polcyn; Moe Khaleel

    2009-01-06T23:59:59.000Z

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  6. Managing Distributed Software Development in the Virtual Astronomical Observatory

    E-Print Network [OSTI]

    Evans, Janet D; Bonaventura, Nina; Busko, Ivo; Cresitello-Dittmar, Mark; D'Abrusco, Raffaele; Doe, Stephen; Ebert, Rick; Laurino, Omar; Pevunova, Olga; Refsdal, Brian; Thomas, Brian

    2012-01-01T23:59:59.000Z

    The U.S. Virtual Astronomical Observatory (VAO) is a product-driven organization that provides new scientific research capabilities to the astronomical community. Software development for the VAO follows a lightweight framework that guides development of science applications and infrastructure. Challenges to be overcome include distributed development teams, part-time efforts, and highly constrained schedules. We describe the process we followed to conquer these challenges while developing Iris, the VAO application for analysis of 1-D astronomical spectral energy distributions (SEDs). Iris was successfully built and released in less than a year with a team distributed across four institutions. The project followed existing International Virtual Observatory Alliance inter-operability standards for spectral data and contributed a SED library as a by-product of the project. We emphasize lessons learned that will be folded into future development efforts. In our experience, a well-defined process that provides gu...

  7. Thermoelectric properties of nanoporous Ge

    E-Print Network [OSTI]

    Lee, Joo-Hyoung

    We computed thermoelectric properties of nanoporous Ge (np-Ge) with aligned pores along the [001] direction through a combined classical molecular dynamics and first-principles electronic structure approach. A significant ...

  8. Thermoelectrics run hot and cold

    SciTech Connect (OSTI)

    Tritt, T.M. [Naval Research Lab., Washington, DC (United States)

    1996-05-31T23:59:59.000Z

    Thermoelectricity, or the Seebeck effect, is the physical phenomenon used in thermocouples for temperature measurement. Over the past 2-3 years there has been renewed interest in the field for use in electronic refrigeration or power generation. This article summarizes information on new materials and new concepts for materials with some possibilities of higher performance than existing materials. Thermoelectric energy conversion utilizes the heat generated when an electric current is passed through a thermoelectric material to provide a temperature gradient. Advantages of thermoelectric solid state energy conversion are compactness, quietness, and localized heating or cooling. Possible automotive uses range from power generation to seat coolers. One group of materials receiving a lot of attention is the skutterudite materials. 8 refs., 1 fig.

  9. Proposal for a phase-coherent thermoelectric transistor

    SciTech Connect (OSTI)

    Giazotto, F., E-mail: giazotto@sns.it [NEST, Instituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa (Italy); Robinson, J. W. A., E-mail: jjr33@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Moodera, J. S. [Department of Physics and Francis Bitter Magnet Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Bergeret, F. S., E-mail: sebastian-bergeret@ehu.es [Centro de Fsica de Materiales (CFM-MPC), Centro Mixto CSIC-UPV/EHU, Manuel de Lardizabal 4, E-20018 San Sebastin (Spain); Donostia International Physics Center (DIPC), Manuel de Lardizabal 5, E-20018 San Sebastin (Spain)

    2014-08-11T23:59:59.000Z

    Identifying materials and devices which offer efficient thermoelectric effects at low temperature is a major obstacle for the development of thermal management strategies for low-temperature electronic systems. Superconductors cannot offer a solution since their near perfect electron-hole symmetry leads to a negligible thermoelectric response; however, here we demonstrate theoretically a superconducting thermoelectric transistor which offers unparalleled figures of merit of up to ?45 and Seebeck coefficients as large as a few mV/K at sub-Kelvin temperatures. The device is also phase-tunable meaning its thermoelectric response for power generation can be precisely controlled with a small magnetic field. Our concept is based on a superconductor-normal metal-superconductor interferometer in which the normal metal weak-link is tunnel coupled to a ferromagnetic insulator and a Zeeman split superconductor. Upon application of an external magnetic flux, the interferometer enables phase-coherent manipulation of thermoelectric properties whilst offering efficiencies which approach the Carnot limit.

  10. A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites

    E-Print Network [OSTI]

    Liu, Liping

    A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites Science, 2012. Contents 1 Introduction 2 2 A continuum model for thermoelectric bodies 4 2.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 A constitutive model for thermoelectric materials . . . . . . . . . . . . . . . . . . . . 6 2

  11. The RASCALLI Platform For a Flexible and Distributed Development of

    E-Print Network [OSTI]

    The RASCALLI Platform For a Flexible and Distributed Development of Virtual Systems Augmented with Cognition Brigitte Kenn, Christian Schollum Abstract The RASCALLI platform is a modular and flexible development and runtime environment for artificial systems augmented with aspects of cognition. The platform

  12. Thermoelectric energy conversion using nanostructured materials

    E-Print Network [OSTI]

    Chen, Gang

    High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics ...

  13. Benefits of Thermoelectric Technology for the Automobile

    Broader source: Energy.gov [DOE]

    Discusses improved fuel efficiency and other benefits of automotive application of thermoelectric (power generation and heating/cooling) and the need for production quantities of high-efficiency thermoelectric modules

  14. Challenges and Opportunities in Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Challenges and Opportunities in Thermoelectric Energy Conversion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Berkeley...

  15. Proactive Strategies for Designing Thermoelectric Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    multiple-rattler skutterudite thermoelectric materials design, synthesis, fabrication, and characterization for power generation using vehicle exhaust waste heat. subramanian...

  16. Recent Theoretical Results for Advanced Thermoelectric Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Recent Theoretical Results for Advanced Thermoelectric Materials Transport theory and first principles calculations applied to oxides, chalcogenides and skutterudite...

  17. Projet TESEER Thermoelectric micro Energy Source

    E-Print Network [OSTI]

    Baudoin, Genevive

    Projet TESEER Thermoelectric micro Energy Source Enhanced by Electromagnetic Radiation Participants of silicon to be used as a hot-spot for a thermoelectric element. Applications also exists for PV cells) Thermoelectric micro Energy Source Enhanced by Electromagnetic Radiation Objectifs Le projet TESEER consiste

  18. AbstractAbstract Improving efficiency of thermoelectric

    E-Print Network [OSTI]

    Walker, D. Greg

    AbstractAbstract Improving efficiency of thermoelectric energy conversion devices is a major-classical transport models used to predict ZT can effectively predict thermoelectric performance of bulk materials method proposed to couple quantum and scattering effects to predict thermoelectric performance. NEGF

  19. Enhanced thermoelectric performance of rough silicon nanowires

    E-Print Network [OSTI]

    Yang, Peidong

    LETTERS Enhanced thermoelectric performance of rough silicon nanowires Allon I. Hochbaum1 *, Renkun, such that roughly 15 terawatts of heat is lost to the environment. Thermoelectric modules could potentially convert part of this low-grade waste heat to electricity. Their efficiency depends on the thermoelectric figure

  20. Geek-Up[6.10.2011]: Thermoelectrics' Great Power, Key Ingredient in Bone's Nanostructure

    Broader source: Energy.gov [DOE]

    Advanced thermoelectric materials could be used to develop vehicle exhaust systems that convert exhaust heat into electricity, concentrate solar energy for power generation and recover waste heat from industrial processes.

  1. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    SciTech Connect (OSTI)

    None

    2012-01-31T23:59:59.000Z

    The thermoelectric generator shorting system provides the capability to monitor and short-out individual thermoelectric couples in the event of failure. This makes the series configured thermoelectric generator robust to individual thermoelectric couple failure. Open circuit detection of the thermoelectric couples and the associated short control is a key technique to ensure normal functionality of the TE generator under failure of individual TE couples. This report describes a five-year effort whose goal was the understanding the issues related to the development of a thermoelectric energy recovery device for a Class-8 truck. Likely materials and important issues related to the utility of this generator were identified. Several prototype generators were constructed and demonstrated. The generators developed demonstrated several new concepts including advanced insulation, couple bypass technology and the first implementation of skutterudite thermoelectric material in a generator design. Additional work will be required to bring this system to fruition. However, such generators offer the possibility of converting energy that is otherwise wasted to useful electric power. Uur studies indicate that this can be accomplished in a cost-effective manner for this application.

  2. Synthesis and Characterization of 14-1-11 Ytterbium Manganese Antimonide Derivatives for Thermoelectric Applications

    E-Print Network [OSTI]

    Star, Kurt

    2013-01-01T23:59:59.000Z

    have made radioisotope thermoelectric generators (RTGs),Mission Radioisotope Thermoelectric Generator (MMRTG) used

  3. Improved Thermoelectric Devices: Advanced Semiconductor Materials for Thermoelectric Devices

    SciTech Connect (OSTI)

    None

    2009-12-11T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Phononic Devices is working to recapture waste heat and convert it into usable electric power. To do this, the company is using thermoelectric devices, which are made from advanced semiconductor materials that convert heat into electricity or actively remove heat for refrigeration and cooling purposes. Thermoelectric devices resemble computer chips, and they manage heat by manipulating the direction of electrons at the nanoscale. These devices arent new, but they are currently too inefficient and expensive for widespread use. Phononic Devices is using a high-performance, cost-effective thermoelectric design that will improve the devices efficiency and enable electronics manufacturers to more easily integrate them into their products.

  4. Vlach & Sandhofer, In Press, Child Development Distributing Learning Over Time

    E-Print Network [OSTI]

    Rose, Michael R.

    of the spacing effect have focused on memory processes rather than for other types of learning simple and complex concepts. Spaced learning schedules promote several types of learning, strengtheningVlach & Sandhofer, In Press, Child Development Distributing Learning Over Time: The Spacing Effect

  5. Towards an MDA-based development methodology for distributed applications

    E-Print Network [OSTI]

    Pires, Luís Ferreira

    71 Towards an MDA-based development methodology for distributed applications Anastasius Gavras1 and concepts of the Model-Driven Architecture (MDA). The paper identifies phases and activities of an MDA the applicability and potential of MDA in the context of telecom services and applications. This paper also

  6. Thermoelectric refrigerator having improved temperature stabilization means

    DOE Patents [OSTI]

    Falco, Charles M. (Woodridge, IL)

    1982-01-01T23:59:59.000Z

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  7. Thermoelectric effect in molecular electronics

    E-Print Network [OSTI]

    M. Paulsson; S. Datta

    2003-01-14T23:59:59.000Z

    We provide a theoretical estimate of the thermoelectric current and voltage over a Phenyldithiol molecule. We also show that the thermoelectric voltage is (1) easy to analyze, (2) insensitive to the detailed coupling to the contacts, (3) large enough to be measured and (4) give valuable information, which is not readily accessible through other experiments, on the location of the Fermi energy relative to the molecular levels. The location of the Fermi-energy is poorly understood and controversial even though it is a central factor in determining the nature of conduction (n- or p-type). We also note that the thermoelectric voltage measured over Guanine molecules with an STM by Poler et al., indicate conduction through the HOMO level, i.e., p-type conduction.

  8. Thermoelectric properties of two-dimensional topological insulators doped with nonmagnetic impurities

    SciTech Connect (OSTI)

    Li, L. L., E-mail: lllihfcas@foxmail.com [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xu, W., E-mail: wenxu-issp@aliyun.com [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Department of Physics, Yunnan University, Kunming 650091 (China)

    2014-07-07T23:59:59.000Z

    We present a theoretical study on the thermoelectric properties of two-dimensional topological insulators (2DTIs) doped with nonmagnetic impurities. We develop a tractable model to calculate the electronic band structure without additional input parameters and to evaluate the thermoelectric properties of 2DTIs based on CdTe/HgTe quantum wells. We find that with increasing the doping concentration of nonmagnetic impurity, the edge states dominate the thermoelectric transport and the bulk-state conduction is largely suppressed. For typical sample parameters, the thermoelectric figure of merit ZT (a quantity used to characterize the conversion efficiency of a thermoelectric device between the heat and electricity) can be much larger than 1, which is a great advance over conventional thermoelectric materials. Furthermore, we show that with decreasing the 2DTI ribbon width or the Hall-bar width, ZT can be considerably further improved. These results indicate that the CdTe/HgTe 2DTIs doped with nonmagnetic impurities can be potentially applied as high-efficiency thermoelectric materials and devices.

  9. Legal, regulatory & institutional issues facing distributed resources development

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This report describes legal, regulatory, and institutional considerations likely to shape the development and deployment of distributed resources. It is based on research co-sponsored by the National Renewable Energy Laboratory (NREL) and four investor-owned utilities (Central & South West Services, Cinergy Corp., Florida Power Corporation, and San Diego Gas & Electric Company). The research was performed between August 1995 and March 1996 by a team of four consulting firms experienced in energy and utility law, regulation, and economics. It is the survey phase of a project known as the Distributed Resources Institutional Analysis Project.

  10. Software-Based Challenges of Developing the Future Distribution Grid

    SciTech Connect (OSTI)

    Stewart, Emma; Kiliccote, Sila; McParland, Charles

    2014-06-01T23:59:59.000Z

    The software that the utility industry currently uses may be insufficient to analyze the distribution grid as it rapidly modernizes to include active resources such as distributed generation, switch and voltage control, automation, and increasingly complex loads. Although planners and operators have traditionally viewed the distribution grid as a passive load, utilities and consultants increasingly need enhanced analysis that incorporates active distribution grid loads in order to ensure grid reliability. Numerous commercial and open-source tools are available for analyzing distribution grid systems. These tools vary in complexity from providing basic load-flow and capacity analysis under steady-state conditions to time-series analysis and even geographical representations of dynamic and transient events. The need for each type of analysis is not well understood in the industry, nor are the reasons that distribution analysis requires different techniques and tools both from those now available and from those used for transmission analysis. In addition, there is limited understanding of basic capability of the tools and how they should be practically applied to the evolving distribution system. The study reviews the features and state of the art capability of current tools, including usability and visualization, basic analysis functionality, advanced analysis including inverters, and renewable generation and load modeling. We also discuss the need for each type of distribution grid system analysis. In addition to reviewing basic functionality current models, we discuss dynamics and transient simulation in detail and draw conclusions about existing software?s ability to address the needs of the future distribution grid as well as the barriers to modernization of the distribution grid that are posed by the current state of software and model development. Among our conclusions are that accuracy, data transfer, and data processing abilities are key to future distribution grid modeling, and measured data sources are a key missing element . Modeling tools need to be calibrated based on measured grid data to validate their output in varied conditions such as high renewables penetration and rapidly changing topology. In addition, establishing a standardized data modeling format would enable users to transfer data among tools to take advantage of different analysis features. ?

  11. Improvements to solar thermoelectric generators through device design

    E-Print Network [OSTI]

    Weinstein, Lee A. (Lee Adragon)

    2013-01-01T23:59:59.000Z

    A solar thermoelectric generator (STEG) is a device which converts sunlight into electricity through the thermoelectric effect. A STEG is nominally formed when a thermoelectric generator (TEG), a type of solid state heat ...

  12. Thermoelectric Transport in a ZrN/ScN Superlattice

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    at Springerlink.com Thermoelectric Transport in a ZrN/ScNthe potential for a high thermoelectric ?gure of merit. Theexperimental studies of the thermoelectric transport in ZrN/

  13. Management of a large distributed control system development project

    SciTech Connect (OSTI)

    Gurd, D. P. (David P.)

    2002-01-01T23:59:59.000Z

    Building an accelerator at six geographically dispersed sites is quite mad, but politically expedient. The Spallation Neutron Source (SNS), currently under construction in Oak Ridge, Tennessee, combines a pulsed 1 Gev H{sup -} superconducting linac with a compressor ring to deliver 2 MW of beam power to a liquid mercury target for neutron production [1]. Accelerator components, target and experimental (neutron-scattering) instruments are being developed collaboratively by Lawrence Berkeley (Ion Source and Front End), Los Alamos (Linac), Thomas Jefferson (Cryosystems), Brookhaven (Compressor Ring), Oak Ridge (Target and Conventional Facilities) and Argonne (Neutron Scattering Instruments) National Laboratories. Similarly, a team distributed among all of the participating laboratories is developing the EPICS-based control system. this paper discusses the management model and strategies being used to address the unusual issues of organization, communication, standardization, integration and hand-off inherent in this widely-distributed project.

  14. Insulators and Materials for Closed-Spaced Thermoelectric Modules

    SciTech Connect (OSTI)

    Donald P. Snowden

    2003-07-20T23:59:59.000Z

    The primary goal of this Phase I program has been accomplished: to demonstrate a ceramic, injection-molded eggcrate which will form the support structure for a close-spaced thermoelectric module which can operate at significantly higher temperatures than presently possible with such modules. It has been shown that yttria-stabilized zirconia is compatible at high temperatures with typical thermoelectric materials (TAGS, SnTE and PbTe) and that it can serve as a barrier between them to preclude cross-contamination and doping of the constituents of one leg type by those from the other. Using a 2 x 2 ceramic eggcrate, thermally sprayed molybdenum electrodes have been deposited on a test module which effectively seal each pocket, further reducing the possibility of migration of elements. Based on these results the next tasks are to refine the design of the injection tool and the injection parameters to produce consistent results and to allow increase in the size of the module to that on which commercial, high-temperature thermoelectric modules can be based. In addition, development of the fabrication techniques for segmented thermoelectric legs for use with these ceramic eggcrates at high temperatures must be continued.

  15. Thermoelectric applications as related to biomedical engineering for NASA Johnson Space Center

    SciTech Connect (OSTI)

    Kramer, C.D.

    1997-07-01T23:59:59.000Z

    This paper presents current NASA biomedical developments and applications using thermoelectrics. Discussion will include future technology enhancements that would be most beneficial to the application of thermoelectric technology. A great deal of thermoelectric applications have focused on electronic cooling. As with all technological developments within NASA, if the application cannot be related to the average consumer, the technology will not be mass-produced and widely available to the public (a key to research and development expenditures and thermoelectric companies). Included are discussions of thermoelectric applications to cool astronauts during launch and reentry. The earth-based applications, or spin-offs, include such innovations as tank and race car driver cooling, to cooling infants with high temperatures, as well as, the prevention of hair loss during chemotherapy. In order to preserve the scientific value of metabolic samples during long-term space missions, cooling is required to enable scientific studies. Results of one such study should provide a better understanding of osteoporosis and may lead to a possible cure for the disease. In the space environment, noise has to be kept to a minimum. In long-term space applications such as the International Space Station, thermoelectric technology provides the acoustic relief and the reliability for food, as well as, scientific refrigeration/freezers. Applications and future needs are discussed as NASA moves closer to a continued space presence in Mir, International Space Station, and Lunar-Mars Exploration.

  16. Glass-like thermal conductivity in high efficiency thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...

  17. Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a proprietary stack...

  18. Overview of Research on Thermoelectric Materials and Devices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research on Thermoelectric Materials and Devices in China Overview of Research on Thermoelectric Materials and Devices in China An overview presentation of R&D projects on...

  19. Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications 2004 Diesel Engine Emissions Reduction...

  20. Overview of Progress in Thermoelectric Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in government- and...

  1. Modeling study of thermoelectric SiGe nanocomposites

    E-Print Network [OSTI]

    Minnich, Austin Jerome

    Nanocomposite thermoelectric materials have attracted much attention recently due to experimental demonstrations of improved thermoelectric properties over those of the corresponding bulk material. In order to better ...

  2. Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost High Energy Exhaust Heat Thermoelectric Generator with Closed-Loop Exhaust By-Pass System Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with...

  3. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01T23:59:59.000Z

    in bulk thermoelectric materials", M. Mater. Res. Soc.Thermoelectricity", Materials Reserach Society Symposium,Johnson, D. C. , Eds. Materials Research Society: Boston,

  4. Innovative Nano-structuring Routes for Novel ThermoelectricMaterials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking & DOS Engineering Innovative Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking &...

  5. Status of Segmented Element Thermoelectric Generator for Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    Advanced Thermoelectric Solutions - 4 - Advanced Thermoelectric Solutions - 5 - High and medium temperature TE engines are shown in the photo-right The engines incorporate...

  6. An Overview of Thermoelectric Waste Heat Recovery Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

  7. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on a OTR truck schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

  8. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace049schock2011o.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

  9. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

  10. Large-dimension, high-ZT Thermoelectric Nanocomposites for High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation Large-dimension, high-ZT Thermoelectric...

  11. Status of Segmented Element Thermoelectric Generator for Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Discusses progress...

