National Library of Energy BETA

Sample records for dev design engineering

  1. Carbon Initiative for Development (Ci-Dev) | Open Energy Information

    Open Energy Info (EERE)

    Initiative for Development (Ci-Dev) Jump to: navigation, search Name Carbon Initiative for Development (Ci-Dev) AgencyCompany Organization World Bank Sector Climate Topics...

  2. Guizhou New Material Dev Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Guizhou New Material Dev Co Ltd Jump to: navigation, search Name: Guizhou New Material Dev. Co Ltd Place: Guiyang, China Zip: 550018 Sector: Solar Product: Chinese silicon carbide...

  3. Career Map: Design Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Engineer Career Map: Design Engineer A product designer watches as several engineers work on a wind turbine component. Design Engineer Position Title Design Engineer Alternate Title(s) Materials Engineer, Composite Engineer, Product Designer, Structural Engineer Education & Training Level Bachelor's degree required, graduate degree preferred Education & Training Level Description Design engineers typically hold a bachelor's degree or higher in electrical or mechanical engineering

  4. InfoDev Incubator Support Center | Open Energy Information

    Open Energy Info (EERE)

    (infoDev) Topics: Implementation, Background analysis Website: www.idisc.netenindex.html References: idisc infoDev Incubator Support Center 1 "The iDISC Global Network of...

  5. Protein design for pathway engineering

    SciTech Connect (OSTI)

    Eriksen, DT; Lian, JZ; Zhao, HM

    2014-02-01

    Design and construction of biochemical pathways has increased the complexity of biosynthetically-produced compounds when compared to single enzyme biocatalysis. However, the coordination of multiple enzymes can introduce a complicated set of obstacles to overcome in order to achieve a high titer and yield of the desired compound. Metabolic engineering has made great strides in developing tools to optimize the flux through a target pathway, but the inherent characteristics of a particular enzyme within the pathway can still limit the productivity. Thus, judicious protein design is critical for metabolic and pathway engineering. This review will describe various strategies and examples of applying protein design to pathway engineering to optimize the flux through the pathway. The proteins can be engineered for altered substrate specificity/selectivity, increased catalytic activity, reduced mass transfer limitations through specific protein localization, and reduced substrate/product inhibition. Protein engineering can also be expanded to design biosensors to enable high through-put screening and to customize cell signaling networks. These strategies have successfully engineered pathways for significantly increased productivity of the desired product or in the production of novel compounds. (C) 2013 Elsevier Inc. All rights reserved.

  6. Functional Design Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Functional Design Engineering Inc Jump to: navigation, search Name: Functional Design Engineering Inc Region: United States Sector: Marine and Hydrokinetic Website:...

  7. Reactor Engineering Design | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Engineering Design The Reactor Engineering Design Key Technology will focus on control of chemical reactions with unprecedented precision in increasingly modular and ...

  8. Information for Development Program (infoDev) | Open Energy Informatio...

    Open Energy Info (EERE)

    India, infoDev's work has included a six-month process of stakeholder engagement and market analysis, which will conclude at the end of May 2010 with the delivery of a...

  9. Design, Integration, Construction, Communications and Engineering...

    National Nuclear Security Administration (NNSA)

    Solicitation Design, Integration, Construction, Communications and Engineering (DICCE) 2 ... materials across international borders and through the global maritime shipping system. ...

  10. High Efficiency Clean Combustion Engine Designs for Gasoline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Designs for Gasoline and Diesel Engines High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines 2009 DOE Hydrogen Program and Vehicle Technologies ...

  11. Engineering Design Information System (EDIS)

    SciTech Connect (OSTI)

    Smith, P.S.; Short, R.D.; Schwarz, R.K.

    1990-11-01

    This manual is a guide to the use of the Engineering Design Information System (EDIS) Phase I. The system runs on the Martin Marietta Energy Systems, Inc., IBM 3081 unclassified computer. This is the first phase in the implementation of EDIS, which is an index, storage, and retrieval system for engineering documents produced at various plants and laboratories operated by Energy Systems for the Department of Energy. This manual presents on overview of EDIS, describing the system's purpose; the functions it performs; hardware, software, and security requirements; and help and error functions. This manual describes how to access EDIS and how to operate system functions using Database 2 (DB2), Time Sharing Option (TSO), Interactive System Productivity Facility (ISPF), and Soft Master viewing features employed by this system. Appendix A contains a description of the Soft Master viewing capabilities provided through the EDIS View function. Appendix B provides examples of the system error screens and help screens for valid codes used for screen entry. Appendix C contains a dictionary of data elements and descriptions.

  12. Sensitivity analysis of Stirling engine design parameters

    SciTech Connect (OSTI)

    Naso, V.; Dong, W.; Lucentini, M.; Capata, R.

    1998-07-01

    In the preliminary Stirling engine design process, the values of some design parameters (temperature ratio, swept volume ratio, phase angle and dead volume ratio) have to be assumed; as a matter of fact it can be difficult to determine the best values of these parameters for a particular engine design. In this paper, a mathematical model is developed to analyze the sensitivity of engine's performance variations corresponding to variations of these parameters.

  13. Mechanical Design Engineer (MED) | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Engineer (MED) Department: Engineering Supervisor(s): Douglas Loesser Staff: ENG 3 ... Its Mechanical Engineering Division (MED) is seeking to hire a Mechanical Engineer. The ...

  14. NREL: News - Solar Decathlon Engineering Design Results Announced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Design Results Announced Thursday, October 3, 2002 Distinguished Panel Picks ... The Engineering Design panel includes engineers prominent in the field of buildings and ...

  15. Development of High-Efficiency Clean Combustion Engines Designs...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines 2010 DOE Vehicle...

  16. The design engineering aspects of waterflooding

    SciTech Connect (OSTI)

    Rose, S.C.; Buckwatter, J.F.; Woodhall, R.J.

    1989-01-01

    This comprehensive reference book provides the waterflood engineer with complete guidelines demonstrated by specific examples. Conceptual and detailed design principles, economic calculations, regulatory approvals, injection systems, and installation are some of the topics addressed in depth by this text.

  17. Reactor Engineering Design | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor Engineering Design The Reactor Engineering Design Key Technology will focus on control of chemical reactions with unprecedented precision in increasingly modular and efficient reactors, allowing for smaller reactors and streamlined processes that will convert coal into valuable products at low cost and with high energy efficiency. Here, the specific emphasis will be reactors enabling conversion of coal-biomass to liquid fuels, Novel reactors, advanced manufacturing, etc. will be

  18. Geothermal direct use engineering and design guidebook

    SciTech Connect (OSTI)

    Bloomquist, R.G.; Culver, G.; Ellis, P.F.; Higbee, C.; Kindle, C.; Lienau, P.J.; Lunis, B.C.; Rafferty, K.; Stiger, S.; Wright, P.M.

    1989-03-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of these resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse, aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental considerations. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very potential in the United States.

  19. Geothermal direct use engineering and design guidebook

    SciTech Connect (OSTI)

    Lienau, P.J.; Lunis, B.C.

    1991-01-01

    The Geothermal Direct Use Engineering and Design Guidebook is designed to be a comprehensive, thoroughly practical reference guide for engineers and designers of direct heat projects. These projects could include the conversion of geothermal energy into space heating and cooling of buildings, district heating, greenhouse heating, aquaculture and industrial processing. The Guidebook is directed at understanding the nature of geothermal resources and the exploration of the resources, fluid sampling techniques, drilling, and completion of geothermal wells through well testing, and reservoir evaluation. It presents information useful to engineers on the specification of equipment including well pumps, piping, heat exchangers, space heating equipment, heat pumps and absorption refrigeration. A compilation of current information about greenhouse aquaculture and industrial applications is included together with a discussion of engineering cost analysis, regulation requirements, and environmental consideration. The purpose of the Guidebook is to provide an integrated view for the development of direct use projects for which there is a very large potential in the United States.

  20. Guidelines for Engineering, Design, and Inspection Costs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28

    Engineering, design, and inspection (ED&I) activities begin with the preliminary design (Title I). Pre-Title I activities are not considered part of the ED&I activities. Architectural/Engineering (A/E) activities are part of the ED&I activities. A/E activities are services that are an integral part of the production and delivery of the design plans, specifications, and drawings. This chapter defines ED&I and A/E activities and discusses how to estimate and track them.

  1. Thermal and Mechanical Design Aspects of the LIFE Engine (Journal...

    Office of Scientific and Technical Information (OSTI)

    Thermal and Mechanical Design Aspects of the LIFE Engine Citation Details In-Document Search Title: Thermal and Mechanical Design Aspects of the LIFE Engine The Laser Inertial ...

  2. SNERDI Shanghai Nuclear Engineering Research and Design Institute...

    Open Energy Info (EERE)

    SNERDI Shanghai Nuclear Engineering Research and Design Institute Jump to: navigation, search Name: SNERDI (Shanghai Nuclear Engineering Research and Design Institute) Place:...

  3. China Electronic Engineering Design Institute CEEDI | Open Energy...

    Open Energy Info (EERE)

    Engineering Design Institute CEEDI Jump to: navigation, search Name: China Electronic Engineering Design Institute (CEEDI) Place: Beijing, Beijing Municipality, China Zip: 100840...

  4. Design of applicative 100 W Stirling engine

    SciTech Connect (OSTI)

    Kagawa, Noboru; Hirata, Koichi; Takeuchi, Makoto

    1995-12-31

    A small 100 W displacer type Stirling engine is being developed under a project of a JSME committee, RC127. The project consists of sixteen Japanese academic researchers of universities and governmental laboratories and eleven enterprise members related to the Stirling field. The engine has very unique features. Its expansion cylinder is heated by combustion gas or solar energy directly, and a simple cooling system rejects heat from the working fluid. A regenerator is built in the displacer piston with heating and cooling tubes in which the working fluid flows from/to outer tubes. The outer tubes for heating were located at the top of the expansion cylinder and the tubes for cooling are in the middle of the cylinder. The target performance is a 100 W output with 20% thermal efficiency at the operating conditions of 923 K expansion space temperature, 343 K compression space temperature, and 1,000 rpm. The 100 W displacer engine was designed based on a design manual established by a related JSME committee, RC110. It contains several guides to design for cycle, heat exchanger system, and mechanism of most Stirling cycle machines. The engine was designed by using the fundamental method, the second and third-order analyses accomplished with the newly arranged knowledge about each component. This paper presents the engine specifications and the theoretical analysis results. The design method is also introduced briefly.

  5. Managing Design and Construction Using Systems Engineering for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, Managing Design and Construction Using Systems Engineering for Use with DOE O 413.3A by Roland Frenck Functional areas: Construction and Engineering, Program Management This...

  6. Engineering report (conceptual design) PFP solution stabilization

    SciTech Connect (OSTI)

    Witt, J.B.

    1997-07-17

    This Engineering Report (Conceptual Design) addresses remediation of the plutonium-bearing solutions currently in inventory at the Plutonium Finishing Plant (PFP). The recommendation from the Environmental Impact Statement (EIS) is that the solutions be treated thermally and stabilized as a solid for long term storage. For solutions which are not discardable, the baseline plan is to utilize a denitration process to stabilize the solutions prior to packaging for storage.

  7. Pollution Prevention Environmental Design Guide for Engineers

    Energy Science and Technology Software Center (OSTI)

    1999-03-16

    Pollution Prevention Environmental Design Guide for Engineers (P2-EDGE) provides nearly 300 recommendations to incorporate pollution prevention into projects during the design phase. Each is supplemented by examples, references, and additional data to help the user evaluate applicability and potential benefits to their design project. Built in filters allow the user to narrow the review to only those opportunities that are applicable based on project size and design phase. User responses are saved to a custommore » data file or can also be generated into a report and printed. Other features include the ability to search the database for keywords, add opportunities to the database, or edit existing entries.« less

  8. Automotive Stirling Engine Mod I design review report. Volume III

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    This volume, No. 3, of the Automotive Stirling Engine Mod 1 Design Review Report contains a preliminary parts list and detailed drawings of equipment for the basic Stirling engine and for the following systems: vehicular Stirling Engine System; external heat system; hot and cold engine systems; engine drive; controls and auxiliaries; and vehicle integration. (LCL)

  9. Parameter Study of the LIFE Engine Nuclear Design (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Parameter Study of the LIFE Engine Nuclear Design Citation Details In-Document Search Title: Parameter Study of the LIFE Engine Nuclear Design LLNL is developing the nuclear fusion ...

  10. Engine design takes a major leap at Argonne | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine design takes a major leap at Argonne Author: Greg Cunningham April 8, 2016 Facebook ... The search for a truly revolutionary engine design that can make dramatic gains in ...

  11. CRAD, Integrated Safety Basis and Engineering Design Review ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Safety Basis and Engineering Design Review - August 20, 2014 (EA CRAD 31-4, Rev. 0) CRAD, Integrated Safety Basis and Engineering Design Review - August 20, 2014 (EA...

  12. CRAD, Engineering Design and Safety Basis- December 22, 2009

    Broader source: Energy.gov [DOE]

    Engineering Design and Safety Basis Inspection Criteria, Inspection Activities, and Lines of Inquiry (HSS CRAD 64-19, Rev. 0)

  13. High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel

    Broader source: Energy.gov (indexed) [DOE]

    Engines | Department of Energy 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ace_35_patton.pdf (970.31 KB) More Documents & Publications High Efficiency Clean Combustion Engine Designs for Gasoline and Diesel Engines Development of High-Efficiency Clean Combustion Engines Designs for SI and CI Engines Expanding Robust HCCI Operation (Delphi CRADA)

  14. Engineering design of vertical test stand cryostat

    SciTech Connect (OSTI)

    Suhane, S.K.; Sharma, N.K.; Raghavendra, S.; Joshi, S.C.; Das, S.; Kush, P.K.; Sahni, V.C.; Gupta, P.D.; Sylvester, C.; Rabehl, R.; Ozelis, J.; /Fermilab

    2011-03-01

    Under Indian Institutions and Fermilab collaboration, Raja Ramanna Centre for Advanced Technology and Fermi National Accelerator Laboratory are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities at 2K. The VTS cryostat has been designed for a large testing aperture of 86.36 cm for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Fermilab's Project-X. Units will be installed at Fermilab and RRCAT and used to test cavities for Project-X. A VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN{sub 2}) shield and vacuum vessel with external magnetic shield. The engineering design and analysis of VTS cryostat has been carried out using ASME B&PV Code and Finite Element Analysis. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel at the cavity surface <1 {micro}T. Thermal analysis for LN{sub 2} shield has been performed to check the effectiveness of LN{sub 2} cooling and for compliance with ASME piping code allowable stresses.

  15. Guides: Design/Engineering for Deactivation & Decommissioning

    Broader source: Energy.gov [DOE]

    To ensure development of appropriate levels of engineering detail, DOE-EM’s Office of Deactivation and Decommissioning and Facility Engineering (EM-13) has prepared this guidance for  tailoring a D...

  16. Geothermal Direct Use Engineering and Design Guidebook - Chapter...

    Open Energy Info (EERE)

    Direct Use Engineering and Design Guidebook - Chapter 6 - Drilling and Well Construction Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Geothermal...

  17. Webinar "Applying High Performance Computing to Engine Design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webinar "Applying High Performance Computing to Engine Design Using Supercomputers" Share ... Study Benefits of Bioenergy Crop Integration Video: Biofuel technology at Argonne

  18. Caterpillar, Argonne undertake cooperative virtual engine design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project By Jared Sagoff * June 30, 2014 Tweet EmailPrint ARGONNE, Ill - Internal combustion engines are poised for dramatic breakthroughs in improving efficiency with lower...

  19. D&D Engineering & Design Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Systems engineering is a tool that consists of iterative processes, such as requirements analysis, alternative studies, and functional analysis and allocation. Recommended Approach ...

  20. Advanced stratified charge rotary aircraft engine design study

    SciTech Connect (OSTI)

    Badgley, P.; Berkowitz, M.; Jones, C.; Myers, D.

    1982-01-01

    A technology base of new developments which offered potential benefits to a general aviation engine was compiled and ranked. Using design approaches selected from the ranked list, conceptual design studies were performed of an advanced and a highly advanced engine sized to provide 186/250 shaft Kw/HP under cruise conditions at 7620/25,000 m/ft altitude. These are turbocharged, direct-injected stratified charge engines intended for commercial introduction in the early 1990's. The engine descriptive data includes tables, curves, and drawings depicting configuration, performance, weights and sizes, heat rejection, ignition and fuel injection system descriptions, maintenance requirements, and scaling data for varying power. An engine-airframe integration study of the resulting engines in advanced airframes was performed on a comparative basis with current production type engines. The results show airplane performance, costs, noise and installation factors. The rotary-engined airplanes display substantial improvements over the baseline, including 30 to 35% lower fuel usage.

  1. D&D Engineering & Design Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tailoring Deactivation & Decommissioning Engineering/Design Activities to the Requirements of DOE Order 413.3A Volume II Prepared By U.S. Department of Energy Office of Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, EM-44 Revision 1 8/11/2010 Tailoring D&D Engineering/Design to the Requirements of DOE O 413.3A II-i Volume II Contents II - 1. D&D Project Activities Requiring Engineering/Design

  2. HPC revs up engine designs | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HPC revs up engine designs Author: ASCR Discovery July 20, 2016 Facebook Twitter LinkedIn Google E-mail Printer-friendly version An Argonne National Laboratory team is combining software innovations with supercomputing advances to jump-start internal-combustion engine designs in the name of conservation. "Even with the push toward electrification in the automotive sector, it's estimated that there are over 200 million internal combustion engines sold a year," says Sibendu Som, an

  3. D&D Engineering & Design Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tailoring Deactivation & Decommissioning Engineering/Design Activities to the Requirements of DOE Order 413.3A Volume I Prepared By U.S. Department of Energy Office of Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, EM-44 Revision 1 8/11/2010 Tailoring D&D Engineering/Design to the Requirements of DOE O 413.3A i Contents

  4. Activity Diagrams for DEVS Models: A Case Study Modeling Health Care Behavior

    SciTech Connect (OSTI)

    Ozmen, Ozgur; Nutaro, James J

    2015-01-01

    Discrete Event Systems Specification (DEVS) is a widely used formalism for modeling and simulation of discrete and continuous systems. While DEVS provides a sound mathematical representation of discrete systems, its practical use can suffer when models become complex. Five main functions, which construct the core of atomic modules in DEVS, can realize the behaviors that modelers want to represent. The integration of these functions is handled by the simulation routine, however modelers can implement each function in various ways. Therefore, there is a need for graphical representations of complex models to simplify their implementation and facilitate their reproduction. In this work, we illustrate the use of activity diagrams for this purpose in the context of a health care behavior model, which is developed with an agent-based modeling paradigm.

  5. Multicylinder Diesel Engine Design for HCCI Operation

    Broader source: Energy.gov [DOE]

    2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  6. Using Mira to Design Cleaner Engines | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Mira to Design Cleaner Engines Event Sponsor: Mathematics and Computing Science - LANS Seminar Start Date: Oct 28 2015 - 3:00pm BuildingRoom: Building 240Room 4301...

  7. DOE Seeks Industry Participation for Engineering Services to Design Next

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation Nuclear Plant | Department of Energy Participation for Engineering Services to Design Next Generation Nuclear Plant DOE Seeks Industry Participation for Engineering Services to Design Next Generation Nuclear Plant July 23, 2007 - 2:55pm Addthis Gen IV Reactor Capable of Producing Process Heat, Electricity and/or Hydrogen WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced that the Idaho National Laboratory (INL) is issuing a request for expressions of interest from

  8. Engineering study for ISSTRS design concept

    SciTech Connect (OSTI)

    Hertzel, J.S.

    1997-01-31

    Los Alamos Technical Associates, Inc., is pleased to transmit the attached Conceptual Design Package for the Initial Single Shell Tank Retrieval System (ISSTRS), 90% Conceptual Design Review. The package includes the following: (1) ISSTRS Trade Studies: (a) Retrieval Facility Cooling Requirements; (b) Equipment Re-usability between Project W-320 and Tanks 241-C-103 and 241-C-1 05; (c) Sluice Line Options; and (d) Options for the Location of Tanks AX-103 and A-1 02 HVAC Equipment; (2) Drawings; (3) Risk Management Plan; (4) 0850 Interface Control Document; (5) Requirements Traceability Report; and (6) Project Design Specification.

  9. Engineered design of SSC cooling ponds

    SciTech Connect (OSTI)

    Bear, J.B.

    1993-05-01

    The cooling requirements of the SSC are significant and adequate cooling water systems to meet these requirements are critical to the project`s successful operation. The use of adequately designed cooling ponds will provide reliable cooling for operation while also meeting environmental goals of the project to maintain streamflow and flood peaks to preconstruction levels as well as other streamflow and water quality requirements of the Texas Water Commission and the Environmental Protection Agency.

  10. Design, Integration, Communication and Construction Engineering 2

    National Nuclear Security Administration (NNSA)

    8, 2016 QUESTIONS SUBMITTED AFTER DICCE2 REQUEST FOR PROPOSAL RELEASE DATE OF 2/1/2016 1. Section L Attachment L-7a Vietnam Statement of Work. Does each lane already have adequate electric to power proposed RPM equipment? If not which building should power be routed from? a. Response: This information is contained in the Vietnam Design Requirements Document, specifically section 3.1.4. 2. Section L Attachment L-7a Vietnam Statement of Work. Does each lane where the RPM units are being installed

  11. Sandia develops autoignition model designed for efficient, accurate engine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulations develops autoignition model designed for efficient, accurate engine simulations - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  12. Improved Engine Design Concepts Using the Second Law of Thermodynamics

    SciTech Connect (OSTI)

    2009-09-30

    This project was aimed at developing and using numerical tools which incorporate the second law of thermodynamics to better understand engine operation and particularly the combustion process. A major activity of this project was the continual enhancement and use of an existing engine cycle simulation to investigate a wide range of engine parameters and concepts. The major motivation of these investigations was to improve engine efficiency. These improvements were examined from both the first law and second law perspective. One of the most important aspects of this work was the identification of the combustion irreversibilities as functions of engine design and operating parameters. The combustion irreversibility may be quantified in a number of ways but one especially useful way is by determining the destruction of exergy (availability) during the combustion process. This destruction is the penalty due to converting the fuel exergy to thermal energy for producing work. The engine cycle simulation was used to examine the performance of an automotive (5.7 liter), V-8 spark-ignition engine. A base case was defined for operation at 1400 rpm, stoichiometric, MBT spark timing with a bmep of 325 kPa. For this condition, the destruction of exergy during the combustion process was 21.0%. Variations of many engine parameters (including speed, load, and spark timing) did not alter the level of destruction very much (with these variations, the exergy destruction was within the range of 20.5-21.5%). Also, the use of turbocharging or the use of an over-expanded engine design did not significantly change the exergy destruction. The exergy destruction during combustion was most affected by increased inlet oxygen concentration (which reduced the destruction due to the higher combustion temperatures) and by the use of cooled EGR (which increased the destruction). This work has demonstrated that, in general, the exergy destruction for conventional engines is fairly constant ({approx

  13. Design of a new type of rotary Stirling engine

    SciTech Connect (OSTI)

    Abenavoli, R.I.; Dong, W.; Fedele, L.; Sciaboni, A.

    1996-12-31

    The Stirling machine has had wide diffusion only in cold or cryogenic applications (Philips) while the engine, despite big efforts of large Companies (Philips, Westinghouse, General Motors, etc.), never definitively reached the market; today new interest is raised correlated with environmental and energy related considerations. Thus, researchers efforts are addressed towards the design of innovative and more competitive Stirling engine configurations, like the one here proposed. This paper describes the configuration of a new, rotary Stirling engine. In the cold part of the engine, the working fluid is compressed by a rotating element, then it passes through the regenerator from the cold to the hot end, where it absorbs the heat and expands in the high pressure and temperature area. The high pressure working fluid pushes on the rotating element (the so called rotator) and the engine outputs power. In the design, compression and expansion volumes change with the rotation. Two rotators are connected with a set of gears: therefore, the engine transmission system is simplified and dimensions are reduced.

  14. Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report

    SciTech Connect (OSTI)

    1996-03-04

    Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

  15. Hybrid vehicle system studies and optimized hydrogen engine design

    SciTech Connect (OSTI)

    Smith, J.R.; Aceves, S.

    1995-04-26

    We have done system studies of series hydrogen hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. We have evaluated the impact of various on-board storage options on fuel economy. Experiments in an available engine at the Sandia CRF demonstrated NO{sub x} emissions of 10 to 20 ppM at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppM to meet the 0.2 g/mile ULEV or Federal Tier II emissions regulations. LLNL has designed and fabricated a first generation optimized hydrogen engine head for use on an existing Onan engine. This head features 15:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses. Initial testing shows promise of achieving an indicated efficiency of nearly 50% and emissions of less than 100 ppM NO{sub x}. Hydrocarbons and CO are to be measured, but are expected to be very low since their only source is engine lubricating oil. A successful friction reduction program on the Onan engine should result in a brake thermal efficiency of about 42% compared to today`s gasoline engines of 32%. Based on system studies requirements, the next generation engine will be about 2 liter displacement and is projected to achieve 46% brake thermal efficiency with outputs of 15 kW for cruise and 40 kW for hill climb.

  16. Series hybrid vehicles and optimized hydrogen engine design

    SciTech Connect (OSTI)

    Smith, J.R.; Aceves, S.; Van Blarigan, P.

    1995-05-10

    Lawrence Livermore, Sandia Livermore and Los Alamos National Laboratories have a joint project to develop an optimized hydrogen fueled engine for series hybrid automobiles. The major divisions of responsibility are: system analysis, engine design and kinetics modeling by LLNL; performance and emission testing, and friction reduction by SNL; computational fluid mechanics and combustion modeling by LANL. This project is a component of the Department of Energy, Office of Utility Technology, National Hydrogen Program. We report here on the progress on system analysis and preliminary engine testing. We have done system studies of series hybrid automobiles that approach the PNGV design goal of 34 km/liter (80 mpg), for 384 km (240 mi) and 608 km (380 mi) ranges. Our results indicate that such a vehicle appears feasible using an optimized hydrogen engine. The impact of various on-board storage options on fuel economy are evaluated. Experiments with an available engine at the Sandia Combustion Research Facility demonstrated NO{sub x} emissions of 10 to 20 ppm at an equivalence ratio of 0.4, rising to about 500 ppm at 0.5 equivalence ratio using neat hydrogen. Hybrid vehicle simulation studies indicate that exhaust NO{sub x} concentrations must be less than 180 ppm to meet the 0.2 g/mile California Air Resources Board ULEV or Federal Tier II emissions regulations. We have designed and fabricated a first generation optimized hydrogen engine head for use on an existing single cylinder Onan engine. This head currently features 14.8:1 compression ratio, dual ignition, water cooling, two valves and open quiescent combustion chamber to minimize heat transfer losses.

  17. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Includes Engineering Standards Manual, Master Specifications Index, Drafting Manual, Design Guides, and more. IHS Standards Expert login information Collections include ANSI,...

  18. So you want to design a Stirling engine

    SciTech Connect (OSTI)

    Organ, A.J.; Finkelstein, T.

    1995-12-31

    The rules of thermodynamic scaling are presented and discussed. As a example of practical application, proposals for large, air-charged Stirling engines are examined. The futility of obvious geometric scaling of existing designs is demonstrated. The thermodynamic geometry of the large, high-speed, pressurized air engine is as different from that of the helium/hydrogen counterpart as is that of the low {Delta}T type. Success with the genre is within grasp, but dependent upon realization of an extreme geometry.

  19. Accelerating Battery Design Using Computer-Aided Engineering Tools: Preprint

    SciTech Connect (OSTI)

    Pesaran, A.; Heon, G. H.; Smith, K.

    2011-01-01

    Computer-aided engineering (CAE) is a proven pathway, especially in the automotive industry, to improve performance by resolving the relevant physics in complex systems, shortening the product development design cycle, thus reducing cost, and providing an efficient way to evaluate parameters for robust designs. Academic models include the relevant physics details, but neglect engineering complexities. Industry models include the relevant macroscopic geometry and system conditions, but simplify the fundamental physics too much. Most of the CAE battery tools for in-house use are custom model codes and require expert users. There is a need to make these battery modeling and design tools more accessible to end users such as battery developers, pack integrators, and vehicle makers. Developing integrated and physics-based CAE battery tools can reduce the design, build, test, break, re-design, re-build, and re-test cycle and help lower costs. NREL has been involved in developing various models to predict the thermal and electrochemical performance of large-format cells and has used in commercial three-dimensional finite-element analysis and computational fluid dynamics to study battery pack thermal issues. These NREL cell and pack design tools can be integrated to help support the automotive industry and to accelerate battery design.

  20. The Engineering Design of Man-Machine Interface for RTS

    SciTech Connect (OSTI)

    Yenn, T.-C.

    2002-02-26

    The purpose of this paper is to present the engineering design of the advanced Man-Machine Interface (MMI) of the Integrated system for Radwaste Treatment and Storage (RTS) facility in Institute of Nuclear Energy Research (INER) Taiwan, ROC. To build the RTS, a multi-function radwaste facility with a total storage of about 10,000 drums, is a five-year project starting in 2000 including intermediate activity waste treatment and combustible waste storage. The completed engineering design of the MMI is based on proven technologies and digital control systems, enhancing the radwaste management efficiency and reliability of operator's performance as well as assuring the dose exposure of personnel meeting the regulation standard. Over past few years, INER has accumulated extensive experience in the area of radwaste treatment and storage. Therefore, we are confident that we will complete this project with fulfillment of the requirements of RTS.

  1. Engine design takes a major leap at Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Engineer Janardhan Kodavasal, from right, discusses piston bowl design with Assistant Computational Scientist Marta García and Principal Mechanical Engineer Sibendu Som. Mechanical Engineer Janardhan Kodavasal, from right, discusses piston bowl design with Assistant Computational Scientist Marta García and Principal Mechanical Engineer Sibendu Som. Engine design takes a major leap at Argonne By Greg Cunningham * April 8, 2016 Tweet EmailPrint The search for a truly revolutionary

  2. Nuclear Design of Fissile Pu and HEU LIFE Engine - NA22 (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Nuclear Design of Fissile Pu and HEU LIFE Engine - NA22 Citation Details In-Document Search Title: Nuclear Design of Fissile Pu and HEU LIFE Engine - NA22 ...

  3. Nuclear Design of Fissile Pu and HEU LIFE Engine - NA22 (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Nuclear Design of Fissile Pu and HEU LIFE Engine - NA22 Citation Details In-Document Search Title: Nuclear Design of Fissile Pu and HEU LIFE Engine - NA22 You ...

  4. DESIGNATION SURVEY ADDENDUM REPORT II COMBUSTION ENGINEERING SITE

    Office of Legacy Management (LM)

    ,111 DESIGNATION SURVEY ADDENDUM REPORT II COMBUSTION ENGINEERING SITE *I W INDSOR, CONNECTICUT 111 E. W . ABELQUIST Prepared for the Office of Environmental Restoration U.S. Department of Energy I- II I- .:jj;jiE// .:::=::::: .ipij!li' ,:::i::.:. ..::I::::/. ,:ii~iiiiai, ..' iiiiiiiiii!!liiii~~~~,~:~:. ~i!i.~iii~' :' -' +g?' gg;; ,- ZY :i/ .:;i" .:!! .:::a .(/i?j i:/i;jl? I!kr ' -:~i~jg~;...,.;, ..,::&Si! :(j)//ji//(!: 3.. :jijiiiiiiqi:wi l~,. ,,v..::;:~/j~B/; g#;$ .;::::::::::!

  5. Some ocean engineering considerations in the design of OTEC plants

    SciTech Connect (OSTI)

    McGuiness, T.

    1982-08-01

    An alternate energy resource using the temperature differences between warm surface waters and cool bottom waters of the world's oceans, Ocean Thermal Energy Conversion (OTEC) utilizes the solar energy potential of nearequatorial water masses and can be applied to generate electrical energy as a baseload augmentation of landside power plants or to process energy-intensive products at sea. Designs of OTEC plants include concepts of floating barge or shipshape structures with large (up to 100-foot diameter, 3,000 feet in length) pipes used to intake cool bottom waters and platforms located in 300-foot water depths similar to oil drilling rigs, also with a pipe to ingest cool waters, but in this case the pipe is laid on continental shelf areas in 25/sup 0/-30/sup 0/ slopes attaining a length of several miles. The ocean engineering design considerations, problem areas, and proposed solutions to data regarding various OTEC plant concepts are the topic of this presentation.

  6. Engineering methods for the design and employment of wood cribs

    SciTech Connect (OSTI)

    Barczak, T.M. ); Gearhart, D.F. )

    1993-01-01

    Wood cribs are used extensively by the mining industry to stabilize mine openings. While the cost per crib is relatively low, their extensive use can result in annual mine costs of over $1 million. In an effort to improve the utilization of these supports and to reduce ground control hazards, the US Bureau of Mines has developed engineering methods to assist mine operators in wood-crib design and employment. Design and employment criteria are established based on the strength, stiffness, and stability of the crib structure in relation to the load conditions imposed by the mine environment. Models have been developed based on full-scale tests in the USBM's Mine Roof Simulator that compute the capacity of wood cribs of various configurations and material constructions as a function of displacement of the crib structure due to roof-and-floor convergence. These models permit the comparison of the loading characteristics and cost of employment of different crib designs, and in conjunction with roof behavior models, provide a means to determine the optimum design and employment strategy. In eastern coal mines, wood cribs generally are constructed from hardwood timbers, while softwood timbers generally are used in western coal mines. 11 refs., 27 figs., 2 tabs.

  7. Design Challenges of Locomotive Diesel Engines | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    5 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005deerprimus.pdf (145.61 KB) More Documents & Publications Future Diesel Engine Thermal ...

  8. Parameter Study of the LIFE Engine Nuclear Design

    SciTech Connect (OSTI)

    Kramer, K J; Meier, W R; Latkowski, J F; Abbott, R P

    2009-07-10

    LLNL is developing the nuclear fusion based Laser Inertial Fusion Energy (LIFE) power plant concept. The baseline design uses a depleted uranium (DU) fission fuel blanket with a flowing molten salt coolant (flibe) that also breeds the tritium needed to sustain the fusion energy source. Indirect drive targets, similar to those that will be demonstrated on the National Ignition Facility (NIF), are ignited at {approx}13 Hz providing a 500 MW fusion source. The DU is in the form of a uranium oxycarbide kernel in modified TRISO-like fuel particles distributed in a carbon matrix forming 2-cm-diameter pebbles. The thermal power is held at 2000 MW by continuously varying the 6Li enrichment in the coolants. There are many options to be considered in the engine design including target yield, U-to-C ratio in the fuel, fission blanket thickness, etc. Here we report results of design variations and compare them in terms of various figures of merit such as time to reach a desired burnup, full-power years of operation, time and maximum burnup at power ramp down and the overall balance of plant utilization.

  9. DELTAE. Design Environment for Low-Amplitude Thermoacoustic Engines

    SciTech Connect (OSTI)

    Ward, W.C.

    1993-10-10

    In thermoacoustic engines and refrigerators, and in many simple acoustic systems, a one dimensional wave equation determines the spatial dependence of the acoustic pressure and velocity. DELTAE numerically integrates such wave equations in the acoustic approximation, in gases or liquids, in user-defined geometries. Boundary conditions can include conventional acoustic boundary conditions of geometry and impedance, as well as temperature and thermal power in thermoacoustic systems. DELTAE can be used easily for apparatus ranging from simple duct networks and resonators to thermoacoustic engines refrigerators and combinations thereof. It can predict how a given apparatus will perform, or can allow the user to design an apparatus to achieve desired performance. DELTAE views systems as a series of segments; twenty segment types are supported. The purely acoustic segments include ducts and cones, and lumped impedances including compliances, series impedances, and endcaps. Electroacoustics tranducer segments can be defined using either frequency-independent coefficients or the conventional parameters of loudspeaker-style drivers: mass, spring constant, magnetic field strength, etc. Tranducers can be current driven, voltage driven, or connected to an electrical load impedance. Thermoacoustic segment geometries include parallel plates, circular and rectangular pores, and pin arrays. Side branches can be defined with fixed impedances, frequency-dependent radiation impedances, or as an auxiliary series of segments of any types. The user can select working fluids from among air, helium, neon, argon, hydrogen, deuterium, carbon dioxide, nitrogen, helium-argon mixtures, helium-xenon mixtures, liquid sodium, and eutectic sodium-potassium. Additional fluids and solids can be defined by the user.

  10. DELTAE. Design Environment for Low-Amplitude Thermoacoustic Engines

    SciTech Connect (OSTI)

    Ward, W.C.; Swift, G.W.