  12. A Thermoelectric Generator with an Intermediate Heat Exchanger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Thermoelectric Generator with an Intermediate Heat Exchanger for Automotive Waste Heat Recovery System A Thermoelectric Generator with an Intermediate Heat Exchanger for...

  13. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  14. Low and high Temperature Dual Thermoelectric Generation Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery...

  15. Overview of Fords Thermoelectric Programs: Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control Overview of progress...

  16. Multi-physics modeling of thermoelectric generators for waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    physics modeling of thermoelectric generators for waste heat recovery applications Multi-physics modeling of thermoelectric generators for waste heat recovery applications Model...

  17. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by the Application of Advanced Thermoelectric Systems Implemented in a Hybrid Configuration Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  18. Review of Interests and Activities in Thermoelectric Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in thermoelectrics include integrated TE-hand-held burners for battery-replacement, waste-heat recovery on vehicles, heat-powered mobile units, and for thermoelectric cooling...

  19. Thermoelectrics: From Space Power Systems to Terrestrial Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications...

  20. Feasibility of OnBoard Thermoelectric Generation for Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Feasibility of OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Poster presentation at the...

  1. System level modeling of thermoelectric generators for automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    level modeling of thermoelectric generators for automotive applications System level modeling of thermoelectric generators for automotive applications Uses a model to predict and...

  2. Combustion Exhaust Gas Heat to Power usingThermoelectric Engines...

    Broader source: Energy.gov (indexed) [DOE]

    Solutions Combustion Exhaust Gas Heat to Power using Thermoelectric Engines John LaGrandeur October 5, 2011 Advanced Thermoelectric Solutions - 1 - Market motivation based on CO 2...

  3. High Reliability, High TemperatureThermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste...

  4. Developing and evaluating distributions for probabilistic human exposure assessments

    SciTech Connect (OSTI)

    Maddalena, Randy L.; McKone, Thomas E.

    2002-08-01T23:59:59.000Z

    This report describes research carried out at the Lawrence Berkeley National Laboratory (LBNL) to assist the U. S. Environmental Protection Agency (EPA) in developing a consistent yet flexible approach for evaluating the inputs to probabilistic risk assessments. The U.S. EPA Office of Emergency and Remedial Response (OERR) recently released Volume 3 Part A of Risk Assessment Guidance for Superfund (RAGS), as an update to the existing two-volume set of RAGS. The update provides policy and technical guidance on performing probabilistic risk assessment (PRA). Consequently, EPA risk managers and decision-makers need to review and evaluate the adequacy of PRAs for supporting regulatory decisions. A critical part of evaluating a PRA is the problem of evaluating or judging the adequacy of input distributions PRA. Although the overarching theme of this report is the need to improve the ease and consistency of the regulatory review process, the specific objectives are presented in two parts. The objective of Part 1 is to develop a consistent yet flexible process for evaluating distributions in a PRA by identifying the critical attributes of an exposure factor distribution and discussing how these attributes relate to the task-specific adequacy of the input. This objective is carried out with emphasis on the perspective of a risk manager or decision-maker. The proposed evaluation procedure provides consistency to the review process without a loss of flexibility. As a result, the approach described in Part 1 provides an opportunity to apply a single review framework for all EPA regions and yet provide the regional risk manager with the flexibility to deal with site- and case-specific issues in the PRA process. However, as the number of inputs to a PRA increases, so does the complexity of the process for calculating, communicating and managing risk. As a result, there is increasing effort required of both the risk professionals performing the analysis and the risk manager reviewing it. For deterministic risk assessments, the use of default inputs has improved the ease and the consistency of both performing and reviewing assessments. By analogy, it is expected that similar advantage will be seen in the field of probabilistic risk assessment through the introduction of default distributions. In Part 2 of this report, we consider when a default distribution might be appropriate for use in PRA and work towards development of recommended task-specific distributions for several frequently used exposure factors. An approach that we develop using body weight and exposure duration as case studies offers a transparent way for developing task-specific exposure factor distributions. A third case study using water intake highlights the need for further study aimed at improving the relevance of ''short-term'' data before recommendations on task-specific distributions of water intake can be made.

  5. Semiconducting glasses: A new class of thermoelectric materials?

    SciTech Connect (OSTI)

    Goncalves, A.P., E-mail: apg@itn.pt [Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa/CFMC-UL, P-2686-953 Sacavem (Portugal); Lopes, E.B. [Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa/CFMC-UL, P-2686-953 Sacavem (Portugal)] [Instituto Tecnologico e Nuclear, Instituto Superior Tecnico, Universidade Tecnica de Lisboa/CFMC-UL, P-2686-953 Sacavem (Portugal); Delaizir, G. [SPCTS, UMR CNRS 7315, Centre Europeen de la Ceramique, 12 rue Atlantis, 87068 Limoges (France)] [SPCTS, UMR CNRS 7315, Centre Europeen de la Ceramique, 12 rue Atlantis, 87068 Limoges (France); Vaney, J.B.; Lenoir, B. [Institut Jean Lamour, UMR 7198 CNRS-Nancy Universite-UPVM, Ecole Nationale Superieure des Mines de Nancy, Parc de Saurupt, F-54042 Nancy (France)] [Institut Jean Lamour, UMR 7198 CNRS-Nancy Universite-UPVM, Ecole Nationale Superieure des Mines de Nancy, Parc de Saurupt, F-54042 Nancy (France); Piarristeguy, A.; Pradel, A. [Institut Charles Gerhardt (ICG), UMR 5253 CNRS, Universite de Montpellier 2, 34095 Montpellier (France)] [Institut Charles Gerhardt (ICG), UMR 5253 CNRS, Universite de Montpellier 2, 34095 Montpellier (France); Monnier, J.; Ochin, P.; Godart, C. [CNRS, ICMPE, CMTR, 2/8 rue Henri Dunant, 94320 Thiais (France)] [CNRS, ICMPE, CMTR, 2/8 rue Henri Dunant, 94320 Thiais (France)

    2012-09-15T23:59:59.000Z

    The deeper understanding of the factors that affect the dimensionless figure of merit, ZT, and the use of new synthetic methods has recently led to the development of novel systems with improved thermoelectric performances. Albeit up to now with ZT values lower than the conventional bulk materials, semiconducting glasses have also emerged as a new family of potential thermoelectric materials. This paper reviews the latest advances on semiconducting glasses for thermoelectric applications. Key examples of tellurium-based glasses, with high Seebeck coefficients, very low thermal conductivities and tunable electrical conductivities, are presented. ZT values as high as 0.2 were obtained at room temperature for several tellurium-based glasses with high copper concentrations, confirming chalcogenide semiconducting glasses as good candidates for high-performance thermoelectric materials. However, the temperature stability and electrical conductivity of the reported glasses are still not good enough for practical applications and further studies are still needed to enhance them. - Graphical abstract: Power factor as a function of the temperature for the Cu{sub 27.5}Ge{sub 2.5}Te{sub 70} and Cu{sub 30}As{sub 15}Te{sub 55} seniconducting glasses. Highlights: Black-Right-Pointing-Pointer A review of semiconducting glasses for thermoelectrics applications is presented. Black-Right-Pointing-Pointer The studied semiconducting glasses present very low thermal conductivities. Black-Right-Pointing-Pointer Composition can tune electrical conductivity and Seebeck coefficient. Black-Right-Pointing-Pointer ZT=0.2 is obtained at 300 K for different semiconducting glasses.

  6. Thermoelectric Activities of European Community within Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of European Community within Framework Programme 7 and additional activities in Germany Thermoelectric Activities of European Community within Framework Programme 7 and...

  7. QUANTUM WELLS THERMOELECTRIC DEVICES FOR DIESEL ENGINES

    SciTech Connect (OSTI)

    Ghamaty, Saeid

    2000-08-20T23:59:59.000Z

    Thermoelectric materials are utilized for power generation in remote locations, on spacecraft used for interplanetary exploration, and in places where waste heat can be recovered.

  8. Nanostructured Thermoelectric Materials and High Efficiency Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007...

  9. Thermoelectric Generator (TEG) Fuel Displacement Potential using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation Thermoelectric Generator (TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation...

  10. Microstructure and Thermoelectric Properties of Mechanically...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites Home Author: J. R. Sootsman, J. He, V. P. Dravid, S. Ballikaya, D. Vermeulen, C....

  11. Thermoelectric Materials by Design: Computational Theory and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Design: Computational Theory and Structure Thermoelectric Materials by Design: Computational Theory and Structure Presentation from the U.S. DOE Office of Vehicle Technologies...

  12. High-Temperature Thermoelectric Materials Characterization for...

    Broader source: Energy.gov (indexed) [DOE]

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  13. Thermoelectric Materials By Design: Mechanical Reliability (Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    By Design: Mechanical Reliability (Agreement 14957) Thermoelectric Materials By Design: Mechanical Reliability (Agreement 14957) Presentation from the U.S. DOE Office of Vehicle...

  14. Thermoelectric Materials by Design, Computational Theory and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Design, Computational Theory and Structure Thermoelectric Materials by Design, Computational Theory and Structure 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  15. Thermoelectric Bulk Materials from the Explosive Consolidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bulk Materials from the Explosive Consolidation of Nanopowders Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively...

  16. High Temperature Thermoelectric Materials Characterization for...

    Broader source: Energy.gov (indexed) [DOE]

    High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  17. Thermoelectric Power Generation System with Loop Thermosyphon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency...

  18. Thermoelectric Power Plant Water Needs and Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study of the Use of Saline Formations for Combined Thermoelectric Power Plant Water Needs and Carbon Sequestration at a Regional Scale: Phase III Report August 2010 DOE...

  19. Scientists Connect Thermoelectric Materials and Topological Insulators...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that does not occur in normal semiconductors. Thermoelectric materials enable scalable direct conversion of heat to electricity in solid state devices, and have potential for...

  20. Scalable Routes to Efficient Thermoelectric Materials

    E-Print Network [OSTI]

    Feser, Joseph Patrick

    2010-01-01T23:59:59.000Z

    power, and recovering waste heat with thermoelectricexcellent fit for both waste-heat harvesting and high powerpush for thermoelectric waste heat recovery applications.

  1. Vehicular Thermoelectric Applications Session DEER 2009

    Broader source: Energy.gov (indexed) [DOE]

    Thermoelectric Applications Session DEER 2009 John W Fairbanks Department of Energy Vehicle Technologies Washington, D.C. August 5, 2009 Dearborn, Michigan Courtesy of DARPA 1903...

  2. Challenges and Opportunities in Thermoelectric Materials Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Research for Automotive Applications Challenges and Opportunities in Thermoelectric Materials Research for Automotive Applications Presentation given at the 2007 Diesel...

  3. Thermoelectric and electrical characterization of Si nanowires and GaNAs

    E-Print Network [OSTI]

    Pichanusakorn, Paothep

    2012-01-01T23:59:59.000Z

    1 Introduction to Thermoelectric phenomena and theory . . .1.1 Thermoelectric139 5.1.1 Thermoelectric application for highly-mismatch

  4. High-Temperature Thermoelectric Characterization of IIIV Semiconductor Thin Films by Oxide Bonding

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    High-Temperature Thermoelectric Characterization of IIIVfor high-temperature thermoelectric charac- terization ofdiffusion barrier. A thermoelectric material, thin-?lm ErAs:

  5. Increasing the thermoelectric figure of merit of tetrahedrites by Co-doping with nickel and zinc

    E-Print Network [OSTI]

    Lu, X; Morelli, DT; Morelli, DT; Xia, Y; Ozolins, V

    2015-01-01T23:59:59.000Z

    Increasing the Thermoelectric Figure of Merit of increase in the thermoelectric figure of merit coefficient and thermoelectric power factor; and 2)

  6. Thermoelectric behavior of conducting polymers: On the possibility of off-diagonal thermoelectricity

    SciTech Connect (OSTI)

    Mateeva, N.; Niculescu, H.; Schlenoff, J.; Testardi, L.

    1997-07-01T23:59:59.000Z

    Non-cubic materials, when structurally aligned, possess sufficient anisotropy to exhibit thermoelectric effects where the electrical and thermal currents are orthogonal (off-diagonal thermoelectricity). The authors discuss the benefits of this form of thermoelectricity for devices and describe a search for suitable properties in the air-stable conducting polymers polyaniline and polypyrrole. They find the simple and general correlation that the logarithm of the electrical conductivity scales linearly with the Seebeck coefficient on doping but with proportionality in excess of the conventional prediction for thermoelectricity. The correlation is unexpected in its universality and unfavorable for thermoelectric applications. A simple model suggests that mobile charges of both signs exist in these polymers, and this leads to reduced thermoelectric efficiency. They also briefly discuss non air-stable polyacetylene, where ambipolar transport does not appear to occur, and where properties seem more favorable for thermoelectricity.

  7. Transport Properties of Bulk Thermoelectrics An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity

    SciTech Connect (OSTI)

    Wang, Hsin [ORNL; Porter, Wallace D [ORNL; Bottner, Harold [Fraunhofer-Institute, Freiburg, Germany; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Chen, Lidong [Chinese Academy of Sciences; Bai, Shengqiang [Chinese Academy of Sciences; Tritt, Terry M. [Clemson University; Mayolett, Alex [Corning, Inc; Senawiratne, Jayantha [Corning, Inc; Smith, Charlene [Corning, Inc; Harris, Fred [ZT-Plus; Gilbert, Partricia [Marlow Industries, Inc; Sharp, Jeff [Marlow Industries, Inc; Lo, Jason [CANMET - Materials Technology Laboratory, Natural Resources of Canada; Keinke, Holger [University of Waterloo, Canada; Kiss, Laszlo I. [University of Quebec at Chicoutimi

    2013-01-01T23:59:59.000Z

    Recent research and development of high temperature thermoelectric materials has demonstrated great potential of converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as an important area for improving energy efficiency. The International Energy Agency (IEA) group under the implementing agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is Part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main focuses in Part I are on two electronic transport properties: Seebeck coefficient and electrical resistivity.

  8. CONFERENCE PROCEEDINGS Low-dimensional thermoelectric materials

    E-Print Network [OSTI]

    Cronin, Steve

    be used in practical devices for cooling and for electrical power generation.1 This early work led as a thermoelectric material was discovered by H. J. Goldsmid and coworkers in the U.K.,2 and this material system- tivity in the field of thermoelectricity has been greatly re- duced, and only modest progress was made

  9. Nanostructures having high performance thermoelectric properties

    SciTech Connect (OSTI)

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20T23:59:59.000Z

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  10. How do Distribution and Time Zones affect Software Development? A Case Study on

    E-Print Network [OSTI]

    Meyer, Bertrand

    How do Distribution and Time Zones affect Software Development? A Case Study on Communication local developments to geographically distributed projects. This paper presents a case study analyzing the effect of distribution and time zones on com- munication in distributed projects. The study was performed

  11. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect (OSTI)

    Reimus, M.A.; Hinckley, J.E. [Los Alamos National Laboratory P.O. Box 1663, MS-E502 Los Alamos, New Mexico87545 (United States)

    1997-01-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure. {copyright} {ital 1997 American Institute of Physics.}

  12. End-on radioisotope thermoelectric generator impact tests

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hhinckley, J.E.

    1997-01-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  13. DAVE: A plug and play model for distributed multimedia application development

    SciTech Connect (OSTI)

    Mines, R.F.; Friesen, J.A.; Yang, C.L.

    1994-07-01T23:59:59.000Z

    This paper presents a model being used for the development of distributed multimedia applications. The Distributed Audio Video Environment (DAVE) was designed to support the development of a wide range of distributed applications. The implementation of this model is described. DAVE is unique in that it combines a simple ``plug and play`` programming interface, supports both centralized and fully distributed applications, provides device and media extensibility, promotes object reuseability, and supports interoperability and network independence. This model enables application developers to easily develop distributed multimedia applications and create reusable multimedia toolkits. DAVE was designed for developing applications such as video conferencing, media archival, remote process control, and distance learning.

  14. Catalytic converter with thermoelectric generator

    SciTech Connect (OSTI)

    Parise, R.J.

    1998-07-01T23:59:59.000Z

    The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

  15. Thermoelectric generator cooling system and method of control

    DOE Patents [OSTI]

    Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

    2012-10-16T23:59:59.000Z

    An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

  16. Increasing thermoelectric efficiency towards the Carnot limit

    E-Print Network [OSTI]

    Giulio Casati; Carlos Mejia-Monasterio; Tomaz Prosen

    2008-02-27T23:59:59.000Z

    We study the problem of thermoelectricity and propose a simple microscopic mechanism for the increase of thermoelectric efficiency. We consider the cross transport of particles and energy in open classical ergodic billiards. We show that, in the linear response regime, where we find exact expressions for all transport coefficients, the thermoelectric efficiency of ideal ergodic gases can approach Carnot efficiency for sufficiently complex charge carrier molecules. Our results are clearly demonstrated with a simple numerical simulation of a Lorentz gas of particles with internal rotational degrees of freedom.

  17. Bulk dimensional nanocomposites for thermoelectric applications

    DOE Patents [OSTI]

    Nolas, George S

    2014-06-24T23:59:59.000Z

    Thermoelectric elements may be used for heat sensors, heat pumps, and thermoelectric generators. A quantum-dot or nano-scale grain size polycrystalline material the effects of size-quantization are present inside the nanocrystals. A thermoelectric element composed of densified Groups IV-VI material, such as calcogenide-based materials are doped with metal or chalcogenide to form interference barriers form along grains. The dopant used is either silver or sodium. These chalcogenide materials form nanoparticles of highly crystal grains, and may specifically be between 1- and 100 nm. The compound is densified by spark plasma sintering.

  18. Photo-controllable thermoelectric properties with reversibility and photo-thermoelectric effects of tungsten trioxide accompanied by its photochromic phenomenon

    SciTech Connect (OSTI)

    Azuma, Chiori [Faculty of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Kawano, Takuto [Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan); Kakemoto, Hirofumi; Irie, Hiroshi, E-mail: hirie@yamanashi.ac.jp [Clean Energy Research Center, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511 (Japan)

    2014-11-07T23:59:59.000Z

    The addition of photo-controllable properties to tungsten trioxide (WO{sub 3}) is of interest for developing practical applications of WO{sub 3} as well as for interpreting such phenomena from scientific viewpoints. Here, a sputtered crystalline WO{sub 3} thin film generated thermoelectric power due to ultraviolet (UV) light-induced band-gap excitation and was accompanied by a photochromic reaction resulting from generating W{sup 5+} ions. The thermoelectric properties (electrical conductivity (?) and Seebeck coefficient (S)) and coloration of WO{sub 3} could be reversibly switched by alternating the external stimulus between UV light irradiation and dark storage. After irradiating the film with UV light, ? increased, whereas the absolute value of S decreased, and the photochromic (coloration) reaction was detected. Notably, the opposite behavior was exhibited by WO{sub 3} after dark storage, and this reversible cycle could be repeated at least three times. Moreover, photo-thermoelectric effects (photo-conductive effect (photo-conductivity, ?{sub photo}) and photo-Seebeck effect (photo-Seebeck coefficient, S{sub photo})) were also detected in response to visible-light irradiation of the colored WO{sub 3} thin films. Under visible-light irradiation, ?{sub photo} and the absolute value of S{sub photo} increased and decreased, respectively. These effects are likely attributable to the excitation of electrons from the mid-gap visible light absorption band (W{sup 5+} state) to the conduction band of WO{sub 3}. Our findings demonstrate that the simultaneous, reversible switching of multiple properties of WO{sub 3} thin film is achieved by the application of an external stimulus and that this material exhibits photo-thermoelectric effects when irradiated with visible-light.

  19. In-line thermoelectric module

    DOE Patents [OSTI]

    Pento, Robert (Algonquin, IL); Marks, James E. (Glenville, NY); Staffanson, Clifford D. (S. Glens Falls, NY)

    2000-01-01T23:59:59.000Z

    A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions may be perpendicular to the direction of current flow through the module.

  20. A Completely Integrated Approach to Developing, Implementing, Evaluating Distributed Active

    E-Print Network [OSTI]

    Wedde, Horst F.

    -critical systems, (such as nuclear power plants, distributed cooperation of autonomous robots in Outer Space a distributed testbed for database application systems in safety-critical real-time environments. Given that safety/ reliability requirements and real- time constraints are in conflict there cannot be a closed form

  1. THE DEVELOPMENT OF DISTRI-bution systems poses new challenges

    E-Print Network [OSTI]

    Dixon, Juan

    are covered in a separate article. The six articles in this issue review the past, present, and the future level to respond to new energy challenges and the restruc- tured environment. The need for a change in the distribution systems of the 21st century. The Past Toward the end of the 19th century, dc distribution systems

  2. Photoacoustic measurement of bandgaps of thermoelectric materials

    E-Print Network [OSTI]

    Ni, George (George Wei)

    2014-01-01T23:59:59.000Z

    Thermoelectric materials are a promising class of direct energy conversion materials, usually consisting of highly doped semiconductors. The key to maximizing their thermal to electrical energy conversion lies in optimizing ...

  3. Heat Transfer in Thermoelectric Materials and Devices

    E-Print Network [OSTI]

    Tian, Zhiting

    Solid-state thermoelectric devices are currently used in applications ranging from thermocouple sensors to power generators in space missions, to portable air-conditioners and refrigerators. With the ever-rising demand ...

  4. Theoretical efficiency of solar thermoelectric energy generators

    E-Print Network [OSTI]

    Chen, Gang

    This paper investigates the theoretical efficiency of solar thermoelectric generators (STEGs). A model is established including thermal concentration in addition to optical concentration. Based on the model, the maximum ...

  5. Generalized drift-diffusion for microscopic thermoelectricity

    E-Print Network [OSTI]

    Santhanam, Parthiban

    2009-01-01T23:59:59.000Z

    Although thermoelectric elements increasingly incorporate nano-scale features in similar material systems as other micro-electronic devices, the former are described in the language of irreversible thermodynamics while ...

  6. Modeling of concentrating solar thermoelectric generators

    E-Print Network [OSTI]

    Ren, Zhifeng

    The conversion of solar power into electricity is dominated by non-concentrating photovoltaics and concentrating solar thermal systems. Recently, it has been shown that solar thermoelectric generators (STEGs) are a viable ...

  7. Probing thermoelectric transport with cold atoms

    E-Print Network [OSTI]

    Charles Grenier; Corinna Kollath; Antoine Georges

    2013-11-10T23:59:59.000Z

    We propose experimental protocols to reveal thermoelectric and thermal effects in the transport properties of ultracold fermionic atoms, using the two-terminal setup recently realized at ETH. We show in particular that, for two reservoirs having equal particle numbers but different temperatures initially, the observation of a transient particle number imbalance during equilibration is a direct evidence of thermoelectric (off-diagonal) transport coefficients. This is a time-dependent analogue of the Seebeck effect, and a corresponding analogue of the Peltier effect can be proposed. We reveal that in addition to the thermoelectric coupling of the constriction a thermoelectric coupling also arises due to the finite dilatation coefficient of the reservoirs. We present a theoretical analysis of the protocols, and assess their feasibility by estimating the corresponding temperature and particle number imbalances in realistic current experimental conditions.

  8. Thermoelectrics : material advancements and market applications

    E-Print Network [OSTI]

    Monreal, Jorge

    2007-01-01T23:59:59.000Z

    Thermoelectric properties have been known since the initial discovery in 1821 by Thomas Seebeck, who found that a current flowed at the junction of two dissimilar metals when placed under a temperature differential. This ...

  9. Modeling water use at thermoelectric power plants

    E-Print Network [OSTI]

    Rutberg, Michael J. (Michael Jacob)

    2012-01-01T23:59:59.000Z

    The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

  10. Solar thermoelectrics for small scale power generation

    E-Print Network [OSTI]

    Amatya, Reja

    2012-01-01T23:59:59.000Z

    In the past two decades, there has been a surge in the research of new thermoelectric (TE) materials, driven party by the need for clean and sustainable power generation technology. Utilizing the Seebeck effect, the ...

  11. High-Efficiency Solid State Cooling Technologies: Non-Equilibrium Asymmetic Thermoelectrics (NEAT) Devices

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    BEETIT Project: Sheetak is developing a thermoelectric-based solid state cooling system to replace typical air conditioners that use vapor compression to cool air. With noisy mechanical components, vapor compression systems use a liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the external environment. With no noisy moving parts or polluting refrigerants, thermoelectric systems rely on an electrical current being passed through the junction of the two different conducting materials to change temperature. Using advanced semiconductor technology, Sheetak is improving solid state cooling systems by using proprietary thermoelectric materials along with other innovations to achieve significant energy efficiency. Sheetaks new design displaces compressor-based technology; improves reliability; and decreases energy usage. Sheetaks use of semiconductor manufacturing methods leads to less material usefacilitating cheaper production.

  12. Band structure engineering through orbital interaction for enhanced thermoelectric power factor

    SciTech Connect (OSTI)

    Zhu, Hong; Sun, Wenhao; Ceder, Gerbrand [Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139 (United States); Armiento, Rickard [Department of Physics, Chemistry and Biology (IFM), Linkping University, SE-58183 Linkping (Sweden); Lazic, Predrag [Theoretical Physics Division, Rudjer Boskovic Institute, Bijenicka Cesta 54, Zagreb (Croatia)

    2014-02-24T23:59:59.000Z

    Band structure engineering for specific electronic or optical properties is essential for the further development of many important technologies including thermoelectrics, optoelectronics, and microelectronics. In this work, we report orbital interaction as a powerful tool to finetune the band structure and the transport properties of charge carriers in bulk crystalline semiconductors. The proposed mechanism of orbital interaction on band structure is demonstrated for IV-VI thermoelectric semiconductors. For IV-VI materials, we find that the convergence of multiple carrier pockets not only displays a strong correlation with the s-p and spin-orbit coupling but also coincides with the enhancement of power factor. Our results suggest a useful path to engineer the band structure and an enticing solid-solution design principle to enhance thermoelectric performance.

  13. Proposal for a phase-coherent thermoelectric transistor

    E-Print Network [OSTI]

    Giazotto, F.; Robinson, J. W. A.; Moodera, J. S.; Bergeret, F. S.

    2014-01-01T23:59:59.000Z

    solution since their near perfect electron-hole symmetry leads to a negligible thermoelectric response; however, here we demonstrate theoretically a superconducting thermoelectric transistor which offers unparalleled figures of merit of up to ~ 45...

  14. Thermoelectric Behavior of Flexible Organic Nanocomposites with Carbon Nanotubes

    E-Print Network [OSTI]

    Choi, Kyung Who

    2013-12-03T23:59:59.000Z

    There have been significant researches about thermoelectric behaviors by applying carbon nanotube (CNT)/polymer nanocomposites. Due to its thermally disconnected but electrically connected junctions between CNTs, the thermoelectric properties were...

  15. Synthesis and physical characterization of thermoelectric single crystals

    E-Print Network [OSTI]

    Porras Prez Guerrero, Juan Pablo

    2012-01-01T23:59:59.000Z

    There is much current interest in thermoelectric devices for sustainable energy. This thesis describes a research project on the synthesis and physical characterization of thermoelectric single crystals. 1In?Se?-[delta] ...

  16. Segregated Network Polymer-Carbon Nanotubes Composites For Thermoelectrics

    E-Print Network [OSTI]

    Kim, Dasaroyong

    2010-10-12T23:59:59.000Z

    nanocomposites were measured for carbon nanotubes and the thermoelectric figure of merit, ZT, was calculated at room temperature. The influence on thermoelectric properties from filler concentration, stabilizer materials and drying condition are also discussed....

  17. advanced thermoelectric materials: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advanced thermoelectric materials First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Thermoelectrics :...

  18. Modeling of solar thermal selective surfaces and thermoelectric generators

    E-Print Network [OSTI]

    McEnaney, Kenneth

    2010-01-01T23:59:59.000Z

    A thermoelectric generator is a solid-state device that converts a heat flux into electrical power via the Seebeck effect. When a thermoelectric generator is inserted between a solar-absorbing surface and a heat sink, a ...

  19. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    be 500 oC deer09schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

  20. The potential impact of ZT=4 thermoelectric materials on solar thermal energy conversion technologies.

    SciTech Connect (OSTI)

    Xie, M.; Gruen, D. M.; Materials Science Division; Michigan Technological Univ.

    2010-03-02T23:59:59.000Z

    State-of-the-art methodologies for the conversion of solar thermal power to electricity are based on conventional electromagnetic induction techniques. If appropriate ZT = 4 thermoelectric materials were available, it is likely that conversion efficiencies of 30-40% could be achieved. The availability of all solid state electricity generation would be a long awaited development in part because of the elimination of moving parts. This paper presents a preliminary examination of the potential performance of ZT = 4 power generators in comparison with Stirling engines taking into account specific mass, volume and cost as well as system reliability. High-performance thermoelectrics appear to have distinct advantages over magnetic induction technologies.

  1. Enhancing the Thermoelectric Power Factor with Highly Mismatched Isoelectronic Doping

    E-Print Network [OSTI]

    Grossman, Jeffrey C.

    We investigate the effect of O impurities on the thermoelectric properties of ZnSe from a combination

  2. Overview of Thermoelectric Power Generation Technologies in Japan

    Broader source: Energy.gov [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

  3. BuildingaThermoelectricMug This rllorrfh,s

    E-Print Network [OSTI]

    Lorenz, Ralph D.

    (Radioisotope Thermoelectric Generators), which are basically armored canisters holding plutonium dioxide fuel. Here, I will show how you can use these in reverseto generate electrical power. Thermoelectric Devicesfava Power BuildingaThermoelectricMug F This rllorrfh,s ?rcjae J a v a P o w e r. . . . . . . . 4 6

  4. Thermoelectric Research Takes Spotlight Improvements in Efficiency Help Fuel Results

    E-Print Network [OSTI]

    Thermoelectric Research Takes Spotlight Improvements in Efficiency Help Fuel Results m i c h i g of alternative energy sources, thermoelectrics may not immediately come to mind, but MSU and the College interest in alternative energy sources certainly has helped to bring thermoelectrics into the limelight

  5. Engineering Enhanced Thermoelectric Properties in Zigzag Graphene Nanoribbons

    E-Print Network [OSTI]

    Engineering Enhanced Thermoelectric Properties in Zigzag Graphene Nanoribbons Hossein Karamitaheri1@iue.tuwien.ac.at (Dated: March 7, 2012) Abstract We theoretically investigate the thermoelectric properties of zigzag nanoribbon structure that exhibits very poor thermoelectric performance, we demonstrate how after a series

  6. Optimizing Thermoelectric Power Factor by Means of a Potential Barrier

    E-Print Network [OSTI]

    1 Optimizing Thermoelectric Power Factor by Means of a Potential Barrier Neophytos Neophytou}@iue.tuwien.ac.at Abstract Large efforts in improving thermoelectric energy conversion are devoted to energy filtering design, ~40% improvement in the thermoelectric power factor can be achieved if the following conditions

  7. Critical Behavior of the Thermoelectric Transport Properties in Amorphous Systems

    E-Print Network [OSTI]

    Chemnitz, Technische Universitt

    Critical Behavior of the Thermoelectric Transport Properties in Amorphous Systems near the Metal., London SW7 2BZ, U.K. Abstract The scaling behavior of the thermoelectric trans- port properties;, the thermoelectric power S, the thermal conductivity K and the Lorenz number L0 obey scaling. The scaling description

  8. Profiling the Thermoelectric Power of Semiconductor Junctions with

    E-Print Network [OSTI]

    Profiling the Thermoelectric Power of Semiconductor Junctions with Nanometer Resolution Ho-Ki Lyeo,3 * We have probed the local thermoelectric power of semiconductor nanostruc- tures with the use of ultrahigh-vacuum scanning thermoelectric microscopy. When applied to a p-n junction, this method reveals

  9. Photo-Thermoelectric Effect at a Graphene Interface Junction

    E-Print Network [OSTI]

    McEuen, Paul L.

    Photo-Thermoelectric Effect at a Graphene Interface Junction Xiaodong Xu, Nathaniel M. Gabor increase at the cryogenic temperature as compared to room temperature. Assuming the thermoelectric power predictions. KEYWORDS Graphene, photocurrent, photo-thermoelectric effect D evices that convert photons

  10. Thermoelectric Properties of Superlattice Materials with Variably Spaced Layers

    E-Print Network [OSTI]

    Walker, D. Greg

    Thermoelectric Properties of Superlattice Materials with Variably Spaced Layers T.D. Musho of electronic level alignment. We have investigated the thermoelectric proper- ties of VSSL structures using leads to enhancement of thermoelectric properties. This presumption is based on electrical studies

  11. Project: Driver and controller for a thermoelectric cooler

    E-Print Network [OSTI]

    Project: Driver and controller for a thermoelectric cooler Supervisor: Prof. Sam Ben-Yaakov Year solutions. Based on one of the three thermoelectric phenomena the Peltier effect bi-directional control is achieved. The TEC (which is a Thermoelectric Cooler) uses this effect. The direction of the current through

  12. Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles

    E-Print Network [OSTI]

    Bowers, John

    Thermoelectric power factor in semiconductors with buried epitaxial semimetallic nanoparticles J. M, mobility, and Seebeck coefficient of these materials and discuss their potential for use in thermoelectric on thermoelectric materials has focused on the ability of heterostructures and quantum con- finement to increase

  13. Thermoelectric Power Generation Allison Duh and Joel Dungan

    E-Print Network [OSTI]

    Lavaei, Javad

    Thermoelectric Power Generation Allison Duh and Joel Dungan May 15, 2013 #12;Introduction A thermoelectric generator (TEG) is a device that converts heat energy directly into electrical energy. Thermoelectric systems capitalize on semiconductor charge carriers excited by a temperature difference to convert

  14. Subsurface Ambient Thermoelectric Power for Moles and Penetrators1

    E-Print Network [OSTI]

    Lorenz, Ralph D.

    1 Subsurface Ambient Thermoelectric Power for Moles and Penetrators1 Ralph D. Lorenz, Lunar for electrical power generation for planetary exploration applications using thermoelectric conversion of the vehicle. Proof-of-concept experiments are described using off-the-shelf thermoelectric CPU cooling plates

  15. Distributed Digital Preservation: Technical, Sustainability, and Organizational Developments

    E-Print Network [OSTI]

    Walters, Tyler; Bishoff, Liz; Gore, Emily B.; Jordan, Mark; Wilson, Thomas C

    2009-01-01T23:59:59.000Z

    preservation. OJS is an open-source journal management platform developed and supported by the Public Knowledge

  16. Stress distribution and development within geosynthetic-reinforced soil slopes

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    September 2011, accepted 2 December 2011 ABSTRACT: Numerical methods combined with centrifuge tests are used by centrifuge tests of two GRS slopes with different backfill densities. Numerical results indicate that soil, Centrifuge test REFERENCE: Yang, K.-H., Zornberg, J. G., Liu, C.-N. & Lin, H.-D. (2012). Stress distribution

  17. Low-Cost Hydrogen Distributed Production System Development

    SciTech Connect (OSTI)

    C.E. (Sandy) Thomas, Ph.D., President; Principal Investigator, and

    2011-03-10T23:59:59.000Z

    H{sub 2}Gen, with the support of the Department of Energy, successfully designed, built and field-tested two steam methane reformers with 578 kg/day capacity, which has now become a standard commercial product serving customers in the specialty metals and PV manufacturing businesses. We demonstrated that this reformer/PSA system, when combined with compression, storage and dispensing (CSD) equipment could produce hydrogen that is already cost-competitive with gasoline per mile driven in a conventional (non-hybrid) vehicle. We further showed that mass producing this 578 kg/day system in quantities of just 100 units would reduce hydrogen cost per mile approximately 13% below the cost of untaxed gasoline per mile used in a hybrid electric vehicle. If mass produced in quantities of 500 units, hydrogen cost per mile in a FCEV would be 20% below the cost of untaxed gasoline in an HEV in the 2015-2020 time period using EIA fuel cost projections for natural gas and untaxed gasoline, and 45% below the cost of untaxed gasoline in a conventional car. This 20% to 45% reduction in fuel cost per mile would accrue even though hydrogen from this 578 kg/day system would cost approximately $4.14/kg, well above the DOE hydrogen cost targets of $2.50/kg by 2010 and $2.00/kg by 2015. We also estimated the cost of a larger, 1,500 kg/day SMR/PSA fueling system based on engineering cost scaling factors derived from the two H{sub 2}Gen products, a commercial 115 kg/day system and the 578 kg/day system developed under this DOE contract. This proposed system could support 200 to 250 cars per day, similar to a medium gasoline station. We estimate that the cost per mile from this larger 1,500 kg/day hydrogen fueling system would be 26% to 40% below the cost per mile of untaxed gasoline in an HEV and ICV respectively, even without any mass production cost reductions. In quantities of 500 units, we are projecting per mile cost reductions between 45% (vs. HEVs) and 62% (vs ICVs), with hydrogen costing approximately $2.87/kg, still above the DOE's 2010 $2.50/kg target. We also began laboratory testing of reforming ethanol, which we showed is currently the least expensive approach to making renewable hydrogen. Extended testing of neat ethanol in micro-reactors was successful, and we also were able to reform E-85 acquired from a local fueling station for 2,700 hours, although some modifications were required to handle the 15% gasoline present in E-85. We began initial tests of a catalyst-coated wall reformer tube that showed some promise in reducing the propensity to coke with E-85. These coated-wall tests ran for 350 hours. Additional resources would be required to commercialize an ethanol reformer operating on E-85, but there is no market for such a product at this time, so this ethanol reformer project was moth-balled pending future government or industry support. The two main objectives of this project were: (1) to design, build and test a steam methane reformer and pressure swing adsorption system that, if scaled up and mass produced, could potentially meet the DOE 2015 cost and efficiency targets for on-site distributed hydrogen generation, and (2) to demonstrate the efficacy of a low-cost renewable hydrogen generation system based on reforming ethanol to hydrogen at the fueling station.

  18. Globally distributed product development : role of complexity in the what, where and how

    E-Print Network [OSTI]

    Makumbe, Pedzisayi O

    2008-01-01T23:59:59.000Z

    This dissertation presents findings on four elements of the relationship between Global Product Development or Globally distributed Product Development (GPD) and product complexity. I examine this relationship in the context ...

  19. Risk Management for Web and Distributed Software Development Projects Ayad Ali Keshlaf

    E-Print Network [OSTI]

    Newcastle upon Tyne, University of

    Risk Management for Web and Distributed Software Development Projects Ayad Ali Keshlaf School and managed. In this paper we survey a number of software risk management approaches and identify weaknesses approach to measure and control web and distributed development risks. Keywords-software risk management

  20. Thermoelectric Developments for Vehicular Applications | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23,EnergyChicopeeTechnology PerformanceDepartmentfor Improving ShortEnergy

  1. MoS2 Nanoribbons Thermoelectric Generators

    E-Print Network [OSTI]

    Arab, Abbas

    2015-01-01T23:59:59.000Z

    In this work, we have designed and simulated new thermoelectric generator based on monolayer and few-layer MoS2 nanoribbons. The proposed thermoelectric generator is composed of thermocouples made of both n-type and p-type MoS2 nanoribbon legs. Density Functional Tight-Binding Non-Equilibrium Green's Function (DFTB-NEGF) method has been used to calculate the transmission spectrum of MoS2 armchair and zigzag nanoribbons. Phonon transmission spectrum are calculated based on parameterization of Stillinger-Weber potential. Thermoelectric figure of merit, ZT, is calculated using these electronic and phonon transmission spectrum. Monolayer and bilayer MoS2 armchair nanoribbons are found to have the highest ZT value for p-type and n-type legs, repectively. Moreover, we have compared the thermoelectric current of doped monolayer MoS2 armchair nanoribbons and SZi thin films. Results indicate that thermoelectric current of MoS2 monolayer nanoribbons is several orders of magnitude higher than that of Si thin films.

  2. Design Impacts of Stochastically-Varying Input Parameters on Advanced Thermoelectric Conversion Systems

    SciTech Connect (OSTI)

    Hendricks, Terry J.; Karri, Naveen K.