    1993-10-01

    In thermoacoustic engines and refrigerators, and in many simple acoustic systems, a one dimensional wave equation determines the spatial dependence of the acoustic pressure and velocity. DELTAE numerically integrates such wave equations in the acoustic approximation, in gases or liquids, in user-defined geometries. Boundary conditions can include conventional acoustic boundary conditions of geometry and impedance, as well as temperature and thermal power in thermoacoustic systems. DELTAE can be used easily for apparatus ranging from simple duct networks and resonators to thermoacoustic engines refrigerators and combinations thereof. It can predict how a given apparatus will perform, or can allow the user to design an apparatus to achieve desired performance. DELTAE views systems as a series of segments; twenty segment types are supported. The purely acoustic segments include ducts and cones, and lumped impedances including compliances, series impedances, and endcaps. Electroacoustics tranducer segments can be defined using either frequency-independent coefficients or the conventional parameters of loudspeaker-style drivers: mass, spring constant, magnetic field strength, etc. Tranducers can be current driven, voltage driven, or connected to an electrical load impedance. Thermoacoustic segment geometries include parallel plates, circular and rectangular pores, and pin arrays. Side branches can be defined with fixed impedances, frequency-dependent radiation impedances, or as an auxiliary series of segments of any types. The user can select working fluids from among air, helium, neon, argon, hydrogen, deuterium, carbon dioxide, nitrogen, helium-argon mixtures, helium-xenon mixtures, liquid sodium, and eutectic sodium-potassium. Additional fluids and solids can be defined by the user.

  11. DELTAE+. Design Environment for Low-Amplitude Thermoacoustic Engines

    SciTech Connect (OSTI)

    Ward, W.C; Swift, G.W.

    1993-10-01

    In thermoacoustic engines and refrigerators, and in many simple acoustic systems, a one dimensional wave equation determines the spatial dependence of the acoustic pressure and velocity. DELTAE numerically integrates such wave equations in the acoustic approximation, in gases or liquids, in user-defined geometries. Boundary conditions can include conventional acoustic boundary conditions of geometry and impedance, as well as temperature and thermal power in thermoacoustic systems. DELTAE can be used easily for apparatus ranging from simple duct networks and resonators to thermoacoustic engines refrigerators and combinations thereof. It can predict how a given apparatus will perform, or can allow the user to design an apparatus to achieve desired performance. DELTAE views systems as a series of segments; twenty segment types are supported. The purely acoustic segments include ducts and cones, and lumped impedances including compliances, series impedances, and endcaps. Electroacoustics tranducer segments can be defined using either frequency-independent coefficients or the conventional parameters of loudspeaker-style drivers: mass, spring constant, magnetic field strength, etc. Tranducers can be current driven, voltage driven, or connected to an electrical load impedance. Thermoacoustic segment geometries include parallel plates, circular and rectangular pores, and pin arrays. Side branches can be defined with fixed impedances, frequency-dependent radiation impedances, or as an auxiliary series of segments of any types. The user can select working fluids from among air, helium, neon, argon, hydrogen, deuterium, carbon dioxide, nitrogen, helium-argon mixtures, helium-xenon mixtures, liquid sodium, and eutectic sodium-potassium. Additional fluids and solids can be defined by the user.

  12. District cooling engineering & design program. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    Phoenix, Arizona is located in the Sonoran desert. Daytime temperatures typically rise to over 100 F during the three summer months. Average and peak temperatures have tended to rise over recent decades. This is generally attributed to what is known as the heat island effect, due to an increase in heat absorbing concrete and a decrease in irrigated farmland in the area. Phoenix is the eighth largest city in the US with a population of just over one million (1,000,000). The metropolitan area is one of the fastest growing in the nation. Over the last ten years its population has increased by over 40%. It is not an exaggeration to say the general availability of refrigerated air conditioning, both for buildings and automobiles has been an important factor enabling growth. The cost of operating public buildings has risen significantly in the last decade. In fiscal year 92/93 the City of Phoenix had energy expenses of over thirty four million dollars ($34,000,000). Because the City was planning a major new construction project, a new high-rise City Hall, it was decided to study and then optimize the design and selection of building systems to minimize long term owning and operating costs. The City Hall was to be constructed in downtown Phoenix. Phoenix presently owns other buildings in the area. A number of large cooling systems serving groups of buildings are currently operating in the Phoenix area. The City requested that the design consultants analyze the available options and present recommendations to the City`s engineering staff.

  13. Thermal and Mechanical Design Aspects of the LIFE Engine (Journal...

    Office of Scientific and Technical Information (OSTI)

    The Laser Inertial confinement fusion - Fission Energy (LIFE) engine encompasses the components of a LIFE power plant responsible for converting the thermal energy of fusion and ...

  14. Clean and Efficient Diesel Engines- Designing for the Customer

    Broader source: Energy.gov [DOE]

    A look at the key role that clean and efficient diesel engines will play in achieving climate and energy goals, and further improvements needed to perform this role.

  15. Some considerations of the design of displacers for Ringbom Stirling engines

    SciTech Connect (OSTI)

    Fauvel, O.R.; Kentfield, J.A.C.; Walker, G.

    1984-08-01

    The Ringbom Stirling engine is a hybrid of the kinematic Stirling engine having shaft output power and variable speed and of the free piston engine in which the components are driven by changes in working space pressure. Experiments with Ringbom Stirling engines have led to the suspicion that the 'weak link' of the engine is the free displacer. This paper examines some of the factors which must be addressed in the design of displacers for these engines with reference to the thermal, pressure, and dynamical considerations.

  16. PPPL engineers design and build state-of-the-art controller for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineers design and build state-of-the-art controller for AC to DC converter that manages ... able to perform experiments on NSTX-U to advance the design of a working fusion reactor. ...

  17. Rotary engine design: Analysis and developments; Proceedings of the International Congress and Exposition, Detroit, MI, Feb. 27-Mar. 3, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The present conference on the development status of Wankel cycle rotary engine design discusses stratified-charge rotary engine features, techniques for noise and vibration reduction in rotary engines, testing methods for insulated rotary engine components, cyclic combustion variation in rotary engines, and a combustion model for homogeneous charge natural gas rotary engines. Also discussed are fuel-air mixing and distribution in a direct-injection stratified-charge rotary engine, the 'rotary-vee' engine design concept, strain measurements in a rotary engine housing, and a comparison of computed and measured pressure in a premixed-charge natural gas-fueled rotary engine.

  18. Proceedings of the 1996 spring technical conference of the ASME Internal Combustion Engine Division. Volume 2: Engine design and engine systems; ICE-Volume 26-2

    SciTech Connect (OSTI)

    Uzkan, T.

    1996-12-31

    Although the cost of the petroleum crude has not increased much within the last decade, the drive to develop internal combustion engines is still continuing. The basic motivation of this drive is to reduce both emissions and costs. Recent developments in computer chip production and information management technology have opened up new applications in engine controls and monitoring. The development of new information is continuing at a rapid pace. Some of these research and development results were presented at the 1996 Spring Technical Conference of the ASME Internal Combustion Engine Division in Youngstown, Ohio, April 21--24, 1996. The papers presented covered various aspects of the design, development, and application of compression ignition and spark ignition engines. The conference was held at the Holiday Inn Metroplex Complex and hosted by Altronic Incorporated of Girard, Ohio. The written papers submitted to the conference have been published in three conference volumes. Volume 2 includes the papers on the topics of engine design, engine systems, and engine user experience.

  19. Automotive Stirling engine Mod I design-review report. Volume II

    SciTech Connect (OSTI)

    Not Available

    1982-08-01

    Volume No. 2 of the Automotive Stirling Engine Mod I Design Review Report contains descriptions of the operating principles, performance requirements and design details of the auxiliaries and control systems for the MOD I Stirling engine system. These components and sub-systems have the following main functions: provide the required fuel and air flows for a well controlled combustion process, generating heat to the Stirling cycle; provide a driver acceptable method for controlling the power output of the engine; provide adequate lubrication and cooling water circulation; generate the electric energy required for engine and vehicle operation; provide a driver acceptable method for starting, stopping and monitoring the engine; and provide a guard system, that protects the engine at component or system malfunction.

  20. Application of Engineering and Technical Requirements for 30, 60, and 90% Design of DOE Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    This Standard Review Plan (SRP), Application of Engineering and Technical Requirements for 30, 60 and 90% Design of DOE Nuclear Facilities, was developed by the Office of Chief of Nuclear Safety (CNS), Office of the Environmental Management. The SRP is designed to help strengthen the technical rigor of line management oversight and federal monitoring of the design process of DOE nuclear facilities.

  1. Synthetic Biology: Engineering, Evolution and Design (SEED) Conference 2014

    SciTech Connect (OSTI)

    Voigt, Christopher

    2014-07-01

    SEED2014 focused on advances in the science and technology emerging from the field of synthetic biology. We broadly define this as technologies that accelerate the process of genetic engineering. It highlighted new tool development, as well as the application of these tools to diverse problems in biotechnology, including therapeutics, industrial chemicals and fuels, natural products, and agriculture. Systems spanned from in vitro experiments and viruses, through diverse bacteria, to eukaryotes (yeast, mammalian cells, plants).

  2. Student engineers design and race battery-powered cars in this...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Click to enlarge. Student engineers design and race battery-powered cars in this year's ... Each team receives a car kit from Argonne, including a motor, battery and lights. The ...

  3. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.

    2014-10-02

    Here we discuss a gripping capability that was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory.

  4. Computer-Aided Engineering of Batteries for Designing Better Li-Ion Batteries (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.; Smith, K.; Lee, K. J.; Santhanagopalan, S.

    2012-02-01

    This presentation describes the current status of the DOE's Energy Storage R and D program, including modeling and design tools and the Computer-Aided Engineering for Automotive Batteries (CAEBAT) program.

  5. Webinar "Applying High Performance Computing to Engine Design Using

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputers" | Argonne National Laboratory Webinar "Applying High Performance Computing to Engine Design Using Supercomputers" Share Description Video from the February 25, 2016 Convergent Science/Argonne National Laboratory webinar "Applying High Performance Computing to Engine Design using Supercomputers," featuring Janardhan Kodavasal of Argonne National Laboratory Speakers Janardhan Kodavasal, Argonne National Laboratory Duration 52:26 Topic Energy Energy

  6. PPPL engineers complete the design of Wendelstein 7-X scraper unit |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab engineers complete the design of Wendelstein 7-X scraper unit By Raphael Rosen January 12, 2016 Tweet Widget Google Plus One Share on Facebook PPPL Scientist Hutch Neilson (Photo by Elle Starkman/PPPL Office of Communications) PPPL Scientist Hutch Neilson Engineers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have finished designing a novel component for the Wendelstein 7-X (W7-X) stellarator, which recently opened at the Max

  7. PPPL engineers complete the design of Wendelstein 7-X scraper unit |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab engineers complete the design of Wendelstein 7-X scraper unit By Raphael Rosen January 12, 2016 Tweet Widget Google Plus One Share on Facebook PPPL Scientist Hutch Neilson (Photo by Elle Starkman/PPPL Office of Communications) PPPL Scientist Hutch Neilson Engineers at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL) have finished designing a novel component for the Wendelstein 7-X (W7-X) stellarator, which recently opened at the Max

  8. PPPL engineers complete the design of Wendelstein 7-X scraper...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    finished designing a novel component for the Wendelstein 7-X (W7-X) stellarator, which recently opened at the Max Planck Institute of Plasma Physics (IPP) in Griefswald, Germany. ...

  9. Engineering test facility conceptual design. Final technical report

    SciTech Connect (OSTI)

    Not Available

    1980-02-01

    Because of the close relationship between the ETF design work conducted under this contract, and the design work of Potential Early Commercial MHD Power Plants (PSPEC) conducted under a separate and parallel DOE/NASA study contract, (DEN 3-51), the ETF design work reported on here was coordinated as far as possible with the design information developed in the above-mentioned separate PSPEC study. The reference power system configuration originally specified for the ETF considered the use of a high-temperature-air preheater, separately fired initially with oil and subsequently with a LBtu gas produced in a coal gasifier integrated with the power plant. The potential attractiveness of using oxygen enrichment in combustion of the coal for early commercial MHD power plant applications was indicated in our original ETF Conceptual Design Document. This eliminates the need for a high-temperature-air preheater and its associated gasifier. The results from our initial parametric design analysis in the separate study of Early Commercial MHD Power Plants reinforced the potential attractiveness of the use of oxygen enrichment of the combustion air. Therefore, preliminary analysis of the use of oxygen enrichment for the ETF was included as part of the ETF contract amendment work reported on here.

  10. Engineering Design and Fabrication of an Ampere-Class Superconducting Photocathode Electron Gun

    SciTech Connect (OSTI)

    Ben-Zvi,I.

    2008-11-17

    Over the past three years, Advanced Energy Systems and Brookhaven National Laboratory (BNL) have been collaborating on the design of an Ampere- class superconducting photocathode electron gun. BNL performed the physics design of the overall system and RF cavity under prior programs. Advanced Energy Systems (AES) is currently responsible for the engineering design and fabrication of the electron gun under contract to BNL. We will report on the engineering design and fabrication status of the superconducting photocathode electron gun. The overall configuration of the cryomodule will be reviewed. The layout of the hermitic string, space frame, shielding package, and cold mass will be discussed. The engineering design of the gun cavity and removable cathode will be presented in detail and areas of technical risk will be highlighted. Finally, the fabrication sequence and fabrication status of the gun cavity will be discussed.

  11. Hybrid Vehicle Turbine Engine Technology Support (HVTE-TS) ceramic design manual

    SciTech Connect (OSTI)

    1997-10-01

    This ceramic component design manual was an element of the Advanced Turbine Technology Applications Project (ATTAP). The ATTAP was intended to advance the technological readiness of the ceramic automotive gas turbine engine as a primary power plant. Of the several technologies requiring development before such an engine could become a commercial reality, structural ceramic components represented the greatest technical challenge, and was the prime focus of the program. HVTE-TS, which was created to support the Hybrid Electric Vehicle (HEV) program, continued the efforts begun in ATTAP to develop ceramic components for an automotive gas turbine engine. In HVTE-TS, the program focus was extended to make this technology applicable to the automotive gas turbine engines that form the basis of hybrid automotive propulsion systems consisting of combined batteries, electric drives, and on-board power generators as well as a primary power source. The purpose of the ceramic design manual is to document the process by which ceramic components are designed, analyzed, fabricated, assembled, and tested in a gas turbine engine. Interaction with ceramic component vendors is also emphasized. The main elements of the ceramic design manual are: an overview of design methodology; design process for the AGT-5 ceramic gasifier turbine rotor; and references. Some reference also is made to the design of turbine static structure components to show methods of attaching static hot section ceramic components to supporting metallic structures.

  12. Fire Protection Engineering Design Brief Template. Hydrogen Refueling Station.

    SciTech Connect (OSTI)

    LaFleur, Angela Christine; Muna, Alice Baca; Groth, Katrina M.

    2015-08-01

    Building a hydrogen infrastructure system is critical to supporting the development of alternate- fuel vehicles. This report provides a methodology for implementing a performance-based design of an outdoor hydrogen refueling station that does not meet specific prescriptive requirements in NFPA 2, The Hydrogen Technologies Code . Performance-based designs are a code-compliant alternative to meeting prescriptive requirements. Compliance is demonstrated by comparing a prescriptive-based fueling station design with a performance-based design approach using Quantitative Risk Assessment (QRA) methods and hydrogen risk assessment tools. This template utilizes the Sandia-developed QRA tool, Hydrogen Risk Analysis Models (HyRAM), which combines reduced-order deterministic models that characterize hydrogen release and flame behavior with probabilistic risk models to quantify risk values. Each project is unique and this template is not intended to account for site-specific characteristics. Instead, example content and a methodology are provided for a representative hydrogen refueling site which can be built upon for new hydrogen applications.

  13. TPX: Contractor preliminary design review. Volume 2, PF systems engineering

    SciTech Connect (OSTI)

    Calvin, H.A.

    1995-07-28

    This system development specification covers the Poloidal Field (PF) Magnet System, WBS 14 in the Princeton Plasma Physics Laboratory TPX Program to build a tokamak fusion reactor. This specification establishes the performance, design, development and test requirements of the PF Magnet System.

  14. Design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range

    SciTech Connect (OSTI)

    1980-02-01

    Initial work in a project on the design and development of Stirling engines for stationary integrated energy systems is reported. Information is included on a market assessment, design methodology, evaluation of engine thermodynamic performance, and preliminary system design. It is concluded that Stirling engines employing clean fossil fuels cannot compete with diesel engines. However, combustion technology exists for the successful burning of coal-derived fuels in a large stationary stirling engine. High thermal efficiency is predicted for such an engine and further development work is recommended. (LCL)

  15. Design Environment for Low-Amplitude Thermoacoustic Engines

    Energy Science and Technology Software Center (OSTI)

    2002-01-07

    DeltaE is a computer program that can preduct how a given thermoacoustic apparatus will perform, or can allow the user to design an apparatus to achieve desired performance. It is substantially menu-oriented. Input data can be modified or entered bia DeltaE's menu or using any text editor. Results can be examined via the menus, the operating systems text utilities, or any spreadsheet or graphics software.

  16. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    SciTech Connect (OSTI)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  17. Evaluation of injector location and nozzle design in a direct-injection hydrogen research engine.

    SciTech Connect (OSTI)

    Wallner, T.; Nande, A. M.; Naber, J.; Energy Systems; Michigan Technological Univ.

    2008-06-01

    The favorable physical properties of hydrogen (H{sub 2}) make it an excellent alternative fuel for internal combustion (IC) engines and hence it is widely regarded as the energy carrier of the future. Hydrogen direct injection provides multiple degrees of freedom for engine optimization and influencing the in-cylinder combustion processes. This paper compares the results in the mixture formation and combustion behavior of a hydrogen direct-injected single-cylinder research engine using two different injector locations as well as various injector nozzle designs.

  18. Design and development of the Waukesha Custom Engine Control Air/Fuel Module

    SciTech Connect (OSTI)

    Moss, D.W.

    1996-12-31

    The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuel composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.

  19. NREL Wind Integrated System Design and Engineering Model

    Energy Science and Technology Software Center (OSTI)

    2013-09-30

    NREL_WISDEM is an integrated model for wind turbines and plants developed In python based on the open source software OpenMDAO. NREL_WISDEM is a set of wrappers for various wind turbine and models that integrate pre-existing models together into OpenMDAO. It is organized into groups each with their own repositories including Plant_CostSE. Plant_EnergySE, Turbine_CostSE and TurbineSE. The wrappers are designed for licensed and non-licensed models though in both cases, one has to have access to andmore » install the individual models themselves before using them in the overall software platform.« less

  20. Radwaste assessment program for nuclear station modifications by design engineering

    SciTech Connect (OSTI)

    Eble, R.G.

    1988-01-01

    Radwaste burial for Duke Power Company's (DPC's) seven nuclear units has become a complicated and costly process. Burial costs are based on overall volume, surcharges for radioactivity content and weight of containers, truck and cask rental, driver fees, and state fees and taxes. Frequently, radwaste costs can be as high as $500 per drum. Additionally, DPC is limited on the total burial space allocated for each plant each year. The thrust of this program is to reduce radwaste volumes needing burial at either Barnwell, South Carolina, or Richland, Washington. A limited number of options are available at our sites: (a) minimization of radwaste volume production, (b) segregation of contamination and noncontaminated trash, (c) decontamination of small hardware, (d) volume reduction of compatible trash, (e) incineration of combustible trash (available at Oconee in near future), and (f) burial of below-regulatory-concern very low level waste on site. Frequently, costs can be reduced by contracting services outside the company, i.e., supercompaction, decontamination, etc. Information about radwaste volumes, activities, and weight, however, must be provided to the nuclear production department (NPD) radwaste group early in the nuclear station modification (NSM) process to determine the most cost-effective method of processing radwaste. In addition, NSM radwaste costs are needed for the NPD NSM project budget. Due to the advanced planning scope of this budget, NSM construction costs must be estimated during the design-phase proposal.

  1. Systems Engineering Applications to Wind Energy Research, Design, and Development (Poster)

    SciTech Connect (OSTI)

    Dykes, K.; Damiani, R.; Felker, F.; Graf, P.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Ning, A.; Scott, G.; Sirnivas, S.; Veers, P.

    2012-06-01

    Over the last few decades, wind energy has evolved into a large international industry involving major players in the manufacturing, construction, and utility sectors. Coinciding with the industry's growth, significant innovation in the technology has resulted in larger turbines with lower associated costs of energy and more complex designs in all subsystems. However, as the deployment of the technology grows, and its role within the electricity sector becomes more prominent, so has the expectations of the technology in terms of performance, reliability, and cost. The industry currently partitions its efforts into separate paths for turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated to meet a diverse set of goals while recognizing trade-offs between them. To address these challenges, the National Renewable Energy Laboratory (NREL) has embarked on the Wind Energy Systems Engineering (WESE) initiative to use methods of systems engineering in the research, design, and development of wind energy systems. Systems engineering is a field that has a long history of application to complex technical systems. The work completed to date represents a first step in understanding this potential. It reviews systems engineering methods as applied to related technical systems and illustrates how these methods can be combined in a WESE framework to meet the research, design, and development needs for the future of the industry.

  2. Design and fabrication of a meso-scale stirling engine and combustor.

    SciTech Connect (OSTI)

    Echekki, Tarek (Sandia National Laboratories, Livermore, CA); Haroldsen, Brent L. (Sandia National Laboratories, Livermore, CA); Krafcik, Karen L. (Sandia National Laboratories, Livermore, CA); Morales, Alfredo Martin; Mills, Bernice E.; Liu, Shiling; Lee, Jeremiah C. (Sandia National Laboratories, Livermore, CA); Karpetis, Adionos N. (Sandia National Laboratories, Livermore, CA); Chen, Jacqueline H. (Sandia National Laboratories, Livermore, CA); Ceremuga, Joseph T. (Sandia National Laboratories, Livermore, CA); Raber, Thomas N.; Hekmuuaty, Michelle A.

    2005-05-01

    Power sources capable of supplying tens of watts are needed for a wide variety of applications including portable electronics, sensors, micro aerial vehicles, and mini-robotics systems. The utility of these devices is often limited by the energy and power density capabilities of batteries. A small combustion engine using liquid hydrocarbon fuel could potentially increase both power and energy density by an order of magnitude or more. This report describes initial development work on a meso-scale external combustion engine based on the Stirling cycle. Although other engine designs perform better at macro-scales, we believe the Stirling engine cycle is better suited to small-scale applications. The ideal Stirling cycle requires efficient heat transfer. Consequently, unlike other thermodynamic cycles, the high heat transfer rates that are inherent with miniature devices are an advantage for the Stirling cycle. Furthermore, since the Stirling engine uses external combustion, the combustor and engine can be scaled and optimized semi-independently. Continuous combustion minimizes issues with flame initiation and propagation. It also allows consideration of a variety of techniques to promote combustion that would be difficult in a miniature internal combustion engine. The project included design and fabrication of both the engine and the combustor. Two engine designs were developed. The first used a cylindrical piston design fabricated with conventional machining processes. The second design, based on the Wankel rotor geometry, was fabricated by through-mold electroforming of nickel in SU8 and LIGA micromolds. These technologies provided the requisite precision and tight tolerances needed for efficient micro-engine operation. Electroformed nickel is ideal for micro-engine applications because of its high strength and ductility. A rotary geometry was chosen because its planar geometry was more compatible with the fabrication process. SU8 lithography provided rapid

  3. Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems

    SciTech Connect (OSTI)

    Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

    2011-12-01

    This paper surveys the landscape of systems engineering methods and current wind modeling capabilities to assess the potential for development of a systems engineering to wind energy research, design, and development. Wind energy has evolved from a small industry in a few countries to a large international industry involving major organizations in the manufacturing, development, and utility sectors. Along with this growth, significant technology innovation has led to larger turbines with lower associated costs of energy and ever more complex designs for all major subsystems - from the rotor, hub, and tower to the drivetrain, electronics, and controls. However, as large-scale deployment of the technology continues and its contribution to electricity generation becomes more prominent, so have the expectations of the technology in terms of performance and cost. For the industry to become a sustainable source of electricity, innovation in wind energy technology must continue to improve performance and lower the cost of energy while supporting seamless integration of wind generation into the electric grid without significant negative impacts on local communities and environments. At the same time, issues associated with wind energy research, design, and development are noticeably increasing in complexity. The industry would benefit from an integrated approach that simultaneously addresses turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated in order to meet this diverse set of goals while recognizing trade-offs that exist between them. While potential exists today to integrate across different domains within the wind energy system design process, organizational barriers such as different institutional objectives and the importance of proprietary information have previously limited a system level approach to wind energy research, design, and

  4. Engineering design and analysis of advanced physical fine coal cleaning technologies. Final report

    SciTech Connect (OSTI)

    1994-08-01

    This report describes the gravity separation equipment models available in the Coal Cleaning Simulator developed by Aspen Technology, Inc. This flowsheet simulator was developed in collaboration with ICF Kaiser Engineers, a subcontractor to Aspen Technology, Inc., and CQ Inc., a subcontractor to ICF Kaiser Engineers. The algorithms and FORTRAN programs for modeling gravity separation, which include calculations for predicting process performance, and calculations for equipment sizing and costing, were developed by ICF Kaiser Engineers. Aspen Technology integrated these and other models into the ASPEN PLUS system to provide a simulator specifically tailored for modeling coal cleaning plants. ICF Kaiser Engineers also provided basic documentation for these models; Aspen Technology, Inc. has incorporated the information into this topical report. The report documents both the use and the design bases for the models, and provides to the user a good understanding of their range of applicability and limitations.

  5. Multiphysics Engineering Analysis for an Integrated Design of ITER Diagnostic First Wall and Diagnostic Shield Module Design

    SciTech Connect (OSTI)

    Zhai, Y.; Loesser, G.; Smith, M.; Udintsev, V.; Giacomin, T., T.; Khodak, A.; Johnson, D,; Feder, R,

    2015-07-01

    ITER diagnostic first walls (DFWs) and diagnostic shield modules (DSMs) inside the port plugs (PPs) are designed to protect diagnostic instrument and components from a harsh plasma environment and provide structural support while allowing for diagnostic access to the plasma. The design of DFWs and DSMs are driven by 1) plasma radiation and nuclear heating during normal operation 2) electromagnetic loads during plasma events and associate component structural responses. A multi-physics engineering analysis protocol for the design has been established at Princeton Plasma Physics Laboratory and it was used for the design of ITER DFWs and DSMs. The analyses were performed to address challenging design issues based on resultant stresses and deflections of the DFW-DSM-PP assembly for the main load cases. ITER Structural Design Criteria for In-Vessel Components (SDC-IC) required for design by analysis and three major issues driving the mechanical design of ITER DFWs are discussed. The general guidelines for the DSM design have been established as a result of design parametric studies.

  6. Summary of the Preliminary Optical ICHMI Design Study: A Preliminary Engineering Design Study for a Standpipe Viewport

    SciTech Connect (OSTI)

    Anheier, Norman C.; Qiao, Hong; Berglin, Eric J.; Hatchell, Brian K.

    2013-12-26

    This summary report examines an in-vessel optical access concept intended to support standoff optical instrumentation, control and human-machine interface (ICHMI) systems for future advanced small modular reactor (AdvSMR) applications. Optical-based measurement and sensing systems for AdvSMR applications have several key benefits over traditional instrumentation and control systems used to monitor reactor process parameters, such as temperature, flow rate, pressure, and coolant chemistry (Anheier et al. 2013). Direct and continuous visualization of the in-vessel components can be maintained using external cameras. Many optical sensing techniques can be performed remotely using open optical beam path configurations. Not only are in-vessel cables eliminated by these configurations, but also sensitive optical monitoring components (e.g., electronics, lasers, detectors, and cameras) can be placed outside the reactor vessel in the instrument vault, containment building, or other locations where temperatures and radiation levels are much lower. However, the extreme AdvSMR environment present challenges for optical access designs and optical materials. Optical access is not provided in any commercial nuclear power plant or featured in any reactor design, although successful implementation of optical access has been demonstrated in test reactors (Arkani and Gharib 2009). This report outlines the key engineering considerations for an AdvSMR optical access concept. Strict American Society of Mechanical Engineers (ASME) construction codes must be followed for any U.S. nuclear facility component (ASME 2013); however, the scope of this study is to evaluate the preliminary engineering issues for this concept, rather than developing a nuclear-qualified design. In addition, this study does not consider accident design requirements. In-vessel optical access using a standpipe viewport concept serves as a test case to explore the engineering challenges and performance requirements

  7. Engineering at SLAC: Designing and constructing experimental devices for the Stanford Synchrotron Radiation Lightsource - Final Paper

    SciTech Connect (OSTI)

    Djang, Austin

    2015-08-22

    Thanks to the versatility of the beam lines at SSRL, research there is varied and benefits multiple fields. Each experiment requires a particular set of experiment equipment, which in turns requires its own particular assembly. As such, new engineering challenges arise from each new experiment. My role as an engineering intern has been to help solve these challenges, by designing and assembling experimental devices. My first project was to design a heated sample holder, which will be used to investigate the effect of temperature on a sample's x-ray diffraction pattern. My second project was to help set up an imaging test, which involved designing a cooled grating holder and assembling multiple positioning stages. My third project was designing a 3D-printed pencil holder for the SSRL workstations.

  8. Engineering design for geothermal commerical and industrial direct heat applications in Salida, Colorado

    SciTech Connect (OSTI)

    Zocholl, J.R.; Meyer, R.T.

    1981-10-01

    The Salida Geothermal Prospect (Poncha Hot Springs) is being evaluated for commercial and industrial direct heat applications in Salida, Colorado, located approximately five miles east. The prospective energy use includes domestic space heating and hot water, commercial space heating and hot water for motels, restaurants, greenhouses, and swimming pools, and industrial space and process heat requirements for existing and future facilities. The objective of the engineering design is to use the full flow capacity of the resource and to provide for the future development of the commercial and industrial sectors of Salida. The engineering evaluation has included significant design features, including cascaded uses of the hot water, conversion of chicken waste, warm water fish hatching, pipeline crossing of a river, and geothermal fluid cooling and discharge to the Arkansas River. Engineering feasibility of the geothermal well supply and of selected user facility retrofits has been demonstrated.

  9. Complex Adaptive Systems of Systems (CASoS) engineering and foundations for global design.

    SciTech Connect (OSTI)

    Brodsky, Nancy S.; Finley, Patrick D.; Beyeler, Walter Eugene; Brown, Theresa Jean; Linebarger, John Michael; Moore, Thomas W.; Glass, Robert John, Jr.; Maffitt, S. Louise; Mitchell, Michael David; Ames, Arlo Leroy

    2012-01-01

    Complex Adaptive Systems of Systems, or CASoS, are vastly complex ecological, sociological, economic and/or technical systems which must be recognized and reckoned with to design a secure future for the nation and the world. Design within CASoS requires the fostering of a new discipline, CASoS Engineering, and the building of capability to support it. Towards this primary objective, we created the Phoenix Pilot as a crucible from which systemization of the new discipline could emerge. Using a wide range of applications, Phoenix has begun building both theoretical foundations and capability for: the integration of Applications to continuously build common understanding and capability; a Framework for defining problems, designing and testing solutions, and actualizing these solutions within the CASoS of interest; and an engineering Environment required for 'the doing' of CASoS Engineering. In a secondary objective, we applied CASoS Engineering principles to begin to build a foundation for design in context of Global CASoS

  10. Design and Testing of a Liquid Nitrous Oxide and Ethanol Fueled Rocket Engine

    SciTech Connect (OSTI)

    Youngblood, Stewart

    2015-08-01

    A small-scale, bi-propellant, liquid fueled rocket engine and supporting test infrastructure were designed and constructed at the Energetic Materials Research and Testing Center (EMRTC). This facility was used to evaluate liquid nitrous oxide and ethanol as potential rocket propellants. Thrust and pressure measurements along with high-speed digital imaging of the rocket exhaust plume were made. This experimental data was used for validation of a computational model developed of the rocket engine tested. The developed computational model was utilized to analyze rocket engine performance across a range of operating pressures, fuel-oxidizer mixture ratios, and outlet nozzle configurations. A comparative study of the modeling of a liquid rocket engine was performed using NASA CEA and Cantera, an opensource equilibrium code capable of being interfaced with MATLAB. One goal of this modeling was to demonstrate the ability of Cantera to accurately model the basic chemical equilibrium, thermodynamics, and transport properties for varied fuel and oxidizer operating conditions. Once validated for basic equilibrium, an expanded MATLAB code, referencing Cantera, was advanced beyond CEAs capabilities to predict rocket engine performance as a function of supplied propellant flow rate and rocket engine nozzle dimensions. Cantera was found to comparable favorably to CEA for making equilibrium calculations, supporting its use as an alternative to CEA. The developed rocket engine performs as predicted, demonstrating the developedMATLAB rocket engine model was successful in predicting real world rocket engine performance. Finally, nitrous oxide and ethanol were shown to perform well as rocket propellants, with specific impulses experimentally recorded in the range of 250 to 260 seconds.

  11. Preliminary Neutronics Design Studies for a Molten Salt Blanket LIFE Engine

    SciTech Connect (OSTI)

    Powers, J

    2008-10-23

    The Laser Inertial Confinement Fusion Fission Energy (LIFE) Program being developed at Lawrence Livermore National Laboratory (LLNL) aims to design a hybrid fission-fusion subcritical nuclear engine that uses a laser-driven Inertial Confinement Fusion (ICF) system to drive a subcritical fission blanket. This combined fusion-fission hybrid system could be used for generating electricity, material transmutation or incineration, or other applications. LIFE does not require enriched fuel since it is a sub-critical system and LIFE can sustain power operation beyond the burnup levels at which typical fission reactors need to be refueled. In light of these factors, numerous options have been suggested and are being investigated. Options being investigated include fueling LIFE engines with spent nuclear fuel to aid in disposal/incineration of commercial spent nuclear fuel or using depleted uranium or thorium fueled options to enhance proliferation resistance and utilize non-fissile materials [1]. LIFE engine blanket designs using a molten salt fuel system represent one area of investigation. Possible applications of a LIFE engine with a molten salt blanket include uses as a spent nuclear fuel burner, fissile fuel breeding platform, and providing a backup alternative to other LIFE engine blanket designs using TRISO fuel particles in case the TRISO particles are found to be unable to withstand the irradiation they will be subjected to. These molten salts consist of a mixture of LiF with UF{sub 4} or ThF{sub 4} or some combination thereof. Future systems could look at using PuF{sub 3} or PuF{sub 4} as well, though no work on such system with initial plutonium loadings has been performed for studies documented in this report. The purpose of this report is to document preliminary neutronics design studies performed to support the development of a molten salt blanket LIFE engine option, as part of the LIFE Program being performed at Lawrence Livermore National laboratory

  12. A magnetically coupled Stirling engine driven heat pump: Design optimization and operating cost analysis

    SciTech Connect (OSTI)

    Vincent, R.J.; Waldron, W.D.

    1990-01-01

    A preliminary design for a 2nd generation, gas-fired free-piston Stirling engine driven heat pump has been developed which incorporates a linear magnetic coupling to drive the refrigerant compressor piston. The Mark 2 machine is intended for the residential heat pump market and has 3 Ton cooling capacity. The new heat pump is an evolutionary design based on the Mark 1 free-piston machine which was successfully developed and independently tested by a major heat pump/air conditioning manufacturer. This paper briefly describes test results that were obtained with the Mark 1 machine and then presents the design and operating cost analysis for the Mark 2 heat pump. Operating costs by month are given for both Chicago and Atlanta. A summary of the manufacturing cost estimates obtained from Pioneer Engineering and Manufacturing Company (PEM) are also given. 9 figs., 3 tabs.

  13. Design of a 1 kW class gamma type Stirling engine

    SciTech Connect (OSTI)

    Raggi, L.; Katsuta, Masafumi; Sekiya, Hiroshi

    1997-12-31

    The study for a design on a kinematic drive gamma type Stirling engine is reported. This unit enters in the 1kW class and it is conceived to move a portable electric generator. The peculiarity of this unit is basically to use components taken from the line production, and also for the parts designed specifically for this application all the efforts are directed to simplicity in terms of material and manufacture. At first the engine performance targets are defined in compatibility with the components taken from a large scale production compressor and then the new components like the heat exchangers and the crank mechanism are designed. Two pre-tests are effected: one to define the performances of the induction motor in the electric regenerative mode and another running the machine as a refrigerator.

  14. Accelerating Design of Batteries Using Computer-Aided Engineering Tools (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Kim, G. H.; Smith, K.