    2007-06-30T23:59:59.000Z

    Advanced, direct thermal energy conversion technologies are receiving increased research attention in order to recover waste thermal energy in advanced vehicles and industrial processes. Advanced thermoelectric (TE) systems necessarily require integrated system-level analyses to establish accurate optimum system designs. Past system-level design and analysis has relied on well-defined deterministic input parameters even though many critically important environmental and system design parameters in the above mentioned applications are often randomly variable, sometimes according to complex relationships, rather than discrete, well-known deterministic variables. This work describes new research and development creating techniques and capabilities for probabilistic design and analysis of advanced TE power generation systems to quantify the effects of randomly uncertain design inputs in determining more robust optimum TE system designs and expected outputs. Selected case studies involving stochastic TE .material properties and coupled multi-variable stochasticity in key environmental and design parameters are presented and discussed to demonstrate key impacts from considering stochastic design inputs on the TE design optimization process. Critical findings show that: 1) stochastic Gaussian input distributions may produce Gaussian or non-Gaussian outcome probability distributions for critical TE design parameters, and 2) probabilistic input considerations can create design effects that warrant significant modifications to deterministically-derived optimum TE system designs. Magnitudes and directions of these design modifications are quantified for selected TE system design analysis cases.

  3. Design Impacts of Stochastically-Varying Input Parameters on Advanced Thermoelectric Conversion

    SciTech Connect (OSTI)

    Hendricks, Terry J.; Karri, Naveen K.

    2007-07-18T23:59:59.000Z

    Advanced, direct thermal energy conversion technologies are receiving increased research attention in order to recover waste thermal energy in advanced vehicles and industrial processes. Advanced thermoelectric (TE) systems necessarily require integrated system-level analyses to establish accurate optimum system designs. Past system-level design and analysis has relied on well-defined deterministic input parameters even though many critically important environmental and system design parameters in the above mentioned applications are often randomly variable, sometimes according to complex relationships, rather than discrete, well-known deterministic variables. This work describes new research and development creating techniques and capabilities for probabilistic design and analysis of advanced TE power generation systems to quantify the effects of randomly uncertain design inputs in determining more robust optimum TE system designs and expected outputs. Selected case studies involving stochastic TE .material properties and coupled multi-variable stochasticity in key environmental and design parameters are presented and discussed to demonstrate key impacts from considering stochastic design inputs on the TE design optimization process. Critical findings show that: 1) stochastic Gaussian input distributions may produce Gaussian or non-Gaussian outcome probability distributions for critical TE design parameters, and 2) probabilistic input considerations can create design effects that warrant significant modifications to deterministically-derived optimum TE system designs. Magnitudes and directions of these design modifications are quantified for selected TE system design analysis cases.

  4. Measurement and characterization techniques for thermoelectric materials

    SciTech Connect (OSTI)

    Tritt, T.M.

    1997-07-01T23:59:59.000Z

    Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

  5. Method of operating a thermoelectric generator

    DOE Patents [OSTI]

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05T23:59:59.000Z

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  6. Development of a High-Speed Static Switch for Distributed Energy and Microgrid Applications

    SciTech Connect (OSTI)

    Kroposki, B.; Pink, C.; Lynch, J.; John, V.; Meor Daniel, S.; Benedict, E.; Vihinen, I.

    2007-01-01T23:59:59.000Z

    Distributed energy resources can provide power to local loads in the electric distribution system and benefits such as improved reliability. Microgrids are intentional islands formed at a facility or in an electrical distribution system that contains at least one distributed resource and associated loads. Microgrids that operate both electrical generation and loads in a coordinated manner can offer additional benefits to the customer and local utility. The loads and energy sources can be disconnected from and reconnected to the area or local utility with minimal disruption to the local loads, thereby improving reliability. This paper details the development and testing of a highspeed static switch for distributed energy and microgrid applications.

  7. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21T23:59:59.000Z

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  8. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bel,; Lon E. (Altadena, CA); Crane, Douglas Todd (Pasadena, CA)

    2009-10-27T23:59:59.000Z

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  9. Transport in Charged Colloids Driven by Thermoelectricity

    E-Print Network [OSTI]

    Alois Wrger

    2014-01-29T23:59:59.000Z

    We study the thermal diffusion coefficient DT of a charged colloid in a temperature gradient, and find that it is to a large extent determined by the thermoelectric response of the electrolyte solution. The thermally induced salinity gradient leads in general to a strong increase with temperature. The difference of the heat of transport of coions and counterions gives rise to a thermoelectric field that drives the colloid to the cold or to the warm, depending on the sign of its charge. Our results provide an explanation for recent experimental findings on thermophoresis in colloidal suspensions.

  10. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOE Patents [OSTI]

    Singh, David Joseph

    2013-07-16T23:59:59.000Z

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  11. Holey Silicon as an Efficient Thermoelectric Material

    SciTech Connect (OSTI)

    Tang, Jinyao; Wang, Hung-Ta; Hyun Lee, Dong; Fardy, Melissa; Huo, Ziyang; Russell, Thomas P.; Yang, Peidong

    2010-09-30T23:59:59.000Z

    This work investigated the thermoelectric properties of thin silicon membranes that have been decorated with high density of nanoscopic holes. These ?holey silicon? (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35percent porosity, the thermal conductivity of HS is consistently reduced by 2 orders of magnitude and approaches the amorphous limit. With a ZT value of 0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system.

  12. An overview of the Radioisotope Thermoelectric Generator Transporation System Program

    SciTech Connect (OSTI)

    McCoy, J.C.

    1995-10-01T23:59:59.000Z

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined.

  13. An overview of the Radioisotope Thermoelectric Generator Transportation System Program

    SciTech Connect (OSTI)

    McCoy, J.C.; Becker, D.L. [Westinghouse Hanford Company, P.O. Box 1970, Richland, Washington 99352 (United States)

    1996-03-01T23:59:59.000Z

    Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration{close_quote}s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. {copyright} {ital 1996 American Institute of Physics.}

  14. Thermoelectric Properties of Some Cobalt Phosphide-Arsenide Compounds Anucha Watcharapasorn*

    E-Print Network [OSTI]

    Thermoelectric Properties of Some Cobalt Phosphide-Arsenide Compounds Anucha Watcharapasorn been synthesized and their thermoelectric properties measured. All three samples show semiconductingAsx system have also been synthesized and their thermoelectric properties are currently being investigated

  15. On the role of material property gradients in noncontacting thermoelectric NDE

    E-Print Network [OSTI]

    Nagy, Peter B.

    On the role of material property gradients in noncontacting thermoelectric NDE Hector Carreon that sense the thermoelectric currents produced by directional heating and cooling of the specimen and tangential magnetic fields produced by the resulting thermoelectric currents. Experimental results from

  16. Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices

    E-Print Network [OSTI]

    Bowers, John

    Highly Ordered Vertical Silicon Nanowire Array Composite Thin Films for Thermoelectric Devices for thermoelectric devices are presented. Inter- ference lithography was used to pattern square lattice photoresist device. Key words: Silicon nanowires, thermoelectrics, cross-plane measurements, nanowire composite

  17. Thermoelectric transport perpendicular to thin-film heterostructures calculated using the Monte Carlo technique

    E-Print Network [OSTI]

    Thermoelectric transport perpendicular to thin-film heterostructures calculated using the Monte The Monte Carlo technique is used to calculate electrical as well as thermoelectric transport properties ballistic thermionic transport and fully diffusive thermoelectric transport is also described. DOI: 10

  18. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation

    E-Print Network [OSTI]

    Xu, Xianfan

    Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

  19. NOVEL PRINCIPLES FOR DEVELOPING AND EVALUATING DISTRIBUTED SAFETY-CRITICAL SYSTEMS

    E-Print Network [OSTI]

    Wedde, Horst F.

    . In safety-critical systems, (such as nuclear power plants, distributed cooperation of autonomous robotsNOVEL PRINCIPLES FOR DEVELOPING AND EVALUATING DISTRIBUTED SAFETY-CRITICAL SYSTEMS Horst F. Wedde, Jon A. Lind Informatik III University of Dortmund 44221 Dortmund / Germany Abstract Safety

  20. Titanium nitride electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Novak, Robert F. (Farmington Hills, MI); Schmatz, Duane J. (Dearborn Heights, MI); Hunt, Thomas K. (Ann Arbor, MI)

    1987-12-22T23:59:59.000Z

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film of titanium nitride as an electrode deposited onto solid electrolyte. The invention is also directed to the method of making same.

  1. Molybdenum oxide electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Schmatz, Duane J. (Dearborn Heights, MI)

    1989-01-01T23:59:59.000Z

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film comprising molybdenum oxide as an electrode deposited by physical deposition techniques onto solid electrolyte. The invention is also directed to the method of making same.

  2. Thermoelectric devices and applications for the same

    DOE Patents [OSTI]

    DeSteese, John G [Kennewick, WA; Olsen, Larry C [Richland, WA; Martin, Peter M [Kennewick, WA

    2010-12-14T23:59:59.000Z

    High performance thin film thermoelectric couples and methods of making the same are disclosed. Such couples allow fabrication of at least microwatt to watt-level power supply devices operating at voltages greater than one volt even when activated by only small temperature differences.

  3. Thermoelectric cooling container for medical applications

    SciTech Connect (OSTI)

    Aivazov, A.A.; Shtern, Y.I.; Budaguan, B.G.; Makhrachev, K.B.; Pastor, M.

    1997-07-01T23:59:59.000Z

    In this work the thermoelectric cooling container for storing and transportation of the medicine, particularly for insulin, is discussed. In the working volume the temperature is supported on the level of +4 C. The container can work in two operating conditions: with the power supply and without the power supply. Two removable blocks are used for this purpose. One block (thermoelectric) is used for the work with the power supply and another (passive)-for the work without power supply. The thermoelectric block has a 12V power supply, which is used in the automobiles, yachts and other kinds of transport. The temperature in the working volume is supported by the use of the Peltier effect. An electronic device is used in this block and stabilizes temperature on the level of +4 C and indicates information about working conditions. The thermoelectric container has a power supply block for work at 220(110)V. The working temperature in the container can be maintained in the absence of the power supply. In this case the necessary temperature conditions are supported by melting of the crystallized salt. For this purpose the container has a hermetic volume containing this salt and contacting with the working volume.

  4. Design concepts for improved thermoelectric materials

    SciTech Connect (OSTI)

    Slack, G.A.

    1997-07-01T23:59:59.000Z

    Some new guidelines are given that should be useful in the search for thermoelectric materials that are better than those currently available. In particular, clathrate and cryptoclathrate compounds with filler atoms in their cages offer the ability to substantially lower the lattice thermal conductivity.

  5. Validation of the Algorithms Developed for Preliminary Prediction of Daylight Distribution in a Toplighted Atrium

    E-Print Network [OSTI]

    Boubekri, M.; Atif, M. R.; Boyer, L. L.

    1988-01-01T23:59:59.000Z

    VALIDATION OF THE ALGORITHMS DEVELOPED FOR PRELIMINARY PREDICTION OF DAYLIGHT DISTRIBUTION IN A TOPLIGHTED ATRIUM MOHAMED BOUBEKRI MORAD R. ATIF LESTER L. BOYER PhD Candidate PhD Student PhD, Professor Texas A&M University Texas MM University... to understand daylight distribution throughout an atrium space is essential to produce good designs. Simp1 ified daylight prediction algorithms for preliminary design of top1 ighted atriums under overcast and clear diffuse skies have been developed as part...

  6. High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation 2005 Diesel Engine...

  7. DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Sharing Knowledge DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative Research and Sharing Knowledge 2012 DOE...

  8. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Thermal Comfort Enablers for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications 2012 DOE Hydrogen and Fuel...

  9. DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research and sharing Knowledge DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative research and sharing Knowledge 2011 DOE...

  10. Characterization of thermoelectric elements and devices by impedance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of thermoelectric elements and devices by impedance spectroscopy Home Author: A. D. Downey, T. P. Hogan, B. Cook Year: 2007 Abstract: This article describes a new...

  11. Establishing Thermo-Electric Generator (TEG) Design Targets for...

    Broader source: Energy.gov (indexed) [DOE]

    for Hybrid Vehicles Establishing Thermo-Electric Generator (TEG) Design Targets for Hybrid Vehicles 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  12. Establishing Thermo-Electric Generator (TEG) Design Targets for...

    Broader source: Energy.gov (indexed) [DOE]

    Establishing Thermo-Electric Generator (TEG) Design Targets for Hybrid Vehicles 2013 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review May 15th, 2013 R.Vijayagopal,...

  13. Sandia Energy - Sandia Researchers Are First to Measure Thermoelectric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and have no moving parts, making them extremely attractive for cooling and energy harvesting applications. Thermoelectric metal-organic frameworks (MOFs) could take these...

  14. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Broader source: Energy.gov (indexed) [DOE]

    Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office Merit Review 2014: Nanostructured...

  15. Overview of Thermoelectric Power Generation Technologies in Japan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Japan Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting kajikawa.pdf...

  16. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  17. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland. merit08schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Efficiency Improvement in an...

  18. Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful incorporation of one of the most...

  19. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01T23:59:59.000Z

    Thermoelectrics: Direct Solar Thermal Energy Conversion,are working on solar thermal energy to generate electriccooling for CPUs, solar thermal energy harvesting, solid-

  20. Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Couple Demonstration of (In, Ce)-based Skutterudite Materials for Automotive Energy Recovery Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite Materials for...

  1. Automotive Thermoelectric Moduleswith Scalable Thermo- andElectro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Automotive Thermoelectric Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Interface materials based on...

  2. Fig. 1 Teleoperated slave robot Development of Distributed Optical Torque Sensors for Realization of Local Impedance

    E-Print Network [OSTI]

    Tachi, Susumu

    Fig. 1 Teleoperated slave robot Development of Distributed Optical Torque Sensors for Realization the recent development of optical torque sensor in order to replace expensive strain gauge sensor attached shapes of mechanical structure of sensor as well as optical measurement approaches are given. The results

  3. Quantum Well Thermoelectrics for Converting Waste Heat to Electricity

    SciTech Connect (OSTI)

    Saeid Ghamaty

    2007-04-01T23:59:59.000Z

    Fabrication development of high efficiency quantum well (QW) thermoelectric continues with the P-type and N-type Si/Si{sub 80}Ge{sub 20} films with encouraging results. These films are fabricated on Si substrates and are being developed for low as well as high temperature operation. Both isothermal and gradient life testing are underway. One couple has achieved over 4000 hours at T{sub H} of 300 C and T{sub C} of 50 C with little or no degradation. Emphasis is now shifting towards couple and module design and fabrication, especially low resistance joining between N and P legs. These modules can be used in future energy conversion systems as well as for air conditioning.

  4. Calculated thermoelectric properties of InxGa1-xN, InxAl1-xN, and AlxGa1-xN

    E-Print Network [OSTI]

    Sztein, Alexander; Haberstroh, John; Bowers, John E; DenBaars, Steven P; Nakamura, Shuji

    2013-01-01T23:59:59.000Z

    183707 (2013) Calculated thermoelectric properties of In xonline 10 May 2013) The thermoelectric properties of III-In order to predict thermoelectric performances and identify

  5. General Relativistic Thermoelectric Effects in Superconductors

    E-Print Network [OSTI]

    B. J. Ahmedov

    2007-01-13T23:59:59.000Z

    We discuss the general-relativistic contributions to occur in the electromagnetic properties of a superconductor with a heat flow. The appearance of general-relativistic contribution to the magnetic flux through a superconducting thermoelectric bimetallic circuit is shown. A response of the Josephson junctions to a heat flow is investigated in the general-relativistic framework. Some gravitothermoelectric effects which are observable in the superconducting state in the Earth's gravitational field are considered.

  6. Thermoelectric Potential of Bi and Bi1-x Sbx Nanowire M. S. Dresselhausa,b

    E-Print Network [OSTI]

    Cronin, Steve

    Thermoelectric Potential of Bi and Bi1-x Sbx Nanowire Arrays M. S. Dresselhausa,b , Y.-M. Lina , O for thermoelectric applications is discussed. The advantages of bismuth as a low dimensional thermoelectric material as the wire diameter as materials parameters for optimizing the thermoelectric performance of these nanowires

  7. Thermoelectric Transport Properties of Single Bismuth Nanowires S. B. Cronin1

    E-Print Network [OSTI]

    Cronin, Steve

    Thermoelectric Transport Properties of Single Bismuth Nanowires S. B. Cronin1 , Y.-M. Lin3 , M thermoelectric material. Bi nanowires, however, have been predicted to have a high thermoelectric efficiency [1,2]. The thermoelectric enhancement is based on the sharp features in the one-dimensional density of states

  8. IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 1, JANUARY 2008 423 Quantum Modeling of Thermoelectric

    E-Print Network [OSTI]

    Walker, D. Greg

    of Thermoelectric Properties of Si/Ge/Si Superlattices Anuradha Bulusu and D. Greg Walker Abstract, thermoelectric. I. INTRODUCTION THE EFFICIENCY of thermoelectric materials is usually characterized by the dimensionless thermoelectric figure of merit ZT = (S2 T)/, where S is the Seebeck coefficient

  9. Intersociety Energy Conversion Engineering Conference Proc., Vancouver, BC, Canada, 992569 (1999) Miniaturized Thermoelectric Power Sources

    E-Print Network [OSTI]

    1999-01-01T23:59:59.000Z

    is the discovery and infusion of novel thermoelectric materials more efficient above room temperature than

  10. Thermoelectric Behavior of Flexible Organic Nanocomposites with Carbon Nanotubes

    E-Print Network [OSTI]

    Choi, Kyung Who

    2013-12-03T23:59:59.000Z

    with ~100 S/m of electrical conductivity, resulting ~10,000 W/m-K2 of power factor. The result of this study shows that organic thermoelectric materials would be a promising approach for thermoelectric applications with light-weight and non-toxic nature....

  11. New Perspectives in Thermoelectric Energy Recovery System Design Optimization

    SciTech Connect (OSTI)

    Hendricks, Terry J.; Karri, Naveen K.; Hogan, Tim; Cauchy, Charles J.

    2013-02-12T23:59:59.000Z

    Abstract: Large amounts of waste heat are generated worldwide in industrial processes, automotive transportation, diesel engine exhaust, military generators, and incinerators because 60-70% of the fuel energy is typically lost in these processes. There is a strong need to develop technologies that recover this waste heat to increase fuel efficiency and minimize fuel requirements in these industrial processes, automotive and heavy vehicle engines, diesel generators, and incinerators. There are additional requirements to reduce CO2 production and environmental footprints in many of these applications. Recent work with the Strategic Environmental Research and Development Program office has investigated new thermoelectric (TE) materials and systems that can operate at higher performance levels and show a viable pathway to lightweight, small form-factor, advanced thermoelectric generator (TEG) systems to recover waste heat in many of these applications. New TE materials include nano-composite materials such as lead-antimony-silver-telluride (LAST) and lead-antimony-silver-tin-telluride (LASTT) compounds. These new materials have created opportunities for high-performance, segmented-element TE devices. New higher-performance TE devices segmenting LAST/LASTT materials with bismuth telluride have been designed and fabricated. Sectioned TEG systems using these new TE devices and materials have been designed. Integrated heat exchanger/TE device system analyses of sectioned TE system designs have been performed creating unique efficiency-power maps that provide better understandings and comparisons of design tradeoffs and nominal and off-nominal system performance conditions. New design perspectives in optimization of sectioned TE design approaches are discussed that provide insight on how to optimize such sectioned TE systems. System performance analyses using ANSYS TE modeling capabilities have integrated heat exchanger performance models with ANSYS TE models to extend its analysis capabilities beyond simple constant hot-side and cold-side temperature conditions . Analysis results portray external resistance effects, matched load conditions, maximum power vs. maximum efficiency points simultaneously.

  12. A theoretical study on the performances of thermoelectric heat engine and refrigerator with two-dimensional electron reservoirs

    SciTech Connect (OSTI)

    Luo, Xiaoguang, E-mail: 276718626@qq.com; Long, Kailin; Wang, Jun; Qiu, Teng, E-mail: tqiu@seu.edu.cn [Department of Physics, Southeast University, Nanjing 211189 (China); He, Jizhou [Department of Physics, Nanchang University, Nanchang 330031 (China); Liu, Nian [Department of Physical and Electronics, Anhui Science and Technology University, Bengbu 233100 (China)

    2014-06-28T23:59:59.000Z

    Theoretical thermoelectric nanophysics models of low-dimensional electronic heat engine and refrigerator devices, comprising two-dimensional hot and cold reservoirs and an interconnecting filtered electron transport mechanism have been established. The models were used to numerically simulate and evaluate the thermoelectric performance and energy conversion efficiencies of these low-dimensional devices, based on three different types of electron transport momentum-dependent filters, referred to herein as k{sub x}, k{sub y}, and k{sub r} filters. Assuming the Fermi-Dirac distribution of electrons, expressions for key thermoelectric performance parameters were derived for the resonant transport processes, in which the transmission of electrons has been approximated as a Lorentzian resonance function. Optimizations were carried out and the corresponding optimized design parameters have been determined, including but not limited to the universal theoretical upper bound of the efficiency at maximum power for heat engines, and the maximum coefficient of performance for refrigerators. From the results, it was determined that k{sub r} filter delivers the best thermoelectric performance, followed by the k{sub x} filter, and then the k{sub y} filter. For refrigerators with any one of three filters, an optimum range for the full width at half maximum of the transport resonance was found to be <2k{sub B}T.

  13. Development of laboratory and process sensors to monitor particle size distribution of industrial slurries

    SciTech Connect (OSTI)

    Pendse, H.P.

    1992-10-01T23:59:59.000Z

    In this paper we present a novel measurement technique for monitoring particle size distributions of industrial colloidal slurries based on ultrasonic spectroscopy and mathematical deconvolution. An on-line sensor prototype has been developed and tested extensively in laboratory and production settings using mineral pigment slurries. Evaluation to date shows that the sensor is capable of providing particle size distributions, without any assumptions regarding their functional form, over diameters ranging from 0.1 to 100 micrometers in slurries with particle concentrations of 10 to 50 volume percents. The newly developed on-line sensor allows one to obtain particle size distributions of commonly encountered inorganic pigment slurries under industrial processing conditions without dilution.

  14. Doping Effects on the Thermoelectric Properties of Cu3SbSe4

    SciTech Connect (OSTI)

    Skoug, Eric [Michigan State University, East Lansing; Cain, Jeffrey D. [Michigan State University, East Lansing; Morelli, Donald [Michigan State University, East Lansing; Majsztrik, Paul W [ORNL; Kirkham, Melanie J [ORNL; Lara-Curzio, Edgar [ORNL

    2011-01-01T23:59:59.000Z

    We present the first systematic doping study on the ternary semiconductor Cu3SbSe 4 . We have developed a novel synthesis procedure that produces high-quality polycrystalline samples with hole concentrations an order of magnitude lower than have been reported for the undoped compound. The hole concentration can be increased by adding small amounts of either Ge or Sn on the Sb site. The power factor increases with increasing doping, reaching a maximum value of 16 W/cmK^2 . The thermoelectric properties are optimized for the 2% Sn doped compound which has ZT=0.72 at 630K, rivaling that of state-of-the-art thermoelectric materials in this temperature range.

  15. Thermal Energy Harvesting with Thermoelectrics for Self-powered Sensors: With Applications to Implantable Medical Devices, Body Sensor Networks and Aging in Place

    E-Print Network [OSTI]

    Chen, Alic

    2011-01-01T23:59:59.000Z

    Pu-238) radioisotope and a thermoelectric generator. The Pu-to radioisotopes. In designing thermoelectric generators for

  16. Study and Development of Anti-Islanding Control for Synchronous Machine-Based Distributed Generators: November 2001--March 2004

    SciTech Connect (OSTI)

    Ye, Z.

    2006-03-01T23:59:59.000Z

    This report summarizes the study and development of new active anti-islanding control schemes for synchronous machine-based distributed generators, including engine generators and gas turbines.

  17. Radioisotope thermoelectric generator transport trailer system

    SciTech Connect (OSTI)

    Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A. [Westinghouse Hanford Company, P.O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

    1995-01-20T23:59:59.000Z

    The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  18. Thermoelectric DC conductivities from black hole horizons

    E-Print Network [OSTI]

    Aristomenis Donos; Jerome P. Gauntlett

    2014-10-14T23:59:59.000Z

    An analytic expression for the DC electrical conductivity in terms of black hole horizon data was recently obtained for a class of holographic black holes exhibiting momentum dissipation. We generalise this result to obtain analogous expressions for the DC thermoelectric and thermal conductivities. We illustrate our results using some holographic Q-lattice black holes as well as for some black holes with linear massless axions, in both $D=4$ and $D=5$ bulk spacetime dimensions, which include both spatially isotropic and anisotropic examples. We show that some recently constructed ground states of holographic Q-lattices, which can be either electrically insulating or metallic, are all thermal insulators.

  19. Solid state transport-based thermoelectric converter

    DOE Patents [OSTI]

    Hu, Zhiyu

    2010-04-13T23:59:59.000Z

    A solid state thermoelectric converter includes a thermally insulating separator layer, a semiconducting collector and an electron emitter. The electron emitter comprises a metal nanoparticle layer or plurality of metal nanocatalyst particles disposed on one side of said separator layer. A first electrically conductive lead is electrically coupled to the electron emitter. The collector layer is disposed on the other side of the separator layer, wherein the thickness of the separator layer is less than 1 .mu.m. A second conductive lead is electrically coupled to the collector layer.

  20. Energy harvesting using a thermoelectric material

    DOE Patents [OSTI]

    Nersessian, Nersesse (Van Nuys, CA); Carman, Gregory P. (Los Angeles, CA); Radousky, Harry B. (San Leandro, CA)

    2008-07-08T23:59:59.000Z

    A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

  1. Studies of bulk materials for thermoelectric cooling

    SciTech Connect (OSTI)

    Sharp, J.W.; Nolas, G.S.; Volckmann, E.H.

    1997-07-01T23:59:59.000Z

    The authors discuss ongoing work in three areas of thermoelectric materials research: (1) broad band semiconductors featuring anion networks, (2) filled skutterudites, and (3) polycrystalline Bi-Sb alloys. Key results include: a preliminary evaluation of a previously untested ternary semiconductor, KSnSb; the first reported data in which Sn is used as a charge compensator in filled antimonide skutterudites; the finding that Sn doping does not effect polycrystalline Bi{sub 1{minus}x}Sb{sub x} as it does single crystal samples.

  2. 2009 Thermoelectrics Applications Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, so are1703ConferenceThermoelectrics Applications

  3. Composite Thermoelectric Devices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational|ofSeptember 3, 2013 Leotek:forThermoelectric

  4. Vehicular Thermoelectrics Applications Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02Report | Department of|Thermoelectrics Applications

  5. Ab-Initio Determination of Novel Crystal Structures of the Thermoelectric Material MgAgSb

    SciTech Connect (OSTI)

    Kirkham, Melanie J [ORNL; Moreira Dos Santos, Antonio F [ORNL; Rawn, Claudia J [ORNL; Lara-Curzio, Edgar [ORNL; Sharp, Jeff W. [Marlow Industries, Inc; Thompson, Alan [Marlow Industries, Inc

    2012-01-01T23:59:59.000Z

    Materials with the half-Heusler structure possess interesting electrical and magnetic properties, including potential for thermoelectric applications. MgAgSb is compositionally and structurally related to many half-Heusler materials, but has not been extensively studied. This work presents the high-temperature X-ray diffraction analysis of MgAgSb between 27 and 420 C, complemented with thermoelectric property measurements. MgAgSb is found to exist in three different structures in this temperature region, taking the half-Heusler structure at high temperatures, a Cu2Sb-related structure at intermediate temperatures, and a previously unreported tetragonal structure at room temperature. All three structures are related by a distorted Mg-Sb rocksalt-type sublattice, differing primarily in the Ag location among the available tetrahedral sites. Transition temperatures between the three phases correlate well with discontinuities in the Seebeck coefficient and electrical conductivity; the best performance occurs with the novel room temperature phase. For application of MgAgSb as a thermoelectric material, it may be desirable to develop methods to stabilize the room temperature phase at higher temperatures.

  6. Experimental Study of Thermodiffusion and Thermoelectricity in Charged Colloids

    E-Print Network [OSTI]

    B. T. Huang; M. Roger; M. Bonetti; T. J. Salez; C. Wiertel-Gasquet; E. Dubois; R. Cabreira Gomes; G. Demouchy; G. Mriguet; V. Peyre; M. Kouyat; C. L. Filomeno; J. Depeyrot; F. A. Tourinho; R. Perzynski; S. Nakamae

    2015-03-30T23:59:59.000Z

    The Seebeck and Soret coefficients of ionically stabilized suspension of maghemite nanoparticles in dimethyl sulfoxide are experimentally studied as a function of nanoparticle volume fraction. In the presence of a temperature gradient, the charged colloidal nanoparticles experience both thermal drift due to their interactions with the solvent molecules and electric forces proportional to the internal thermoelectric field. The resulting thermodiffusion of nanoparticles is observed through Forced Rayleigh scattering, while the thermoelectric field is accessed through voltage measurements in a thermocell. Both techniques provide independent estimates of nanoparticle's entropy of transfer as high as 75 meV/K. Such a property may be used to improve the thermoelectric coefficients in liquid thermocells.

  7. Optimal restoration of power supply in large distribution systems in developing countries

    SciTech Connect (OSTI)

    Devi, V.S.; Sen Gupta, D.P. [Indian Inst. of Science, Bangalore (India). Dept. of Electrical Engineering; Anandalingam, G. [Univ. of Pennsylvania, Philadelphia, PA (United States). Dept. of Systems Engineering

    1995-01-01T23:59:59.000Z

    A computer aided optimal method has been developed for the restoration of electric supply to areas isolated from the network following a fault in a distribution system. A search technique is used where the search is guided by appropriate heuristics. The optimum solution entails finding the strategy which involves the operation of minimum number of switch gear for rerouting the supply within the constraint of specified loading. This is an essential requirement in countries like India where the circuit breakers are almost always manually operated and a number of transformers and feeders operate close to their rated capacity. It pays therefore to adopt different strategies at peak load and off peak conditions since the number of breaker operations is so critical. The heuristic search that is developed is applied to a large distribution system and provides very good results.

  8. Microscreen radiation shield for thermoelectric generator

    DOE Patents [OSTI]

    Hunt, Thomas K. (Ann Arbor, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

    1990-01-01T23:59:59.000Z

    The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

  9. Policy Building Blocks: Helping Policymakers Determine Policy Staging for the Development of Distributed PV Markets: Preprint

    SciTech Connect (OSTI)

    Doris, E.

    2012-04-01T23:59:59.000Z

    There is a growing body of qualitative and a limited body of quantitative literature supporting the common assertion that policy drives development of clean energy resources. Recent work in this area indicates that the impact of policy depends on policy type, length of time in place, and economic and social contexts of implementation. This work aims to inform policymakers about the impact of different policy types and to assist in the staging of those policies to maximize individual policy effectiveness and development of the market. To do so, this paper provides a framework for policy development to support the market for distributed photovoltaic systems. Next steps include mathematical validation of the framework and development of specific policy pathways given state economic and resource contexts.

  10. Thermoelectric, thermionic and thermophotovoltaic energy conversion Ali Shakouri

    E-Print Network [OSTI]

    of thermoelectric, ballistic thermionic and quasi diffusive thermionic energy converters are compared. First-state thermionic energy converters would be able to alleviate this trade off, thereby achieving a very high Single Barrier Heterostructure Thermionic Energy Converter Material 1 Mat

  11. Thermo-electrically pumped semiconductor light emitting diodes

    E-Print Network [OSTI]

    Santhanam, Parthiban

    2014-01-01T23:59:59.000Z

    Thermo-electric heat exchange in semiconductor light emitting diodes (LEDs) allows these devices to emit optical power in excess of the electrical power used to drive them, with the remaining power drawn from ambient heat. ...

  12. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1993-01-01T23:59:59.000Z

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  13. Thermoelectric Conversion of Wate Heat to Electricity in an IC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Presentation given at the 16th...

  14. Oxide based thermoelectric materials for large scale power generation

    E-Print Network [OSTI]

    Song, Yang, M. Eng. Massachusetts Institute of Technology

    2008-01-01T23:59:59.000Z

    The thermoelectric (TE) devices are based on the Seebeck and Peltier effects, which describe the conversion between temperature gradient and electricity. The effectiveness of the material performance can be described by ...

  15. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, Mark M. (Aiken, SC)

    1995-01-01T23:59:59.000Z

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  16. Modeling of thin-film solar thermoelectric generators

    E-Print Network [OSTI]

    Weinstein, Lee Adragon

    Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

  17. Enhanced thermoelectric properties in hybrid graphene-boron nitride nanoribbons

    E-Print Network [OSTI]

    Kaike Yang; Yuanping Chen; Roberto D'Agosta; Yuee Xie; Jianxin Zhong; Angel Rubio

    2012-04-06T23:59:59.000Z

    The thermoelectric properties of hybrid graphene-boron nitride nanoribbons (BCNNRs) are investigated using the non-equilibrium Green's function (NEGF) approach. We find that the thermoelectric figure of merit (ZT) can be remarkably enhanced by periodically embedding hexagonal BN (h-BN) into graphene nanoribbons (GNRs). Compared to pristine GNRs, the ZT for armchair-edged BCNNRs with width index 3p+2 is enhanced up to 10~20 times while the ZT of nanoribbons with other widths is enhanced just by 1.5~3 times. As for zigzag-edge nanoribbons, the ZT is enhanced up to 2~3 times. This improvement comes from the combined increase in the Seebeck coefficient and the reduction in the thermal conductivity outweighing the decrease in the electrical conductance. In addition, the effect of component ratio of h-BN on the thermoelectric transport properties is discussed. These results qualify BCNNRs as a promising candidate for building outstanding thermoelectric devices.

  18. Origin of anomalous atomic vibrations in efficient thermoelectrics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White arrows point out anomalous double-peak in PbTe, which is absent in SnTe. Thermoelectric SnTe and PbTe compounds were investigated with inelastic neutron scattering (INS)...

  19. Thermoelectric skutterudite compositions and methods for producing the same

    DOE Patents [OSTI]

    Ren, Zhifeng; Yang, Jian; Yan, Xiao; He, Qinyu; Chen, Gang; Hao, Qing

    2014-11-11T23:59:59.000Z

    Compositions related to skutterudite-based thermoelectric materials are disclosed. Such compositions can result in materials that have enhanced ZT values relative to one or more bulk materials from which the compositions are derived. Thermoelectric materials such as n-type and p-type skutterudites with high thermoelectric figures-of-merit can include materials with filler atoms and/or materials formed by compacting particles (e.g., nanoparticles) into a material with a plurality of grains each having a portion having a skutterudite-based structure. Methods of forming thermoelectric skutterudites, which can include the use of hot press processes to consolidate particles, are also disclosed. The particles to be consolidated can be derived from (e.g., grinded from), skutterudite-based bulk materials, elemental materials, other non-Skutterudite-based materials, or combinations of such materials.

  20. Controlling microstructure of nanocrystalline thermoelectrics through powder processing

    E-Print Network [OSTI]

    Humphry-Baker, Samuel A

    2014-01-01T23:59:59.000Z

    Bismuth Telluride and its solid solutions are currently front running thermoelectric materials because of their high figure of merit. When processed via mechanical alloying to obtain nanocrystalline structures, their ...

  1. ANSYS Thermoelectric Generator (TEG) Preparing the ANSYS Workbench

    E-Print Network [OSTI]

    Lee, Ho Sung

    ANSYS Thermoelectric Generator (TEG) Tutorial Preparing the ANSYS Workbench 1) Go Start Menu All-click Thermal-Electric at the top of the Project Schematic pane and select Rename as TEG Ex 3.1 Tutorial. 4

  2. Enhanced thermoelectric properties in hybrid graphene-boron nitride nanoribbons

    E-Print Network [OSTI]

    Yang, Kaike; D'Agosta, Roberto; Xie, Yuee; Zhong, Jianxin; Rubio, Angel

    2012-01-01T23:59:59.000Z

    The thermoelectric properties of hybrid graphene-boron nitride nanoribbons (BCNNRs) are investigated using the non-equilibrium Green's function (NEGF) approach. We find that the thermoelectric figure of merit (ZT) can be remarkably enhanced by periodically embedding hexagonal BN (h-BN) into graphene nanoribbons (GNRs). Compared to pristine GNRs, the ZT for armchair-edged BCNNRs with width index 3p+2 is enhanced up to 10~20 times while the ZT of nanoribbons with other widths is enhanced just by 1.5~3 times. As for zigzag-edge nanoribbons, the ZT is enhanced up to 2~3 times. This improvement comes from the combined increase in the Seebeck coefficient and the reduction in the thermal conductivity outweighing the decrease in the electrical conductance. In addition, the effect of component ratio of h-BN on the thermoelectric transport properties is discussed. These results qualify BCNNRs as a promising candidate for building outstanding thermoelectric devices.

  3. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01T23:59:59.000Z

    for efficient solid state cooling and power generation, has1,2]. Such solid- state refrigeration and power generationpower by using solar energy [2]. Thermoelectric devices can also serve as a solid

  4. Recovering Industrial Waste Heat by the Means of Thermoelectricity

    E-Print Network [OSTI]

    Kjelstrup, Signe

    as a heat pump) to the surroundings. This heat was interpreted as the lost work of the device. The aimRecovering Industrial Waste Heat by the Means of Thermoelectricity Spring 2010 Department

  5. High-density thermoelectric power generation and nanoscale thermal metrology

    E-Print Network [OSTI]

    Mayer, Peter (Peter Matthew), 1978-

    2007-01-01T23:59:59.000Z

    Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

  6. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1995-04-18T23:59:59.000Z

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

  7. CEC-500-2010-FS-018 Automotive Thermoelectric

    E-Print Network [OSTI]

    will also be achieved by incorporating thermoelectric waste heat generators into the system design to convert waste heat (exhaust gas) into electrical energy. PIER Program Objectives and Anticipated Benefits

  8. From Heat to Electricity: How "nano" Saved Thermoelectrics

    E-Print Network [OSTI]

    Kanatzidis, Mercouri G

    , reliable #12;Thermoelectric applications Waste heat recovery Automobiles Over the road trucks% of energy becomes waste heat, even a 10% capture and conversion to useful forms can have huge impact

  9. Evaluating the potential for high thermoelectric efficiency of silver selenide

    E-Print Network [OSTI]

    Martin, Alain

    for cooling applications as well as up to 600 K for waste heat recovery. 1 Introduction Thermoelectric application of an electric current, show promise as efficient harvesters of waste heat from industrial

  10. Thermoelectric generator and method for the fabrication thereof

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1987-01-01T23:59:59.000Z

    A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use thermoelectric generators.

  11. Thermoelectric generator and method for the fabrication thereof

    DOE Patents [OSTI]

    Benson, D.K.; Tracy, C.E.

    1984-08-01T23:59:59.000Z

    A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use as thermoelectric generators.

  12. Nanoscale Engineering for the Design of Efficient Inorganic-Organic Hybrid Thermoelectrics

    E-Print Network [OSTI]

    Brockway, Lance Robert

    2014-04-14T23:59:59.000Z

    of the prediction that nanostructuring could increase the thermoelectric performance of materials; semiconductor nanowires comprised of non-toxic, low cost, and earthabundant elements were synthesized and studied for their thermoelectric performance...