    2010-11-01

    Computer-aided engineering (CAE) is a proven pathway, especially in the automotive industry, to improve performance by resolving the relevant physics in complex systems, shortening the product development design cycle, thus reducing cost, and providing an efficient way to evaluate parameters for robust designs. Academic models include the relevant physics details, but neglect engineering complexities. Industry models include the relevant macroscopic geometry and system conditions, but simplify the fundamental physics too much. Most of the CAE battery tools for in-house use are custom model codes and require expert users. There is a need to make these battery modeling and design tools more accessible to end users such as battery developers, pack integrators, and vehicle makers. Developing integrated and physics-based CAE battery tools can reduce the design, build, test, break, re-design, re-build, and re-test cycle and help lower costs. NREL has been involved in developing various models to predict the thermal and electrochemical performance of large-format cells and has used in commercial three-dimensional finite-element analysis and computational fluid dynamics to study battery pack thermal issues. These NREL cell and pack design tools can be integrated to help support the automotive industry and to accelerate battery design.

  15. Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Engineering National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Engineering New type of laser to help defeat threats to U.S. Navy. Los Alamos National Laboratory successfully tested a new high-current electron injector, a device that can be scaled up to produce the electrons needed to build a higher-power free-electron laser

  16. engineering

    National Nuclear Security Administration (NNSA)

    an award last month for his 3D printing innovation. It could revolutionize additive manufacturing.

    Lawrence Livermore Lab engineer Bryan Moran wasn't necessarily...

  17. Cyber-Informed Engineering: The Need for a New Risk Informed and Design Methodology

    SciTech Connect (OSTI)

    Price, Joseph Daniel; Anderson, Robert Stephen

    2015-06-01

    Current engineering and risk management methodologies do not contain the foundational assumptions required to address the intelligent adversary’s capabilities in malevolent cyber attacks. Current methodologies focus on equipment failures or human error as initiating events for a hazard, while cyber attacks use the functionality of a trusted system to perform operations outside of the intended design and without the operator’s knowledge. These threats can by-pass or manipulate traditionally engineered safety barriers and present false information, invalidating the fundamental basis of a safety analysis. Cyber threats must be fundamentally analyzed from a completely new perspective where neither equipment nor human operation can be fully trusted. A new risk analysis and design methodology needs to be developed to address this rapidly evolving threatscape.

  18. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELIMINARY DESIGN HAZARD ANALYSIS SUPPLEMENT 1

    SciTech Connect (OSTI)

    FRANZ GR; MEICHLE RH

    2011-07-18

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  19. PPPL engineers design and build state-of-the-art controller for AC to DC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    converter that manages plasma in upgraded fusion machine | Princeton Plasma Physics Lab engineers design and build state-of-the-art controller for AC to DC converter that manages plasma in upgraded fusion machine By Raphael Rosen March 7, 2016 Tweet Widget Google Plus One Share on Facebook PPPL scientists Robert Mozulay and Weiguo Que (Photo by Hans Schneider) PPPL scientists Robert Mozulay and Weiguo Que Gallery: A digital firing generator installed in NSTX-U (Photo by Hans Schneider) A

  20. PPPL engineers design and build state-of-the-art controller for AC to DC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    converter that manages plasma in upgraded fusion machine | Princeton Plasma Physics Lab engineers design and build state-of-the-art controller for AC to DC converter that manages plasma in upgraded fusion machine By Raphael Rosen March 7, 2016 Tweet Widget Google Plus One Share on Facebook PPPL scientists Robert Mozulay and Weiguo Que (Photo by Hans Schneider) PPPL scientists Robert Mozulay and Weiguo Que Gallery: One of the digital firing generators installed in NSTX-U (Photo by Hans

  1. Knowledge representation and the application of case-based reasoning in engineering design

    SciTech Connect (OSTI)

    Bhangal, J.S.; Esat, I.

    1996-12-31

    This paper is an assessment of the requirements in the application of Case-based Reasoning to Engineering Design. The methods in which a CBR system will assist a designer when he/she is presented with a problem specification and the various methods which need to be understood before attempting to build an such expert system are discussed here. The problem is two fold, firstly the methods of utilizing CBR are varied and secondly the method of representing the knowledge in design also needs to be established. How a design represented basically differs for each application and this is a decision which needs to be made when setting up the case memory but the methods used are discussed here. CBR itself can also be utilized in various ways and it has been seen from previous applications that a hybrid approach can produce the best results.

  2. Proceedings of the international workshop on engineering design of next step reversed field pinch devices

    SciTech Connect (OSTI)

    Thomson, D.B.

    1987-11-01

    These Proceedings contain the formal contributed papers, the workshop papers and workshop summaries presented at the International Workshop on Engineering Design of Next Step RFP Devices held at Los Alamos, July 13-17, 1987. Contributed papers were presented at formal sessions on the topics: (1) physics overview (3 papers); (2) general overview (3 papers); (3) front-end (9 papers); (4) computer control and data acquisition (1 paper); (5) magnetics (5 papers); and (6) electrical design (9 papers). Informal topical workshop sessions were held on the topics: (1) RFP physics (9 papers); (2) front-end (7 papers); (3) magnetics (3 papers); and (4) electrical design (1 paper). This volume contains the summaries written by the Chairmen of each of the informal topical workshop sessions. The papers in these Proceedings represent a significant review of the status of the technical base for the engineering design of the next step RFP devices being developed in the US, Europe, and Japan, as of this date.

  3. Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 2, Design data

    SciTech Connect (OSTI)

    Konynenburg, R.A.; McCright, R.D.; Roy, A.K.; Jones, D.A.

    1995-08-01

    This is Volume 2 of the Engineered Materials Characterization Report which presents the design data for candidate materials needed in fabricating different components for both large and medium multi-purpose canister (MPC) disposal containers, waste packages for containing uncanistered spent fuel (UCF), and defense high-level waste (HLW) glass disposal containers. The UCF waste package consists of a disposal container with a basket therein. It is assumed that the waste packages will incorporate all-metallic multibarrier disposal containers to accommodate medium and large MPCs, ULCF, and HLW glass canisters. Unless otherwise specified, the disposal container designs incorporate an outer corrosion-allowance metal barrier over an inner corrosion-resistant metal barrier. The corrosion-allowance barrier, which will be thicker than the inner corrosion-resistant barrier, is designed to undergo corrosion-induced degradation at a very low rate, thus providing the inner barrier protection from the near-field environment for a prolonged service period.

  4. Integrated Chamber Design for the Laser Inertial Fusion Energy (LIFE) Engine

    SciTech Connect (OSTI)

    Latkowski, J F; Kramer, K J; Abbott, R P; Morris, K R; DeMuth, J; Divol, L; El-Dasher, B; Lafuente, A; Loosmore, G; Reyes, S; Moses, G A; Fratoni, M; Flowers, D; Aceves, S; Rhodes, M; Kane, J; Scott, H; Kramer, R; Pantano, C; Scullard, C; Sawicki, R; Wilks, S; Mehl, M

    2010-12-07

    The Laser Inertial Fusion Energy (LIFE) concept is being designed to operate as either a pure fusion or hybrid fusion-fission system. A key component of a LIFE engine is the fusion chamber subsystem. The present work details the chamber design for the pure fusion option. The fusion chamber consists of the first wall and blanket. This integrated system must absorb the fusion energy, produce fusion fuel to replace that burned in previous targets, and enable both target and laser beam transport to the ignition point. The chamber system also must mitigate target emissions, including ions, x-rays and neutrons and reset itself to enable operation at 10-15 Hz. Finally, the chamber must offer a high level of availability, which implies both a reasonable lifetime and the ability to rapidly replace damaged components. An integrated LIFE design that meets all of these requirements is described herein.

  5. ENGINEERING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENGINEERING the Future of ENERGY Regional University Alliance National Energy Technology Laboratory Office of Research and Development The Future of Energy The time to redraw America's energy blueprint is now. The challenges we face today are the most critical in decades-from the impact of energy use on global ecosystems to the difficulties of efficiently harnessing our natural resources. Because energy is fundamental to human welfare, we must develop sustainable systems that make clean,

  6. Materials technology assessment for a 1050 K Stirling Space Engine design

    SciTech Connect (OSTI)

    Scheuermann, C.M.; Dreshfield, R.L.; Gaydosh, D.J.; Kiser, J.D.; MacKay, R.A.; McDanels, D.L.; Petrasek, D.W.; Vannucci, R.D.; Bowles, K.J.; Watson, G.K.

    1988-10-01

    An assessment of materials technology and proposed materials selection was made for the 1050 K (superalloy) Stirling Space Engine design. The objectives of this assessment were to evaluate previously proposed materials selections, evaluate the current state-of-the-art materials, propose potential alternate materials selections and identify research and development efforts needed to provide materials that can meet the stringent system requirements. This assessment generally reaffirmed the choices made by the contractor; however, in many cases alternative choices were described and suggestions for needed materials and fabrication research and development were made.

  7. Design, fabrication, and testing of a sodium evaporator for the STM4-120 kinematic Stirling engine

    SciTech Connect (OSTI)

    Rawlinson, K.S.; Adkins, D.R.

    1995-05-01

    This report describes the development and testing of a compact heat-pipe heat exchanger kW(e) designed to transfer thermal energy from hot combustion gases to the heater tubes of a 25-kW(e) Stirling engine. In this system, sodium evaporates from a surface that is heated by a stream of hot gases. The liquid metal then condenses on the heater tubes of a Stirling engine, where energy is transferred to the engine`s helium working fluid. Tests on a prototype unit illustrated that a compact (8 cm {times} 13 cm {times} 16 cm) sodium evaporator can routinely transfer 15 kW(t) of energy at an operating vapor temperature of 760 C. Four of these prototype units were eventually used to power a 25-kW(e) Stirling engine system. Design details and test results from the prototype unit are presented in this report.

  8. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 4. Saudi Engineering Solar Energy Applications System Design Study

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Literature summarizing a study on the Saudi Arabian solar controlled environment agriculture system is presented. Specifications and performance requirements for the system components are revealed. Detailed performance and cost analyses are used to determine the optimum design. A preliminary design of an engineering field test is included. Some weather data are provided for Riyadh, Saudi Arabia. (BCS)

  9. Design and emissions of small two- and four-stroke engines

    SciTech Connect (OSTI)

    1995-12-31

    Contents of this informative publication include: Emissions analysis of small utility engines; Emissions and combustion characteristics from two fuel mixture preparation schemes in a utility engine; The viability of catalyzing a carburetted 50cc two-stroke cycle engine for moped applications; Coefficients of discharge at the apertures of engines; A two-stroke engine model based on advanced simulation of fundamental processes; Analysis of a novel two-stroke engine scavenging arrangement: The neutron engine; and The effects of a heated catalyst on the unsteady gas dynamic process.

  10. Geotechnical, Hydrogeologic and Vegetation Data Package for 200-UW-1 Waste Site Engineered Surface Barrier Design

    SciTech Connect (OSTI)

    Ward, Andy L.

    2007-11-26

    Fluor Hanford (FH) is designing and assessing the performance of engineered barriers for final closure of 200-UW-1 waste sites. Engineered barriers must minimize the intrusion and water, plants and animals into the underlying waste to provide protection for human health and the environment. The Pacific Northwest National Laboratory (PNNL) developed Subsurface Transport Over Multiple Phases (STOMP) simulator is being used to optimize the performance of candidate barriers. Simulating barrier performance involves computation of mass and energy transfer within a soil-atmosphere-vegetation continuum and requires a variety of input parameters, some of which are more readily available than others. Required input includes parameter values for the geotechnical, physical, hydraulic, and thermal properties of the materials comprising the barrier and the structural fill on which it will be constructed as well as parameters to allow simulation of plant effects. This report provides a data package of the required parameters as well as the technical basis, rationale and methodology used to obtain the parameter values.

  11. The Engineering Design of the 1.5 m Diameter Solenoid for the MICERFCC Modules

    SciTech Connect (OSTI)

    Wang, L.; Green, M.A.; Xu, F.Y.; Wu, H.; Li, L.K.; Gou, C.S.; Liu, C.S.; Han, G.; Jia, L.X.; Li, D.; Prestemon, S.O.; Virostek, S.P.

    2007-08-27

    The RF coupling coil (RFCC) module of MICE is where muonsthat have been cooled within the MICE absorber focus (AFC) modules arere-accelerated to their original longitudinal momentum. The RFCC moduleconsists of four 201.25 MHz RF cavities in a 1.4 meter diameter vacuumvessel. The muons are kept within the RF cavities by the magnetic fieldgenerated by a superconducting coupling solenoid that goes around the RFcavities. The coupling solenoid will be cooled using a pair of 4 K pulsetube cooler that will generate 1.5 W of cooling at 4.2 K. The magnet willbe powered using a 300 A two-quadrant power supply. This report describesthe ICST engineering design of the coupling solenoid forMICE.

  12. Performance mapping of the STM4-120 kinematic Stirling engine using a statistical design of experiments method

    SciTech Connect (OSTI)

    Powell, M.A.; Rawlinson, K.S.

    1992-12-31

    A kinetic Stirling cycle engine, the Stirling Thermal Motors (STM) STM4-120, was tested at the Sandia National Laboratories Engine Test Facility (ETF) from March 1989--August 1992. Sandia is interested in determining this engine`s potential for solar-thermal-electric applications. The last round of testing was conducted from July--August 1992 using Sandia-designed gas-fired heat pipe evaporators as the heat input system to the engine. The STM4-120 was performance mapped over a range of sodium vapor temperatures, cooling water temperatures, and cycle pressures. The resulting shaft power output levels ranged from 5--9 kW. The engine demonstrated high conversion efficiency (24--31%) even though the power output level was less than 40% of the rated output of 25 kW. The engine had been previously derated from 25 kW to 10 kW shaft power due to mechanical limitations that were identified by STM during parallel testing at their facility in Ann Arbor, MI. A statistical method was used to design the experiment, to choose the experimental points, and to generate correlation equations describing the engine performance given the operating parameters. The testing was trunacted due to a failure of the heat pipe system caused by entrainment of liquid sodium in the condenser section of the heat pipes. Enough data was gathered to generate the correlations and to demonstrate the experimental technique. The correlation is accurate in the experimental space and is simple enough for use in hand calculations and spreadsheet-based system models. Use of this method can simplify the construction of accurate performance and economic models of systems in which the engine is a component. The purpose of this paper is to present the method used to design the experiments and to analyze the performance data.

  13. SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELMINARY DESIGN HAZARD AND OPERABILITY STUDY

    SciTech Connect (OSTI)

    CARRO CA

    2011-07-15

    This Hazard and Operability (HAZOP) study addresses the Sludge Treatment Project (STP) Engineered Container Retrieval and Transfer System (ECRTS) preliminary design for retrieving sludge from underwater engineered containers located in the 105-K West (KW) Basin, transferring the sludge as a sludge-water slurry (hereafter referred to as 'slurry') to a Sludge Transport and Storage Container (STSC) located in a Modified KW Basin Annex, and preparing the STSC for transport to T Plant using the Sludge Transport System (STS). There are six, underwater engineered containers located in the KW Basin that, at the time of sludge retrieval, will contain an estimated volume of 5.2 m{sup 3} of KW Basin floor and pit sludge, 18.4 m{sup 3} of 105-K East (KE) Basin floor, pit, and canister sludge, and 3.5 m{sup 3} of settler tank sludge. The KE and KW Basin sludge consists of fuel corrosion products (including metallic uranium, and fission and activation products), small fuel fragments, iron and aluminum oxide, sand, dirt, operational debris, and biological debris. The settler tank sludge consists of sludge generated by the washing of KE and KW Basin fuel in the Primary Clean Machine. A detailed description of the origin of sludge and its chemical and physical characteristics can be found in HNF-41051, Preliminary STP Container and Settler Sludge Process System Description and Material Balance. In summary, the ECRTS retrieves sludge from the engineered containers and hydraulically transfers it as a slurry into an STSC positioned within a trailer-mounted STS cask located in a Modified KW Basin Annex. The slurry is allowed to settle within the STSC to concentrate the solids and clarify the supernate. After a prescribed settling period the supernate is decanted. The decanted supernate is filtered through a sand filter and returned to the basin. Subsequent batches of slurry are added to the STSC, settled, and excess supernate removed until the prescribed quantity of sludge is collected

  14. LWRS Fuels Pathway: Engineering Design and Fuels Pathway Initial Testing of the Hot Water Corrosion System

    SciTech Connect (OSTI)

    Dr. John Garnier; Dr. Kevin McHugh

    2012-09-01

    The Advanced LWR Nuclear Fuel Development R&D pathway performs strategic research focused on cladding designs leading to improved reactor core economics and safety margins. The research performed is to demonstrate the nuclear fuel technology advancements while satisfying safety and regulatory limits. These goals are met through rigorous testing and analysis. The nuclear fuel technology developed will assist in moving existing nuclear fuel technology to an improved level that would not be practical by industry acting independently. Strategic mission goals are to improve the scientific knowledge basis for understanding and predicting fundamental nuclear fuel and cladding performance in nuclear power plants, and to apply this information in the development of high-performance, high burn-up fuels. These will result in improved safety, cladding, integrity, and nuclear fuel cycle economics. To achieve these goals various methods for non-irradiated characterization testing of advanced cladding systems are needed. One such new test system is the Hot Water Corrosion System (HWCS) designed to develop new data for cladding performance assessment and material behavior under simulated off-normal reactor conditions. The HWCS is capable of exposing prototype rodlets to heated, high velocity water at elevated pressure for long periods of time (days, weeks, months). Water chemistry (dissolved oxygen, conductivity and pH) is continuously monitored. In addition, internal rodlet heaters inserted into cladding tubes are used to evaluate repeated thermal stressing and heat transfer characteristics of the prototype rodlets. In summary, the HWCS provides rapid ex-reactor evaluation of cladding designs in normal (flowing hot water) and off-normal (induced cladding stress), enabling engineering and manufacturing improvements to cladding designs before initiation of the more expensive and time consuming in-reactor irradiation testing.

  15. DESIGN, PERFORMANCE, AND SUSTAINABILITY OF ENGINEERED COVERS FOR URANIUM MILL TAILINGS

    SciTech Connect (OSTI)

    Waugh, W. Jody

    2004-04-21

    Final remedies at most uranium mill tailings sites include engineered covers designed to contain metals and radionuclides in the subsurface for hundreds of years. Early cover designs rely on compacted soil layers to limit water infiltration and release of radon, but some of these covers inadvertently created habitats for deep-rooted plants. Root intrusion and soil development increased the saturated hydraulic conductivity several orders of magnitude above design targets. These covers may require high levels of maintenance to sustain long-term performance. Relatively low precipitation, high potential evapotranspiration, and thick unsaturated soils favor long-term hydrologic isolation of buried waste at arid and semiarid sites. Later covers were designed to mimic this natural soil-water balance with the goal of sustaining performance with little or no maintenance. For example, the cover for the Monticello, Utah, Superfund site relies on a thick soil-sponge layer overlying a sand-and-gravel capillary barrier to store precipitation while plants are dormant and on native vegetation to dry the soil sponge during the growing season. Measurements of both off-site caisson lysimeters and a large 3-ha lysimeter built into the final cover show that drainage has been well below a U.S. Environmental Protection Agency target of less than 3.0 mm/yr. Our stewardship strategy combines monitoring precursors to failure, probabilistic riskbased modeling, and characterization of natural analogs to project performance of covers for a range of possible future environmental scenarios. Natural analogs are needed to understand how ecological processes will influence cover performance, processes that cannot be predicted with short-term monitoring and existing numerical models.

  16. Performance mapping of the STM4-120 kinematic Stirling engine using a statistical design of experiments method

    SciTech Connect (OSTI)

    Powell, M.A.; Rawlinson, K.S.

    1992-01-01

    A kinetic Stirling cycle engine, the Stirling Thermal Motors (STM) STM4-120, was tested at the Sandia National Laboratories Engine Test Facility (ETF) from March 1989--August 1992. Sandia is interested in determining this engine's potential for solar-thermal-electric applications. The last round of testing was conducted from July--August 1992 using Sandia-designed gas-fired heat pipe evaporators as the heat input system to the engine. The STM4-120 was performance mapped over a range of sodium vapor temperatures, cooling water temperatures, and cycle pressures. The resulting shaft power output levels ranged from 5--9 kW. The engine demonstrated high conversion efficiency (24--31%) even though the power output level was less than 40% of the rated output of 25 kW. The engine had been previously derated from 25 kW to 10 kW shaft power due to mechanical limitations that were identified by STM during parallel testing at their facility in Ann Arbor, MI. A statistical method was used to design the experiment, to choose the experimental points, and to generate correlation equations describing the engine performance given the operating parameters. The testing was trunacted due to a failure of the heat pipe system caused by entrainment of liquid sodium in the condenser section of the heat pipes. Enough data was gathered to generate the correlations and to demonstrate the experimental technique. The correlation is accurate in the experimental space and is simple enough for use in hand calculations and spreadsheet-based system models. Use of this method can simplify the construction of accurate performance and economic models of systems in which the engine is a component. The purpose of this paper is to present the method used to design the experiments and to analyze the performance data.

  17. Integrating engineering design improvements with exoelectrogen enrichmentprocess to increase power output from microbial fuel cells

    SciTech Connect (OSTI)

    Borole, Abhijeet P; Hamilton, Choo Yieng; Vishnivetskaya, Tatiana A; Leak, David; Andras, Calin; Morrell-Falvey, Jennifer L; Keller, Martin; Davison, Brian H

    2009-01-01

    Microbial fuel cells (MFC) hold promise as a green technology for bioenergy production. The challenge is to improve the engineering design while exploiting the ability of microbes to generate and transfer electrons directly to electrodes. A strategy using a combination of improved anode design and an enrichment processwas formulated to improve power densities. The designwas based on a flow-through anode with minimal dead volume and a high electrode surface area per unit volume. The strategy focused on promoting biofilm formation via a combination of forced flow through the anode, carbon limitation, and step-wise reduction of external resistance. The enrichment process resulted in development of exoelectrogenic biofilm communities dominated by Anaeromusa spp. This is the first report identifying organisms fromthe Veillonellaceae family in MFCs. The power density of the resulting MFC using a ferricyanide cathode reached 300Wm?3 net anode volume (3220mWm?2), which is about a third of what is estimated to be necessary for commercial consideration. The operational stability of the MFC using high specific surface area electrodes was demonstrated by operating the MFC for a period of over four months.

  18. Design and implementation of a multiaxial loading capability during heating on an engineering neutron diffractometer

    SciTech Connect (OSTI)

    Benafan, O.; Padula, S. A.; Skorpenske, H. D.; An, K.; Vaidyanathan, R.

    2014-10-01

    A gripping capability was designed, implemented, and tested for in situ neutron diffraction measurements during multiaxial loading and heating on the VULCAN engineering materials diffractometer at the spallation neutron source at Oak Ridge National Laboratory. The proposed capability allowed for the acquisition of neutron spectra during tension, compression, torsion, and/or complex loading paths at elevated temperatures. The design consisted of age-hardened, Inconel{sup } 718 grips with direct attachment to the existing MTS load frame having axial and torsional capacities of 100 kN and 400 Nm, respectively. Internal cooling passages were incorporated into the gripping system for fast cooling rates during high temperature experiments up to ~1000 K. The specimen mounting couplers combined a threaded and hexed end-connection for ease of sample installation/removal without introducing any unwanted loads. Instrumentation of this capability is documented in this work along with various performance parameters. The gripping system was utilized to investigate deformation in NiTi shape memory alloys under various loading/control modes (e.g., isothermal, isobaric, and cyclic), and preliminary results are presented. The measurements facilitated the quantification of the texture, internal strain, and phase fraction evolution in NiTi shape memory alloys under various loading/control modes.

  19. Electro fluido dynamic techniques to design instructive biomaterials for tissue engineering and drug delivery

    SciTech Connect (OSTI)

    Guarino, Vincenzo Altobelli, Rosaria; Cirillo, Valentina; Ambrosio, Luigi

    2015-12-17

    A large variety of processes and tools is continuously investigated to discover new solutions to design instructive materials with controlled chemical, physical and biological properties for tissue engineering and drug delivery. Among them, electro fluido dynamic techniques (EFDTs) are emerging as an interesting strategy, based on highly flexible and low-cost processes, to revisit old biomaterial’s manufacturing approach by utilizing electrostatic forces as the driving force for the fabrication of 3D architectures with controlled physical and chemical functionalities to guide in vitro and in vivo cell activities. By a rational selection of polymer solution properties and process conditions, EFDTs allow to produce fibres and/or particles at micro and/or nanometric size scale which may be variously assembled by tailored experimental setups, thus giving the chance to generate a plethora of different 3D devices able to incorporate biopolymers (i.e., proteins, polysaccharides) or active molecules (e.g., drugs) for different applications. Here, we focus on the optimization of basic EFDTs - namely electrospinning, electrospraying and electrodynamic atomization - to develop active platforms (i.e., monocomponent, protein and drug loaded scaffolds and µ-scaffolds) made of synthetic (PCL, PLGA) or natural (chitosan, alginate) polymers. In particular, we investigate how to set materials and process parameters to impart specific morphological, biochemical or physical cues to trigger all the fundamental cell–biomaterial and cell– cell cross-talking elicited during regenerative processes, in order to reproduce the complex microenvironment of native or pathological tissues.

  20. Engineering aspects of design and integration of ECE diagnostic in ITER

    SciTech Connect (OSTI)

    Udintsev, V. S.; Taylor, G.; Pandya, H. K.B.; Austin, M. E.; Casal, N.; Catalin, R.; Clough, M.; Cuquel, B.; Dapena, M.; Drevon, J. -M.; Feder, R.; Friconneau, J. P.; Giacomin, T.; Guirao, J.; Henderson, M. A.; Hughes, S.; Iglesias, S.; Johnson, D.; Kumar, Siddhart; Kumar, Vina; Levesy, B.; Loesser, D.; Messineo, M.; Penot, C.; Portalès, M.; Oosterbeek, J. W.; Sirinelli, A; Vacas, C.; Vayakis, G.; Walsh, M. J.; Kubo, S.

    2015-03-12

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnostics with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.

  1. Engineering aspects of design and integration of ECE diagnostic in ITER

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Udintsev, V. S.; Taylor, G.; Pandya, H. K.B.; Austin, M. E.; Casal, N.; Catalin, R.; Clough, M.; Cuquel, B.; Dapena, M.; Drevon, J. -M.; et al

    2015-03-12

    ITER ECE diagnostic [1] needs not only to meet measurement requirements, but also to withstand various loads, such as electromagnetic, mechanical, neutronic and thermal, and to be protected from stray ECH radiation at 170 GHz and other millimeter wave emission, like Collective Thomson scattering which is planned to operate at 60 GHz. Same or similar loads will be applied to other millimetre-wave diagnostics [2], located both in-vessel and in-port plugs. These loads must be taken into account throughout the design phases of the ECE and other microwave diagnostics to ensure their structural integrity and maintainability. The integration of microwave diagnosticsmore » with other ITER systems is another challenging activity which is currently ongoing through port integration and in-vessel integration work. Port Integration has to address the maintenance and the safety aspects of diagnostics, too. Engineering solutions which are being developed to support and to operate ITER ECE diagnostic, whilst complying with safety and maintenance requirements, are discussed in this paper.« less

  2. Design and development of Stirling Engines for stationary power generation applications in the 500 to 3000 hp range. Subtask 1A report: state-of-the-art conceptual design

    SciTech Connect (OSTI)

    1980-03-01

    The first portion of the Conceptual Design Study of Stirling Engines for Stationary Power Application in the 500 to 3000 hp range which was aimed at state-of-the-art stationary Stirling engines for a 1985 hardware demonstration is summarized. The main goals of this effort were to obtain reliable cost data for a stationary Stirling engine capable of meeting future needs for total energy/cogeneration sysems and to establish a pragmatic and conservative base design for a first generation hardware. Starting with an extensive screening effort, 4 engine types, i.e., V-type crank engine, radial engine, swashplate engine, and rhombic drive engine, and 3 heat transport systems, i.e., heat pipe, pressurized gas heat transport loop, and direct gas fired system, were selected. After a preliminary layout cycle, the rhombic drive engine was eliminated due to intolerable maintenance difficulties on the push rod seals. V, radial and swashplate engines were taken through a detailed design/layout cycle, to establish all important design features and reliable engine weights. After comparing engine layouts and analyzing qualitative and quantitative evaluation criteria, the V-crank engine was chosen as the candidate for a 1985 hardware demonstration.

  3. Advanced Reciprocating Engine Systems

    Broader source: Energy.gov [DOE]

    The Advanced Reciprocating Engine Systems (ARES) program is designed to promote separate but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the...

  4. Geochemical engineering design tools for uranium in situ recovery : the HYDROGEOCHEM codes.

    SciTech Connect (OSTI)

    Siegel, Malcolm Dean; Li, Ming-Hsu; Yeh, Gour-Tsyh

    2010-11-01

    Geochemical Engineering Design (GED) is based on applications of the principles and various computer models that describe the biogeochemistry and physics of removal of contaminants from water by adsorption, precipitation and filtration. It can be used to optimize or evaluate the efficiency of all phases of in situ recovery (ISR). The primary tools of GED are reactive transport models; this talk describes the potential application of the HYDROGEOCHEM family of codes to ISR. The codes can describe a complete suite of equilibrium or kinetic aqueous complexation, adsorption-desorption, precipitation-dissolution, redox, and acid-base reactions in variably saturated media with density-dependent fluid flow. Applications to ISR are illustrated with simulations of (1) the effectiveness of a reactive barrier to prevent off-site uranium migration and (2) evaluation of the effect of sorption hysteresis on natural attenuation. In the first example, it can be seen that the apparent effectiveness of the barrier depends on monitoring location and that it changes over time. This is due to changes in pH, saturation of sorption sites, as well as the geometry of the flow field. The second simulation shows how sorption hysteresis leads to observable attenuation of a uranium contamination plume. Different sorption mechanisms including fast (or reversible), slow, and irreversible sorption were simulated. The migration of the dissolved and total uranium plumes for the different cases are compared and the simulations show that when 50-100% of the sites have slow desorption rates, the center of mass of the dissolved uranium plume begins to move upstream. This would correspond to the case in which the plume boundaries begin to shrink as required for demonstration of natural attenuation.

  5. Advancement of Systems Designs and Key Engineering Technologies for Materials Based Hydrogen Storage

    SciTech Connect (OSTI)

    van Hassel, Bart A.

    2015-09-18

    UTRC lead the development of the Simulink Framework model that enables a comparison of different hydrogen storage systems on a common basis. The Simulink Framework model was disseminated on the www.HSECoE.org website that is hosted by NREL. UTRC contributed to a better understanding of the safety aspects of the proposed hydrogen storage systems. UTRC also participated in the Failure Mode and Effect Analysis of both the chemical- and the adsorbent-based hydrogen storage system during Phase 2 of the Hydrogen Storage Engineering Center of Excellence. UTRC designed a hydrogen storage system with a reversible metal hydride material in a compacted form for light-duty vehicles with a 5.6 kg H2 storage capacity, giving it a 300 miles range. It contains a heat exchanger that enables efficient cooling of the metal hydride material during hydrogen absorption in order to meet the 3.3 minute refueling time target. It has been shown through computation that the kinetics of hydrogen absorption of Ti-catalyzed NaAlH4 was ultimately limiting the rate of hydrogen absorption to 85% of the material capacity in 3.3 minutes. An inverse analysis was performed in order to determine the material property requirements in order for a metal hydride based hydrogen storage system to meet the DOE targets. Work on metal hydride storage systems was halted after the Phase 1 to Phase 2 review due to the lack of metal hydride materials with the required material properties. UTRC contributed to the design of a chemical hydrogen storage system by developing an adsorbent for removing the impurity ammonia from the hydrogen gas, by developing a system to meter the transport of Ammonia Borane (AB) powder to a thermolysis reactor, and by developing a gas-liquid-separator (GLS) for the separation of hydrogen gas from AB slurry in silicone oil. Stripping impurities from hydrogen gas is essential for a long life of the fuel cell system on board of a vehicle. Work on solid transport of AB was halted after the

  6. Stirling engines

    SciTech Connect (OSTI)

    Reader, G.T.; Hooper

    1983-01-01

    The Stirling engine was invented by a Scottish clergyman in 1816, but fell into disuse with the coming of the diesel engine. Advances in materials science and the energy crisis have made a hot air engine economically attractive. Explanations are full and understandable. Includes coverage of the underlying thermodynamics and an interesting historical section. Topics include: Introduction to Stirling engine technology, Theoretical concepts--practical realities, Analysis, simulation and design, Practical aspects, Some alternative energy sources, Present research and development, Stirling engine literature.

  7. Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines

    Broader source: Energy.gov [DOE]

    Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  8. Engineered Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Engineered Materials Materials design, fabrication, assembly, and characterization for national security needs. Contact Us Group Leader (Acting) Kimberly Obrey Email Deputy Group Leader Dominic Peterson Email Group Office (505)-667-6887 We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly, characterization, and field support. We perform polymer science and engineering, including ultra-precision target design, fabrication, assembly,

  9. Conceptual Engine System Design for NERVA derived 66.7KN and 111.2KN Thrust Nuclear Thermal Rockets

    SciTech Connect (OSTI)

    Fittje, James E.; Buehrle, Robert J.

    2006-01-20

    The Nuclear Thermal Rocket concept is being evaluated as an advanced propulsion concept for missions to the moon and Mars. A tremendous effort was undertaken during the 1960's and 1970's to develop and test NERVA derived Nuclear Thermal Rockets in the 111.2 KN to 1112 KN pound thrust class. NASA GRC is leveraging this past NTR investment in their vehicle concepts and mission analysis studies, and has been evaluating NERVA derived engines in the 66.7 KN to the 111.2 KN thrust range. The liquid hydrogen propellant feed system, including the turbopumps, is an essential component of the overall operation of this system. The NASA GRC team is evaluating numerous propellant feed system designs with both single and twin turbopumps. The Nuclear Engine System Simulation code is being exercised to analyze thermodynamic cycle points for these selected concepts. This paper will present propellant feed system concepts and the corresponding thermodynamic cycle points for 66.7 KN and 111.2 KN thrust NTR engine systems. A pump out condition for a twin turbopump concept will also be evaluated, and the NESS code will be assessed against the Small Nuclear Rocket Engine preliminary thermodynamic data.

  10. Design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range. Volume 2. Program plan

    SciTech Connect (OSTI)

    Not Available,

    1980-09-15

    A plan for implementing the proposed state-of-the-art design described in Volume I has been developed. The main objective of the project is to demonstrate a large coal-fired Stirling engine and thus shorten the lead time to commercialization. The demonstration engine will be based on the concepts developed in the first phase of this program, as detailed in Volume I of this report. Thus the proposed program plan is based on the U-4 engine concept fired by a fluidized bed combustor with a two-stage gravity-assisted heat pipe. The plan is divided into five phases and an ongoing supporting technology program. Phase I, Conceptual Design, has been completed. The remaining phases are: Preliminary Design; Final Design; Fabrication; and Testing and Demonstration. The primary target is to begin testing the large coal-fired engine by the fifth year (1985) after the start of Preliminary Design.

  11. Managing Design and Construction Using Systems Engineering for Use with DOE O 413.3A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-23

    The goal of this Guide is to provide the Department of Energy's federal project directors (FPDs) with the knowledge, methodologies, and tools needed to meet Order 413.3A's requirement that they plan, implement and complete their assigned project(s) using a System Engineering approach.

  12. Managing Design and Construction Using Systems Engineering for Use with DO EO 413.3A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-23

    The goal of this Guide is to provide the Department of Energy's federal project directors (FPDs) with the knowledge, methodologies, and tools needed to meet Order 413.3A's requirement that they plan, implement and complete their assigned project(s) using a System Engineering approach.

  13. Managing Design and Construction Using Systems Engineering for Use with DOE O 413.3A

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2008-09-23

    This Guide provides the Department of Energy's federal project directors with the methodologies and tools needed to plan, implement and complete assigned projects using a Systems Engineering approach in accordance with the requirements of DOE O 413.3A, Program and Project Management for the Acquisition of Capital Assets, dated 7-28-06. No cancellations.

  14. Status report on an engineering design study of hermetic liquid argon calorimetry for the SSC (Superconducting Super Collider)

    SciTech Connect (OSTI)

    Adams, T.; Davis, M.; DiGiacomo, N.J.; Easom, B.; Gordon, H.; Hupp, J.; Killian, K.; Kroon, P.; Lajczok, M.; Marx, M. . Astronautics Group; Brookhaven National Lab., Upton, NY; Martin Marietta Aerospace, Denver, CO . Astronautics Group; Brookhaven National Lab., Upton, NY; Martin Marietta Aerospace, Denver, CO . Astronautics Group; State Un

    1989-01-01

    There is general recognition that engineering issues are critical to the viability of liquid argon calorimetry (LAC) at the Superconducting Super Collider (SSC). We have undertaken to quantitatively address these issues and, if possible, perform a preliminary design of a proof of principle'' LAC for SSC. To establish LAC as viable at SSC, we must demonstrate that the physics performance of the device is acceptable, despite the presence of dead material due to vessels and support structure. Our approach involves the construction, by a team of physicists and engineers, of one three dimensional model of the LAC system, built as a hierarchy of components and structures, from which we directly perform interferences checks, mechanical, thermal and magnetic analyses, particle tracking, hermeticity evaluation, physics simulation and assembly. This study, begun in February 1989 as part of the SSC generic detector R and D program, was immediately preceded by a workshop at which engineering details of existing and planned LAC systems were thoroughly examined. We describe below the status of our work, beginning with short descriptions of the tools used, the study requirements and LAC configuration baseline. We then detail the LAC design as it presently stands, including assembly considerations, and conclude with a quantitative assessment of the LAC hermeticity. 19 refs., 12 figs.

  15. Engineering at SLAC: Designing and Constructing Experimental Devices for SSRL - Oral Presentation

    SciTech Connect (OSTI)

    Djang, Austin

    2015-08-21

    This presentation describes the design and construction of three experimental devices for the Stanford Synchrotron Radiation Lightsource.

  16. Computer-aided engineering system for design of sequence arrays and lithographic masks

    DOE Patents [OSTI]

    Hubbell, Earl A.; Lipshutz, Robert J.; Morris, Macdonald S.; Winkler, James L.

    1997-01-01

    An improved set of computer tools for forming arrays. According to one aspect of the invention, a computer system is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files to design and/or generate lithographic masks.

  17. Design and development of Stirling engines for stationary-power-generation applications in the 500- to 3000-horsepower range. Phase I final report

    SciTech Connect (OSTI)

    1980-10-01

    A program plan and schedule for the implementation of the proposed conceptual designs through the remaining four phases of the overall large Stirling engine development program was prepared. The objective of Phase II is to prepare more detailed designs of the conceptual designs prepared in Phase I. At the conclusion of Phase II, a state-of-the-art design will be selected from the candidate designs developed in Phase I for development. The objective of Phase III is to prepare manufacturing drawings of the candidate engine design. Also, detailed manufacturing drawings of both 373 kW (500 hp) and 746 kW (1000 hp) power pack skid systems will be completed. The power pack skid systems will include the generator, supporting skid, controls, and other supporting auxiliary subsystems. The Stirling cycle engine system (combustion system, Stirling engine, and heat transport system) will be mounted in the power pack skid system. The objective of Phase IV is to procure parts for prototype engines and two power pack skid systems and to assemble Engines No. 1 and 2. The objective of Phase V is to perform extensive laboratory and demonstration testing of the Stirling engines and power pack skid systems, to determine the system performance and cost and commercialization strategy. Scheduled over a 6 yr period the cost of phases II through V is estimated at $22,063,000. (LCL)

  18. TECHNOLOGIES TO ENHANCE THE OPERATION OF EXISTING NATURAL GAS COMPRESSION INFRASTRUCTURE - MANIFOLD DESIGN FOR CONTROLLING ENGINE AIR BALANCE

    SciTech Connect (OSTI)

    Gary D. Bourn; Ford A. Phillips; Ralph E. Harris

    2005-12-01

    This document provides results and conclusions for Task 15.0--Detailed Analysis of Air Balance & Conceptual Design of Improved Air Manifolds in the ''Technologies to Enhance the Operation of Existing Natural Gas Compression Infrastructure'' project. SwRI{reg_sign} is conducting this project for DOE in conjunction with Pipeline Research Council International, Gas Machinery Research Council, El Paso Pipeline, Cooper Compression, and Southern Star, under DOE contract number DE-FC26-02NT41646. The objective of Task 15.0 was to investigate the perceived imbalance in airflow between power cylinders in two-stroke integral compressor engines and develop solutions via manifold redesign. The overall project objective is to develop and substantiate methods for operating integral engine/compressors in gas pipeline service, which reduce fuel consumption, increase capacity, and enhance mechanical integrity.

  19. FY 95 engineering work plan for the design reconstitution implementation action plan

    SciTech Connect (OSTI)

    Bigbee, J.D.

    1994-11-09

    Design reconstitution work is to be performed as part of an overall effort to upgrade Configuration Management (CM) at TWRS. WHC policy is to implement a program that is compliant with DOE-STD-1073-93, Guide for Operational Configuration Management Program. DOE-STD-1073 requires an adjunct program for reconstituting design information. WHC-SD-WM-CM-009, Design Reconstitution Program Plan for Waste Tank Farms and 242-A Evaporator of Tank Waste Remediation System, is the TWRS plan for meeting DOE-STD-1073 design reconstitution requirements. The design reconstitution plan is complex requiring significant time and effort for implementation. In order to control costs, and integrate the work into other TWRS activities, a Design Reconstitution Implementation Action Plan (DR IAP) will be developed, and approved by those organizations having ownership or functional interest in this activity.

  20. Preliminary engineering design package for the north boundary system improvements interim response action

    SciTech Connect (OSTI)

    1989-08-01

    This interim response action consists of the design and construction of improvements to the North Boundary Containment System. The purpose of this document is to outline the main elements developed in the preliminary design phase of the IRA. The following elements of the IRA are discussed: (1) recharge trenches; (2) well closure; (3) design flow rate; (4) existing ground water treatment process; (5) treatment system modifications; (6) additional carbon storage; (7) Building modifications; and (8) treatment plant operational improvements.

  1. Computer-aided engineering system for design of sequence arrays and lithographic masks

    DOE Patents [OSTI]

    Hubbell, Earl A.; Morris, MacDonald S.; Winkler, James L.

    1996-01-01

    An improved set of computer tools for forming arrays. According to one aspect of the invention, a computer system (100) is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files (104) to design and/or generate lithographic masks (110).

  2. Computer-aided engineering system for design of sequence arrays and lithographic masks

    DOE Patents [OSTI]

    Hubbell, E.A.; Morris, M.S.; Winkler, J.L.

    1996-11-05

    An improved set of computer tools for forming arrays is disclosed. According to one aspect of the invention, a computer system is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files to design and/or generate lithographic masks. 14 figs.

  3. Computer-aided engineering system for design of sequence arrays and lithographic masks

    DOE Patents [OSTI]

    Hubbell, E.A.; Lipshutz, R.J.; Morris, M.S.; Winkler, J.L.

    1997-01-14

    An improved set of computer tools for forming arrays is disclosed. According to one aspect of the invention, a computer system is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files to design and/or generate lithographic masks. 14 figs.

  4. Computer-aided engineering system for design of sequence arrays and lithographic masks

    DOE Patents [OSTI]

    Hubbell, Earl A.; Morris, MacDonald S.; Winkler, James L.

    1999-01-05

    An improved set of computer tools for forming arrays. According to one aspect of the invention, a computer system (100) is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files (104) to design and/or generate lithographic masks (110).

  5. Computer-aided engineering system for design of sequence arrays and lithographic masks

    DOE Patents [OSTI]

    Hubbell, E.A.; Morris, M.S.; Winkler, J.L.

    1999-01-05

    An improved set of computer tools for forming arrays is disclosed. According to one aspect of the invention, a computer system is used to select probes and design the layout of an array of DNA or other polymers with certain beneficial characteristics. According to another aspect of the invention, a computer system uses chip design files to design and/or generate lithographic masks. 14 figs.

  6. Optimization of heat exchanger design in a thermoacoustic engine using a second law analysis

    SciTech Connect (OSTI)

    Ishikawa, H.; Hobson, P.A.

    1996-05-01

    An analysis for the time averaged entropy generation due to both flow and heat transfer losses in the heat exchangers of a thermoacoustic engine has been developed. An expression for the optimum dimensionless heat exchanger area corresponding to minimum entropy generation has been determined in terms of three other dimensionless parameters. Optimum heat exchanger areas were calculated for three thermoacoustic devices. For the prime mover components of the thermoacoustic devices investigated where the temperature differences across the regenerator stacks were high, the analysis developed indicated that the heat exchanger at the hot end of the regenerator stack should be smaller than that at the cold end.

  7. Detailed design, fabrication and testing of an engineering prototype compensated pulsed alternator. Final report

    SciTech Connect (OSTI)

    Bird, W.L. Jr.; Woodson, H.H.

    1980-03-01

    The design, fabrication, and test results of a prototype compensated pulsed alternator are discussed. The prototype compulsator is a vertical shaft single phase alternator with a rotating armature and salient pole stator. The machine is designed for low rep rate pulsed duty and is sized to drive a modified 10 cm Beta amplifier. The load consists of sixteen 15 mm x 20 mm x 112 cm long xenon flashlamps connected in parallel. The prototype compulsator generates an open circuit voltage of 6 kV, 180 Hz, at a maximum design speed of 5400 rpm. At maximum speed, the inertial energy stored in the compulsator rotor is 3.4 megajoules.

  8. Statement of work for sytem design and engineering of the spent nuclear fuel multi-cansiter overpack

    SciTech Connect (OSTI)

    Smith, K.E., Fluor Daniel Hanford

    1997-03-03

    This Statement of Work (SOW) describes the work scope for the preparation of the Phase 2 (final) design for the Multiple Canister Overpack (MCO) equipment. The MCO is to be used as the radiological containment device for the Spent Nuclear Fuel (SNF) assemblies, currently in wet storage in K East and West Basins, to be transported and stored in the Canister Storage Building (CSB) until final disposal facilities are made available. The engineering services contractor will be requested to provide reports, studies, analyses, engineering, drawings, specifications, estimates and schedules. The overall goal of this task order is to do the following: 1. Prepare a fabrication specification, ASME Code exception report, a packaging, shipping and warehouse plan, and detailed fabrication drawings of the MCO in accordance with the MCO Performance Specification (HNF-S-0426, Rev. 3) for procurement activities by the SNF MCO Subproject. 2. Establish and maintain a comment data base on the comments, resolutions, changes to the design of the MCO. 3. Support fabrication activities through the review of vendor fabrication drawings and shop test reports.

  9. SOLERAS - Solar Energy Water Desalination Project: Boeing Engineering and Construction. System design final report

    SciTech Connect (OSTI)

    Not Available

    1986-01-01

    The system design for a future commercial solar energy brackish water desalination plant is described. Key features of the plant are discussed along with its configuration selection rationale, design objectives, operation, and performance. The water treatment technology used in the plant is ion exchange pretreatment and single stage reverse osmosis desalination utilizing high-flux membranes. Electrical power needed for plant operation is produced by a solar energy system, which is based on the Brayton cycle having air as the working fluid. Primary solar system components are: heliostat field, central cavity-tube receiver, receiver support tower, thermal energy storage, and a commercial gas turbine generator set. The thermal energy storage subsystem is of the sensible heat brick type and provides a capability for continuous day/night power generation during most weather conditions. This system design was selected in a study of various system alternatives and their life cycle product water costs for a representative site in western Texas.

  10. Windmill design, development, construction, and performance. (Latest citations from Fluidex (Fluid Engineering Abstracts) database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    The bibliography contains citations concerning the design, development, construction, and performance of windmills and associated systems, subsystems, and components. Both aerodynamic and structural performance characteristics are discussed. Included are references to siting characteristics, power production and windmill efficiency, and specific system descriptions. (Contains 250 citations and includes a subject term index and title list.)

  11. Mechanical Engineer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineer Department: Engineering Supervisor(s): Bill Blanchard Staff: EM 3 Requisition Number: 1500 The Mechanical Design Engineer will develop, design, manufacture, and test ...

  12. Sensitivity Analysis of Wind Plant Performance to Key Turbine Design Parameters: A Systems Engineering Approach; Preprint

    SciTech Connect (OSTI)

    Dykes, K.; Ning, A.; King, R.; Graf, P.; Scott, G.; Veers, P.

    2014-02-01

    This paper introduces the development of a new software framework for research, design, and development of wind energy systems which is meant to 1) represent a full wind plant including all physical and nonphysical assets and associated costs up to the point of grid interconnection, 2) allow use of interchangeable models of varying fidelity for different aspects of the system, and 3) support system level multidisciplinary analyses and optimizations. This paper describes the design of the overall software capability and applies it to a global sensitivity analysis of wind turbine and plant performance and cost. The analysis was performed using three different model configurations involving different levels of fidelity, which illustrate how increasing fidelity can preserve important system interactions that build up to overall system performance and cost. Analyses were performed for a reference wind plant based on the National Renewable Energy Laboratory's 5-MW reference turbine at a mid-Atlantic offshore location within the United States.

  13. SRP engineering and design history, Vol III, 200 F and H Areas

    SciTech Connect (OSTI)

    Banick, C.J.

    2000-04-17

    This volume combines the record of events relating to the development of design for both the 200-F and H Areas. Chronologically, the definition of plant facilities was first established for the 200-F Area. The second area, 200-H, was projected initially to be a supplementary plutonium separations facility. This history explains the differences in character and capacity of the manufacturing facilities in both areas as production requirements and experience with separations processes advanced.

  14. Grouting for vertical geothermal heat pump systems: Engineering design and field procedures manual. Final report

    SciTech Connect (OSTI)

    1997-12-01

    Grouting of the vertical ground heat exchanger is important for environmental and heat transfer reasons, and is generally accomplished by the placement of a low permeability material into the annular space between the borehole wall and the pipes suspended in the borehole. Backfilling is the practice of placing drill cuttings or other materials into the annular volume, with no specific effort directed toward creating a hydraulic seal. State and local regulations dictate the need for grouting versus backfilling. This manual concentrates on the technical aspects of grouting, including the environmental issues related to grouting, the thermal characteristics of different grouting materials and how the design must account for those, and the practical aspects of grouting for the field technician. Formation conditions are presented where grouting is necessary to assure the quality of the potable water source, while other conditions are cited where only portions of the borehole need to be grouted. Thermal properties of several grouting materials, both bentonite-based and cement-based, are provided as input data to the calculation of borehole thermal resistance. A procedure is provided for the designer of a vertical ground heat exchanger to calculate borehole thermal resistance, and techniques are described to utilize those values in commonly used commercial design software packages. Several sets of field verification data are presented which indicate that the borehole thermal resistance design data are relevant and important in the performance of the vertical u-bend heat exchanger. Finally, procedures are described for the field technician for mixing equipment, pump, and tremie pipe selection. Methods to estimate the volume of grout required for a job are provided. Recommended field procedures for tremie installation and the grouting process are also provided.

  15. Thermo-mechanical and neutron lifetime modeling and design of Be pebbles in the neutron multiplier for the LIFE engine

    SciTech Connect (OSTI)

    DeMange, P; Marian, J; de Caro, M S; Caro, A

    2009-03-16

    Concept designs for the laser-initiated fusion/fission engine (LIFE) include a neutron multiplication blanket containing Be pebbles flowing in a molten salt coolant. These pebbles must be designed to withstand the extreme irradiation and temperature conditions in the blanket to enable a safe and cost-effective operation of LIFE. In this work, we develop design criteria for spherical Be pebbles on the basis of their thermomechanical behavior under continued neutron exposure. We consider the effects of high fluence/fast flux on the elastic, thermal and mechanical properties of nuclear-grade Be. Our results suggest a maximum pebble diameter of 30 mm to avoid tensile failure, coated with an anti-corrosive, high-strength metallic shell to avoid failure by pebble contact. Moreover, we find that the operation temperature must always be kept above 450 C to enable creep to relax the stresses induced by swelling, which we estimate to be at least 16 months if uncoated and up to six years when coated. We identify the sources of uncertainty on the properties used and discuss the advantages of new intermetallic beryllides and their use in LIFE's neutron multiplier. To establish Be-pebble lifetimes with improved confidence, reliable experiments to measure irradiation creep must be performed.

  16. Engineering Technician

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Civil Engineering Technician; Electrical Engineering Technician; Mechanical Engineering Technician; Environmental Engineering Technician

  17. Data Mining-Aided Crystal Engineering for the Design of Transparent Conducting Oxides: Preprint

    SciTech Connect (OSTI)

    Suh, C.; Kim, K.; Berry, J. J.; Lee, J.; Jones, W. B.

    2010-12-01

    The purpose of this paper is to accelerate the pace of material discovery processes by systematically visualizing the huge search space that conventionally needs to be explored. To this end, we demonstrate not only the use of empirical- or crystal chemistry-based physical intuition for decision-making, but also to utilize knowledge-based data mining methodologies in the context of finding p-type delafossite transparent conducting oxides (TCOs). We report on examples using high-dimensional visualizations such as radial visualization combined with machine learning algorithms such as k-nearest neighbor algorithm (k-NN) to better define and visualize the search space (i.e. structure maps) of functional materials design. The vital role of search space generated from these approaches is discussed in the context of crystal chemistry of delafossite crystal structure.

  18. Rocky Flats Plant fluidized-bed incinerator. Engineering design and reference manual

    SciTech Connect (OSTI)

    Meile, L.J.

    1982-11-05

    The information in this manual is being presented to complete the documentation of the fluidized-bed incineration (FBI) process development at the Rocky Flats Plant. The information pertains to the 82-kg/hour demonstration unit at the Rocky Flats Plant. This document continues the presentation of design reference material in the aeas of equipment drawings, space requirements, and unit costs. In addition, appendices contain an operating procedure and an operational safety analysis of the process. The cost figures presented are based on 1978 dollars and have not been converted to a current dollar value. Also, the cost of modifications are not included, since they would be insignificant if they were incorporated into a new installation.

  19. Design, implementation, and testing of a cryogenic loading capability on an engineering neutron diffractometer

    SciTech Connect (OSTI)

    Woodruff, T. R.; Krishnan, V. B.; Vaidyanathan, R.; Clausen, B.; Sisneros, T.; Livescu, V.; Brown, D. W.; Bourke, M. A. M.

    2010-06-15

    A novel capability was designed, implemented, and tested for in situ neutron diffraction measurements during loading at cryogenic temperatures on the spectrometer for materials research at temperature and stress at Los Alamos National Laboratory. This capability allowed for the application of dynamic compressive forces of up to 250 kN on standard samples controlled at temperatures between 300 and 90 K. The approach comprised of cooling thermally isolated compression platens that in turn conductively cooled the sample in an aluminum vacuum chamber which was nominally transparent to the incident and diffracted neutrons. The cooling/heat rate and final temperature were controlled by regulating the flow of liquid nitrogen in channels inside the platens that were connected through bellows to the mechanical actuator of the load frame and by heaters placed on the platens. Various performance parameters of this system are reported here. The system was used to investigate deformation in Ni-Ti-Fe shape memory alloys at cryogenic temperatures and preliminary results are presented.

  20. Human engineering design considerations for the use of signal color enhancement in ASW displays

    SciTech Connect (OSTI)

    Banks, W.W.

    1990-11-01

    The Lawrence Livermore National Laboratory (LLNL) was requested to examine and define man-machine limits as part of the Office of Naval Technology's High Gain Initiative program (HGI). As an initial investigative area, LLNL's Systems and Human Performance effort focused upon color display interfaces and the use of color enhancement techniques to define human and system interface limits in signal detection and discrimination tasks. The knowledgeable and prudent use of color in different types of display is believed to facilitate human visual detection, discrimination and recognition in complex visual tasks. The consideration and understanding of the complex set of interacting variables associated with the prudent use of color is essential to optimize human performance, especially in the ASW community. The designers of advanced display technology and signal processing algorithms may be eventually called upon to present pre-processed information to ASW operators and researchers using the latest color enhancement techniques. These techniques, however, may be limited if one does not understand the complexity and limits of human information processing which reflects the assessed state of knowledge relevant to the use of color in displays. The initial sections of this report discuss various aspects of color presentation and the problems typically encountered, while the last section deals with a specific research proposal required to further our understanding and proper use of color enhancement methods.

  1. Design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range. Volume 1. Technical report

    SciTech Connect (OSTI)

    Not Available,

    1980-09-15

    This project was Phase I of a multiphased program for the design and development of Stirling engines for stationary power generation applications in the 500 to 3000 horsepower range. Phase I comprised the conceptual design and associated cost estimates of a stationary Stirling engine capable of being fueled by a variety of heat sources, with emphasis on coal firing, followed by the preparation of a plan for implementing the design, fabrication and testing of a demonstration engine by 1985. The development and evaluation of conceptual designs have been separated into two broad categories: the A designs which represent the present state-of-the-art and which are demonstrable by 1985 with minimum technical risk; and the B designs which involve advanced technology and therefore would require significant research and development prior to demonstration and commercialization, but which may ultimately offer advantages in terms of lower cost, better performance, or higher reliability. The majority of the effort in Phase I was devoted to the A designs.

  2. E-Alerts: Combustion, engines, and propellants (reciprocation and rotating combustion engines). E-mail newsletter

    SciTech Connect (OSTI)

    1999-04-01

    Design, performance, and testing of reciprocating and rotating engines of various configurations for all types of propulsion. Includes internal and external combustion engines; engine exhaust systems; engine air systems components; engine structures; stirling and diesel engines.

  3. Midtemperature Solar Systems Test Facility predictions for thermal performance based on test data: Custom Engineering trough with glass reflector surface and Sandia-designed receivers

    SciTech Connect (OSTI)

    Harrison, T.D.

    1981-05-01

    Thermal performance predictions based on test data are presented for the Custom Engineering trough and Sandia-designed receivers, with glass reflector surface, for three output temperatures at five cities in the United States. Two experimental receivers were tested, one with an antireflective coating on the glass envelope around the receiver tube and one without the antireflective coating.

  4. PEM fuel cell stack performance using dilute hydrogen mixture. Implications on electrochemical engine system performance and design

    SciTech Connect (OSTI)

    Inbody, M.A.; Vanderborgh, N.E.; Hedstrom, J.C.; Tafoya, J.I.

    1996-12-31

    Onboard fuel processing to generate a hydrogen-rich fuel for PEM fuel cells is being considered as an alternative to stored hydrogen fuel for transportation applications. If successful, this approach, contrasted to operating with onboard hydrogen, utilizes the existing fuels infrastructure and provides required vehicle range. One attractive, commercial liquid fuels option is steam reforming of methanol. However, expanding the liquid methanol infrastructure will take both time and capital. Consequently technology is also being developed to utilize existing transportation fuels, such as gasoline or diesel, to power PEM fuel cell systems. Steam reforming of methanol generates a mixture with a dry gas composition of 75% hydrogen and 25% carbon dioxide. Steam reforming, autothermal reforming, and partial oxidation reforming of C{sub 2} and larger hydrocarbons produces a mixture with a more dilute hydrogen concentration (65%-40%) along with carbon dioxide ({approx}20%) and nitrogen ({approx}10%-40%). Performance of PEM fuel cell stacks on these dilute hydrogen mixtures will affect the overall electrochemical engine system design as well as the overall efficiency. The Los Alamos Fuel Cell Stack Test facility was used to access the performance of a PEM Fuel cell stack over the range of gas compositions chosen to replicate anode feeds from various fuel processing options for hydrocarbon and alcohol fuels. The focus of the experiments was on the anode performance with dilute hydrogen mixtures with carbon dioxide and nitrogen diluents. Performance with other anode feed contaminants, such as carbon monoxide, are not reported here.

  5. Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  6. Reliability Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LA-UR 15-27450 This document is approved for public release; further dissemination unlimited Reliability Engineering Reliability Engineering Current practice in reliability is often fragmented, does not cover the full system lifecycle * Reliability needs to be addressed in design, development, and operational life * Reliability analysis should integrate information from components and systems Integrate proven reliability methods with world-class statistical science * Use methods and tools

  7. BGA Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    search Name: BGA Engineering LLC Place: Glen Rock, New Jersey Zip: 7452 Sector: Solar Product: Engineering firm specialising in substation engineering and design, power plant...

  8. Career Map: Mechanical Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mechanical Engineer Career Map: Mechanical Engineer A mechanical engineer works with a large yellow robotic arm. Mechanical Engineer Position Title Mechanical Engineer Alternate Title(s) Project Engineer, Quality Engineer, Research Engineer, Design Engineer, Sales Engineer Education & Training Level Advanced, Bachelor's degree required, prefer graduate degree Education & Training Level Description Mechanical engineers need a bachelor's degree. A graduate degree is typically needed for

  9. Harmonic engine

    DOE Patents [OSTI]

    Bennett, Charles L.

    2009-10-20

    A high efficiency harmonic engine based on a resonantly reciprocating piston expander that extracts work from heat and pressurizes working fluid in a reciprocating piston compressor. The engine preferably includes harmonic oscillator valves capable of oscillating at a resonant frequency for controlling the flow of working fluid into and out of the expander, and also preferably includes a shunt line connecting an expansion chamber of the expander to a buffer chamber of the expander for minimizing pressure variations in the fluidic circuit of the engine. The engine is especially designed to operate with very high temperature input to the expander and very low temperature input to the compressor, to produce very high thermal conversion efficiency.

  10. SOLERAS - Solar Energy Water Desalination Project: Exxon Research and Engineering. System design final report, Volume 1. Design description seawater feed (System A)

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The design of a solar powered water desalination system is presented. Design data including insolation and climate of the Yanbu, Saudi Arabia site are included. Two solar desalination designs were developed including: (1) a conceptual baseline plant powered by a solar central receiver-heliostat field, and (2) a pilot plant that demonstrates and evaluates the design features of the baseline plant. The desalination process involves a hybrid reverse osmosis/multiple effect distillation process. The performance and economics of the design plants are analyzed. (BCS)

  11. Jefferson Lab Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Privacy and Security Notice Skip over navigation search JLab Engineering Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Engineering Division Engineering Pressure Systems Seminars/Training print version Mechanical Systems Mechanical Engineering - Document Control Survey Alignment Machine Shop Installation/Vacuum Cryogenics Cryogenics - Cryogenics Department

  12. Absorption chiller optimization and integration for cogeneration and engine-chiller systems. Phase 1 - design. Topical report, April 1985-July 1986

    SciTech Connect (OSTI)

    Kubasco, A.J.

    1986-07-01

    A market study indicates a significant market potential for small commercial cogeneration (50-500 kW) over the next 20 years. The potential exists for 1500 installations per year, 80% of those would be a system composed of Engine-Generator and Heat Recovery Unit with the remainder requiring the addition of an Absorption Chiller. A preliminary design for an advanced Heat Recovery Unit (HRU) was completed. The unit incorporates the capability of supplementary firing of the exhaust gas from the new generation of natural gas fired lean burn reciprocating engines being developed for cogeneration applications. This gives the Heat Recovery Unit greater flexibility in following the thermal load requirements of the building. An applications and design criteria analysis indicated that this was a significant feature for the HRU as it can replace a standard auxiliary boiler thus affording significant savings to the building owner. A design for an advanced absorption chiller was reached which is 15% lower in cost yet 9% more efficient than current off-the-shelf units. A packaged cogeneration system cost and design analysis indicates that a nominal 254 kW cogeneration system incorporating advanced components and packaging concepts can achieve a selling price of less than $880/kW and $700/kW with and without an absorption chiller.

  13. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 17. Plant section 2500 - Plant and Instrument Air

    SciTech Connect (OSTI)

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 17 which reports the design of Plant Section 2500 - Plant and Instrument Air. The plant and instrument air system is designed to provide dry, compressed air for a multitude of uses in plant operations and maintenance. A single centrifugal air compressor provides the total plant and instrument air requirements. An air drying system reduces the dew point of the plant and instrument air. Plant Section 2500 is designed to provide air at 100/sup 0/F and 100 psig. Both plant and instrument air are dried to a -40/sup 0/F dew point. Normal plant and instrument air requirements total 1430 standard cubic feet per minute.

  14. Shell responses to state of Colorado comments on preliminary engineering design package for the shell section 36 trenches IRA. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1990-12-19

    The Preliminary Engineering Package was to include: (1) An investigation and evaluation of different methods that could be utilized in investigating the dense non-aqueous phase liquid (DNAPL) found immediately downgradient of the Shell Section 36 Trenches, and descriptions of these techniques; (2) A discussion of the construction techniques (s) selected for emplacement of the containment wall, and any handling procedures applicable to that technique; Presentation of the monitoring network, sampling frequency, and a list of analytes to be included in the monitoring program. The purpose of presenting the Preliminary Engineering Design Package is to provide the Organizations and State with conceptual plan for implementing the IRA, as has been routinely done on other IRAs. Groundwater monitoring programs and construction techniques were being evaluated.

  15. New Mexico State University campus geothermal demonstration project: an engineering construction design and economic evaluation. Final technical report, February 25, 1980-April 24, 1981

    SciTech Connect (OSTI)

    Cunniff, R.A.; Ferguson, E.; Archey, J.

    1981-07-01

    A detailed engineering construction cost estimate and economic evaluation of low temperature geothermal energy application for the New Mexico State University Campus are provided. Included are results from controlled experiments to acquire design data, design calculations and parameters, detailed cost estimates, and a comprehensive cost and benefit analysis. Detailed designs are given for a system using 140 to 145{sup 0}F geothermal water to displace 79 billion Btu per year of natural gas now being burned to generate steam. This savings represents a displacement of 44 to 46 percent of NMSU central plant natural gas consumption, or 32 to 35 percent of total NMSU natural gas consumption. The report forms the basis for the system construction phase with work scheduled to commence in July 1981, and target on-stream data of February 1982.

  16. Electric utility engineer`s FGD manual -- Volume 2: Major mechanical equipment; FGD proposal evaluations; Use of FGDPRISM in FGD system modification, proposal, evaluation, and design; FGD system case study. Final report

    SciTech Connect (OSTI)

    1996-03-04

    Part 2 of this manual provides the electric utility engineer with detailed technical information on some of the major mechanical equipment used in the FGD system. The objectives of Part 2 are the following: to provide the electric utility engineer with information on equipment that may be unfamiliar to him, including ball mills, vacuum filters, and mist eliminators; and to identify the unique technique considerations imposed by an FGD system on more familiar electric utility equipment such as fans, gas dampers, piping, valves, and pumps. Part 3 provides an overview of the recommended procedures for evaluating proposals received from FGD system vendors. The objectives are to provide procedures for evaluating the technical aspects of proposals, and to provide procedures for determining the total costs of proposals considering both initial capital costs and annual operating and maintenance costs. The primary objective of Part 4 of this manual is to provide the utility engineer who has a special interest in the capabilities of FGDPRISM [Flue Gas Desulfurization PRocess Integration and Simulation Model] with more detailed discussions of its uses, requirements, and limitations. Part 5 is a case study in using this manual in the preparation of a purchase specification and in the evaluation of proposals received from vendors. The objectives are to demonstrate how the information contained in Parts 1 and 2 can be used to improve the technical content of an FGD system purchase specification; to demonstrate how the techniques presented in Part 3 can be used to evaluate proposals received in response to the purchase specification; and to illustrate how the FGDPRISM computer program can be used to establish design parameters for the specification and evaluate vendor designs.

  17. Sandia National Laboratories: Careers: Electrical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrical Engineering Electrical Engineering photo Electrical engineers at Sandia design and develop advanced instrumentation systems for in-flight weapons system evaluations and other applications. Sandia creates innovative, science-based, systems-engineering solutions to our nation's most challenging national security problems. Sandia electrical engineers are an integral part of multidisciplinary teams tasked with defining requirements, creating system designs, implementing design

  18. Vehicle Technologies Office Merit Review 2014: Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about design...

  19. Civil Engineer (Structural)

    Broader source: Energy.gov [DOE]

    This position is located in Structural Design (TELD). The primary purpose of this position is to serve as a senior engineer responsible for loading, design, and analysis of all structures on BPA's...

  20. Principles of models based engineering

    SciTech Connect (OSTI)

    Dolin, R.M.; Hefele, J.

    1996-11-01

    This report describes a Models Based Engineering (MBE) philosophy and implementation strategy that has been developed at Los Alamos National Laboratory`s Center for Advanced Engineering Technology. A major theme in this discussion is that models based engineering is an information management technology enabling the development of information driven engineering. Unlike other information management technologies, models based engineering encompasses the breadth of engineering information, from design intent through product definition to consumer application.

  1. BioEnergy Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    Engineering LLC Jump to: navigation, search Name: BioEnergy Engineering LLC Place: Tennessee Sector: Biofuels Product: A biofuels engineering and design firm with proprietary...

  2. Nuclear energy field fascinates David Parkinson, chemical engineer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear energy field fascinates David Parkinson, chemical engineer Nuclear energy field fascinates David Parkinson, chemical engineer Chemical engineer undergraduate designs and ...

  3. bench scale dev | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bench-Scale Development of a Hot Carbonate Absorption Process with Crystallization-Enabled High Pressure Stripping for Post-Combustion CO2 Capture Project No.: DE-FE0004360 The University of Illinois at Urbana-Champaign will evaluate the Hot Carbonate Absorption Process (Hot-CAP) process with crystallization-enabled high pressure stripping. The Hot-CAP is an absorption-based, post-combustion CO2 technology that uses a carbonate salt (K2CO3 or Na2CO3) as a solvent. The process integrates a high

  4. Solar-parabolic dish-Stirling-engine-system module. Task 1: Topical report, market assessment/conceptual design

    SciTech Connect (OSTI)

    Not Available

    1982-11-30

    The major activities reported are: a market study to identify an early market for a dish-Stirling module and assess its commercial potential; preparation of a conceptual system and subsystem design to address this market; and preparation of an early sales implementation plan. A study of the reliability of protection from the effects of walk-off, wherein the sun's image leaves the receiver if the dish is not tracking, is appended, along with an optical analysis and structural analysis. Also appended are the relationship between PURPA and solar thermal energy development and electric utility pricing rationale. (LEW)

  5. Optimization of the engineering design for the Lansing District Cooling System by comparative analysis of the impact of advanced technologies on a conventional design approach. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The Lansing Board of Water and Light (LBWL) began investigating development of a cooling district in the Lansing Downtown in 1989 in order to retain and build summer load for its steam utility. A feasibility study was conducted in conjunction with SFT, Inc. and ZBA, Inc. which addressed many factors such as marketability of the product, impact on the summer steam load, distribution system development, system design, probable capital and operating costs, reliability and environmental and other regulatory impacts on a preliminary feasibility basis. The Phase I study completed in September of 1989 provided highly promising results for establishing a District Cooling System (DCS). An existing chilled water production facility owned by the State of Michigan was identified as a potential location for a DCS plant. With these changes a review of the feasibility with a new set of alternatives and sensitivities was evaluated. This enhancement to the Phase I Study was nearing completion when the LBWL in conjunction with Energy, Mines and Resources Canada proposed to conduct the Phase II project in conjunction with DOE. The project was structured to proceed along a dual track to demonstrate the impact of the application of various innovative technologies.

  6. Bicon Namibia Consulting Engineers | Open Energy Information

    Open Energy Info (EERE)

    Name: Bicon Namibia Consulting Engineers Place: Windhoek, Namibia Sector: Wind energy Product: Windhoek-based engineering consultancy firm. Provides design and supervision of...

  7. Fagen Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    Fagen Engineering LLC Jump to: navigation, search Name: Fagen Engineering LLC Place: Granite Falls, Minnesota Zip: 56241 Product: Designs and builds ethanol production plants and...

  8. Laser Light Engines | Open Energy Information

    Open Energy Info (EERE)

    Laser Light Engines Jump to: navigation, search Name: Laser Light Engines Place: Salem, New Hampshire Zip: NH 03079 Sector: Efficiency Product: Salem-based, designs, develops and...

  9. Argonne National Laboratory's Omnivorous Engine

    SciTech Connect (OSTI)

    Thomas Wallner

    2009-10-16

    Why can't an engine run on any fuel? Argonne is designing an omnivorous engine that can run on any blend of gasoline, ethanol or butanoland calibrate itself to burn that fuel most efficiently.

  10. Argonne National Laboratory's Omnivorous Engine

    ScienceCinema (OSTI)

    Thomas Wallner

    2010-01-08

    Why can't an engine run on any fuel? Argonne is designing an omnivorous engine that can run on any blend of gasoline, ethanol or butanol?and calibrate itself to burn that fuel most efficiently.

  11. Integrated and Engineered Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated and Engineered Systems Integrated and Engineered Systems National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Contact thumbnail of Business Development Executive Miranda Intrator Business Development Executive Richard P. Feynmnan Center for Innovation (505) 665-8315 Email Engineers at Los Alamos create, design, and build the

  12. Chemical Diagnostics and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CDE Chemical Diagnostics and Engineering We support stockpile manufacturing, surveillance, applied and basic energy sciences, threat reduction, public health, the environment, and space exploration. Contact Us Group Leader Peter Stark Deputy Group Leader Tom Yoshida Group Office (505) 667-5740 X-Ray Photoelectron Spectroscopy X-Ray Photoelectron Spectroscopy The Chemical Diagnostics and Engineering (C-CDE) Group combines engineering design with routine analytical services and state-of-the-art

  13. Stirling engine piston ring

    DOE Patents [OSTI]

    Howarth, Roy B.