  13. Rational Synthesis of Ultrathin n-Type Bi2Te3 Nanowires with Enhanced Thermoelectric Properties

    E-Print Network [OSTI]

    Xu, Xianfan

    the nanowire powder through spark plasma sintering have been investigated. Compared to the current commercial n and a reproducible way. KEYWORDS: Bi2Te3, nanowires, thermoelectric, spark plasma sintering Thermoelectric materials

  14. Review of Interests and Activities in Thermoelectric Materials and Devices at the Army Research Laboratory

    Broader source: Energy.gov [DOE]

    Army interests in thermoelectrics include integrated TE-hand-held burners for battery-replacement, waste-heat recovery on vehicles, heat-powered mobile units, and for thermoelectric cooling of high-performance infrared systems for surveillance

  15. Thick and Thin Film Polymer CNT Nanocomposites for Thermoelectric Energy Conversion and Transparent Electrodes

    E-Print Network [OSTI]

    Fisher, Frank

    Thick and Thin Film Polymer ­ CNT Nanocomposites for Thermoelectric Energy Conversion gradient. Thermoelectric materials harvest electricity from waste heat or any temperature gradient]. The PDDA/(SWNT+DOC) system produced transparent (> 82% visible light transmittance) and electrically

  16. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling

    E-Print Network [OSTI]

    Xu, Xianfan

    Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling (TEG) designed for automotive waste heat recovery systems. This model is capable of computing bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

  17. International Round-Robin Testing of Bulk Thermoelectrics

    SciTech Connect (OSTI)

    Wang, Hsin [ORNL; Porter, Wallace D [ORNL; Bottner, Harold [Fraunhofer-Institute, Freiburg, Germany; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Chen, Lidong [Chinese Academy of Sciences; Bai, Shengqiang [Chinese Academy of Sciences; Tritt, Terry M. [Clemson University; Mayolett, Alex [Corning, Inc; Smith, Charlene [Corning, Inc; Harris, Fred [ZT-Plus; Sharp, Jeff [Marlow Industries, Inc; Lo, Jason [CANMET - Materials Technology Laboratory, Natural Resources of Canada; Keinke, Holger [University of Waterloo, Canada; Kiss, Laszlo I. [University of Quebec at Chicoutimi

    2011-11-01T23:59:59.000Z

    Two international round-robin studies were conducted on transport properties measurements of bulk thermoelectric materials. The study discovered current measurement problems. In order to get ZT of a material four separate transport measurements must be taken. The round-robin study showed that among the four properties Seebeck coefficient is the one can be measured consistently. Electrical resistivity has +4-9% scatter. Thermal diffusivity has similar +5-10% scatter. The reliability of the above three properties can be improved by standardizing test procedures and enforcing system calibrations. The worst problem was found in specific heat measurements using DSC. The probability of making measurement error is great due to the fact three separate runs must be taken to determine Cp and the baseline shift is always an issue for commercial DSC. It is suggest the Dulong Petit limit be always used as a guide line for Cp. Procedures have been developed to eliminate operator and system errors. The IEA-AMT annex is developing standard procedures for transport properties testing.

  18. Aerogel Derived Nanostructured Thermoelectric Materials

    SciTech Connect (OSTI)

    Wendell E Rhine, PI; Dong, Wenting; Greg Caggiano, PM

    2010-10-08T23:59:59.000Z

    Americas dependence on foreign sources for fuel represents a economic and security threat for the country. These non renewable resources are depleting, and the effects of pollutants from fuels such as oil are reaching a problematic that affects the global community. Solar concentration power (SCP) production systems offer the opportunity to harness one of the United States most under utilized natural resources; sunlight. While commercialization of this technology is increasing, in order to become a significant source of electricity production in the United States the costs of deploying and operating SCP plants must be further reduced. Parabolic Trough SCP technologies are close to meeting energy production cost levels that would raise interest in the technology and help accelerate its adoption as a method to produce a significant portion of the Countrys electric power needs. During this program, Aspen Aerogels will develop a transparent aerogel insulation that can replace the costly vacuum insulation systems that are currently used in parabolic trough designs. During the Phase I program, Aspen Aerogels will optimize the optical and thermal properties of aerogel to meet the needs of this application. These properties will be tested, and the results will be used to model the performance of a parabolic trough HCE system which uses this novel material in place of vacuum. During the Phase II program, Aspen Aerogels will scale up this technology. Together with industry partners, Aspen Aerogels will build and test a prototype Heat Collection Element that is insulated with the novel transparent aerogel material. This new device will find use in parabolic trough SCP applications.

  19. Combustion Synthesis of Doped Thermoelectric Oxides

    SciTech Connect (OSTI)

    Selig, Jiri [Lamar University; Lin, Sidney [Lamar University; Lin, Hua-Tay [ORNL; Johnson, D Ray [ORNL

    2012-01-01T23:59:59.000Z

    Self-propagating high-temperature synthesis (SHS) was used to prepare silver doped calcium cobaltates (Ca1.24- xAgxCo1.62O3.86, x = 0.03 - 0.12) powders. SHS is a simple and economic process to synthesize ceramic materials with minimum energy requirements. The heat generated by the SHS reaction can sustain the propagation of the reaction front and convert reactants to desired products. The effect of doping level on thermoelectric properties was investigated in this study. Results show the substitution of calcium by silver decreases the thermal conductivity significantly. XRD and surface area measurements show synthesized powders are phase pure and have large specific surface areas.

  20. The thermoelectric properties of inhomogeneous holographic lattices

    E-Print Network [OSTI]

    Aristomenis Donos; Jerome P. Gauntlett

    2015-01-22T23:59:59.000Z

    We consider inhomogeneous, periodic, holographic lattices of D=4 Einstein-Maxwell theory. We show that the DC thermoelectric conductivity matrix can be expressed analytically in terms of the horizon data of the corresponding black hole solution. We numerically construct such black hole solutions for lattices consisting of one, two and ten wave-numbers. We numerically determine the AC electric conductivity which reveals Drude physics as well as resonances associated with sound modes. No evidence for an intermediate frequency scaling regime is found. All of the monochromatic lattice black holes that we have constructed exhibit scaling behaviour at low temperatures which is consistent with the appearance of $AdS_2\\times\\mathbb{R}^2$ in the far IR at T=0.

  1. Coherent Thermoelectric Effects in Mesoscopic Andreev Interferometers

    E-Print Network [OSTI]

    Ph. Jacquod; R. S. Whitney

    2009-10-15T23:59:59.000Z

    We investigate thermoelectric transport through Andreev interferometers. We show that the ratio of the thermal and the charge conductance exhibits large oscillations with the phase difference $\\phi$ between the two superconducting contacts, and that the Wiedemann-Franz law holds only when $\\phi=\\pi$. A large average thermopower furthermore emerges whenever there is an asymmetry in the dwell times to reach the superconducting contacts. When this is the case, the thermopower is odd in $\\phi$. In contrast, when the average times to reach either superconducting contact are the same, the average thermopower is zero, however mesoscopic effects (analogous to universal conductance fluctuations) lead to a sample-dependent thermopower which is systematically even in $\\phi$.

  2. Thermoelectric transport through strongly correlated quantum dots

    E-Print Network [OSTI]

    Costi, T A; 10.1103/PhysRevB.81.235127

    2010-01-01T23:59:59.000Z

    The thermoelectric properties of strongly correlated quantum dots, described by a single level Anderson model coupled to conduction electron leads, is investigated using Wilson's numerical renormalization group method. We calculate the electronic contribution, $K_{\\rm e}$, to the thermal conductance, the thermopower, $S$, and the electrical conductance, $G$, of a quantum dot as a function of both temperature, $T$, and gate voltage, ${\\rm v}_g$, for strong, intermediate and weak Coulomb correlations, $U$, on the dot. For strong correlations and in the Kondo regime, we find that the thermopower exhibits two sign changes, at temperatures $T_{1}({\\rm v}_g)$ and $T_{2}({\\rm v}_g)$ with $T_{1}law in ...

  3. Nanograin effects on the thermoelectric properties of poly-Si nanowires N.Neophytou1

    E-Print Network [OSTI]

    1 Nanograin effects on the thermoelectric properties of poly-Si nanowires N.Neophytou1 , X.Zianni2 a theoretical analysis of the thermoelectric performance of polycrystalline Si NWs by considering both electron) have attracted significant attention as efficient thermoelectric materials mostly due to significant

  4. Effects of Confinement and Orientation on the Thermoelectric Power Factor of Silicon Nanowires

    E-Print Network [OSTI]

    1 Effects of Confinement and Orientation on the Thermoelectric Power Factor of Silicon Nanowires dimensionality can improve the thermoelectric (TE) power factor of a device, offering an enhancement of the ZT analysis of the thermoelectric coefficients of n-type and p-type NWs of diameters from 12nm down to 3nm

  5. Thermoelectric properties of high quality nanostructured Ge:Mn thin D. Tanoff2*

    E-Print Network [OSTI]

    Boyer, Edmond

    Thermoelectric properties of high quality nanostructured Ge:Mn thin films D. Tanoff2* , A. Barski2 nanostructured thin films and the measurement of their thermoelectric properties. We investigate the growth of Ge temperature thermoelectric properties of these layers containing spherical inclusions are discussed regarding

  6. Analysis of Thermoelectric Properties of Scaled Silicon Nanowires Using an Atomistic Tight-Binding Model

    E-Print Network [OSTI]

    1 Analysis of Thermoelectric Properties of Scaled Silicon Nanowires Using an Atomistic Tight Abstract Low dimensional materials provide the possibility of improved thermoelectric performance due. As a result of suppressed phonon conduction, large improvements on the thermoelectric figure of merit, ZT

  7. Numerical study of the thermoelectric power factor in ultra-thin Si nanowires

    E-Print Network [OSTI]

    1 Numerical study of the thermoelectric power factor in ultra-thin Si nanowires Neophytos Neophytou thermoelectric (TE) performance because of a drastic reduction in their thermal conductivity, l. This has been observed for a variety of materials, even for traditionally poor thermoelectrics such as silicon. Other

  8. Atomistic calculations of the electronic, thermal, and thermoelectric properties of ultra-thin Si layers

    E-Print Network [OSTI]

    1 Atomistic calculations of the electronic, thermal, and thermoelectric properties of ultra-thin Si are considered promising candidates for thermoelectric applications with enhanced performance because. This is also the case for traditionally poor thermoelectric materials such as silicon. This work presents

  9. Energy-Harvesting Thermoelectric Sensing for Unobtrusive Water and Appliance Metering

    E-Print Network [OSTI]

    Dutta, Prabal

    Energy-Harvesting Thermoelectric Sensing for Unobtrusive Water and Appliance Metering Bradford that meters using the same thermoelectric generator with which it powers itself. In short, the rate at which be harvested with a thermoelectric generator (TEG) to power a sensor node. TEGs utilize the Seebeck effect

  10. The effect of a multivalley energy band structure on the thermoelectric figure of merit

    E-Print Network [OSTI]

    Boyer, Edmond

    L-49 The effect of a multivalley energy band structure on the thermoelectric figure of merit D. M A comparison is drawn between the dimensionless thermoelectric figure of merit of a multivalleyed semiconductor a multivalleyed semiconductor in thermoelectric applications it is concluded that the beneficial effect

  11. Thermoelectric Rotating Torus for Fusion A. B. Hassam and Yi-Min Huang

    E-Print Network [OSTI]

    Hassam, Adil

    Thermoelectric Rotating Torus for Fusion A. B. Hassam and Yi-Min Huang Institute for Plasma power maintains the rotation and also heats the plasma. The thermoelectric effect from the resultingRevLett.91.195002 PACS numbers: 52.58.c, 52.30.q, 52.55.s In magnetized plasma, thermoelectric currents

  12. IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS

    E-Print Network [OSTI]

    IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS M. T. de of thermoelectric genera- tors (TEGs) by using a lens to concentrate heat on the heat source of a TEG. Initial : Thermoelectric generator, Solar heat concentrator, Carnot efficiency I - Introduction The global energy crisis

  13. Thermoelectric generator fabricated via laser-induced forward transfer M.Feinaeugle1

    E-Print Network [OSTI]

    Thermoelectric generator fabricated via laser-induced forward transfer M.Feinaeugle1 , C.L. Sones1 of a thermoelectric generator with the rapid, lithography-less technique of laser-induced forward transfer (LIFT on one substrate. The design of the proposed thermoelectric generator was selected to demonstrate

  14. Gated Si nanowires for large thermoelectric power factors Neophytos Neophytou1

    E-Print Network [OSTI]

    1 Gated Si nanowires for large thermoelectric power factors Neophytos Neophytou1 and Hans Kosina2 1.Neophytou@warwick.ac.uk Abstract We investigate the effect of electrostatic gating on the thermoelectric power factor of p-type Si, coupled to linearized Boltzmann transport equation for the calculation of the thermoelectric coefficients

  15. Gate-modulated thermoelectric conversion in disordered nanowires: I. Low temperature coherent regime

    E-Print Network [OSTI]

    Recanati, Catherine

    Gate-modulated thermoelectric conversion in disordered nanowires: I. Low temperature coherent as promising thermoelectric devices1 . In comparison to their bulk counterparts, they provide opportunities of thermoelectric conversion at a given temperature T . Indeed, they allow to reduce the phonon contribution ph

  16. Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2

    E-Print Network [OSTI]

    Wu, Junqiao

    Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2 Microbeams J. Cao,,, W. Fan-performance thermoelectric materials are currently one of the focuses in materials research for energy conversion technologies.1-4 A good thermoelectric material should have a relatively high thermopower (Seebeck coefficient

  17. Apparatus for thermoelectric power measurements on metals and alloys in the liquid state.

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    595 Apparatus for thermoelectric power measurements on metals and alloys in the liquid state, for the determination of absolute thermoelectric power of liquid metals is described. The apparatus has been tested results for cadmium antimony alloys are reported. A change of sign of the thermoelectric power, versus

  18. Thermoelectric Properties of p-Type PbSe Nanowires Wenjie Liang1,3

    E-Print Network [OSTI]

    Yang, Peidong

    Thermoelectric Properties of p-Type PbSe Nanowires Wenjie Liang1,3 , Oded Rabin1,4 , Allon I-009-9039-2 Research Article Address correspondence to p_yang@berkeley.edu ABSTRACT The thermoelectric properties to 300 K. Thermal annealing of the PbSe nanowires allowed their thermoelectric properties

  19. Minority-Carrier Thermoelectric Devices Kevin P. Pipe and Rajeev J. Ram

    E-Print Network [OSTI]

    Minority-Carrier Thermoelectric Devices Kevin P. Pipe and Rajeev J. Ram Research Laboratory the thermoelectric performance of the electronic devices themselves. Recognizing that minority carriers play for thermoelectric effects in a p-n diode (a prototypical electronic and optoelectronic component) where diffusion

  20. Stresa, Italy, 26-28 April 2006 ENERGY CONVERSION USING NEW THERMOELECTRIC GENERATOR

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Stresa, Italy, 26-28 April 2006 ENERGY CONVERSION USING NEW THERMOELECTRIC GENERATOR G. Savelli1: photolithography and deposition methods allow to elaborate thin thermoelectric structures at the micro-scale level. Micro thermoelectric converters are a promising technology due to the high reliability, quiet operation

  1. Thermoelectric figure of merit as a function of carrier propagation angle in semiconducting superlattices

    E-Print Network [OSTI]

    Carlson, Erica

    Thermoelectric figure of merit as a function of carrier propagation angle in semiconducting;Thermoelectric figure of merit as a function of carrier propagation angle in semiconducting superlattices Shuo a fruitful approach for enhancing the figure of merit, ZT, of thermoelectric materials. Generally

  2. Applied Mathematical Sciences, Vol. 4, 2010, no. 11, 505 -514 Efficiency of Inhomogeneous Thermoelectric

    E-Print Network [OSTI]

    Zhou, Hong

    Thermoelectric Generators Hong Zhou Department of Applied Mathematics Naval Postgraduate School, Monterey, CA thermoelectric generators. The effects of different physical parameters on the efficiency of a generator of a thermoelectric generator is insensitive to both the electrical resistivity and thermal conductivity. However

  3. Spin-dependent thermoelectric transport coefficients in near perfect quantum wires A. Ramsak,1,2

    E-Print Network [OSTI]

    Ramsak, Anton

    Spin-dependent thermoelectric transport coefficients in near perfect quantum wires T. Rejec,1 A 2002 Thermoelectric transport coefficients are determined for semiconductor quantum wires with weak in thermoelectric coefficients are also found in standard strongly correlated systems: the Anderson model,6

  4. Theory of thermoelectric phenomena in superconductors Y. M. Galperin,1,2

    E-Print Network [OSTI]

    Johansen, Tom Henning

    Theory of thermoelectric phenomena in superconductors Y. M. Galperin,1,2 V. L. Gurevich,2 V. I 2000; revised manuscript received 26 March 2001; published 24 January 2002 The theory of thermoelectric of the present paper is to discuss some as- pects of the kinetic approach to the thermoelectric properties

  5. Thermoelectric Transport in a ZrN/ScN Superlattice MONA ZEBARJADI,1

    E-Print Network [OSTI]

    Thermoelectric Transport in a ZrN/ScN Superlattice MONA ZEBARJADI,1 ZHIXI BIAN,1 RAJEEV SINGH,1 ALI for a high thermoelectric figure of merit. The thermopower of these structures can be enhanced by controlling and experimental studies of the thermoelectric transport in ZrN/ScN metal/semiconductor superlattices. Preliminary

  6. Thermoelectric Properties Modeling of Bi2Te3 Seungwon Lee and Paul von Allmen

    E-Print Network [OSTI]

    Goddard III, William A.

    Thermoelectric Properties Modeling of Bi2Te3 Seungwon Lee and Paul von Allmen Jet propulsion/23/2005 Overview Introduce EZTB a modeling tool for thermoelectric properties using a tight-binding model-binding parameters for Bi2Te3. Present the accuracy of the modeling tool with the thermoelectric properties of Bi2

  7. Thermoelectric figure of merit calculations for semiconducting nanowires Jane E. Cornett1

    E-Print Network [OSTI]

    Anlage, Steven

    Thermoelectric figure of merit calculations for semiconducting nanowires Jane E. Cornett1 and Oded 2011 A model for the thermoelectric properties of nanowires was used to demonstrate the contrasting influences of quantization and degeneracy on the thermoelectric power factor. The prevailing notion

  8. Improved Thermoelectric Power Factor in Metal-Based Superlattices Daryoosh Vashaee and Ali Shakouri*

    E-Print Network [OSTI]

    Improved Thermoelectric Power Factor in Metal-Based Superlattices Daryoosh Vashaee and Ali Shakouri and thermoelectric transport perpendicular to heterostructure superlattices. This nonlinear transport regime above with tall barriers can achieve a large effective thermoelectric figure of merit (ZT > 5 at room temperature

  9. Thermoelectric power measurements of wide band gap semiconducting Chul-Ho Lee,1

    E-Print Network [OSTI]

    Kim, Philip

    Thermoelectric power measurements of wide band gap semiconducting nanowires Chul-Ho Lee,1 Gyu online 13 January 2009 We investigated the temperature-dependent thermoelectric power TEP of individual concentration in wide band gap semiconducting nano- wires employing temperature-dependent thermoelectric power

  10. Thermoelectric power factor enhancement by ionized nanoparticle scattering Je-Hyeong Bahk,1,a)

    E-Print Network [OSTI]

    Thermoelectric power factor enhancement by ionized nanoparticle scattering Je-Hyeong Bahk,1,a theoretically that the thermoelectric power factor can be enhanced in degenerate semiconductors when embedded intact. We find that the thermoelectric power factor of In0.53Ga0.47As from 300 K to 800 K is enhanced

  11. Assessing the Thermoelectric Properties of Sintered Compounds via High-Throughput Ab-Initio Calculations

    E-Print Network [OSTI]

    Curtarolo, Stefano

    Assessing the Thermoelectric Properties of Sintered Compounds via High-Throughput Ab Database have been considered as nanograined, sintered-powder thermoelectrics with the high-throughput ab the electronic band gap and the carrier effective mass, and that the probability of having large thermoelectric

  12. Large thermoelectric figure of merit in Si1-xGex nanowires Lihong Shi,1

    E-Print Network [OSTI]

    Li, Baowen

    Large thermoelectric figure of merit in Si1-xGex nanowires Lihong Shi,1 Donglai Yao,1 Gang Zhang,2 transport equation, we investigate composition effects on the thermoelectric properties of silicon thermoelectric figure of merit ZT Refs. 14 due to both enhancement in the power factor through increasing

  13. www.ceramics.org | American Ceramic Society Bulletin, Vol. 91, No. 334 thermoelectric

    E-Print Network [OSTI]

    McGaughey, Alan

    www.ceramics.org | American Ceramic Society Bulletin, Vol. 91, No. 334 Modeling thermoelectric. Thermoelectric devices have the advantage of containing no moving parts, making them quiet, durable and reliable that thermoelectric devic- es can compete with traditional refrigeration and power generation technologies.1

  14. On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg

    E-Print Network [OSTI]

    On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg Fax: 4420 7594 5604 Word count: 3750 Diags. equivalent: 1600 5350 #12;On thermoelectric power the absolute maximum efficiency of energy conversion by thermoelectric devices that operate as part of the heat

  15. Thermoelectric and Magnetothermoelectric Transport Measurements of Graphene Yuri M. Zuev,1

    E-Print Network [OSTI]

    Kim, Philip

    Thermoelectric and Magnetothermoelectric Transport Measurements of Graphene Yuri M. Zuev,1 Willy, USA (Received 7 December 2008; published 6 March 2009) The conductance and thermoelectric power (TEP of thermal and thermoelectric prop- erties of this two-dimensional material [28], only an indirect

  16. Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices

    E-Print Network [OSTI]

    Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices propose a mechanism for enhancement of the thermoelectric figure-of-merit in regimented quantum dot, as a result, to the thermoelectric figure-of-merit enhancement. To maximize the improvement, one has to tune

  17. THERMOELECTRIC POWER IN SEMICONDUCTING ALLOYS OF THE InPxAs1-x SYSTEM

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    883 THERMOELECTRIC POWER IN SEMICONDUCTING ALLOYS OF THE InPxAs1-x SYSTEM N. P. KEKELIDZE, Z. V'approche de InP. Abstract. 2014 A detailed analysis of the thermoelectric power and the Hall effect near room of measurements of the thermoelectric power and the Hall effect. The values of the electron effective masses were

  18. Nontoxic and Abundant Copper Zinc Tin Sulfide Nanocrystals for Potential High-Temperature Thermoelectric Energy Harvesting

    E-Print Network [OSTI]

    Chen, Yong P.

    and abundant copper zinc tin sulfide (CZTS) nanocrystals for potential thermoelectric applications. The CZTS sulfide (CZTS) as a nontoxic and abundant thermoelectric material and characterized its thermoelectric materials, the elements in the composition of CZTS are in extremely high abundancethe natural reserves

  19. Work plan for the fabrication of the radioisotope thermoelectric generator transportation system package mounting

    SciTech Connect (OSTI)

    Satoh, J.A.