    1983-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  14. Computational Science and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Science and Engineering NETL's Computational Science and Engineering competency consists of conducting applied scientific research and developing physics-based simulation models, methods, and tools to support the development and deployment of novel process and equipment designs. Research includes advanced computations to generate information beyond the reach of experiments alone by integrating experimental and computational sciences across different length and time scales. Specific

  15. International combustion engines; Applied thermosciences

    SciTech Connect (OSTI)

    Ferguson, C.R.

    1985-01-01

    Focusing on thermodynamic analysis - from the requisite first law to more sophisticated applications - and engine design, this book is an introduction to internal combustion engines and their mechanics. It covers the many types of internal combustion engines, including spark ignition, compression ignition, and stratified charge engines, and examines processes, keeping equations of state simple by assuming constant specific heats. Equations are limited to heat engines and later applied to combustion engines. Topics include realistic equations of state, stroichiometry, predictions of chemical equilibrium, engine performance criteria, and friction, which is discussed in terms of the hydrodynamic theory of lubrication and experimental methods such as dimensional analysis.

  16. Sandia National Laboratories: Careers: Mechanical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mechanical Engineering Engineering photo Sandia mechanical engineers design and develop advanced components and systems for national-defense programs, homeland security, and other applications. Mechanical engineers at Sandia work on design, analysis, manufacturing, and test activities in many areas, including nuclear weapons and power, renewable energy, intelligent machines, robotics, pulsed power, missile defense, remote sensing, advanced manufacturing, and micro- and nanosystems. Sandia

  17. NGNP Engineering Status

    SciTech Connect (OSTI)

    John Collins

    2010-08-01

    The objectives of Phase 1 Engineering and Design scope are to: 1) complete the initial design activities for a prototype nuclear reactor and plant that is capable of co-generating electricity, hydrogen, and process heat; 2) identify technological aspects of the NGNP that need further advancement by research and development activities; and 3) provide engineering support to the early licensing process, including technical input to white papers and developing the basis for future safety analyses.

  18. Reliability Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LA-UR 15-27450 This document is approved for public release; further dissemination unlimited Reliability Engineering Reliability Engineering Current practice in reliability is ...

  19. Chemical Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical Engineering HomeTag:Chemical ...

  20. engineer | OpenEI Community

    Open Energy Info (EERE)

    ancient building system architect biomimicry building technology cooling cu daylight design problem energy use engineer fred andreas geothermal green building heat transfer...

  1. Engineering Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Opportunities » Engineering Institute Engineering Institute Engineering dynamics that include flight, vibration isolation for precision manufacturing, earthquake engineering, blast loading, signal processing, and experimental model analysis. Contact Leader, Los Alamos Charles Farrar Email Leader, UCSD Michael Todd Email Los Alamos Program Administrator Jutta Kayser (505) 663-5649 Email Administrative Assistant Stacy Baker (505) 663-5233 Email Collaboration for conducting

  2. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Pike, Edward

    2014-03-31

    The objective of the Cummins ARES program, in partnership with the US Department of Energy (DOE), is to develop advanced natural gas engine technologies that increase engine system efficiency at lower emissions levels while attaining lower cost of ownership. The goals of the project are to demonstrate engine system achieving 50% Brake Thermal Efficiency (BTE) in three phases, 44%, 47% and 50% (starting baseline efficiency at 36% BTE) and 0.1 g/bhp-hr NOx system out emissions (starting baseline NOx emissions at 2 – 4 g/bhp-hr NOx). Primary path towards above goals include high Brake Mean Effective Pressure (BMEP), improved closed cycle efficiency, increased air handling efficiency and optimized engine subsystems. Cummins has successfully demonstrated each of the phases of this program. All targets have been achieved through application of a combined set of advanced base engine technologies and Waste Heat Recovery from Charge Air and Exhaust streams, optimized and validated on the demonstration engine and other large engines. The following architectures were selected for each Phase: Phase 1: Lean Burn Spark Ignited (SI) Key Technologies: High Efficiency Turbocharging, Higher Efficiency Combustion System. In production on the 60/91L engines. Over 500MW of ARES Phase 1 technology has been sold. Phase 2: Lean Burn Technology with Exhaust Waste Heat Recovery (WHR) System Key Technologies: Advanced Ignition System, Combustion Improvement, Integrated Waste Heat Recovery System. Base engine technologies intended for production within 2 to 3 years Phase 3: Lean Burn Technology with Exhaust and Charge Air Waste Heat Recovery System Key Technologies: Lower Friction, New Cylinder Head Designs, Improved Integrated Waste Heat Recovery System. Intended for production within 5 to 6 years Cummins is committed to the launch of next generation of large advanced NG engines based on ARES technology to be commercialized worldwide.

  3. APPA Engineering and Operations Technical Conference

    Broader source: Energy.gov [DOE]

    The 2014 APPA Engineering and Operations Technical Conference is designed for public power professionals charged with designing, developing, and maintaining the nation's electric system.

  4. ABB Combustion Engineering`s nuclear experience and technologies

    SciTech Connect (OSTI)

    Matzie, R.A.

    1994-12-31

    ABB Combustion Engineering`s nuclear experience and technologies are outlined. The following topics are discussed: evolutionary approach using proven technology, substantial improvement to plant safety, utility perspective up front in developing design, integrated design, competitive plant cost, operability and maintainability, standardization, and completion of US NRC technical review.

  5. Improving Aircraft Engine Combustor Simulations | Argonne Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing Facility Jet engine combustor design Pratt & Whitney is exploring leading-edge jet engine combustor design methods using the ALCF's Blue Gene/P. Improving Aircraft Engine Combustor Simulations PI Name: Peter Bradley PI Email: peter.c.bradley@pw.utc.com Institution: Pratt & Whitney Allocation Program: INCITE Allocation Hours at ALCF: 1.3 Million Year: 2008 Research Domain: Engineering A jet engine combustor combines air flowing faster than a hurricane with swirling fuel to

  6. ABB Combustion Engineering nuclear technology

    SciTech Connect (OSTI)

    Matzie, R.A.

    1994-12-31

    The activities of ABB Combustion Engineering in the design and construction of nuclear systems and components are briefly reviewed. ABB Construction Engineering continues to improve the design and design process for nuclear generating stations. Potential improvements are evaluated to meet new requirements both of the public and the regulator, so that the designs meet the highest standards worldwide. Advancements necessary to meet market needs and to ensure the highest level of performance in the future will be made.

  7. Mechanical Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Electronics Design and Fabrication High Performance Computing Mechanical Engineering Monte Carlo Simulations Mechanical Engineering Mechanical Engineering In recent years the Mechanical Support Group has participated in the construction of the ATLAS Tile Calorimeter, as well as detectors for the MINOS and NOvA experiments. For ATLAS, the group was responsible for construction of a large fraction of the extended barrel tile hadron calorimeter. For MINOS, we designed and fabricated

  8. LANL computer model boosts engine efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL computer model boosts engine efficiency LANL computer model boosts engine efficiency The KIVA model has been instrumental in helping researchers and manufacturers understand combustion processes, accelerate engine development and improve engine design and efficiency. September 25, 2012 KIVA simulation of an experimental engine with DOHC quasi-symmetric pent-roof combustion chamber and 4 valves. KIVA simulation of an experimental engine with DOHC quasi-symmetric pent-roof combustion chamber

  9. Hydrogen hybrid vehicle engine development: Experimental program

    SciTech Connect (OSTI)

    Van Blarigan, P.

    1995-09-01

    A hydrogen fueled engine is being developed specifically for the auxiliary power unit (APU) in a series type hybrid vehicle. Hydrogen is different from other internal combustion (IC) engine fuels, and hybrid vehicle IC engine requirements are different from those of other IC vehicle engines. Together these differences will allow a new engine design based on first principles that will maximize thermal efficiency while minimizing principal emissions. The experimental program is proceeding in four steps: (1) Demonstration of the emissions and the indicated thermal efficiency capability of a standard CLR research engine modified for higher compression ratios and hydrogen fueled operation. (2) Design and test a new combustion chamber geometry for an existing single cylinder research engine, in an attempt to improve on the baseline indicated thermal efficiency of the CLR engine. (3) Design and build, in conjunction with an industrial collaborator, a new full scale research engine designed to maximize brake thermal efficiency. Include a full complement of combustion diagnostics. (4) Incorporate all of the knowledge thus obtained in the design and fabrication, by an industrial collaborator, of the hydrogen fueled engine for the hybrid vehicle power train illustrator. Results of the CLR baseline engine testing are presented, as well as preliminary data from the new combustion chamber engine. The CLR data confirm the low NOx produced by lean operation. The preliminary indicated thermal efficiency data from the new combustion chamber design engine show an improvement relative to the CLR engine. Comparison with previous high compression engine results shows reasonable agreement.

  10. Metabolic Engineering VII Conference

    SciTech Connect (OSTI)

    Kevin Korpics

    2012-12-04

    The aims of this Metabolic Engineering conference are to provide a forum for academic and industrial researchers in the field; to bring together the different scientific disciplines that contribute to the design, analysis and optimization of metabolic pathways; and to explore the role of Metabolic Engineering in the areas of health and sustainability. Presentations, both written and oral, panel discussions, and workshops will focus on both applications and techniques used for pathway engineering. Various applications including bioenergy, industrial chemicals and materials, drug targets, health, agriculture, and nutrition will be discussed. Workshops focused on technology development for mathematical and experimental techniques important for metabolic engineering applications will be held for more in depth discussion. This 2008 meeting will celebrate our conference tradition of high quality and relevance to both industrial and academic participants, with topics ranging from the frontiers of fundamental science to the practical aspects of metabolic engineering.

  11. E-Alerts: Energy (engine studies (energy related)). E-mail newsletter

    SciTech Connect (OSTI)

    1999-04-01

    Operation and design of engines when related to energy conservation and energy use. Covers turbine, rotary, and reciprocating engines.

  12. Value Engineering

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-30

    To establish Department of Energy (DOE) value engineering policy that establishs and maintains cost-effective value procedures and processes.

  13. Siemens Design PowerPoint-Templates

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Content * Construction Management * Engineering & Design * Solar Panels * ... * Tracker & Carport Communications * Warehouse & Transportation * Commissioning * ...

  14. Free-piston Stirling engine

    SciTech Connect (OSTI)

    Berggren, R.W.; Moynihan, T.M.

    1982-09-01

    A free-piston Stirling engine/linear alternator system (FPSE-010-3), developed under previous Department of Energy (DOE) funding, has been used as a test bed for evaluating selected Stirling engine loss mechanisms. The engine is particularly suited to test-bed operation because engine performance can be evaluated over a wide range of operating conditions; system instrumentation is capable of measuring the effects of system component changes; and modular engine design facilitates the evaluation of alternate component configurations. Extensive testing was performed to establish the operating characteristics of a base-line engine configuration and to characterize specific losses within a Stirling engine. Significant variations in engine performance were observed as the displacer seal clearance was varied. This paper presents selected results from the base-line and displacer seal clearance tests.

  15. Career Map: Power Systems/Transmission Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems/Transmission Engineer Career Map: Power Systems/Transmission Engineer A stretch of wind turbines and power lines at dusk. Power Systems/Transmission Engineer Position Title Power Systems/Transmission Engineer Alternate Title(s) Electric Power Engineer, Electrical Interconnection Engineer, Electrical Design Engineer Education & Training Level Advanced, Bachelors required, prefer graduate degree Education & Training Level Description Power Systems Engineers typically have a

  16. Validation of a Small Engine Based Procedure for Studying Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Engine Friction Reduction and Durable Design Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September ...

  17. Development and Demonstration of a Prototype Omnivorous Engine...

    Broader source: Energy.gov (indexed) [DOE]

    The Omnivorous engine is a research project designed to understand flex fuel combustion and optimize a single engine to run on many different fuels with optimum efficiency. ...

  18. January 2013 Most Viewed Documents for Engineering | OSTI, US...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dept. of Chemical and Material Engineering; Hamad, F.A.; Abu-Arabi, M. University of Science and Technology, Irbid (Jordan). Dept. of Chemical Engineering Design and ...

  19. Application of Engineering and Technical Requirements for 30...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Application of Engineering and Technical Requirements for 30, 60, and 90% Design of DOE Nuclear Facilities This Standard Review Plan (SRP), Application of Engineering and Technical ...

  20. Shockwave Engine: Wave Disk Engine

    SciTech Connect (OSTI)

    2010-01-14

    Broad Funding Opportunity Announcement Project: MSU is developing a new engine for use in hybrid automobiles that could significantly reduce fuel waste and improve engine efficiency. In a traditional internal combustion engine, air and fuel are ignited, creating high-temperature and high-pressure gases which expand rapidly. This expansion of gases forces the engine’s pistons to pump and powers the car. MSU’s engine has no pistons. It uses the combustion of air and fuel to build up pressure within the engine, generating a shockwave that blasts hot gas exhaust into the blades of the engine’s rotors causing them to turn, which generates electricity. MSU’s redesigned engine would be the size of a cooking pot and contain fewer moving parts—reducing the weight of the engine by 30%. It would also enable a vehicle that could use 60% of its fuel for propulsion.

  1. Low-Btu coal-gasification-process design report for Combustion Engineering/Gulf States Utilities coal-gasification demonstration plant. [Natural gas or No. 2 fuel oil to natural gas or No. 2 fuel oil or low Btu gas

    SciTech Connect (OSTI)

    Andrus, H E; Rebula, E; Thibeault, P R; Koucky, R W

    1982-06-01

    This report describes a coal gasification demonstration plant that was designed to retrofit an existing steam boiler. The design uses Combustion Engineering's air blown, atmospheric pressure, entrained flow coal gasification process to produce low-Btu gas and steam for Gulf States Utilities Nelson No. 3 boiler which is rated at a nominal 150 MW of electrical power. Following the retrofit, the boiler, originally designed to fire natural gas or No. 2 oil, will be able to achieve full load power output on natural gas, No. 2 oil, or low-Btu gas. The gasifier and the boiler are integrated, in that the steam generated in the gasifier is combined with steam from the boiler to produce full load. The original contract called for a complete process and mechanical design of the gasification plant. However, the contract was curtailed after the process design was completed, but before the mechanical design was started. Based on the well defined process, but limited mechanical design, a preliminary cost estimate for the installation was completed.

  2. Engineering Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute Engineering Institute Multidisciplinary engineering research that integrates advanced modeling and simulations, novel sensing systems and new developments in information technology. May 14, 2013 Los Alamos Research Park Los Alamos Research Park, the home of Engineering Institute Contact Institute Director Charles Farrar (505) 665-0860 Email UCSD EI Director Michael Todd (858) 534-5951 Executive Administrator Ellie Vigil (505) 667-2818 Email Administrative Assistant Rebecca Duran (505)

  3. General Engineers

    U.S. Energy Information Administration (EIA) Indexed Site

    General Engineers The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the General Engineer, whose work is associated with analytical studies and evaluation projects pertaining to the operations of the energy industry. Responsibilities: General Engineers perform or participate in one or

  4. Biomass Engineering Ltd | Open Energy Information

    Open Energy Info (EERE)

    Engineering Ltd Jump to: navigation, search Name: Biomass Engineering Ltd Place: Newton-le-Willows, United Kingdom Zip: WA12 8DN Product: The company designs and manufactures small...

  5. Rotary engine

    SciTech Connect (OSTI)

    Leas, A. M.; Leas, L. E.

    1985-02-12

    Disclosed are an engine system suitable for use with methyl alcohol and hydrogen and a rotary engine particularly suited for use in the engine system. The rotary engine comprises a stator housing having a plurality of radially directed chamber dividers, a principal rotor, a plurality of subordinate rotors each having an involute gear in its periphery mounted on the principal rotor, and means for rotating the subordinate rotors so that their involute gears accept the radially directed dividers as the subordinate rotors move past them.

  6. Electrical Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operation Operations Engineering, (J4200) 5555...

  7. Mechanical Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Engineering Services (PEJD) organization of Program Implementation Energy Efficiency, Power Services, Bonneville Power Administration (BPA). As part of the Power...

  8. Electronics Engineer

    Broader source: Energy.gov [DOE]

    This position is located in the Communications Test and Energization (TETD) organization of Commissioning and Testing (TET), Engineering and Technical Services (TE), Transmission Services (T),...

  9. Environmental Engineer

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will be an environmental technical expert and advisor to integrate science and engineering principles to improve the natural environment and direct and...

  10. E85 Optimized Engine

    SciTech Connect (OSTI)

    Bower, Stanley

    2011-12-31

    A 5.0L V8 twin-turbocharged direct injection engine was designed, built, and tested for the purpose of assessing the fuel economy and performance in the F-Series pickup of the Dual Fuel engine concept and of an E85 optimized FFV engine. Additionally, production 3.5L gasoline turbocharged direct injection (GTDI) EcoBoost engines were converted to Dual Fuel capability and used to evaluate the cold start emissions and fuel system robustness of the Dual Fuel engine concept. Project objectives were: to develop a roadmap to demonstrate a minimized fuel economy penalty for an F-Series FFV truck with a highly boosted, high compression ratio spark ignition engine optimized to run with ethanol fuel blends up to E85; to reduce FTP 75 energy consumption by 15% - 20% compared to an equally powered vehicle with a current production gasoline engine; and to meet ULEV emissions, with a stretch target of ULEV II / Tier II Bin 4. All project objectives were met or exceeded.

  11. Liquid metal thermoacoustic engine

    SciTech Connect (OSTI)

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1986-01-01

    We are studying a liquid metal thermoacoustic engine both theoretically and experimentally. This type of engine promises to produce large quantities of electrical energy from heat at modest efficiency with no moving parts. A sound wave is usually thought of as consisting of pressure oscillations, but always attendant to the pressure oscillation are temperature oscillations. The combination produces a rich variety of ''thermoacoustic'' effects. These effects are usually so small that they are never noticed in everyday life; nevertheless under the right circumstances they can be harnessed to produce powerful heat engines, heat pumps, and refrigerators. In our liquid metal thermoacoustic engine, heat flow from a high temperature source to a low temperature sink generates a high-amplitude standing acoustic wave in liquid sodium. This acoustic power is converted to electric power by a simple magnetohydrodynamic effect at the acoustic oscillation frequency. We have developed a detailed thermoacoustic theory applicable to this engine, and find that a reasonably designed liquid sodium engine operating between 700/sup 0/C and 100/sup 0/C should generate about 60 W/cm/sup 2/ of acoustic power at about 1/3 of Carnot's efficiency. Construction of a 3000 W-thermal laboratory model engine has just been completed, and we have exciting preliminary experimental results as of the time of preparation of this manuscript showing, basically, that the engine works. We have also designed and built a 1 kHz liquid sodium magnetohydrodynamic generator and have extensive measurements on it. It is now very well characterized both experimentally and theoretically. The first generator of its kind, it already converts acoustic power to electric power with 40% efficiency. 16 refs., 5 figs.

  12. Honda motor company's CVCC engine

    SciTech Connect (OSTI)

    Abernathy, W.J.; Ronan, L.

    1980-07-01

    Honda Motor Company of Japan in a four-year period from 1968 to 1872 designed, tested, and mass-produced a stratified charge engine, the CVCC, which in comparison to conventional engines of similar output at the time was lower in CO, HC and NO/sub x/ emissions and higher in fuel economy. Honda developed the CVCC engine without government assistance or outside help. Honda's success came at a time when steadily increasing fuel costs and the various provisions of the Clean Air Act had forced US automakers to consider possible alternatives to the conventional gasoline engine. While most major engine manufacturers had investigated some form of stratified charge engine, Honda's CVCC was the only one to find successful market application. This case study examines the circumstances surrounding the development of the CVCC engine and its introduction into the Japanese and American markets.

  13. Vehicle Technologies Office Merit Review 2015: Computational Design and Development of a New, Lightweight Cast Alloy for Advanced Cylinder Heads in High-Efficiency, Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  14. MARS Flight Engineering Status

    SciTech Connect (OSTI)

    Fast, James E.; Dorow, Kevin E.; Morris, Scott J.; Thompson, Robert C.; Willett, Jesse A.

    2010-04-06

    The Multi-sensor Airborne Radiation Survey Flight Engineering project (MARS FE) has designed a high purity germanium (HPGe) crystal array for conducting a wide range of field measurements. In addition to the HPGe detector system, a platform-specific shock and vibration isolation system and environmental housing have been designed to support demonstration activities in a maritime environment on an Unmanned Surface Vehicle (USV). This report describes the status of the equipment as of the end of FY09.

  15. Design and Implementation of Silicon Nitride Valves for Heavy...

    Energy Savers [EERE]

    Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines Design and Implementation of Silicon Nitride Valves for Heavy Duty Diesel Engines Poster ...

  16. Advanced Natural Gas Reciprocating Engine(s)

    SciTech Connect (OSTI)

    Kwok, Doris; Boucher, Cheryl

    2009-09-30

    consisted of both modeling and single cylinder engine experiments to quantify DIGN performance. The air handling systems of natural gas engines dissipate a percentage of available energy as a result of both flow losses and turbomachinery inefficiencies. An analytical study was initiated to increase compressor efficiency by employing a 2-stage inter-cooled compressor. Caterpillar also studied a turbo-compound system that employs a power turbine to recover energy from the exhaust gases for improved engine efficiency. Several other component and system investigations were undertaken during the final phase of the program to reach the ultimate ARES goals. An intake valve actuation system was developed and tested to improve engine efficiency, durability and load acceptance. Analytical modeling and materials testing were performed to evaluate the performance of steel pistons and compacted graphite iron cylinder head. Effort was made to improve the detonation sensing system by studying and comparing the performance of different pressure sensors. To reduce unburned hydrocarbon emissions, different camshafts were designed and built to investigate the effect of exhaust valve opening timing and value overlap. 1-D & 3-D coupled simulation was used to study intake and exhaust manifold dynamics with the goal of reducing load in-balance between cylinders. Selective catalytic reduction with on-board reductant generation to reduce NOx emissions was also engine tested. An effective mean to successfully deploy ARES technologies into the energy markets is to deploy demonstration projects in the field. In 2010, NETL and Caterpillar agreed to include a new opportunity fuel deliverable and two field demonstrations in the ARES program. An Organic Rankine Cycle system was designed with production intent incorporating lessons learned from the Phase II demonstration. Unfortunately, business conditions caused Caterpillar to cancel this demonstration in 2011. Nonetheless, Caterpillar partnered with a

  17. Catalyst by Design - Theoretical, Nanostructural, and Experimental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oxidation Catalyst for Diesel Engine Emission Treatment Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for Diesel Engine Emission ...

  18. Human Factors Engineering Analysis Tool

    Energy Science and Technology Software Center (OSTI)

    2002-03-04

    HFE-AT is a human factors engineering (HFE) software analysis tool (AT) for human-system interface design of process control systems, and is based primarily on NUREG-0700 guidance.

  19. Advanced Reciprocating Engine System (ARES) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Reciprocating Engine System (ARES) Advanced Reciprocating Engine System (ARES) The ARES program is designed to promote separate, but parallel engine development among the major stationary, gaseous fueled engine manufacturers in the United States. Advanced Reciprocating Engine Systems (ARES) Brochure (2.28 MB) More Documents & Publications Advanced Natural Gas Reciprocating Engines (ARES) - Presentation by Cummins, Inc., June 2011 Advanced Natural Gas Reciprocating Engines (ARES) -

  20. Single rotor turbine engine

    DOE Patents [OSTI]

    Platts, David A.

    2002-01-01

    There has been invented a turbine engine with a single rotor which cools the engine, functions as a radial compressor, pushes air through the engine to the ignition point, and acts as an axial turbine for powering the compressor. The invention engine is designed to use a simple scheme of conventional passage shapes to provide both a radial and axial flow pattern through the single rotor, thereby allowing the radial intake air flow to cool the turbine blades and turbine exhaust gases in an axial flow to be used for energy transfer. In an alternative embodiment, an electric generator is incorporated in the engine to specifically adapt the invention for power generation. Magnets are embedded in the exhaust face of the single rotor proximate to a ring of stationary magnetic cores with windings to provide for the generation of electricity. In this alternative embodiment, the turbine is a radial inflow turbine rather than an axial turbine as used in the first embodiment. Radial inflow passages of conventional design are interleaved with radial compressor passages to allow the intake air to cool the turbine blades.

  1. Thermoacoustic engines

    SciTech Connect (OSTI)

    Swift, G.W.

    1988-10-01

    Thermoacoustic engines, or acoustic heat engines, are energy-conversion devices that achieve simplicity and concomitant reliability by use of acoustic technology. Their efficiency can be a substantial fraction of Carnot's efficiency. In thermoacoustic prime movers, heat flow from a high-temperature source to a low-temperature sink generates acoustic power (which may be converted to electric power using a transducer). In thermoacoustic heat pumps and refrigerators, acoustic power is used to pump heat from a low-temperature source to a high-temperature sink. This review teaches the fundamentals of thermoacoustic engines, by analysis, intuition, and example.

  2. Multilayer insulation for the interconnect region in the Accelerator System String Test: A practical engineering approach for a new scheme of design and installation bridges

    SciTech Connect (OSTI)

    Baritchi, D.; Jalloh, A.

    1993-04-01

    In order to minimize the heat leak in the Accelerator System String Test (ASST) inter-connect region, shield bridges and multilayer insulation (MLI) are provided. A sliding joint between shield bridges on adjacent magnets accommodates the contraction that occurs during cooldown. In the original design of the MLI bridges, thermal contraction was provided for by compressing the MLI. During assembly of the interconnect region, it was realized that there was not enough room for the required compression. This resulted in a redesign of the MLI bridges. The new scheme involves splitting and overlapping the MLI. This scheme has worked very well in subsequent assembly of the interconnect region. In this paper, we are going to present the new design scheme. We will also compare this design with the original design and present its advantages.

  3. Civil Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  4. Engineering Technician

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  5. Combustion Engine

    Broader source: Energy.gov [DOE]

    Pictured here is an animation showing the basic mechanics of how an internal combustion engine works. With support from the Energy Department, General Motors researchers developed a new technology ...

  6. General Engineer

    Broader source: Energy.gov [DOE]

    This position is located in Office of Standard Contract Management, within the Office of the General Counsel (GC). The purpose of the position is to conduct technical and engineering reviews of the...

  7. Daewoo Engineering Company | Open Energy Information

    Open Energy Info (EERE)

    service provider offering R&D, engineering, design, procurement, construction, and project management; involved in building a 3MW solar power plant in South Jeolla....

  8. Composite Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Composite Engineering Inc Place: Concord, Massachusetts Zip: 1742 Sector: Wind energy Product: The group will design and manufacture prototype wind turbine blades using a...

  9. Green Purchasing under DOE Architect Engineer Contracts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This clause should be used in any architect-engineer type contract unless Leadership in Energy and Environmental Design (LEED) Green Building Certification is being pursued. In...

  10. Advanced Natural Gas Reciprocating Engines (ARES)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Natural Gas Reciprocating Engines (ARES) DE-FC26-01CH11079 Caterpillar, Inc. May ... heat Difficulty - design and integration of turbomachinery and the effect on ...

  11. Green Purchasing under DOE Architect Engineer Contracts

    Broader source: Energy.gov (indexed) [DOE]

    Use: This clause should be used in any architect-engineer type contract unless Leadership in Energy and Environmental Design (LEED) Green Building Certification is being pursued. ...

  12. Knock-free engine control system for turbocharged automotive engine

    SciTech Connect (OSTI)

    Hirabayashi, Y.

    1985-04-09

    In a turbocharged internal combustion engine, in order to optimize engine torque output spark timing control and boost pressure control are coordinated in such a manner that spark advance angle is adjusted only when the measured boost pressure equals a predetermined value and is allowed to vary only within a specified range advanced from a reference value derived from an empirical memory table on the basis of engine speed and boost pressure. When engine operating conditions are such that spark advance angle would fall outside of the specified range, spark advance angle is then held at the empirical value and boost pressure is adjusted in order to optimize engine torque. The coordinated control system can also be designed to respond to exhaust gas temperature on a first-priority basis, i.e., when exhaust temperature is sensed to be dangerously high, boost pressure is reduced regardless of other engine conditions.

  13. Rotary engine research

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    A development history is presented for NASA's 1983-1991 Rotary Engine Enablement Program, emphasizing the CFD approaches to various problems that were instituted from 1987 to the end of the program. In phase I, a test rig was built to intensively clarify and characterize the stratified-charge rotary engine concept. In phase II, a high pressure, electronically controlled fuel injection system was tested. In phase III, the testing of improved fuel injectors led to the achievement of the stipulated 5 hp/cu inch specific power goal. CFD-aided design of advanced rotor-pocket shapes led to additional performance improvements.

  14. Engine Combustion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Combustion - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  15. structured engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  16. Rampressor Turbine Design

    SciTech Connect (OSTI)

    Ramgen Power Systems

    2003-09-30

    The design of a unique gas turbine engine is presented. The first Rampressor Turbine engine rig will be a configuration where the Rampressor rotor is integrated into an existing industrial gas turbine engine. The Rampressor rotor compresses air which is burned in a traditional stationary combustion system in order to increase the enthalpy of the compressed air. The combustion products are then expanded through a conventional gas turbine which provides both compressor and electrical power. This in turn produces shaft torque, which drives a generator to provide electricity. The design and the associated design process of such an engine are discussed in this report.

  17. Futuristic concepts in engines and components

    SciTech Connect (OSTI)

    1995-12-31

    This publication includes papers on two-stroke engines and components, Brayton Stirling and Otto Cycles, alternative cycles, advanced combustion, and other related topics. Contents include: Paving the way to controlled combustion engines (CCE); A new class of stratified-charge internal combustion engine; Internal combustion (IC) engine with minimum number of moving parts; New type of heat engine -- externally heated air engine; A porous media burner for reforming methanol for fuel cell powered electric vehicles; Using a Stirling engine simulation program as a regenerator design aid; In-cylinder regenerated engines; High speed electronic fuel injection for direct injected rotary engine; and The characteristics of fuel consumption and exhaust emissions of the side exhaust port rotary engine.

  18. Modular Isotopic Thermoelectric Generator (MITG) Design and Development, Part A-E. Original was presented at 1983 Intersociety Energy Conversion Engineering Conference (IECEC)

    SciTech Connect (OSTI)

    Schock, A.

    1983-04-29

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing 24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Detailed analysis indicates that the present generation of RTGs, using the same heat source modules. There is a duplicate copy of this document. OSTI has a copy of this paper.

  19. GreenMountain Engineering LLC | Open Energy Information

    Open Energy Info (EERE)

    California Zip: 94107 Product: Consulting firm specializing in clean technology product design and manufacturing development. References: GreenMountain Engineering,...

  20. Windmill design, development, construction, and performance. January 1973-July 1981 (citations from the BHRA Fluid Engineering data base). Report for January 1973-July 1981

    SciTech Connect (OSTI)

    Not Available

    1981-07-01

    This bibliography covers the design, development, construction, and performance of windmills and various components of windmills. Both aerodynamic and structural performance characteristics are considered. Attention is also given to the energy or power production and efficiency of windmills and to windmills at specific geographic locations. (Contains 80 citations fully indexed and including a title list.)

  1. Mod I automotive Stirling engine mechanical development

    SciTech Connect (OSTI)

    Simetkosky, M.

    1984-01-01

    The Mod I Stirling engine was the first automotive Stirling engine designed specifically for automotive application. Testing of these engines has revealed several deficiencies in engine mechanical integrity which have been corrected by redesign or upgrade. The main deficiencies uncovered during the Mod I program lie in the combustion, auxiliary, main seal, and heater head areas. This paper will address each of the major area deficiencies in detail, and describe the corrective actions taken as they apply to the Mod I and the next Stirling-engine design, the Upgraded Mod I (a redesign to incorporate new materials for cost/weight reduction and improved performance).

  2. A reciprocating rotating-block engine

    SciTech Connect (OSTI)

    O`Connor, L.

    1995-06-01

    This article describes the Newbold power plant, a lightweight, clean burning, and efficient engine that is designed to be used in a variety of small-engine applications, from ultralight planes to wheelchairs. A new turbo rotary-power engine brings together different design concepts from engine technology, including the rotary motion of a block, which is applied in a rotary engine, and the reciprocating motion of pistons. The new power plant also uses an air delivery system that operates similar to a turbojet engine. The turbo rotary-power engine, developed by Vernon Newbold, founder of Newbold and Associates, in Lyons, CO, produces power from the heat generated by combustion of most liquid or gaseous fuels. Production engines, expected to be built in August, will be optimized to operate using diesel fuel.

  3. Rotary engine

    SciTech Connect (OSTI)

    Meyman, U.

    1987-02-03

    A rotary engine is described comprising: two covers spaced from one another; rotors located between the covers and rotating and planetating in different phases; the rotors interengaging to form working chambers therebetween; means to supply fluid to the working chambers and means to exhaust fluid from the working chambers during the operating cycle of the engine; gearing for synchronizing rotation and planetation of the rotors and each including first and second gears arranged so that one of the gears is connected with the rotors while the other of the gears is connected with an immovable part of the engine and the gears engage with one another; carriers interconnecting the rotors and planetating in the same phase with the planetation of the rotors for synchronizing the rotation and planetation of the rotors; shafts arranged to support the carriers during their planetations; and elements for connecting the covers with one another.

  4. Engineering and Economic Analysis of an Advanced Ultra-Supercritical Pulverized Coal Power Plant with and without Post-Combustion Carbon Capture Task 7. Design and Economic Studies

    SciTech Connect (OSTI)

    Booras, George; Powers, J.; Riley, C.; Hendrix, H.

    2015-09-01

    This report evaluates the economics and performance of two A-USC PC power plants; Case 1 is a conventionally configured A-USC PC power plant with superior emission controls, but without CO2 removal; and Case 2 adds a post-combustion carbon capture (PCC) system to the plant from Case 1, using the design and heat integration strategies from EPRI’s 2015 report, “Best Integrated Coal Plant.” The capture design basis for this case is “partial,” to meet EPA’s proposed New Source Performance Standard, which was initially proposed as 500 kg-CO2/MWh (gross) or 1100 lb-CO2/MWh (gross), but modified in August 2015 to 635 kg-CO2/MWh (gross) or 1400 lb-CO2/MWh (gross). This report draws upon the collective experience of consortium members, with EPRI and General Electric leading the study. General Electric provided the steam cycle analysis as well as v the steam turbine design and cost estimating. EPRI performed integrated plant performance analysis using EPRI’s PC Cost model.

  5. Rock mechanics design in mining and tunneling

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1984-01-01

    This book introduces the design process as applied to rock mechanics aspects of underground mining and tunneling. Topics covered include a historical perspective, the design process in engineering, empirical methods of design, observational methods of design, and guided design.

  6. Engines and Fuels | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engines and Fuels Engines and Fuels Argonne's Engines and Fuels research focuses on understanding the interactions between fuels and engines in order to maximize the benefits available through optimization as well as to enable multi-fuel capability. Argonne researchers apply their expertise in the areas of combustion chemistry, fuel spray characterization, combustion system design, controls, and in-cylinder sensing as well as emissions control. A team of experts spanning a range of disciplines

  7. Institute for Molecular Engineering | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learn more about the Institute for Molecular Engineering. When completed in early 2015, the William Eckhardt Research Center at the University of Chicago will be the home of the Institute of Molecular Engineering. Institute for Molecular Engineering The new Institute for Molecular Engineering explores innovative technologies that address fundamental societal problems through advances in nanoscale manipulation and design at a molecular scale. Addressing Societal Problems with Molecular Science

  8. Performance bound for real OTEC heat engines

    SciTech Connect (OSTI)

    Wu, C.

    1987-01-01

    Maximum power and efficiency at the maximum power of an irreversible OTEC heat engine are treated. When time is explicitly considered in the energy exchanges between the heat engine and its surroundings, it is found that there is a bound on the efficiency of the real OTEC heat engine at the maximum power condition. This bound can guide the evaluation of existing OTEC systems or influence design of future OTEC heat engines.

  9. Modular Aneutronic Fusion Engine

    SciTech Connect (OSTI)

    Gary Pajer, Yosef Razin, Michael Paluszek, A.H. Glasser and Samuel Cohen

    2012-05-11

    NASA's JUNO mission will arrive at Jupiter in July 2016, after nearly five years in space. Since operational costs tend to rise with mission time, minimizing such times becomes a top priority. We present the conceptual design for a 10MW aneutronic fusion engine with high exhaust velocities that would reduce transit time for a Jupiter mission to eighteen months and enable more challenging exploration missions in the solar system and beyond. __________________________________________________

  10. Value Engineering

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-01-07

    To establish Department of Energy (DOE) value engineering policy that meets the requirements of Public Law 104-106, Section 4306 as codified by 41 United States Code 432. Canceled by DOE N 251.94. Does not cancel other directives.

  11. Harmonic engine

    DOE Patents [OSTI]

    Bennett, Charles L.; Sewall, Noel; Boroa, Carl

    2014-08-19

    An engine based on a reciprocating piston engine that extracts work from pressurized working fluid. The engine includes a harmonic oscillator inlet valve capable of oscillating at a resonant frequency for controlling the flow of working fluid into of the engine. In particular, the inlet valve includes an inlet valve head and a spring arranged together as a harmonic oscillator so that the inlet valve head is moveable from an unbiased equilibrium position to a biased closed position occluding an inlet. Upon releasing the inlet valve the inlet valve head undergoes a single oscillation past the equilibrium positio to a maximum open position and returns to a biased return position close to the closed position to choke the flow and produce a pressure drop across the inlet valve causing the inlet valve to close. Protrusions carried either by the inlet valve head or piston head are used to bump open the inlet valve from the closed position and initiate the single oscillation of the inlet valve head, and protrusions carried either by the outlet valve head or piston head are used to close the outlet valve ahead of the bump opening of the inlet valve.

  12. Engineering development of advanced coal-fired low-emissions boiler system. Phase II subsystem test design and plan - an addendum to the Phase II RD & T Plan

    SciTech Connect (OSTI)

    1995-05-01

    Shortly after the year 2000 it is expected that new generating plants will be needed to meet the growing demand for electricity and to replace the aging plants that are nearing the end of their useful service life. The plants of the future will need to be extremely clean, highly efficient and economical. Continuing concerns over acid rain, air toxics, global climate changes, ozone depletion and solid waste disposal are expected to further then regulations. In the late 1980`s it was commonly believed that coal-fired power plants of the future would incorporate either some form of Integrated Gasification Combined Cycle (IGCC) or first generation Pressurized Fluidized Bed Combustion (PFBS) technologies. However, recent advances In emission control techniques at reduced costs and auxiliary power requirements coupled with significant improvements In steam turbine and cycle design have clearly indicated that pulverized coal technology can continue to be competitive In both cost and performance. In recognition of the competitive potential for advanced pulverized coal-fired systems with other emerging advanced coal-fired technologies, DOE`s Pittsburgh Energy Technology Center (PETC) began a research and development initiative In late 1990 named, Combustion 2000, with the intention of preserving and expanding coal as a principal fuel In the Generation of electrical power. The project was designed for two stages of commercialization, the nearer-term Low Emission Boiler System (LEBS) program, and for the future, the High Performance Power System (HIPPS) program. B&W is participating In the LEBS program.

  13. Injector tip for an internal combustion engine

    DOE Patents [OSTI]

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  14. Applied engineering fundamentals: The transition from novice to engineering manager

    SciTech Connect (OSTI)

    Murawski, M.N.; Tomchin, E.M. )

    1992-01-01

    This paper describes the development and implementation of Applied Engineering Fundamentals, a course designed for newly graduated engineers and scientists serving as technical interns within the US Department of Energy (DOE). As specialists with varying undergraduate and graduate degrees, interns need further training to prepare them for the multidisciplinary environments they will encounter as they become engineering managers. This course is designed to build on individuals strengths in diverse engineering and scientific disciplines, provide instruction in less familiar disciplines, and develop skills in integrating multiple disciplines to solve real-world problems related to nuclear facilities. The course balances systems thinking with state-of-the-art approaches to curriculum development to provide training in technical content and to foster development of professional skills.

  15. Application of Robust Design and Advanced Computer Aided Engineering Technologies: Cooperative Research and Development Final Report, CRADA Number CRD-04-143

    SciTech Connect (OSTI)

    Thornton, M.

    2013-06-01

    Oshkosh Corporation (OSK) is taking an aggressive approach to implementing advanced technologies, including hybrid electric vehicle (HEV) technology, throughout their commercial and military product lines. These technologies have important implications for OSK's commercial and military customers, including fleet fuel efficiency, quiet operational modes, additional on-board electric capabilities, and lower thermal signature operation. However, technical challenges exist with selecting the optimal HEV components and design to work within the performance and packaging constraints of specific vehicle applications. SK desires to use unique expertise developed at the Department of Energy?s (DOE) National Renewable Energy Laboratory (NREL), including HEV modeling and simulation. These tools will be used to overcome technical hurdles to implementing advanced heavy vehicle technology that meet performance requirements while improving fuel efficiency.

  16. Stirling Engines and Irrigation Pumping

    SciTech Connect (OSTI)

    West, C.D.

    1987-01-01

    This report was prepared in support of the Renewable Energy Applications and Training Project that is sponsored by the U.S. Agency for International Development for which ORNL provides technical assistance. It briefly outlines the performance that might be achievable from various kinds of Stirling-engine-driven irrigation pumps. Some emphasis is placed on the very simple liquid-piston engines that have been the subject of research in recent years and are suitable for manufacture in less well-developed countries. In addition to the results quoted here (possible limits on M4 and pumping head for different-size engines and various operating conditions), the method of calculation is described in sufficient detail for engineers to apply the techniques to other Stirling engine designs for comparison.

  17. Clean and Efficient Diesel Engine

    SciTech Connect (OSTI)

    2010-12-31

    Task 1 was to design study for fuel-efficient system configuration. The objective of task 1 was to perform a system design study of locomotive engine configurations leading to a 5% improvement in fuel efficiency. Modeling studies were conducted in GT-Power to perform this task. GT-Power is an engine simulation tool that facilitates modeling of engine components and their system level interactions. It provides the capability to evaluate a variety of engine technologies such as exhaust gas circulation (EGR), variable valve timing, and advanced turbo charging. The setup of GT-Power includes a flexible format that allows the effects of variations in available technologies (i.e., varying EGR fractions or fuel injection timing) to be systematically evaluated. Therefore, development can be driven by the simultaneous evaluation of several technology configurations.

  18. Advanced engineering environment collaboration project.

    SciTech Connect (OSTI)

    Lamph, Jane Ann; Pomplun, Alan R.; Kiba, Grant W.; Dutra, Edward G.; Dankiewicz, Robert J.; Marburger, Scot J.

    2008-12-01

    The Advanced Engineering Environment (AEE) is a model for an engineering design and communications system that will enhance project collaboration throughout the nuclear weapons complex (NWC). Sandia National Laboratories and Parametric Technology Corporation (PTC) worked together on a prototype project to evaluate the suitability of a portion of PTC's Windchill 9.0 suite of data management, design and collaboration tools as the basis for an AEE. The AEE project team implemented Windchill 9.0 development servers in both classified and unclassified domains and used them to test and evaluate the Windchill tool suite relative to the needs of the NWC using weapons project use cases. A primary deliverable was the development of a new real time collaborative desktop design and engineering process using PDMLink (data management tool), Pro/Engineer (mechanical computer aided design tool) and ProductView Lite (visualization tool). Additional project activities included evaluations of PTC's electrical computer aided design, visualization, and engineering calculations applications. This report documents the AEE project work to share information and lessons learned with other NWC sites. It also provides PTC with recommendations for improving their products for NWC applications.

  19. Rotary engine

    SciTech Connect (OSTI)

    Larson, T. G.

    1985-10-22

    The rotary engine has a circumferential main chamber and at least one smaller combustion chamber spaced from the main chamber. The rotor includes a plurality of radially-projecting sealing members in spaced relationship thereabout for maintaining a fluid-sealed condition along a single fixed transverse strip area on the interior surface of the main chamber. A single radially-oriented axially-parallel piston vane is also carried by the rotor and moves through the fixed strip area of the main chamber at each revolution of the rotor. Plural passages for intake, compression, expansion, and exhaust are ported into the main chamber at locations proximate to the fixed strip area. Valve means in the passages selectively open and close the same for a cycle of engine operation involving intake, compression, burning, and exhaust.

  20. Rotary engine

    SciTech Connect (OSTI)

    Fawcett, S.L.

    1987-03-03

    In an internal combustion engine, external heat engine, heat pump, gaseous expander, pump or gas compressor, the combustion is described including means forming a cylindrical working chamber having intake and exhaust port means for gases, and two pistons having an arcuate length within the range of 90/sup 0/ to 120/sup 0/ of the cylindrical portion of the working chamber to move toward and away from each other for compression and expansion of gases by rotation on separate concentrically-arranged shafts. A seal means is carried by the walls of the cylindrical working chamber at each of spaced apart locations to continuously form a gas sealing relation with both of the pistons while the pistons rotate toward and away from each other in the cylindrical working chamber.

  1. Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear Energy

  2. Rotary engine

    SciTech Connect (OSTI)

    Fawcett, S.L.

    1988-02-09

    In an internal combustion engine, external heat engine, heat pump, gaseous expander, pump or gas compressor, the combination is described including means forming a cylindrical working chamber communicating with intake and exhaust port means for gases, two pistons having an arcuate length within the range of 90/sup 0/ to 120/sup 0/ of the cylindrical surface of the working chamber. The pistons are movable toward and away from each other for compression and expansion of gases in the working chamber while separately rotating concentrically-arranged shafts, a drive shaft, three sets of gearing for connecting the pistons to the drive shaft, a first set of the gearing drivingly coupled to a first of the separate concentric shafts, a second set of the gearing drivingly coupled to a second of the concentric shaft, and a third set of the gearing comprising non-circular gears. The drive shaft is secured to one gear of each of the first, second and third gear sets of gearing for rotating the drive shaft with a substantially constant velocity and torque output throughout the several phases of the working cycle of the engine, compressor or pump.

  3. Efficiency bounds for nonequilibrium heat engines

    SciTech Connect (OSTI)

    Mehta, Pankaj; Polkovnikov, Anatoli

    2013-05-15

    We analyze the efficiency of thermal engines (either quantum or classical) working with a single heat reservoir like an atmosphere. The engine first gets an energy intake, which can be done in an arbitrary nonequilibrium way e.g. combustion of fuel. Then the engine performs the work and returns to the initial state. We distinguish two general classes of engines where the working body first equilibrates within itself and then performs the work (ergodic engine) or when it performs the work before equilibrating (non-ergodic engine). We show that in both cases the second law of thermodynamics limits their efficiency. For ergodic engines we find a rigorous upper bound for the efficiency, which is strictly smaller than the equivalent Carnot efficiency. I.e. the Carnot efficiency can be never achieved in single reservoir heat engines. For non-ergodic engines the efficiency can be higher and can exceed the equilibrium Carnot bound. By extending the fundamental thermodynamic relation to nonequilibrium processes, we find a rigorous thermodynamic bound for the efficiency of both ergodic and non-ergodic engines and show that it is given by the relative entropy of the nonequilibrium and initial equilibrium distributions. These results suggest a new general strategy for designing more efficient engines. We illustrate our ideas by using simple examples. -- Highlights: ? Derived efficiency bounds for heat engines working with a single reservoir. ? Analyzed both ergodic and non-ergodic engines. ? Showed that non-ergodic engines can be more efficient. ? Extended fundamental thermodynamic relation to arbitrary nonequilibrium processes.

  4. Validation of a Small Engine Based Procedure for Studying Performance of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Lube Oils, Ionic Liquids as Lubricants and/or Lubricant Additives, Opportunities for Engine Friction Reduction and Durable Design | Department of Energy a Small Engine Based Procedure for Studying Performance of Engine Lube Oils, Ionic Liquids as Lubricants and/or Lubricant Additives, Opportunities for Engine Friction Reduction and Durable Design Validation of a Small Engine Based Procedure for Studying Performance of Engine Lube Oils, Ionic Liquids as Lubricants and/or Lubricant

  5. Engineering Accomplishments in the Construction of NCSX

    SciTech Connect (OSTI)

    G. H. Neilson; P.J. Heitzenroeder; B.E. Nelson; W.T. Reiersen; A. Brooks; T.G. Brown; J.H. Chrzanowski; M.J. Cole; F. Dahlgren; T. Dodson; L.E. Dudek; R.A. Ellis; H.M. Fan; P.J. Fogarty; K.D. Freudenberg; P.L. Goranson; J.H. Harris; M.R. Kalish; G. Labik; J.F. Lyon; N. Pomphrey; C.D. Priniski; S. Raftopoulos; D.J. Rej; W.R. Sands; R.T. Simmons; B.E. Stratton; R.L. Strykowsky; M.E. Viola; D.E. Williamson; M.C. Zarnstorff

    2008-09-01

    The National Compact Stellarator Experiment (NCSX) was designed to test a compact, quasiaxisymmetric stellarator configuration. Flexibility and accurate realization of its complex 3D geometry were key requirements affecting the design and construction. While the project was terminated before completing construction, there were significant engineering accomplishments in design, fabrication, and assembly. The design of the stellarator core device was completed. All of the modular coils, toroidal field coils, and vacuum vessel sectors were fabricated. Critical assembly steps were demonstrated. Engineering advances were made in the application of CAD modeling, structural analysis, and accurate fabrication of complex-shaped components and subassemblies. The engineering accomplishments of the project are summarized

  6. control design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  7. Project Engineer (Nuclear/Mechanical Engineer) | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Engineer (NuclearMechanical Engineer) Department: Engineering Supervisor(s): ... Its Mechanical Engineering Division (MED) is seeking to hire a NuclearMechanical Engineer ...

  8. HCCI in a Variable Compression Ratio Engine: Effects of Engine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a Variable Compression Ratio Engine: Effects of Engine Variables HCCI in a Variable Compression Ratio Engine: Effects of Engine Variables 2004 Diesel Engine Emissions Reduction ...

  9. Stirling engines. (Latest citations from the Aerospace database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The bibliography contains citations concerning fuel consumption, engine design and testing, computerized simulation, and lubrication systems relative to the Stirling cycle engine. Solar energy conversion research, thermodynamic efficiency, economics, and utilization for power generation and automobile engines are included. Materials used in Stirling engines are briefly evaluated. (Contains 250 citations and includes a subject term index and title list.)

  10. Advanced Particulate Filter Technologies for Direct Injection Gasoline Engine Applications

    Broader source: Energy.gov [DOE]

    Specific designs and material properties have to be developed for gasoline particulate filters based on the different engine and exhaust gas characteristic of gasoline engines compared to diesel engines, e.g., generally lower levels of engine-out particulate emissions or higher GDI exhaust gas temperatures

  11. Design Optimization of Piezoceramic Multilayer Actuators for...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors Design Optimization of Piezoceramic Multilayer ...

  12. Design Optimization of Piezoceramic Multilayer Actuators for...

    Broader source: Energy.gov (indexed) [DOE]

    Publications Design Optimization of Piezoceramic Multilayer Actuators for Heavy Duty Diesel Engine Fuel Injectors Vehicle Technologies Office Merit Review 2014: Design Optimization ...

  13. Chemical Design Inc CDI | Open Energy Information

    Open Energy Info (EERE)

    Design Inc CDI Jump to: navigation, search Name: Chemical Design Inc (CDI) Place: Lockport, New York Zip: 14094 Product: US-based engineer of separation and purification plants;...

  14. Gas rotary engine technology development. Final Report, April-December 1990

    SciTech Connect (OSTI)

    Kuchnicki, T.A.; Goodrich, B.E.; Page, R.A.

    1990-12-01

    The feasibility of developing a small natural gas oil-cooled rotary engine for long life gas heat pump applications was explored. A literature search was conducted, rotary engine manufacturers were contacted and questioned, experts in engine materials and engine lubricants furnished reports, and discussions were held with engineering management and staff engineers to review rotary engine technology and discuss practical ideas for more durable engine designs.

  15. Stirling engine

    SciTech Connect (OSTI)

    Bolger, S.R.

    1992-03-17

    This patent describes an engine. It comprises at least two variable volume compartments joined by a porous medium regenerator; heat exchangers in heat exchange relationships with the variable volume compartments; a fixed quantity of gas in the compartments; a piston in each of the compartments; means to control the pistons to vary the volumes of the gas transferring between the compartments in the form of overlapping quadrilateral waveforms to compress the gas in both compartments through the same cycle pressure ratio during a cycle compression step, to shift the gas between compartments and to expand the gas in both compartments through the same cycle pressure ratio during a cycle expansion step.

  16. Advanced engineering environment pilot project.

    SciTech Connect (OSTI)

    Schwegel, Jill; Pomplun, Alan R.; Abernathy, Rusty

    2006-10-01

    The Advanced Engineering Environment (AEE) is a concurrent engineering concept that enables real-time process tooling design and analysis, collaborative process flow development, automated document creation, and full process traceability throughout a product's life cycle. The AEE will enable NNSA's Design and Production Agencies to collaborate through a singular integrated process. Sandia National Laboratories and Parametric Technology Corporation (PTC) are working together on a prototype AEE pilot project to evaluate PTC's product collaboration tools relative to the needs of the NWC. The primary deliverable for the project is a set of validated criteria for defining a complete commercial off-the-shelf (COTS) solution to deploy the AEE across the NWC.

  17. Alvar variable compression engine development. Final report

    SciTech Connect (OSTI)

    1998-03-30

    The Alvar engine is an invention by Mr. Alvar Gustafsson of Skarblacka, Sweden. It is a four stroke spark ignition internal combustion engine, having variable compression ratio and variable displacements. The compression ratio can be varied by means of small secondary cylinders and pistons which are communicating with the main combustion chambers. The secondary pistons can be phase shifted with respect to the main pistons. The engine is suitable for multi-fuel operation. Invention rights are held by Alvar Engine AB of Sweden, a company created to handle the development of the Alvar Engine. A project was conceived wherein an optimised experimental engine would be built and tested to verify the advantages claimed for the Alvar engine and also to reveal possible drawbacks, if any. Alvar Engine AB appointed Gunnar Lundholm, professor of Combustion Engines at Lund University, Lund, Sweden as principal investigator. The project could be seen as having three parts: (1) Optimisation of the engine combustion chamber geometry; (2) Design and manufacturing of the necessary engine parts; and (3) Testing of the engine in an engine laboratory NUTEK, The Swedish Board for Industrial and Technical Development granted Gunnar Lundholm, SEK 50000 (about $6700) to travel to the US to evaluate potential research and development facilities which seemed able to perform the different project tasks.

  18. Information for Development Program (infoDev) Feed | Open Energy...

    Open Energy Info (EERE)

    US Savannah River National Laboratory (SRNL) UNEP-Risoe Centre on Energy, Climate and Sustainable Development United Nations Environment Programme (UNEP) United Nations...

  19. SC'14 HPC Dev. Workshop Session Presentation Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... code names in advertising, promotion or marketing of any product or services and any such ... network connection, an Intel AMT-enabled chipset, network hardware and software. ...

  20. ARM Dev Workshop Plenary Presentation Gustafson 201507.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Development of the LES ARM Symbiotic Simulation and Observation (LASSO) Workflow William I. Gustafson, Principal Investigator Pacific Northwest National Laboratory Andrew M. Vogelmann, Co-principal Investigator Brookhaven National Laboratory January 2014 Measurement Strategy Large-Eddy Simulation Scale (1 to 200 m) Cloud-Resolving Model Scale (1 to 4 km) Mesoscale Model Scale (4 to 20 km) Single-Column Model (100 km) General Circulation Model Scale (10 to 100 km, NCEP/ ECMWF Forcing) ARM

  1. Wind Turbine Blade Design

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Blade engineering and design is one of the most complicated and important aspects of modern wind turbine technology. Engineers strive to design blades that extract as much energy from the wind as possible throughout a range of wind speeds and gusts, yet are still durable, quiet and cheap. A variety of ideas for building turbines and teacher handouts are included in this document and at the Web site.

  2. Rotary engine

    SciTech Connect (OSTI)

    Brownfield, L.A.

    1980-12-02

    The major components of this rotary engine are two equal sized rotary units, the housing containing them along with associated ignition and cooling systems. Each of the rotary units consists of a shaft, gear, two outer compressor wheels, and one center power wheel which has twice the axial thickness as the compressor wheel. All the wheels are cylindrical in shape with a lobe section comprising a 180/sup 0/ arc on the periphery of each wheel which forms an expanding and contracting volumetric chamber by means of leading and trailing lips. The lobes of the first rotary unit are situated 180/sup 0/ opposite the lobes of the second adjacent mating rotary unit, thus lobes can intermesh with its corresponding wheel.

  3. Recommendations on the Nature and Level of U.S. Participation in the International Thermonuclear Experimental Reactor Extension of the Experimental Reactor Extension of the Engineering Design Activities. Panel Report To Fusion Energy Sciences Advisory Committee (FESAC)

    SciTech Connect (OSTI)

    none,

    1998-01-31

    The DOE Office of Energy Research chartered through the Fusion Energy Sciences Advisory Committee (FESAC) a panel to "address the topic of U. S. participation in an ITER construction phase, assuming the ITER Parties decide to proceed with construction." (Attachment 1: DOE Charge, September 1996). Given that there is expected to be a transition period of three to five years between the conclusion of the Engineering Design Activities (EDA) and the possible construction start, the DOE Office of Energy Research expanded the charge to "include the U.S. role in an interim period between the EDA and construction." (Attachment 2: DOE Expanded Charge, May 1997). This panel has heard presentations and received input from a wide cross-section of parties with an interest in the fusion program. The panel concluded it could best fulfill its responsibility under this charge by considering the fusion energy science and technology portion of the U.S. program in its entirety. Accordingly, the panel is making some recommendations for optimum use of the transition period considering the goals of the fusion program and budget pressures.

  4. System 80+{trademark} Standard Design: CESSAR design certification. Volume 6: Amendment I

    SciTech Connect (OSTI)

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report - Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These documents describe the Combustion Engineering, Inc. System 80+{sup TM} Standard Design. This report, Volume 6, in conjunction with Volume 7, provides a description of engineered safety features.

  5. The Linear Engine Pathway of Transformation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Linear Engine Pathway of Transformation The Linear Engine Pathway of Transformation This poster highlights the major milestones in the history of the linear engine in terms of technological advances, novel designs, and economic/social impact. p-06_covington.pdf (214.04 KB) More Documents & Publications Difficulty of Measuring Emissions from Heavy-Duty Engines Equipped with SCR and DPF Development of a Stand-Alone Urea-SCR System for NOx Reduction in Marine Diesel Engines Modeling the

  6. Automotive Stirling Engine Development Program. RESD Summary report

    SciTech Connect (OSTI)

    Not Available

    1984-05-01

    This is the final report compiling a summary of the information presented and discussed at the May 1983 Automotive Stirling Engine (AES) Reference Engine System Design (RESD) review held at the NASA Lewis Research Center. The design of the engine and its auxiliaries and controls is described. Manufacturing costs in production quantity are also presented. Engine system performance predictions are discussed and vehicle integration is developed, along with projected fuel economy levels.

  7. DOE - Office of Legacy Management -- Idaho National Engineering and

    Office of Legacy Management (LM)

    Environmental Laboratory - 015 Idaho National Engineering and Environmental Laboratory - 015 FUSRAP Considered Sites Site: Idaho National Engineering and Environmental Laboratory (015) More information at www.inl.gov and http://energy.gov/em Designated Name: Not Designated under FUSRAP Alternate Name: Idaho National Engineering Laboratory; Idaho National Engineering Laboratory and Idaho Chemical Processing Plant; Idaho National Laboratory; National Reactor Testing Station Location: Idaho

  8. Design, Integration, Communication and Construction Engineering 2

    National Nuclear Security Administration (NNSA)

    1, 2016 QUESTIONS SUBMITTED BY DICCE2 INDUSTRY DAY ATTENDEES on 9/23/15 1. The sample task is Vietnam. Is either of the incumbent contractor's currently working there? Conflict? a. The Vietnam project is not a sample task, it is a real project that will be awarded as a Task Order. Neither incumbents are currently working in Vietnam under any NSDD contract. 2. If required to go to a High Risk site, will security and life support be a contractor responsibility? a. Each contractor makes a safety

  9. Design, Integration, Communication and Construction Engineering 2

    National Nuclear Security Administration (NNSA)

    26, 2016 QUESTIONS SUBMITTED AFTER DICCE2 REQUEST FOR PROPOSAL RELEASE DATE OF 2/1/2016 1. Final RPP Section/Sub-Section: NNS-L-2001 PROPOSAL PREPARATION INSTRUCTIONS: VOL I--OFFER AND OTHER DOCUMENTS (AUG 2015) (b) Subject/Title: Instructions on Volume I, Tab 4 content requirements Page Number(s): L-9 of 22 Contractor Comment/Question Comment/Recommendation: Section L, NNS-L-2001 (b) (page L-9) refers to "Tabs 1 through 4" however, only Tabs 1 through 3 are identified in the RFP.

  10. Design, Integration, Communication and Construction Engineering 2

    National Nuclear Security Administration (NNSA)

    3, 2016 QUESTIONS SUBMITTED AFTER DICCE2 REQUEST FOR PROPOSAL RELEASE DATE OF 2/1/2016 (Questions posted February 27, 2016 through March 3, 2016) 1. Section L Attachment L-6 - Cost Element Summary, Travel - Table 5. This table reflects a WBS naming convention with alpha characters. This WBS naming convention repeats in other Attachment L-6 Tables. The RFP Attachment L-7c, Mobilization Plan, Table 1 appears to use a numerical WBS naming convention. Please clarify the WBS naming convention that

  11. Design, Integration, Communication and Construction Engineering...

    National Nuclear Security Administration (NNSA)

    within the cost proposal. 4. Section L Attachment L-6 - Cost Element Summary, Table "Construction - Table 7." Note 2 appears that it may be incomplete. Please clarify. a. ...

  12. Design, Integration, Communication and Construction Engineering...

    National Nuclear Security Administration (NNSA)

    ... returned to NNSA. This means that each offeror must have a completed (and content locked in place) all Attachment L-2a forms well ahead of completion of the rest of the document. ...

  13. Mechanical Design Engineering, MDE, Accelerator Operations and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AOT-MDE's primary responsibilities include supporting accelerator operations, maintenance, and performance improvement projects; developing leadership roles in projects...

  14. D&D Engineering & Design Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... to immobilize special nuclear material (SNM) residuals ... pumping sludge from spent fuel pools, size reduction of a ... temporary distribution panels are typically installed ...

  15. Design, Integration, Communication and Construction Engineering...

    National Nuclear Security Administration (NNSA)

    ... that has provision, installation, integration, testing, and troubleshooting of CAS ... A. is defined as management of international projects with project size of 1M to ...

  16. Sandia National Laboratories: Careers: Aerospace Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerospace Engineering Aerospace imagery Sandia's aerospace engineers have provided critical data for the design and analysis of flight vehicles since the 1950s. Aerospace engineers at Sandia support atmospheric and space flight vehicles across the speed regimes, from subsonic to hypersonic, through their collaborative work on multidisciplinary teams. Our aerodynamics and astronautics specialists integrate the results from experiments, analysis, and simulation to solve complex problems of

  17. Sandia National Laboratories: Careers: Nuclear Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Engineering Nuclear Engineer Sandia's primary mission is ensuring that the U.S. nuclear arsenal is safe, secure, reliable, and capable of fully supporting our nation's deterrence policy. Nuclear engineers at Sandia work in multidisciplinary teams on a variety of projects that involve nuclear reactors, weapons, equipment, and information systems. For example, they design, develop, and test nuclear equipment and systems. They also monitor the testing, operation, and maintenance of nuclear

  18. The Stirling engine as a low cost tool to educate mechanical engineers

    SciTech Connect (OSTI)

    Gros, J.; Munoz, M.; Moreno, F.; Valero, A.

    1995-12-31

    The University of Zaragoza through CIRCE, the New Enterprise foundation, an Opel foundation and the local Government of Aragon have been developed a program to introduce the Stirling Engine as a low cost tool to educate students in mechanical engineering. The promotion of a prize like GNAT Power organized by the magazine Model Engineer in London, has improved the practical education of students in the field of mechanical devices and thermal engines. Two editions of the contest, 1993 and 1994, awarded the greatest power Stirling engine made by only using a little candle of paraffin as a heat source. Four engines were presented in the first edition, with an average power of about 100 mW, and seven engines in the second one, achieving a power of about 230 mW. Presentations in Technical Schools and the University have been carried out. Also low cost tools have been made for measuring an electronic device to draw the real internal pressure volume diagram using a PC. A very didactic software to design classic kinematic alpha, beta and gamma engines plus Ringbom beta and gamma engines has been created. A book is going to be published (in Spanish) explaining the design of small Stirling engines as a way to start with low cost research in thermal engines, a very difficult target with IC engines.

  19. Metabolic Engineering X Conference

    SciTech Connect (OSTI)

    Flach, Evan

    2015-05-07

    The International Metabolic Engineering Society (IMES) and the Society for Biological Engineering (SBE), both technological communities of the American Institute of Chemical Engineers (AIChE), hosted the Metabolic Engineering X Conference (ME-X) on June 15-19, 2014 at the Westin Bayshore in Vancouver, British Columbia. It attracted 395 metabolic engineers from academia, industry and government from around the globe.

  20. Double acting stirling engine piston ring

    DOE Patents [OSTI]

    Howarth, Roy B.

    1986-01-01

    A piston ring design for a Stirling engine wherein the contact pressure between the piston and the cylinder is maintained at a uniform level, independent of engine conditions through a balancing of the pressure exerted upon the ring's surface and thereby allowing the contact pressure on the ring to be predetermined through the use of a preloaded expander ring.

  1. Rotary engine

    SciTech Connect (OSTI)

    Smith, T.A.

    1992-01-28

    This patent describes an improved rotary engine. It comprises an annular master cylinder composed of a cylindrical housing, a continuous hollow outer concentric shaft, an outward end housing and an inward end housing; means to form a dynamically balanced disc piston assembly extending from the the outward end housing to the the inward end housing thereby dividing the the annular master cylinder into at least three separate gas tight cylinders formed by rotating discs, each cylinder having at least two pistons independently rotatable therein; means to isolate the unexpanded gases from any exit path into the housing of the piston controlling means; and wherein one of the pistons in each cylinder is connected directly to the the continuous outer concentric shaft to form a first piston assembly, the other of the pistons in each cylinder is connected to the discs which are connected to the end of an inner concentric shaft to form a second piston assembly, means for controlling the piston action by a common eccentric shaft such that as the pistons rotate they expand and reduce the distance between them thereby changing the volume between the pistons within each of the cylinders.

  2. Study of Engine Operating Parameter Effects on GDI Engine Particle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study of Engine Operating Parameter Effects on GDI Engine Particle-Number Emissions Study of Engine Operating Parameter Effects on GDI Engine Particle-Number Emissions Results show ...

  3. Increased Engine Efficiency via Advancements in Engine Combustion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engine Efficiency via Advancements in Engine Combustion Systems Increased Engine Efficiency via Advancements in Engine Combustion Systems Presentation given at the 16th Directions...

  4. Sandia Energy - HCCI/SCCI Engine Fundamentals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HCCISCCI Engine Fundamentals Home Transportation Energy Predictive Simulation of Engines Engine Combustion Automotive HCCISCCI Engine Fundamentals HCCISCCI Engine...

  5. Sandia Energy - HCCI/SCCI Engine Fundamentals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HCCISCCI Engine Fundamentals Home Transportation Energy Predictive Simulation of Engines Engine Combustion Heavy Duty HCCISCCI Engine Fundamentals HCCISCCI Engine...

  6. Two-stroke engines; Cleaner and meaner

    SciTech Connect (OSTI)

    Siuru, B.

    1990-06-01

    This article discusses how advanced technologies such as direct fuel injection and stratified charge combustion have turned the two-stroke engine into a clean, gasoline conserving powerhouse. The testing of prototype automotive designs is discussed.

  7. Taking an engine`s temperature

    SciTech Connect (OSTI)

    Allison, S.W.; Beshears, D.L.; Cates, M.R.; Noel, B.W.; Turley, W.D.

    1997-01-01

    Ceramic and ceramic-coated components will be of increasing importance in the advanced engines now under development. Ceramics enable engines to run at much higher temperatures than the superalloys in more conventional engines can. The two options for noncontact high-temperature measurements of ceramic components are pyrometry and phosphor thermometry. This article describes how when properly applied as a thin coating, thermally sensitive phosphors can monitor the temperature of ceramic surfaces inside an engine.

  8. Bellcrank mechanisms for Stirling engines

    SciTech Connect (OSTI)

    Senft, J.R.; Senft, V.J.

    1996-12-31

    This paper describes a family of linkage drive systems for Stirling engines containing several new members. These mechanisms are adaptable to all three configurations of Stirling engine, impose minimal side loads on pistons and displacer rods, and include compact forms suitable for pressurized high performance engines. This group of drive systems is generated by a simple common scheme. Near sinusoidal motion is taken from a crankshaft carrying a single crankpin by two connecting rods each driving a bellcrank. The stationary pivots of the bellcranks are located so that their oscillatory motion has the phase angle separation required between the piston and displacer. The bellcranks are further configured to bring the third pin motion to a location suitable for coupling with the piston or displacer of the engine in a way which minimizes side loading. The paper presents a number of new linkage drives from the dual bellcrank family and indicates how they are embodied in beta and alpha type Stirling engines. The paper includes a design for a small multipurpose engine incorporating one of the subject mechanisms.

  9. DOE handbook: Design considerations

    SciTech Connect (OSTI)

    1999-04-01

    The Design Considerations Handbook includes information and suggestions for the design of systems typical to nuclear facilities, information specific to various types of special facilities, and information useful to various design disciplines. The handbook is presented in two parts. Part 1, which addresses design considerations, includes two sections. The first addresses the design of systems typically used in nuclear facilities to control radiation or radioactive materials. Specifically, this part addresses the design of confinement systems and radiation protection and effluent monitoring systems. The second section of Part 1 addresses the design of special facilities (i.e., specific types of nonreactor nuclear facilities). The specific design considerations provided in this section were developed from review of DOE 6430.1A and are supplemented with specific suggestions and considerations from designers with experience designing and operating such facilities. Part 2 of the Design Considerations Handbook describes good practices and design principles that should be considered in specific design disciplines, such as mechanical systems and electrical systems. These good practices are based on specific experiences in the design of nuclear facilities by design engineers with related experience. This part of the Design Considerations Handbook contains five sections, each of which applies to a particular engineering discipline.

  10. Engine lubricating system

    SciTech Connect (OSTI)

    Kurio, N.; Yoshimi, H.

    1988-08-23

    This patent describes an engine lubricating system in which a measured amount of lubricating oil is supplied to the combustion chamber of an engine by a metering oil pump so that a larger amount of lubricating oil is supplied to the combustion chamber when the engine load is heavy than when the engine load is light, characterized by having a lubricating oil supply rate correction means which non-linearly increases the amount of the lubricating oil supplied to the combustion chamber with respect to engine r.p.m. so that the amount of oil supplied per unit engine revolution is greater at high engine speed than at low engine speed.

  11. Chemical & Engineering News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARPA-E Basic Energy Sciences Materials Sciences and Engineering Chemical Sciences ... SunShot Grand Challenge: Regional Test Centers Chemical & Engineering News Home...

  12. A Comparison of HCCI Engine Performance Data and Kinetic Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kinetic models of fuels are needed to allow the simulation of engine performance for research, design, or verification purposes. PDF icon deer09bunting.pdf More Documents &...

  13. Beijing Full Three Dimension Power Engineering Co Ltd FTD | Open...

    Open Energy Info (EERE)

    Power Engineering Co Ltd (FTD) Place: Beijing, Beijing Municipality, China Zip: 100080 Product: A steam turbine design and refurbishment service provider. Focus on technical...

  14. Hangzhou Energy Environment Engineering Co Ltd GEEE | Open Energy...

    Open Energy Info (EERE)

    Province, China Zip: 310020 Product: The company develops, designs and contructs biogas plants. References: Hangzhou Energy & Environment Engineering Co Ltd (GEEE)1 This...

  15. Qingdao Tianren Environmental Engineering Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Environmental Engineering Co Ltd Place: Qingdao, Shandong Province, China Sector: Bioenergy Product: China-based bioenergy company that design anaerobic digesters for...

  16. Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines

    Office of Energy Efficiency and Renewable Energy (EERE)

    Discusses a novel TEG which utilizes a proprietary stack designed thermoelectric engine to achieve high power density and reduced system weight and volume

  17. MHK Projects/The Engineering Business Ltd Shetland Islands UK...

    Open Energy Info (EERE)

    60.5303, -1.26592 Project Phase Phase 1 Project Details The Engineering Business (EB) has recently completed its program to design, build, install, test and...

  18. Internal combustion engine power. A quarter century in review...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 33 ADVANCED PROPULSION SYSTEMS; DIESEL ENGINES; AIR POLLUTION ABATEMENT; COMPUTER-AIDED DESIGN; EFFICIENCY; GAS ...

  19. Osmotic Heat Engine for Energy Production from Low Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the risk associated with deep well injection systems, and ... 1. Feasibility and Engineering Design 2. Procurement, ... relationships for Oasys Water treatment technology * ...