    1994-11-09T23:59:59.000Z

    The Radioisotope Thermoelectric Generator (RTG) has available a dedicated system for the transportation of RTG payloads. The RTG Transportation System (System 100) is comprised of four systems; the Package (System 120), the Semi-trailer (System 140), the Gas Management (System 160), and the Facility Transport (System 180). This document provides guidelines on the fabrication, technical requirements, and quality assurance of the Package Mounting (Subsystem 145), part of System 140. The description follows the Development Control Requirements of WHC-CM-6-1, EP 2.4, Rev. 3.

  20. Analytical thermal model validation for Cassini radioisotope thermoelectric generator

    SciTech Connect (OSTI)

    Lin, E.I. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

    1997-12-31T23:59:59.000Z

    The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before.

  1. Thermoelectric transport of Se-rich Ag{sub 2}Se in normal phases and phase transitions

    SciTech Connect (OSTI)

    Mi, Wenlong; Lv, Yanhong [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Qiu, Pengfei; Shi, Xun, E-mail: xshi@mail.sic.ac.cn, E-mail: cld@mail.sic.ac.cn; Chen, Lidong, E-mail: xshi@mail.sic.ac.cn, E-mail: cld@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050 (China); CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050 (China); Zhang, Tiansong [CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences,1295 Dingxi Road, Shanghai 200050 (China)

    2014-03-31T23:59:59.000Z

    Small amount of Se atoms are used to tune the carrier concentrations (n{sub H}) and electrical transport in Ag{sub 2}Se. Significant enhancements in power factor and thermoelectric figure of merit (zT) are observed in the compositions of Ag{sub 2}Se{sub 1.06} and Ag{sub 2}Se{sub 1.08}. The excessive Se atoms do not change the intrinsically electron-conducting character in Ag{sub 2}Se. The detailed analysis reveals the experiment optimum carrier concentration in Ag{sub 2}Se is around 5??10{sup 18}?cm{sup ?3}. We also investigate the temperature of maximum zT and the thermoelectric transport during the first order phase transitions using the recently developed measurement system.

  2. Thermoelectric transport through strongly correlated quantum dots

    E-Print Network [OSTI]

    T. A. Costi; V. Zlatic

    2010-07-08T23:59:59.000Z

    The thermoelectric properties of strongly correlated quantum dots, described by a single level Anderson model coupled to conduction electron leads, is investigated using Wilson's numerical renormalization group method. We calculate the electronic contribution, $K_{\\rm e}$, to the thermal conductance, the thermopower, $S$, and the electrical conductance, $G$, of a quantum dot as a function of both temperature, $T$, and gate voltage, ${\\rm v}_g$, for strong, intermediate and weak Coulomb correlations, $U$, on the dot. For strong correlations and in the Kondo regime, we find that the thermopower exhibits two sign changes, at temperatures $T_{1}({\\rm v}_g)$ and $T_{2}({\\rm v}_g)$ with $T_{1}< T_{2}$. Such sign changes in $S(T)$ are particularly sensitive signatures of strong correlations and Kondo physics. The relevance of this to recent thermopower measurements of Kondo correlated quantum dots is discussed. We discuss the figure of merit, power factor and the degree of violation of the Wiedemann-Franz law in quantum dots. The extent of temperature scaling in the thermopower and thermal conductance of quantum dots in the Kondo regime is also assessed.

  3. Thermoelectric properties of Weyl and Dirac semimetals

    E-Print Network [OSTI]

    Rex Lundgren; Pontus Laurell; Gregory A. Fiete

    2014-10-14T23:59:59.000Z

    We study the electronic contribution to the thermal conductivity and the thermopower of Weyl and Dirac semimetals using a semiclassical Boltzmann approach. We investigate the effect of various relaxation processes including disorder and interactions on the thermoelectric properties, and also consider doping away from the Weyl or Dirac point. We find that the thermal conductivity and thermopower have an interesting dependence on the chemical potential that is characteristic of the linear electronic dispersion, and that the electron-electron interactions modify the Lorenz number. For the interacting system, we also use the Kubo formalism to obtain the transport coefficients. We find exact agreement between the Kubo and Boltzmann approaches at high temperatures. We also consider the effect of electric and magnetic fields on the thermal conductivity in various orientations with respect to the temperature gradient. Notably, when the temperature gradient and magnetic field are parallel, we find a large contribution to the longitudinal thermal conductivity that is quadratic in the magnetic field strength, similar to the magnetic field dependence of the longitudinal electrical conductivity due to the presence of the chiral anomaly when no thermal gradient is present.

  4. Computational studies of novel thermoelectric materials

    SciTech Connect (OSTI)

    Singh, D.J.; Mazin, I.I.; Kim, S.G.; Nordstrom, L.

    1997-07-01T23:59:59.000Z

    The thermoelectric properties of La-filled skutterdites and {beta}-Zn{sub 4}Sb{sub 3} are discussed from the point of view of their electronic structures. These are calculated from first principles within the local density approximation. The electronic structures are in turn used to determine transport related quantities, {beta}-Zn{sub 4}Sb{sub 3} is found to be metallic with a complex Fermi surface topology, which yields a non-trivial dependence of the Hall concentration on the band filling. Calculations of the variation with band filling are used to extract the carrier concentration from the experimental Hall number. At this band filling, which corresponds to 0.1 electrons per 22 atom unit cell, the authors calculate a Seebeck coefficient and temperature dependence in good agreement with the experimental value. The high Seebeck coefficients in a metallic material are remarkable, and arise because of the strong energy dependence of the Fermiology near the experimental band filling. Virtual crystal calculations for La(Fe,Co){sub 4}Sb{sub 12}. The valence band maximum occurs at the {Gamma} point and is due to a singly degenerate dispersive (Fe,Co)-Sb band, which by itself would not be favorable for TE. However, very flat transition metal derived bands occur in close proximity and become active as the doping level is increased, giving a non-trivial dependence of the properties on carrier concentration and explaining the favorable TE properties.

  5. Miniature thermo-electric cooled cryogenic pump

    DOE Patents [OSTI]

    Keville, Robert F. (Valley Springs, CA)

    1997-01-01T23:59:59.000Z

    A miniature thermo-electric cooled cryogenic pump for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a .DELTA.T=100.degree. C. characteristic. The pump operates under vacuum pressures of 5.times.10.sup.-4 Torr to ultra high vacuum (UHV) conditions in the range of 1.times.10.sup.-7 to 3.times.10.sup.-9 Torr and will typically remove partial pressure, 2.times.10.sup.-7 Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5.degree., and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof.

  6. Miniature thermo-electric cooled cryogenic pump

    DOE Patents [OSTI]

    Keville, R.F.

    1997-11-18T23:59:59.000Z

    A miniature thermo-electric cooled cryogenic pump is described for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a {Delta}T=100 C characteristic. The pump operates under vacuum pressures of 5{times}10{sup {minus}4} Torr to ultra high vacuum (UHV) conditions in the range of 1{times}10{sup {minus}7} to 3{times}10{sup {minus}9} Torr and will typically remove partial pressure, 2{times}10{sup {minus}7} Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5{degree}, and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof. 2 figs.

  7. Overview of industry interest in new thermoelectric materials

    SciTech Connect (OSTI)

    Lyon, H.B. Jr.

    1997-07-01T23:59:59.000Z

    The technology base for air conditioning, refrigeration, component cooling below ambient temperatures and power generation will be required to meet several new challenges. The main lines of these challenges will be presented in a way which relates them to the several new thermoelectric materials and materials engineering options being pursued by the research community. The potential benefits of thermoelectric devices are only partially met by enhancing the figure of merit ZT, the nature of the design challenge and the resulting systems approach are presented. The research and the industry are entering into a new era.

  8. Thermoelectric efficiency of three-terminal quantum thermal machines

    E-Print Network [OSTI]

    Francesco Mazza; Riccardo Bosisio; Giuliano Benenti; Vittorio Giovannetti; Rosario Fazio; Fabio Taddei

    2014-08-28T23:59:59.000Z

    The efficiency of a thermal engine working in linear response regime in a multi-terminals configuration is discussed. For the generic three-terminal case, we provide a general definition of local and non-local transport coefficients: electrical and thermal conductances, and thermoelectric powers. Within the Onsager formalism, we derive analytical expressions for the efficiency at maximum power, which can be written in terms of generalized figures of merit. Also, using two examples, we investigate numerically how a third terminal could improve the performance of a quantum system, and under which conditions non-local thermoelectric effects can be observed.

  9. QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY

    SciTech Connect (OSTI)

    Saeid Ghamaty; Sal Marchetti

    2005-03-03T23:59:59.000Z

    New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices.

  10. Development and application of the method of distributed volumetric sources to the problem of unsteady-state

    E-Print Network [OSTI]

    Amini, Shahram

    2009-05-15T23:59:59.000Z

    Major Subject: Petroleum Engineering iii ABSTRACT Development and Application of the Method of Distributed Volumetric Sources to the Problem of Unsteady-State Fluid Flow in Reservoirs. (December 2007) Shahram Amini B.S.; M.S., University... of Tehran; M.S., IFP School (ENSPM) Co-Chairs of Advisory Committee: Dr. Peter P. Valk? Dr. Thomas A. Blasingame This work introduces the method of Distributed Volumetric Sources (DVS) to solve the transient and pseudosteady-state flow of fluids...

  11. Development of a High Resolution, Real Time, Distribution-Level Metering System and Associated Visualization, Modeling, and Data Analysis Functions

    SciTech Connect (OSTI)

    Bank, J.; Hambrick, J.

    2013-05-01T23:59:59.000Z

    NREL is developing measurement devices and a supporting data collection network specifically targeted at electrical distribution systems to support research in this area. This paper describes the measurement network which is designed to apply real-time and high speed (sub-second) measurement principles to distribution systems that are already common for the transmission level in the form of phasor measurement units and related technologies.

  12. 0-7803-XXXX-X/06/$20.00 2006 IEEE 22nd IEEE SEMI-THERM Symposium Hot Spot Cooling using Embedded Thermoelectric Coolers

    E-Print Network [OSTI]

    Thermoelectric Coolers G. Jeffrey Snyder, Marco Soto, Randy Alley, David Koester, Bob Conner Nextreme Thermal spot temperatures when efficiently integrated with a heat spreader. Embedded thermoelectric cooling (e by today's advanced processors. Keywords Localized hot spot cooling. Thermoelectric, Peltier Cooling

  13. Effect of sintering in ball-milled K{sub 2}Bi{sub 8}Se{sub 13} thermoelectric nano-composites

    SciTech Connect (OSTI)

    Hatzikraniotis, E. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)] [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Ioannou, M. [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus)] [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus); Chrissafis, K. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)] [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Chung, D.Y. [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States)] [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Paraskevopoulos, K.M. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)] [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Kyratsi, Th., E-mail: kyratsi@ucy.ac.cy [Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia (Cyprus)

    2012-09-15T23:59:59.000Z

    K{sub 2}Bi{sub 8}Se{sub 13} has many attractive features for thermoelectric applications. Recently, K{sub 2}Bi{sub 8}Se{sub 13}-based nanocomposite materials, consisting of nano-crystalline, micro-crystalline and amorphous phases, have been fabricated based on powder technology techniques. The Seebeck coefficient has been enhanced while the thermal conductivity has been decreased presenting, thus, interesting behavior. The behavior of the materials under heat treatment conditions is now of interest, as the application of sintering process is necessary for the development of thermoelectric modules. In this work, the crystallization of the K{sub 2}Bi{sub 8}Se{sub 13}-based nano-composites is studied using Differential Scanning Calorimetry. The results show that crystallization follows a multiple-step process with different activation energies. The thermoelectric properties are also discussed in the range that crystallization occurs. - Graphical Abstract: {beta}-K{sub 2}Bi{sub 8}Se{sub 13}-based nanocomposites follow a multiple-step crystallization process. Highlights: Black-Right-Pointing-Pointer K{sub 2}Bi{sub 8}Se{sub 13}-based composites consisting of nanocrystalline and amorphous phases. Black-Right-Pointing-Pointer Sintering results multiple-step crystallization with variable activation energies. Black-Right-Pointing-Pointer Thermoelectric properties follow a step-like behavior during sintering. Black-Right-Pointing-Pointer Properties are attributed to the strain relaxation, nucleation and grain growth.

  14. The Fundamentals of Thermoelectrics A bachelor's laboratory practical

    E-Print Network [OSTI]

    Ludwig-Maximilians-Universitt, Mnchen

    to thermoelectrics 1 2 The thermocouple 4 3 The Peltier device 5 3.1 n- and p-type Peltier elements . . . . . . . . . . . . . . . . . . 5 3.2 Commercial Peltier devices . . . . . . . . . . . . . . . . . . . . 5 3.3 Electrical power.2 Measurements with the Peltier device . . . . . . . . . . . . . . 11 4.2.1 Warm-up procedure

  15. Molybdenum-platinum-oxide electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Schmatz, Duane J. (Dearborn Heights, MI)

    1990-01-01T23:59:59.000Z

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a solid electrolyte carrying a thin film comprising molybdenum-platinum-oxide as an electrode deposited by physical deposition techniques. The invention is also directed to the method of making same.

  16. Perspectives on thermoelectrics: from fundamentals to device applications

    E-Print Network [OSTI]

    Zebarjadi, M.

    2012-01-01T23:59:59.000Z

    This review is an update of a previous review (A. J. Minnich, et al., Energy Environ. Sci., 2009, 2, 466) published two years ago by some of the co-authors, focusing on progress made in thermoelectrics over the past two ...

  17. Universal formulae for thermoelectric transport with magnetic field and disorder

    E-Print Network [OSTI]

    Andrea Amoretti; Daniele Musso

    2015-02-09T23:59:59.000Z

    We obtain explicit expressions for the thermoelectric transport coefficients of a strongly coupled, planar medium in the presence of an orthogonal magnetic field and disorder. The computations are performed within the gauge/gravity framework, however we propose and argue for a possible universal relevance of the results relying on comparisons and extensions of previous hydrodynamical analyses and experimental data.

  18. Tailoring the Thermoelectric Behavior of Electrically Conductive Polymer Composites

    E-Print Network [OSTI]

    Moriarty, Gregory P.

    2013-05-21T23:59:59.000Z

    the promise of fully organic composites as thermoelectric materials. This combination of CNT and stabilizer produced metallic electrical conductivity (200,000 S m-1) and power factors (S2?) within an order of magnitude of commonly used semiconductors (~400 ?W...

  19. Universal formulae for thermoelectric transport with magnetic field and disorder

    E-Print Network [OSTI]

    Amoretti, Andrea

    2015-01-01T23:59:59.000Z

    We obtain explicit expressions for the thermoelectric transport coefficients of a strongly coupled, planar medium in the presence of an orthogonal magnetic field and disorder. The computations are performed within the gauge/gravity framework, however we propose and argue for a possible universal relevance of the results relying on comparisons and extensions of previous hydrodynamical analyses and experimental data.

  20. Selecting the suitable dopants: electronic structures of transition metal and rare earth doped thermoelectric sodium cobaltate

    E-Print Network [OSTI]

    Assadi, M H N; Yu, A B

    2012-01-01T23:59:59.000Z

    Engineered Na0.75CoO2 is considered a prime candidate to achieve high efficiency thermoelectric systems to regenerate electricity from waste heat. In this work, three elements with outmost electronic configurations, (1) an open d shell (Ni), (2) a closed d shell (Zn), and (3) an half fill f shell (Eu) with a maximum unpaired electrons, were selected to outline the dopants' effects on electronic and crystallographic structures of Na0.75CoO2. Systematic ab initio density functional calculations showed that the formation energy of these dopants was found to be lowest when residing on sodium layer and ranked as -1.1 eV, 0.44 eV and 3.44 eV for Eu, Ni and Zn respectively. Furthermore Ni was also found to be stable when substituting Co ion. As these results show great harmony with existing experimental data, they provide new insights into the fundamental principle of dopant selection for manipulating the physical properties in the development of high performance sodium cobaltate based thermoelectric materials.

  1. Impact of parasitic thermal effects on thermoelectric property measurements by Harman method

    SciTech Connect (OSTI)

    Kwon, Beomjin, E-mail: bkwon@kist.re.kr; Baek, Seung-Hyub; Keun Kim, Seong; Kim, Jin-Sang, E-mail: jskim@kist.re.kr [Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of)] [Electronic Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of)

    2014-04-15T23:59:59.000Z

    Harman method is a rapid and simple technique to measure thermoelectric properties. However, its validity has been often questioned due to the over-simplified assumptions that this method relies on. Here, we quantitatively investigate the influence of the previously ignored parasitic thermal effects on the Harman method and develop a method to determine an intrinsic ZT. We expand the original Harman relation with three extra terms: heat losses via both the lead wires and radiation, and Joule heating within the sample. Based on the expanded Harman relation, we use differential measurement of the sample geometry to measure the intrinsic ZT. To separately evaluate the parasitic terms, the measured ZTs with systematically varied sample geometries and the lead wire types are fitted to the expanded relation. A huge discrepancy (?28%) of the measured ZTs depending on the measurement configuration is observed. We are able to separately evaluate those parasitic terms. This work will help to evaluate the intrinsic thermoelectric property with Harman method by eliminating ambiguities coming from extrinsic effects.

  2. System Impacts from Interconnection of Distributed Resources: Current Status and Identification of Needs for Further Development

    SciTech Connect (OSTI)

    Basso, T. S.

    2009-01-01T23:59:59.000Z

    This report documents and evaluates system impacts from the interconnection of distributed resources to transmission and distribution systems, including a focus on renewable distributed resource technologies. The report also identifies system impact-resolution approaches and actions, including extensions of existing approaches. Lastly, the report documents the current challenges and examines what is needed to gain a clearer understanding of what to pursue to better avoid or address system impact issues.

  3. Large-scale Ocean-based or Geothermal Power Plants by Thermoelectric Effects

    E-Print Network [OSTI]

    Liu, Liping

    2012-01-01T23:59:59.000Z

    Heat resources of small temperature difference are easily accessible, free and unlimited on earth. Thermoelectric effects provide the technology for converting these heat resources directly into electricity. We present designs of electricity generators based on thermoelectric effects and using heat resources of small temperature difference, e.g., ocean water at different depths and geothermal sources, and conclude that large-scale power plants based on thermoelectric effects are feasible and economically competitive. The key observation is that the power factor of thermoelectric materials, unlike the figure of merit, can be improved by orders of magnitude upon laminating good conductors and good thermoelectric materials. The predicted large-scale power plants based on thermoelectric effects, if validated, will have a global economic and social impact for its scalability, and the renewability, free and unlimited supply of heat resources of small temperature difference on earth.