  20. Interdisciplinary Civil/Electrical Engineer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Office of the Chief Operating Officer, Design, Civil Engineering (A7920). 12155 West Alameda Parkway, Lakewood, CO 80228. Find out more about living conditions at this duty...

  1. Vision 2020. Reaction Engineering Roadmap

    SciTech Connect (OSTI)

    Klipstein, David H.; Robinson, Sharon

    2001-01-01

    The Reaction Engineering Roadmap is a part of an industry- wide effort to create a blueprint of the research and technology milestones that are necessary to achieve longterm industry goals. This report documents the results of a workshop focused on the research needs, technology barriers, and priorities of the chemical industry as they relate to reaction engineering viewed first by industrial use (basic chemicals; specialty chemicals; pharmaceuticals; and polymers) and then by technology segment (reactor system selection, design, and scale-up; chemical mechanism development and property estimation; dealing with catalysis; and new, nonstandard reactor types).

  2. Conversion of a diesel engine to a spark ignition natural gas engine

    SciTech Connect (OSTI)

    1996-09-01

    Requirements for alternatives to diesel-fueled vehicles are developing, particularly in urban centers not in compliance with mandated air quality standards. An operator of fleets of diesel- powered vehicles may be forced to either purchase new vehicles or equip some of the existing fleets with engines designed or modified to run on alternative fuels. In converting existing vehicles, the operator can either replace the existing engine or modify it to burn an alternative fuel. Work described in this report addresses the problem of modifying an existing diesel engine to operate on natural gas. Tecogen has developed a technique for converting turbocharged automotive diesel engines to operate as dedicated spark-ignition engines with natural gas fuel. The engine cycle is converted to a more-complete-expansion cycle in which the expansion ratio of the original engine is unchanged while the effective compression ratio is lowered, so that engine detonation is avoided. The converted natural gas engine, with an expansion ratio higher than in conventional spark- ignition natural gas engines, offers thermal efficiency at wide-open- throttle conditions comparable to its diesel counterpart. This allows field conversion of existing engines. Low exhaust emissions can be achieved when the engine is operated with precise control of the fuel air mixture at stoichiometry with a 3-way catalyst. A Navistar DTA- 466 diesel engine with an expansion ratio of 16.5 to 1 was converted in this way, modifying the cam profiles, increasing the turbocharger boost pressure, incorporating an aftercooler if not already present, and adding a spark-ignition system, natural gas fuel management system, throttle body for load control, and an electronic engine control system. The proof-of-concept engine achieved a power level comparable to that of the diesel engine without detonation. A conversion system was developed for the Navistar DT 466 engine. NOx emissions of 1.5 g/bhp-h have been obtained.

  3. NASA Lewis Stirling engine computer code evaluation

    SciTech Connect (OSTI)

    Sullivan, T.J.

    1989-01-01

    In support of the US Department of Energy's Stirling Engine Highway Vehicle Systems program, the NASA Lewis Stirling engine performance code was evaluated by comparing code predictions without engine-specific calibration factors to GPU-3, P-40, and RE-1000 Stirling engine test data. The error in predicting power output was /minus/11 percent for the P-40 and 12 percent for the RE-1000 at design conditions and 16 percent for the GPU-3 at near-design conditions (2000 rpm engine speed versus 3000 rpm at design). The efficiency and heat input predictions showed better agreement with engine test data than did the power predictions. Concerning all data points, the error in predicting the GPU-3 brake power was significantly larger than for the other engines and was mainly a result of inaccuracy in predicting the pressure phase angle. Analysis into this pressure phase angle prediction error suggested that improvement to the cylinder hysteresis loss model could have a significant effect on overall Stirling engine performance predictions. 13 refs., 26 figs., 3 tabs.

  4. A new spin on the rotary engine

    SciTech Connect (OSTI)

    Ashley, S.

    1995-04-01

    This article reports on a Canadian company that is trying to develop high-power, low-weight motors based on a novel axial-vane rotary engine concept. A promising new attempt at a practical rotary engine is the Rand Cam engine now being developed by Reg Technologies Inc. The Rand Cam engine is a four-stroke, positive-displacement power plant based on an axial-vane compression/expansion mechanism with only nine moving parts (eight vanes and a rotor). The new engine design uses passive ports rather than mechanically operated valves, and it features lighter-weight reciprocating parts than customary pistons. The Rand Cam operates at lower speeds than a typical Wankel engine (less than 2,000 rpm) and at higher compression ratios. Chamber sealing is accomplished using sliding axial vanes rather than the motion of an eccentric rotor.

  5. Overview of surface engineering and wear

    SciTech Connect (OSTI)

    Budinski, K.G.

    1996-12-31

    Surface engineering is a multidiscipline activity aimed at tailoring the properties or surfaces of engineering materials to improve their function or service life. As applied to metals, surface engineering includes processes such as plating, diffusion treatment, physical and chemical vapor deposition, ion implantation, thermal spray coatings, selective hardening, hardfacing, and a variety of less-used and proprietary processes. These processes will be described briefly and it is shown that each process has a niche where it works better or is more cost effective than competing surface engineering treatments or bulk materials. This paper reviews the various forms of wear that occur in industrial environments. Techniques are described to match available surface engineering processes with wear situations. The goal is to present selection guidelines for machine designers and industrial operating personnel on the use of surface engineering to solve wear problems.

  6. Complete Fuel Combustion for Diesel Engines Resulting in Greatly Reduced Emissions and Improved Fuel Efficiency

    Broader source: Energy.gov [DOE]

    An advanced engine design that is 15 percent more efficient than diesel, pollution free, and uses any fuel.

  7. DOE - Office of Legacy Management -- Hanford Engineer Works - WA 01

    Office of Legacy Management (LM)

    Hanford Engineer Works - WA 01 FUSRAP Considered Sites Site: Hanford Engineer Works (WA.01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see http://www.hanford.gov/ Documents Related to Hanford Engineer Works

  8. Advanced System for Process Engineering

    Energy Science and Technology Software Center (OSTI)

    1992-02-01

    ASPEN (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes. ASPEN can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations. It is supported by a comprehensive physical property system for computationmore » of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The ASPEN Input Language is oriented towards process engineers.« less

  9. Adaptive Systems Engineering: A Medical Paradigm for Practicing Systems Engineering

    SciTech Connect (OSTI)

    R. Douglas Hamelin; Ron D. Klingler; Christopher Dieckmann

    2011-06-01

    From its inception in the defense and aerospace industries, SE has applied holistic, interdisciplinary tools and work-process to improve the design and management of 'large, complex engineering projects.' The traditional scope of engineering in general embraces the design, development, production, and operation of physical systems, and SE, as originally conceived, falls within that scope. While this 'traditional' view has expanded over the years to embrace wider, more holistic applications, much of the literature and training currently available is still directed almost entirely at addressing the large, complex, NASA and defense-sized systems wherein the 'ideal' practice of SE provides the cradle-to-grave foundation for system development and deployment. Under such scenarios, systems engineers are viewed as an integral part of the system and project life-cycle from conception to decommissioning. In far less 'ideal' applications, SE principles are equally applicable to a growing number of complex systems and projects that need to be 'rescued' from overwhelming challenges that threaten imminent failure. The medical profession provides a unique analogy for this latter concept and offers a useful paradigm for tailoring our 'practice' of SE to address the unexpected dynamics of applying SE in the real world. In short, we can be much more effective as systems engineers as we change some of the paradigms under which we teach and 'practice' SE.

  10. Protein engineering for metabolic engineering: Current and next-generation tools

    SciTech Connect (OSTI)

    Marcheschi, RJ; Gronenberg, LS; Liao, JC

    2013-04-16

    Protein engineering in the context of metabolic engineering is increasingly important to the field of industrial biotechnology. As the demand for biologically produced food, fuels, chemicals, food additives, and pharmaceuticals continues to grow, the ability to design and modify proteins to accomplish new functions will be required to meet the high productivity demands for the metabolism of engineered organisms. We review advances in selecting, modeling, and engineering proteins to improve or alter their activity. Some of the methods have only recently been developed for general use and are just beginning to find greater application in the metabolic engineering community. We also discuss methods of generating random and targeted diversity in proteins to generate mutant libraries for analysis. Recent uses of these techniques to alter cofactor use; produce non-natural amino acids, alcohols, and carboxylic acids; and alter organism phenotypes are presented and discussed as examples of the successful engineering of proteins for metabolic engineering purposes.

  11. System 80+{trademark} Standard Design: CESSAR design certification. Volume 2: Amendment I

    SciTech Connect (OSTI)

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report - Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These documents describe the Combustion Engineering, Inc. System 80+{sup TM} Standard Design. This report, Volume 2, in conjunction with Volume 3, provides the design of structures, components, equipment and systems.

  12. Advanced Reciprocating Engine Systems (ARES): Raising the Bar on Engine Technology with Increased Efficiency and Reduced Emissions, at Attractive Costs

    SciTech Connect (OSTI)

    2009-02-01

    This is a fact sheet on the U.S. Department of Energy's (DOE) Advanced Reciprocating Engine Systems program (ARES), which is designed to promote separate, but parallel engine development between the major stationary, gaseous fueled engine manufacturers in the United States.

  13. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect (OSTI)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2005-09-30

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships between design parameters and friction losses. Low friction ring designs have already been recommended in a previous phase, with full-scale engine validation partially completed. Current accomplishments include the addition of several additional power cylinder design areas to the overall system analysis. These include analyses of lubricant and cylinder surface finish and a parametric study of piston design. The Waukesha engine was found to be already well optimized in the areas of lubricant, surface skewness and honing cross-hatch angle, where friction reductions of 12% for lubricant, and 5% for surface characteristics, are projected. For the piston, a friction reduction of up to 50% may be possible by controlling waviness alone, while additional friction reductions are expected when other parameters are optimized. A total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% efficiency. Key elements of the continuing work include further analysis and optimization of the engine piston design, in-engine testing of recommended lubricant and surface designs, design iteration and optimization of previously recommended technologies, and full-engine testing of a complete, optimized, low-friction power cylinder system.

  14. LES Modeling for IC Engines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LES Modeling for IC Engines LES Modeling for IC Engines Large eddy simulation offers better accuracy and sensitivity to study cyclic variability, mode transition and mixing effects in engine design and operation deer12_rutland.pdf (1.36 MB) More Documents & Publications Large Eddy Simulation (LES) Applied to Advanced Engine Combustion Research Vehicle Technologies Office Merit Review 2016: Advancements in Fuel Spray and Combustion Modeling with High Performance Computing Resources

  15. Help Design the Hydrogen Fueling Station of Tomorrow | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    including chemistry, industrial design, engineering, business, environmental science, and policy, to plan and design a drop-in fueling station (about the size of a freight ...

  16. Requirements-Driven Diesel Catalyzed Particulate Trap Design...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization Requirements-Driven Diesel Catalyzed Particulate Trap Design and Optimization 2005 Diesel Engine ...

  17. DOE - Office of Legacy Management -- Energy Technology Engineering Center -

    Office of Legacy Management (LM)

    044 Energy Technology Engineering Center - 044 FUSRAP Considered Sites Site: Energy Technology Engineering Center (044) More information at http://energy.gov/em and http://energy.gov/em/energy-technology-engineering-center Designated Name: Not Designated under FUSRAP Alternate Name: Area IV of the Santa Susana Field Laboratory; ETEC Location: Santa Susana, California Evaluation Year: Not considered for FUSRAP - in another program Site Operations: DOE research and development activities Site

  18. Stirling engines. (Latest citations from the COMPENDEX database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    The bibliography contains citations concerning Stirling engine technology. Design, development, performance testing, and applications are discussed, including power generation, cryogenic cooling, solar power applications, and ground and marine vehicles. The citations also examine engine component design and material testing results. (Contains 250 citations and includes a subject term index and title list.)

  19. The Phillips Stirling engine

    SciTech Connect (OSTI)

    Hargreaves, C.M.

    1991-01-01

    This book is about the Stirling engine and its development from the heavy cast-iron machine of the 19th century to that of today. It is a history of a research effort spanning nearly 50 years, together with an outline of principles, and some technical details and descriptions of the more important engines. Contents include: the hot-air engine; the 20th-century revival; the Stirling cycle; rhombic-drive engines; heating and cooling; pistons and seals; electric generators and heat pumps; exotic heat sources; the engine and the environment; swashplate engines; and the past and the future.

  20. Strata control in mineral engineering

    SciTech Connect (OSTI)

    Bieniawski, Z.T.

    1986-01-01

    This book covers the state-of-the-art of strata control practice both in the United States and abroad with respect to strata reinforcement by rock bolting, long wall mining technology and innovations in energy development, such as mining for oil and tunneling for storage of high-level nuclear waste in deep underground repositories. It features coverage of design concepts in rock engineering and rockbolt systems, stability of rock pillars, rockbursts, shaft design and construction and a detailed consideration of mineral and energy needs in the United States.

  1. Catalyst by Design - Theoretical, Nanostructural, and Experimental...

    Broader source: Energy.gov (indexed) [DOE]

    Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for Diesel Engine Emission Treatment Catalysts via First Principles Catalysts via ...

  2. Workplace Charging Challenge Partner: Concurrent Design, Inc...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... aesthetic finish-out of the structures as well. The event showcased electric cars from Tesla, Nissan, Chevrolet, Cadillac and Car2Go Concurrent Design Inc. offers engineering ...

  3. Radioisotope power system based on derivative of existing Stirling engine

    SciTech Connect (OSTI)

    Schock, A.; Or, C.T.; Kumar, V.

    1995-12-31

    In a recent paper, the authors presented the results of a system design study of a 75-watt(c) RSG (Radioisotope Stirling Generator) for possible application to the Pluto Fast Flyby mission. That study was based on a Stirling engine design generated by MTI (Mechanical Technology, Inc.). The MTI design was a derivative of a much larger (13 kwe) engine that they had developed and tested for NASA`s LERC. Clearly, such a derivative would be a major extrapolation (downsizing) from what has actually been built and tested. To avoid that, the present paper describes a design for a 75-watt RSG system based on derivatives of a small (11-watt) engine and linear alternator system that has been under development by STC (Stirling Technology Company) for over three years and that has operated successfully for over 15,000 hours as of March 1995. Thus, the STC engines would require much less extrapolation from proven designs. The design employs a heat source consisting of two standard General Purpose Heat Source (GPHS) modules, coupled to four Stirling engines with linear alternators, any three of which could deliver the desired 75-watt(e) output if the fourth should fail. The four engines are coupled to four common radiators with redundant heatpipes for rejecting the engines` waste heat to space. The above engine and radiator redundancies promote system reliability. The paper describes detailed analyses to determine the effect of radiator geometry on system mass and performance, before and after an engine or heatpipe failure.

  4. Stirling engine research at Argonne National Laboratory

    SciTech Connect (OSTI)

    Holtz, R.E.; Daley, J.G.; Roach, P.D.

    1986-06-01

    Stirling engine research at Argonne National Laboratory has been focused at (1) development of mathematical models and analytical tools for predicting component and engine performance, and (2) experimental research into fundamental heat transfer and fluid flow phenomena occurring in Stirling cycle devices. A result of the analytical effort has been the formation of a computer library specifically for Stirling engine researchers and developers. The library contains properties of structural materials commonly used, thermophysical properties of several working fluids, correlations for heat transfer calculations and general specifications of mechanical arrangements (including various drive mechanisms) that can be utilized to model a particular engine. The library also contains alternative modules to perform analysis at different levels of sophistication, including design optimization. A reversing flow heat transfer facility is operating at Argonne to provide data at prototypic Stirling engine operating conditions under controlled laboratory conditions. This information is needed to validate analytical models.

  5. Polymer Engineering Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymer Engineering Center University of Wisconsin-Madison Experimental and Numerical Studies of the Temperature Field in Selective Laser Sintering to Improve Shrinkage and Warpage Prediction Prof. Dr.-Ing. Natalie Rudolph Polymer Engineering Center Department of Mechanical Engineering University of Wisconsin-Madison 1513 University Ave Madison, WI 53706 Advanced Qualification of Additive Manufacturing Materials Workshop, July 20-21, 2015 in Santa Fe, NM Polymer Engineering Center University of

  6. NREL Engineer Gets Lifetime Achievement Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineer Gets Lifetime Achievement Award For more information contact: e:mail: Public Affairs Golden, Colo., May 20, 1998 — A senior engineer at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) will receive a major international award for his career-long contributions to the design of energy efficient buildings. Douglas Balcomb has been selected to receive the 1998 Lifetime Achievement Award from the Passive and Low-Energy Architecture (PLEA) network at the group's

  7. Integrated Engineering Information Technology, FY93 accommplishments

    SciTech Connect (OSTI)

    Harris, R.N.; Miller, D.K.; Neugebauer, G.L.; Orona, J.R.; Partridge, R.A.; Herman, J.D.

    1994-03-01

    The Integrated Engineering Information Technology (IEIT) project is providing a comprehensive, easy-to-use computer network solution or communicating with coworkers both inside and outside Sandia National Laboratories. IEIT capabilities include computer networking, electronic mail, mechanical design, and data management. These network-based tools have one fundamental purpose: to help create a concurrent engineering environment that will enable Sandia organizations to excel in today`s increasingly competitive business environment.

  8. Recent Stirling engine loss - understanding results

    SciTech Connect (OSTI)

    Tew, R.C.; Thieme, L.G.; Dudenhoefer, J.E.

    1994-09-01

    For several years, the National Aeronautics and Space Administration and other US Government agencies have been funding experimental and analytical efforts to improve the understanding of Stirling thermodynamic losses. NASA`s objective is to improve Stirling engine design capability to support the development of new engines for space power. An overview of these efforts was last given at the 1988 IECEC. Recent results of this research are reviewed.

  9. RESEARCH PERSONNEL AND ENGINEERING STAFF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Scientist (20%) Engineering Staff Walter Chapman, Mech. Engineer - To 93002 Greg Derrig, Senior Mechanical Engineer Lee Norris, Instr. Shop Supervisor - From 10102 ...

  10. Symbiotic Engineering | Open Energy Information

    Open Energy Info (EERE)

    Symbiotic Engineering Jump to: navigation, search Name: Symbiotic Engineering Place: Boulder, CO Website: www.symbioticengineering.com References: Symbiotic Engineering1...

  11. ETA Engineering | Open Energy Information

    Open Energy Info (EERE)

    ETA Engineering Jump to: navigation, search Logo: ETA Engineering Name: ETA Engineering Address: 4049 E. Presidio St., Suite 117 Place: Mesa, Arizona Zip: 85215 Product: renewable...

  12. Black Pine Engineering

    Broader source: Energy.gov [DOE]

    Black Pine Engineering is commercializing a disruptive technology in the turbomachinery industry. Using a patented woven composite construction, Black Pine Engineering can make turbomachines (turbines, compressors) that are cheaper and lighter than competing technologies. Using this technology, Black Pine Engineering will sell turbo-compressors which solve the problem of wasted steam in geothermal power plants.

  13. Handbook of Industrial Engineering Equations, Formulas, and Calculations

    SciTech Connect (OSTI)

    Badiru, Adedeji B; Omitaomu, Olufemi A

    2011-01-01

    The first handbook to focus exclusively on industrial engineering calculations with a correlation to applications, Handbook of Industrial Engineering Equations, Formulas, and Calculations contains a general collection of the mathematical equations often used in the practice of industrial engineering. Many books cover individual areas of engineering and some cover all areas, but none covers industrial engineering specifically, nor do they highlight topics such as project management, materials, and systems engineering from an integrated viewpoint. Written by acclaimed researchers and authors, this concise reference marries theory and practice, making it a versatile and flexible resource. Succinctly formatted for functionality, the book presents: Basic Math Calculations; Engineering Math Calculations; Production Engineering Calculations; Engineering Economics Calculations; Ergonomics Calculations; Facility Layout Calculations; Production Sequencing and Scheduling Calculations; Systems Engineering Calculations; Data Engineering Calculations; Project Engineering Calculations; and Simulation and Statistical Equations. It has been said that engineers make things while industrial engineers make things better. To make something better requires an understanding of its basic characteristics and the underlying equations and calculations that facilitate that understanding. To do this, however, you do not have to be computational experts; you just have to know where to get the computational resources that are needed. This book elucidates the underlying equations that facilitate the understanding required to improve design processes, continuously improving the answer to the age-old question: What is the best way to do a job?

  14. The CRC handbook of thermal engineering

    SciTech Connect (OSTI)

    Kreith, F.

    1999-12-01

    This book is not a traditional handbook. Engineers in industry need up-to-date, accessible information on the applications of heat and mass transfer. This book is the answer. Contents include: (1) emphasis on applications in thermal design and computer solutions of thermal engineering problems; (2) an introduction to the use of the Second Law of Thermodynamics in analysis, optimization, and economics; (3) information on topics of current interest--in a form convenient and accessible to the average engineer; (4) three chapters of background material--enough to review the basic principles needed to understand specific thermal applications; and (5) extensive treatment of computational tools and numerical analysis.

  15. High Efficiency Engine Technologies Program

    SciTech Connect (OSTI)

    Rich Kruiswyk

    2010-07-13

    Caterpillar's Product Development and Global Technology Division carried out a research program on waste heat recovery with support from DOE (Department of Energy) and the DOE National Energy Technology Laboratory. The objective of the program was to develop a new air management and exhaust energy recovery system that would demonstrate a minimum 10% improvement in thermal efficiency over a base heavy-duty on-highway diesel truck engine. The base engine for this program was a 2007 C15 15.2L series-turbocharged on-highway truck engine with a LPL (low-pressure loop) exhaust recirculation system. The focus of the program was on the development of high efficiency turbomachinery and a high efficiency turbocompound waste heat recovery system. The focus of each area of development was as follows: (1) For turbine stages, the focus was on investigation and development of technologies that would improve on-engine exhaust energy utilization compared to the conventional radial turbines in widespread use today. (2) For compressor stages, the focus was on investigating compressor wheel design parameters beyond the range typically utilized in production, to determine the potential efficiency benefits thereof. (3) For turbocompound, the focus was on the development of a robust bearing system that would provide higher bearing efficiencies compared to systems used in turbocompound power turbines in production. None of the turbocharger technologies investigated involved addition of moving parts, actuators, or exotic materials, thereby increasing the likelihood of a favorable cost-value tradeoff for each technology. And the turbocompound system requires less hardware addition than competing bottoming cycle technologies, making it a more attractive solution from a cost and packaging standpoint. Main outcomes of the program are as follows: (1) Two turbine technologies that demonstrated up to 6% improvement in turbine efficiency on gas stand and 1-3% improvement in thermal efficiency in

  16. Integrated two-cylinder liquid piston Stirling engine

    SciTech Connect (OSTI)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-06

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  17. System 80+{trademark} Standard Design: CESSAR design certification. Volume 10: Amendment I

    SciTech Connect (OSTI)

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report -- Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These volumes describe the Combustion Engineering, Inc. System 80{sup +}{trademark} Standard Design. This volume 10 discusses the Steam and Power Conversion System and Radioactive Waste Management.

  18. System 80+{trademark} Standard Design: CESSAR design certification. Volume 8: Amendment I

    SciTech Connect (OSTI)

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report -- Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These volumes describe the Combustion Engineering, Inc. System 80{sup +}{trademark} Standard Design. This volume 8 provides a description of instrumentation and controls.

  19. System 80+{trademark} Standard Design: CESSAR design certification. Volume 9: Amendment I

    SciTech Connect (OSTI)

    Not Available

    1990-12-21

    This report, entitled Combustion Engineering Standard Safety Analysis Report -- Design Certification (CESSAR-DC), has been prepared in support of the industry effort to standardize nuclear plant designs. These volumes describe the Combustion Engineering, Inc. System 80{sup +}{trademark} Standard Design. This volume 9 discusses Electric Power and Auxiliary Systems.

  20. Solar powered Stirling engine

    SciTech Connect (OSTI)

    Meijer, R.J.

    1987-11-24

    In a solar dish module which comprises a dish which receives incident solar rays and reflects them to a focus at which is located the combination of a receiver and a heat engine organized and arranged so that the heat energy of the reflected solar rays collected at the receiver powers the engine, and wherein the receiver and heat engine are supported from the dish by a framework, the improvement is described which comprises journal means for journaling at least the engine on the framework to maintain certain predetermined spatial orientation for the engine in relation to the direction of gravity irrespective of spatial orientation of the dish.

  1. Ceramic Technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Not Available

    1990-08-01

    The Ceramic Technology For Advanced Heat Engines Project was developed by the Department of Energy's Office of Transportation Systems (OTS) in Conservation and Renewable Energy. This project, part of the OTS's Advanced Materials Development Program, was developed to meet the ceramic technology requirements of the OTS's automotive technology programs. Significant accomplishments in fabricating ceramic components for the Department of Energy (DOE), National Aeronautics and Space Administration (NASA), and Department of Defense (DOD) advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and data base and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The objective of the project is to develop the industrial technology base required for reliable ceramics for application in advanced automotive heat engines. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on structural ceramics for advanced gas turbine and diesel engines, ceramic hearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines.

  2. A combined cycle engine test facility

    SciTech Connect (OSTI)

    Engers, R.; Cresci, D.; Tsai, C.

    1995-09-01

    Rocket-Based Combined-Cycle (RBCC) engines intended for missiles and/or space launch applications incorporate features of rocket propulsion systems operating in concert with airbreathing engine cycles. Performance evaluation of these types of engines, which are intended to operate from static sea level take-off to supersonic cruise or accerlerate to orbit, requires ground test capabilities which integrate rocket component testing with airbreathing engine testing. A combined cycle engine test facility has been constructed in the General Applied Science Laboratories, Inc. (GASL) Aeropropulsion Test Laboratory to meet this requirement. The facility was designed to support the development of an innovative combined cycle engine concept which features a rocket based ramjet combustor. The test requirements included the ability to conduct tests in which the propulsive force was generated by rocket only, the ramjet only and simultaneous rocket and ramjet power (combined cycle) to evaluate combustor operation over the entire engine cycle. The test facility provides simulation over the flight Mach number range of 0 to 8 and at various trajectories. The capabilities of the combined cycle engine test facility are presented.

  3. Progress toward the evolution of a Stirling Space Engine

    SciTech Connect (OSTI)

    Alger, D.L.

    1994-09-01

    Following the successful testing of the 25 kWe Space Power Demonstrator (SPD) engine in 1985, a Stirling Space Engine (SSE) technology advancement program was initiated. The program`s objective was to advance free-piston Stirling engine/alternator technology sufficiently so that a Stirling engine system may become a viable candidate for space power applications. Evolution of the SSE technology is planned to occur at three different engine heater temperature levels: 650, 1050, and 1300 K. These temperatures define three phases of technology development with the first phase involving the 650 K SPD engine. Technology development of the 650 K engine and preliminary design of the 1050 K engine will be discussed in this paper.

  4. Engine intake system

    SciTech Connect (OSTI)

    Kanesaka, H.

    1989-02-07

    An intake system is described for an internal combustion engine, the system comprising: an intake passage having an intake port and an inertial supercharging intake pipe leading to the intake port; an intake valve mounted in the intake port and operatively connected to the engine for alternately opening and closing the intake port; a rotary valve operatively connected to the engine and disposed in the intake passage intermediate the inertial supercharging intake pipe and the intake port. The rotary valve is rotatable for opening and closing the intake passage, and timing adjusting means operatively connected to the engine and to the rotary valve for retarding the opening of the rotary valve relative to the opening of the intake valve at low engine speeds, and for advancing the opening of the rotary valve at high engine speeds, whereby the retarding and advancing of the opening of the rotary valve enables inertial supercharging in the intake pipe at both low and high engine speeds.

  5. Incorporation of pollution prevention into the engineering command media

    SciTech Connect (OSTI)

    Harrington, E.; Hammonds, C.

    1997-10-08

    It has long been recognized that incorporation of pollution prevention (P2) into projects during the design phase yields superior results as compared to modification of facilities after construction. Generation of waste during construction can be minimized, products containing recycled materials can be incorporated into the facility, and the processes or systems can be optimized for P2 from the beginning. However, design engineers must have the proper mindset and training in order to achieve this, since standard engineering practice does not necessarily lead to construction of systems that are optimized for P2. It was determined that incorporation of P2 principles and methods into command media that govern the conduct of design and construction was one way of achieving P2 objectives during design. This would incorporate certain P2 elements into criteria and standard designs so that these elements are automatically incorporated into the designs. The Central Engineering Services (CES) Command Media, which provide direction, methodology, and criteria for performance of engineering design and construction, consist of Engineering Procedures, Master Design Criteria, Technical Specifications, and Engineering Standards. Incorporated in these documents are regulatory requirements, national consensus codes and standards, accepted and proven practices and designs, as well as DOE Orders governing design and construction. The documents were reviewed to identify potential areas into which P2 principles, practices, and methodologies could be incorporated.

  6. Energy Design Guides for Army Barracks: Preprint

    SciTech Connect (OSTI)

    Deru, M.; Zhivov, A.; Herron, D.

    2008-08-01

    The U.S. Army Corps of Engineers and NREL are developing target energy budgets and design guides to achieve 30% energy savings. This paper focuses the design guide for one type of barracks called unaccompanied enlisted personal housing.

  7. CONCEPTUAL DESIGN REPORT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CONCEPTUAL DESIGN REPORT CONCEPTUAL DESIGN REPORT SETUP KCRIMS.pdf (2.58 MB) More Documents & Publications Sample Project Execution Plan Voluntary Protection Program Onsite Review, Facility Engineering Services KCP, LLC - September 2012 Inspection, Kansas City Plant - May 2004

  8. University of Kansas: Technical Design Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Report of a 400W Portable Wind Turbine For Submission to the First NREL National Collegiate Wind Competition Departments of Aerospace and Mechanical Engineering Release Date: April 18, 2013 Jayhawk Windustries 2 Acknowledgments Jayhawk Windustries would like to acknowledge the significant guidance and consultation of Professors Dr. Kyle Wetzel from Wetzel Engineering, Dr. Rick Hale from the KU Aerospace Engineering Department, Dr. Chris Depcik from the KU Mechanical Engineering

  9. EGR Distribution in Engine Cylinders Using Advanced Virtual Simulation

    SciTech Connect (OSTI)

    Fan, Xuetong

    2000-08-20

    Exhaust Gas Recirculation (EGR) is a well-known technology for reduction of NOx in diesel engines. With the demand for extremely low engine out NOx emissions, it is important to have a consistently balanced EGR flow to individual engine cylinders. Otherwise, the variation in the cylinders' NOx contribution to the overall engine emissions will produce unacceptable variability. This presentation will demonstrate the effective use of advanced virtual simulation in the development of a balanced EGR distribution in engine cylinders. An initial design is analyzed reflecting the variance in the EGR distribution, quantitatively and visually. Iterative virtual lab tests result in an optimized system.

  10. Vehicle Technologies Office Merit Review 2014: Computational design and development of a new, lightweight cast alloy for advanced cylinder heads in high-efficiency, light-duty engines FOA 648-3a

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  11. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    SciTech Connect (OSTI)

    Victor Wong; Tian Tian; Luke Moughon; Rosalind Takata; Jeffrey Jocsak

    2006-03-31

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGF 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction

  12. Engineering evaluation of the General Motors (GM) diesel rating and capabilities

    SciTech Connect (OSTI)

    Gross, R.E.

    1992-04-01

    K-Reactor`s number one GM diesel (GM-lK) suffered recurrent, premature piston pin bushing failures between July 1990 and January 1991. These failures raised a concern that the engine`s original design capabilities were being exceeded. Were we asking old engines to do too much by powering 1200 kw (continuous) rated electrical generators? Was excessive wear of the piston pin bushings a result of having exceeded the engine`s capabilities (overload), or were the recent failures a direct result of poor quality, poor design, or defective replacement parts? Considering the engine`s overall performance for the past 30 years, during which an engine failure of this nature had never occurred, and the fact that 1200 kw was approximately 50% of the engine`s original tested capability, Reactor Engineering did not consider it likely that an overloaded engine caused bushing failures. What seemed more plausible was that the engine`s failure to perform was caused by deficiencies in, or poor quality of, replacement parts.The following report documents: (1) the results of K-Reactor EDG failure analysis; (2) correlation of P- and C-Reactor GM diesel teardowns; (3) the engine rebuild to blueprint specification; (4) how the engine was determined ready for test; (5) testing parameters that were developed; (6) a summary of test results and test insights; (7) how WSRC determined engine operation was acceptable; (8) independent review of 1200 kw operational data; (9) approval of the engines` 12OOkw continuous rating.

  13. Mechanical Engineering Department technical review

    SciTech Connect (OSTI)

    Carr, R.B.; Abrahamson, L.; Denney, R.M.; Dubois, B.E

    1982-01-01

    Technical achievements and publication abstracts related to research in the following Divisions of Lawrence Livermore Laboratory are reported in this biannual review: Nuclear Fuel Engineering; Nuclear Explosives Engineering; Weapons Engineering; Energy Systems Engineering; Engineering Sciences; Magnetic Fusion Engineering; and Material Fabrication. (LCL)

  14. The first of a series of high efficiency, high bmep, turbocharged two-stroke cycle diesel engines; the general motors EMD 645FB engine

    SciTech Connect (OSTI)

    Kotlin, J.J.; Dunteman, N.R.; Scott, D.I.; Williams, H.A. Jr.

    1983-01-01

    The current Electro-Motive Division 645 Series turbocharged engines are the Model FB and EC. The FB engine combines the highest thermal efficiency with the highest specific output of any EMD engine to date. The FB Series incorporates 16:1 compression ratio with a fire ring piston and an improved turbocharger design. Engine components included in the FB engine provide very high output levels with exceptional reliability. This paper also describes the performance of the lower rated Model EC engine series which feature high thermal efficiency and utilize many engine components well proven in service and basic to the Model FB Series.

  15. Pennsylvania State University: Technical Design Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Review of the Conceptual Design Process and the Analysis of the Remote Wind PSU Turbine Prepared for: The DOE Collegiate Wind Turbine Design Competition Principle Contributors: Ken Palamara Parth Patel Mike Popp Sahil Desai Greg Liptak Jake Lampenfield Armstrong Liu Kevin Knechtel Advisors Dr. Susan Stewart Dr. Dennis McLaughlin Assistant Professor & Research Associate, Aerospace Engineering Professor of Aerospace Engineering Mr. Brian Wallace Ph.D. Candidate in Aerospace Engineering 1

  16. Engineering Cellulases for Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2010-06-27

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  17. Subterranean stress engineering experiments

    SciTech Connect (OSTI)

    Campbell, J.R.; Colgate, S.A.; Wheat, B.M.

    1980-01-01

    The state of stress in a subterranean rock mass has classically been assumed to be constant at best. In soil with a high clay content, preconsolidation and drainage methods can lead to more stable foundation material, but methods for engineering the stresses in large masses of rock are not well known. This paper shows the results from an experiment designed to alter the in situ rock stress field in an oil shale mine. This was done by hydrofracturing the rock by use of a packed-well injection system and then propping the crack open with a thixotropic gel, which slowly hardened to the consistency of cement. Successive hydrofracture and high-pressure grouting resulted in an overstressed region. Well-head injection pressures, surface tilts, injection rates, and subterranean strains were measured and recorded on floppy disk by a Z-80 microprocessor. The results were then transmitted to the large computer system at the Los Alamos Scientific Laboratory (LASL). To put the data in a more useful form, computer-generated movies of the tilts and strains were made by use of computer graphics developed at LASL. The purpose of this paper is to present results from the Single Large Instrumented Test conducted in the Colony Oil Shale Mine near Rifle, Colorado. 13 figures.

  18. Wankel rotary engine development status and research needs

    SciTech Connect (OSTI)

    Martin, M.K.

    1982-11-01

    This report summarizes the status of Wankel rotary engine technology, particularly as applicable to highway vehicles. The Wankel engine was invented over 25 years ago, and has undergone continual evolutionary design refinement. The engine's perceived advantages of less weight, volume, and complexity than reciprocating engines sparked keen interest, and Wankel-powered automobiles have now been in production for almost 20 years. However, in the early 1970s interest in the Wankel engine greatly subsided because of two problems with the engine at that time: poor fuel economy and high hydrocarbon emissions. The bulk of current Wankel engine development work applicable to highway vehicles is being conducted by Toyo Kogyo (TK) and Curtiss-Wright (C-W). TK has manufactured over 1.2 million rotary engines to date, and markets them in the Mazda Luce and Cosmo in Japan and the Mazda RX-7 worldwide. State-of-the-art production rotary-powered vehicles from TK now exhibit fuel economy which appears to be competitive with many equal-performance, reciprocating-engine vehicles. C-W is focusing its efforts on direct-injection, stratified-charge designs for military and aircraft applications. The company is developing a 750-hp dual-rotor engine for the US Marine Corps, and has completed a design study for a 320-hp general aviation engine. Based on typical reciprocating engines of 1975 to 1977 vintage, and with final drive ratios adjusted to give roughly equal vehicle performance, calculated Environmental Protection Agency (EPA) city fuel economy with the C-W rotary averages 25% higher than with the reciprocating engine. The highway gain is 13%. Use of diesel fuel or a middle distillate instead of gasoline allows an additional 11% gain to be projected on a per-gallon basis. In addition, further gains of 14 to 38% are projected to result from use of a smaller turbocharged version of the engine.