  4. The development of MRI for the determination of porosity distribution in reservoir core samples

    E-Print Network [OSTI]

    Shivers, Jon Blake

    1991-01-01T23:59:59.000Z

    Sandstone appeared to be very isotropic while the Austin Chalk exhibited varying degrees of correlation in the directions considered. A comparison between the correlation of MRI derived core plug size porosity distributions and foot by foot whole core.... . Spatial Correlation of Porosity Data. . . . . . . . . . . . . . . . . . . . . . Comparison with Foot by Foot Vertical Data. . Composite Sample Distribution. . Reproducibility. . 22 , 25 . . . . 30 . . . . . 4 2 . 44 . 47 CHAPTER V ? CONCLUSIONS...

  5. Abstract--A physically based, spatially-distributed water quality model is being developed to simulate spatial and temporal

    E-Print Network [OSTI]

    Abstract--A physically based, spatially-distributed water quality model is being developed, and water quality were used to estimate nonpoint source loading potential in the study watersheds. Animal to the monitored total phosphorous load indicates that both point and nonpoint sources are major contributors

  6. Searching for new thermoelectrics in chemically and structurally complex bismuth chalcogenides

    SciTech Connect (OSTI)

    Chung, D.Y.; Hogan, T.; Schindler, J.; Iordanidis, L.; Brazis, P.; Kannewurf, C.R.; Chen, B.; Uher, C.; Kanatzidis, M.G.

    1997-07-01T23:59:59.000Z

    A solid state chemistry synthetic approach towards identifying new materials with potentially superior thermoelectric properties is presented. Materials with complex compositions and structures also have complex electronic structures which may give rise to high thermoelectric powers and at the same time possess low thermal conductivities. The structures and thermoelectric properties of several new promising compounds with K-Bi-Se, K-Bi-S, Ba-Bi-Te, Cs-Bi-Te, and Rb-bi-Te are reported.

  7. Advanced thermoelectric materials and systems for automotive applications in the next millennium

    SciTech Connect (OSTI)

    Morelli, D.T.

    1997-07-01T23:59:59.000Z

    A combination of environmental, economic, and technological drivers has led to a reassessment of the potential for using thermoelectric devices in several automotive applications. In order for this technology to achieve its ultimate potential, new materials with enhanced thermoelectric properties are required. Experimental results on the fundamental physical properties of some new thermoelectric materials, including filled skutterudites and 1-1-1 intermetallic semiconductors, are presented.

  8. Thermoelectric energy converter for generation of electricity from low-grade heat

    DOE Patents [OSTI]

    Jayadev, T.S.; Benson, D.K.

    1980-05-27T23:59:59.000Z

    A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

  9. DISTRIBUTED DATABASES INTRODUCTION

    E-Print Network [OSTI]

    Liu, Chengfei

    D DISTRIBUTED DATABASES INTRODUCTION The development of network and data communication tech- nology distributed database management. Naturally, the decen- tralized approach reflects the distributed aspects in the definition of a distributed database exist. First, a distributed database is distributed

  10. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    4 K to room temperature * High temperature transport property measurements (ORNL) * Neutron scattering for phonon DOS and phonon mode analysis (NCNR) * Computational research...

  11. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Broader source: Energy.gov (indexed) [DOE]

    with adhesion promoting heat treatment (failure is in bulk material.) * Designed tooling for fabricating ceramic headers for TE modules. * Synthesized several n-type PbTe...

  12. Development of a 500 Watt High Temperature Thermoelectric Generator

    Broader source: Energy.gov (indexed) [DOE]

    * TEG thermal and electrical interfaces modified to withstand high temperature environment 8 5 August, 2009 Deer 2009 9 100 Watt High Temperature TEG 100 Watt High...

  13. Thermoelectric Generator Development at Renault Trucks-Volvo...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of trucks and passenger cars, where relatively low exhaust temperature is challenging for waste heat recovery systems aixala.pdf More Documents & Publications RENOTER Project...

  14. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermal *abuse |DepartmentDepartment

  15. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermal *abuse

  16. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermal *abuseDepartment of

  17. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermal *abuseDepartment ofDepartment

  18. Develop Thermoelectric Technology for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I E LGeothermal *abuseDepartment

  19. Development of Cost-Competitive Advanced Thermoelectric Generators for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H I ETechnologyEnergy 0Direct Conversion of

  20. Development of Marine Thermoelectric Heat Recovery Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H IMaterialsDepartment of

  1. Development of Marine Thermoelectric Heat Recovery Systems | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S H IMaterialsDepartment ofEnergy

  2. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries with WideNOxSi-based| Department of

  3. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries with WideNOxSi-based| Department of|

  4. Development of a 100-Watt High Temperature Thermoelectric Generator |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries with WideNOxSi-based|Department of

  5. Development of a 500 Watt High Temperature Thermoelectric Generator |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries with WideNOxSi-based|Department

  6. Development of a Scalable 10% Efficient Thermoelectric Generator |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No53197E T A * S HBatteries withAbstractSystem |Department of

  7. Thermoelectric Generator Development at Renault Trucks-Volvo Group |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department of EnergytheDepartment of Energy

  8. Thermoelectric Generator Development for Automotive Waste Heat Recovery |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department of EnergytheDepartment of

  9. The Effect of Processing Parameters on the Thermoelectric Properties of Magnesium Silicide

    E-Print Network [OSTI]

    Fong, Anthony

    2012-01-01T23:59:59.000Z

    W. Engelmann. J. C. A. Peltier, Nouvelles expriences surmaterials: the Seebeck, Peltier, and Thomson effects. Theof thermoelectrics is called the Peltier effect named after

  10. CsBi4Te6: A High-Performance Thermoelectric Material for Low...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. Bastea, C. Uher, M. Kanatzidis Year: 2000 Abstract: Thermoelectric (Peltier) heat pumps are capable of refrigerating solid or fluid objects, and unlike conventional...

  11. Standardization of Transport Properties Measurements: Internal Energy Agency (IEA-AMT) Annex on Thermoelectric

    Broader source: Energy.gov [DOE]

    Thermoelectric materials transport properties measurements improvement and standardization is undertaken by new IEA annex under the Advanced Materials for Transportation implementing agreement

  12. The Effects of an Exhaust Thermoelectric Generator of a GM Sierra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Truck The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Hi-Z Technology Inc. and...

  13. Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems

    Broader source: Energy.gov [DOE]

    Advanced thermoelectric energy recovery and cooling system weight and volume improvements with low-cost microtechnology heat and mass transfer devices are presented

  14. QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY

    SciTech Connect (OSTI)

    Saeid Ghamaty

    2005-07-01T23:59:59.000Z

    New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

  15. Development of a methodology to discriminate incipient insulator faults from distribution system load

    E-Print Network [OSTI]

    Richards, Christopher Scott

    2000-01-01T23:59:59.000Z

    Insulator failure has long plagued transmission and distribution system power quality. The failure process begins when airborne contamination combines with moisture from atmospheric wetting to form a conductive pollution layer on the insulator...

  16. Review of solar thermoelectric energy conversion and analysis of a two cover flat-plate solar collector

    E-Print Network [OSTI]

    Hasan, Atiya

    2007-01-01T23:59:59.000Z

    The process of solar thermoelectric energy conversion was explored through a review of thermoelectric energy generation and solar collectors. Existing forms of flat plate collectors and solar concentrators were surveyed. ...

  17. Method development and validation for measuring the particle size distribution of pentaerythritol tetranitrate (PETN) powders.

    SciTech Connect (OSTI)

    Young, Sharissa Gay

    2005-09-01T23:59:59.000Z

    Currently, the critical particle properties of pentaerythritol tetranitrate (PETN) that influence deflagration-to-detonation time in exploding bridge wire detonators (EBW) are not known in sufficient detail to allow development of a predictive failure model. The specific surface area (SSA) of many PETN powders has been measured using both permeametry and gas absorption methods and has been found to have a critical effect on EBW detonator performance. The permeametry measure of SSA is a function of particle shape, packed bed pore geometry, and particle size distribution (PSD). Yet there is a general lack of agreement in PSD measurements between laboratories, raising concerns regarding collaboration and complicating efforts to understand changes in EBW performance related to powder properties. Benchmarking of data between laboratories that routinely perform detailed PSD characterization of powder samples and the determination of the most appropriate method to measure each PETN powder are necessary to discern correlations between performance and powder properties and to collaborate with partnering laboratories. To this end, a comparison was made of the PSD measured by three laboratories using their own standard procedures for light scattering instruments. Three PETN powder samples with different surface areas and particle morphologies were characterized. Differences in bulk PSD data generated by each laboratory were found to result from variations in sonication of the samples during preparation. The effect of this sonication was found to depend on particle morphology of the PETN samples, being deleterious to some PETN samples and advantageous for others in moderation. Discrepancies in the submicron-sized particle characterization data were related to an instrument-specific artifact particular to one laboratory. The type of carrier fluid used by each laboratory to suspend the PETN particles for the light scattering measurement had no consistent effect on the resulting PSD data. Finally, the SSA of the three powders was measured using both permeametry and gas absorption methods, enabling the PSD to be linked to the SSA for these PETN powders. Consistent characterization of other PETN powders can be performed using the appropriate sample-specific preparation method, so that future studies can accurately identify the effect of changes in the PSD on the SSA and ultimately model EBW performance.

  18. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.H.; Hinckley, J.E.

    1998-12-31T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel.

  19. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M.A.; Hinckley, J.E. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States)

    1998-01-01T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel. {copyright} {ital 1998 American Institute of Physics.}

  20. Radioisotope thermoelectric generator/thin fragment impact test

    SciTech Connect (OSTI)

    Reimus, M. A. H.; Hinckley, J. E. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States)

    1998-01-15T23:59:59.000Z

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  1. Thermoelectric Conductivities at Finite Magnetic Field and the Nernst Effect

    E-Print Network [OSTI]

    Keun-Young Kim; Kyung Kiu Kim; Yunseok Seo; Sang-Jin Sin

    2015-03-17T23:59:59.000Z

    We study electric, thermoelectric, and thermal conductivities of a strongly correlated system in the presence of magnetic field by gauge/gravity duality. We consider a general class of Einstein-Maxwell-Dilaton theory with axion fields imposing momentum relaxation. Analytic general formulas for DC conductivities and the Nernst signal are derived in terms of the black hole horizon data. For an explicit model study we analyse in detail the dyonic black hole modified by momentum relaxation. In this model, the Nernst signal shows a typical vortex-liquid effect when momentum relaxation effect is comparable to chemical potential. We compute all AC electric, thermoelectric, and thermal conductivities by numerical analysis and confirms that their zero frequency limits precisely reproduce our analytic formulas, which is a non-trivial consistency check of our methods. We discuss the momentum relaxation effect on conductivities including cyclotron resonance poles.

  2. A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices

    E-Print Network [OSTI]

    Ouerdane, H; Apertet, Y; Michot, A; Abbout, A

    2013-01-01T23:59:59.000Z

    Improvement of thermoelectric systems in terms of performance and range of applications relies on progress in materials science and optimization of device operation. In this chapter, we focuse on optimization by taking into account the interaction of the system with its environment. For this purpose, we consider the illustrative case of a thermoelectric generator coupled to two temperature baths via heat exchangers characterized by a thermal resistance, and we analyze its working conditions. Our main message is that both electrical and thermal impedance matching conditions must be met for optimal device performance. Our analysis is fundamentally based on linear nonequilibrium thermodynamics using the force-flux formalism. An outlook on mesoscopic systems is also given.

  3. Optimal working conditions for thermoelectric generators with realistic thermal coupling

    E-Print Network [OSTI]

    Apertet, Y; Glavatskaya, O; Goupil, C; Lecoeur, P

    2011-01-01T23:59:59.000Z

    We study how maximum output power can be obtained from a thermoelectric generator(TEG) with nonideal heat exchangers. We demonstrate with an analytic approach based on a force-flux formalism that the sole improvement of the intrinsic characteristics of thermoelectric modules including the enhancement of the figure of merit is of limited interest: the constraints imposed by the working conditions of the TEG must be considered on the same footing. Introducing an effective thermal conductance we derive the conditions which permit maximization of both efficiency and power production of the TEG dissipatively coupled to heat reservoirs. Thermal impedance matching must be accounted for as well as electrical impedance matching in order to maximize the output power. Our calculations also show that the thermal impedance does not only depend on the thermal conductivity at zero electrical current: it also depends on the TEG figure of merit. Our analysis thus yields both electrical and thermal conditions permitting optima...

  4. Thermoelectric Properties of Scaled Silicon Nanowires Using the s*-SO Atomistic Tight-Binding Model and Boltzmann

    E-Print Network [OSTI]

    1 Thermoelectric Properties of Scaled Silicon Nanowires Using the sp3 d5 s*-SO Atomistic Tight|kosina}@iue.tuwien.ac.at Abstract As a result of suppressed phonon conduction, large improvements of the thermoelectric figure, the Seebeck coefficient, and the thermoelectric power factor. We examine n-type nanowires of diameters of 3nm

  5. Thermoelectric and micro-Raman measurements of carrier density and mobility in heavily Si-doped GaN wires

    E-Print Network [OSTI]

    Boyer, Edmond

    Thermoelectric and micro-Raman measurements of carrier density and mobility in heavily Si-doped Ga (Received 19 July 2013; accepted 28 October 2013; published online 11 November 2013) Combined thermoelectric epitaxy (MOVPE). These highly conductive Si-doped GaN wires were studied by means of thermoelectrical

  6. IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 32, NO. 2, JUNE 2009 447 Temperature Profile Inside Microscale Thermoelectric

    E-Print Network [OSTI]

    Temperature Profile Inside Microscale Thermoelectric Module Acquired Using Near-Infrared Thermoreflectance high-resolution thermal images of the electrical contacts inside an active thermoelectric micromodule-scale thermoelectric modules. By determining localized sources of Joule heating, one can identify manufacturing errors

  7. Enhancing the Thermoelectric Power Factor with Highly Mismatched Isoelectronic Doping Joo-Hyoung Lee,1,4

    E-Print Network [OSTI]

    Wu, Junqiao

    Enhancing the Thermoelectric Power Factor with Highly Mismatched Isoelectronic Doping Joo; published 8 January 2010) We investigate the effect of O impurities on the thermoelectric properties of Zn performance thermoelectric applications. DOI: 10.1103/PhysRevLett.104.016602 PACS numbers: 72.20.Pa, 71.15.m

  8. High temperature thermoelectric properties of Czochralski-pulled Ba8Ga16Ge30 M. Christensen1

    E-Print Network [OSTI]

    High temperature thermoelectric properties of Czochralski-pulled Ba8Ga16Ge30 M. Christensen1 , G, Pasadena, California 91125 Abstract High temperature thermoelectric properties have been measured/m-K around 900K, and ZT reaches a maximum of 0.9 at 1000 K. Introduction The interest in thermoelectric

  9. Modulation of Thermoelectric Power of Individual Carbon Nanotubes Joshua P. Small, Kerstin M. Perez, and Philip Kim

    E-Print Network [OSTI]

    Kim, Philip

    Modulation of Thermoelectric Power of Individual Carbon Nanotubes Joshua P. Small, Kerstin M. Perez 2003; published 18 December 2003) Thermoelectric power (TEP) of individual single walled carbon.256801 PACS numbers: 73.63.b, 65.80.+n, 73.22.f Enhanced thermoelectric phenomena in nanoscaled materials

  10. Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor deposition

    E-Print Network [OSTI]

    Gilchrist, James F.

    Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor Seebeck coefficient and resistance measurement system for thermoelectric materials in the thin disk geometry Rev. Sci. Instrum. 83, 025101 (2012) High-temperature thermoelectric properties of Cu1xInTe2

  11. Quantum modeling of thermoelectric performance of strained Si/Ge/Si superlattices using the nonequilibrium Green's function method

    E-Print Network [OSTI]

    Walker, D. Greg

    Quantum modeling of thermoelectric performance of strained Si/Ge/Si superlattices using 2007 The cross-plane thermoelectric performance of strained Si/Ge/Si superlattices is studied from such that thermoelectric performance is independent of layer thickness between 2 and 4 nm germanium barrier layers

  12. On the thermoelectric magnetic field of spherical and cylindrical inclusions Peter B. Nagy and Adnan H. Nayfeh

    E-Print Network [OSTI]

    Nagy, Peter B.

    On the thermoelectric magnetic field of spherical and cylindrical inclusions Peter B. Nagy by thermoelectric measurements in an entirely noncontact way by using high-sensitivity superconducting quantum interference device magnetometers to sense the weak thermoelectric currents around the affected region when

  13. A versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute accuracy

    E-Print Network [OSTI]

    Libbrecht, Kenneth G.

    A versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute December 2009 We describe a general-purpose thermoelectric temperature controller with 1 mK stability, 10 m elements and thermoelectric modules to heat or cool in the 40 to 40 C range. A schematic of our controller

  14. Thermoelectric power factor enhancement with gate-all-around silicon nanowires Benjamin M. Curtin and John E. Bowers

    E-Print Network [OSTI]

    Bowers, John

    Thermoelectric power factor enhancement with gate-all-around silicon nanowires Benjamin M. Curtin and thermoelectric properties of very high power factor Fe3O4/SiO2/p-type Si(001) devices J. Appl. Phys. 115, 033709 (2014); 10.1063/1.4861729 A comprehensive study of thermoelectric and transport properties of -silicon

  15. Thermoelectric Response Driven by Spin-State Transition in La1-xCexCoO3

    E-Print Network [OSTI]

    Cao, Wenwu

    Thermoelectric Response Driven by Spin-State Transition in La1-xCexCoO3 Perovskites Yang Wang,, Yu 130012, People's Republic of China ABSTRACT An unusual thermoelectric response was observed in n that the thermoelectric response is driven by the spin-state transition of Co3+ . This transition destroys the spin

  16. Modeling of the Thermoelectric Properties of Quasi-One-Dimensional Organic Semiconductors , A.A. Balandin2

    E-Print Network [OSTI]

    Modeling of the Thermoelectric Properties of Quasi-One-Dimensional Organic Semiconductors A. Casian Electrical conductivity , Seebeck coefficient S, electronic thermal conductivity e and the thermoelectric the general principles of solid state physics there is no upper limit for the thermoelectric figure of merit

  17. Thermoelectric Properties of Nb3SbxTe7-x Compounds Sidney Wang, G. Jeff Snyder, and Thierry Caillat

    E-Print Network [OSTI]

    Thermoelectric Properties of Nb3SbxTe7-x Compounds Sidney Wang, G. Jeff Snyder, and Thierry Caillat antimony telluride, Nb3SbxTe7-x, was synthesized and tested for thermoelectric properties in the Thermoelectrics group at the Jet Propulsion Laboratory. The forty atoms per unit cell of Nb3Sb2Te5 and its varied

  18. Exhaust gas bypass valve control for thermoelectric generator

    DOE Patents [OSTI]

    Reynolds, Michael G; Yang, Jihui; Meisner, Greogry P.; Stabler, Francis R.; De Bock, Hendrik Pieter (Peter) Jacobus; Anderson, Todd Alan

    2012-09-04T23:59:59.000Z

    A method of controlling engine exhaust flow through at least one of an exhaust bypass and a thermoelectric device via a bypass valve is provided. The method includes: determining a mass flow of exhaust exiting an engine; determining a desired exhaust pressure based on the mass flow of exhaust; comparing the desired exhaust pressure to a determined exhaust pressure; and determining a bypass valve control value based on the comparing, wherein the bypass valve control value is used to control the bypass valve.

  19. Misfit layer compounds and ferecrystals: Model systems for thermoelectric nanocomposites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Merrill, Devin R. [Univ. of Oregon, Eugene, OR (United States); Moore, Daniel B. [Univ. of Oregon, Eugene, OR (United States); Bauers, Sage R. [Univ. of Oregon, Eugene, OR (United States); Falmbigl, Matthias [Univ. of Oregon, Eugene, OR (United States); Johnson, David C. [Univ. of Oregon, Eugene, OR (United States)

    2015-04-01T23:59:59.000Z

    A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class of metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe)1+?]m(TiSe?)n family (m, n ? 3) are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor.

  20. Selection and evaluation of materials for thermoelectric applications II

    SciTech Connect (OSTI)

    Sharp, J.W.

    1997-07-01T23:59:59.000Z

    In good thermoelectrics phonons have short mean free paths, and charge carriers have long ones. The other requirements are a multivalley band structure and a band gap greater than 0.1 eV for the 200 to 300 K temperature range. The author discusses the use of solid state physics and chemistry concepts, along with atomic and crystal structure data, to select the new materials most likely to meet these criteria.