  19. Stirling cycle rotary engine

    SciTech Connect (OSTI)

    Chandler, J.A.

    1988-06-28

    A Stirling cycle rotary engine for producing mechanical energy from heat generated by a heat source external to the engine, the engine including: an engine housing having an interior toroidal cavity with a central housing axis for receiving a working gas, the engine housing further having a cool as inlet port, a compressed gas outlet port, a heated compressed gas inlet port, and a hot exhaust gas outlet port at least three rotors each fixedly mounted to a respective rotor shaft and independently rotatable within the toroidal cavity about the central axis; each of the rotors including a pair of rotor blocks spaced radially on diametrically opposing sides of the respective rotor shaft, each rotor block having a radially fixed curva-linear outer surface for sealed rotational engagement with the engine housing.

  20. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  1. Staged combustion with piston engine and turbine engine supercharger

    DOE Patents [OSTI]

    Fischer, Larry E.; Anderson, Brian L.; O'Brien, Kevin C.

    2006-05-09

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  2. Science & Engineering Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Science & Engineering Capabilities These capabilities are our science and engineering at work for the national security interest in areas from global climate to cyber security, from nonproliferation to new materials, from clean energy solutions to supercomputing. Accelerators, Electrodynamics» Energy» Materials Science» Bioscience: Bioenergy, Biosecurity, and Health» Engineering» National Security, Weapons Science» Chemical Science» High-Energy-Density Plasmas, Fluids»

  3. Study of Fuel Property Effects Using Future Low Emissions Heavy Duty Truck Engine Hardware

    SciTech Connect (OSTI)

    Li, Sharon

    2000-08-20

    Fuel properties have had substantial impact on engine emissions. Fuel impact varies with engine technology. An assessment of fuel impact on future low emission designs was needed as part of an EMAEPA-API study effort

  4. Supervisory Electrical Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Maintenance, (J5640) Engineering and Construciton 5555 E....

  5. ARM - Engineering Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processes Workflow Graphic Engineering Workflow Document Tools for Workflow ECR ECO BCR Ingests Value-Added Products Reprocessing Instruments Data System Elements Field...

  6. Stirling engine heating system

    SciTech Connect (OSTI)

    Johansson, L.N.; Houtman, W.H.; Percival, W.H.

    1988-06-28

    A hot gas engine is described wherein a working gas flows back and forth in a closed path between a relatively cooler compression cylinder side of the engine and a relatively hotter expansion cylinder side of the engine and the path contains means including a heat source and a heat sink acting upon the gas in cooperation with the compression and expansion cylinders to cause the gas to execute a thermodynamic cycle wherein useful mechanical output power is developed by the engine, the improvement in the heat source which comprises a plurality of individual tubes each forming a portion of the closed path for the working gas.

  7. SCADA Engineering Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  8. Internet strategies for engineers

    SciTech Connect (OSTI)

    Hill, K.; Beruvides, M.G.

    1997-11-01

    This report contains viewgraphs on using internet strategies for engineers. How the internet is being used and what problems are being encountered are being considered.

  9. Electrical Engineer (Project Manager)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Maintenance, Engineering & Construction Facility...

  10. Recent Graduate- Electrical Engineer

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations Operations Engineering (J4200) 5555...

  11. XML Engineering Environment

    Energy Science and Technology Software Center (OSTI)

    2006-07-27

    The XML Engineering Environment is a reconfigurable software system that allows users to translate, enhance and route data from sources to sinks.

  12. Engine and method for operating an engine

    DOE Patents [OSTI]

    Lauper, Jr., John Christian; Willi, Martin Leo; Thirunavukarasu, Balamurugesh; Gong, Weidong

    2008-12-23

    A method of operating an engine is provided. The method may include supplying a combustible combination of reactants to a combustion chamber of the engine, which may include supplying a first hydrocarbon fuel, hydrogen fuel, and a second hydrocarbon fuel to the combustion chamber. Supplying the second hydrocarbon fuel to the combustion chamber may include at least one of supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into an intake system of the engine and supplying at least a portion of the second hydrocarbon fuel from an outlet port that discharges into the combustion chamber. Additionally, the method may include combusting the combustible combination of reactants in the combustion chamber.

  13. Initial tests of thermoacoustic space power engine.

    SciTech Connect (OSTI)

    Backhaus, S. N.

    2002-01-01

    Future NASA deep-space missions will require radioisotope-powered electric generators that are just as reliable as current RTGs, but more efficient and of higher specific power (Wikg). Thennoacoustic engines at the -1-kW scale have converted high-temperature heat into acoustic, or PV, power without moving parts at 30% efficiency. Consisting of only tubes and a few heat exchangers, thennoacoustic engines are low mass and promise to be highly reliable. Coupling a thennoacoustic engine to a low mass, highly reliable and efficient linear alternator will create a heat-driven electric generator suitable for deep-space applications. Conversion efficiency data will be presented on a demonstration thennoacoustic engine designed for the 1 00-Watt power range.

  14. Flex Fuel Optimized SI and HCCI Engine

    SciTech Connect (OSTI)

    Zhu, Guoming; Schock, Harold; Yang, Xiaojian; Huisjen, Andrew; Stuecken, Tom; Moran, Kevin; Zhen, Ron; Zhang, Shupeng

    2013-09-30

    The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight engine cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for

  15. The Opposed-Piston Two-Stroke Engine Alternative: Performance and Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Results in a Medium-Duty Application | Department of Energy The Opposed-Piston Two-Stroke Engine Alternative: Performance and Emissions Results in a Medium-Duty Application The Opposed-Piston Two-Stroke Engine Alternative: Performance and Emissions Results in a Medium-Duty Application Modern analytical tools, materials, and engineering methods have been applied to the development process of an opposed-piston two-stroke engine, resulting in a more energy efficient engine design.

  16. Perturbing engine performance measurements to determine optimal engine control settings

    DOE Patents [OSTI]

    Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna

    2014-12-30

    Methods and systems for optimizing a performance of a vehicle engine are provided. The method includes determining an initial value for a first engine control parameter based on one or more detected operating conditions of the vehicle engine, determining a value of an engine performance variable, and artificially perturbing the determined value of the engine performance variable. The initial value for the first engine control parameter is then adjusted based on the perturbed engine performance variable causing the engine performance variable to approach a target engine performance variable. Operation of the vehicle engine is controlled based on the adjusted initial value for the first engine control parameter. These acts are repeated until the engine performance variable approaches the target engine performance variable.

  17. Career Map: Industrial Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Engineer Career Map: Industrial Engineer Two industrial engineers analyze data on a computer. Industrial Engineer Position Title Industrial Engineer Alternate Title(s) Production Engineer, Process Engineer, Manufacturing Engineer, Industrial Production Manager Education & Training Level Advanced, Bachelors required, prefer graduate degree Education & Training Level Description Industrial engineers should have a bachelor's degree in industrial engineering. Employers also value

  18. Career Map: Research Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineer Career Map: Research Engineer Two research engineers wearing safety glasses view results of an experiment. Research Engineer Position Title Research Engineer Alternate Title(s) Government Engineer, Research and Development Engineer, Basic Research Engineer, Component Researcher, Materials Engineer Education & Training Level Bachelor's degree required, prefer graduate degree Education & Training Level Description Research engineers must have a bachelor's degree. Employers value

  19. WSU Mechanical Engineering students unveil their solutions to help PNNL

    National Nuclear Security Administration (NNSA)

    researchers with nonproliferation and international safeguards work | National Nuclear Security Administration | (NNSA) WSU Mechanical Engineering students unveil their solutions to help PNNL researchers with nonproliferation and international safeguards work Wednesday, May 11, 2016 - 11:29am PNNL engineer Devin Wright, left, and WSU engineering student Nate Williams position a detector on the templating cart designed to position detection instruments accurately. Pacific Northwest National

  20. Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Chemistry during LNT Regeneration for a Lean Gasoline Engine Reductant Chemistry during LNT Regeneration for a Lean Gasoline Engine Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-09_parks.pdf (507.29 KB) More Documents & Publications Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx Reduction in Coupled LNT-SCR Systems Emissions Control for Lean

  1. Hydrogen Fuel Cell Engines and Related Technologies Course | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Hydrogen Fuel Cell Engines and Related Technologies Course Hydrogen Fuel Cell Engines and Related Technologies Course Photo of hydrogen-powered bus. Produced by College of the Desert and SunLine Transit Agency with funding from the U.S. Federal Transit Administration, this course features technical information on the use of hydrogen as a transportation fuel. It covers hydrogen properties, use, and safety as well as fuel cell technologies, systems, engine design, safety, and

  2. Effects of ethanol on small engines and the environment

    SciTech Connect (OSTI)

    Bettis, M.D.

    1995-01-09

    With the support of the Missouri Corn Merchandising Council and the Department of Energy, Northwest Missouri State University conducted an applied research project to investigate the effects of the commercially available ethanol/gasoline fuel blend on small engines. The study attempted to identify any problems when using the 10% ethanol/gasoline blend in engines designed for gasoline and provide solutions to the problems identified. Fuel economy, maximum power, internal component wear, exhaust emissions and engine efficiency were studied.

  3. Thermodynamic Advantages of Low Temperature Combustion Engines Including

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Use of Low Heat Rejection Concepts | Department of Energy Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts Thermodynamic Advantages of Low Temperature Combustion Engines Including the Use of Low Heat Rejection Concepts Thermodynamic cycle simulation was used to evaluate low temperature combustion in systematic and sequential fashion to base engine design. deer10_caton.pdf (462.23 KB) More Documents & Publications Boosted HCCI for High

  4. Advanced System for Process Engineering

    Energy Science and Technology Software Center (OSTI)

    1998-09-14

    PRO ASPEN/PC1.0 (Advanced System for Process Engineering) is a state of the art process simulator and economic evaluation package which was designed for use in engineering fossil energy conversion processes and has been ported to run on a PC. PRO ASPEN/PC1.0 can represent multiphase streams including solids, and handle complex substances such as coal. The system can perform steady state material and energy balances, determine equipment size and cost, and carry out preliminary economic evaluations.more » It is supported by a comprehensive physical property system for computation of major properties such as enthalpy, entropy, free energy, molar volume, equilibrium ratio, fugacity coefficient, viscosity, thermal conductivity, and diffusion coefficient for specified phase conditions; vapor, liquid, or solid. The properties may be computed for pure components, mixtures, or components in a mixture, as appropriate. The PRO ASPEN/PC1.0 Input Language is oriented towards process engineers.« less

  5. SCADA Engineering Solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineering Solutions - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  6. Engineered Natural Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engineered Natural Systems Onsite researchers at NETL develop processes, techniques, instrumentation, and relationships to collect, interpret, and disseminate data in an effort to characterize and understand the behavior of engineered natural systems. Research includes investigating theoretical and observed phenomena to support program needs and developing new concepts in the areas of analytical biogeochemistry, geology, and monitoring. Specific expertise includes: Analytical- Bio- and Geo-

  7. Engineering Division Superconducting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Engineering Division Superconducting Magnet Technology for Fusion and Large Scale Applications Joseph V. Minervini Massachusetts Institute of Technology Plasma Science and Fusion Center Princeton Plasma Physics Laboratory Colloquium Princeton, NJ October 15, 2014 Technology & Engineering Division Contents * Fusion Magnets - Present and Future - Vision - State-of-the-art - New developments in superconductors * Advanced fusion magnet technology * Other large scale applications of

  8. Free piston stirling engines

    SciTech Connect (OSTI)

    Walker, C.

    1985-01-01

    This book presents a basic introduction to free piston Stirling engine technology through a review of specialized background material. It also includes information based on actual construction and operation experience with these machines, as well as theoretical and analytical insights into free piston Stirling engine technology.

  9. System 80+{trademark} standard design: CESSAR design certification. Volume 5: Amendment I

    SciTech Connect (OSTI)

    Not Available

    1990-12-21

    This report has been prepared in support of the industry effort to standardize nuclear plant designs. The documents in this series describe the Combustion Engineering, Inc. System 80+{sup TM} Standard Design.

  10. Thermoacoustic engines and refrigerators

    SciTech Connect (OSTI)

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  11. Low pressure high speed Stirling air engine. Final technical report

    SciTech Connect (OSTI)

    Ross, M.A.

    1980-06-16

    The purpose of this project was to design, construct and test a simple, appropriate technology low pressure, high speed, wood-fired Stirling air engine of 100 W output. The final design was a concentric piston/displacer engine of 454 in. bore and 1 in. stroke with a rhombic drive mechanism. The project engine was ultimately completed and tested, using a propane burner for all tests as a matter of convenience. The 100 W aim was exceeded, at atmospheric pressure, over a wide range of engine speed with the maximum power being 112 W at 1150 rpm. A pressure can was constructed to permit pressurization; however the grant funds were running out, and the only pressurized power test attempted was unsuccessful due to seal difficulties. This was a disappointment because numerous tests on the 4 cubic inch engine suggested power would be more than doubled with pressurization at 25 psig. A manifold was designed and constructed to permit operation of the engine over a standard No. 40 pot bellied stove. The engine was run successfully, but at reduced speed and power, over this stove. The project engine started out being rather noisy in operation, but modifications ultimately resulted in a very quiet engine. Various other difficulties and their solutions also are discussed. (LCL)

  12. Procuring Architectural and Engineering Services for Energy Efficiency and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainability | Department of Energy Procuring Architectural and Engineering Services for Energy Efficiency and Sustainability Procuring Architectural and Engineering Services for Energy Efficiency and Sustainability 51367_resguidefedconsmgr.pdf (1.9 MB) More Documents & Publications Audit Report: IG-0387 Chapter 2: Whole-Buildling Design Guide to Integrating Renewable Energy in Federal Construction

  13. Increased Engine Efficiency via Advancements in Engine Combustion Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Engine Efficiency via Advancements in Engine Combustion Systems Increased Engine Efficiency via Advancements in Engine Combustion Systems Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10_sisken.pdf (978.17 KB) More Documents & Publications High-Efficiency Engine Technologies Session Introduction Demonstrating and Validating a Next Generation Model-Based Controller for

  14. Tool and Fixture Design

    SciTech Connect (OSTI)

    Graham, Mark W.

    2015-07-28

    In a manufacturing process, a need is identified and a product is created to fill this need. While design and engineering of the final product is important, the tools and fixtures that aid in the creation of the final product are just as important, if not more so. Power supplies assembled at the TA-55 PF-5 have been designed by an excellent engineering team. The task in PF-5 now is to ensure that all steps of the assembly and manufacturing process can be completed safely, reliably, and in a quality repeatable manner. One of these process steps involves soldering fine wires to an electrical connector. During the process development phase, the method of soldering included placing the power supply in a vice in order to manipulate it into a position conducive to soldering. This method is unacceptable from a reliability, repeatability, and ergonomic standpoint. To combat these issues, a fixture was designed to replace the current method. To do so, a twelve step engineering design process was used to create the fixture that would provide a solution to a multitude of problems, and increase the safety and efficiency of production.

  15. Mechanisms Engineering Test Loop - Phase I Status Report - FY2015

    SciTech Connect (OSTI)

    Hvasta, M.; Grandy, C.; Lisowski, D.; Borowski, A.

    2015-09-01

    This report documents the current status of the Mechanisms Engineering Test Loop (METL) as of the end of FY2015. METL is currently in Phase I of its design and construction.

  16. Starting low compression ratio rotary Wankel diesel engine

    SciTech Connect (OSTI)

    Kamo, R.; Yamada, T.Y.; Hamada, Y.

    1987-01-01

    The single stage rotary Wankel engine is difficult to convert into a diesel version having an adequate compression ratio and a compatible combustion chamber configuration. Past efforts in designing a rotary-type Wankel diesel engine resorted to a two-stage design. Complexity, size, weight, cost and performance penalties were some of the drawbacks of the two-stage Wankel-type diesel designs. This paper presents an approach to a single stage low compression ratio Wankel-type rotary engine. Cold starting of a low compression ratio single stage diesel Wankel becomes the key problem. It was demonstrated that the low compression single stage diesel Wankel type rotary engine can satisfactorily be cold started with a properly designed combustion chamber in the rotor and a variable heat input combustion aid.

  17. Heavy Truck Engine Program

    SciTech Connect (OSTI)

    Nelson, Christopher

    2009-01-08

    The Heavy Duty Truck Engine Program at Cummins embodied three significant development phases. All phases of work strove to demonstrate a high level of diesel engine efficiency in the face of increasingly stringent emission requirements. Concurrently, aftertreatment system development and refinement was pursued in support of these efficiency demonstrations. The program's first phase focused on the demonstration in-vehicle of a high level of heavy duty diesel engine efficiency (45% Brake Thermal Efficiency) at a typical cruise condition while achieving composite emissions results which met the 2004 U.S. EPA legislated standards. With a combination of engine combustion calibration tuning and the development and application of Urea-based SCR and particulate aftertreatment, these demonstrations were successfully performed by Q4 of 2002. The second phase of the program directed efforts towards an in-vehicle demonstration of an engine system capable of meeting 2007 U.S. EPA legislated emissions requirements while achieving 45% Brake Thermal Efficiency at cruise conditions. Through further combustion optimization, the refinement of Cummins Cooled EGR architecture, the application of a high pressure common rail fuel system and the incorporation of optimized engine parasitics, Cummins Inc. successfully demonstrated these deliverables in Q2 of 2004. The program's final phase set a stretch goal of demonstrating 50% Brake Thermal Efficiency from a heavy duty diesel engine system capable of meeting 2010 U.S. EPA legislated emissions requirements. Cummins chose to pursue this goal through further combustion development and refinement of the Cooled EGR system architecture and also applied a Rankine cycle Waste Heat Recovery technique to convert otherwise wasted thermal energy to useful power. The engine and heat recovery system was demonstrated to achieve 50% Brake Thermal Efficiency while operating at a torque peak condition in second quarter, 2006. The 50% efficient engine

  18. Wind Energy Workforce Development: Engineering, Science, & Technology

    SciTech Connect (OSTI)

    Lesieutre, George A.; Stewart, Susan W.; Bridgen, Marc

    2013-03-29

    Broadly, this project involved the development and delivery of a new curriculum in wind energy engineering at the Pennsylvania State University; this includes enhancement of the Renewable Energy program at the Pennsylvania College of Technology. The new curricula at Penn State includes addition of wind energy-focused material in more than five existing courses in aerospace engineering, mechanical engineering, engineering science and mechanics and energy engineering, as well as three new online graduate courses. The online graduate courses represent a stand-alone Graduate Certificate in Wind Energy, and provide the core of a Wind Energy Option in an online intercollege professional Masters degree in Renewable Energy and Sustainability Systems. The Pennsylvania College of Technology erected a 10 kilowatt Xzeres wind turbine that is dedicated to educating the renewable energy workforce. The entire construction process was incorporated into the Renewable Energy A.A.S. degree program, the Building Science and Sustainable Design B.S. program, and other construction-related coursework throughout the School of Construction and Design Technologies. Follow-on outcomes include additional non-credit opportunities as well as secondary school career readiness events, community outreach activities, and public awareness postings.

  19. Conceptual Design RM | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design RM Conceptual Design RM This Review Module is a tool that assists Department of Energy (DOE) federal project review teams in evaluating the adequacy of the conceptual design package prior to CD-1 approval. It focuses on the conceptual design package key elements including requirements analysis, safety design basis, alternatives analysis, systems engineering, value management, risk analysis, and acquisition strategy. Conceptual Design RM (2.32 MB) More Documents & Publications

  20. Metabolic Pathways and Metabolic Engineering

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    engineering Adam Guss Genetic and Metabolic Engineer Oak Ridge National Laboratory Sept 25, 2013 2 Managed by UT-Battelle for the U.S. Department of Energy Metabolic engineering of ...

  1. VALUE ENGINEERING.PDF

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 I N S P E C T I O N R E P O R T U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF INSPECTIONS FOLLOW-ON INSPECTION OF THE DEPARTMENT OF ENERGY'S VALUE ENGINEERING PROGRAM DECEMBER 2001 U.S. DEPARTMENT OF ENERGY Washington, DC 20585 December 20, 2001 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman /s/ Inspector General SUBJECT: INFORMATION: Report on "Follow-on Inspection of the Department of Energy's Value Engineering Program" BACKGROUND Value Engineering is a

  2. Ceramic technology for Advanced Heat Engines Project

    SciTech Connect (OSTI)

    Johnson, D.R.

    1991-07-01

    Significant accomplishments in fabricating ceramic components for advanced heat engine programs have provided evidence that the operation of ceramic parts in high-temperature engine environments is feasible. However, these programs have also demonstrated that additional research is needed in materials and processing development, design methodology, and database and life prediction before industry will have a sufficient technology base from which to produce reliable cost-effective ceramic engine components commercially. An assessment of needs was completed, and a five year project plan was developed with extensive input from private industry. The project approach includes determining the mechanisms controlling reliability, improving processes for fabricating existing ceramics, developing new materials with increased reliability, and testing these materials in simulated engine environments to confirm reliability. Although this is a generic materials project, the focus is on the structural ceramics for advanced gas turbine and diesel engines, ceramic bearings and attachments, and ceramic coatings for thermal barrier and wear applications in these engines. To facilitate the rapid transfer of this technology to US industry, the major portion of the work is being done in the ceramic industry, with technological support from government laboratories, other industrial laboratories, and universities. This project is managed by ORNL for the Office of Transportation Technologies, Office of Transportation Materials, and is closely coordinated with complementary ceramics tasks funded by other DOE offices, NASA, DOD, and industry.

  3. Rick Sawicki Interview for Dartmouth Engineer Magazine

    SciTech Connect (OSTI)

    Sawicki, R

    2008-05-21

    In this issue Rick Sawicki answers the question--What is your role as chief engineer on this project? His reply is--There are two major roles for the Chief Engineer position: (1) to assure that the engineering that is being performed for the project is safely completed in full compliance with all federal, state and Lawrence Livermore National Laboratory policies, standards and procedures and (2) as needed, address special engineering issues as they arise assuring that their resolution is completed in the safest, most effective manner consistent with the project's budget and schedule constraints. Currently the project is nearing completion. Many activities are rapidly coming to a conclusion and many new, complex systems are being activated. I am presently playing a major role in coordinating these activities so that the work can be executed safely and efficiently and the project will complete on schedule. He also answers the following questions: (1) What is the timetable to have this facility up and running for experimentation; (2) Where is the facility; (3) How large is your team of designers, engineers, etc.; (4) What are the means of achieving nuclear fusion; (5) What are the special engineering challenges of this project; (6) How close are scientists to achieving nuclear fusion; (7) What safety issues are involved in nuclear fusion; (8) Are there any waste issues involved in nuclear fusion that need to be solved; (9) Are there security issues to take into consideration in designing a facility for nuclear fusion; (10) Do you work directly with any of the scientists who are working on nuclear fusion; (11) What are kinds of engineers are needed in your area of expertise; and (12) Anything else you think is important for people to know about nuclear fusion as a piece of the energy solutions puzzle?

  4. Working With PNNL Mentors, Engineering Students Deliver Prototype

    National Nuclear Security Administration (NNSA)

    Safeguards Fixtures | National Nuclear Security Administration | (NNSA) Working With PNNL Mentors, Engineering Students Deliver Prototype Safeguards Fixtures Friday, December 18, 2015 - 12:00am NNSA Blog Earlier this month, Washington State University mechanical engineering students delivered two prototypes developed as part of their senior design projects to their Pacific Northwest National Laboratory mentors. The design projects were supported by the Next Generation Safeguards Initiative

  5. DOE - Office of Legacy Management -- Winchester Engineering and Analytical

    Office of Legacy Management (LM)

    Center - MA 03 Winchester Engineering and Analytical Center - MA 03 FUSRAP Considered Sites Site: Winchester Engineering and Analytical Center (MA.03) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Northeastern Radiological Health Laboratory Raw Materials Development Laboratory MA.03-1 MA.03-2 Location: Holton Street , Winchester , Massachusetts MA.03-2 Evaluation Year: 1986 MA.03-1 MA.03-3 Site Operations: Conducted process development activities

  6. Career Map: Electrical Engineer | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Engineer Career Map: Electrical Engineer Two electrical engineers inspect the electrical components to a turbine. Electrical Engineer Position Title Electrical Engineer Alternate Title(s) Electronics Engineer, Project Engineer, Power Systems, Transmission Engineer Education & Training Level Advanced, bachelor's required, prefer graduate degree Education & Training Level Description Electrical engineers must have a bachelor's degree. Employers also value practical experience,

  7. NTRCI Legacy Engine Research and Development Project Final Technical Report

    SciTech Connect (OSTI)

    Connie Smith-Holbert; Joseph Petrolino; Bart Watkins; David Irick

    2011-12-31

    The Legacy engine is a completely new design, transitional diesel engine, replacing the reciprocating engine with a rotary engine. The Legacy engine offers significant advances over conventional internal combustion engines in 1) power to weight ratio; 2) multiple fuel acceptance; 3) fuel economy; and 4) environmental compliance. These advances are achieved through a combination of innovative design geometry, rotary motion, aspiration simplicity, and manufacturing/part simplicity. The key technical challenge to the Legacy engine??s commercialization, and the focus of this project, was the development of a viable roton tip seal. The PST concept for the roton tip seal was developed into a manufacturable design. The design was evaluated using a custom designed and fabricated seal test fixture and further refined. This design was incorporated into the GEN2.5A prototype and tested for achievable compression pressure. The Decision Point at the end of Phase 1 of the project (described below) was to further optimize the existing tip seal design. Enhancements to the tip seal design were incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Compression pressures adequate for compression ignition of diesel fuel were achieved, although not consistently in all combustion volumes. The variation in compression pressures was characterized versus design features. As the roton tip seal performance was improved, results pointed toward inadequate performance of the housing side seals. Enhancement of the housing side seal system was accomplished using a custom designed side seal test fixture. The design enhancements developed with the test fixture were also incorporated into the GEN2.5B prototype and tested and evaluated using the iterative research strategy described below. Finally, to simplify the requirements for the roton tip seals and to enhance the introduction and combustion of fuel, a flush-mount fuel injector

  8. New 11 liter Komatsu diesel engine

    SciTech Connect (OSTI)

    Mizusawa, M.; Tanosaki, T.; Kawase, M.; Oguchi, T.

    1984-01-01

    New 6 cylinder direct injection 11 liter diesel engines which have naturally aspirated, turbocharged, and turbocharged-aftercooled versions have been developed and moved in production at the end of 1983. The highest output of the turbocharged-aftercooled version is 276 kW (375 ps) at 2200 RPM. Based on Komatsu new technologies 125 mm bore diesel has been designed to meet the users' demands, such as compact in size, light in weight, extremely high performance, high reliability and durability. The turbocharged and turbocharged-aftercooled engines are characterized by the adoption of the ductile cast iron piston which is the first application into the high speed, four cycle diesels in production in the world, and which was enabled by Komatsu design and precision casting technologies. This paper also covers the other design aspects and performance characteristics.

  9. DOE - Office of Legacy Management -- Combustion Engineering Co - CT 03

    Office of Legacy Management (LM)

    Combustion Engineering Co - CT 03 FUSRAP Considered Sites Site: Combustion Engineering, CT (CT.03 ) Cleanup in progress by U.S. Army Corps of Engineers. Designated Name: Combustion Engineering Alternate Name: CE Site Asea Brown Boveri S1C Prototype CT.03-1 Location: 1000 Prospect Hill Road, Windsor, Connecticut CT.03-2 Evaluation Year: 1994 CT.03-1 Site Operations: Used natural, enriched, and highly enriched uranium to make fuel assemblies for the AEC. CT.03-3 CT.03-4 Site Disposition: Eligible

  10. BEW Engineering | Open Energy Information

    Open Energy Info (EERE)

    Services Product: BEW Engineering provides engineering consulting services, and performs research and development in electrical power systems for bulk power and distributed energy...

  11. Visual Engineering | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    other engineering products. In addition, Mark Bryden and Doug McCorkle, along with collaborators at NETL and Reaction Engineering International have developed open-source software...

  12. Taitem Engineering | Open Energy Information

    Open Energy Info (EERE)

    Taitem Engineering Jump to: navigation, search Name: Taitem Engineering Place: Ithaca, NY Information About Partnership with NREL Partnership with NREL Yes Partnership Type "CRADA"...

  13. Pract Engineering | Open Energy Information

    Open Energy Info (EERE)

    Pract Engineering Jump to: navigation, search Name: Pract Engineering Address: 1150 55th Street, Suite C Place: Emeryville, California Zip: 94608 Region: Bay Area Sector: Renewable...

  14. ION Engineering | Open Energy Information

    Open Energy Info (EERE)

    ION Engineering Jump to: navigation, search Name: ION Engineering Place: Boulder, Colorado Zip: 80301 Sector: Carbon Product: ION is the first clean-tech company to successfully...

  15. Windward Engineering | Open Energy Information

    Open Energy Info (EERE)

    Windward Engineering Jump to: navigation, search Name: Windward Engineering Place: Spanish Fork, Utah Zip: 84660 Sector: Wind energy Product: Provides simulations, testing and...

  16. Argonne Plasma Engineering Experiment (APEX) tokamak

    SciTech Connect (OSTI)

    Norem, J.H.; Balka, L.J.; Kulovitz, E.C.; Magill, S.R.; McGhee, D.G.; Moretti, A.; Praeg, W.F.

    1981-01-01

    This paper describes the design and operation of the Argonne Plasma Engineering Experiment (APEX) tokamak. This machine was designed to provide a high performance plasma at a minimum cost, thus combining, to some extent, the high current densities, long pulse duration, and flexibility of operation of large, multipurpose machines, with the low cost of small machines. The APEX tokamak was designed specifically for studies in plasma-wall interactions and rf heating and current drive, and some tradeoffs were made in order to optimize the device for this purpose. The general design, however, should be quite applicable to other uses and could be fairly easily scaled up or down to fit available power supplies and needs. Special features of this design included use of the self-centering force of the toroidal field (TF) coil to simplify the mechanical design of the coils and digital equilibrium field (EF) control.

  17. Defining engine efficiency limits

    Broader source: Energy.gov [DOE]

    Investigates the potential to reduce engine efficiency losses and how this impacts the entire system in terms of a direct increase in work output or a change in the loss mechanism.

  18. Student Trainee (General Engineer)

    Broader source: Energy.gov [DOE]

    This position is located in Power Services (P) of the Bonneville Power Administration (BPA). The position involves periods of pertinent formal education and periods of employment in an engineering...

  19. Energy Technology Engineering Center

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Technology Engineering Center (ETEC) is located within Area IV of the Santa Susana Field Laboratory. The ETEC occupies 90-acres within the 290 acre site. The Santa Susana Field...

  20. INL '@work' Nuclear Engineer

    ScienceCinema (OSTI)

    McLean, Heather

    2013-05-28

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  1. Rotary vee engine

    SciTech Connect (OSTI)

    Sullivan, R.W.; Holder, T.J.; Buchanan, M.F.

    1991-05-14

    This patent describes a rotary vee engine. It comprises: a housing; two cylinder blocks; angled support shaft means; an air/fuel system; angled pistons; and sealing means for sealing the combustion chamber.

  2. Rotary internal combustion engine

    SciTech Connect (OSTI)

    Murray, J.L.; Mosca, J.O.

    1992-02-25

    This patent describes a rotary internal combustion engine. It includes a housing; a cam track internally disposed within the housing and adapted to receive a cam follower; an engine block disposed within the housing, the engine block being relatively rotatable within the housing about a central axis; means connectable to an external drive member for translating the relative rotation of the engine block with respect to the housing into useful work; at least one radially arranged cylinder assembly on the block, each cylinder assembly including a cylinder having a longitudinal axis extending generally radially outwardly from the rotational axis of the block, the cylinder including means defining an end wall, a piston member disposed within the cylinder and adapted to reciprocate within the cylinder; the piston, cylinder and cylinder end wall together.

  3. Information Systems Engineering

    Broader source: Energy.gov [DOE]

    The OCIO is dedicated to supporting the development and maintenance of DOE Department wide and site-specific software and IT systems engineering initiatives.  This webpage contains resources,...

  4. General Engineer (Project Manager)

    Broader source: Energy.gov [DOE]

    (See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Desert Southwest Region Engineering and Construction (G5600) 615 S. 43rd Avenue...

  5. Displacer for Stirling engine

    SciTech Connect (OSTI)

    Brown, A. T.

    1985-12-24

    In a Stirling engine and the like, a displacer piston having a plurality of internal baffles and insulation so as to prevent undesired heat transfer across the displacer piston.

  6. INL '@work' Nuclear Engineer

    SciTech Connect (OSTI)

    McLean, Heather

    2008-01-01

    Heather MacLean talks about her job as a Nuclear Engineer for Idaho National Laboratory. For more information about INL careers, visit http://www.facebook.com/idahonationallaboratory.

  7. Science, Technology & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Alan Bishop selected to lead LANL Science, Technology & Engineering directorate August 17, 2012 LOS ALAMOS, NEW MEXICO, August 17, 2012-Los Alamos National Laboratory Director Charles McMillan announced today that after a yearlong, nationwide search, Alan Bishop has been selected to be the Laboratory's next Principal Associate Director for Science, Technology, and Engineering (PADSTE). Bishop has been acting in that role - 2 - since Aug. 29, 2011.Over the course of a distinguished 30-year

  8. Windmills for ramjet engine

    SciTech Connect (OSTI)

    Giles, H.L.

    1983-01-18

    A solid fueled ramjet engine comprising solid fuel within a combustion chamber in the form of a hollow cylinder, and a windmill at the entrance to the hollow cylinder for promoting better distribution of the air, better mixing of the air and combustion gases, and more complete combustion of the solid fuel. The windmill is turned by the incoming airflow and can rotate a generator to provide a source of electrical power for the aircraft on which the engine is used.

  9. Materials Sciences and Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  10. Nuclear Power & Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power & Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  11. Predictive Simulation of Engines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Predictive Simulation of Engines - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  12. Internal combustion engine

    SciTech Connect (OSTI)

    Bernauer, O.

    1980-10-07

    An internal combustion engine is described that has walls delimiting the working space or spaces of the internal combustion engine, in which a hydrogen-impervious, encapsulated metal hydride storage device is provided which is in heat-conducting contact with these walls; the interior of the encapsulation is adapted to be selectively connected to a source of hydrogen and/or to a separate further hydrogen storage device.

  13. Stirling engine power control

    DOE Patents [OSTI]

    Fraser, James P.

    1983-01-01

    A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

  14. Publication in Ocean Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publication in Ocean Engineering - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  15. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  16. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  17. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  18. Engineered containment and control systems : nurturing nature.

    SciTech Connect (OSTI)

    MacDonell, M.; Clarke, J.; Smith, E.; Dunn, J.; Waugh, J.; Environmental Assessment; Vanderbilt Univ.; ORNL; Kleinfelder; U.S. Department of Energy Grand Junction Office

    2004-06-01

    The development of engineered containment and control systems for contaminated sites must consider the environmental setting of each site. The behaviors of both contaminated materials and engineered systems are affected by environmental conditions that will continue to evolve over time as a result of such natural processes as climate change, ecological succession, pedogenesis, and landform changes. Understanding these processes is crucial to designing, implementing, and maintaining effective systems for sustained health and environmental protection. Traditional engineered systems such as landfill liners and caps are designed to resist natural processes rather than working with them. These systems cannot be expected to provide long-term isolation without continued maintenance. In some cases, full-scale replacement and remediation may be required within 50 years, at an effort and cost much higher than for the original cleanup. Approaches are being developed to define smarter containment and control systems for stewardship sites, considering lessons learned from implementing prescriptive waste disposal regulations enacted since the 1970s. These approaches more effectively involve integrating natural and engineered systems; enhancing sensors and predictive tools for evaluating performance; and incorporating information on failure events, including precursors and consequences, into system design and maintenance. An important feature is using natural analogs to predict environmental conditions and system responses over the long term, to accommodate environmental change in the design process, and, as possible, to engineer containment systems that mimic favorable natural systems. The key emphasis is harmony with the environment, so systems will work with and rely on natural processes rather than resisting them. Implementing these new integrated systems will reduce current requirements for active management, which are resource-intensive and expensive.

  19. Rotor Aerodynamic Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerodynamic Design - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  20. Rotor Design Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Tools - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy