National Library of Energy BETA

Sample records for detonation nurse triage

  1. ORISE: Nurse Triage Lines Support | How ORISE is Making a Difference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nurse triage lines as a promising method for reducing disparities in access to quality health care during an influenza pandemic. Nurse triage lines are used daily in the United...

  2. ORISE: Nurse Triage Lines Support | How ORISE is Making a Difference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nurse Triage Lines Support ORISE contributes to CDC Public Health Policy Competition win How ORISE is Making a Difference The Centers for Disease Control and Prevention (CDC), Influenza Coordination Unit (ICU) recently won the 2012 Annual Public Health Policy Competition for a proposal to explore the use of nurse triage lines during an influenza pandemic. As a key partner, the Oak Ridge Institute for Science and Education (ORISE) provided critical coordination, research, development of

  3. detonation detection

    National Nuclear Security Administration (NNSA)

    7%2A en US Air Force Launches Satellite Carrying NNSA-provided Nuclear Detonation Detection Sensors http:nnsa.energy.govmediaroompressreleasesafsatellite

  4. detonation detection

    National Nuclear Security Administration (NNSA)

    Satellite Carrying NNSA-provided Nuclear Detonation Detection Sensors http:www.nnsa.energy.govmediaroompressreleasesafsatellite

  5. Artemis Triage 2.0

    Energy Science and Technology Software Center (OSTI)

    2012-10-30

    Artemis Triage is a child porngraphy detection tool designed to assist law enforcement in digital forensics investigations.

  6. High temperature detonator

    DOE Patents [OSTI]

    Johnson, James O. (Los Alamos, NM); Dinegar, Robert H. (Los Alamos, NM)

    1988-01-01

    A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

  7. Detonation Wave Profile

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  8. Data triage enables extreme-scale computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data triage enables extreme-scale computing Data triage enables extreme-scale computing Data selection and triage are important techniques for large-scale data, which can drastically reduce the amount of data written to disk or transmitted over a network. August 1, 2014 Spatial partitioning for the ocean simulation data set. Spatial partitioning for the ocean simulation data set. The main focus for ADR is to prioritize data primarily generated by large-scale scientific simulations run on

  9. Detonation command and control

    DOE Patents [OSTI]

    Mace, Jonathan L.; Seitz, Gerald J.; Echave, John A.; Le Bas, Pierre-Yves

    2015-11-10

    The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link therebetween. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.

  10. Bidirectional slapper detonator

    DOE Patents [OSTI]

    McCormick, Robert N. (Los Alamos, NM); Boyd, Melissa D. (Los Alamos, NM)

    1984-01-01

    The disclosure is directed to a bidirectional slapper detonator. One embodiment utilizes a single bridge circuit to detonate a pair of opposing initiating pellets. A line generator embodiment uses a plurality of bridges in electrical series to generate opposing cylindrical wavefronts.

  11. Reverse slapper detonator

    DOE Patents [OSTI]

    Weingart, Richard C. (Livermore, CA)

    1990-01-01

    A reverse slapper detonator (70), and methodology related thereto, are provided. The detonator (70) is adapted to be driven by a pulse of electric power from an external source (80). A conductor (20) is disposed along the top (14), side (18), and bottom (16) surfaces of a sheetlike insulator (12). Part of the conductor (20) comprises a bridge (28), and an aperture (30) is positioned within the conductor (20), with the bridge (28) and the aperture (30) located on opposite sides of the insulator (12). A barrel (40) and related explosive charge (50) are positioned adjacent to and in alignment with the aperture (30), and the bridge (28) is buttressed with a backing layer (60). When the electric power pulse vaporizes the bridge (28), a portion of the insulator (12) is propelled through the aperture (30) and barrel (40), and against the explosive charge (50), thereby detonating it.

  12. Environmentally Benign Stab Detonators

    SciTech Connect (OSTI)

    Gash, A

    2005-12-21

    Many energetic systems can be activated via mechanical means. Percussion primers in small caliber ammunition and stab detonators used in medium caliber ammunition are just two examples. Current medium caliber (20-60mm) munitions are detonated through the use of impact sensitive stab detonators. Stab detonators are very sensitive and must be small, as to meet weight and size limitations. A mix of energetic powders, sensitive to mechanical stimulus, is typically used to ignite such devices. Stab detonators are mechanically activated by forcing a firing pin through the closure disc of the device and into the stab initiating mix. Rapid heating caused by mechanically driven compression and friction of the mixture results in its ignition. The rapid decomposition of these materials generates a pressure/temperature pulse that is sufficient to initiate a transfer charge, which has enough output energy to detonate the main charge. This general type of ignition mix is used in a large variety of primers, igniters, and detonators.[1] Common primer mixes, such as NOL-130, are made up of lead styphnate (basic) 40%, lead azide (dextrinated) 20%, barium nitrate 20%, antimony sulfide 15%, and tetrazene 5%.[1] These materials pose acute and chronic toxicity hazards during mixing of the composition and later in the item life cycle after the item has been field functioned. There is an established need to replace these mixes on toxicity, health, and environmental hazard grounds. This effort attempts to demonstrate that environmentally acceptable energetic solgel coated flash metal multilayer nanocomposites can be used to replace current impact initiated devices (IIDs), which have hazardous and toxic components. Successful completion of this project will result in IIDs that include innocuous compounds, have sufficient output energy for initiation, meet current military specifications, are small, cost competitive, and perform as well as or better than current devices. We expect flash metal multilayer and sol-gel to be generic technologies applicable to a wide range of devices, especially in small caliber ammunition and sub-munitions. We will replace the NOL-130 mixture with a nanocomposite that consists of a mechanically robust energetic multilayer foil that has been coated with a sol-gel energetic material. The exothermic reactions are activated in this nanocomposite are the transformation of the multilayer material to its respective intermetallic alloy and the thermite reaction, which is characterized by very high temperatures, a small pressure pulse, and hot particle ejection. The proposed materials and their reaction products consist of, but are not limited to aluminum, nickel, iron, aluminum oxide, titanium, iron oxide and boron. These materials have much more desirable environmental and health characteristics than the NOL-130 composition.

  13. Miniature plasma accelerating detonator and method of detonating insensitive materials

    DOE Patents [OSTI]

    Bickes, Jr., Robert W. (Albuquerque, NM); Kopczewski, Michael R. (Albuquerque, NM); Schwarz, Alfred C. (Albuquerque, NM)

    1986-01-01

    The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives.

  14. Miniature plasma accelerating detonator and method of detonating insensitive materials

    DOE Patents [OSTI]

    Bickes, R.W. Jr.; Kopczewski, M.R.; Schwarz, A.C.

    1985-01-04

    The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives. 3 figs.

  15. Low voltage nonprimary explosive detonator

    DOE Patents [OSTI]

    Dinegar, Robert H. (Los Alamos, NM); Kirkham, John (Newbury, GB2)

    1982-01-01

    A low voltage, electrically actuated, nonprimary explosive detonator is disclosed wherein said detonation is achieved by means of an explosive train in which a deflagration-to-detonation transition is made to occur. The explosive train is confined within a cylindrical body and positioned adjacent to low voltage ignition means have electrical leads extending outwardly from the cylindrical confining body. Application of a low voltage current to the electrical leads ignites a self-sustained deflagration in a donor portion of the explosive train which then is made to undergo a transition to detonation further down the train.

  16. Radiological Triage | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Triage | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at NNSA Blog Home /

  17. Semiconductor bridge (SCB) detonator

    DOE Patents [OSTI]

    Bickes, Jr., Robert W. (Albuquerque, NM); Grubelich, Mark C. (Albuquerque, NM)

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  18. Semiconductor bridge (SCB) detonator

    DOE Patents [OSTI]

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  19. Detonator-activated ball shutter

    DOE Patents [OSTI]

    McWilliams, Roy A. (Livermore, CA); von Holle, William G. (Livermore, CA)

    1983-01-01

    A detonator-activated ball shutter for closing an aperture in about 300.mu. seconds. The ball shutter containing an aperture through which light, etc., passes, is closed by firing a detonator which propels a projectile for rotating the ball shutter, thereby blocking passage through the aperture.

  20. Detonator-activated ball shutter

    DOE Patents [OSTI]

    McWilliams, R.A.; Holle, W.G. von.

    1983-08-16

    A detonator-activated ball shutter for closing an aperture in about 300[mu] seconds. The ball shutter containing an aperture through which light, etc., passes, is closed by firing a detonator which propels a projectile for rotating the ball shutter, thereby blocking passage through the aperture. 3 figs.

  1. Detonation waves in pentaerythritol tetranitrate

    SciTech Connect (OSTI)

    Tarver, C.M.; Breithaupt, R.D.; Kury, J.W.

    1997-06-01

    Fabry{endash}Perot laser interferometry was used to obtain nanosecond time resolved particle velocity histories of the free surfaces of tantalum discs accelerated by detonating pentaerythritol tetranitrate (PETN) charges and of the interfaces between PETN detonation products and lithium fluoride crystals. The experimental records were compared to particle velocity histories calculated using very finely zoned meshes of the exact dimensions with the DYNA2D hydrodynamic code. The duration of the PETN detonation reaction zone was demonstrated to be less than the 5 ns initial resolution of the Fabry{endash}Perot technique, because the experimental records were accurately calculated using an instantaneous chemical reaction, the Chapman{endash}Jouguet (C-J) model of detonation, and the reaction product Jones{endash}Wilkins{endash}Lee (JWL) equation of state for PETN detonation products previously determined by supracompression (overdriven detonation) studies. Some of the PETN charges were pressed to densities approaching the crystal density and exhibited the phenomenon of superdetonation. An ignition and growth Zeldovich{endash}von Neumann{endash}Doring (ZND) reactive flow model was developed to explain these experimental records and the results of previous PETN shock initiation experiments on single crystals of PETN. Good agreement was obtained for the induction time delays preceding chemical reaction, the run distances at which the initial shock waves were overtaken by the detonation waves in the compressed PETN, and the measured particle velocity histories produced by the overdriven detonation waves before they could relax to steady state C-J velocity and pressure. {copyright} {ital 1997 American Institute of Physics.}

  2. Detonation in TATB Hemispheres

    SciTech Connect (OSTI)

    Druce, B; Souers, P C; Chow, C; Roeske, F; Vitello, P; Hrousis, C

    2004-03-17

    Streak camera breakout and Fabry-Perot interferometer data have been taken on the outer surface of 1.80 g/cm{sup 3} TATB hemispherical boosters initiated by slapper detonators at three temperatures. The slapper causes breakout to occur at 54{sup o} at ambient temperatures and 42{sup o} at -54 C, where the axis of rotation is 0{sup o}. The Fabry velocities may be associated with pressures, and these decrease for large timing delays in breakout seen at the colder temperatures. At room temperature, the Fabry pressures appear constant at all angles. Both fresh and decade-old explosive are tested and no difference is seen. The problem has been modeled with reactive flow. Adjustment of the JWL for temperature makes little difference, but cooling to -54 C decreases the rate constant by 1/6th. The problem was run both at constant density and with density differences using two different codes. The ambient code results show that a density difference is probably there but it cannot be quantified.

  3. Environmentally Benign Stab Detonators

    SciTech Connect (OSTI)

    Gash, A E

    2006-07-07

    The coupling of energetic metallic multilayers (a.k.a. flash metal) with energetic sol-gel synthesis and processing is an entirely new approach to forming energetic devices for several DoD and DOE needs. They are also practical and commercially viable manufacturing techniques. Improved occupational safety and health, performance, reliability, reproducibility, and environmentally acceptable processing can be achieved using these methodologies and materials. The development and fielding of this technology will enhance mission readiness and reduce the costs, environmental risks and the necessity of resolving environmental concerns related to maintaining military readiness while simultaneously enhancing safety and health. Without sacrificing current performance, we will formulate new impact initiated device (IID) compositions to replace materials from the current composition that pose significant environmental, health, and safety problems associated with functions such as synthesis, material receipt, storage, handling, processing into the composition, reaction products from testing, and safe disposal. To do this, we will advance the use of nanocomposite preparation via the use of multilayer flash metal and sol-gel technologies and apply it to new small IIDs. This work will also serve to demonstrate that these technologies and resultant materials are relevant and practical to a variety of energetic needs of DoD and DOE. The goal will be to produce an IID whose composition is acceptable by OSHA, EPA, the Clean Air Act, Clean Water Act, Resource Recovery Act, etc. standards, without sacrificing current performance. The development of environmentally benign stab detonators and igniters will result in the removal of hazardous and toxic components associated with their manufacturing, handling, and use. This will lead to improved worker safety during manufacturing as well as reduced exposure of Service personnel during their storage and or use in operations. The implementation of energetic sol-gel coated metallic multilayers, as new small IIDs will result in dramatically reduced environmental risks and improved worker and user safety risks without any sacrifice in the performance of the device. The proposed effort is designed to field an IID that is free of toxic (e.g., tetrazene) and heavy metal constituents (e.g., lead styphnate, lead azide, barium nitrate, and antimony sulfides) present in the NOL-130 initiating mixture and in the lead azide transfer charge of current stab detonators. The preferred materials for this project are nanocomposites consisting of thin foils of metallic multilayers, composed of nanometer thick regions of different metals, coated with a sol-gel derived energetic material. The favored metals for the multilayers will be main-group and early transition metals such as, but not limited to, boron, aluminum, silicon, titanium, zirconium, and nickel. Candidate sol-gel energetic materials include iron (III) oxide/aluminum nanocomposites. It should be noted that more traditional materials than sol-gel might also be used with the flash metals. The metallic multilayers undergo an exothermic transition to a more stable intermetallic alloy with the appropriate mechanical or thermal stimulus. This exothermic transition has sufficient output energy to initiate the more energy dense sol-gel energetic material, or other candidate materials. All of the proposed initiation mix materials and their reaction by products have low toxicity, are safe to handle and dispose of, and provide much less environmental and health concerns than the current composition. We anticipate that the technology and materials proposed here will be produced successfully in production scale with very competitive costs with existing IIDs, when amortized over the production lifetime. The sol-gel process is well known and used extensively in industry for coatings applications. All of the proposed feedstock components are mass-produced and have relatively low costs. The multilayer deposition equipment is commercially available and the technology is wide

  4. DETONATION PRESSURE MEASUREMENTS ON PETN

    SciTech Connect (OSTI)

    Green, L G; Lee, E L

    2006-06-23

    PETN is widely recognized as an example of nearly ideal detonation performance. The chemical composition is such that little or no carbon is produced in the detonation products. The reaction zone width is less than currently detectable. (<1 ns) Observations on PETN have thus become a baseline for EOS model predictions. It has therefore become important to characterize the detonation parameters as accurately as possible in order to provide the most exacting comparisons of EOS predictions with experimental results. We undertook a painstaking review of the detonation pressure measurements reported in an earlier work that was presented at the Fifth Detonation Symposium and found that corrections were required in determining the shock velocity in the PMMA witness material. We also refined the impedance calculation to account for the difference between the usual ''acoustic'' method and the more accurate Riemann integral. Our review indicates that the CJ pressures previously reported for full density PETN require an average lowering of about 6 percent. The lower densities require progressively smaller corrections. We present analysis of the records, supporting hydrodynamic simulations, the Riemann integral results, and EOS parameter values derived from the revised results.

  5. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  6. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

    1994-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  7. Optically triggered fire set/detonator system

    DOE Patents [OSTI]

    Chase, Jay B.; Pincosy, Philip A.; Chato, Donna M.; Kirbie, Hugh; James, Glen F.

    2007-03-20

    The present invention is directed to a system having a plurality of capacitor discharge units (CDUs) that includes electrical bridge type detonators operatively coupled to respective explosives. A pulse charging circuit is adapted to provide a voltage for each respective capacitor in each CDU. Such capacitors are discharged through the electrical bridge type detonators upon receiving an optical signal to detonate respective operatively coupled explosives at substantially the same time.

  8. From Glimmer to Fireball: Photographing Nuclear Detonations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Glimmer to Fireball National Security Science Latest Issue:July 2015 past issues All Issues » submit From Glimmer to Fireball: Photographing Nuclear Detonations How do you photograph a nuclear explosion? From a distance (!) photographers used remote-controlled high-speed cameras to capture the first milliseconds of detonation, which provided key data on the weapon's yield. July 1, 2015 From Glimmer to Fireball: Photographing Nuclear Detonations While EG&G was responsible for scientific

  9. Nuclear Detonation Detection | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    NNSA builds the nation's operational sensors that monitor the entire planet from space to detect and report surface, atmospheric, or space nuclear detonations; produces and updates...

  10. Nuclear Detonation Detection | National Nuclear Security Administratio...

    National Nuclear Security Administration (NNSA)

    the entire planet from space to detect and report surface, atmospheric, or space nuclear detonations; produces and updates the regional geophysical datasets enabling...

  11. Prompt detonation of secondary explosives by laser

    SciTech Connect (OSTI)

    Paisley, D.L.

    1989-01-01

    Secondary high explosives have been promptly detonated by directing a laser beam of various wavelengths from 266 nanometers to 1.06 micron on the surface of the explosives. For this paper ''prompt'' means the excess transit time through an explosive charge is /approximately/250 nanoseconds (or less) less than the accepted full detonation velocity time. Timing between laser pulse, explosive initiation and detonation velocity and function time have been recorded. The laser parameters studied include: wavelength, pulse length, energy and power density, and beam diameter (spot size). Explosives evaluated include: PETN, HNS, HMX, and graphited PETN, HNS, and HMX. Explosive parameters that have been correlated with optical parameters include: density, surface area, critical diameter (spot size), spectral characteristics and enhance absorption. Some explosives have been promptly detonated over the entire range of wavelengths, possibly by two competing initiating mechanisms. Other explosives could not be detonated at any of the wavelengths or power densities tested. 8 refs., 12 figs., 1 tab.

  12. Internal Detonation Velocity Measurements Inside High Explosives

    SciTech Connect (OSTI)

    Benterou, J; Bennett, C V; Cole, G; Hare, D E; May, C; Udd, E

    2009-01-16

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation models and detonation models of high explosives, the ability to continuously measure the detonation velocity within an explosive is required. Progress on an embedded velocity diagnostic using a 125 micron diameter optical fiber containing a chirped fiber Bragg grating is reported. As the chirped fiber Bragg grating is consumed by the moving detonation wave, the physical length of the unconsumed Bragg grating is monitored with a fast InGaAs photodiode. Experimental details of the associated equipment and data in the form of continuous detonation velocity records within PBX-9502 are presented. This small diameter fiber sensor has the potential to measure internal detonation velocities on the order of 10 mm/{micro}sec along path lengths tens of millimeters long.

  13. Printable sensors for explosive detonation

    SciTech Connect (OSTI)

    Griffith, Matthew J. Cooling, Nathan A.; Elkington, Daniel C.; Belcher, Warwick J.; Dastoor, Paul C.; Muller, Elmar

    2014-10-06

    Here, we report the development of an organic thin film transistor (OTFT) based on printable solution processed polymers and employing a quantum tunnelling composite material as a sensor to convert the pressure wave output from detonation transmission tubing (shock tube) into an inherently amplified electronic signal for explosives initiation. The organic electronic detector allows detection of the signal in a low voltage operating range, an essential feature for sites employing live ordinances that is not provided by conventional electronic devices. We show that a 30-fold change in detector response is possible using the presented detector assembly. Degradation of the OTFT response with both time and repeated voltage scans was characterised, and device lifetime is shown to be consistent with the requirements for on-site printing and usage. The integration of a low cost organic electronic detector with inexpensive shock tube transmission fuse presents attractive avenues for the development of cheap and simple assemblies for precisely timed initiation of explosive chains.

  14. Detonator comprising a nonlinear transmission line

    DOE Patents [OSTI]

    Elizondo-Decanini, Juan M

    2014-12-30

    Detonators are described herein. In a general embodiment, the detonator includes a nonlinear transmission line that has a variable capacitance. Capacitance of the nonlinear transmission line is a function of voltage on the nonlinear transmission line. The nonlinear transmission line receives a voltage pulse from a voltage source and compresses the voltage pulse to generate a trigger signal. Compressing the voltage pulse includes increasing amplitude of the voltage pulse and decreasing length of the voltage pulse in time. An igniter receives the trigger signal and detonates an explosive responsive to receipt of the trigger signal.

  15. Hospital Triage in First Hours After Nuclear or Radiological Disaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Medical professionals with the Radiation Emergency Assistance Center/Training Site (REAC/TS) at the Oak Ridge Institute for Science and Education (ORISE) authored an article that addresses the problems emergency physicians would likely face in the event of a nuclear or radiological catastrophe. The article specifically covers actions that would need to occur so that reasonable decisions are made during the critical

  16. Initiation and Detonation Physics on Millimeter Scales

    SciTech Connect (OSTI)

    Philllips, D F; Benterou, J J; May, C A

    2012-03-20

    The LLNL Detonation Science Project has a major interest in understanding the physics of detonation on a millimeter scale. This report summarizes the rate stick experiment results of two high explosives. The GO/NO-GO threshold between varying diameters of ultra-fine TATB (ufTATB) and LX-16 were recorded on an electronic streak camera and analyzed. This report summarizes the failure diameters of rate sticks for ufTATB and LX-16. Failure diameter for the ufTATB explosive, with densities at 1.80 g/cc, begin at 2.34 mm (not maintaining detonation velocity over the entire length of the rate stick). ufTATB rate sticks at the larger 3.18 mm diameter maintain a constant detonation velocity over the complete length. The PETN based and LLNL developed explosive, LX-16, with densities at 1.7 g/cc, shows detonation failure between 0.318 mm and 0.365 mm. Additional tests would be required to narrow this failure diameter further. Many of the tested rate sticks were machined using a femtosecond laser focused into a firing tank - in case of accidental detonation.

  17. Effect of Resolution on Propagating Detonation Wave

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2014-07-10

    Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8?m), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.

  18. Structure and properties of detonation soot particles

    SciTech Connect (OSTI)

    MalKOV, I.Y.; Titiov, V.M.

    1996-05-01

    The influence of TNT/RDX (50/50) detonation parameters and conservation conditions of detonation products during their expansion in hermetic detonation chamber on structure and phase composition of the detonation carbon has been considered. Systematic studies made it possible to establish the real structure of detonation carbon depending on experimental conditions. It has been shown that both during explosion in a chamber and thermal annealing in vacuum the nanoparticles of diamond have the tendency to transform not into graphite particles, as was assumed earlier, but into onionlike structures of fullerene series, composed of closed concentric carbon shells, the so-called carbon onions. The nanometer carbon particles have been obtained which comprise a diamond nucleus surrounded by a graphite-like mantle composed of quasi-spherical carbon shells which are the intermediate products of annealing of nanodiamond. The influence of initial sizes of the diamond particles and temperature on the annealing of diamond has been studied. {copyright} {ital 1996 American Institute of Physics.}

  19. Multistage reaction pathways in detonating high explosives

    SciTech Connect (OSTI)

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya

    2014-11-17

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N{sub 2} and H{sub 2}O within ?10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N{sub 2} and H{sub 2}O productions.

  20. Precursor detonation wave development in ANFO due to aluminum confinement

    SciTech Connect (OSTI)

    Jackson, Scott I; Klyanda, Charles B; Short, Mark

    2010-01-01

    Detonations in explosive mixtures of ammonium-nitrate-fuel-oil (ANFO) confined by aluminum allow for transport of detonation energy ahead of the detonation front due to the aluminum sound speed exceeding the detonation velocity. The net effect of this energy transport on the detonation is unclear. It could enhance the detonation by precompressing the explosive near the wall. Alternatively, it could decrease the explosive performance by crushing porosity required for initiation by shock compression or destroying confinement ahead of the detonation. At present, these phenomena are not well understood. But with slowly detonating, non-ideal high explosive (NIHE) systems becoming increasing prevalent, proper understanding and prediction of the performance of these metal-confined NIHE systems is desirable. Experiments are discussed that measured the effect of this ANFO detonation energy transported upstream of the front by a 76-mm-inner-diameter aluminum confining tube. Detonation velocity, detonation-front shape, and aluminum response are recorded as a function of confiner wall thickness and length. Detonation shape profiles display little curvature near the confining surface, which is attributed to energy transported upstream modifying the flow. Average detonation velocities were seen to increase with increasing confiner thickness, while wavefront curvature decreased due to the stiffer, subsonic confinement. Significant radial sidewall tube motion was observed immediately ahead of the detonation. Axial motion was also detected, which interfered with the front shape measurements in some cases. It was concluded that the confiner was able to transport energy ahead of the detonation and that this transport has a definite effect on the detonation by modifying its characteristic shape.

  1. Detonation propagation in a high loss configuration

    SciTech Connect (OSTI)

    Jackson, Scott I; Shepherd, Joseph E

    2009-01-01

    This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter of the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.

  2. Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Berger, ME; Leonard, RB; Ricks, RC; Wiley, AL; Lowry, PC; Flynn, DF Abstract: This article addresses the problems emergency physicians would face in the event of a nuclear or radiological catastrophe. It presents information about what needs to be done so that useful information will be gathered and reasonable decisions made in the all important triage period. A brief introductory explanation of radiation injury is

  3. From Glimmer to Fireball: Photographing Nuclear Detonations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glimmer to Fireball: Photographing Nuclear Detonations Dressed for the job. While EG&G was responsible for scientific photography, a secret Hollywood studio, Lookout Mountain Laboratory, made documentaries for military and government briefings and then for public consumption. This Lookout Mountain photographer (1956) is outfitted to protect himself from radiation. (Photo: Open Source) 13 National Security Science July 2015 Photographing nuclear explosions was not for the faint hearted. Some

  4. Nuclear Detonation Detection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Detonation Detection | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply for Our Jobs Our Jobs Working at

  5. Kinetic information from detonation front curvature

    SciTech Connect (OSTI)

    Souers, P. C., LLNL

    1998-06-15

    The time constants for time-dependent modeling may be estimated from reaction zone lengths, which are obtained from two sources One is detonation front curvature, where the edge lag is close to being a direct measure The other is the Size Effect, where the detonation velocity decreases with decreasing radius as energy is lost to the cylinder edge A simple theory that interlocks the two effects is given A differential equation for energy flow in the front is used, the front is described by quadratic and sixth-power radius terms The quadratic curvature comes from a constant power source of energy moving sideways to the walls Near the walls, the this energy rises to the total energy of detonation and produces the sixth-power term The presence of defects acting on a short reaction zone can eliminate the quadratic part while leaving the wall portion of the cuvature A collection of TNT data shows that the reaction zone increases with both the radius and the void fraction

  6. Insensitive detonator apparatus for initiating large failure diameter explosives

    DOE Patents [OSTI]

    Perry, III, William Leroy

    2015-07-28

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  7. Major Effects in the Thermodynamics of Detonation Products: Phase

    Office of Scientific and Technical Information (OSTI)

    Segregation versus Ionic Dissociation (Conference) | SciTech Connect Conference: Major Effects in the Thermodynamics of Detonation Products: Phase Segregation versus Ionic Dissociation Citation Details In-Document Search Title: Major Effects in the Thermodynamics of Detonation Products: Phase Segregation versus Ionic Dissociation Water (H{sub 2}O) and nitrogen (N{sub 2}) are major detonation products of high explosives and it has long been conjectured that they may phase segregate at high

  8. ORISE: Message Testing for a Nuclear Detonation | How ORISE is...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    These focus groups provided significant feedback that resulted in major revisions to the original nuclear detonation messages. Following the Fukushima nuclear crisis, this research ...

  9. Flames in Type Ia Supernova: Deflagration-Detonation Transition...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame. Citation Details In-Document Search Title: Flames in Type Ia...

  10. Hydroxyapatite Reinforced Coatings with Incorporated Detonationally Generated Nanodiamonds

    SciTech Connect (OSTI)

    Pramatarova, L.; Pecheva, E.; Hikov, T.; Fingarova, D.; Dimitrova, R.; Spassov, T.; Krasteva, N.; Mitev, D.

    2010-01-21

    We studied the effect of the substrate chemistry on the morphology of hydroxyapatite-detonational nanodiamond composite coatings grown by a biomimetic approach (immersion in a supersaturated simulated body fluid). When detonational nanodiamond particles were added to the solution, the morphology of the grown for 2 h composite particles was porous but more compact then that of pure hydroxyapatite particles. The nanodiamond particles stimulated the hydroxyapatite growth with different morphology on the various substrates (Ti, Ti alloys, glasses, Si, opal). Biocompatibility assay with MG63 osteoblast cells revealed that the detonational nanodiamond water suspension with low and average concentration of the detonational nanodiamond powder is not toxic to living cells.

  11. Safety and performance enhancement circuit for primary explosive detonators

    DOE Patents [OSTI]

    Davis, Ronald W. (Tracy, CA)

    2006-04-04

    A safety and performance enhancement arrangement for primary explosive detonators. This arrangement involves a circuit containing an energy storage capacitor and preset self-trigger to protect the primary explosive detonator from electrostatic discharge (ESD). The circuit does not discharge into the detonator until a sufficient level of charge is acquired on the capacitor. The circuit parameters are designed so that normal ESD environments cannot charge the protection circuit to a level to achieve discharge. When functioned, the performance of the detonator is also improved because of the close coupling of the stored energy.

  12. Exploring high temperature phenomena related to post-detonation...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Exploring high temperature phenomena related to post-detonation by an electric arc Citation Details In-Document Search Title: Exploring high temperature phenomena ...

  13. Exploring high temperature phenomena related to post-detonation...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Exploring high temperature phenomena related to post-detonation by an electric arc Citation Details In-Document Search Title: Exploring high temperature phenomena...

  14. Major Effects in the Thermodynamics of Detonation Products: Phase...

    Office of Scientific and Technical Information (OSTI)

    Major Effects in the Thermodynamics of Detonation Products: Phase Segregation versus Ionic Dissociation Citation Details In-Document Search Title: Major Effects in the...

  15. A library of prompt detonation reaction zone data

    SciTech Connect (OSTI)

    Souers, P. C., LLNL

    1998-06-01

    Tables are given listing literature data that allows calculation of sonic reaction zones at or near steady-state for promptly detonating explosive cylinders. The data covers homogeneous, heterogeneous, composite, inorganic and binary explosives and allows comparison across the entire explosive field. Table 1 lists detonation front curvatures. Table 2 lists Size Effect data, i.e. the change of detonation velocity with cylinder radius. Table 3 lists failure radii and detonation velocities. Table 4 lists explosive compositions. A total of 51 references dating back into the 1950`s are given. Calculated reaction zones, radii of curvature and growth rate coefficients are listed.

  16. Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich Materials Citation Details In-Document Search Title: Nitrogen Oxides as a Chemistry Trap in Detonating...

  17. Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich...

    Office of Scientific and Technical Information (OSTI)

    Conference: Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich Materials Citation Details In-Document Search Title: Nitrogen Oxides as a Chemistry Trap in Detonating ...

  18. Detonation Reaction Zones in Condensed Explosives

    SciTech Connect (OSTI)

    Tarver, C M

    2005-07-14

    Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich--von Neumann--Doring (NEZND) theory and Ignition and Growth reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes is discussed for explosives based on pentaerythritol tetranitrate (PETN), nitromethane, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), triaminitrinitrobenzene(TATB) and trinitrotoluene (TNT).

  19. Shock-to-Detonation Transition simulations

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2015-07-14

    Shock-to-detonation transition (SDT) experiments with embedded velocity gauges provide data that can be used for both calibration and validation of high explosive (HE) burn models. Typically, a series of experiments is performed for each HE in which the initial shock pressure is varied. Here we describe a methodology for automating a series of SDT simulations and comparing numerical tracer particle velocities with the experimental gauge data. Illustrative examples are shown for PBX 9502 using the HE models implemented in the xRage ASC code at LANL.

  20. Laser image recording on detonation nanodiamond films

    SciTech Connect (OSTI)

    Mikheev, G M; Mikheev, K G; Mogileva, T N; Puzyr, A P; Bondar, V S

    2014-01-31

    A focused He Ne laser beam is shown to cause local blackening of semitransparent detonation nanodiamond (DND) films at incident power densities above 600 W cm{sup -2}. Data obtained with a Raman spectrometer and low-power 632.8-nm laser source indicate that the blackening is accompanied by a decrease in broadband background luminescence and emergence of sharp Raman peaks corresponding to the structures of nanodiamond and sp{sup 2} carbon. The feasibility of image recording on DND films by a focused He Ne laser beam is demonstrated. (letters)

  1. Effect of prill structure on detonation performance of ANFO

    SciTech Connect (OSTI)

    Salyer, Terry R; Short, Mark; Kiyanda, Charles B; Morris, John S; Zimmerly, Tony

    2010-01-01

    While the effects of charge diameter, fuel mix ratio, and temperature on ANFO detonation performance are substantial, the effects of prill type are considerable as well as tailorable. Engineered AN prills provide a means to improve overall performance, primarily by changing the material microstructure through the addition of features designed to enhance hot spot action. To examine the effects of prill type (along with fuel mix ratio and charge diameter) on detonation performance, a series of precision, large-scale, ANFO front-curvature rate-stick tests was performed. Each shot used standard No. 2 diesel for the fuel oil and was essentially unconfined with cardboard confinement. Detonation velocities and front curvatures were measured while actively maintaining consistent shot temperatures. Based on the experimental results, DSD calibrations were performed to model the detonation performance over a range of conditions, and the overall effects of prill microstructure were examined and correlated with detonation performance.

  2. Measuring In-Situ Mdf Velocity Of Detonation

    DOE Patents [OSTI]

    Horine, Frank M. (Albuquerque, NM); James, Jr., Forrest B. (Albuquerque, NM)

    2005-10-25

    A system for determining the velocity of detonation of a mild detonation fuse mounted on the surface of a device includes placing the device in a predetermined position with respect to an apparatus that carries a couple of sensors that sense the passage of a detonation wave at first and second spaced locations along the fuse. The sensors operate a timer and the time and distance between the locations is used to determine the velocity of detonation. The sensors are preferably electrical contacts that are held spaced from but close to the fuse such that expansion of the fuse caused by detonation causes the fuse to touch the contact, causing an electrical signal to actuate the timer.

  3. Bonfire-safe low-voltage detonator

    DOE Patents [OSTI]

    Lieberman, Morton L. (Albuquerque, NM)

    1990-01-01

    A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half.

  4. Spark-safe low-voltage detonator

    DOE Patents [OSTI]

    Lieberman, Morton L. (Albuquerque, NM)

    1989-01-01

    A column of explosive in a low-voltage detonator which makes it spark-safe ncludes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4) each of which has an axial thickness-to-diameter ratio of one to two.

  5. Bonfire-safe low-voltage detonator

    DOE Patents [OSTI]

    Lieberman, M.L.

    1988-07-01

    A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half. 2 figs.

  6. Theoretical solution of the minimum charge problem for gaseous detonations

    SciTech Connect (OSTI)

    Ostensen, R.W.

    1990-12-01

    A theoretical model was developed for the minimum charge to trigger a gaseous detonation in spherical geometry as a generalization of the Zeldovich model. Careful comparisons were made between the theoretical predictions and experimental data on the minimum charge to trigger detonations in propane-air mixtures. The predictions are an order of magnitude too high, and there is no apparent resolution to the discrepancy. A dynamic model, which takes into account the experimentally observed oscillations in the detonation zone, may be necessary for reliable predictions. 27 refs., 9 figs.

  7. Spark-safe low-voltage detonator

    DOE Patents [OSTI]

    Lieberman, M.L.

    1988-07-01

    A column of explosive in a low-voltage detonator which makes it spark-safe includes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4), each of which has an axial thickness-to-diameter ratio of one to two. 2 figs.

  8. Explosive Products EOS: Adjustment for detonation speed and energy release

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2014-09-05

    Propagating detonation waves exhibit a curvature effect in which the detonation speed decreases with increasing front curvature. The curvature effect is due to the width of the wave profile. Numerically, the wave profile depends on resolution. With coarse resolution, the wave width is too large and results in a curvature effect that is too large. Consequently, the detonation speed decreases as the cell size is increased. We propose a modification to the products equation of state (EOS) to compensate for the effect of numerical resolution; i.e., to increase the CJ pressure in order that a simulation propagates a detonation wave with a speed that is on average correct. The EOS modification also adjusts the release isentrope to correct the energy release.

  9. Program to Prevent Accidental or Unauthorized Nuclear Explosive Detonations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-12-18

    The order establishes the DOE program to prevent accidental or unauthorized nuclear explosive detonations, and to define responsibilities for DOE participation in the Department of Defense program for nuclear weapon and nuclear weapon system safety. Does not cancel other directives.

  10. Performance characterization of the NASA standard detonator (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Performance characterization of the NASA standard detonator Citation Details In-Document Search Title: Performance characterization of the NASA standard detonator × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A

  11. Nonintrusive stabilization of a conical detonation wave for supersonic combustion

    SciTech Connect (OSTI)

    Carrier, G.F.; Fendell, F.E.; Fink, S.F. IV

    1995-12-01

    Theoretical and experimental studies are undertaken of the feasibility of an air-breathing supersonic combustor based on a stabilized, conically configured (oblique) detonation wave. The conical wave is the result of the interaction of a train of spherical detonation waves, each directly initiated by a brief, localized deposition of energy from a very-rapidly-repeated pulsed laser. The laser is tightly focused on a fixed site (in the combustor) where there is a steady uniform supersonic stream of combustible gas. Simple analysis of the requirements for (nonintrusive) direct initiation of an individual spherical detonation wave by a single laser pulse relates the pulse-energy and pulse-duration parameters. Then, an estimate is given of the entropy production associated with the early-time interaction of spherical detonations created in a supersonic reactive stream by a train of laser pulses. The entropy production, which arises from reflected shocks in the already detonated mixture, is reduced by increasing the repetition rate of the laser. Finally, the fuel/air mixing is inevitably imperfect in practical high-speed combustors. The authors investigate that portion of the throughput which is compressed, but not reacted, during transit of the conical detonation wave, because of imperfect mixing. Specifically, they estimate the spatial scale of the cold-mixture inhomogeneity that still permits diffusive burnup, prior to exhaust from the nozzle of the combustor.

  12. Reducing the Consequences of a Nuclear Detonation.

    SciTech Connect (OSTI)

    Buddemeier, B R

    2007-11-09

    The 2002 National Strategy to Combat Weapons of Mass Destruction states that 'the United States must be prepared to respond to the use of WMD against our citizens, our military forces, and those of friends and allies'. Scenario No.1 of the 15 Department of Homeland Security national planning scenarios is an improvised nuclear detonation in the national capitol region. An effective response involves managing large-scale incident response, mass casualty, mass evacuation, and mass decontamination issues. Preparedness planning activities based on this scenario provided difficult challenges in time critical decision making and managing a large number of casualties within the hazard area. Perhaps even more challenging is the need to coordinate a large scale response across multiple jurisdictions and effectively responding with limited infrastructure and resources. Federal response planning continues to make improvements in coordination and recommending protective actions, but much work remains. The most critical life-saving activity depends on actions taken in the first few minutes and hours of an event. The most effective way to reduce the enormous national and international social and economic disruptions from a domestic nuclear explosion is through planning and rapid action, from the individual to the federal response. Anticipating response resources for survivors based on predicted types and distributions of injuries needs to be addressed.

  13. The development of laser ignited deflagration-to-detonation transition (DDT) detonators and pyrotechnic actuators

    SciTech Connect (OSTI)

    Merson, J.A.; Salas, F.J.

    1994-05-01

    The use of laser ignited explosive components has been recognized as a safety enhancement over existing electrical explosive devices (EEDs). Sandia has been pursuing the development of optical ordnance for many years with recent emphasis on developing optical deflagration-to-detonation (DDT) detonators and pyrotechnic actuators. These low energy optical ordnance devices can be ignited with either a semiconductor diode laser, laser diode arrays or a solid state rod laser. By using a semiconductor laser diode, the safety improvement can be made without sacrificing performance since the input energy required for the laser diode and the explosive output are similar to existing electrical systems. The use of higher powered laser diode arrays or rod lasers may have advantages in fast DDT applications or lossy optical environments such as long fiber applications and applications with numerous optical connectors. Recent results from our continued study of optical ignition of explosive and pyrotechnic materials are presented. These areas of investigation can be separated into three different margin categories: (1) the margin relative to intended inputs ( i.e. powder performance as a function of laser input variation), (2) the margin relative to anticipated environments (i.e. powder performance as a function of thermal environment variation), and (3) the margin relative to unintended environments (i.e. responses to abnormal environments or safety).

  14. The development of laser ignited deflagration-to-detonation transition (DDT) detonators and pyrotechnic actuators

    SciTech Connect (OSTI)

    Merson, J.A.; Salas, F.J.; Harlan, J.G.

    1993-11-01

    The use of laser ignited explosive components has been recognized as a safety enhancement over existing electrical explosive devices (EEDs). Sandia has been pursuing the development of optical ordnance for many years with recent emphasis on developing optical deflagration-to-detonation (DDT) detonators and pyrotechnic actuators. These low energy optical ordnance devices can be ignited with either a semiconductor diode laser, laser diode arrays or a solid state rod laser. By using a semiconductor laser diode, the safety improvement can be made without sacrificing performance since the input energy required for the laser diode and the explosive output are similar to existing electrical systems. The use of higher powered laser diode arrays or rod lasers may have advantages in fast DDT applications or lossy optical environments such as long fiber applications and applications with numerous optical connectors. Recent results from our continued study of optical ignition of explosive and pyrotechnic materials are presented. These areas of investigation can be separated into three different margin categories: (1) the margin relative to intended inputs (i.e. powder performance as a function of laser input variation), (2) the margin relative to anticipated environments (i.e. powder performance as a function of thermal environment variation), and (3) the margin relative to unintended environments (i.e. responses to abnormal environments or safety).

  15. Investigations on detonation shock dynamics and related topics. Final report

    SciTech Connect (OSTI)

    Stewart, D.S.

    1993-11-01

    This document is a final report that summarizes the research findings and research activities supported by the subcontract DOE-LANL-9-XG8-3931P-1 between the University of Illinois (D. S. Stewart Principal Investigator) and the University of California (Los Alamos National Laboratory, M-Division). The main focus of the work has been on investigations of Detonation Shock Dynamics. A second emphasis has been on modeling compaction of energetic materials and deflagration to detonation in those materials. The work has led to a number of extensions of the theory of Detonation Shock Dynamics (DSD) and its application as an engineering design method for high explosive systems. The work also enhanced the hydrocode capabilities of researchers in M-Division by modifications to CAVEAT, an existing Los Alamos hydrocode. Linear stability studies of detonation flows were carried out for the purpose of code verification. This work also broadened the existing theory for detonation. The work in this contract has led to the development of one-phase models for dynamic compaction of porous energetic materials and laid the groundwork for subsequent studies. Some work that modeled the discrete heterogeneous behavior of propellant beds was also performed. The contract supported the efforts of D. S. Stewart and a Postdoctoral student H. I. Lee at the University of Illinois.

  16. Synthesis of carbon-coated iron nanoparticles by detonation technique

    SciTech Connect (OSTI)

    Sun, Guilei, E-mail: sunguilei@126.com [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China)] [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China); Li, Xiaojie, E-mail: dalian03@vip.sina.com [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China)] [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China); Wang, Qiquan [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China)] [Department of Safety Engineering, China Institute of Industrial Relations, Beijing 100037 (China); Yan, Honghao [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China)] [State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116023 (China)

    2010-05-15

    Carbon-coated iron nanoparticles were synthesized by detonating a mixture of ferrocene, naphthalene and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in an explosion vessel under low vacuum conditions (8.1 kPa). The RDX functioned as an energy source for the decomposition of ferrocene and naphthalene. The carbon-coated iron nanoparticles were formed as soot-like deposits on the inner surface of the reactor, which were characterized by XRD, TEM, HRTEM, Raman spectroscopy and vibrating sample magnetometer. And a portion of the detonation soot was treated with hydrochloric acid. The product was carbon-coated nanoparticles in perfect core-shell structures with graphitic shells and bcc-Fe cores. The detonation technique offers an energy-saving route to the synthesis of carbon-coated nanomaterials.

  17. Ferrite core coupled slapper detonator apparatus and method

    DOE Patents [OSTI]

    Boberg, R.E.; Lee, R.S.; Weingart, R.C.

    1989-08-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto. 10 figs.

  18. Ferrite core coupled slapper detonator apparatus and method

    DOE Patents [OSTI]

    Boberg, Ralph E. (Livermore, CA); Lee, Ronald S. (Livermore, CA); Weingart, Richard C. (Livermore, CA)

    1989-01-01

    Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto.

  19. Chemical reaction and equilibration mechanisms in detonation waves

    SciTech Connect (OSTI)

    Tarver, C. M., LLNL

    1997-07-01

    Experimental and theoretical evidence for the nonequilibrium Zeldovich-von Neumann-Doring (NEZND) theory of self-sustaining detonation is presented. High density, high temperature transition state theory is used to calculate unimolecular reaction rate constants for the initial decomposition of gaseous norbornene, liquid nitromethane, and solid, single crystal pentaerythritol tetranitrate as functions of shock temperature. The calculated rate constants are compared to those derived from experimental induction time measurements at various shock and detonation states. Uncertainties in the calculated shock and von Neumann spike temperatures are the main drawbacks to calculating these reaction rates. Nanosecond measurements of the shock temperatures of unreacted explosives are necessary to reduce these uncertainties.

  20. Flying-plate detonator using a high-density high explosive

    DOE Patents [OSTI]

    Stroud, John R. (Livermore, CA); Ornellas, Donald L. (Livermore, CA)

    1988-01-01

    A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).

  1. The role of cellular structure on increasing the detonability limits of three-step chain-branching detonations

    SciTech Connect (OSTI)

    Short, Mark; Kiyanda, Charles B; Quirk, James J; Sharpe, Gary J

    2011-01-27

    In [1], the dynamics of a pulsating three-step chain-branching detonation were studied. The reaction model consists of, sequentially, chain-initiation, chain-branching and chain-termination steps. The chain-initiation and chain-branching steps are taken to be thermally neutral, with chemical energy release occuring in the chain-termination stage. The purpose of the present study is to examine whether cellular detonation structure can increase the value of the chain-branching cross-over temperature T{sub b} at which fully coupled detonation solutions are observed over those in 1 D. The basic concept is straightforward and has been discussed in [1] and [3]; if T{sub s} drops below T{sub b} at the lead shock, the passage of a transverse shock can increase both the lead shock temperature and the temperature behind the transverse wave back above T{sub b}, thus sustaining an unstable cellular detonation for values of T{sub b} for which a one-dimensional pulsating detonation will fail. Experiments potentially supporting this hypothesis with irregular detonations have been shown in [3] in a shock tube with acoustically absorbing walls. Removal of the transverse waves results in detonation failure, giving way to a decoupled shock-flame complex. A number of questions remain to be addressed regarding the possibility of such a mechanism, and, if so, about the precise mechanisms driving the cellular structure for large T{sub b}. For instance, one might ask what sets the cell size in a chain-branching detonation, particularly could the characteristic cell size be set by the chain-branching cross-over temperature T{sub b}: after a transverse wave shock collision, the strength of the transverse wave weakens as it propagates along the front. If the spacing between shock collisions is too large (cell size), then the transverse shocks may weaken to the extent that the lead shock temperature or that behind the transverse waves is not raised above T{sub b}, losing chemical energy to drive the front in those regions. Failure may result if less than sufficient of the lead shock be driven above n to sustain reaction. Our starting point for generating cellular solutions is as in [I], consisting of an initial ZND wave in the channel, but perturbed here by a density non-uniformity to generate a cellular structure. Exactly how far the detonability limits (value of T{sub b}) can be extended is not addressed here, as such issues relate in part to the way the cellular structure is generated [6]. Our concern here is to investigate the mechanisms of self-sustained cellular detonation for values of T{sub b} above those that lead to 1D pulsating wave failure that can be generated from the initial ZND wave. Finally, we do not consider cellular propagation driven by a process of apparent thermal ignition of hot-spots downstream that tends to appear close to the 20 detonability limit. Such events are subject to the lack of correct thermal diffusive physics in the model and thus to the form of numerical dissipation in the underlying flow algorithm.

  2. Detonation equation of state at LLNL, 1995. Revision 3

    SciTech Connect (OSTI)

    Souers, P.C.; Wu, B.; Haselman, L.C. Jr.

    1996-02-01

    JWL`s and 1-D Look-up tables are shown to work for ``one-track`` experiments like cylinder shots and the expanding sphere. They fail for ``many-track`` experiments like the compressed sphere. As long as the one-track experiment has dimensions larger than the explosive`s reaction zone and the explosive is near-ideal, a general JWL with R{sub 1} = 4.5 and R{sub 2} = 1.5 can be constructed, with both {omega} and E{sub o} being calculated from thermochemical codes. These general JWL`s allow comparison between various explosives plus recalculation of the JWL for different densities. The Bigplate experiment complements the cylinder test by providing continuous oblique angles of shock incidence from 0{degrees} to 70{degrees}. Explosive reaction zone lengths are determined from metal plate thicknesses, extrapolated run-to-detonation distances, radius size effects and detonation front curvature. Simple theories of the cylinder test, Bigplate, the cylinder size effect and detonation front curvature are given. The detonation front lag at the cylinder edge is shown to be proportional to the half-power of the reaction zone length. By calibrating for wall blow-out, a full set of reaction zone lengths from PETN to ANFO are obtained. The 1800--2100 K freezing effect is shown to be caused by rapid cooling of the product gases. Compiled comparative data for about 80 explosives is listed. Ten Chapters plus an Appendix.

  3. Detonation and combustion of explosives: A selected bibliography

    SciTech Connect (OSTI)

    Dobratz, B.

    1998-08-01

    This bibliography consists of citations pertinent to the subjects of combustion and detonation of energetic materials, especially, but not exclusively, of secondary solid high explosives. These references were selected from abstracting sources, conference proceedings, reviews, and also individual works. The entries are arranged alphabetically by first author and numbered sequentially. A keyword index is appended.

  4. In-Situ Continuous Detonation Velocity Measurements Using Fiber-optic Bragg Grating Sensors

    SciTech Connect (OSTI)

    Benterou, J; Udd, E; Wilkins, P; Roeske, F; Roos, E; Jackson, D

    2007-07-25

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation and detonation research requires continuous measurement of low order detonation velocities as the detonation runs up to full order detonation for a given density and initiation pressure pulse. A novel detector of detonation velocity is presented using a 125 micron diameter optical fiber with an integral chirped fiber Bragg grating as an intrinsic sensor. This fiber is embedded in the explosive under study and interrogated during detonation as the fiber Bragg grating scatters light back along the fiber to a photodiode, producing a return signal dependant on the convolution integral of the grating reflection bandpass, the ASE intensity profile and the photodetector response curve. Detonation velocity is measured as the decrease in reflected light exiting the fiber as the grating is consumed when the detonation reaction zone proceeds along the fiber sensor axis. This small fiber probe causes minimal perturbation to the detonation wave and can measure detonation velocities along path lengths tens of millimeters long. Experimental details of the associated equipment and preliminary data in the form of continuous detonation velocity records within nitromethane and PBX-9502 are presented.

  5. A Study of Detonation Propagation and Diffraction with Compliant Confinement

    SciTech Connect (OSTI)

    Banks, J; Schwendeman, D; Kapila, A; Henshaw, W

    2007-08-13

    A previous computational study of diffracting detonations with the ignition-and-growth model demonstrated that contrary to experimental observations, the computed solution did not exhibit dead zones. For a rigidly confined explosive it was found that while diffraction past a sharp corner did lead to a temporary separation of the lead shock from the reaction zone, the detonation re-established itself in due course and no pockets of unreacted material were left behind. The present investigation continues to focus on the potential for detonation failure within the ignition-and-growth (IG) model, but now for a compliant confinement of the explosive. The aim of the present paper is two fold. First, in order to compute solutions of the governing equations for multi-material reactive flow, a numerical method of solution is developed and discussed. The method is a Godunov-type, fractional-step scheme which incorporates an energy correction to suppress numerical oscillations that would occur near the material interface separating the reactive material and the inert confiner for standard conservative schemes. The numerical method uses adaptive mesh refinement (AMR) on overlapping grids, and the accuracy of solutions is well tested using a two-dimensional rate-stick problem for both strong and weak inert confinements. The second aim of the paper is to extend the previous computational study of the IG model by considering two related problems. In the first problem, the corner-turning configuration is re-examined, and it is shown that in the matter of detonation failure, the absence of rigid confinement does not affect the outcome in a material way; sustained dead zones continue to elude the model. In the second problem, detonations propagating down a compliantly confined pencil-shaped configuration are computed for a variety of cone angles of the tapered section. It is found, in accord with experimental observation, that if the cone angle is small enough, the detonation fails prior to reaching the cone tip. For both the corner-turning and the pencil-shaped configurations, mechanisms underlying the behavior of the computed solutions are identified. It is concluded that disagreement between computation and experiment in the corner-turning case lies in the absence, in the model, of a mechanism that allows the explosive to undergo desensitization when subjected to a weak shock.

  6. A review of direct numerical simulations of astrophysical detonations and their implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Parete-Koon, Suzanne T.; Smith, Christopher R.; Papatheodore, Thomas L.; Bronson Messer, O. E.

    2013-04-11

    Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerablemore » effort has been expended modeling Type Ia supernovae at densities above 1x107 g∙cm-3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1x107 g∙cm-3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. This work reviews the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.« less

  7. Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap

    SciTech Connect (OSTI)

    Casey, Leslie A.

    2014-01-13

    This GNDD Technology Roadmap is intended to provide guidance to potential researchers and help management define research priorities to achieve technology advancements for ground-based nuclear explosion monitoring science being pursued by the Ground-based Nuclear Detonation Detection (GNDD) Team within the Office of Nuclear Detonation Detection in the National Nuclear Security Administration (NNSA) of the U.S. Department of Energy (DOE). Four science-based elements were selected to encompass the entire scope of nuclear monitoring research and development (R&D) necessary to facilitate breakthrough scientific results, as well as deliver impactful products. Promising future R&D is delineated including dual use associated with the Comprehensive Nuclear-Test-Ban Treaty (CTBT). Important research themes as well as associated metrics are identified along with a progression of accomplishments, represented by a selected bibliography, that are precursors to major improvements to nuclear explosion monitoring.

  8. Far Field Modeling Methods For Characterizing Surface Detonations

    SciTech Connect (OSTI)

    Garrett, A.

    2015-10-08

    Savannah River National Laboratory (SRNL) analyzed particle samples collected during experiments that were designed to replicate tests of nuclear weapons components that involve detonation of high explosives (HE). SRNL collected the particle samples in the HE debris cloud using innovative rocket propelled samplers. SRNL used scanning electronic microscopy to determine the elemental constituents of the particles and their size distributions. Depleted uranium composed about 7% of the particle contents. SRNL used the particle size distributions and elemental composition to perform transport calculations that indicate in many terrains and atmospheric conditions the uranium bearing particles will be transported long distances downwind. This research established that HE tests specific to nuclear proliferation should be detectable at long downwind distances by sampling airborne particles created by the test detonations.

  9. Method for fabricating non-detonable explosive simulants

    DOE Patents [OSTI]

    Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

    1995-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  10. Method for fabricating non-detonable explosive simulants

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1995-05-09

    A simulator is disclosed which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  11. Shock and Detonation Physics at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robbins, David L; Dattelbaum, Dana M; Sheffield, Steve A

    2012-08-22

    WX-9 serves the Laboratory and the Nation by delivering quality technical results, serving customers that include the Nuclear Weapons Program (DOE/NNSA), the Department of Defense, the Department of Homeland Security and other government agencies. The scientific expertise of the group encompasses equations-of-state, shock compression science, phase transformations, detonation physics including explosives initiation, detonation propagation, and reaction rates, spectroscopic methods and velocimetry, and detonation and equation-of-state theory. We are also internationally-recognized in ultra-fast laser shock methods and associated diagnostics, and are active in the area of ultra-sensitive explosives detection. The facility capital enabling the group to fulfill its missions include a number of laser systems, both for laser-driven shocks, and spectroscopic analysis, high pressure gas-driven guns and powder guns for high velocity plate impact experiments, explosively-driven techniques, static high pressure devices including diamond anvil cells and dilatometers coupled with spectroscopic probes, and machine shops and target fabrication facilities.

  12. Munitions having an insensitive detonator system for initiating large failure diameter explosives

    DOE Patents [OSTI]

    Perry, III, William Leroy

    2015-08-04

    A munition according to a preferred embodiment can include a detonator system having a detonator that is selectively coupled to a microwave source that functions to selectively prime, activate, initiate, and/or sensitize an insensitive explosive material for detonation. The preferred detonator can include an explosive cavity having a barrier within which an insensitive explosive material is disposed and a waveguide coupled to the explosive cavity. The preferred system can further include a microwave source coupled to the waveguide such that microwaves enter the explosive cavity and impinge on the insensitive explosive material to sensitize the explosive material for detonation. In use the preferred embodiments permit the deployment and use of munitions that are maintained in an insensitive state until the actual time of use, thereby substantially preventing unauthorized or unintended detonation thereof.

  13. Type Ia supernovae from merging white dwarfs. II. Post-merger detonations

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Type Ia supernovae from merging white dwarfs. II. Post-merger detonations Citation Details In-Document Search Title: Type Ia supernovae from merging white dwarfs. II. Post-merger detonations Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SNe Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, the exploding

  14. Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation

    DOE Patents [OSTI]

    Osher, John E. (Alamo, CA)

    1992-01-01

    The invention provides a more efficient electric gun or slapper detonator ich provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal.

  15. Shock temperature as a criterion for the detonability of LNG/LPG constituents

    SciTech Connect (OSTI)

    Michels, H.J. . Dept. of Chemical Engineering and Chemical Technology); Rashidi, F. )

    1992-12-01

    Detonation limit data obtained at ambient conditions for some aliphatic LNG/LNG constituents with oxygen and nitrogen (air) have been analyzed in search of a single critical parameter for detonation propagation. It was established the shock, rather than C-J reaction temperatures, provides a firm basis for marginal detonability prediction and that, furthermore, classical reaction mechanisms and relatively simple calculation methods can be used for their reliable evaluation. In this paper the result is used to formulate a criterion, for predicting composition limits to detonation. For the systems investigated, this criterion is accurate to within approximately 0.2% for fuel-lean and around 1% for fuel-rich mixtures.

  16. Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air

    SciTech Connect (OSTI)

    Li, J.; Lai, W.H.; Chung, K.; Lu, F.K.

    2008-08-15

    Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

  17. The U.S. Nuclear Detonation Detection Syst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Nuclear Detonation Detection System (NDS), which uses satellite-borne sensors to watch for nuclear explosions, can spot a nuclear attack anywhere in the world. One of the NDS sensors is a "bhangmeter" (pronounced BANG-meter), developed by Edgerton, Germeshausen, and Grier, Inc. (now EG&G) in 1948 at the request of Los Alamos scientists. The bhangmeter's job is to detect a nuclear explosion's telltale double flash of light and send a signal to NDS ground stations manned by the

  18. Equation of state for high explosives detonation products with explicit polar and ionic species

    SciTech Connect (OSTI)

    Bastea, S; Glaesemann, K R; Fried, L E

    2006-06-28

    We introduce a new thermodynamic theory for detonation products that includes polar and ionic species. The new formalism extends the domain of validity of the previously developed EXP6 equation of state library and opens the possibility of new applications. We illustrate the scope of the new approach on PETN detonation properties and water ionization models.

  19. Method and system for making integrated solid-state fire-sets and detonators

    DOE Patents [OSTI]

    O`Brien, D.W.; Druce, R.L.; Johnson, G.W.; Vogtlin, G.E.; Barbee, T.W. Jr.; Lee, R.S.

    1998-03-24

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques. 13 figs.

  20. Method and system for making integrated solid-state fire-sets and detonators

    DOE Patents [OSTI]

    O'Brien, Dennis W. (Livermore, CA); Druce, Robert L. (Union City, CA); Johnson, Gary W. (Livermore, CA); Vogtlin, George E. (Fremont, CA); Barbee, Jr., Troy W. (Palo Alto, CA); Lee, Ronald S. (Livermore, CA)

    1998-01-01

    A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.

  1. Theoretical and computer models of detonation in solid explosives

    SciTech Connect (OSTI)

    Tarver, C.M.; Urtiew, P.A.

    1997-10-01

    Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states, which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.

  2. Deflagration-to-detonation transition project: quarterly report for the period September through November 1979

    SciTech Connect (OSTI)

    Lieberman, M. L.

    1980-07-01

    The activities of the Sandia Laboratories project on deflagration-to-detonation transition (DDT) pertain primarily to the development of small, safe, low-voltage, hot-wire detonators. Its major goals are: the formulation of a modeling capability for DDT of the explosive 2-(5-cyanotetrazolato)pentaamminecobalt(III) perchlorate (CP); the development of improved DDT materials; the establishment of a data base for corrosion, compatibility, and reliability of CP-loaded detonators; and the design and development of advanced DDT components. Progress in this research is reported. The planned development of the MC3423 detonator has been completed and the final design review meeting has been held. Additional work must be performed to establish satisfactory output function. Ignition sensitivity data have also been obtained. Ignition and shock testing experiments for development of the MC3533 detonator have been planned. An initial version of the component will utilize available MC3423 headers, while the final design will incorporate a new header that has been designed and ordered. Detonator performance studies have been planned to optimize CP density-length factors. Feasibility studies on the MC3196A detonator have continued in an effort to obtain a reliable 50-200 ..mu..s function time.

  3. The initiation and propagation of helium detonations in white dwarf envelopes

    SciTech Connect (OSTI)

    Shen, Ken J. [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); Moore, Kevin, E-mail: kenshen@astro.berkeley.edu [Department of Applied Mathematics and Statistics, University of California, Santa Cruz, CA 95064 (United States)

    2014-12-10

    Detonations in helium-rich envelopes surrounding white dwarfs have garnered attention as triggers of faint thermonuclear '.Ia' supernovae and double detonation Type Ia supernovae. However, recent studies have found that the minimum size of a hotspot that can lead to a helium detonation is comparable to, or even larger than, the white dwarf's pressure scale height, casting doubt on the successful ignition of helium detonations in these systems. In this paper, we examine the previously neglected effects of C/O pollution and a full nuclear reaction network, and we consider hotspots with spatially constant pressure in addition to constant density hotspots. We find that the inclusion of these effects significantly decreases the minimum hotspot size for helium-rich detonation ignition, making detonations far more plausible during turbulent shell convection or during double white dwarf mergers. The increase in burning rate also decreases the minimum shell mass in which a helium detonation can successfully propagate and alters the composition of the shell's burning products. The ashes of these low-mass shells consist primarily of silicon, calcium, and unburned helium and metals and may explain the high-velocity spectral features observed in most Type Ia supernovae.

  4. Non-detonable and non-explosive explosive simulators

    DOE Patents [OSTI]

    Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

    1997-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive.

  5. Non-detonable and non-explosive explosive simulators

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1997-07-15

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable is disclosed. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive. 11 figs.

  6. Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich Materials

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich Materials Citation Details In-Document Search Title: Nitrogen Oxides as a Chemistry Trap in Detonating Oxygen-Rich Materials Authors: Goldman, N ; Bastea, S Publication Date: 2014-07-31 OSTI Identifier: 1150034 Report Number(s): LLNL-PROC-658263 DOE Contract Number: DE-AC52-07NA27344 Resource Type: Conference Resource Relation: Conference: Presented at: 15th International Detonation

  7. Characterization Of High Explosives Detonations Via Laser-Induced Plasmas

    SciTech Connect (OSTI)

    Villa-Aleman, E.

    2015-10-08

    One objective of the Department of Energy’s National Security Administration is to develop technologies that can help the United States government to detect foreign nuclear weapons development activities. The realm of high explosive (HE) experiments is one of the key areas to assess the nuclear ambitions of a country. SRNL has participated in the collection of particulates from HE experiments and characterized the material with the purpose to correlate particulate matter with HE. Since these field campaigns are expensive, on-demand simulated laboratory-scale explosion experiments are needed to further our knowledge of the chemistry and particle formation in the process. Our goal is to develop an experimental test bed in the laboratory to test measurement concepts and correlate particle formation processes with the observables from the detonation fireball. The final objective is to use this knowledge to tailor our experimental setups in future field campaigns. The test bed uses pulsed laser-induced plasmas to simulate micro-explosions, with the intent to study the temporal behavior of the fireball observed in field tests. During FY15, a plan was prepared and executed which assembled two laser ablation systems, procured materials for study, and tested a Step-Scan Fourier Transform Infrared Spectrometer (SS-FTIR). Designs for a shadowgraph system for shock wave analysis, design for a micro-particulate collector from ablated pulse were accomplished. A novel spectroscopic system was conceived and a prototype system built for acquisition of spectral/temporal characterization of a high speed event such as from a high explosive detonation. Experiments and analyses will continue into FY16.

  8. Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation

    DOE Patents [OSTI]

    Osher, J.E.

    1992-01-14

    The invention provides a more efficient electric gun or slapper detonator which provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal. 8 figs.

  9. Flames in Type Ia Supernova: Deflagration-Detonation Transition in the

    Office of Scientific and Technical Information (OSTI)

    Oxygen Burning Flame. (Journal Article) | SciTech Connect Journal Article: Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame. Citation Details In-Document Search Title: Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame. Abstract not provided. Authors: Kerstein, Alan R. ; Woosley, Stan E. ; Aspden, Andrew J. Publication Date: 2010-10-01 OSTI Identifier: 1121667 Report Number(s): SAND2010-7483J 485788 DOE

  10. ORISE: Message Testing for a Nuclear Detonation | How ORISE is Making a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Difference Message Testing for a Nuclear Detonation How ORISE is Making a Difference For the average person, radiological contamination is a confusing and fearful concept. To help prepare our America for the possibility of a radiation emergency, ORAU works with the CDC and FEMA in support of The Nuclear Detonation Response Communications Work Group, a federal interagency group of communication and radiation subject matter experts that has developed key messages to provide the public with

  11. SAND94-2862C PERFORMANCE CHARACTERIZATION OF THE NASA STANDARD DETONATOR*

    Office of Scientific and Technical Information (OSTI)

    SAND94-2862C PERFORMANCE CHARACTERIZATION OF THE NASA STANDARD DETONATOR* William W. Tarbell Explosives Projects and Diagnostics Department Sandia National Laboratory Albuquerque, NM 87185 Terence L. Burke and Steve E. Solomon Component Engineering USBI Huntsville, AI, 35807 Abstract The NASA Standard Detonator (NSD) is employed in support of a number of current applications, including the Space Shuttle. This effort w a s directed towards providing test results to characterize the output of this

  12. Impurity-doped optical shock, detonation and damage location sensor

    DOE Patents [OSTI]

    Weiss, J.D.

    1995-02-07

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.

  13. Impurity-doped optical shock, detonation and damage location sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    1995-01-01

    A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.

  14. Recent papers from DX-1, detonation science and technology

    SciTech Connect (OSTI)

    1996-10-01

    Over the past year members of DX-1 have participated in several conferences where presentations were made and papers prepared for proceedings. There have also been several papers published in or submitted to refereed journals for publication. Rather that attach all these papers to the DX-1 Quarterly Report, we decided to put them in a Los Alamos report that could be distributed to those who get the quarterly, as well as others that have an interest in the work being done in DX-1 both inside and outside the Laboratory. This compilation does not represent all the work reported during the year because some people have chosen not to include their work here. In particular, there were a number of papers relating to deflagration-to-detonation modeling that were not included. However, this group of papers does present a good picture of much of the unclassified work being done in DX-1. Several of the papers include coauthors from other groups or divisions at the Laboratory, providing an indication of the collaborations in which people in DX-1 are involved. Discussed topics of submitted papers include: shock compression of condensed matter, pyrotechnics, shock waves, molecular spectroscopy, sound speed measurements in PBX-9501, chemical dimerization, and micromechanics of spall and damage in tantalum.

  15. Slang characterization and removal using pulse detonation technology during coal gasification

    SciTech Connect (OSTI)

    Huque, Z.; Mei, D.; Biney, P.O.; Zhou, J.

    1997-03-25

    Boiler slagging and fouling as a result of inorganic impurities in combustion gases being deposited on heat transfer tubes have caused severe problems in coal-fired power plant operation. These problems are fuel, system design, and operating condition dependent. Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. The detonation wave technique based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. These detonation waves have been demonstrated experimentally to have exceptionally high shearing capability important to the task of removing slag and fouling deposits. The experimental results show that the single shot detonation wave is capable of removing the entire slag (types of slag deposited on economizer) even at a distance of 8 in. from the exit of a detonation engine tube. Wave strength and slag orientation also have different effects on the chipping off of the slag. This paper discusses about the results obtained in effectively removing the economizer slag.

  16. Analysis of sheltering and evacuation strategies for a Chicago nuclear detonation scenario.

    SciTech Connect (OSTI)

    Yoshimura, Ann S.; Brandt, Larry D.

    2011-09-01

    Development of an effective strategy for shelter and evacuation is among the most important planning tasks in preparation for response to a low yield, nuclear detonation in an urban area. Extensive studies have been performed and guidance published that highlight the key principles for saving lives following such an event. However, region-specific data are important in the planning process as well. This study examines some of the unique regional factors that impact planning for a 10 kt detonation in Chicago. The work utilizes a single scenario to examine regional impacts as well as the shelter-evacuate decision alternatives at selected exemplary points. For many Chicago neighborhoods, the excellent assessed shelter quality available make shelter-in-place or selective transit to a nearby shelter a compelling post-detonation strategy.

  17. Analysis of sheltering and evacuation strategies for a national capital region nuclear detonation scenario.

    SciTech Connect (OSTI)

    Yoshimura, Ann S.; Brandt, Larry D.

    2011-12-01

    Development of an effective strategy for shelter and evacuation is among the most important planning tasks in preparation for response to a low yield, nuclear detonation in an urban area. Extensive studies have been performed and guidance published that highlight the key principles for saving lives following such an event. However, region-specific data are important in the planning process as well. This study examines some of the unique regional factors that impact planning for a 10 kT detonation in the National Capital Region. The work utilizes a single scenario to examine regional impacts as well as the shelter-evacuate decision alternatives at one exemplary point. For most Washington, DC neighborhoods, the excellent assessed shelter quality available make shelter-in-place or selective transit to a nearby shelter a compelling post-detonation strategy.

  18. Deflagration-to-detonation transition project. Quarterly report, December 1979-February 1980

    SciTech Connect (OSTI)

    Lieberman, M.L.

    1980-09-01

    Progress in a project on deflagration-to-detonation transition (DDT) is reported. The activities of this project pertain primarily to the development of small, safe, low-voltage, hot-wire detonators. Its major goals are: the formulation of a modeling capability for DDT of the explosive 2-(5-cyanotetrazolato)pentaamminecobalt (III) perchlorate (CP); the development of improved DDT materials; the establishment of a data base for corrosion, compatibility, and reliability of CP-loaded detonators; and the design and development of advanced DDT components. Information is included on materials development, component development, and compatibility studies encompassing the thermal and chemical stability of CP in contact with the component materials. (LCL)

  19. CHARACTERIZING DETONATING LX-17 CHARGES CROSSING A TRANSVERSE AIR GAP WITH EXPERIMENTS AND MODELING

    SciTech Connect (OSTI)

    Lauderbach, L M; Souers, P C; Garcia, F; Vitello, P; Vandersall, K S

    2009-06-26

    Experiments were performed using detonating LX-17 (92.5% TATB, 7.5% Kel-F by weight) charges with various width transverse air gaps with manganin peizoresistive in-situ gauges present. The experiments, performed with 25 mm diameter by 25 mm long LX-17 pellets with the transverse air gap in between, showed that transverse gaps up to about 3 mm could be present without causing the detonation wave to fail to continue as a detonation. The Tarantula/JWL{sup ++} code was utilized to model the results and compare with the in-situ gauge records with some agreement to the experimental data with additional work needed for a better match to the data. This work will present the experimental details as well as comparison to the model results.

  20. THE EFFECT OF THE PRE-DETONATION STELLAR INTERNAL VELOCITY PROFILE ON THE NUCLEOSYNTHETIC YIELDS IN TYPE Ia SUPERNOVA

    SciTech Connect (OSTI)

    Kim, Yeunjin; Jordan, G. C. IV; Graziani, Carlo; Lamb, D. Q.; Truran, J. W.; Meyer, B. S.

    2013-07-01

    A common model of the explosion mechanism of Type Ia supernovae is based on a delayed detonation of a white dwarf. A variety of models differ primarily in the method by which the deflagration leads to a detonation. A common feature of the models, however, is that all of them involve the propagation of the detonation through a white dwarf that is either expanding or contracting, where the stellar internal velocity profile depends on both time and space. In this work, we investigate the effects of the pre-detonation stellar internal velocity profile and the post-detonation velocity of expansion on the production of {alpha}-particle nuclei, including {sup 56}Ni, which are the primary nuclei produced by the detonation wave. We perform one-dimensional hydrodynamic simulations of the explosion phase of the white dwarf for center and off-center detonations with five different stellar velocity profiles at the onset of the detonation. In order to follow the complex flows and to calculate the nucleosynthetic yields, approximately 10,000 tracer particles were added to every simulation. We observe two distinct post-detonation expansion phases: rarefaction and bulk expansion. Almost all the burning to {sup 56}Ni occurs only in the rarefaction phase, and its expansion timescale is influenced by pre-existing flow structure in the star, in particular by the pre-detonation stellar velocity profile. We find that the mass fractions of the {alpha}-particle nuclei, including {sup 56}Ni, are tight functions of the empirical physical parameter {rho}{sub up}/v{sub down}, where {rho}{sub up} is the mass density immediately upstream of the detonation wave front and v{sub down} is the velocity of the flow immediately downstream of the detonation wave front. We also find that v{sub down} depends on the pre-detonation flow velocity. We conclude that the properties of the pre-existing flow, in particular the internal stellar velocity profile, influence the final isotopic composition of burned matter produced by the detonation.

  1. Exploring high temperature phenomena related to post-detonation by an

    Office of Scientific and Technical Information (OSTI)

    electric arc (Journal Article) | SciTech Connect Journal Article: Exploring high temperature phenomena related to post-detonation by an electric arc Citation Details In-Document Search Title: Exploring high temperature phenomena related to post-detonation by an electric arc Authors: Dai, Z ; Crowhurst, J C ; Grant, C D ; Knight, K B ; Tang, V ; Cook, E G ; Lotscher, J P ; Hutcheon, I D Publication Date: 2012-11-30 OSTI Identifier: 1227004 Report Number(s): LLNL-JRNL-608092 DOE Contract

  2. Simulations of flame acceleration and deflagration-to-detonation transitions in methane-air systems

    SciTech Connect (OSTI)

    Kessler, D.A.; Gamezo, V.N.; Oran, E.S. [Laboratory for Computational Physics and Fluid Dynamics, Naval Research Laboratory, Washington, DC (United States)

    2010-11-15

    Flame acceleration and deflagration-to-detonation transitions (DDT) in large obstructed channels filled with a stoichiometric methane-air mixture are simulated using a single-step reaction mechanism. The reaction parameters are calibrated using known velocities and length scales of laminar flames and detonations. Calculations of the flame dynamics and DDT in channels with obstacles are compared to previously reported experimental data. The results obtained using the simple reaction model qualitatively, and in many cases, quantitatively match the experiments and are found to be largely insensitive to small variations in model parameters. (author)

  3. Electrical modeling of semiconductor bridge (SCB) BNCP detonators with electrochemical capacitor firing sets

    SciTech Connect (OSTI)

    Marx, K.D.; Ingersoll, D.; Bickes, R.W. Jr.

    1998-11-01

    In this paper the authors describe computer models that simulate the electrical characteristics and hence, the firing characteristics and performance of a semiconductor bridge (SCB) detonator for the initiation of BNCP [tetraammine-cis-bis (5-nitro-2H-tetrazolato-N{sup 2}) cobalt(III) perchlorate]. The electrical data and resultant models provide new insights into the fundamental behavior of SCB detonators, particularly with respect to the initiation mechanism and the interaction of the explosive powder with the SCB. One model developed, the Thermal Feedback Model, considers the total energy budget for the system, including the time evolution of the energy delivered to the powder by the electrical circuit, as well as that released by the ignition and subsequent chemical reaction of the powder. The authors also present data obtained using a new low-voltage firing set which employed an advanced electrochemical capacitor having a nominal capacitance of 350,000 {micro}F at 9 V, the maximum voltage rating for this particular device. A model for this firing set and detonator was developed by making measurements of the intrinsic capacitance and equivalent series resistance (ESR < 10 m{Omega}) of a single device. This model was then used to predict the behavior of BNCP SCB detonators fired alone, as well as in a multishot, parallel-string configuration using a firing set composed of either a single 9 V electrochemical capacitor or two of the capacitors wired in series and charged to 18 V.

  4. Temperature effects on failure thickness and deflagration-to-detonation transition in PBX 9502 and TATB

    SciTech Connect (OSTI)

    Asay, B.W.; McAfee, J.B.

    1993-01-01

    The deflagration-to-detonation (DDT) behavior of TATB has been investigated at high temperatures and severe confinement. comparison is made to other common explosives under similar confinement. TATB did not DDT under these conditions. The failure thickness of PBX 9502 at 250[degrees]C has also been determined. Two mm appears to be the limiting value at this temperature.

  5. Temperature effects on failure thickness and deflagration-to-detonation transition in PBX 9502 and TATB

    SciTech Connect (OSTI)

    Asay, B.W.; McAfee, J.B.

    1993-04-01

    The deflagration-to-detonation (DDT) behavior of TATB has been investigated at high temperatures and severe confinement. comparison is made to other common explosives under similar confinement. TATB did not DDT under these conditions. The failure thickness of PBX 9502 at 250{degrees}C has also been determined. Two mm appears to be the limiting value at this temperature.

  6. LX-17 and ufTATB Data for Corner-Turning, Failure and Detonation

    SciTech Connect (OSTI)

    Souers, P C; Lauderbach, L; Garza, R; Vitello, P; Hare, D E

    2010-02-03

    Data is presented for the size (diameter) effect for ambient and cold confined LX-17, unconfined ambient LX-17, and confined ambient ultrafine TATB. Ambient, cold and hot double cylinder corner-turning data for LX-17, PBX 9502 and ufTATB is presented. Transverse air gap crossing in ambient LX-17 is studied with time delays given for detonations that cross.

  7. US Air Force Launches Satellite Carrying NNSA-provided Nuclear Detonation

    National Nuclear Security Administration (NNSA)

    Detection Sensors | National Nuclear Security Administration Air Force Launches Satellite Carrying NNSA-provided Nuclear Detonation Detection Sensors | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations

  8. PBX 9404 detonation copper cylinder tests: a comparison of new and aged material

    SciTech Connect (OSTI)

    Hill, Larry G [Los Alamos National Laboratory; Mier, Robert [Los Alamos National Laboratory; Briggs, Matthew E [Los Alamos National Laboratory

    2009-01-01

    We present detonation copper cylinder test results on aged PBX 9404 (94 wt% HMX, 3 wt% CEF, 2.9 wt% NC, 0.1 wt% DPA) explosive. The charges were newly pressed from 37.5 year-old molding powder. We compare these results to equivalent data performed on the same lot when it was 3.5 years old. Comparison of the detonation energy inferred from detonation speed to that inferred from wall motion suggests that the HMX energy is unchanged but the NC energy has decreased to {approx}25% of its original value. The degradation of explosives and their binders is a subject of continual interest. Secondary explosives such as HMX are sufficiently stable near room temperature that they do not measurably degrade over a period of at least several decades. For formulated systems the bigger concern is binder degradation, for which the three main issues are strength, initiation safety, and (if the binder is energetic) energy content. In this paper we examine the detonation energy of new and aged PBX 9404 (94 wt% HMX, 3 wt% tris-{beta} chloroethylphosphate (CEF), 2.9 wt% nitrocellulose (NC), 0.1 wt% diphenylamine (DPA) [1, 2]), measured via the detonation copper cylinder test. In 1959, two independent PBX 9404 accidents [3] raised serious concerns about the safety of the formulation. Over about a decade's time, Los Alamos pursued a safer, energetically equivalent replacement, which ultimately became PBX 9501. In order to accurately compare the performance of the PBX 9404 and PBX 9501 formulations, W. Campbell and R. Engelke (C & E) developed a stringent cylinder test protocol that they called the Los Alamos Precision Cylinder Test [4]. The present aging study is possible because excellent PBX 9404 data from those qualification tests endures.

  9. First-Principles Petascale Simulations for Predicting Deflagration to Detonation Transition in Hydrogen-Oxygen Mixtures

    SciTech Connect (OSTI)

    Khokhlov, Alexei; Austin, Joanna

    2015-03-02

    Hydrogen has emerged as an important fuel across a range of industries as a means of achieving energy independence and to reduce emissions. DDT and the resulting detonation waves in hydrogen-oxygen can have especially catastrophic consequences in a variety of industrial and energy producing settings related to hydrogen. First-principles numerical simulations of flame acceleration and DDT are required for an in-depth understanding of the phenomena and facilitating design of safe hydrogen systems. The goals of this project were (1) to develop first-principles petascale reactive flow Navier-Stokes simulation code for predicting gaseous high-speed combustion and detonation (HSCD) phenomena and (2) demonstrate feasibility of first-principles simulations of rapid flame acceleration and deflagrationto- detonation transition (DDT) in stoichiometric hydrogen-oxygen mixture (2H2 + O2). The goals of the project have been accomplished. We have developed a novel numerical simulation code, named HSCD, for performing first-principles direct numerical simulations of high-speed hydrogen combustion. We carried out a series of validating numerical simulations of inert and reactive shock reflection experiments in shock tubes. We then performed a pilot numerical simulation of flame acceleration in a long pipe. The simulation showed the transition of the rapidly accelerating flame into a detonation. The DDT simulations were performed using BG/Q Mira at the Argonne National Laboratiory, currently the fourth fastest super-computer in the world. The HSCD is currently being actively used on BG/QMira for a systematic study of the DDT processes using computational resources provided through the 2014-2016 INCITE allocation ”First-principles simulations of high-speed combustion and detonation.” While the project was focused on hydrogen-oxygen and on DDT, with appropriate modifications of the input physics (reaction kinetics, transport coefficients, equation of state) the code has a much broader applicability to petascale simulations of high speed combustion and detonation phenomena in reacting gases, and to high speed viscous gaseous flows in general. Project activities included three major steps – (1) development of physical and numerical models, (2) code validation, and (3) demonstration simulation of flame acceleration and DDT in a long pipe.

  10. Measurement of carbon condensation using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    SciTech Connect (OSTI)

    Bagge-Hansen, M.; Lauderbach, L. M.; Hodgin, R.; Bastea, S.; Fried, L.; Jones, A.; van Buuren, T.; Hansen, D.; Benterou, J.; May, C.; Graber, T.; Jensen, B. J.; Ilavsky, J.; Willey, T. M.

    2015-06-24

    The dynamics of carboncondensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. As a result, the power-law slope is about 3, which is consistent with a complex disordered, irregular, or folded sp2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.

  11. Anisotropic shock sensitivity and detonation temperature of pentaerythritol tetranitrate single crystal

    SciTech Connect (OSTI)

    Yoo, C. S.; Holmes, N. C.; Souers, P. C.; Wu, C. J.; Ree, F. H.; Dick, J. J.

    2000-07-01

    Shock temperatures of pentaerythritol tetranitrate (PETN) single crystals have been measured by using a nanosecond time-resolved spectropyrometric system operated at six discrete wavelengths between 350 and 700 nm. The results show that the shock sensitivity of PETN is strongly dependent on the crystal orientation: Sensitive along the shock propagation normal to the (110) plane, but highly insensitive normal to the (100) plane. The detonation temperature of PETN is, however, independent from the crystal orientation and is determined to be 4140 ({+-}70) K. The time-resolved data yielding the detonation velocity 8.28 ({+-}0.10) mm/{mu}s can be interpreted in the context of a modified thermal explosion model. (c) 2000 American Institute of Physics.

  12. JCZS: An Intermolecular Potential Database for Performing Accurate Detonation and Expansion Calculations

    SciTech Connect (OSTI)

    Baer, M.R.; Hobbs, M.L.; McGee, B.C.

    1998-11-03

    Exponential-13,6 (EXP-13,6) potential pammeters for 750 gases composed of 48 elements were determined and assembled in a database, referred to as the JCZS database, for use with the Jacobs Cowperthwaite Zwisler equation of state (JCZ3-EOS)~l) The EXP- 13,6 force constants were obtained by using literature values of Lennard-Jones (LJ) potential functions, by using corresponding states (CS) theory, by matching pure liquid shock Hugoniot data, and by using molecular volume to determine the approach radii with the well depth estimated from high-pressure isen- tropes. The JCZS database was used to accurately predict detonation velocity, pressure, and temperature for 50 dif- 3 Accurate predictions were also ferent explosives with initial densities ranging from 0.25 glcm3 to 1.97 g/cm . obtained for pure liquid shock Hugoniots, static properties of nitrogen, and gas detonations at high initial pressures.

  13. From detonation to diapers: Los Alamos computer codes at core of advanced

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    manufacturing tools From detonation to diapers Los Alamos computer codes at core of advanced manufacturing tools The computer codes used for predictive fluid modeling are part of the Los Alamos Computational Fluid Dynamics Library. July 27, 2011 This simulation of a droplet of liquid falling into a pool of liquid was modeled using Los Alamos National Laboratory's Computational Fluid Dynamics Library This simulation of a droplet of liquid falling into a pool of liquid was modeled using Los

  14. National Nuclear Security Administration's Space-Based Nuclear Detonation Detection Program

    Office of Environmental Management (EM)

    National Nuclear Security Administration's Space-Based Nuclear Detonation Detection Program OAS-L-14-09 July 2014 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 July 28, 2014 MEMORANDUM FOR THE DEPUTY ADMINISTRATOR FOR DEFENSE NUCLEAR NONPROLIFERATION FROM: George W. Collard Assistant Inspector General for Audits Office of Inspector General SUBJECT: INFORMATION: Audit Report on "National Nuclear Security

  15. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN

    SciTech Connect (OSTI)

    Chipman, V D

    2011-09-20

    Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

  16. The effect of initial temperature on flame acceleration and deflagration-to-detonation transition phenomenon

    SciTech Connect (OSTI)

    Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L.; Tagawa, H.; Malliakos, A.

    1998-05-01

    The High-Temperature Combustion Facility at BNL was used to conduct deflagration-to-detonation transition (DDT) experiments. Periodic orifice plates were installed inside the entire length of the detonation tube in order to promote flame acceleration. The orifice plates are 27.3-cm-outer diameter, which is equivalent to the inner diameter of the tube, and 20.6-cm-inner diameter. The detonation tube length is 21.3-meters long, and the spacing of the orifice plates is one tube diameter. A standard automobile diesel engine glow plug was used to ignite the test mixture at one end of the tube. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in DDT corresponded to the mixture whose detonation cell size, {lambda}, was equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}=1). The only exception was in the dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 mIs and then decelerated to below 2 mIs. By maintaining the first 6.1 meters of the vessel at the ignition end at 400K, and the rest of the vessel at 650K, the DDT limit was reduced to 9.5 percent hydrogen (d/{lambda}=4.2). This observation indicates that the d/{lambda}=1 DDT limit criteria provides a necessary condition but not a sufficient one for the onset of DDT in obstacle laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the point of detonation initiation, referred to as the run-up distance, was found to be a function of both the hydrogen mole fraction and the mixture initial temperature. Decreasing the hydrogen mole fraction or increasing the initial mixture temperature resulted in longer run-up distances. The density ratio across the flame and the speed of sound in the unburned mixture were found to be two parameters which influence the run-up distance.

  17. On the Use of an ER-213 Detonator to Establish a Baseline for the ER-486

    SciTech Connect (OSTI)

    Thomas, Keith A.; Liechty, Gary H.; Jaramillo, Dennis C.; Munger, Alan C.; McHugh, Douglas C.; Kennedy, James E.

    2014-08-19

    This report documents a series of tests using a TSD-115 fireset coupled with an ER-213, a gold exploding bridgewire (EBW) detonator. These tests were designed to fire this EBW with a smaller fireset to obtain current and voltage data as well as timing information at voltage levels below, above, and throughout the threshold firing region. This study could then create a database for comparison to our current ER-486 EBW development, which is designed to be a lower voltage (<500V) device.

  18. X-ray diffraction study of the structure of detonation nanodiamonds

    SciTech Connect (OSTI)

    Ozerin, A. N. Kurkin, T. S.; Ozerina, L. A.; Dolmatov, V. Yu.

    2008-01-15

    The spatial structure of aggregates formed by detonation nanodiamonds is investigated using the wide-angle and small-angle X-ray scattering techniques. The effective sizes of crystallites and the crystallite size distribution function are determined. The shape of scattering aggregates is restored from the small-angle X-ray scattering data. An analysis of the results obtained allowed the conclusion that the nanodiamond aggregates have an extended spatial structure composed of nine to ten clusters, each involving four to five crystallites with a crystal lattice of the diamond type.

  19. Process for estimating likelihood and confidence in post detonation nuclear forensics.

    SciTech Connect (OSTI)

    Darby, John L.; Craft, Charles M.

    2014-07-01

    Technical nuclear forensics (TNF) must provide answers to questions of concern to the broader community, including an estimate of uncertainty. There is significant uncertainty associated with post-detonation TNF. The uncertainty consists of a great deal of epistemic (state of knowledge) as well as aleatory (random) uncertainty, and many of the variables of interest are linguistic (words) and not numeric. We provide a process by which TNF experts can structure their process for answering questions and provide an estimate of uncertainty. The process uses belief and plausibility, fuzzy sets, and approximate reasoning.

  20. Exploring high temperature phenomena related to post-detonation using an

    Office of Scientific and Technical Information (OSTI)

    electric arc (Journal Article) | SciTech Connect using an electric arc Citation Details In-Document Search Title: Exploring high temperature phenomena related to post-detonation using an electric arc We report a study of materials recovered from a uranium-containing plasma generated by an electric arc. The device used to generate the arc is capable of sustaining temperatures of an eV or higher for up to 100 μs. Samples took the form of a 4 μm-thick film deposited onto 8 pairs of 17

  1. A Study of Detonation Diffraction in the Ignition-and-Growth Model

    SciTech Connect (OSTI)

    Kapila, A K; Schwendeman, D W; Bdzil, J B; Henshaw, W D

    2006-04-14

    Heterogeneous high-energy explosives are morphologically, mechanically and chemically complex. As such, their ab-initio modeling, in which well-characterized phenomena at the scale of the microstructure lead to a rationally homogenized description at the scale of observation, is a subject of active research but not yet a reality. An alternative approach is to construct phenomenological models, in which forms of constitutive behavior are postulated with an eye on the perceived picture of the micro-scale phenomena, and which are strongly linked to experimental calibration. Most prominent among these is the ignition-and-growth model conceived by Lee and Tarver. The model treats the explosive as a homogeneous mixture of two distinct constituents, the unreacted explosive and the products of reaction. To each constituent is assigned an equation of state, and a single reaction-rate law is prescribed for the conversion of the explosive to products. It is assumed that the two constituents are always in pressure and temperature equilibrium. The purpose of this paper is to investigate in detail the behavior of the model in situations where a detonation turns a corner and undergoes diffraction. A set of parameters appropriate for the explosive LX-17 is selected. The model is first examined analytically for steady, planar, 1-D solutions and the reaction-zone structure of Chapman-Jouguet detonations is determined. A computational study of two classes of problems is then undertaken. The first class corresponds to planar, 1-D initiation by an impact, and the second to corner turning and diffraction in planar and axisymmetric geometries. The 1-D initiation, although interesting in its own right, is utilized here as a means for interpretation of the 2-D results. It is found that there are two generic ways in which 1-D detonations are initiated in the model, and that these scenarios play a part in the post-diffraction evolution as well. For the parameter set under study the model shows detonation failure, but only locally and temporarily, and does not generate sustained dead zones. The computations employ adaptive mesh refinement and are finely resolved. Results are obtained for a rigid confinement of the explosive. Compliant confinement represents its own computational challenges and is currently under study. Also under development is an extended ignition-and-growth model which takes into account observed desensitization of heterogeneous explosives by weak shocks.

  2. Improved estimates of separation distances to prevent unacceptable damage to nuclear power plant structures from hydrogen detonation for gaseous hydrogen storage. Technical report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This report provides new estimates of separation distances for nuclear power plant gaseous hydrogen storage facilities. Unacceptable damage to plant structures from hydrogen detonations will be prevented by having hydrogen storage facilities meet separation distance criteria recommended in this report. The revised standoff distances are based on improved calculations on hydrogen gas cloud detonations and structural analysis of reinforced concrete structures. Also, the results presented in this study do not depend upon equivalencing a hydrogen detonation to an equivalent TNT detonation. The static and stagnation pressures, wave velocity, and the shock wave impulse delivered to wall surfaces were computed for several different size hydrogen explosions. Separation distance equations were developed and were used to compute the minimum separation distance for six different wall cases and for seven detonating volumes (from 1.59 to 79.67 lbm of hydrogen). These improved calculation results were compared to previous calculations. The ratio between the separation distance predicted in this report versus that predicted for hydrogen detonation in previous calculations varies from 0 to approximately 4. Thus, the separation distances results from the previous calculations can be either overconservative or unconservative depending upon the set of hydrogen detonation parameters that are used. Consequently, it is concluded that the hydrogen-to-TNT detonation equivalency utilized in previous calculations should no longer be used.

  3. Planning and Response to the Detonation of an Improvised Nuclear Device: Past, Present, and Future Research

    SciTech Connect (OSTI)

    Bentz, A

    2008-07-31

    While the reality of an improvised nuclear device (IND) being detonated in an American city is unlikely, its destructive power is such that the scenario must be planned for. Upon reviewing the academic literature on the effects of and response to IND events, this report looks to actual responders from around the country. The results from the meetings of public officials in the cities show where gaps exist between theoretical knowledge and actual practice. In addition to the literature, the meetings reveal areas where future research needs to be conducted. This paper recommends that local response planners: meet to discuss the challenges of IND events; offer education to officials, the public, and responders on IND events; incorporate 'shelter-first' into response plans; provide information to the public and responders using the 3 Cs; and engage the private sector (including media) in response plans. In addition to these recommendations for the response planners, the paper provides research questions that once answered will improve response plans around the country. By following the recommendations, both groups, response planners and researchers, can help the country better prepare for and mitigate the effects of an IND detonation.

  4. Analysis of sheltering and evacuation strategies for an urban nuclear detonation scenario.

    SciTech Connect (OSTI)

    Yoshimura, Ann S.; Brandt, Larry D.

    2009-05-01

    Development of an effective strategy for shelter and evacuation is among the most important planning tasks in preparation for response to a low yield, nuclear detonation in an urban area. This study examines shelter-evacuate policies and effectiveness focusing on a 10 kt scenario in Los Angeles. The goal is to provide technical insights that can support development of urban response plans. Results indicate that extended shelter-in-place can offer the most robust protection when high quality shelter exists. Where less effective shelter is available and the fallout radiation intensity level is high, informed evacuation at the appropriate time can substantially reduce the overall dose to personnel. However, uncertainties in the characteristics of the fallout region and in the exit route can make evacuation a risky strategy. Analyses indicate that only a relatively small fraction of the total urban population may experience significant dose reduction benefits from even a well-informed evacuation plan.

  5. Characterization of structures and surface states of the nanodiamond synthesized by detonation

    SciTech Connect (OSTI)

    Zou, Q.; Li, Y.G.; Zou, L.H.; Wang, M.Z.

    2009-11-15

    Nanodiamond is a relatively new nanomaterial with broad prospects for application. In this paper, a variety of methods were used to analyze comprehensively the structures and the surface states of the nanodiamond synthesized by detonation, for example, X-ray diffraction (XRD) spectroscopy, energy diffraction spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (Raman) and differential scanning calorimeter (DSC). The results show that, the nanodiamond particles are spherical or elliptical in shape. The average grain size is approximately 5 nm. The surfaces of the nanodiamond contain hydroxy, carbonyl, carboxyl, ether-based resin, and other functional groups. The initial oxidation temperature of the nanodiamond in the air is about 550 deg. C, which is lower than that of the bulk diamond.

  6. Detonation reaction steps frozen by free expansion and analyzed by mass spectrometry

    SciTech Connect (OSTI)

    Greiner, N.R.; Fry, H.A.; Blais, N.C.; Engelke, R.P.

    1993-05-01

    Detonation reactions in small pellets of explosive are frozen by free expansion into a large vacuum chamber and analyzed by time-of-flight mass spectrometry. Sensitive explosives like PETN, RDX, and HMX show rapidly evolving reaction zones and mostly simple products like H{sub 2}O, CO, N{sub 2}, and CO{sub 2}. Less sensitive explosives like TATB, HNS, and TNT show slower evolution of the reaction zone, and more complex products in addition to the simple ones seen in PETN. Isotopic substitution shows that the more complex products contain moderate amounts of NH{sub 3}, HCN, NO, HNCO, and NO{sub 2}. Other observations include polymerization of aromatic explosive molecules, adducts to the explosive molecules, and explosive molecules with functional groups missing. The more complex products are reservoirs of unreleased energy that may affect performance.

  7. Detonation reaction steps frozen by free expansion and analyzed by mass spectrometry

    SciTech Connect (OSTI)

    Greiner, N.R.; Fry, H.A.; Blais, N.C.; Engelke, R.P.

    1993-01-01

    Detonation reactions in small pellets of explosive are frozen by free expansion into a large vacuum chamber and analyzed by time-of-flight mass spectrometry. Sensitive explosives like PETN, RDX, and HMX show rapidly evolving reaction zones and mostly simple products like H[sub 2]O, CO, N[sub 2], and CO[sub 2]. Less sensitive explosives like TATB, HNS, and TNT show slower evolution of the reaction zone, and more complex products in addition to the simple ones seen in PETN. Isotopic substitution shows that the more complex products contain moderate amounts of NH[sub 3], HCN, NO, HNCO, and NO[sub 2]. Other observations include polymerization of aromatic explosive molecules, adducts to the explosive molecules, and explosive molecules with functional groups missing. The more complex products are reservoirs of unreleased energy that may affect performance.

  8. Deflagration to detonation transition in mixtures of alkane LNG/LPG constituents with O/sub 2//N/sub 2/

    SciTech Connect (OSTI)

    Lindstedt, R.P.; Michels, H.J.

    1988-04-01

    Deflagration to detonation transitions (DDT) of methane, methane/ethane, ethane, propane, and butane in mixtures with increasing dilution of nitrogen have been studied in a smooth 2'' id detonation tube with a length/diameter ratio of 220. The results obtained demonstrate the presence of two regimes of DDT depending on the reactivity of the mixture. The first regime displays rapid acceleration to a stable detonation, while the second regime contains a quasistable, strong deflagration of rapidly increasing duration with decreasing mixture reactivity. It is established that the order of DDT under the conditions employed follows the order of autoignition temperatures for the fuels considered. The conditional use of transition parameters for estimates of relative detonabilities based on a qualitative similarity between induction times and times to transition is demonstrated to hold only for the first transition regime.

  9. NUclear EVacuation Analysis Code (NUEVAC) : a tool for evaluation of sheltering and evacuation responses following urban nuclear detonations.

    SciTech Connect (OSTI)

    Yoshimura, Ann S.; Brandt, Larry D.

    2009-11-01

    The NUclear EVacuation Analysis Code (NUEVAC) has been developed by Sandia National Laboratories to support the analysis of shelter-evacuate (S-E) strategies following an urban nuclear detonation. This tool can model a range of behaviors, including complex evacuation timing and path selection, as well as various sheltering or mixed evacuation and sheltering strategies. The calculations are based on externally generated, high resolution fallout deposition and plume data. Scenario setup and calculation outputs make extensive use of graphics and interactive features. This software is designed primarily to produce quantitative evaluations of nuclear detonation response options. However, the outputs have also proven useful in the communication of technical insights concerning shelter-evacuate tradeoffs to urban planning or response personnel.

  10. ENVIRONMENTAL IlONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS

    Office of Legacy Management (LM)

    IlONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1975 Nonitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 APRIL 1976 This work performed under a Memorandum of Understanding No. AT(26-1)-539 for the U . S . ENERGY RESEARCH & DEVELOPMENT ADMINISTRATION EMSL-LV-5 39-4 May 1976 ENVIRONMENTAL 14ONITORING REPORT FOR THE NEVADA

  11. Map of Nursing/Lactation Rooms | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Map of Nursing/Lactation Rooms This map indicates nursing/lactation rooms on Argonne's campus and includes details about each room. PDF icon Map of Nursing & Lactation Rooms

  12. Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort

    DOE Patents [OSTI]

    Studebaker, Irving G. (Grand Junction, CO); Hefelfinger, Richard (Grand Junction, CO)

    1980-01-01

    In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.

  13. Prompt laser ignition and transition to detonation in a secondary explosive

    SciTech Connect (OSTI)

    Setchell, R.E.; Trott, W.M.

    1994-05-01

    A two-stage approach to achieving detonation in a secondary explosive was developed in previous studies in which ignition resulted from low-energy hot wires or from laser diodes. In the current study, this approach was examined in some detail for the case of ignition by a pulsed, solid-state (rod) laser. An initial series of experiments used Nd/glass, ND/YAG, and Ti/sapphire lasers to investigate the ignition of graphite-doped HMX in highly confined optical fixtures that incorporated a fast piezoelectric pressure transducer. Experimental parameters included the laser power history and the explosive column length. The results of these experiments guided a second series of experiments in which the ignition column explosive was terminated by a thin rupture disc in contact with a transition column of low density HMX or some other material. The transition column was terminated with a piezoelectric time-of-arrival detector for determining overall function times. Parameters investigated included different laser sources, rupture disc thicknesses, and the transition column explosive characteristics. Overall function times less than 50 microseconds were obtained, and trends established by the various parameter studies indicate that further reductions in function time can be achieved.

  14. Quantification of C?C and C?O Surface Carbons in Detonation Nanodiamond by NMR

    SciTech Connect (OSTI)

    Cui, J -F; Fang, X -W; Schmidt-Rohr, K

    2014-05-08

    The ability of solid-state 13C NMR to detect and quantify small amounts of sp2-hybridized carbon on the surface of ?5 nm diameter nanodiamond particles is demonstrated. The C?C carbon fraction is only 1.1 0.4% in pristine purified detonation nanodiamond, while a full single-layer graphitic or bucky diamond shell would contain ca. 25% of all C in a 5 nm diameter particle. Instead of large aromatic patches repeatedly proposed in the recent literature, sp3-hybridized CH and COH carbons cover most of the nanodiamond particle surface, accounting for ?5% each. C?O and COO groups also seen in X-ray absorption near-edge structure spectroscopy (XANES) but not detected in previous NMR studies make up ca. 1.5% of all C. They are removed by heat treatment at 800 C, which increases the aromatic fraction. 13C{1H} NMR demonstrates that the various sp2-hybridized carbons are mostly not protonated, but cross-polarization shows that they are separated from 1H by only a few bond lengths, which proves that they are near the protonated surface. Together, the observed CH, COH, C?O, and C?C groups account for 1214% of all C, which matches the surface fraction expected for bulk-terminated 5 nm diameter diamond particles.

  15. Influence of surface modification adopting thermal treatments on dispersion of detonation nanodiamond

    SciTech Connect (OSTI)

    Xu Xiangyang . E-mail: xiangyang.xu@sohu.com; Yu Zhiming; Zhu Yongwei; Wang Baichun

    2005-03-15

    In order to improve the dispersion of detonation nanodiamonds (ND) in aqueous and non-aqueous media, a series of thermal treatments have been conducted in air ambient to modify ND surface. Small angle X-ray scattering (SAXS) technique and high resolution transmission electron microscopy (HRTEM) were introduced to observe the primary size of ND. Differential thermal analysis (DTA), X-ray diffraction (XRD) methodology, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy were adopted to analyze the structure, bonds at surfaces of the treated ND. Malvern instrument Zetasizer3000HS was used for measuring the surface electric potential and the size distribution of ND. As thermal treatments can cause graphitization and oxidization of functional groups at the surface, ND treated at high temperature is correspondingly more negatively charged in an aqueous medium, and the increased absolute value of zeta potential ensures the electrostatic stability of ND particles. Specially, after being treated at a temperature more than 850K, ND can be well dispersed in various media.

  16. Type Ia supernovae from merging white dwarfs. II. Post-merger detonations

    SciTech Connect (OSTI)

    Raskin, Cody; Kasen, Daniel [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Moll, Rainer; Woosley, Stan [Department of Physics and Department of Astronomy, University of California, Santa Cruz, CA (United States); Schwab, Josiah [Department of Physics and Department of Astronomy, University of California, Berkeley, CA (United States)

    2014-06-10

    Merging carbon-oxygen (CO) white dwarfs are a promising progenitor system for Type Ia supernovae (SNe Ia), but the underlying physics and timing of the detonation are still debated. If an explosion occurs after the secondary star is fully disrupted, the exploding primary will expand into a dense CO medium that may still have a disk-like structure. This interaction will decelerate and distort the ejecta. Here we carry out multidimensional simulations of 'tamped' SN Ia models, using both particle and grid-based codes to study the merger and explosion dynamics and a radiative transfer code to calculate synthetic spectra and light curves. We find that post-merger explosions exhibit an hourglass-shaped asymmetry, leading to strong variations in the light curves with viewing angle. The two most important factors affecting the outcome are the scale height of the disk, which depends sensitively on the binary mass ratio, and the total {sup 56}Ni yield, which is governed by the central density of the remnant core. The synthetic broadband light curves rise and decline very slowly, and the spectra generally look peculiar, with weak features from intermediate mass elements but relatively strong carbon absorption. We also consider the effects of the viscous evolution of the remnant and show that a longer time delay between merger and explosion probably leads to larger {sup 56}Ni yields and more symmetrical remnants. We discuss the relevance of this class of aspherical 'tamped' SN Ia for explaining the class of 'super-Chandrasekhar' SN Ia.

  17. Detonation shock dynamics calibration for pBX 9502 with temperature, density, and material lot variations

    SciTech Connect (OSTI)

    Hill, Larry G; Aslam, Tariq D

    2010-01-01

    We present a methodology for scaling the detonation shock dynamics D{sub n}[{kappa}] calibration function to accommodate variations in the HE starting material. We apply our model to the insensitive TATB-based explosive PBX 9502, for which we have enough front curvature rate stick data to characterize three material attributes: initial temperature T{sub 0}, nominal density {rho}{sub 0}, and manufacturing lot (representing different microstructures). A useful feature of the model is that it returns an absolute estimate for the reaction zone thickness, {delta}. Lacking demonstrated material metrics(s), we express microstructural variation indirectly, in terms of its effect on {delta}. This results in a D{sub n}[{kappa}] function that depends on T{sub 0}, {rho}{sub 0}, and {delta}. After examining the separate effects of each parameter on D{sub n}[{kappa}], we compute an arc geometry as a validation problem. We compare the calculation to a PBX 9502 arc experiment that was pressed from one of the calibrated HE lots. The agreement between the model and experiment is excellent. We compute worst, nominal, and best-performing material parameter combinations to show how much difference accrues throughout the arc.

  18. Prompt laser ignition and transition to detonation in a secondary explosive

    SciTech Connect (OSTI)

    Setchell, R.E.; Trott, W.M.

    1995-05-01

    A two-stage approach to achieving detonation in a secondary explosive was developed in previous studies in which ignition resulted from low-energy hot wires or from laser diodes. In the current study, this approach was examined in some detail for the case of ignition by a pulsed, solid-state (rod) laser. An initial series of experiments used Nd/glass, Nd/YAG, and Ti/sapphire lasers to investigate the ignition of graphite-doped HMX in highly confined optical fixtures that incorporated a fast piezoelectric pressure transducer. Experimental parameters included the laser power history and the explosive column length. The results of these experiments guided a second series of experiments in which the ignition column explosive was terminated by a thin rupture disc in contact with a transition column of low-density HMX or some other material. The transition column was terminated with a piezoelectric time-of-arrival detector for determining overall function times. Parameters investigated included different laser sources, rupture disc thicknesses, and the transition column explosive characteristics. Overall function times less than 50 microseconds were obtained, and trends established by the various parameter studies indicate that further reductions in function time can be achieved.

  19. Hillbrook Nursing Home Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility...

  20. Exploring high temperature phenomena related to post-detonation using an electric arc

    SciTech Connect (OSTI)

    Dai, Z. R. Crowhurst, J. C.; Grant, C. D.; Knight, K. B.; Tang, V.; Chernov, A. A.; Cook, E. G.; Lotscher, J. P.; Hutcheon, I. D.

    2013-11-28

    We report a study of materials recovered from a uranium-containing plasma generated by an electric arc. The device used to generate the arc is capable of sustaining temperatures of an eV or higher for up to 100??s. Samples took the form of a 4??m-thick film deposited onto 8 pairs of 17??m-thick Cu electrodes supported on a 25??m-thick Kapton backing and sandwiched between glass plates. Materials recovered from the glass plates and around the electrode tips after passage of an arc were characterized using scanning and transmission electron microscopy. Recovered materials included a variety of crystalline compounds (e.g., UO{sub 2}, UC{sub 2}, UCu{sub 5},) as well as mixtures of uranium and amorphous glass. Most of the materials collected on the glass plates took the form of spherules having a wide range of diameters from tens of nanometers to tens of micrometers. The composition and size of the spherules depended on location, indicating different chemical and physical environments. A theoretical analysis we have carried out suggests that the submicron spherules presumably formed by deposition during the arc discharge, while at the same time the glass plates were strongly heated due to absorption of plasma radiation mainly by islands of deposited metals (Cu, U). The surface temperature of the glass plates is expected to have risen to ?2300?K thus producing a liquefied glass layer, likely diffusions of the deposited metals on the hot glass surface and into this layer were accompanied by chemical reactions that gave rise to the observed materials. These results, together with the compact scale and relatively low cost, suggest that the experimental technique provides a practical approach to investigate the complex physical and chemical processes that occur when actinide-containing material interacts with the environment at high temperature, for example, during fallout formation following a nuclear detonation.

  1. Propagation or failure of detonation across an air gap in an LX-17 column: continuous time-dependent detonation or shock speed using the Embedded Fiber Optic (EFO) technique

    SciTech Connect (OSTI)

    Hare, D E; Chandler, J B; Compton, S M; Garza, R G; Grimsley, D A; Hernandez, A; Villafana, R J; Wade, J T; Weber, S R; Wong, B M; Souers, P C

    2008-01-16

    The detailed history of the shock/detonation wave propagation after crossing a room-temperature-room-pressure (RTP) air gap between a 25.4 mm diameter LX-17 donor column and a 25.4 mm diameter by 25.4 mm long LX-17 acceptor pellet is investigated for three different gap widths (3.07, 2.08, and 0.00 mm) using the Embedded Fiber Optic (EFO) technique. The 2.08 mm gap propagated and the 3.07 mm gap failed and this can be seen clearly and unambiguously in the EFO data even though the 25.4 mm-long acceptor pellet would be considered quite short for a determination by more traditional means such as pins.

  2. Microenergetic research involving a coupled experimental and computational approach to evaluate microstructural effects on detonation and combustion at sub-millimeter geometries.

    SciTech Connect (OSTI)

    Nogan, John; Palmer, Jeremy Andrew; Brundage, Aaron L.; Long, Gregory T.; Wroblewski, Brian D.; Tappan, Alexander Smith; Renlund, Anita Mariana; Kravitz, Stanley H.; Baer, Melvin R.

    2006-07-01

    A new approach to explosive sample preparation is described in which microelectronics-related processing techniques are utilized. Fused silica and alumina substrates were prepared utilizing laser machining. Films of PETN were deposited into channels within the substrates by physical vapor deposition. Four distinct explosive behaviors were observed with high-speed framing photography by driving the films with a donor explosive. Initiation at hot spots was directly observed, followed by either energy dissipation leading to failure, or growth to a detonation. Unsteady behavior in velocity and structure was observed as reactive waves failed due to decreasing channel width. Mesoscale simulations were performed to assist in experiment development and understanding. We have demonstrated the ability to pattern these films of explosives and preliminary mesoscale simulations of arrays of voids showed effects dependent on void size and that detonation would not develop with voids below a certain size. Future work involves experimentation on deposited films with regular patterned porosity to elucidate mesoscale explosive behavior.

  3. Comparison of Bacillus atrophaeus spore viability following exposure to detonation of C4 and to deflagration of halogen-containing thermites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tringe, J. W.; Letant, S. E.; Dugan, L. C.; Levie, H. W.; Kuhl, A. L.; Murphy, G. A.; Alves, S. W.; Vandersall, K. S.; Pantoya, M. L.

    2013-12-17

    We found that energetic materials are being considered for the neutralization of spore-forming bacteria. In this study, the neutralization effects of a monomolecular explosive were compared to the effects of halogen-containing thermites. Bacillus atrophaeus spores were exposed to the post-detonation environment of a 100 g charge of the military explosive C-4 at a range of 50 cm. These tests were performed in the thermodynamically closed environment of a 506-l barometric calorimeter. Associated temperatures were calculated using a thermodynamic model informed by calculations with the Cheetah thermochemicalcode. Temperatures in the range of 2300–2800 K were calculated to persist for nearly themore » full 4 ms pressure observation time. After the detonation event, spores were characterized using optical microscopy and the number of viable spores was assessed. These results showed live spore survival rates in the range of 0.01%–1%. For the thermite tests, a similar, smaller-scale configuration was employed that examined the spore neutralization effects of two thermites: aluminum with iodine pentoxide andaluminum with potassium chlorate. Only the former mixture resulted in spore neutralization. Our results indicate that the detonation environment produced by an explosive with no chemical biocides may provide effective spore neutralization similar to a deflagrating thermite containing iodine.« less

  4. Chemical Concentrations in Field Mice from Open-Detonation Firing Sites TA-36 Minie and TA-39 Point 6 at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Fresquez, Philip R. [Los Alamos National Laboratory

    2011-01-01

    Field mice (mostly Peromyscus spp.) were collected at two open-detonation (high explosive) firing sites - Minie at Technical Area (TA) 36 and Point 6 at TA-39 - at Los Alamos National Laboratory in August of 2010 and in February of 2011 for chemical analysis. Samples of whole body field mice from both sites were analyzed for target analyte list elements (mostly metals), dioxin/furans, polychlorinated biphenyl congeners, high explosives, and perchlorate. In addition, uranium isotopes were analyzed in a composite sample collected from TA-36 Minie. In general, all constituents, with the exception of lead at TA-39 Point 6, in whole body field mice samples collected from these two open-detonation firing sites were either not detected or they were detected below regional statistical reference levels (99% confidence level), biota dose screening levels, and/or soil ecological chemical screening levels. The amount of lead in field mice tissue collected from TA-39 Point 6 was higher than regional background, and some lead levels in the soil were higher than the ecological screening level for the field mouse; however, these levels are not expected to affect the viability of the populations over the site as a whole.

  5. Post detonation nuclear forensics

    SciTech Connect (OSTI)

    Davis, Jay

    2014-05-09

    The problem of working backwards from the debris of a nuclear explosion to attempt to attribute the event to a particular actor is singularly difficult technically. However, moving from physical information of any certainty through the political steps that would lead to national action presents daunting policy questions as well. This monograph will outline the operational and physical components of this problem and suggest the difficulty of the policy questions that remain.

  6. High-Resolution Numerical Simulation and Analysis of Mach Reflection Structures in Detonation Waves in Low-Pressure H 2 –O 2 –Ar Mixtures: A Summary of Results Obtained with the Adaptive Mesh Refinement Framework AMROC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deiterding, Ralf

    2011-01-01

    Numerical simulation can be key to the understanding of the multidimensional nature of transient detonation waves. However, the accurate approximation of realistic detonations is demanding as a wide range of scales needs to be resolved. This paper describes a successful solution strategy that utilizes logically rectangular dynamically adaptive meshes. The hydrodynamic transport scheme and the treatment of the nonequilibrium reaction terms are sketched. A ghost fluid approach is integrated into the method to allow for embedded geometrically complex boundaries. Large-scale parallel simulations of unstable detonation structures of Chapman-Jouguet detonations in low-pressure hydrogen-oxygen-argon mixtures demonstrate the efficiency of the described techniquesmore » in practice. In particular, computations of regular cellular structures in two and three space dimensions and their development under transient conditions, that is, under diffraction and for propagation through bends are presented. Some of the observed patterns are classified by shock polar analysis, and a diagram of the transition boundaries between possible Mach reflection structures is constructed.« less

  7. High-Resolution Numerical Simulation and Analysis of Mach Reflection Structures in Detonation Waves in Low-Pressure H2O2Ar Mixtures: A Summary of Results Obtained with the Adaptive Mesh Refinement Framework AMROC

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deiterding, Ralf

    2011-01-01

    Numerical simulation can be key to the understanding of the multidimensional nature of transient detonation waves. However, the accurate approximation of realistic detonations is demanding as a wide range of scales needs to be resolved. This paper describes a successful solution strategy that utilizes logically rectangular dynamically adaptive meshes. The hydrodynamic transport scheme and the treatment of the nonequilibrium reaction terms are sketched. A ghost fluid approach is integrated into the method to allow for embedded geometrically complex boundaries. Large-scale parallel simulations of unstable detonation structures of Chapman-Jouguet detonations in low-pressure hydrogen-oxygen-argon mixtures demonstrate the efficiency of the described techniquesmorein practice. In particular, computations of regular cellular structures in two and three space dimensions and their development under transient conditions, that is, under diffraction and for propagation through bends are presented. Some of the observed patterns are classified by shock polar analysis, and a diagram of the transition boundaries between possible Mach reflection structures is constructed.less

  8. Influence of sweeping detonation-wave loading on damage evolution during spallation loading of tantalum in both a planar and curved geometry

    SciTech Connect (OSTI)

    Gray, George Thompson III; Hull, Lawrence Mark; Livescu, Veronica; Faulkner, James; Briggs, Matthew E.; Meyer, Ross Keith; Andrews, Heather Lynn; Hare, Steven John; Jakulewicz, Micah Shawn; Shinas, Michael A.

    2015-03-30

    Widespread research over the past five decades has provided a wealth of experimental data and insight concerning the shock hardening, damage evolution, and the spallation response of materials subjected to square-topped shock-wave loading profiles. However, fewer quantitative studies have been conducted on the effect of direct, in-contact, high explosive (HE)-driven Taylor wave (unsupported shocks) loading on the shock hardening, damage evolution, or spallation response of materials. Systematic studies quantifying the effect of sweeping-detonation wave loading are yet sparser. In this study, the damage evolution and spallation response of Ta is shown to be critically dependent on the peak shock stress, the geometry of the sample (flat or curved plate geometry), and the shock obliquity during sweeping-detonation-wave shock loading. Sweepingwave loading in the flat-plate geometry is observed to: a) yield a lower spall strength than previously documented for 1-D supported-shock-wave loading, b) exhibit increased shock hardening as a function of increasing obliquity, and c) lead to an increased incidence of deformation twin formation with increasing shock obliquity. Sweeping-wave loading of a 10 cm radius curved Ta plate is observed to: a) lead to an increase in the shear stress as a function of increasing obliquity, b) display a more developed level of damage evolution, extensive voids and coalescence, and lower spall strength with obliquity in the curved plate than seen in the flat-plate sweeping-detonation wave loading for an equivalent HE loading, and c) no increased propensity for deformation twin formation with increasing obliquity as seen in the flat-plate geometry. The overall observations comparing and contrasting the flat versus curved sweeping-wave spall experiments with 1D loaded spallation behavior suggests a coupled influence of obliquity and geometry on dynamic shock-induced damage evolution and spall strength. Coupled experimental and modeling research to quantify the combined effects of sweeping-wave loading with increasingly complex sample geometries on the shockwave response of materials is clearly crucial to providing the basis for developing and thereafter validation of predictive modeling capability.

  9. Production Pathways and Separation Procedures for High-Diagnostic-Value Activation Species, Fission Products, and Actinides Required for Preparation of Realistic Synthetic Post-Detonation Nuclear Debris

    SciTech Connect (OSTI)

    Faye, S A; Shaughnessy, D A

    2015-08-19

    The objective of this project is to provide a comprehensive study on the production routes and chemical separation requirements for activation products, fission products, and actinides required for the creation of realistic post-detonation surrogate debris. Isotopes that have been prioritized by debris diagnosticians will be examined for their ability to be produced at existing irradiation sources, production rates, and availability of target materials, and chemical separation procedures required to rapidly remove the products from the bulk target matrix for subsequent addition into synthetic debris samples. The characteristics and implications of the irradiation facilities on the isotopes of interest will be addressed in addition to a summary of the isotopes that are already regularly produced.

  10. Implications of an Improvised Nuclear Device Detonation on Command and Control for Surrounding Regions at the Local, State and Federal Levels

    SciTech Connect (OSTI)

    Pasquale, David A.; Hansen, Richard G.

    2013-01-23

    This paper discusses command and control issues relating to the operation of Incident Command Posts (ICPs) and Emergency Operations Centers (EOCs) in the surrounding area jurisdictions following the detonation of an Improvised Nuclear Device (IND). Although many aspects of command and control will be similar to what is considered to be normal operations using the Incident Command System (ICS) and the National Incident Management System (NIMS), the IND response will require many new procedures and associations in order to design and implement a successful response. The scope of this white paper is to address the following questions: Would the current command and control framework change in the face of an IND incident? What would the management of operations look like as the event unfolded? How do neighboring and/or affected jurisdictions coordinate with the state? If the target areas command and control infrastructure is destroyed or disabled, how could neighboring jurisdictions assist with command and control of the targeted jurisdiction? How would public health and medical services fit into the command and control structure? How can pre-planning and common policies improve coordination and response effectiveness? Where can public health officials get federal guidance on radiation, contamination and other health and safety issues for IND response planning and operations?

  11. Radiological Triage | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    of data. This integrated system provides essential time-sensitive information on the nature of the threat, allowing responders to develop and implement appropriate courses of...

  12. Data triage enables extreme-scale computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ranking large-scale data. The researchers presented a whitepaper on the subject for the Big Data Exascale Computing workshop in Japan. Significance of the research The main focus...

  13. Ability of the Confined Explosive Component Water Gap Test STANAG 4363 to Assess the Shock Sensitivity of MM-Scale Detonators

    SciTech Connect (OSTI)

    Lefrancois, A S; Roeske, F; Benterou, J; Tarver, C M; Lee, R S; Hannah, B

    2006-02-10

    The Explosive Component Water Gap Test (ECWGT) has been validated to assess the shock sensitivity of lead and booster components having a diameter larger than 5 mm. Several countries have investigated by experiments and numerical simulations the effect of confinement on the go/no go threshold for Pentaerythritol Tetranitrate (PETN) pellets having a height and diameter of 3 mm, confined by a steel annulus of wall thickness 1-3.5 mm. Confinement of the PETN by a steel annulus of the same height of the pellet with 1-mm wall thickness makes the component more sensitive (larger gap). As the wall thickness is increased to 2-mm, the gap increases a lesser amount, but when the wall thickness is increased to 3.5-mm a decrease in sensitivity is observed (smaller gap). This decrease of the water gap has been reproduced experimentally. Recent numerical simulations using Ignition and Growth model [1] for the PETN Pellet have reproduced the experimental results for the steel confinement up to 2 mm thick [2]. The presence of a stronger re-shock following the first input shock from the water and focusing on the axis have been identified in the pellet due to the steel confinement. The double shock configuration is well-known to lead in some cases to shock desensitization. This work presents the numerical simulations using Ignition and Growth model for LX16 (PETN based HE) and LX19 (CL20 based HE) Pellets [3] in order to assess the shock sensitivity of mm-scale detonators. The pellets are 0.6 mm in diameter and 3 mm length with different type of steel confinement 2.2 mm thick and 4.7 mm thick. The influence of an aluminum confinement is calculated for the standard LX 16 pellet 3 mm in diameter and 3 mm in height. The question of reducing the size of the donor charge is also investigated to small scale the test itself.

  14. Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)

    SciTech Connect (OSTI)

    Casey, Leslie A.

    2014-01-13

    The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advances in science and technology.

  15. Open apex shaped charge-type explosive device having special disc means with slide surface thereon to influence movement of open apex shaped charge liner during collapse of same during detonation

    DOE Patents [OSTI]

    Murphy, M.J.

    1993-10-12

    An open apex shape charge explosive device is disclosed having an inner liner defining a truncated cone, an explosive charge surrounding the truncated inner liner, a primer charge, and a disc located between the inner liner and the primer charge for directing the detonation of the primer charge around the end edge of the disc means to the explosive materials surrounding the inner liner. The disc comprises a material having one or more of: a higher compressive strength, a higher hardness, and/or a higher density than the material comprising the inner liner, thereby enabling the disc to resist deformation until the liner collapses. The disc has a slide surface thereon on which the end edge of the inner liner slides inwardly toward the vertical axis of the device during detonation of the main explosive surrounding the inner liner, to thereby facilitate the inward collapse of the inner liner. In a preferred embodiment, the geometry of the slide surface is adjusted to further control the collapse or [beta] angle of the inner liner. 12 figures.

  16. Open apex shaped charge-type explosive device having special disc means with slide surface thereon to influence movement of open apex shaped charge liner during collapse of same during detonation

    DOE Patents [OSTI]

    Murphy, Michael J. (Livermore, CA)

    1993-01-01

    An open apex shape charge explosive device is disclosed having an inner liner defining a truncated cone, an explosive charge surrounding the truncated inner liner, a primer charge, and a disc located between the inner liner and the primer charge for directing the detonation of the primer charge around the end edge of the disc means to the explosive materials surrounding the inner liner. The disc comprises a material having one or more of: a higher compressive strength, a higher hardness, and/or a higher density than the material comprising the inner liner, thereby enabling the disc to resist deformation until the liner collapses. The disc has a slide surface thereon on which the end edge of the inner liner slides inwardly toward the vertical axis of the device during detonation of the main explosive surrounding the inner liner, to thereby facilitate the inward collapse of the inner liner. In a preferred embodiment, the geometry of the slide surface is adjusted to further control the collapse or .beta. angle of the inner liner.

  17. The world's first nuclear detonation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (and other Manhattan Project sites). It took them less than two years to change the world. July 10, 2015 x x "Highly accurate 3D computing is a Holy Grail of the Stockpile...

  18. Air pollution and morbidity: a further analysis of the Los Angeles student nurses data

    SciTech Connect (OSTI)

    Schwartz, J.; Hasselblad, V.; Pitcher, H.

    1988-02-01

    Hammer et al. analyzed daily diary reports of headache, eye irritation, cough, and chest discomfort in a study of Los Angeles student nurses, and found a statistically significant association between these symptoms and daily maximum one-hour oxidant concentrations at a nearby air quality monitor. Our analysis examines the student nurse data for the possible significance of other pollutants. We used new model specifications designed to account for the probabilistic nature of the outcome variables, and to allow for complications arising from the time series aspects of the data. We replicated the finding of a significant relationship between oxidants and coughing and eye irritation, and also found that; carbon monoxide was significantly related to headache symptoms; nitrogen dioxide was significantly related to eye irritation; and sulfur dioxide was significantly related to chest discomfort.

  19. The U.S. Nuclear Detonation Detection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purpose. Bhang is a form of cannabis consumed in India. The group chose the name as a joke, implying that you had to be "on something" to believe such a simple instrument could...

  20. From Glimmer to Fireball: Photographing Nuclear Detonations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (1956) is outfitted to protect himself from radiation. (Photo: Open Source) 13 National Security Science July 2015 Photographing nuclear explosions was not for the faint hearted....

  1. Perfluorocarbon vapor tagging of blasting cap detonators

    DOE Patents [OSTI]

    Dietz, Russell N. (Shoreham, NY); Senum, Gunnar I. (Patchogue, NY)

    1981-01-01

    A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

  2. detonation detection | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact...

  3. Passive smoking, air pollution, and acute respiratory symptoms in a diary study of student nurses

    SciTech Connect (OSTI)

    Schwartz, J.; Zeger, S. )

    1990-01-01

    A cohort of approximately 100 student nurses in Los Angeles was recruited for a diary study of the acute effects of air pollution. Smoking histories and presence of asthma and other allergies were determined by questionnaire. Diaries were completed daily and collected weekly for as long as 3 yr. Air pollution was measured at a monitoring location within 2.5 miles of the school. Incidence and duration of a symptom were modeled separately. Pack-years of cigarettes were predictive of the number of episodes of coughing (p less than 0.0001) and of bringing up phlegm (p less than 0.0001). Current smoking, rather than cumulative smoking, was a better predictor of the duration of a phlegm episode (p less than 0.0001). Controlling for personal smoking, a smoking roommate increased the risk of an episode of phlegm (odds ratio (OR) = 1.41, p less than 0.001), but not of cough. Excluding asthmatics (who may be medicated), increased the odds ratio for passive smoking to 1.76 (p less than 0.0001). In logistic regression models controlling for temperature and serial correlation between days, an increase of 1 SD in carbon monoxide exposure (6.5 ppm) was associated with increased risk of headache (OR = 1.09, p less than 0.001), photochemical oxidants (7.4 pphm) were associated with increased risk of chest discomfort (OR = 1.17, p less than 0.001) and eye irritation (OR = 1.20 p less than 0.001), and nitrogen dioxide (9.1 pphm) was associated with increased risk of phlegm (OR = 1.08 p less than 0.01), sore throats (OR = 1.26, p less than 0.001), and eye irritation (OR = 1.16, p less than 0.001).

  4. Exploring high temperature phenomena related to post-detonation...

    Office of Scientific and Technical Information (OSTI)

    Materials recovered from the glass plates and around the electrode tips after passage of an arc were characterized using scanning and transmission electron microscopy. Recovered ...

  5. Major Effects in the Thermodynamics of Detonation Products: Phase...

    Office of Scientific and Technical Information (OSTI)

    Subject: 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; CHEMICAL EXPLOSIVES; DISSOCIATION; EXPLOSIONS; EXPLOSIVES; ...

  6. Investigation of injury data at a detonator facility

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cournoyer, Michael E.; Apodaca, Marylou; Bustamante, Robert A.; Armijo, Mark A.; Lawton, Cindy M.

    2015-08-28

    This paper focuses on the collection of injury data; incorporation of this information into a visual format that DET management uses to make decisions to improving operations. Results from this 1 study include of the following: chemical exposure cases have declined because the Hazard Assessment of each DET operation has been formally reviewed; Slip/Trip/Fall factors have decreased due to Slip Simulator training; and work station evaluations have led to fewer injuries with Lift/Push/Pull factors. Rotation of employees, ergonomically friendly balances, automatic powder dispensers, and other equipment procurements will lower ergonomic injuries.

  7. Nanostructure-enhanced Chemical Reactivity and Detonation in Energetic Materials.

    SciTech Connect (OSTI)

    Thompson, Aidan P.

    2015-09-01

    Scientific impact: The project supports the investigation of energetic materials. This work is providing fundamental insight into initiation mechanisms in energetic materials.

  8. Using handheld plastic scintillator detectors to triage individuals exposed to a radiological dispersal device

    SciTech Connect (OSTI)

    Manger, Ryan P; Hertel, Nolan; Burgett, E.; Ansari, A.

    2011-01-01

    After a radiological dispersal device (RDD) event, people could become internally contaminated by inhaling dispersed radioactive particles. A rapid method to screen individuals who are internally contaminated is desirable. Such initial screening can help in prompt identification of those who are highly contaminated and in prioritizing individuals for further and more definitive evaluation such as laboratory testing. The use of handheld plastic scintillators to rapidly screen those exposed to an RDD with gamma-emitting radionuclides was investigated in this study. The Monte Carlo N-Particle transport code was used to model two commercially available plastic scintillation detectors in conjunction with anthropomorphic phantom models to determine the detector response to inhaled radionuclides. Biokinetic models were used to simulate an inhaled radionuclide and its progression through the anthropomorphic phantoms up to 30 d after intake. The objective of the study was to see if internal contamination levels equivalent to 250 mSv committed effective dose equivalent could be detected using these instruments. Five radionuclides were examined: {sup 60}Co, {sup 137}Cs, {sup 192}Ir, {sup 131}I and {sup 241}Am. The results demonstrate that all of the radionuclides except {sup 241}Am could be detected when placing either one of the two plastic scintillator detector systems on the posterior right torso of the contaminated individuals.

  9. August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for a secure nation. Spatial partitioning for the ocean simulation data set. Data triage enables extreme-scale computing Data selection and triage are important techniques for...

  10. Detonation wave detection probe including parallel electrodes on a flexible backing strip

    DOE Patents [OSTI]

    Uher, Kenneth J. (Los Alamos, NM)

    1995-01-01

    A device for sensing the occurrence of destructive events and events involving mechanical shock in a non-intrusive manner. A pair of electrodes is disposed in a parallel configuration on a backing strip of flexible film. Electrical circuitry is used to sense the time at which an event causes electrical continuity between the electrodes or, with a sensor configuration where the electrodes are shorted together, to sense the time at which electrical continuity is lost.

  11. Uncertainty quantification of a containment vessel dynamic response subjected to high-explosive detonation impulse loading

    SciTech Connect (OSTI)

    Rodriguez, E. A.; Pepin, J. E.; Thacker, B. H.; Riha, D. S.

    2002-01-01

    Los Alamos National Laboratory (LANL), in cooperation with Southwest Research Institute, has been developing capabilities to provide reliability-based structural evaluation techniques for performing weapon component and system reliability assessments. The development and applications of Probabilistic Structural Analysis Methods (PSAM) is an important ingredient in the overall weapon reliability assessments. Focus, herein, is placed on the uncertainty quantification associated with the structural response of a containment vessel for high-explosive (HE) experiments. The probabilistic dynamic response of the vessel is evaluated through the coupling of the probabilistic code NESSUS with the non-linear structural dynamics code, DYNA-3D. The probabilistic model includes variations in geometry and mechanical properties, such as Young's Modulus, yield strength, and material flow characteristics. Finally, the probability of exceeding a specified strain limit, which is related to vessel failure, is determined.

  12. Detonation wave detection probe including parallel electrodes on a flexible backing strip

    DOE Patents [OSTI]

    Uher, K.J.

    1995-12-19

    A device is disclosed for sensing the occurrence of destructive events and events involving mechanical shock in a non-intrusive manner. A pair of electrodes is disposed in a parallel configuration on a backing strip of flexible film. Electrical circuitry is used to sense the time at which an event causes electrical continuity between the electrodes or, with a sensor configuration where the electrodes are shorted together, to sense the time at which electrical continuity is lost. 4 figs.

  13. Uses of Fabry-Perot velocimeters in studies of high explosives detonation

    SciTech Connect (OSTI)

    Breithaupt, R.D.; Tarver, C.M.

    1990-08-27

    The Fabry Perot has become an important and valuable tool by which explosive performance information can be obtained relatively easily and inexpensively. Principle uses of the Fabry Perot have been free surface, and particle velocity measurements in one dimensional studies of explosive performance. In the cylinder test, it has been very useful to resolve early wall motions. We have refined methods of characterizing new explosives i.e. equation of state, C-J pressure, via the cylinder shot, flat plate, and particle velocity techniques. All of these use Fabry Perot as one of the principle diagnostics. Each of these experimental techniques are discussed briefly and some of the results obtained. Modeling developed to fit Fabry-Perot results are described along with future testing.

  14. Embedded Fiber Optic Sensors for Measuring Transient Detonation/Shock Behavior;Time-of-Arrival Detection and Waveform Determination.

    SciTech Connect (OSTI)

    Chavez, Marcus Alexander; Willis, Michael David; Covert, Timothy T.

    2014-09-01

    The miniaturization of explosive components has driven the need for a corresponding miniaturization of the current diagnostic techniques available to measure the explosive phenomena. Laser interferometry and the use of spectrally coated optical windows have proven to be an essential interrogation technique to acquire particle velocity time history data in one- dimensional gas gun and relatively large-scale explosive experiments. A new diagnostic technique described herein allows for experimental measurement of apparent particle velocity time histories in microscale explosive configurations and can be applied to shocks/non-shocks in inert materials. The diagnostic, Embedded Fiber Optic Sensors (EFOS), has been tested in challenging microscopic experimental configurations that give confidence in the technique's ability to measure the apparent particle velocity time histories of an explosive with pressure outputs in the tenths of kilobars to several kilobars. Embedded Fiber Optic Sensors also allow for several measurements to be acquired in a single experiment because they are microscopic, thus reducing the number of experiments necessary. The future of EFOS technology will focus on further miniaturization, material selection appropriate for the operating pressure regime, and extensive hydrocode and optical analysis to transform apparent particle velocity time histories into true particle velocity time histories as well as the more meaningful pressure time histories.

  15. EM Makes Significant Progress on Dispositioning Transuranic Waste...

    Office of Environmental Management (EM)

    ordnance were collected and then detonated onsite at the Mass Detonation Area. A shell is found during a walkdown of the Idaho site. A shell is found during a walkdown of...

  16. Microsoft Word - Blurbs for Nik.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chemical change COR-corrosive 3 Shock or heat may detonate OX-oxidizer 4 Rapidly capable of detonation or explosion P-polymerization W with a line through it-Use no water...

  17. Analysis of Cleanup Alternatives and Supplemental Characterization...

    Office of Legacy Management (LM)

    ... The Milrow device (approximately 1,000 kilotons) was detonated on October 2. 1969. The third nuclear test (Cannikin) was weapons related and detonated on November 6. 1971. The ...

  18. Neutralize & Mitigate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the following: Airframe modeling Blast event shaping Detonation physics and chemistry Disruptive technologies Electromagnetic Energy (EME) coupling High-performance,...

  19. Lecture Notes - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    point and Mach stem formation. Lecture XV: Cellular detonations Combustion Chemistry: Thermochemistry Chemical Physical and Thermochemical Properties of Hydrocarbons Basic...

  20. Downhole delay assembly for blasting with series delay

    DOE Patents [OSTI]

    Ricketts, Thomas E. (Grand Junction, CO)

    1982-01-01

    A downhole delay assembly is provided which can be placed into a blasthole for initiation of explosive in the blasthole. The downhole delay assembly includes at least two detonating time delay devices in series in order to effect a time delay of longer than about 200 milliseconds in a round of explosions. The downhole delay assembly provides a protective housing to prevent detonation of explosive in the blasthole in response to the detonation of the first detonating time delay device. There is further provided a connection between the first and second time delay devices. The connection is responsive to the detonation of the first detonating time delay device and initiates the second detonating time delay device. A plurality of such downhole delay assemblies are placed downhole in unfragmented formation and are initiated simultaneously for providing a round of explosive expansions. The explosive expansions can be used to form an in situ oil shale retort containing a fragmented permeable mass of formation particles.

  1. Equilibrium calculations of firework mixtures

    SciTech Connect (OSTI)

    Hobbs, M.L.; Tanaka, Katsumi; Iida, Mitsuaki; Matsunaga, Takehiro

    1994-12-31

    Thermochemical equilibrium calculations have been used to calculate detonation conditions for typical firework components including three report charges, two display charges, and black powder which is used as a fuse or launch charge. Calculations were performed with a modified version of the TIGER code which allows calculations with 900 gaseous and 600 condensed product species at high pressure. The detonation calculations presented in this paper are thought to be the first report on the theoretical study of firework detonation. Measured velocities for two report charges are available and compare favorably to predicted detonation velocities. However, the measured velocities may not be true detonation velocities. Fast deflagration rather than an ideal detonation occurs when reactants contain significant amounts of slow reacting constituents such as aluminum or titanium. Despite such uncertainties in reacting pyrotechnics, the detonation calculations do show the complex nature of condensed phase formation at elevated pressures and give an upper bound for measured velocities.

  2. The Y-12 Times, a newsletter for employees and friends of the...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I was in the operating room," Fox said. "At Methodist we've made rapid triage and treatment of heart attack victims a top priority," said cardiologist Todd Justice. "We have...

  3. Sandia National Laboratories: MTEM 2014: Malware Technical Exchange...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Cookies (and Other Ways to Leverage Leakage) John Jarocki 10:30 am Break 10:45 am Big Data Approaches to Malware Triage: Detecting, Understanding and Defending Against...

  4. Assessment of Dose to the Nursing Infant from Radionuclides in Breast Milk

    SciTech Connect (OSTI)

    Leggett, Richard Wayne; Eckerman, Keith F

    2010-03-01

    A computer software package was developed to predict tissue doses to an infant due to intake of radionuclides in breast milk based on bioassay measurements and exposure data for the mother. The package is intended mainly to aid in decisions regarding the safety of breast feeding by a mother who has been acutely exposed to a radionuclide during lactation or pregnancy, but it may be applied to previous intakes during the mother s adult life. The package includes biokinetic and dosimetric information needed to address intake of Co-60, Sr-90, Cs-134, Cs-137, Ir-192, Pu-238, Pu-239, Am-241, or Cf-252 by the mother. It has been designed so that the library of biokinetic and dosimetric files can be expanded to address a more comprehensive set of radionuclides without modifying the basic computational module. The methods and models build on the approach used in Publication 95 of the International Commission on Radiological Protection (ICRP 2004), Doses to Infants from Ingestion of Radionuclides in Mothers Milk . The software package allows input of case-specific information or judgments such as chemical form or particle size of an inhaled aerosol. The package is expected to be more suitable than ICRP Publication 95 for dose assessment for real events or realistic planning scenarios in which measurements of the mother s excretion or body burden are available.

  5. Mesoscale modeling of metal-loaded high explosives

    SciTech Connect (OSTI)

    Bdzil, John Bohdan [Los Alamos National Laboratory; Lieberthal, Brandon [UNIV OF ILLINOIS; Srewart, Donald S [UNIV OF ILLINOIS

    2010-01-01

    We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.

  6. Double Shock Experiments and Reactive Flow Modeling of High Pressure LX-17

    Office of Scientific and Technical Information (OSTI)

    Detonation Reaction Product States (Conference) | SciTech Connect Double Shock Experiments and Reactive Flow Modeling of High Pressure LX-17 Detonation Reaction Product States Citation Details In-Document Search Title: Double Shock Experiments and Reactive Flow Modeling of High Pressure LX-17 Detonation Reaction Product States Authors: Vandersall, K S ; Garcia, F ; Fried, L E ; Tarver, C M Publication Date: 2014-06-24 OSTI Identifier: 1169870 Report Number(s): LLNL-CONF-656252

  7. Accident Investigation of the December 11, 2013, Integrated Device Fireset

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Detonator Accidental Discharge at the Sandia National Laboratory Site 9920, Albuquerque, NM | Department of Energy December 11, 2013, Integrated Device Fireset and Detonator Accidental Discharge at the Sandia National Laboratory Site 9920, Albuquerque, NM Accident Investigation of the December 11, 2013, Integrated Device Fireset and Detonator Accidental Discharge at the Sandia National Laboratory Site 9920, Albuquerque, NM March 16, 2014 Accident Investigation of the December 11, 2013,

  8. Shock Desensitization Experiments and Reactive Flow Modeling on

    Office of Scientific and Technical Information (OSTI)

    Self-Sustaining LX-17 Detonation Waves (Conference) | SciTech Connect Shock Desensitization Experiments and Reactive Flow Modeling on Self-Sustaining LX-17 Detonation Waves Citation Details In-Document Search Title: Shock Desensitization Experiments and Reactive Flow Modeling on Self-Sustaining LX-17 Detonation Waves Authors: Vandersall, K S ; Garcia, F ; Tarver, C M ; Fried, L E Publication Date: 2014-06-24 OSTI Identifier: 1169869 Report Number(s): LLNL-CONF-656218

  9. Categorical Exclusion Determinations: B1.12 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Categorical Exclusion Determinations: B1.12 Existing Regulations B1.12: Detonation or burning of explosives or propellants after testing Outdoor detonation or burning of explosives or propellants that failed (duds), were damaged (such as by fracturing), or were otherwise not consumed in testing. Outdoor detonation or burning would be in areas designated and routinely used for those purposes under existing applicable permits issued by Federal, state, and local authorities (such as a permit for

  10. Audit Report: OAS-L-14-09 | Department of Energy

    Energy Savers [EERE]

    9 Audit Report: OAS-L-14-09 July 28, 2014 National Nuclear Security Administration's Space-Based Nuclear Detonation Detection Program NNSA's Office of Defense Nuclear Nonproliferation Research and Development manages the Nuclear Detonation Detection (NDD) Program. The mission of the NDD program is to develop, demonstrate and deliver technologies to detect worldwide nuclear detonations. NNSA dedicated nearly $300 million in Fiscal Years 2011 through 2013, to the Space-Based NDD (SNDD) Program to

  11. Modular initiator with integrated optical diagnostic

    DOE Patents [OSTI]

    Alam, M. Kathleen (Cedar Crest, NM); Schmitt, Randal L. (Tijeras, NM); Welle, Eric J. (Niceville, FL); Madden, Sean P. (Arlington, MA)

    2011-05-17

    A slapper detonator which integrally incorporates an optical wavequide structure for determining whether there has been degradation of the explosive in the explosive device that is to be initiated by the detonator. Embodiments of this invention take advantage of the barrel-like character of a typical slapper detonator design. The barrel assembly, being in direct contact with the energetic material, incorporates an optical diagnostic device into the barrel assembly whereby one can monitor the state of the explosive material. Such monitoring can be beneficial because the chemical degradation of the explosive plays an important in achieving proper functioning of a detonator/initiator device.

  12. Double Shock Experiments and Reactive Flow Modeling of High Pressure...

    Office of Scientific and Technical Information (OSTI)

    Double Shock Experiments and Reactive Flow Modeling of High Pressure LX-17 Detonation Reaction Product States Citation Details In-Document Search Title: Double Shock Experiments ...

  13. Shock Desensitization Experiments and Reactive Flow Modeling...

    Office of Scientific and Technical Information (OSTI)

    Shock Desensitization Experiments and Reactive Flow Modeling on Self-Sustaining LX-17 Detonation Waves Citation Details In-Document Search Title: Shock Desensitization Experiments ...

  14. Development of a Multi-Point Microwave Interferometry (MPMI)...

    Office of Scientific and Technical Information (OSTI)

    A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a ...

  15. Limited Test Ban Treaty

    National Nuclear Security Administration (NNSA)

    Satellite Carrying NNSA-provided Nuclear Detonation Detection Sensors http:www.nnsa.energy.govmediaroompressreleasesafsatellite

  16. Conductivity Histories Measured in Shock-Dispersed-Fuel Explosion Clouds

    SciTech Connect (OSTI)

    Kuhl, A L

    2010-04-01

    The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Beside the scientific aspects at least two questions appear to be of practical interest: (1) Does the detonation of an SDF charge create electro-magnetic disturbances strong enough to affect the operation of electrical infrastructure in for example a tunnel system? (2) Does the detonation of an SDF charge in a tunnel system create an electromagnetic signature that relays information of the charge performance to the outside environment?

  17. 2015 University Turbine Systems Research Workshop | netl.doe...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The Effect of Mixture Concentration Inhomogeneity on Detonation Properties in Pressure ... Advanced Bond Coats for Thermal Barrier Coating Systems Based on High Entropy Alloys Derek ...

  18. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-08-05

    The Order defines the Nuclear Explosive and Weapon Surety (NEWS) Program, which was established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  19. Navy explosive ordnance disposal project: Optical ordnance system development. Final report

    SciTech Connect (OSTI)

    Merson, J.A.; Salas, F.J.; Helsel, F.M.

    1996-03-01

    An optical ordnance firing system consisting of a portable hand held solid state rod laser and an optically ignited detonator has been developed for use in explosive ordnance disposal (EOD) activities. Solid state rod laser systems designed to have an output of 150 mJ in a 500 microsecond pulse have been produced and evaluated. A laser ignited detonator containing no primary explosives has been designed and fabricated. The detonator has the same functional output as an electrically fired blasting cap. The optical ordnance firing system has demonstrated the ability to reliably detonate Comp C-4 through 1000 meters of optical fiber.

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    USDOE Office of Nuclear Detonation Detection (United States) USDOE Office of Nuclear Energy, Science and Technology (NE) (United States) USDOE Office of Policy and...

  1. Programmatic Framework | Department of Energy

    Office of Legacy Management (LM)

    were conducted at sites in five states for various purposes, including stimulating natural gas production and cataloging seismic detonation signatures. The Nevada Offsites...

  2. Most Viewed Documents for National Defense: September 2014 |...

    Office of Scientific and Technical Information (OSTI)

    Kenneth C. (1955) 17 Ground-based Nuclear Detonation Detection (GNDD) Technology Roadmap Casey, Leslie A. (2014) 17 Manual for the prediction of blast and fragment loadings on ...

  3. Experimental Study of High-Z Gas Buffers in Gas-Filled ICF Engines...

    Office of Scientific and Technical Information (OSTI)

    and energetic ions released during target detonation. To reduce the uncertainties of cooling and beamtarget propagation through such gas-filled chambers, we present a pulsed...

  4. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Nuclear Detonation Detection (United States) USDOE Office of Nuclear Energy, Science and Technology (NE) (United States) USDOE Office of Policy and International Affairs (PO)...

  5. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    and Administration (United States) USDOE Office of Nonproliferation and National Security (NN) (United States) USDOE Office of Nuclear Detonation Detection (United States)...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Office of Nonproliferation and National Security (NN) (United States) USDOE Office of Nuclear Detonation Detection (United States) USDOE Office of Nuclear Energy, Science and...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    States) USDOE Office of Nuclear Detonation Detection (United States) USDOE Office of Nuclear Energy, Science and Technology (NE) (United States) USDOE Office of Policy and...

  8. SRNL LDRD - Current Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brinkman) Direct LiT Electrolysis in a Metallic Lithium Fusion Blanket (Hector Colon-Mercado) Far Field Modeling Methods for Characterizing Surface Detonations (Alfred Garrett)...

  9. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    NNSA reduces the threat to national security posed by nuclear weapons proliferation and possible detonation or the illicit trafficking of nuclear materials through the long-term...

  10. DOE-Funded Research Projects Win 39 R&D Awards for 2010 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    reducing the possibility of accidental detonation. MOXIE: Movies of eXtreme Imaging Experiments: The uses for MOXIE include nuclear weapon certification without nuclear testing...

  11. ORISE: Research Team Experiences - Jonathan Mbah and Kiara Moorer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of explosive materials to help counteract terrorist threats and lessen the risk of detonation of explosive compounds in unrecovered land mines and environmental contamination...

  12. Ultrafast Dynamic Response of Single Crystal PETN and Beta-HMX...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Type: Conference Resource Relation: Conference: Presented at: International Detonation Symposium 15, San Francisco, CA, United States, Jul 13 - Jul 18, 2014 Research Org:...

  13. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    and National Security (NN) (United States) USDOE Office of Nuclear Detonation Detection (United States) USDOE Office of Nuclear Energy, Science and Technology (NE)...

  14. Cours-XII/Clavin2015.key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or near CJ regimes Results for simplified chemical kinetics x (t) 0 D heat release induction oscillations oscillations induction reference frame of the unperturbed detonation...

  15. How ORISE is Making a Difference: Empire 09

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State of New York in June 2009-tested what outcomes could occur if two radiological dispersion devices detonated in downtown Albany. The exercise was specifically designed to...

  16. OSTI, US Dept of Energy, Office of Scientific and Technical Informatio...

    Office of Scientific and Technical Information (OSTI)

    years ago, an atomic bomb was detonated on an isolated corner of southern New Mexico in a weapon test named Trinity. Related Topics: atomic bomb, Calutron (Y-12)...

  17. A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    control surfaces such as rudders. (PHASTA). Earthquake Genesis Realistic 3D fault rupture simulation (SORD). High Speed Combustion and Detonation Direct numerical simulation of...

  18. COLLOQUIUM: Atomic Tracings: The History of Radioisotopes in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Angela N. H. Creager Princeton University After detonating the first nuclear weapons in Japan, to devastating effects, the U.S. government turned swiftly to promoting the peaceable...

  19. Research and Development | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    capabilities to detect, identify, and characterize: 1) foreign nuclear weapons programs, 2) illicit diversion of special nuclear materials, and 3) global nuclear detonations. ...

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... (NN) (United States) USDOE Office of Nuclear Detonation Detection (United States) ... settlement known for the production of iron objects and weapons during the Roman Empire. ...

  1. Mound History and Information

    Office of Legacy Management (LM)

    In the 1950s, the facility began to manufacture a variety of nuclear weapons parts, in- cluding cable assemblies, explosive detonators, and the electronic firing sets that ...

  2. Explosively pumped laser light

    DOE Patents [OSTI]

    Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

    1991-01-01

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  3. The effect of RDX particle size on the shock sensitivity of cast PBX formulations: 2, Bimodal compositions

    SciTech Connect (OSTI)

    Moulard, H.; Delclos, A.; Kury, J.

    1987-04-01

    The effect of RDX particle size on the shock sensitivity and detonation velocity of two cast polyurethane-based bimodal RDX formulations has been determined. The shock sensitivity results (wedge test data) have been interpreted using a hydrodynamic code containing a three term ignition and growth model for build-up of detonation. 2 refs., 6 figs., 2 tabs.

  4. Modeling Blast Loading on Buried Reinforced Concrete Structures with Zapotec

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bessette, Greg C.

    2008-01-01

    A coupled Euler-Lagrange solution approach is used to model the response of a buried reinforced concrete structure subjected to a close-in detonation of a high explosive charge. The coupling algorithm is discussed along with a set of benchmark calculations involving detonations in clay and sand.

  5. Air Gap Effects in LX-17

    SciTech Connect (OSTI)

    Souers, P C; Ault, S; Avara, R; Bahl, K L; Boat, R; Cunningham, B; Gidding, D; Janzen, J; Kuklo, D; Lee, R; Lauderbach, L; Weingart, W C; Wu, B; Winer, K

    2005-09-26

    Three experiments done over twenty years on gaps in LX-17 are reported. For the detonation front moving parallel to the gaps, jets of gas products were seen coming from the gaps at velocities greater than the detonation velocity. A case can be made that the jet velocity increased with gap thickness but the data is scattered. For the detonation front moving transverse to the gap, time delays were seen. The delays roughly increase with gap width, going from 0-70 ns at 'zero gap' to around 300 ns at 0.5-1 mm gap. Larger gaps of up to 6 mm width almost certainly stopped the detonation, but this was not proved. Real-time resolution of the parallel jets and determination of the actual re-detonation or failure in the transverse case needs to be done in future experiments.

  6. Kinetic calculations of explosives with slow-burning constituents

    SciTech Connect (OSTI)

    Howard, W.M.; Souers, P.C.; Pried, L.E.

    1997-07-01

    The equilibrium thermochemical code CHEETAH V 1.40 has been modified to detonate part of the explosive and binder. An Einstein thermal description of the unreacted constituents is used, and the Einstein temperature may be increased to reduce heat absorption. We study the effect of the reactivity and thermal transport on the detonation velocity. Hydroxy-terminated-polybutadiene binders have low energy and density and would degrade the detonation velocity if they burned. Runs with unburned binder are closer to the measured values. Aluminum and ammonium Perchlorate are also largely unburned within the sonic reaction zone that determines the detonation velocity. All three materials appear not to fully absorb heat as well. The normal assumption of total reaction in a thermochemical code is clearly not true for these special cases, where the detonation velocities have widely different values for different combinations of processes.

  7. Plasmonic enhancement of direct optical initiation of explosives

    SciTech Connect (OSTI)

    Moore, David Steven; Clarke, Steven A; Glambra, Anna M

    2010-01-01

    Current Direct Optical Initiation (DOI) detonators use a laser focused onto a thin metal layer to drive a hot plasma and/or fragments into PETN powder. Previous studies showed a dramatic decrease in laser energies required to initiate the detonation using this approach over direct laser illumination of the PETN powder. Plasmonic metal nanostructures have been shown capable of strongly coupling laser energy into adjacent materials. We have incorporated gold nanospheres into PETN powder and are investigating their plasmonic enhancement of direct optical initiation via measurements of threshold laser energies and streak camera measurements for calculation of run to detonation distances compared to other DOI schemes.

  8. PLASMONIC ENHANCEMENT OF DIRECT OPTICAL INITIATION OF EXPLOSIVES

    SciTech Connect (OSTI)

    Moore, D. S.; Akinci, A. A.; Giambra, A. M.; Clarke, S. A.

    2009-12-28

    Current Direct Optical Initiation (DOI) detonators use a laser focused onto a thin metal layer to drive a hot plasma and/or fragments into PETN powder. Previous studies showed a dramatic decrease in laser energies required to initiate the detonation using this approach over direct laser illumination of the PETN powder. Plasmonic metal nanostructures have been shown capable of strongly coupling laser energy into adjacent materials. We have incorporated gold nanospheres into PETN powder and are investigating their plasmonic enhancement of direct optical initiation via measurements of threshold laser energies and streak camera measurements for calculation of run to detonation distances compared to other DOI schemes.

  9. High throughput chemical munitions treatment system

    DOE Patents [OSTI]

    Haroldsen, Brent L. (Manteca, CA); Stofleth, Jerome H. (Albuquerque, NM); Didlake, Jr., John E. (Livermore, CA); Wu, Benjamin C-P (San Ramon, CA)

    2011-11-01

    A new High-Throughput Explosive Destruction System is disclosed. The new system is comprised of two side-by-side detonation containment vessels each comprising first and second halves that feed into a single agent treatment vessel. Both detonation containment vessels further comprise a surrounding ventilation facility. Moreover, the detonation containment vessels are designed to separate into two half-shells, wherein one shell can be moved axially away from the fixed, second half for ease of access and loading. The vessels are closed by means of a surrounding, clam-shell type locking seal mechanisms.

  10. Explosive scabbling of structural materials

    DOE Patents [OSTI]

    Bickes, Jr., Robert W. (Albuquerque, NM); Bonzon, Lloyd L. (Albuquerque, NM)

    2002-01-01

    A new approach to scabbling of surfaces of structural materials is disclosed. A layer of mildly energetic explosive composition is applied to the surface to be scabbled. The explosive composition is then detonated, rubbleizing the surface. Explosive compositions used must sustain a detonation front along the surface to which it is applied and conform closely to the surface being scabbled. Suitable explosive compositions exist which are stable under handling, easy to apply, easy to transport, have limited toxicity, and can be reliably detonated using conventional techniques.

  11. Plasmonic enhancement of direct optical initiation of explosives

    SciTech Connect (OSTI)

    Moore, David Steven; Akinci, Adrian A; Giambra, Anna M; Clarke, Steven A

    2009-01-01

    Current Direct Optical Initiation (DOI) detonators use a laser focused onto a thin metal layer to drive a hot plasma and/or fragments into PETN powder. Previous studies showed a dramatic decrease in laser energies required to initiate the detonation using this approach over direct laser illumination of the PETN powder. Plasmonic metal nanostructures have been shown capable of strongly coupling laser energy into adjacent materials. We have incorporated gold nanospheres into PETN powder and are investigating their plasmonic enhancement of direct optical initiation via measurements of threshold laser energies and streak camera measurements for calculation of run to detonation distances compared to other DOI schemes.

  12. ORISE: Radiation Emergency Assistance Center/Training Site (REAC/TS)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How ORISE is Making a Difference Overview CBL International Exercise Emergency Response Training International Training RANET Asset CBL BioDoseNet CBL's Empire 09 Support NASA Support International Partnerships Resources Overview Frequently Asked Questions about Radiation Understanding Radiation Video Series The Medical Aspects of Radiation Incidents Dose Estimates and Compendia Procedure Demonstrations for Contaminated Patients Hospital Triage Article Radiation Treatment Medication Package

  13. Operated by Los Alamos National Security, LLC for the U.S. Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tied to Nuclear Detonation Detection mission Vela Prototype LTBT Signing Starfish Prime: 400 km 1.4 Mt Operated by Los Alamos National Security, LLC for the U.S. Department...

  14. The LANL C-NR counting room and fission product yields

    SciTech Connect (OSTI)

    Jackman, Kevin Richard

    2015-09-21

    This PowerPoint presentation focused on the following areas: LANL C-NR counting room; Fission product yields; Los Alamos Neutron wheel experiments; Recent experiments ad NCERC; and Post-detonation nuclear forensics

  15. Sandia Sled Track PNOV Press Release

    Broader source: Energy.gov (indexed) [DOE]

    current electronic detonator in a trainer device that resulted in a first- degree burn on a finger and second-degree burns on a thumb, finger and abdomen. NNSA cited LANS for...

  16. Los Alamos National Laboratory The

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with the intensity many times that of the midday sun. It was golden, purple, violet, gray, and blue." It was the Trinity Test: the world's first nuclear detonation. This year,...

  17. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-06

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A. Canceled by DOE O 452.1C.

  18. VELA_COMP_OUT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I. Strong & R. Olson (LANL) NASA Swift Spacecraft devoted to the study of cosmic gamma-ray bursts (Credit: NASAGSFC) The U.S. Nuclear Detonation Detection System is managed as a...

  19. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-01-17

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled by DOE O 452.1B.

  20. National Nuclear Security Administration Fact Sheet Preliminary...

    Office of Environmental Management (EM)

    established at 10 C.F.R. Part 851, Worker Safety and Health Program, associated with a lithium ion battery fire and an unexpected detonator initiation at SNL. NNSA identified four...

  1. Type Ia supernovae from merging white dwarfs. II. Post-merger...

    Office of Scientific and Technical Information (OSTI)

    Type Ia supernovae from merging white dwarfs. II. Post-merger detonations Citation Details In-Document Search Title: Type Ia supernovae from merging white dwarfs. II. Post-merger ...

  2. Snowmass. Colorado,

    Office of Scientific and Technical Information (OSTI)

    * - ' E 1 1" International Detonation Symposium, Snowmass. Colorado, August 3 1-September 4, 199s DYSAhIIC EQUATION OF STATE AKD STREXGTH PROPERTIES 56 N o 7 %@ I ' OF USREACTED...

  3. Microsoft Word - S04902_LetterReport Cover Letter.doc

    Office of Legacy Management (LM)

    to fracture the tight gas-bearing sandstone formations in the Piceance Basin for enhanced natural gas production. A 43 kiloton device was detonated on September 10, 1969, at a...

  4. Microsoft Word - S06010_Ltr.doc

    Office of Legacy Management (LM)

    to fracture the tight, gas-bearing formations in the Piceance Basin for enhanced natural gas production. A 43 kiloton device was detonated on September 10, 1969, at a...

  5. Microsoft Word - S07285_LTHMP

    Office of Legacy Management (LM)

    to fracture the tight, gas-bearing formations in the Piceance Basin for enhanced natural gas production. A 43-kiloton device was detonated on September 10, 1969, at a...

  6. Microsoft Word - S08407_LTHMP

    Office of Legacy Management (LM)

    to fracture the tight, gas-bearing formations in the Piceance Basin for enhanced natural gas production. A 43-kiloton device was detonated on September 10, 1969, at a...

  7. United States Nuclear Tests, July 1945 through September 1992, December 2000

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    2000-12-01

    This document list chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Revision 15, dated December 2000.

  8. V-Site Assembly Building and Gun Site | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    was hidden behind a "no-peek" fence. The Gadget, which became the prototype for the "Fat Man" bomb, was an implosion device. Detonation was achieved when symmetrical lenses...

  9. Compact chemical energy system for seismic applications

    DOE Patents [OSTI]

    Engelke, Raymond P. (Los Alamos, NM); Hedges, Robert O. (Los Alamos, NM); Kammerman, Alan B. (Los Alamos, NM); Albright, James N. (Los Alamos, NM)

    1998-01-01

    A chemical energy system is formed for producing detonations in a confined environment. An explosive mixture is formed from nitromethane (NM) and diethylenetriamine (DETA). A slapper detonator is arranged adjacent to the explosive mixture to initiate detonation of the mixture. NM and DETA are not classified as explosives when handled separately and can be safely transported and handled by workers in the field. In one aspect of the present invention, the chemicals are mixed at a location where an explosion is to occur. For application in a confined environment, the chemicals are mixed in an inflatable container to minimize storage space until it is desired to initiate an explosion. To enable an inflatable container to be used, at least 2.5 wt % DETA is used in the explosive mixture. A barrier is utilized that is formed of a carbon composite material to provide the appropriate barrel geometry and energy transmission to the explosive mixture from the slapper detonator system.

  10. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-20

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1B. Canceled by DOE O 452.1D

  11. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Canceled by DOE O 452.1D Admin Chg 1.

  12. CX-010562: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Pratt and Whitney Rocketdyne - Continuous Detonation Engine Combustor for Natural Gas Turbine CX(s) Applied: B3.6 Date: 05/09/2013 Location(s): California, Connecticut Offices(s): Advanced Research Projects Agency-Energy

  13. High strain rate method of producing optimized fracture networks in reservoirs

    DOE Patents [OSTI]

    Roberts, Jeffery James; Antoun, Tarabay H.; Lomov, Ilya N.

    2015-06-23

    A system of fracturing a geological formation penetrated by a borehole. At least one borehole is drilled into or proximate the geological formation. An energetic charge is placed in the borehole. The energetic charge is detonated fracturing the geological formation.

  14. LMS-AMC-S01980-0-0.cdr

    Office of Legacy Management (LM)

    ... Cannikin, the third and largest United States underground nuclear test, was a weapons-related test and was detonated on November 6, 1971. The radioactive fission products from the ...

  15. United States Nuclear Tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Two nuclear weapons that the United States exploded over Japan ending World War II are not listed. These detonations were not "tests" in the sense that they were conducted to prove ...

  16. United States Nuclear Tests July 1945 through September 1992

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Two nuclear weapons that the United States exploded over Japan ending World War II are not listed. These detonations were not "tests" in the sense that they were conducted to prove ...

  17. amchitka3.cdr

    Office of Legacy Management (LM)

    The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third ...

  18. Microsoft Word - S05725_SAP

    Office of Legacy Management (LM)

    ... The second nuclear test (Milrow) was a weapons-related test conducted by AEC in 1969 as a means to study the feasibility of detonating a much larger device. Cannikin, the third ...

  19. Nevada Environmental Restoration Project Natfonal Nuclenr Security...

    Office of Legacy Management (LM)

    ... The Long Shot device (approximately 80 kilotons) was detonated on October 29, 1965. The second nuclear test (Milrow) was a weapons-related test conducted by the AEC as a means to ...

  20. Operation Greenhouse. Scientific Director's report of atomic-weapon tests at Eniwetok, 1951. Annex 8. 3. Special radar, radio, and photographic studies of weapons effects. Part 1, 2, 3, and 4

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    Contents include: Part 1--radar-scope photography; Part 2--effects of atomic detonation on radio propagation; Part 3; photographic assessment of bomb damage; Part 4--film fogging studies.

  1. SCB initiator

    DOE Patents [OSTI]

    Bickes Jr., Robert W.; Renlund, Anita M.; Stanton, Philip L.

    1994-11-01

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  2. 3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 2006 Revised Environmental Assessment Large-Scale, Open-Air Explosive Detonation DIVINE STRAKE at the Nevada Test Site Prepared by: Department of Energy National Nuclear Security Administration Nevada Site Office DOE/EA-1550 Cooperating Agency: Department of Defense Defense Threat Reduction Agency DRAFT December 2006 Revised Environmental Assessment Large-Scale, Open-Air Explosive Detonation DIVINE STRAKE at the Nevada Test Site DRAFT December 2006 Revised Environmental Assessment

  3. Revised Environmental Assessment Large-Scale, Open-Air Explosive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Assessment Large-Scale, Open-Air Explosive Detonation, DIVINE STRAKE, at the Nevada Test Site May 2006 Prepared by Department of Energy National Nuclear Security Administration Nevada Site Office Environmental Assessment May 2006 Large-Scale, Open-Air Explosive Detonation, DIVINE STRAKE, at the Nevada Test Site TABLE OF CONTENTS 1.0 PURPOSE AND NEED FOR ACTION.....................................................1-1 1.1 Introduction and

  4. Safe arming system for two-explosive munitions

    DOE Patents [OSTI]

    Jaroska, Miles F. (Livermore, CA); Niven, William A. (Livermore, CA); Morrison, Jasper J. (Livermore, CA)

    1978-01-01

    A system for safely and positively detonating high-explosive munitions, including a source of electrical signals, a split-phase square-loop transformer responsive solely to a unique series of signals from the source for charging an energy storage circuit through a voltage doubling circuit, and a spark-gap trigger for initiating discharge of the energy in the storage circuit to actuate a detonator and thereby fire the munitions.

  5. Final Report: Ionization chemistry of high temperature molecular fluids

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Final Report: Ionization chemistry of high temperature molecular fluids Citation Details In-Document Search Title: Final Report: Ionization chemistry of high temperature molecular fluids With the advent of coupled chemical/hydrodynamic reactive flow models for high explosives, understanding detonation chemistry is of increasing importance to DNT. The accuracy of first principles detonation codes, such as CHEETAH, are dependent on an

  6. DOE - NNSA/NFO -- News & Views Sedan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sedan Tested Use of Nuclear Explosives to Move Earth Photo - Project Sedan The Atomic Energy Commission (AEC) conducted the nuclear excavation experiment "Sedan" on July 6, 1962. The detonation was part of the AEC's Plowshare Program to develop peaceful uses for nuclear explosives. Sedan was the second in the Plowshare series; the first test, Gnome was fired, on December 10, 1961. Sedan was a 104-kiloton nuclear device detonated 635 feet underground to develop the technology to use

  7. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives performance key to stockpile stewardship Explosives performance key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and properties. November 3, 2014 Adam Pacheco of shock and detonation physics presses the "fire" button during an experiment at the two-stage gas gun facility. Adam Pacheco of shock and detonation physics presses the "fire" button during an

  8. Declassification of the Yields of 11 Nuclear Tests Conducted as Part

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Declassification of the Yields of 11 Nuclear Tests Conducted as Part of the Plowshare Peaceful Uses for Nuclear Explosives Program The Department of Energy and the Department of Defense have jointly declassified the specific yields of 11 nuclear tests conducted between 1962 and 1968 at the Nevada Test Site, including three tests that, as previously announced, leaked radioactivity. Also declassified are the yields of two detonations that, together with another detonation whose yield has already

  9. Amy Bauer-Problem-solving fuels passion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Problem-solving fuels passion Amy Bauer-Problem-solving fuels passion She works on a broad range of nuclear counterterrorism projects, including post-detonation nuclear forensics. March 11, 2014 Amy Bauer She works on a broad range of nuclear counterterrorism projects, including post-detonation nuclear forensics. Bauer's career advice? "Do something that you are passionate about. Don't wait for opportunities-position yourself right and create them! Adhere to a strong work ethic and always

  10. Barrier breaching device

    DOE Patents [OSTI]

    Honodel, C.A.

    1983-06-01

    A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.

  11. SCB initiator

    DOE Patents [OSTI]

    Bickes, Jr., Robert W. (Albuquerque, NM); Renlund, Anita M. (Albuquerque, NM); Stanton, Philip L. (Albuquerque, NM)

    1994-01-01

    A detonator for high explosives initiated by mechanical impact includes a cylindrical barrel, a layer of flyer material mechanically covering the barrel at one end, and a semiconductor bridge ignitor including a pair of electrically conductive pads connected by a semiconductor bridge. The bridge is in operational contact with the layer, whereby ignition of said bridge forces a portion of the layer through the barrel to detonate the explosive. Input means are provided for igniting the semiconductor bridge ignitor.

  12. Sandia National Laboratories: National Security Missions: International

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Homeland and Nuclear Security: Remote Sensing and Verification Remote Sensing and Verification Remote Sensing and Verification Image We extend Sandia's 60-year heritage in nuclear detonation detection to develop, deliver, and provide mission expertise for advanced remote sensing systems to monitor worldwide activities of consequence to national security. We design and build satellite sensor payloads and ground-based systems for the detection of nuclear detonations. We develop and evaluate

  13. Barrier breaching device

    DOE Patents [OSTI]

    Honodel, Charles A. (Tracy, CA)

    1985-01-01

    A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.

  14. Three Dimensional Simulation of the Baneberry Nuclear Event (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Three Dimensional Simulation of the Baneberry Nuclear Event Citation Details In-Document Search Title: Three Dimensional Simulation of the Baneberry Nuclear Event Baneberry, a 10-kiloton nuclear event, was detonated at a depth of 278 m at the Nevada Test Site on December 18, 1970. Shortly after detonation, radioactive gases emanating from the cavity were released into the atmosphere through a shock-induced fissure near surface ground zero. Extensive geophysical

  15. Stockpile Stewardship Quarterly

    National Nuclear Security Administration (NNSA)

    1, Number 3 * October 2011 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Comments Questions or comments regarding the Stockpile Stewardship Quarterly should be directed to Terri.Batuyong@nnsa.doe.gov Technical Editor: Chris Werner, Publication Editor: Millicent Mischo Defense Programs Stockpile Stewardship in Action Volume 1, Number 3 Inside this Issue 2 Simulation: A Window into the Detonation of High Explosives 3 Modeling of High-Explosive Detonation

  16. 3

    National Nuclear Security Administration (NNSA)

    December 2006 Revised Environmental Assessment Large-Scale, Open-Air Explosive Detonation DIVINE STRAKE at the Nevada Test Site Prepared by: Department of Energy National Nuclear Security Administration Nevada Site Office DOE/EA-1550 Cooperating Agency: Department of Defense Defense Threat Reduction Agency DRAFT December 2006 Revised Environmental Assessment Large-Scale, Open-Air Explosive Detonation DIVINE STRAKE at the Nevada Test Site DRAFT December 2006 Revised Environmental Assessment

  17. LX-17 Corner-Turning and Reactive Flow Failure

    SciTech Connect (OSTI)

    Souers, P C; Andreski, H; Cook III, C F; Garza, R; Pastrone, R; Phillips, D; Roeske, F; Vitello, P; Molitoris, J

    2004-03-11

    We have performed a series of highly-instrumented experiments examining corner-turning of detonation. A TATB booster is inset 15 mm into LX-17 (92.5% TATB, 7.5% kel-F) so that the detonation must turn a right angle around an air well. An optical pin located at the edge of the TATB gives the start time of the corner-turn. The breakout time on the side and back edges is measured with streak cameras. Three high-resolution X-ray images were taken on each experiment to examine the details of the detonation. We have concluded that the detonation cannot turn the corner and subsequently fails, but the shock wave continues to propagate in the unreacted explosive, leaving behind a dead zone. The detonation front farther out from the corner slowly turns and eventually reaches the air well edge 180{sup o} from its original direction. The dead zone is stable and persists 7.7 {micro}s after the corner-turn, although it has drifted into the original air well area. Our regular reactive flow computer models sometimes show temporary failure but they recover quickly and are unable to model the dead zones. We present a failure model that cuts off the reaction rate below certain detonation velocities and reproduces the qualitative features of the corner-turning failure.

  18. Selectable fragmentation warhead

    SciTech Connect (OSTI)

    Bryan, C.S.; Paisley, D.L.; Montoya, N.I.; Stahl, D.B.

    1993-07-20

    A selectable fragmentation warhead is described comprising: a case having proximal and distal ends; a fragmenting plate mounted in said distal end of said casing; first explosive means cast adjacent to said fragmenting plate for creating a predetermined number of fragments from said fragmenting plate; three or more first laser-driven slapper detonators located adjacent to said first explosive means for detonating said first explosive means in a predetermined pattern; smoother-disk means located adjacent to said first means for accelerating said fragments; second explosive means cast adjacent to said smoother-disk means for further accelerating said fragments; at least one laser-driven slapper detonators located in said second explosive means; a laser located in said proximal end of said casing; optical fibers connecting said laser to said first and second laser-driven slapper detonators; and optical switch means located in series with said optical fibers connected to said plurality of first laser-driven slapper detonators for blocking or passing light from said laser to said plurality of first laser-driven slapper detonators.

  19. Jack Rabbit Pretest Shadowplate Drawings For TATB IHE Model Development

    SciTech Connect (OSTI)

    Hart, M M; McDaniel, D W

    2009-07-10

    The Jack Rabbit Pretest (PT) series consisted of 5 focused hydrodynamic experiments 2021E PT3, PT4, PT5, PT6, and PT7. They were fired in March and April of 2008 at the Contained Firing Facility, Site 300, Lawrence Livermore National Laboratory, Livermore, California. These experiments measured deadzone formation and impulse gradients created during the detonation of TATB based insensitive high explosive. When setting up computer simulations of the Jack Rabbit Pretest series, the modeler or code developer can execute simulations with increasing degrees of refinement using detail found in the shadowplate design. The easiest way to get started is by treating the shadowplate in each experiment as a monolithic homogeneous piece of stainless steel. The simulation of detonation would begin as a point initiation below the center, bottom surface of the shadowplate. The detonation running through the ultrafine TATB booster can be simulated using program burn and then switched over to a reactive flow detonation model as the detonation front crosses the boundary into the main charge LX-17 IHE. A modeler wanting to further refine the simulation and progression of shock through the shadowplate can use the more detailed shadowplate design information presented in this document. The source drawings are included in Appendix A of this document. Their titles and drawing numbers are listed. Each experiment's shadowplate consists of two major components. A 303 stainless steel shape that defines the outer dimensions of shadowplate and a cylindrical 303 stainless steel detonator housing that is located in a closely machined pocket in the shape. The SIMPLE ASSY drawing accurately represents the dimensions of the outer shape, it's machined cylindrical pocket, and detonator body which is treated as a monolithic, homogeneous piece of stainless steel. The detonator body cross section shows an accurately dimensioned void where the slapper flyer barrel, LX-16 (pressed PETN) pellet, and pellet can flyer barrel are located. The FULL ASSY drawing accurately represents the dimensions of the outer shadowplate shape and it's machined pocket. The detonator dimensions and materials are detailed in cross section and exploded view. All diameters, thicknesses, and materials are called out in the drawing. You will notice that the detonator includes a multilayer slapper assembly with two layers of electrically insulating Kapton sandwiching the copper foil bridge circuit. The Kapton insulated circuit is sandwiched between two thin stainless steel sheets. This slapper assembly is secured to the detonator body with two screws. There is a 0.25 mm gap between the slapper assembly and the outer shadowplate shape. The stainless steel detonator body contains an off-center titanium wheel. This titanium wheel is secured to the detonator body with one screw and two pins to maintain position and orientation of the pellet can assembly in the center of the detonator body. The titanium wheel contains a tantalum/tungsten washer and pellet can assembly. The pellet can assembly consists of a pressed LX-16 initiator pellet contained in an extruded aluminum foil can. It may be useful for the modeler to include some of the details of the shadowplate and detonator design to further refine simulations of the Jack Rabbit Pretest experiments. These details may be relevant to the progression of shock originating from the PETN initiation pellet and ultrafine TATB booster that propagates through the shadowplate.

  20. Shock initiation studies on high concentration hydrogen peroxide

    SciTech Connect (OSTI)

    Sheffield, Stephen A; Dattelbaum, Dana M; Stahl, David B; Gibson, L. Lee; Bartram, Brian D.

    2009-01-01

    Concentrated hydrogen peroxide (H{sub 2}O{sub 2}) has been known to detonate for many years. However, because of its reactivity and the difficulty in handling and confining it, along with the large critical diameter, few studies providing basic information about the initiation and detonation properties have been published. We are conducting a study to understand and quantify the initiation and detonation properties of highly concentrated H{sub 2}O{sub 2} using a gas-driven two-stage gun to produce well defined shock inputs. Multiple magnetic gauges are used to make in-situ measurements of the growth of reaction and subsequent detonation in the liquid. These experiments are designed to be one-dimensional to eliminate any difficulties that might be encountered with large critical diameters. Because of the concern of the reactivity of the H{sub 2}O{sub 2} with the confining materials, a remote loading system has been developed. The gun is pressurized, then the cell is filled and the experiment shot within less than three minutes. TV cameras are attached to the target so the cell filling can be monitored. Several experiments have been completed on {approx}98 wt % H{sub 2}O{sub 2}/H{sub 2}O mixtures; initiation has been observed in some experiments that shows homogeneous shock initiation behavior. The initial shock pressurizes and heats the mixture. After an induction time, a thermal explosion type reaction produces an evolving reactive wave that strengthens and eventually overdrives the first wave producing a detonation. From these measurements, we have determined unreacted Hugoniot information, times (distances) to detonation (Pop-plot points) that indicate low sensitivity, and detonation velocities of high concentration H{sub 2}O{sub 2}/H{sub 2}O solutions that agree with earlier estimates.

  1. Portable microfluidic raman system for rapid, label-free early disease signature detection

    SciTech Connect (OSTI)

    Wu, Meiye; Davis, Ryan Wesley; Hatch, Anson

    2015-09-01

    In the early stages of infection, patients develop non-specific or no symptoms at all. While waiting for identification of the infectious agent, precious window of opportunity for early intervention is lost. The standard diagnostics require affinity reagents and sufficient pathogen titers to reach the limit of detection. In the event of a disease outbreak, triaging the at-risk population rapidly and reliably for quarantine and countermeasure is more important than the identification of the pathogen by name. To expand Sandia's portfolio of Biological threat management capabilities, we will utilize Raman spectrometry to analyze immune subsets in whole blood to rapidly distinguish infected from non-infected, and bacterial from viral infection, for the purpose of triage during an emergency outbreak. The goal of this one year LDRD is to determine whether Raman spectroscopy can provide label-free detection of early disease signatures, and define a miniaturized Raman detection system meeting requirements for low- resource settings.

  2. Pahute Mesa Well Development and Testing Analyses for Wells ER-20-8 and ER-20-4, Nevada National Security Site, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    Greg Ruskauff and Sam Marutzky

    2012-09-01

    Wells ER-20-4 and ER-20-8 were drilled during fiscal year (FY) 2009 and FY 2010 (NNSA/NSO, 2011a and b). The closest underground nuclear test detonations to the area of investigation are TYBO (U-20y), BELMONT (U-20as), MOLBO (U-20ag), BENHAM (U-20c), and HOYA (U-20 be) (Figure 1-1). The TYBO, MOLBO, and BENHAM detonations had working points located below the regional water table. The BELMONT and HOYA detonation working points were located just above the water table, and the cavity for these detonations are calculated to extend below the water table (Pawloski et al., 2002). The broad purpose of Wells ER-20-4 and ER-20-8 is to determine the extent of radionuclide-contaminated groundwater, the geologic formations, groundwater geochemistry as an indicator of age and origin, and the water-bearing properties and hydraulic conditions that influence radionuclide migration. Well development and testing is performed to determine the hydraulic properties at the well and between other wells, and to obtain groundwater samples at the well that are representative of the formation at the well. The area location, wells, underground nuclear detonations, and other features are shown in Figure 1-1. Hydrostratigraphic cross sections A-A, B-B, C-C, and D-D are shown in Figures 1-2 through 1-5, respectively.

  3. Understanding composite explosive energetics: 4. Reactive flow modeling of aluminum reaction kinetics in PETN and TNT using normalized product equation of state

    SciTech Connect (OSTI)

    Tao, W.C.; Tarver, C.M.; Kury, J.W.; Lee, C.G.; Ornellas, D.L.

    1993-07-01

    Using Fabry-Perot interferometry techniques, we have determined the early time rate of energy release from detonating PETN and TNT explosives filled with 5 to 20 wt % of either 5 {mu}m or 18 {mu}m spherical aluminum with the detonation products, and calculate the extent of reaction at 1--3 {mu}s after the detonation. All of the metal in PETN formulations filled with 5 wt % and 10 wt % of either 5 {mu}m or 18 {mu}m aluminum reacted within 1.5 {mu}s, resulting in an increase of 18--22% in energy compared to pure PETN. For TNT formulations, between 5 to 10 wt % aluminum reacts completely with the same timeframe. A reactive flow hydrodynamic code model based on the Zeldovich-von Neumann-Doring (ZND) description of the reaction zone and subsequent reaction product expansion (Taylor wave) is used to address the reaction rate of the aluminum particles with detonation product gases. The detonation product JWL equation of state is derived from that of pure PETN using a parametric normalization methodology.

  4. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema (OSTI)

    Dattelbaum, Dana

    2015-01-05

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  5. Catalytic Behavior of Dense Hot Water

    SciTech Connect (OSTI)

    Wu, C J; Fried, L E; Yang, L H; Goldman, N; Bastea, S

    2008-06-05

    Water is known to exhibit fascinating physical properties at high pressures and temperatures. Its remarkable structural and phase complexity suggest the possibility of exotic chemical reactivity under extreme conditions, though this remains largely unstudied. Detonations of high explosives containing oxygen and hydrogen produce water at thousands of K and tens of GPa, similar to conditions of giant planetary interiors. These systems thus provide a unique means to elucidate the chemistry of 'extreme water'. Here we show that water plays an unexpected role in catalyzing complex explosive reactions - contrary to the current view that it is simply a stable detonation product. Using first-principles atomistic simulations of the detonation of high explosive pentaerythritol tetranitrate (PETN), we discovered that H{sub 2}O (source), H (reducer) and OH (oxidizer) act as a dynamic team that transports oxygen between reaction centers. Our finding suggests that water may catalyze reactions in other explosives and in planetary interiors.

  6. STUDY OF THERMAL SENSITIVITY AND THERMAL EXPLOSION VIOLENCE OF ENERGETIC MATERIALS IN THE LLNL ODTX SYSTEM

    SciTech Connect (OSTI)

    HSU, P C; Hust, G; May, C; Howard, M; Chidester, S K; Springer, H K; Maienschein, J L

    2011-08-03

    Some energetic materials may explode at fairly low temperatures and the violence from thermal explosion may cause a significant damage. Thus it is important to understand the response of energetic materials to thermal insults for safe handling and storage of energetic materials. The One Dimensional Time to Explosion (ODTX) system at the Lawrence Livermore National Laboratory can measure times to explosion, lowest explosion temperatures, and determine kinetic parameters of energetic materials. Samples of different configurations can be tested in the system. The ODTX testing can also generate useful data for determining thermal explosion violence of energetic materials. We also performed detonation experiments of LX-10 in aluminum anvils to determine the detonation violence and validated the Zerilli Armstrong aluminum model. Results of the detonation experiments agreed well with the model prediction.

  7. Method for making generally cylindrical underground openings

    DOE Patents [OSTI]

    Routh, J.W.

    1983-05-26

    A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

  8. A More General Solution of the Kenamond HE Problem 2

    SciTech Connect (OSTI)

    Kaul, Ann

    2015-12-15

    A more general solution for programmed burn calculations of the light times produced by an unobstructed line-of-sight, multi-point initiation of a composite HE region has been developed. The equations describing the interfaces between detonation fronts have also been included. In contrast to the original solutions proposed in References 1 and 2, four of the detonators are no longer restricted to specific locations on a Cartesian axis and can be located at any point inside the HE region. For the proposed solution, one detonator must be located at the origin. The more general solution for any locations on the 2D y-axis or 3D z-axis has been implemented in the ExactPack suite of exact solvers for verification problems. It could easily be changed to the most general case outlined above.

  9. Optical ordance system for use in explosive ordnance disposal activities

    SciTech Connect (OSTI)

    Merson, J.A.; Salas, F.J.; Helsel, F.M.

    1994-01-01

    A portable hand-held solid state rod laser system and an optically-ignited detonator have been developed for use in explosive ordnance disposal (EOD) activities. Laser prototypes from Whittaker Ordnance and Universal Propulsion have been tested and evaluated. The optical detonator contains 2-(5 cyanotetrazolato) pentaamine cobalt III perchlorate (CP) as the DDT column and the explosive Octahydro 1, 3, 5, 7 -- tetranitro -- 1, 3, 5, 7 -- tetrazocine (HMX) as the output charge. The laser is designed to have an output of 150 mJ in a 500 microsecond pulse. This output allows firing through 2000 meters of optical fiber. The detonator can also be ignited with a portable laser diode source through a shorter length of fiber.

  10. EDS V25 containment vessel explosive qualification test report.

    SciTech Connect (OSTI)

    Rudolphi, John Joseph

    2012-04-01

    The V25 containment vessel was procured by the Project Manager, Non-Stockpile Chemical Materiel (PMNSCM) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the first EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel based on the Code Case is nine (9) pounds TNT-equivalent for up to 637 detonations. This limit is an increase from the 4.8 pounds TNT-equivalency rating for previous vessels. This report describes the explosive qualification tests that were performed in the vessel as part of the process for qualifying the vessel for explosive use. The tests consisted of a 11.25 pound TNT equivalent bare charge detonation followed by a 9 pound TNT equivalent detonation.

  11. Apparatus and method for producing fragment-free openings

    DOE Patents [OSTI]

    Cherry, Christopher R. (Albuquerque, NM)

    2001-01-01

    An apparatus and method for explosively penetrating hardened containers such as steel drums without producing metal fragmentation is disclosed. The apparatus can be used singularly or in combination with water disrupters and other disablement tools. The apparatus is mounted in close proximity to the target and features a main sheet explosive that is initiated at least three equidistant points along the sheet's periphery. A buffer material is placed between the sheet explosive and the target. As a result, the metallic fragments generated from the detonation of the detonator are attenuated so that no fragments from the detonator are transferred to the target. As a result, an opening can be created in containers such as steel drums through which access to the IED is obtained to defuse it with projectiles or fluids.

  12. Data Analysis for Explosive Firesets

    SciTech Connect (OSTI)

    Barks, Thomas A.

    2015-07-30

    I analyzed the data from various detonators at different initial voltages to find the RLC values (resistance, inductance, capacitance) of the fireset. The data I was given contained a current and voltage for each time value taken on nanosecond intervals. From this, I was able to make plots of several variables to try and find which if any of variables correlated with a burst or a go. These results will allow us to fully understand what is required to achieve a burst in the bridgewire so that we can know what is safe or what will never cause detonation. We may also be able to predict the outcome of using the same fireset with different detonators or with different sizes or materials of bridgewire.

  13. On Numerical Considerations for Modeling Reactive Astrophysical Shocks

    SciTech Connect (OSTI)

    Papatheodore, Thomas L; Messer, Bronson

    2014-01-01

    Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds (and associated quantities) is to prohibit burning inside the numerically broadened shock (Fryxell et al. 1989). We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that, in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. (1989). In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly-resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in Type Ia supernovae.

  14. Sol-gel processing of energetic materials

    SciTech Connect (OSTI)

    Tillotson, T.M.; Hrubesh, L.H.; Fox, G.L.; Simpson, R.L.; Lee, R.W.; Swansiger, R.W.; Simpson, L.R.

    1997-08-18

    As part of a new materials effort, we are exploring the use of sol- gel chemistry to manufacture energetic materials. Traditional manufacturing of energetic materials involves processing of granular solids. One application is the production of detonators where powders of energetic material and a binder are typically mixed and compacted at high pressure to make pellets. Performance properties are strongly dependent on particle size distribution, surface area of its constituents, homogeneity of the mix, and void volume. The goal is to produce detonators with fast energy release rate the are insensitive to unintended initiation. In this paper, we report results of our early work in this field of research, including the preparation of detonators from xerogel molding powders and aerogels, comparing the material properties with present state-of-the-art technology.

  15. Focused feasibility study for surface soil at the main pits and pushout area, J-field toxic burning pits area, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Patton, T.; Benioff, P.; Biang, C.; Butler, J.

    1996-06-01

    The Environmental Management Division of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). J-Field is located within the Edgewood Area of APG in Harford County, Maryland. Since World War II, activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning/open detonation. Portions of J-Field continue to be used for the detonation and disposal of unexploded ordnance (UXO) by open burning/open detonation under authority of the Resource Conservation and Recovery Act.

  16. Los Alamos Explosives Performance Key to Stockpile Stewardship

    SciTech Connect (OSTI)

    Dattelbaum, Dana

    2014-11-03

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  17. Radiological effluents released from US continental tests, 1961 through 1992. Revision 1

    SciTech Connect (OSTI)

    Schoengold, C.R.; DeMarre, M.E.; Kirkwood, E.M.

    1996-08-01

    This report documents all continental tests from September 15, 1961, through September 23, 1992, from which radioactive effluents were released. The report includes both updated information previously published in the publicly available May, 1990 report, DOE/NV-317, ``Radiological Effluents Released from Announced US Continental Tests 1961 through 1988``, and effluent release information on formerly unannounced tests. General information provided for each test includes the date, time, location, type of test, sponsoring laboratory and/or agency or other sponsor, depth of burial, purpose, yield or yield range, extent of release (onsite only or offsite), and category of release (detonation-time versus post-test operations). Where a test with simultaneous detonations is listed, location, depth of burial and yield information are given for each detonation if applicable, as well as the specific source of the release. A summary of each release incident by type of release is included. For a detonation-time release, the effluent curies are expressed at R+12 hours. For a controlled releases from tunnel-tests, the effluent curies are expressed at both time of release and at R+12 hours. All other types are listed at the time of the release. In addition, a qualitative statement of the isotopes in the effluent is included for detonation-time and controlled releases and a quantitative listing is included for all other types. Offsite release information includes the cloud direction, the maximum activity detected in the air offsite, the maximum gamma exposure rate detected offsite, the maximum iodine level detected offsite, and the maximum distance radiation was detected offsite. A release summary incudes whatever other pertinent information is available for each release incident. This document includes effluent release information for 433 tests, some of which have simultaneous detonations. However, only 52 of these are designated as having offsite releases.

  18. Sheila Armstrong

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may consist of a doctor, nurses, nurses' aides, a social worker, a massage therapist, a music therapist and volunteers like me. I provide much-needed respites for family members or...

  19. Sheila Armstrong

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    may consist of a doctor, nurses, nurses' aides, a social worker, a massage therapist, a music therapist and volunteers like me. - 2 - I provide much-needed respites for family...

  20. Large scale obscuration and related climate effects open literature bibliography

    SciTech Connect (OSTI)

    Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

    1994-05-01

    Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.

  1. Lithium niobate explosion monitor

    DOE Patents [OSTI]

    Bundy, Charles H. (Clearwater, FL); Graham, Robert A. (Los Lunas, NM); Kuehn, Stephen F. (Albuquerque, NM); Precit, Richard R. (Albuquerque, NM); Rogers, Michael S. (Albuquerque, NM)

    1990-01-01

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  2. Author(s).

    Office of Scientific and Technical Information (OSTI)

    98-3484 Approved rbrpublic release: dstribution is unlimitd. ?We. Author(s). Submitted to. DETONATION AND COMBUSTION OF EXPLOSIVES: 4 SELECTED BIBLIOGRAPHY Brigitta Dobratz 1 1 th International Detonation Symposium Snowwmass Conference Center Snowmass, Colorado August 30-September 4, 1998 Los Alamos N AT I 0 N A L LA 6 0 R A T 0 R Y Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy

  3. Lithium niobate explosion monitor

    DOE Patents [OSTI]

    Bundy, C.H.; Graham, R.A.; Kuehn, S.F.; Precit, R.R.; Rogers, M.S.

    1990-01-09

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier. 8 figs.

  4. Selectable fragmentation warhead

    SciTech Connect (OSTI)

    Bryan, Courtney S.; Paisley, Dennis L.; Montoya, Nelson I.; Stahl, David B.

    1993-01-01

    A selectable fragmentation warhead capable of producing a predetermined number of fragments from a metal plate, and accelerating the fragments toward a target. A first explosive located adjacent to the plate is detonated at selected number of points by laser-driven slapper detonators. In one embodiment, a smoother-disk and a second explosive, located adjacent to the first explosive, serve to increase acceleration of the fragments toward a target. The ability to produce a selected number of fragments allows for effective destruction of a chosen target.

  5. Selectable fragmentation warhead

    SciTech Connect (OSTI)

    Bryan, C.S.; Paisley, D.L.; Montoya, N.I.; Stahl, D.B.

    1992-12-31

    This report discusses a selectable fragmentation warhead which is capable of producing a predetermined number of fragments from a metal plate, and accelerating the fragments toward a target. A first explosive located adjacent to the plate is detonated at selected number of points by laser-driven slapper detonators. In one embodiment, a smoother-disk and a second explosive, located adjacent to the first explosive, serve to increase acceleration of the fragments toward a target. The ability to produce a selected number of fragments allows for effective destruction of a chosen target.

  6. DOE - NNSA/NFO -- News & Views Big Hole Drilling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underground Testing Perfected Big-Hole Drilling Technology Photo - Rowan Drilling Company's On July 26, 1957, a safety experiment called "Pascal A" was detonated in an unstemmed hole. Although the test was not spectacular, it does hold the distinction of being the first nuclear test in the world to be detonated underground. From 1957 to 1992, 533 contained tests and nine unstemmed tests were conducted at the Nevada Test Site (NTS). If the depths of all the 36-inch diameter holes

  7. 3-nitro-1,2,4-triazol-5-one, a less sensitive explosive

    DOE Patents [OSTI]

    Lee, Kien-Yin (Los Alamos, NM); Coburn, Michael D. (Los Alamos, NM)

    1988-01-01

    A less sensitive explosive, 3-nitro-1,2,4-triazol-5-one. The compound 3-nitro-1,2,4-triazol-5-one (NTO) has a crystal density of 1.93 g/cm.sup.3 and calculated detonation velocity and pressure equivalent to those of RDX. It can be prepared in high yield from inexpensive starting materials in a safe synthesis. Results from initial small-scale sensitivity tests indicate that NTO is less sensitive than RDX and HMX in all respects. A 4.13 cm diameter, unconfined plate-dent test at 92% of crystal density gave the detonation pressure predicted for NTO by the BKW calculation.

  8. Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sedan Crater was formed on July 6, 1962, when the U.S. Atomic Energy Commission, predecessor of the U.S. Department of Energy, conducted an excavation experiment using a 104-kiloton thermonuclear device. The test, detonated 635 feet underground, helped develop technology for earth moving projects. The awe-inspiring explosion displaced about 12 million tons of earth, creating a crater 1,280 feet in diameter and 320 feet deep. The force of the detonation released seismic energy equivalent to an

  9. Method for enhancing stability of high explosives, for purposes of transport or storage, and the stabilized high explosives

    DOE Patents [OSTI]

    Nutt, Gerald L. (Menlo Park, CA)

    1991-01-01

    The stability of porous solid high explosives, for purposes of transport or storage, is enhanced by reducing the sensitivity to shock initiation of a reaction that leads to detonation. The pores of the explosive down to a certain size are filled under pressure with a stable, low melt temperature material in liquid form, and the combined material is cooled so the pore filling material solidifies. The stability can be increased to progressively higher levels by filling smaller pores. The pore filling material can be removed, at least partially, by reheating above its melt temperature and drained off so that the explosive is once more suitable for detonation.

  10. rulison_model.cdr

    Office of Legacy Management (LM)

    Description and History The U.S. Department of Energy (DOE) and its prede- cessor agencies conducted a program in the 1960s and 1970s that evaluated the use of nuclear detonations to enhance production from low-permeability natural gas reservoirs. Project Rulison was the second of three Plowshare Program tests designed to stimulate the production of natural gas by detonating a nuclear device in a deep, low-permeability geologic formation. On September 10, 1969, the U.S. Atomic Energy Commission,

  11. Microsoft Word - 3Q2012_Samp_Results.docx

    Office of Legacy Management (LM)

    Third Quarter 2012 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: September 20, 2012 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado, Site. Following the detonation, a

  12. Microsoft Word - RUL_1Q2012_Gas_Samp_Results_8G1Iwells.doc

    Office of Legacy Management (LM)

    12 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 23 March 2012 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low permeability formations. On 10 September 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado, Site. Following the detonation a series of production tests

  13. Microsoft Word - RUL_2Q2012_GasPW_Samp_Results_19June2012.docx

    Office of Legacy Management (LM)

    Second Quarter 2012 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 19 June 2012 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low permeability formations. On 10 September 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado, Site. Following the detonation, a series of

  14. High Speed Measurements using Fiber-optic Bragg Grating Sensors

    SciTech Connect (OSTI)

    Benterou, J J; May, C A; Udd, E; Mihailov, S J; Lu, P

    2011-03-26

    Fiber grating sensors may be used to monitor high-speed events that include catastrophic failure of structures, ultrasonic testing and detonations. This paper provides insights into the utility of fiber grating sensors to measure structural changes under extreme conditions. An emphasis is placed on situations where there is a structural discontinuity. Embedded chirped fiber Bragg grating (CFBG) sensors can track the very high-speed progress of detonation waves (6-9 km/sec) inside energetic materials. This paper discusses diagnostic instrumentation and analysis techniques used to measure these high-speed events.

  15. Extrusion cast explosive

    DOE Patents [OSTI]

    Scribner, Kenneth J. (Livermore, CA)

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  16. High speed door assembly

    DOE Patents [OSTI]

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  17. Precision flyer initiator

    DOE Patents [OSTI]

    Frank, A.M.; Lee, R.S.

    1998-05-26

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or ``flyer`` is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices. 10 figs.

  18. Precision flyer initiator

    DOE Patents [OSTI]

    Frank, Alan M. (Livermore, CA); Lee, Ronald S. (Livermore, CA)

    1998-01-01

    A precision flyer initiator forms a substantially spherical detonation wave in a high explosive (HE) pellet. An explosive driver, such as a detonating cord, a wire bridge circuit or a small explosive, is detonated. A flyer material is sandwiched between the explosive driver and an end of a barrel that contains an inner channel. A projectile or "flyer" is sheared from the flyer material by the force of the explosive driver and projected through the inner channel. The flyer than strikes the HE pellet, which is supported above a second end of the barrel by a spacer ring. A gap or shock decoupling material delays the shock wave in the barrel from predetonating the HE pellet before the flyer. A spherical detonation wave is formed in the HE pellet. Thus, a shock wave traveling through the barrel fails to reach the HE pellet before the flyer strikes the HE pellet. The precision flyer initiator can be used in mining devices, well-drilling devices and anti-tank devices.

  19. SWIFT for High Explosive Initiation Research

    SciTech Connect (OSTI)

    Johnson, Carl E.; Murphy, Michael J.; Clarke, Steven A.

    2012-08-03

    SWIFT diagnostics coupled with PDV and other tools represent an exciting new source of data with many possible applications - Basic HE and detonator characterization. SIAS is the name for the methodology we use to couple our SWIFT data to calculations for maximum utilization - Each experiment design requires a new load curve/table and associated ALE3D input file.

  20. Understanding composite explosive energetics: 3, Reactive flow modeling of aluminum reaction kinetics in PETN and TNT

    SciTech Connect (OSTI)

    Tao, W.C.; Tarver, C.M.; Ornellas, D.L.

    1991-12-06

    Using Fabry-Perot interferometry techniques, we have determined that early time rate of energy release from detonating PETN and TNT explosives filled with 5 and 10 wt % of either 5 {mu}m of 18 {mu}m spherical aluminum (Al) particles. From the measured particle velocity data, we are able to infer the reaction rate of aluminum with the detonation products, and calculate the extent of reaction 1--3 {mu}s after the detonation. We observed that a substantional portion of the aluminum metal in all of the PETN and TNE formulations reacted within the timeframe of the one-dimensional experiment. In the PETN formulation filed with 5 wt % of 5 {mu}m aluminum, all of the metal reacted within 1.5 {mu}s, resulting in an increase of 22% in energy compared to pure PETN. A reactive-flow hydrodynamic model based on the Zeldovich-von Neumann-Doring (ZND) description of the reaction zone and subsequent reaction produce expansion (Taylor wave) is used to interpret the reaction rate of the aluminum particles with detonation product gases. The diffusion-controlled reaction mechanism for aluminum and the global kinetic parameters used in the model have been found to be consistent for all the PETN and TNT formulations.

  1. Influence of shockwave obliquity on deformation twin formation in Ta

    SciTech Connect (OSTI)

    Gray, George T., III; Livescu, V; Cerreta, E K; Mason, T A; Maudlin, P J; Bingert, J F

    2009-02-18

    Energetic loading subjects a material to a 'Taylor wave' (triangular wave) loading profile that experiences an evolving balance of hydrostatic (spherical) and deviatoric stresses. While much has been learned over the past five decades concerning the propensity of deformation twinning in samples shockloaded using 'square-topped' profiles as a function of peak stress, achieved most commonly via flyer plate loading, less is known concerning twinning propensity during non-I-dimensional sweeping detonation wave loading. Systematic small-scale energetically-driven shock loading experiments were conducted on Ta samples shock loaded with PEFN that was edge detonated. Deformation twinning was quantified in post-mortem samples as a function of detonation geometry and radial position. In the edge detonated loading geometry examined in this paper, the average volume fraction of deformation twins was observed to drastically increase with increasing shock obliquity. The results of this study are discussed in light of the formation mechanisms of deformation twins, previous literature studies of twinning in shocked materials, and modeling of the effects of shock obliquity on the evolution of the stress tensor during shock loading.

  2. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.1D.

  3. NEW - DOE O 452.1E, Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  4. Sensitivity effects of void density and arrangements in a REBO high explosive

    SciTech Connect (OSTI)

    Herring, Stuart Davis; Germann, Timothy C; Gronbech - Jensen, Niels

    2010-09-28

    The shock response of two-dimensional model, high explosive crystals with various arrangements of circular voids is explored. We simulate a piston impact using molecular dynamics simulations with a Reactive Empirical Bond Order (REBO) model potential for a sub-micron, sub-ns exothermic reaction in a diatomic molecular solid. In square lattices of voids all of one size, reducing that size or increasing the porosity while holding the other parameter fixed causes the hotspots to consume the material more quickly and detonation to occur sooner and at lower piston velocities. The early time behavior is seen to follow a very simple ignition and growth model. The hotspots are seen to collectively develop a broad pressure wave (a sonic, diffuse deflagration front) that, upon merging with the lead shock, transforms it into a detonation. The reaction yields produced by triangular lattices are not significantly different. With random void arrangements, the mean time to detonation is 15.5% larger than with the square lattice; the standard deviation of detonation delays is just 5.1%.

  5. Dead Zones in LX-17 and PBX 9502

    SciTech Connect (OSTI)

    Souers, P C; Andreski, H G; Batteux, J; Bratton, B; Cabacungan, C; Cook, III, C F; Fletcher, S; Garza, R; Grimsley, D; Handly, J; Hernandez, A; McMaster, P; Molitoris, J D; Palmer, R; Prindiville, J; Rodriguez, J; Schneberk, D; Wong, B; Vitello, P

    2005-09-06

    Pin and X-ray corner-turning data have been taken on ambient LX-17 and PBX 9052, and the results are listed in tables as an aid to future modeling. The results have been modeled at 4 zones/mm with a reactive flow approach that varies the burn rate as a function of pressure. A single rate format is used to simulate failure and detonation in different pressure regimes. A pressure cut-off must also be reached to initiate the burn. Corner-turning and failure are modeled using an intermediate pressure rate region, and detonation occurs at high pressure. The TATB booster is also modeled using reactive flow, and X-ray tomography is used to partition the ram-pressed hemisphere into five different density regions. The model reasonably fits the bare corner-turning experiment but predicts a smaller dead zone with steel confinement, in contradiction with experiment. The same model also calculates the confined and unconfined cylinder detonation velocities and predicts the failure of the unconfined cylinder at 3.75 mm radius. The PBX 9502 shows a smaller dead zone than LX-17. An old experiment that showed a large apparent dead zone in Comp B was repeated with X-ray transmission and no dead zone was seen. This confirms the idea that a variable burn rate is the key to modeling. The model also produces initiation delays, which are shorter than those found in time-to-detonation.

  6. Super_Prompt Crit excursions in Sph Geometry

    Energy Science and Technology Software Center (OSTI)

    2000-03-17

    AX-TNT solves (a) the coupled hydrodynamic, thermodynamical neutronic equations which describe a spherical, super prompt critical reactor system during an excursion. (b) the coupled equations of motion, and ideal gas equation of state for the detonation of a spherical charge in a gas.

  7. Monolithic exploding foil initiator

    DOE Patents [OSTI]

    Welle, Eric J; Vianco, Paul T; Headley, Paul S; Jarrell, Jason A; Garrity, J. Emmett; Shelton, Keegan P; Marley, Stephen K

    2012-10-23

    A monolithic exploding foil initiator (EFI) or slapper detonator and the method for making the monolithic EFI wherein the exploding bridge and the dielectric from which the flyer will be generated are integrated directly onto the header. In some embodiments, the barrel is directly integrated directly onto the header.

  8. Numerical approaches to combustion modeling. Progress in Astronautics and Aeronautics. Vol. 135

    SciTech Connect (OSTI)

    Oran, E.S.; Boris, J.P. )

    1991-01-01

    Various papers on numerical approaches to combustion modeling are presented. The topics addressed include; ab initio quantum chemistry for combustion; rate coefficient calculations for combustion modeling; numerical modeling of combustion of complex hydrocarbons; combustion kinetics and sensitivity analysis computations; reduction of chemical reaction models; length scales in laminar and turbulent flames; numerical modeling of laminar diffusion flames; laminar flames in premixed gases; spectral simulations of turbulent reacting flows; vortex simulation of reacting shear flow; combustion modeling using PDF methods. Also considered are: supersonic reacting internal flow fields; studies of detonation initiation, propagation, and quenching; numerical modeling of heterogeneous detonations, deflagration-to-detonation transition to reactive granular materials; toward a microscopic theory of detonations in energetic crystals; overview of spray modeling; liquid drop behavior in dense and dilute clusters; spray combustion in idealized configurations: parallel drop streams; comparisons of deterministic and stochastic computations of drop collisions in dense sprays; ignition and flame spread across solid fuels; numerical study of pulse combustor dynamics; mathematical modeling of enclosure fires; nuclear systems.

  9. Nuclear forensics: Soil content

    SciTech Connect (OSTI)

    Beebe, Merilyn Amy

    2015-08-31

    Nuclear Forensics is a growing field that is concerned with all stages of the process of creating and detonating a nuclear weapon. The main goal is to prevent nuclear attack by locating and securing nuclear material before it can be used in an aggressive manner. This stage of the process is mostly paperwork; laws, regulations, treaties, and declarations made by individual countries or by the UN Security Council. There is some preliminary leg work done in the form of field testing detection equipment and tracking down orphan materials; however, none of these have yielded any spectacular or useful results. In the event of a nuclear attack, the first step is to analyze the post detonation debris to aid in the identification of the responsible party. This aspect of the nuclear forensics process, while reactive in nature, is more scientific. A rock sample taken from the detonation site can be dissolved into liquid form and analyzed to determine its chemical composition. The chemical analysis of spent nuclear material can provide valuable information if properly processed and analyzed. In order to accurately evaluate the results, scientists require information on the natural occurring elements in the detonation zone. From this information, scientists can determine what percentage of the element originated in the bomb itself rather than the environment. To this end, element concentrations in soils from sixty-nine different cities are given, along with activity concentrations for uranium, thorium, potassium, and radium in various building materials. These data are used in the analysis program Python.

  10. October 31, 1952: Mike Test | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    31, 1952: Mike Test October 31, 1952: Mike Test October 31, 1952: Mike Test October 31, 1952 The Atomic Energy Commission detonates the first thermonuclear device, code-named "Mike," at Enewetak Atoll in the Pacific. The device explodes with a yield of 10.4 megatons.

  11. Science and technology review, November 1997

    SciTech Connect (OSTI)

    Upadhye, R.

    1997-11-01

    This month`s issues has articles entitled A New World of Biomedical Research: The Center for Accelerator Mass Spectrometry; Isotopes Tracers Help Manage Water Resources; LANDMARC: Making Land-Mine Detection and Removal Practical; and Improved Detonation Modeling with CHEETAH.

  12. Ultrashort-pulse laser generated nanoparticles of energetic materials

    DOE Patents [OSTI]

    Welle, Eric J. (Niceville, NM); Tappan, Alexander S. (Albuquerque, NM); Palmer, Jeremy A. (Albuquerque, NM)

    2010-08-03

    A process for generating nanoscale particles of energetic materials, such as explosive materials, using ultrashort-pulse laser irradiation. The use of ultrashort laser pulses in embodiments of this invention enables one to generate particles by laser ablation that retain the chemical identity of the starting material while avoiding ignition, deflagration, and detonation of the explosive material.

  13. Calibration curves for some standard Gap Tests

    SciTech Connect (OSTI)

    Bowman, A.L.; Sommer, S.C.

    1989-01-01

    The relative shock sensitivities of explosive compositions are commonly assessed using a family of experiments that can be described by the generic term ''Gap Test.'' Gap tests include a donor charge, a test sample, and a spacer, or gap, between two explosives charges. The donor charge, gap material, and test dimensions are held constant within each different version of the gap test. The thickness of the gap is then varied to find the value at which 50% of the test samples will detonate. The gap tests measure the ease with a high-order detonation can be established in the test explosive, or the ''detonability,'' of the explosive. Test results are best reported in terms of the gap thickness at the 50% point. It is also useful to define the shock pressure transmitted into the test sample at the detonation threshold. This requires calibrating the gap test in terms of shock pressure in the gap as a function of the gap thickness. It also requires a knowledge of the shock Hugoniot of the sample explosive. We used the 2DE reactive hydrodynamic code with Forest Fire burn rates for the donor explosives to calculate calibration curves for several gap tests. The model calculations give pressure and particle velocity on the centerline of the experimental set-up and provide information about the curvature and pulse width of the shock wave. 10 refs., 1 fig.

  14. Monte Carlo Simulations for Homeland Security Using Anthropomorphic Phantoms

    SciTech Connect (OSTI)

    Burns, Kimberly A.

    2008-01-01

    A radiological dispersion device (RDD) is a device which deliberately releases radioactive material for the purpose of causing terror or harm. In the event that a dirty bomb is detonated, there may be airborne radioactive material that can be inhaled as well as settle on an individuals leading to external contamination.

  15. Health and Environmental Science: A Brief Review

    DOE R&D Accomplishments [OSTI]

    1982-09-27

    The detonation of the first atomic bomb heralded the beginning of a new age. Almost everyone agreed that the enormous energy released by the "atomic reaction" would create opportunities and problems far larger than man faced in previous history. However, few foresaw the explosion of knowledge that would also be part of this new age.

  16. Hydrogen and water reactor safety: proceedings

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  17. Operation Sandstone: 1948. Technical report

    SciTech Connect (OSTI)

    Berkhouse, L.H.; Hallowell, J.H.; McMullan, F.W.; Davis, S.E.; Jones, C.B.

    1983-12-19

    SANDSTONE was a three-detonation atmospheric nuclear weapon test series conducted during the spring of 1948 at Enewetak Atoll in the Marshall Islands. Report emphasis is on the radiological safety of the personnel. Available records on personnel exposure are summarized.

  18. Operation Ivy: 1952. Technical rept

    SciTech Connect (OSTI)

    Gladeck, F.R.; Hallowell, J.H.; Martin, E.J.; McMullan, F.W.; Miller, R.H.

    1982-12-01

    Ivy was a two-detonation atmospheric nuclear weapon test series conducted during October and November of 1952 at Enewetak Atoll in the Marshall Islands. One of the two events was designated Mike and was the first thermonuclear or hydrogen bomb. Report emphasis is on the radiological safety of the personnel. Available records on personnel exposure are summarized.

  19. Operation Ivy. Joint Task Force 132, 1952. Final report

    SciTech Connect (OSTI)

    Not Available

    1985-09-01

    This report covers the activities of the Joint Task Force 132 in Operation Ivy, in 1952 at Eniwetok Atoll. Shots Mike and King were detonated in conjunction with eleven experimental programs. This report describes the device, weapon, and experimental programs, giving as many preliminary conclusions as can be drawn from early analysis of the data.

  20. United States nuclear tests, July 1945 through September 1992

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This document lists chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Several tests conducted during Operation Dominic involved missile launches from Johnston Atoll. Several of these missile launches were aborted, resulting in the destruction of the missile and nuclear device either on the pad or in the air.

  1. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Supersedes DOE O 452.1D.

  2. Investigations of initiation spot size effects

    SciTech Connect (OSTI)

    Clarke, Steven A; Akinci, Adrian A; Leichty, Gary; Schaffer, Timothy; Murphy, Michael J; Munger, Alan; Thomas, Keith A

    2010-01-01

    As explosive components become smaller, a greater understanding of the effect of initiation spot size on detonation becomes increasingly critical. A series of tests of the effect of initiation spot size will be described. A series of DOI (direct optical initiation) detonators with initiation spots sizes from {approx}50 um to 1000um have been tested to determine laser parameters for threshold firing of low density PETN pressings. Results will be compared with theoretical predictions. Outputs of the initiation source (DOI ablation) have been characterized by a suite of diagnostics including PDV and schlieren imaging. Outputs of complete detonators have been characterized using PDV, streak, and/or schlieren imaging. At present, we have not found the expected change in the threshold energy to spot size relationship for DOI type detonators found in similar earlier for projectiles, slappers and EBWs. New detonators designs (Type C) are currently being tested that will allow the determination of the threshold for spot sizes from 250 um to 105um, where we hope to see change in the threshold vs. spot size relationship. Also, one test of an extremely small diameter spot size (50um) has resulted in preliminary NoGo only results even at energy densities as much as 8 times the energy density of the threshold results presented here. This gives preliminary evidence that 50um spot may be beyond the critical initiation diameter. The constant threshold energy to spot size relationship in the data to date does however still give some insight into the initiation mechanism of DOI detonators. If the DOI initiation mechanism were a 1D mechanism similar to a slapper or a flyer impact, the expected inflection point in the graph would have been between 300um and 500um diameter spot size, within the range of the data presented here. The lack of that inflection point indicates that the DOI initiation mechanism is more likely a 2D mechanism similar to a sphere or rod projectile. We expect to see a three region response as the results from the smaller spot size Type C detonators are completed.

  3. Gasbuggy Site Assessment and Risk Evaluation

    SciTech Connect (OSTI)

    2011-03-01

    The Gasbuggy site is in northern New Mexico in the San Juan Basin, Rio Arriba County (Figure 1-1). The Gasbuggy experiment was designed to evaluate the use of a nuclear detonation to enhance natural gas production from the Pictured Cliffs Formation, a tight, gas-bearing sandstone formation. The 29-kiloton-yield nuclear device was placed in a 17.5-inch wellbore at 4,240 feet (ft) below ground surface (bgs), approximately 40 ft below the Pictured Cliffs/Lewis shale contact, in an attempt to force the cavity/chimney formed by the detonation up into the Pictured Cliffs Sandstone. The test was conducted below the southwest quarter of Section 36, Township 29 North, Range 4 West, New Mexico Principal Meridian. The device was detonated on December 10, 1967, creating a 335-ft-high chimney above the detonation point and a cavity 160 ft in diameter. The gas produced from GB-ER (the emplacement and reentry well) during the post-detonation production tests was radioactive and diluted, primarily by carbon dioxide. After 2 years, the energy content of the gas had recovered to 80 percent of the value of gas in conventionally developed wells in the area. There is currently no technology capable of remediating deep underground nuclear detonation cavities and chimneys. Consequently, the U.S. Department of Energy (DOE) must continue to manage the Gasbuggy site to ensure that no inadvertent intrusion into the residual contamination occurs. DOE has complete control over the 1/4 section (160 acres) containing the shot cavity, and no drilling is permitted on that property. However, oil and gas leases are on the surrounding land. Therefore, the most likely route of intrusion and potential exposure would be through contaminated natural gas or contaminated water migrating into a producing natural gas well outside the immediate vicinity of ground zero. The purpose of this report is to describe the current site conditions and evaluate the potential health risks posed by the most plausible contaminant exposure scenario, drilling of natural gas wells near the site. The results of this risk evaluation will guide DOE's future surveillance and monitoring activities in the area to ensure that site conditions are adequately protective of human health. This evaluation is not a comprehensive risk assessment for the site; it is intended to provide assurance that DOE's monitoring approach can detect the presence of site-related contamination at levels well below those that would pose an unacceptable risk to human health.

  4. Better Buildings Residential Network Program Sustainability Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... trained to think clinically - Suggest social work departments or public health nurses * ... Research Partnership" Opportunity to study the impact of energy retrofits on health. ...

  5. community.layout2.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chair, Media Arts and Software Systems programs) - Northern New Mexico College (Teaching, Nursing programs, and Chemistry) - Santa Fe Community College (Advanced Technologies...

  6. Y-12 employee engineers success for disabled adults | Y-12 National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    case management, training, housing, jobs and other services for adults with severe disabilities. The future 25,000 square foot building will house a medical and nursing center,...

  7. Northern New Mexico students receive $419,500 in scholarships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Center, shadowing doctors, assisting nurses and working with patients. She selected neurology as her likely field of medical specialization because she recently lost her...

  8. Property:Distributed Generation/Site Description | Open Energy...

    Open Energy Info (EERE)

    Store Commercial-Supermarket Commercial-Theater Commercial-Other Institutional-HospitalHealth Care Institutional-Nursing Home Institutional-SchoolUniversity...

  9. ORISE: REAC/TS Continuing Medical Education Courses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    medicine. Physicians, physicians' assistants, nurses, emergency medical technicians, health physicists and first responders benefit from the lectures, discussions and hands-on...

  10. 1 of 8

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Long-Term Care Private Duty Nursing Routine Eye Care (Adult) Routine Foot Care (Unless you are diabetic) Weight Loss Programs Other Covered Services (This...

  11. Method for loading explosive laterally from a borehole

    DOE Patents [OSTI]

    Ricketts, Thomas E. (Grand Junction, CO)

    1981-01-01

    There is provided a method for forming an in situ oil shale retort in a subterranean formation containing oil shale. At least one void is excavated in the formation, leaving zones of unfragmented formation adjacent the void. An array of main blastholes is formed in the zone of unfragmented formation and at least one explosive charge which is shaped for forming a high velocity gas jet is placed into a main blasthole with the axis of the gas jet extending transverse to the blasthole. The shaped charge is detonated for forming an auxiliary blasthole in the unfragmented formation adjacent a side wall of the main blasthole. The auxiliary blasthole extends laterally away from the main blasthole. Explosive is placed into the main blasthole and into the auxiliary blasthole and is detonated for explosively expanding formation towards the free face for forming a fragmented permeable mass of formation particles in the in situ oil shale retort.

  12. Application of emulsifiers in the manufacture of cast boosters and related products

    SciTech Connect (OSTI)

    Joginadham, C.; Shankar, P.S.; Gupta, A.N.

    1996-12-01

    Cast boosters made with pentaerythritol tetranitrate (PETN) and trinitro toluene (TNT) give high velocities of detonation and are sensitive to initiation even under high pressures. However, the manufacture of the same involves heating of TNT to its melting temperature and mixing of dry PETN in it. In the present work, wet PETN, TNT and water soluble nitrate salts were used for the manufacture of the boosters. The nitrate salt solution formed with the excess water available in wet PETN was emulsified with the aid of emulsifiers. The velocities of detonation of boosters with various percentages of water were determined. The data of explosive characters of these boosters were compared with normal pentolite cast boosters.

  13. Destructive Testing of an ES-3100 Shipping Container at the Savannah River National Laboratory

    SciTech Connect (OSTI)

    Loftin, B.; Abramczyk, G.

    2015-06-09

    Destructive testing of an ES-3100 Shipping Container was completed by the Packaging Technology and Pressurized Systems organization within the Savannah River National Laboratory in order to qualify the ES-3100 as a candidate storage and transport package for applications at various facilities at the Savannah River Site. The testing consisted of the detonation of three explosive charges at separate locations on a single ES-3100. The locations for the placement were chosen based the design of the ES-3100 as well as the most likely places for the package to incur damage as a result of the detonation. The testing was completed at an offsite location, which raised challenges as well as allowed for development of new partnerships for this testing and for potential future testing. The results of the testing, the methods used to complete the testing, and similar, potential future work will be discussed.

  14. Asymptotic methods especially in combustion. Final report, 15 June 1981-30 September 1984

    SciTech Connect (OSTI)

    Ludford, G.S.S.

    1984-11-01

    Modern asymptotic methods have been applied to a wide range of problems in combustion science as well as certain magnetohydrodynamic and fluid-mechanical questions. Details are contained in the 49 technical reports and 4 Ph.D. theses listed. Topics covered under this contract included: asymptotic methods, combustion, DDT(deflagration to detonation transition) near-stoichiometry, premixed and diffusion flames, droplet burning, stretch resistance, strain effects, effect of pressure variations, dissociation, non-dilute mixtures, wrinkled flames, burner flames, stability, quenching, heat loss, ignition and extinction, Chapman-Jouget limit, polyhedral flames, surface equilibrium, monopropellant, reactive atmosphere, stagnation-point flow, galloping detonations, flame bubbles, solidification fronts, Hartmann layers, intumescent paints, and flickering.

  15. Towards assessing the violence of reaction during cookoff of confined energetic materials

    SciTech Connect (OSTI)

    Baer, M.R.; Kipp, M.E.; Schmitt, R.G.; Hobbs, M.L.

    1996-11-01

    An analysis of post-ignition events in a variable confinement cookoff test (VCCT) geometry is presented aimed toward predicting the level of violence during cookoff of confined thermally-degraded energetic materials. This study focuses on the dynamic events following thermal initiation whereby accelerated combustion interacts with confinement. Numerical simulations, based on a model of reactive multiphase mixtures, indicate that the response of energetic material is highly dependent upon thermal/mechanical damage states prior to ignition. These damaged states affect the rate of pressurization, dynamic compaction behavior and subsequent growth to detonation. Variations of the specific surface area and porosity produced by decomposition of the energetic material causes different responses ranging from pressure burst to detonation. Calculated stress histories are used in estimating breakup of the VCCT confinement based on Grady-Kipp fragmentation theory.

  16. Stress wave propagationin the site 12 hydraulic/explosive fracturing experiment

    SciTech Connect (OSTI)

    Boade, R. R.; Reed, R. P.

    1980-05-01

    The Site 12 experiment was a heavily instrumented field event performed to examine the hydraulic/explosive fracturing concept for preparing an underground oil shale bed for true in situ processing. One of the key phases of this fracturing concept is the blasting operation which involves the insertion and detonation of slurry explosive in a pre-formed system of hydrofractures. To obtain a sound understanding of the nature of the blasting operations, a rather extensive array of stress gages, accelerometers, and time-of-arrival gages was installed in the rock mass in the vacinity of the explosive to monitor the dynamic events initiated by the detonation. These gages provided considerable amounts of information which were useful in evaluating overall results of the experiment. Details of the gage array, of the data, of analysis methods, and of the results and conclusions are considered in the report.

  17. Liquefied Gaseous Fuels Safety and Environmental Control Assessment Program: second status report

    SciTech Connect (OSTI)

    1980-10-01

    Volume 2 consists of 19 reports describing technical effort performed by Government Contractors in the area of LNG Safety and Environmental Control. Report topics are: simulation of LNG vapor spread and dispersion by finite element methods; modeling of negatively buoyant vapor cloud dispersion; effect of humidity on the energy budget of a liquefied natural gas (LNG) vapor cloud; LNG fire and explosion phenomena research evaluation; modeling of laminar flames in mixtures of vaporized liquefied natural gas (LNG) and air; chemical kinetics in LNG detonations; effects of cellular structure on the behavior of gaseous detonation waves under transient conditions; computer simulation of combustion and fluid dynamics in two and three dimensions; LNG release prevention and control; the feasibility of methods and systems for reducing LNG tanker fire hazards; safety assessment of gelled LNG; and a four band differential radiometer for monitoring LNG vapors.

  18. Injector nozzle for molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, W.A.; Upadhye, R.S.

    1996-02-13

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.

  19. Fluid blade disablement tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos (Albuquerque, NM); Hughs, Chance G. (Albuquerque, NM); Todd, Steven N. (Rio Rancho, NM)

    2012-01-10

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  20. Injector nozzle for molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA)

    1996-01-01

    An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

  1. Microelectromechanical safe arm device

    DOE Patents [OSTI]

    Roesler, Alexander W. (Tijeras, NM)

    2012-06-05

    Microelectromechanical (MEM) apparatus and methods for operating, for preventing unintentional detonation of energetic components comprising pyrotechnic and explosive materials, such as air bag deployment systems, munitions and pyrotechnics. The MEM apparatus comprises an interrupting member that can be moved to block (interrupt) or complete (uninterrupt) an explosive train that is part of an energetic component. One or more latching members are provided that engage and prevent the movement of the interrupting member, until the one or more latching members are disengaged from the interrupting member. The MEM apparatus can be utilized as a safe and arm device (SAD) and electronic safe and arm device (ESAD) in preventing unintentional detonations. Methods for operating the MEM apparatus include independently applying drive signals to the actuators coupled to the latching members, and an actuator coupled to the interrupting member.

  2. 3-nitro-1,2,4-triazol-5-one: A less sensitive explosive

    DOE Patents [OSTI]

    Lee, Kien-Yin; Coburn, M.D.

    1987-01-30

    A less sensitive explosive, 3-nitro-1,2,4-triazol-5-one. The compound 3-nitro--1,2,4-triazol-5-one (NTO) has a crystal density of 1.93 g/cm/sup 3/ and calculated detonation velocity and pressure equivalent to those of RDX. It can be prepared in high yield from inexpensive starting materials in a safe synthesis. Results from initial small-scale sensitivity tests indicate that NTO is less sensitive than RDX and HMX in all respects. A 4.13 cm diameter, unconfined plate-dent test at 92% of crystal density gave the detonation pressure predicted for NTO by the BKW calculation. 3 tabs.

  3. Hierarchical Petascale Simulation Framework for Stress Corrosion Cracking

    SciTech Connect (OSTI)

    Vashishta, Priya

    2014-12-01

    Reaction Dynamics in Energetic Materials: Detonation is a prototype of mechanochemistry, in which mechanically and thermally induced chemical reactions far from equilibrium exhibit vastly different behaviors. It is also one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. The CACS group has performed multimillion-atom reactive MD simulations to reveal a novel two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine (RDX) crystal. Rapid production of N2 and H2O within ~10 ps is followed by delayed production of CO molecules within ~ 1 ns. They found that further decomposition towards the final products is inhibited by the formation of large metastable C- and O-rich clusters with fractal geometry. The CACS group has also simulated the oxidation dynamics of close-packed aggregates of aluminum nanoparticles passivated by oxide shells. Their simulation results suggest an unexpectedly active role of the oxide shell as a nanoreactor.

  4. Field Sampling Plan for the Operable Units 6-05 and 10-04 Remedial Action, Phase IV

    SciTech Connect (OSTI)

    R. Wells

    2006-11-14

    This Field Sampling Plan outlines the collection and analysis of samples in support of Phase IV of the Waste Area Group 10, Operable Units 6-05 and 10-04 remedial action. Phase IV addresses the remedial actions to areas with the potential for unexploded ordnance at the Idaho National Laboratory Site. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. The remedial action consists of removal and disposal of ordnance by high-order detonation, followed by sampling to determine the extent, if any, of soil that might have been contaminated by the detonation activities associated with the disposal of ordnance during the Phase IV activities and explosives during the Phase II activities.

  5. Magneto-hydrodynamics simulation study of deflagration mode in co-axial plasma accelerators

    SciTech Connect (OSTI)

    Sitaraman, Hariswaran; Raja, Laxminarayan L.

    2014-01-15

    Experimental studies by Poehlmann et al. [Phys. Plasmas 17(12), 123508 (2010)] on a coaxial electrode magnetohydrodynamic (MHD) plasma accelerator have revealed two modes of operation. A deflagration or stationary mode is observed for lower power settings, while higher input power leads to a detonation or snowplow mode. A numerical modeling study of a coaxial plasma accelerator using the non-ideal MHD equations is presented. The effect of plasma conductivity on the axial distribution of radial current is studied and found to agree well with experiments. Lower conductivities lead to the formation of a high current density, stationary region close to the inlet/breech, which is a characteristic of the deflagration mode, while a propagating current sheet like feature is observed at higher conductivities, similar to the detonation mode. Results confirm that plasma resistivity, which determines magnetic field diffusion effects, is fundamentally responsible for the two modes.

  6. Elasticity of crystalline molecular explosives

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; Cawkwell, Marc J.

    2015-04-14

    Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, andmore » an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.« less

  7. Contaminant signature at Los Alamos firing sites

    SciTech Connect (OSTI)

    Becker, N.; Irvine, J.

    1996-01-01

    During a dynamic weapons test, a weapons component is either explosively detonated or impacted against a target in the open air environment. This results in both the production of a wide size range of depleted uranium particles as well as particle scattering over a considerable distance away from the firing pad. The explosive detonation process which creates aerial distribution over a watershed distinguishes this contaminant transport problem from others where the source term is spatially discrete. Investigations of this contamination began in 1983 with collection of onsite soils, sediments, and rock samples to establish uranium concentrations. The samples were analyzed for total uranium to evaluate the magnitude of transport of uranium away from firing sites by airborne and surface water runoff mechanisms. This data was then used to define a firing site.

  8. Computational analysis of azine-N-oxides as energetic materials

    SciTech Connect (OSTI)

    Ritchie, J.P.

    1994-05-01

    A BKW equation of state in a 1-dimensional hydrodynamic simulation of the cylinder test can be used to estimate the performance of explosives. Using this approach, the novel explosive 1,4-diamino-2,3,5,6-tetrazine-2,5-dioxide (TZX) was analyzed. Despite a high detonation velocity and a predicted CJ pressure comparable to that of RDX, TZX performs relatively poorly in the cylinder test. Theoretical and computational analysis shows this to be the result of a low heat of detonation. A conceptual strategy is proposed to remedy this problem. In order to predict the required heats of formation, new ab initio group equivalents were developed. Crystal structure calculations are also described that show hydrogen-bonding is important in determining the density of TZX and related compounds.

  9. Prediction of explosive cylinder tests using equations of state from the PANDA code

    SciTech Connect (OSTI)

    Kerley, G.I.; Christian-Frear, T.L.

    1993-09-28

    The PANDA code is used to construct tabular equations of state (EOS) for the detonation products of 24 explosives having CHNO compositions. These EOS, together with a reactive burn model, are used in numerical hydrocode calculations of cylinder tests. The predicted detonation properties and cylinder wall velocities are found to give very good agreement with experimental data. Calculations of flat plate acceleration tests for the HMX-based explosive LX14 are also made and shown to agree well with the measurements. The effects of the reaction zone on both the cylinder and flat plate tests are discussed. For TATB-based explosives, the differences between experiment and theory are consistently larger than for other compositions and may be due to nonideal (finite dimameter) behavior.

  10. Influence of hot spot features on the initiation characteristics of heterogeneous nitromethane

    SciTech Connect (OSTI)

    Dattelbaum, Dana M; Sheffield, Stephen A; Stahl, David B; Dattelbaum, Andrew M; Engelke, Ray

    2010-01-01

    To gain insights into the critical hot spot features influencing energetic materials initiation characteristics, well-defined micron-scale particles have been intentionally introduced into the homogeneous explosive nitromethane (NM). Two types of potential hot spot origins have been examined - shock impedance mismatches using solid silica beads, and porosity using hollow microballoons - as well as their sizes and inter-particle separations. Here, we present the results of several series of gas gun-driven plate impact experiments on NM/particle mixtures with well-controlled shock inputs. Detailed insights into the nature of the reactive flow during the build-up to detonation have been obtained from the response of in-situ electromagnetic gauges, and the data have been used to establish Pop-plots (run-distance-to-detonation vs. shock input pressure) for the mixtures. Comparisons of sensitization effects and energy release characteristics relative to the initial shock front between the solid and hollow beads are presented.

  11. TARANTULA 2011 in JWL++

    SciTech Connect (OSTI)

    Souers, P C; Haylett, D; Vitello, P

    2011-10-27

    Using square zoning, the 2011 version of the kinetic package Tarantula matches cylinder data, cylinder dead zones, and cylinder failure with the same settings for the first time. The key is the use of maximum pressure rather than instantaneous pressure. Runs are at 40, 200 and 360 z/cm using JWL++ as the host model. The model also does run-to-detonation, thin-pulse initiation with a P-t curve and air gap crossing, all in cylindrical geometry. Two sizes of MSAD/LX-10/LX-17 snowballs work somewhat with these settings, but are too weak, so that divergent detonation is a challenge for the future. Butterfly meshes are considered but do not appear to solve the issue.

  12. Trinity: supercomputing into the future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trinity: supercomputing into the future Trinity: supercomputing into the future The need for 3D simulations has brought the Trinity supercomputer to Los Alamos. Trinity will make complex 3D simulations of nuclear detonations with increased fidelity and resolution practical. July 10, 2015 trinity to trinity feature image Trinity to Trinity "Highly accurate 3D computing is a Holy Grail of the Stockpile Stewardship Program's supercomputing efforts. As the weapons age, 3D features tend to be

  13. Method and apparatus for producing cryogenic targets

    DOE Patents [OSTI]

    Murphy, James T. (Los Alamos, NM); Miller, John R. (Penfield, NY)

    1984-01-01

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

  14. Extrusion cast explosive

    DOE Patents [OSTI]

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  15. Synthesis of fine-grained TATB

    DOE Patents [OSTI]

    Lee, Kien-Yin (Santa Fe, NM); Kennedy, James E. (Santa Fe, NM)

    2003-04-15

    A method for producing fine-grained triamino-trinitrobenzene (TATB) powders having improved detonation-spreading performance and hence increased shock sensitivity when compared with that for ultrafine TATB is described. A single-step, sonochemical amination of trichloro-trinitrobenzene using ammonium hydroxide solution in a sealed vessel yields TATB having approximately 6 .mu.m median particle diameter and increased shock sensitivity.

  16. Effect of microvoids on the shock initiation of PETN

    SciTech Connect (OSTI)

    Maienschein, J.L.; Urtiew, P.A.; Garcia, F.; Chandler, J.B.

    1998-07-01

    We demonstrate that the introduction of microvoids as glass microballoons sensitizes high-density solvent-pressed PETN to shock initiation. At input pressures ranging from 1.4{endash}2.0 GPa, shock propagation velocities are higher and run distances to detonation are shorter for PETN sensitized by microballoons. By selecting the size and density of microballoons, we can therefore study the effect of void size and density on shock initiation by hot spots. {copyright} {ital 1998 American Institute of Physics.}

  17. Defect and damage evolution quantification in dynamically-deformed metals using orientation-imaging microscopy

    SciTech Connect (OSTI)

    Gray, George T., III; Livescu, Veronica; Cerreta, Ellen K

    2010-03-18

    Orientation-imaging microscopy offers unique capabilities to quantify the defects and damage evolution occurring in metals following dynamic and shock loading. Examples of the quantification of the types of deformation twins activated, volume fraction of twinning, and damage evolution as a function of shock loading in Ta are presented. Electron back-scatter diffraction (EBSD) examination of the damage evolution in sweeping-detonation-wave shock loading to study spallation in Cu is also presented.

  18. Effect of microvoids on the shock initiation of PETN

    SciTech Connect (OSTI)

    Maienschein, J.L.; Urtiew, P.A.; Garcia, F.; Chandler, J.B.

    1996-07-01

    We demonstrate that the introduction of microvoids as glass microballoons sensitizes high-density solvent-pressed PETN to shock initiation. At input pressures ranging from 1.4-2.0 GPa, shock propagation velocities are higher and run distances to detonation are shorter for PETN sensitized by microballoons. By selecting the size and density of microballoons, we can therefore study the effect of void size and density on shock initiation by hot spots.

  19. US/UK second level panel discussions on the health and value of: Ageing and lifetime predictions (u)

    SciTech Connect (OSTI)

    Castro, Richard G

    2011-01-18

    Many healthy physics, engineering, and materials exchanges are being accomplished in ageing and lifetime prediction that directly supports US and UK Stockpile Management Programs. Lifetime assessment studies of silicon foams under compression - Joint AWE/LANLlLLNL study of compression set in stress cushions completed. Provides phenomenological prediction out to 50 years. Polymer volatile out-gassing studies - New exchange on the out-gassing of Ethylene Vinyl Acetate (EVA) using isotopic {sup 13}C labeling studies to interrogate mechanistic processes. Infra-red (IR) gas cell analytical capabilities developed by AWE will be used to monitor polymer out-gassing profiles. Pu Strength ageing Experiments and Constitutive Modeling - In recently compared modeling strategies for ageing effects on Pu yield strength at high strain rates, a US/UK consensus was reached on the general principle that the ageing effect is additive and not multiplicative. The fundamental mechanisms for age-strengthening in Pu remains unknown. Pu Surface and Interface Reactions - (1) US/UK secondment resulted in developing a metal-metal oxide model for radiation damaged studies consistent with a Modified Embedded Atom Method (MEAM) potential; and (2) Joint US/UK collaboration to study the role of impurities in hydride initiation. Detonator Ageing (wide range of activities) - (1) Long-term ageing study with field trials at Pantex incorporating materials from LANL, LLNL, SNL and AWE; (2) Characterization of PETN growth to detonation process; (3) Detonator performance modeling; and (4) Performance fault tree analysis. Benefits are a unified approach to lifetime prediction that Includes: materials characterization and the development of ageing models through improved understanding of the relationship between materials properties, ageing properties and detonator performance.

  20. Method and apparatus for producing cryogenic targets

    SciTech Connect (OSTI)

    Murphy, J.T.; Miller, J.R.

    1981-08-28

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

  1. The effects of shockwave profile shape and shock obliquity on spallation : studies of kinetics and stress state effects on damage evolution

    SciTech Connect (OSTI)

    Gray, George T., III; Hull, Larry M; Faulkner, J R; Briggs, M E; Cerreta, E K; Addessio, F L; Bourne, N K

    2009-06-22

    Shock-loading of a material in contact with a high explosive (HE) experiences a 'Taylor wave' (triangular wave) loading profile in contrast to the square-wave loading profile imparted via the impact of a flyer plate. Detailed metallographic and mlcrotextural analysis of the damage evolution in spalled Cu samples as a function of square/triangle and sweeping detonation-wave loading is presented.

  2. An investigation of corrosion in semiconductor bridge explosive devices.

    SciTech Connect (OSTI)

    Klassen, Sandra Ellen; Sorensen, Neil Robert

    2007-05-01

    In the course of a failure investigation, corrosion of the lands was occasionally found in developmental lots of semiconductor bridge (SCB) detonators and igniters. Evidence was found in both detonators and igniters of the gold layer being deposited on top of a corroded aluminum layer, but inspection of additional dies from the same wafer did not reveal any more corroded parts. In some detonators, evidence was found that corrosion of the aluminum layer also happened after the gold was deposited. Moisture and chloride must both be present for aluminum to corrode. A likely source for chloride is the adhesive used to bond the die to the header. Inspection of other SCB devices, both recently manufactured and manufactured about ten years ago, found no evidence for corrosion even in devices that contained SCBs with aluminum lands and no gold. Several manufacturing defects were noted such as stains, gouges in the gold layer due to tooling, and porosity of the gold layer. Results of atmospheric corrosion experiments confirmed that devices with a porous gold layer over the aluminum layer are susceptible to extensive corrosion when both moisture and chlorine are present. The extent of corrosion depends on the level of chlorine contamination, and corrosion did not occur when only moisture was present. Elimination of the gold plating on the lands eliminated corrosion of the lands in these experiments. Some questions remain unanswered, but enough information was gathered to recommend changes to materials and procedures. A second lot of detonators was successfully built using aluminum SCBs, limiting the use of Ablebond{trademark} adhesive, increasing the rigor in controlling exposure to moisture, and adding inspection steps.

  3. General Solution of the Kenamond HE Problem 3

    SciTech Connect (OSTI)

    Kaul, Ann

    2015-12-15

    A general solution for programmed burn calculations of the light times produced by a singlepoint initiation of a single HE region surrounding an inert region has been developed. In contrast to the original solutions proposed in References 1 and 2, the detonator is no longer restricted to a location on a Cartesian axis and can be located at any point inside the HE region. This general solution has been implemented in the ExactPack suite of exact solvers for verification problems.

  4. Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir

    SciTech Connect (OSTI)

    C. Cooper; M. Ye; J. Chapman

    2008-04-01

    The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to tritium migration.

  5. Creation of the dam for the No. 2 Kambaratinskaya HPP by large-scale blasting: analysis of planning experience and lessons learned

    SciTech Connect (OSTI)

    Shuifer, M. I.; Argal, E. S.

    2012-05-15

    Results of complex instrument observations and video taping during large-scale blasts detonated for creation of the dam at the No. 2 Kambaratinskaya HPP on the Naryn River in the Kyrgyz Republic are analyzed. Tests of the energy effectiveness of the explosives are evaluated, characteristics of LSB manifestations in seismic and air waves are revealed, and the shaping and movement of the rock mass are examined. A methodological analysis of the planning and production of the LSB is given.

  6. Project Gnome

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Gnome Double Beta Decay Dark Matter Biology Repository Science Renewable Energy The first underground physics experiment near Carlsbad was Project Gnome, December 10, 1961 Totally unrelated (and many years prior) to WIPP, the Project Gnome detonation was the first U.S. underground nuclear test with the objective of using nuclear explosives for peaceful applications. Project Gnome was intended to provide a detailed understanding of the underground environment created when a nuclear

  7. Nuclear magnetic resonance offers new insights into Pu 239

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear magnetic resonance offers new insights into Pu 239 Nuclear magnetic resonance offers new insights into Pu 239 Fingerprint of element found by LANL/Japanese team. May 29, 2012 How would the detonation of a nuclear energy source afffect an incoming asteroid? Georgios Koutroulakis and H. Yasuoka in the condensed-matter NMR lab at Los Alamos National Laboratory after having observed the magnetic resonance signal of Pu 239 for the first time. Get Expertise Scientist Eric Bauer Condensed

  8. OFFSITE ENVIRONMENTAL MONI AND OTHER TEST AREAS USED EMSL-LV-0539-36

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OFFSITE ENVIRONMENTAL MONI AND OTHER TEST AREAS USED EMSL-LV-0539-36 TORING REPORT FOR THE NEVADA TEST SITE FOR UNDERGROUND NUCLEAR DETONATIONS ($515 0 January through December 1979 Nuclear Radiation Assessment Division Environmental Monitoring Systems Laboratory U.S. Environmental Protection Agency Las Vegas, Nevada 89114 April 1980 This work performed under Memorandum of Understanding No. EY-76-A-08-0539 for the U.S. Department of Energy OFFSITE ENVIRONMENTAL MONI AND OTHER TEST AREAS USED

  9. Nevada Site Office News News Media Contact: For Immediate Release:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 24, 2012 morgan@nv.doe.gov NNSA Conducts Third Seismic Source Physics Experiment The National Nuclear Security Administration (NNSA) announced today that it has successfully conducted the third seismic Source Physics Experiment (SPE-3) at the Nevada National Security Site (NNSS). The seismic experiment was the third in a series of seven underground, fully-coupled, high- explosive field tests. SPE-3 included detonating a chemical explosive equivalent to 2,200 pounds of TNT in a contained,

  10. Optical limiting and bleaching effects in a suspension of onion-like carbon

    SciTech Connect (OSTI)

    Mikheev, Gen M; Bulatov, D L; Mogileva, T N; Kuznetsov, V L; Moseenkov, S I; Ishchenko, A V

    2009-04-30

    We have studied the effect of nanosecond laser pulses ({lambda} = 1064 nm) on the optical properties of onion-like carbon (OLC) prepared by high-temperature vacuum annealing of detonation nanodiamond and dispersed in N,N-dimethylformamide (DMF). The results demonstrate that, under low-intensity irradiation, the OLC suspension displays optical limiting behaviour. Increasing the incident intensity leads to bleaching of the suspension in the visible and near-IR spectral regions. (nanostructures)

  11. Projectile-generating explosive access tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos; Hughs, Chance G; Todd, Steven N

    2013-06-11

    A method for generating a projectile using an explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.

  12. Projectile-generating explosive access tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos; Todd, Steven N.

    2011-10-18

    An explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.

  13. Thermal initiation caused by fragment impact on cased explosives

    SciTech Connect (OSTI)

    Schnurr, N.M. )

    1989-01-01

    Numerical calculations have been used to predict the velocity threshold for thermal initiation of a cased explosive caused by fragment impact. A structural analysis code was used to determine temperature profiles and a thermal analysis code was used to calculate reaction rates. Results generated for the United States Air Force MK 82 bomb indicate that the velocity threshold for thermal initiation is slightly higher than that for the shock-to-detonation process. 8 refs., 5 figs., 2 tabs.

  14. Expectations for the hard x-ray continuum and gamma-ray line fluxes from the typE IA supernova SN 2014J in M82

    SciTech Connect (OSTI)

    The, Lih-Sin [Department of Physics and Astronomy, Clemson University, SC 29634 (United States); Burrows, Adam, E-mail: tlihsin@clemson.edu, E-mail: burrows@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)

    2014-05-10

    The hard X-ray continuum and gamma-ray lines from a Type Ia supernova dominate its integrated photon emissions and can provide unique diagnostics of the mass of the ejecta, the {sup 56}Ni yield and spatial distribution, its kinetic energy and expansion speed, and the mechanism of explosion. Such signatures and their time behavior 'X-ray' the bulk debris field in direct fashion, and do not depend on the ofttimes problematic and elaborate UV, optical, and near-infrared spectroscopy and radiative transfer that have informed the study of these events for decades. However, to date no hard photons have ever been detected from a Type Ia supernova in explosion. With the advent of the supernova SN 2014J in M82, at a distance of ?3.5 Mpc, this situation may soon change. Both NuSTAR and INTEGRAL have the potential to detect SN 2014J, and, if spectra and light curves can be measured, would usefully constrain the various explosion models published during the last ?30 yr. In support of these observational campaigns, we provide predictions for the hard X-ray continuum and gamma-line emissions for 15 Type Ia explosion models gleaned from the literature. The model set, containing as it does deflagration, delayed detonation, merger detonation, pulsational delayed detonation, and sub-Chandrasekhar helium detonation models, collectively spans a wide range of properties, and hence signatures. We provide a brief discussion of various diagnostics (with examples), but importantly make the spectral and line results available electronically to aid in the interpretation of the anticipated data.

  15. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Calutron (Y-12) Operators Topic OpenNet spotlights The Manhattan Project by Rita Hohenbrink 30 Jul, 2013 in Products and Content Calutron (Y-12) Operators Manhattan Project Sixty-eight years ago, an atomic bomb was detonated on an isolated corner of southern New Mexico in a weapon test named Trinity. Related Topics: atomic bomb, Calutron (Y-12) Operators, Leslie Groves, Manhattan Project, OpenNet, OpenNet

  16. Development of a Multi-Point Microwave Interferometry (MPMI) Method

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Development of a Multi-Point Microwave Interferometry (MPMI) Method Citation Details In-Document Search Title: Development of a Multi-Point Microwave Interferometry (MPMI) Method A multi-point microwave interferometer (MPMI) concept was developed for non-invasively tracking a shock, reaction, or detonation front in energetic media. Initially, a single-point, heterodyne microwave interferometry capability was established. The design,

  17. Chemical processing in geothermal nuclear chimney

    DOE Patents [OSTI]

    Krikorian, O.H.

    1973-10-01

    A closed rubble filled nuclear chimney is provided in a subterranean geothermal formation by detonation of a nuclear explosive device therein, with reagent input and product output conduits connecting the chimney cavity with appropriate surface facilities. Such facilities will usually comprise reagent preparation, product recovery and recycle facilities. Proccsses are then conducted in the nuclear chimney which processes are facilitated by temperature, pressure, catalytic and other conditions existent or which are otherwise provided in the nuclear chimney. (auth)

  18. Extrusion cast explosive

    DOE Patents [OSTI]

    Scribner, K.J.

    1985-11-26

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  19. VELA_COMP_OUT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Years of Treaty Verification from Space Operational Satellite Systems During the 50 years since the first Vela satellites, the United States developed and maintained an evolving constellation of operationally vigilant, space-based sentinels for nuclear detonation treaty verification. A multitude of sophisticated sensors developed at Los Alamos and Sandia national laboratories, each evolving and benefitting from continual advances in electronics and sensor technologies, monitors for

  20. DOE - NNSA/NFO -- News & Views Frenchman Flat

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Frenchman Flat Photo - Wooden bleachers at Yucca Flats Between January 27, 1951 and March 25, 1968 fourteen atmospheric and five underground tests were detonated at Frenchman Flat. The 320-square-kilometer (123-square-mile) dry lake bed is one of three major closed desert valley basins at the Nevada Test Site, the others being Yucca and Jackass Flats. From 1953 to 1958, reinforced structures were exposed to of nuclear blasts and accompanying overpressures. Among the items exposed to the blasts

  1. Digging Crystal Deep

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Digging Crystal Deep 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues » submit Digging Crystal Deep Los Alamos reengineers the insensitive high explosive responsible for keeping the B61 nuclear weapon safe against accidental detonation at the nanoscale-crystal level. October 25, 2015 Digging Crystal Deep The B61 aircraft-launched nuclear weapon New computer simulations make detailed predictions about how the explosive will behave and when it must

  2. Bigger's Not Always Better

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bigger's Not Always Better National Security Science Latest Issue:July 2015 past issues All Issues » submit Bigger's Not Always Better Accuracy trumps explosive power when the Department of Defense seeks nuclear weapons tailored to specific tactical and strategic targets. July 1, 2015 Bigger's Not Always Better The largest human-made explosion in history was the Soviet Union's detonation of its 50-megaton Tsar Bomba, the most
 powerful nuclear weapon ever designed. (One hundred megatons,

  3. Explosives performance key to stockpile stewardship

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives performance key to stockpile stewardship Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Explosives performance key to stockpile stewardship A new video shows how researchers use scientific guns to induce shock waves into explosive materials to study their performance and properties January 1, 2015 Adam Pacheco of shock and detonation physics presses the "fire" button during an experiment at the

  4. NEFC-LV-539-31 ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEFC-LV-539-31 ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND XJCLEAR DETONATIONS January through December 1973 by the Monitoring Operations Laboratory National Environmental Research Center U. S. ENVIROm,iENTXL PROTECTION AGENCY Las Vegas, Nevada Published Xay 1974 This work performed under a Memorandum of Understanding No. AT(26-l)-539 fcr the U. S. ATOMIC ENLIIGY COMMISSION PREFACE The Atomic Energy Commission (AEC) has used the Nevada Test

  5. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond spotlights The Manhattan Project by Rita Hohenbrink on Tue, Jul 30, 2013 Calutron (Y-12) Operators Manhattan Project Sixty-eight years ago, an atomic bomb was detonated on an isolated corner of southern New Mexico in a weapon test named Trinity. This month, The Manhattan Project: Resources, a web-based, joint collaboration between the Department's Office of Classification and Office of History and Heritage Resources has been

  6. Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    They are some of the most famous and eerie images to emerge from the Cold War: atmospheric nuclear tests captured one millisecond after detonation. Using a rapatronic camera developed by Harold Edgerton of Edgerton, Germeshausen & Grier Inc. (EG&G), a company specializing in electronic technology, the rapatronic camera was capable of photographing still images at the rate of 1/1,000,000 of a second. Background Dr. Harold Edgerton, a pioneer in strobe photography, developed the concept

  7. Introduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    earliest media reports of atmospheric nuclear testing in Nevada were based on eyewitness accounts. News reporters considered it a sign of importance when invited to watch detonations from News Nob, a large pile of volcanic tuff situated on the edge of Yucca Lake at the Nevada Test Site, now known at the Nevada National Security Site (NNSS). Thousands of newsmen trekked to observe and write about atomic mushroom clouds billowing above the desert of Nevada in the 1950s. Their articles were eagerly

  8. DOE - NNSA/NFO -- Historical Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Historical Publications NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Historical Publications U.S. Department of Energy has an abundance of historical information about the United States' nuclear testing program. These nuclear tests and simultaneous detonations were conducted from 1945 through 1992. Many of these historical documents can be located at the National Nuclear Security Administration Nuclear Testing Archive. Instructions: Click the document Name to view or download

  9. ENVIRONMENTALMONITORING REPORT FORTRENRVADATEST SITE AND OTRER TEST AREAS USED FOR UNDERGROUND NUCLEAR DEZONATIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ENVIRONMENTALMONITORING REPORT FORTRENRVADATEST SITE AND OTRER TEST AREAS USED FOR UNDERGROUND NUCLEAR DEZONATIONS ' January-December 1972 This work performed under a Memorandum of yi- "h \ -;, Understanding No. AT(26-l)-539. ', * ,",', for the , .; \: , *t a' '_. U. S. ATOMIC ENERGY COMMISSION .-I < . . J c-c I NERC-LV-539-23 ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January-December 1972 by the National

  10. COLLOQUIUM: Risks of Nuclear Weapons Use in an Era of Proliferation, Cyber

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Warfare and Terrorism | Princeton Plasma Physics Lab 5, 2014, 4:00pm to 5:30pm Colloquia MGB Auditorium COLLOQUIUM: Risks of Nuclear Weapons Use in an Era of Proliferation, Cyber Warfare and Terrorism Dr. Bruce G. Blair Princeton University The United States and eight other countries that possess nuclear weapons run myriad risks every day -- risks of accidental detonations, of unauthorized launches caused by false warning, of provoking escalation between nuclear forces, and of nuclear

  11. Method and apparatus for producing cryogenic targets

    DOE Patents [OSTI]

    Murphy, J.T.; Miller, J.R.

    1984-08-07

    An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers. 6 figs.

  12. Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Almost all of the observable matter in the universe is in the plasma state. Formed at high temperatures, plasmas consist of freely moving ions and free electrons. They are often called the "fourth state of matter" because their unique physical properties distinguish them from solids, liquids and gases. Plasma densities and temperatures vary widely, from the cold gases of interstellar space to the extraordinarily hot, dense cores of stars and inside a detonating nuclear

  13. July 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    July 2014 National Security Science Latest Issue:July 2015 past issues All Issues » submit IN THIS ISSUE Introduction Welcome to this Issue This issue presents three very personal and timely perspectives on current national security topics. Feature Articles Detonation: From the Bottom Up In the nuclear testing era, scientists never thoroughly understood nuclear weapons. But they're trying to now. U.K. Is Modernizing for the Second Nuclear Age The U.K. nuclear weapons establishment is gaining

  14. LANL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dressed for the job. While EG&G was responsible for scientific photography, a secret Hollywood studio, Lookout Mountain Laboratory, made documentaries for military and government briefings and then for public consumption. This Lookout Mountain photographer (1956) is outfitted to protect himself from radiation. (Photo: Open Source) From Glimmer to Fireball: Photographing Nuclear Detonations Photographing nuclear explosions was not for the faint hearted. Some of the cameras were manned, but

  15. Lab celebrates 50 years in space

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    celebrates 50 years in space Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:Mar. 2016 all issues All Issues » submit Lab celebrates 50 years in space National security missions and pure research December 1, 2013 Lab celebrates 50 years in space Lab's instruments have helped detect possible nuclear weapon detonations and led to fundamental scientific discoveries. Contacts Community Programs Office Director Kurt Steinhaus Email Editor

  16. How ORISE is Making a Difference: Empire 09

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How ORISE is Making a Difference ORISE Coordinates Exercise Planning Efforts During Empire 09 Emergency Management Exercise Empire 09-a U.S. Department of Energy (DOE)-sponsored, full-scale exercise hosted by the State of New York in June 2009-tested what outcomes could occur if two radiological dispersion devices detonated in downtown Albany. The exercise was specifically designed to evaluate the technical response and management of a domestic radiological dispersion device incident in an urban

  17. IIIIIN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 ,.o - 't32 lUII_ IIIIIN illllgIllllg LA-UP,- 9 3-28 34 Title THE NUCLEAR DETONATION DETECTION SYSTEM ON 7_E GPS SATELLITES Author(s): Paul R. Higbie, SST-9 Norman K. Blocker, Sandia National Laboratories "" U'_ * 'T_ "" I= _ O "" Od:_*" U . __ ._ _E = = _ o o'= _ o _ _ = ...= o ,_ Submitted to: o = _ _ ,_., .U I 0 -. o-- .. ='_" _ _ ._ . _ _.o,_ _ _ _ ............................................................................ *_ ._ ._ _ _ ._ _._ <

  18. Explosive composition with group VIII metal nitroso halide getter

    DOE Patents [OSTI]

    Walker, Franklin E. (18 Shadow Oak Rd., Danville, CA 94526); Wasley, Richard J. (4290 Colgate Way, Livermore, CA 94550)

    1982-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1,500 and 10,000 meters per second and a minor amount of a getter additive comprising a non-explosive compound or mixture of non-explosive compounds capable of chemically reacting with free radicals or ions under shock initiation conditions of 2,000 calories/cm.sup.2 or less of energy fluence.

  19. EERE PowerPoint 97-2004 Template: Green Version

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Validation of EGS Feasibility and Explosive Fracturing Techniques Principal Investigator Charles R. Carrigan Lawrence Livermore National Lab Track 4-EGS2-Innovative Stimulation Techniques Project Officer: Elisabet Metcalf Total Project Funding: $450K for 2 years May 11, 2015 This presentation does not contain any proprietary confidential, or otherwise restricted information. EGS Validation Borehole Detonation Team: Pengcheng Fu, Bin Guo, Oleg Vorobiev and Brad White 2 | US DOE Geothermal Office

  20. Microsoft Word - Updated Air Dispersion Modeling Table _sulfur_.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DIVINE STRAKE AIR DISPERSION MODELING RESULTS for SULFUR DIOXIDE The attached table is updated to include estimated sulfur dioxide concentrations resulting from the Divine Strake Experiment. Output from the POLU4WN model was used to estimate quantities of all emissions from the proposed explosive experiment. All emissions of oxides of sulfur were combined to provide input into Open Burn/Open Detonation Model (OBODM) to model the dispersion; thus overestimating the concentration of sulfur dioxide

  1. MISCELLANEOUS PAPER S71-17 EARTHQUAKE RESISTANCE OF EARTH AND ROCK-FILL DAMS

    Office of Legacy Management (LM)

    MISCELLANEOUS PAPER S71-17 EARTHQUAKE RESISTANCE OF EARTH AND ROCK-FILL DAMS Report 2 ANALYSIS OF RESPONSE O F RIFLE.GAP D A M TO PROJECT RULISON UNDERGROUND NUCLEAR DETONATION bv J. E. Ahlberg, J. Fowler, L W. Heller ........ . . . . . . . . - . . . . . . . . . . . . . . . - . . - ...... *- , .... . . . - ->-w-J- * - : - . . June 1972 s~omsored by Office, Chief of Engineers, U. S. Army Conducted by U. S. A m y Engineer Waterways Experiment Station Soils and Pavements Laboratory Vicksburg,

  2. Microsoft Word - RUL_1Q2011_Gas_Samp_Results_7Wells

    Office of Legacy Management (LM)

    31 March 2011 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom-hole locations (BHLs) of the seven gas wells sampled are between 0.75 and 0.90 mile from the Project Rulison detonation point. All wells sampled are producing gas from the Williams Fork Formation. Background: Project Rulison was the second test under the Plowshare Program to stimulate natural-gas recovery from tight sandstone formations. On 10 September 1969, a

  3. Microsoft Word - RUL_3Q2010_Rpt_Gas_Samp_Results_18Wells.doc

    Office of Legacy Management (LM)

    Monitoring Results Natural Gas Wells near the Project Rulison Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 13 July 2010 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom hole locations (BHLs) of the 18 gas wells sampled are within 1.1 miles of the Project Rulison detonation horizon. All wells sampled have produced or are producing gas from the Williams Fork Formation. Background:

  4. Explosive composition with group VIII metal nitroso halide getter

    DOE Patents [OSTI]

    Walker, F.E.; Wasley, R.J.

    1982-06-22

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1,500 and 10,000 meters per second and a minor amount of a getter additive comprising a non-explosive compound or mixture of non-explosive compounds capable of chemically reacting with free radicals or ions under shock initiation conditions of 2,000 calories/cm[sup 2] or less of energy fluence.

  5. Inspection Report: IG-0615 | Department of Energy

    Office of Environmental Management (EM)

    15 Inspection Report: IG-0615 August 11, 2003 Oversight of Shock Sensitive Chemicals at the Department's Ames Laboratory Shock sensitive chemicals, which are used throughout the Department of Energy (DOE) complex, have the potential to undergo a rapid reaction that can release relatively large amounts of energy that may be violent enough to produce an explosive detonation. Therefore, properly managing them is critical to ensuring the safety of personnel, as well as the protection of DOE assets.

  6. Lab Breakthrough: Asteroid Killer Simulation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Asteroid Killer Simulation Lab Breakthrough: Asteroid Killer Simulation July 5, 2012 - 12:07pm Addthis A supercomputer at Los Alamos National Laboratory is helping scientists understand how a nuclear detonation might affect an incoming, Earth-threatening asteroid. View the entire Lab Breakthrough playlist. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs What if we find an Earth-bound asteroid? If time is very short (less than a month), than there is

  7. DOE - Office of Legacy Management -- Salmon2

    Office of Legacy Management (LM)

    Mississippi Salmon, Mississippi, Site A Nevada Offsite salmon_map The DOE Office of Legacy Management assumed responsibility for long-term surveillance and maintenance at the Salmon Site in 2008. Responsibilities include long-term surveillance and maintenance of the subsurface where residue remains from the nuclear detonation tests conducted during the Cold War-era, maintaining institutional controls, archiving records, and responding to stakeholder inquiries. For more information about the

  8. DOE - Office of Legacy Management -- Shoal Test Site - NV 03

    Office of Legacy Management (LM)

    Shoal Test Site - NV 03 FUSRAP Considered Sites Site: SHOAL TEST SITE (NV.03 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: Sand Springs Range NV.03-1 Location: Near U.S. Highway 50 , Fallon , Nevada NV.03-2 Evaluation Year: 1987 NV.03-2 Site Operations: Underground nuclear detonation site. NV.03-1 Site Disposition: Eliminated - Potential for contamination remote NV.03-2 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: None

  9. Supercomputers' Pictorial Superpowers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supercomputers' Pictorial Superpowers Supercomputers' Pictorial Superpowers August 18, 2011 - 3:08pm Addthis The ability to do 3D, large-scale simulations of supernovae, such as above, led to the discovery of an entirely new and unexpected explosion mechanism, termed the gravitationally confined detonation (GCD) model. <a href="http://energy.gov/photos/supercomputers-pictorial-superpowers">Click here to view a slideshow of images</a>. | Image: Courtesy Flash Center for

  10. Timeline of Events: 1951 to 1970 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    51 to 1970 Timeline of Events: 1951 to 1970 October 31, 1952: Mike Test October 31, 1952: Mike Test The Atomic Energy Commission detonates the first thermonuclear device, code-named "Mike," at Enewetak Atoll in the Pacific. Read more December 23, 1957: Shippingport December 23, 1957: Shippingport The Shippingport Atomic Power Station, the world's first full-scale nuclear power plant, becomes operational. Read more March 13, 1968: Oil discovered on Alaska's North Slope March 13, 1968:

  11. Apparatus and method for the acceleration of projectiles to hypervelocities

    DOE Patents [OSTI]

    Hertzberg, Abraham (Bellevue, WA); Bruckner, Adam P. (Seattle, WA); Bogdanoff, David W. (Bellevue, WA)

    1990-01-01

    A projectile is initially accelerated to a supersonic velocity and then injected into a launch tube filled with a gaseous propellant. The projectile outer surface and launch tube inner surface form a ramjet having a diffuser, a combustion chamber and a nozzle. A catalytic coated flame holder projecting from the projectile ignites the gaseous propellant in the combustion chamber thereby accelerating the projectile in a subsonic combustion mode zone. The projectile then enters an overdriven detonation wave launch tube zone wherein further projectile acceleration is achieved by a formed, controlled overdriven detonation wave capable of igniting the gaseous propellant in the combustion chamber. Ultrahigh velocity projectile accelerations are achieved in a launch tube layered detonation zone having an inner sleeve filled with hydrogen gas. An explosive, which is disposed in the annular zone between the inner sleeve and the launch tube, explodes responsive to an impinging shock wave emanating from the diffuser of the accelerating projectile thereby forcing the inner sleeve inward and imparting an acceleration to the projectile. For applications wherein solid or liquid high explosives are employed, the explosion thereof forces the inner sleeve inward, forming a throat behind the projectile. This throat chokes flow behind, thereby imparting an acceleration to the projectile.

  12. The effects of gaps between bridge foils and PETN as a function of PETN density and specific surface area

    SciTech Connect (OSTI)

    Phillips, D; Roeske, F; Burnham, A

    2007-06-26

    X-ray computer tomography scans of artificially aged PETN seem to indicate shrinkage of material and, by extension, an increased high explosive density, resulting in potential separation of the HE from the header/bridge foil. We have investigated these phenomena by mimicking this shrinkage of material (load density). Thus, we have evaluated various induced gaps between the exploding bridge foil and the PETN in our custom detonators by changing both specific surface area - recognizing crystal morphology changes - and load density. Analyses for these data include absolute function time relative to bridge burst and careful evaluation of the detonation wave breakout curvature, using an electronic streak camera for wave capture, in cases where the bridge foil (exploding bridge wire - EBW style) initiation successfully traverses the gap (a 'go' condition). In addition, a fireset with subnanosecond trigger jitter was used for these tests allowing easy comparison of relative 'go' function times. Using the same test matrix and fine-tuning the induced gap, a second, smaller subset of these experiments were performed to provide additional insight as to what conditions we might expect detonator anomalies/failure.

  13. Furball Explosive Breakout Test

    SciTech Connect (OSTI)

    Carroll, Joshua David

    2015-08-05

    For more than 30 years the Onionskin test has been the primary way to study the surface breakout of a detonation wave. Currently the Onionskin test allows for only a small, one dimensional, slice of the explosive in question to be observed. Asymmetrical features are not observable with the Onionskin test and its one dimensional view. As a result, in 2011, preliminary designs for the Hairball and Furball were developed then tested. The Hairball used shorting pins connected to an oscilloscope to determine the arrival time at 24 discrete points. This limited number of data points, caused by the limited number of oscilloscope channels, ultimately led to the Hairball’s demise. Following this, the Furball was developed to increase the number of data points collected. Instead of shorting pins the Furball uses fiber optics imaged by a streak camera to determine the detonation wave arrival time for each point. The original design was able to capture the detonation wave’s arrival time at 205 discrete points with the ability to increase the number of data points if necessary.

  14. The effects of the topographic bench on ground motion from mining explosions

    SciTech Connect (OSTI)

    Bonner, J.L.; Blomberg, W.S.; Hopper, H.; Leidig, M.

    2005-07-01

    Understanding the effects of the bench on ground motion can improve the design of cast blasts and achieve improved blast efficiency while remaining below vibration requirements. A new dataset recorded in September 2003 from a coal mine in Arizona has allowed us to examine the excitation of short-period Rayleigh-type surface waves from four simultaneously-detonated explosions in and below a topographic bench of a mine. The explosions were recorded on a network of over 150 seismic sensors, providing an extensive understanding of the ground motion radiation patterns from these explosions. We detonated two separate explosions in the deepest pit of the mine, thus the explosions were shot to solid rock. Within 25 meters of these two explosions, we detonated two additional explosions of similar explosive yields in a bench, thus these explosions were shot to the free face. Radiation patterns and spectral ratios from the explosions show increased amplitudes at azimuths behind the bench relative to the amplitudes in front of the bench. We compared these findings to seismic observations from two {approximately} 1.5 million pound cast blasts at the same mine and found similar radiations patterns. Modeling of these blasts shows that the variations in ground motion are caused by the topographic bench as a result of 1) horizontal spalling of the rock falling into the pit and 2) non-linear scattering near the free-face. Shooting to a buffer also causes the azimuthal variations to be significantly reduced.

  15. Thermodynamic States in Explosion Fields

    SciTech Connect (OSTI)

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. For example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.

  16. Source terms for plutonium aerosolization from nuclear weapon accidents

    SciTech Connect (OSTI)

    Stephens, D.R.

    1995-07-01

    The source term literature was reviewed to estimate aerosolized and respirable release fractions for accidents involving plutonium in high-explosive (HE) detonation and in fuel fires. For HE detonation, all estimates are based on the total amount of Pu. For fuel fires, all estimates are based on the amount of Pu oxidized. I based my estimates for HE detonation primarily upon the results from the Roller Coaster experiment. For hydrocarbon fuel fire oxidation of plutonium, I based lower bound values on laboratory experiments which represent accident scenarios with very little turbulence and updraft of a fire. Expected values for aerosolization were obtained from the Vixen A field tests, which represent a realistic case for modest turbulence and updraft, and for respirable fractions from some laboratory experiments involving large samples of Pu. Upper bound estimates for credible accidents are based on experiments involving combustion of molten plutonium droplets. In May of 1991 the DOE Pilot Safety Study Program established a group of experts to estimate the fractions of plutonium which would be aerosolized and respirable for certain nuclear weapon accident scenarios.

  17. Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort

    DOE Patents [OSTI]

    Ricketts, Thomas E. (Bakersfield, CA)

    1980-01-01

    Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.

  18. Explosively driven air blast in a conical shock tube

    SciTech Connect (OSTI)

    Stewart, Joel B. Pecora, Collin

    2015-03-15

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.

  19. Proximity fuze

    DOE Patents [OSTI]

    Harrison, Thomas R.

    1989-08-22

    A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation cirtcuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance form the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation.

  20. Proximity fuze

    DOE Patents [OSTI]

    Harrison, T.R.

    1987-07-10

    A proximity fuze system includes an optical ranging apparatus, a detonation circuit controlled by the optical ranging apparatus, and an explosive charge detonated by the detonation circuit. The optical ranging apparatus includes a pulsed laser light source for generating target ranging light pulses and optical reference light pulses. A single lens directs ranging pulses to a target and collects reflected light from the target. An optical fiber bundle is used for delaying the optical reference pulses to correspond to a predetermined distance from the target. The optical ranging apparatus includes circuitry for providing a first signal depending upon the light pulses reflected from the target, a second signal depending upon the light pulses from the optical delay fiber bundle, and an output signal when the first and second signals coincide with each other. The output signal occurs when the distance from the target is equal to the predetermined distance from the target. Additional circuitry distinguishes pulses reflected from the target from background solar radiation. 3 figs.

  1. Adding kinetics and hydrodynamics to the CHEETAH thermochemical code

    SciTech Connect (OSTI)

    Fried, L.E., Howard, W.M., Souers, P.C.

    1997-01-15

    In FY96 we released CHEETAH 1.40, which made extensive improvements on the stability and user friendliness of the code. CHEETAH now has over 175 users in government, academia, and industry. Efforts have also been focused on adding new advanced features to CHEETAH 2.0, which is scheduled for release in FY97. We have added a new chemical kinetics capability to CHEETAH. In the past, CHEETAH assumed complete thermodynamic equilibrium and independence of time. The addition of a chemical kinetic framework will allow for modeling of time-dependent phenomena, such as partial combustion and detonation in composite explosives with large reaction zones. We have implemented a Wood-Kirkwood detonation framework in CHEETAH, which allows for the treatment of nonideal detonations and explosive failure. A second major effort in the project this year has been linking CHEETAH to hydrodynamic codes to yield an improved HE product equation of state. We have linked CHEETAH to 1- and 2-D hydrodynamic codes, and have compared the code to experimental data. 15 refs., 13 figs., 1 tab.

  2. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    SciTech Connect (OSTI)

    Souers, P C; Hernandez, A; Cabacungan, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2008-02-05

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in 0 reactive flow JWL++ and Linked Cheetah V4, mostly at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. The physical basis of the input parameters is considered.

  3. Operation Hardtack. Project 3. 2. Response of earth-confined flexible-arch structures in high-overpressure regions

    SciTech Connect (OSTI)

    LeDoux, J.C.; Rush, P.J.

    1985-09-01

    The purpose of this project was to determine structural responses and failure criteria of earth-confined corrugated-steel flexible arches subjected to high overpressure blast loading from nuclear detonations. A flexible arch is considered as an arch structure whose ultimate supporting capacity is dependent upon confinement within a surrounding earth configuration. A collateral objective was to determine the radiation-shielding effectiveness of such structures with a minimum cover of five feet of coral sand. Because the soil and ground-water conditions at Eniwetok did not permit the placing of the steel arches below natural-grade level, the structures were confined within massive non-drag sensitive earthwork configurations of coral sand. Empirical determinations were made of the responses of (1) three earth-confined prefabricated corrugated-steel flexible arches when subjected to relatively long-duration blast loadings from a megaton range detonation; and (2) one similar earth-confined flexible-arch when subjected to relatively short-duration blast loadings from a kiloton-range detonation.

  4. Modifications and Applications of the HERMES model: June - October 2010

    SciTech Connect (OSTI)

    Reaugh, J E

    2010-11-16

    The HERMES (High Explosive Response to MEchanical Stimulus) model has been developed to describe the response of energetic materials to low-velocity mechanical stimulus, referred to as HEVR (High Explosive Violent Response) or BVR (Burn to Violent Reaction). For tests performed with an HMX-based UK explosive, at sample sizes less than 200 g, the response was sometimes an explosion, but was not observed to be a detonation. The distinction between explosion and detonation can be important in assessing the effects of the HE response on nearby structures. A detonation proceeds as a supersonic shock wave supported by the release of energy that accompanies the transition from solid to high-pressure gas. For military high explosives, the shock wave velocity generally exceeds 7 km/s, and the pressure behind the shock wave generally exceeds 30 GPa. A kilogram of explosive would be converted to gas in 10 to 15 microseconds. An HEVR explosion proceeds much more slowly. Much of the explosive remains unreacted after the event. Peak pressures have been measured and calculated at less than 1 GPa, and the time for the portion of the solid that does react to form gas is about a millisecond. The explosion will, however, launch the confinement to a velocity that depends on the confinement mass, the mass of explosive converted, and the time required to form gas products. In many tests, the air blast signal and confinement velocity are comparable to those measured when an amount of explosive equal to that which is converted in an HEVR is deliberately detonated in the comparable confinement. The number of confinement fragments from an HEVR is much less than from the comparable detonation. The HERMES model comprises several submodels including a constitutive model for strength, a model for damage that includes the creation of porosity and surface area through fragmentation, an ignition model, an ignition front propagation model, and a model for burning after ignition. We have used HERMES in computer simulations of US and UK variants of the Steven Test. We have recently improved some of the submodels, and report those developments here, as well as the results of some additional applications.

  5. Electromagnetic Effects in SDF Explosions

    SciTech Connect (OSTI)

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2010-02-12

    The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise between optimizing the combustion performance and keeping the number of elementary charges low. Further tests in a barometric bomb calorimeter of 21.2 l volume were performed with four types of aluminum. The mass fraction burned in this case appeared to depend on the morphology of the aluminum particles. Flake aluminum exhibited a better performance than granulated aluminum with particle sizes ranging from below 25 {micro}m to 125 {micro}m for the coarsest material. In addition, a feasibility study on electro-magnetic effects from SDF charges detonated in a tunnel has been performed. A method was developed to measure the local, unsteady electro-conductivity in the detonation/combustion products cloud. This method proved to yield reproducible results. A variety of methods were tested with regard to probing electro-magnetic pulses from the detonation of SDF charges. The results showed little reproducibility and were small compared to the effect from pulsed high voltage discharges of comparatively small energy (around 32 J). Thus either no significant electromagnetic pulse is generated in our small-scale tests or the tested techniques have to be discarded as too insensitive or too limited in bandwidth to detect possibly very high frequency electro-magnetic disturbances.

  6. Meeting Report--NASA Radiation Biomarker Workshop

    SciTech Connect (OSTI)

    Straume, Tore; Amundson, Sally A,; Blakely, William F.; Burns, Frederic J.; Chen, Allen; Dainiak, Nicholas; Franklin, Stephen; Leary, Julie A.; Loftus, David J.; Morgan, William F.; Pellmar, Terry C.; Stolc, Viktor; Turteltaub, Kenneth W.; Vaughan, Andrew T.; Vijayakumar, Srinivasan; Wyrobek, Andrew J.

    2008-05-01

    A summary is provided of presentations and discussions from the NASA Radiation Biomarker Workshop held September 27-28, 2007, at NASA Ames Research Center in Mountain View, California. Invited speakers were distinguished scientists representing key sectors of the radiation research community. Speakers addressed recent developments in the biomarker and biotechnology fields that may provide new opportunities for health-related assessment of radiation-exposed individuals, including for long-duration space travel. Topics discussed include the space radiation environment, biomarkers of radiation sensitivity and individual susceptibility, molecular signatures of low-dose responses, multivariate analysis of gene expression, biomarkers in biodefense, biomarkers in radiation oncology, biomarkers and triage following large-scale radiological incidents, integrated and multiple biomarker approaches, advances in whole-genome tiling arrays, advances in mass-spectrometry proteomics, radiation biodosimetry for estimation of cancer risk in a rat skin model, and confounding factors. Summary conclusions are provided at the end of the report.

  7. Method and apparatus to measure the depth of skin burns

    DOE Patents [OSTI]

    Dickey, Fred M. (Albuquerque, NM); Holswade, Scott C. (Albuquerque, NM)

    2002-01-01

    A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.

  8. Underground Infrastructure Impacts Due to a Surface Burst Nuclear Device in an Urban Canyon Environment

    SciTech Connect (OSTI)

    Bos, Randall J.; Dey, Thomas N.; Runnels, Scott R.

    2012-07-03

    Investigation of the effects of a nuclear device exploded in a urban environment such as the Chicago studied for this particular report have shown the importance on the effects from the urban canyons so typical of today's urban environment as compared to nuclear test event effects observed at the Nevada Test Site (NTS) and the Pacific Testing Area on which many of the typical legacy empirical codes are based on. This report first looks at the some of the data from nuclear testing that can give an indication of the damage levels that might be experienced due to a nuclear event. While it is well known that a above ground blast, even a ground burst, very poorly transmits energy into the ground ( < 1%) and the experimental results discussed here are for fully coupled detonations, these results do indicate a useful measure of the damage that might be expected. The second part of the report looks at effects of layering of different materials that typically would make up the near ground below surface environment that a shock would propagate through. As these simulations support and is widely known in the community, the effects of different material compositions in these layers modify the shock behavior and especially modify the energy dispersal and coupling into the basement structures. The third part of the report looks at the modification of the underground shock effects from a surface burst 1 KT device due to the presence of basements under the Chicago buildings. Without direct knowledge of the basement structure, a simulated footprint of a uniform 20m depth was assumed underneath each of the NGI defined buildings in the above ground environment. In the above ground case, the underground basement structures channel the energy along the line of site streets keeping the shock levels from falling off as rapidly as has been observed in unobstructed detonations. These simulations indicate a falloff of factors of 2 per scaled length as compared to 10 for the unobstructed case. Again, as in the above ground case, the basements create significant shielding causing the shock profile to become more square and reducing the potential for damage diagonal to the line of sight streets. The results for a 1KT device is that the heavily damaged zone (complete destruction) will extend out to 50m from the detonation ({approx}100m for 10KT). The heavily to moderately damaged zone will extend out to 100m ({approx}200m for 10KT). Since the destruction will depend on geometric angle from the detonation and also the variability of response for various critical infrastructure, for planning purposes the area out to 100m from the detonation should be assumed to be non-operational. Specifically for subway tunnels, while not operational, they could be human passable for human egress in the moderately damaged area. The results of the simulations presented in this report indicate only the general underground infrastructure impact. Simulations done with the actual basement geometry would be an important improvement. Equally as important or even more so, knowing the actual underground material configurations and material composition would be critical information to refine the calculations. Coupling of the shock data into structural codes would help inform the emergency planning and first response communities on the impact to underground structures and the state of buildings after the detonation.

  9. Progress in model development to quantify High Explosive Violent Response (HEVR) to mechancial insult

    SciTech Connect (OSTI)

    Reaugh, J E

    2008-07-29

    The rapid release of chemical energy has found application for industrial and military purposes since the invention of gunpowder. Black powder, smokeless powder of various compositions, and pyrotechnics all exhibit the rapid release of energy without detonation when they are being used as designed. The rapidity of energy release for these materials is controlled by adjustments to the particle surface area (propellant grain configuration or powder particle size) in conjunction with the measured pressure-dependent burning rate, which is very subsonic. In this way a manufacturing process can be used to engineer the desired violence of the explosion. Detonations in molecular explosives, in contrast, propagate with a supersonic velocity that depends on the loading density, but is independent of the surface area. In ideal detonations, the reaction is complete within a small distance of the propagating shock front. Non-ideal detonations in molecular and composite explosives proceed with a slower velocity, and the reaction may continue well behind the shock front. We are developing models to describe the circumstances when molecular and composite explosives undergo a rapid release of energy without detonating. The models also apply to the behavior of rocket propellants subject to mechanical insult, whether for accidents (Hazards) or the suite of standardized tests used to assess whether the system can be designated an Insensitive Munition (IM). In the application described here, we are studying an HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane) explosive developed in the UK, which is 91% by weight HMX and 9% binder-plasticizer. Most explosives and propellants, when subjected to a mechanical insult, drop or impact that is well below the threshold for detonation have been observed to react violently. This behavior is known as High Explosive Violent Reaction (HEVR). The basis of our model is the observation that the mechanical insult produces damage in a volume of the explosive near the trajectory of the impactor. The damage is manifest as surface area through the creation of cracks and fragments, and also as porosity through the separation of crack faces and isolation of the fragments. Open porosity permits a flame to spread easily and so ignite the surface area that was created. The surface area itself leads to in increase in the mass-burning rate. As the kinetic energy and power of the insult increases, the degree of damage and the volume of damage both increase. Upon a localized ignition, the flame spreads to envelop the damaged volume, and the pressure rises at an accelerated rate until neither mechanical strength nor inertial confinement can successfully contain the pressure. The confining structure begins to expand. This reduces the pressure and may even extinguish the flame. Both the mass of explosive involved and the rate at which the gas is produced contribute to each of several different measures of violence. Such measures include damage to the confinement, the velocity and fragment size distributions from what was the confinement, and air blast. Figure 1 illustrates the interaction of the various phenomena described above. Our model comprises several interacting elements. The production of damage, the ignition criterion, the mass rate of burning (reaction rate), the equations of state and constitutive models of the solid explosive reactant (unburned) and gas products, flame propagation in damaged reactant, and the progressive failure of the confinement are all elements of the model. The model is intended for implementation in a general-purpose simulation program (hydrocode) that solves the partial differential equations for the conservation of mass, momentum, and energy in conjunction with equations of state and strength.

  10. Progress towards a PETN Lifetime Prediction Model

    SciTech Connect (OSTI)

    Burnham, A K; Overturf III, G E; Gee, R; Lewis, P; Qiu, R; Phillips, D; Weeks, B; Pitchimani, R; Maiti, A; Zepeda-Ruiz, L; Hrousis, C

    2006-09-11

    Dinegar (1) showed that decreases in PETN surface area causes EBW detonator function times to increase. Thermal aging causes PETN to agglomerate, shrink, and densify indicating a ''sintering'' process. It has long been a concern that the formation of a gap between the PETN and the bridgewire may lead to EBW detonator failure. These concerns have led us to develop a model to predict the rate of coarsening that occurs with age for thermally driven PETN powder (50% TMD). To understand PETN contributions to detonator aging we need three things: (1) Curves describing function time dependence on specific surface area, density, and gap. (2) A measurement of the critical gap distance for no fire as a function of density and surface area for various wire configurations. (3) A model describing how specific surface area, density and gap change with time and temperature. We've had good success modeling high temperature surface area reduction and function time increase using a phenomenological deceleratory kinetic model based on a distribution of parallel nth-order reactions having evenly spaced activation energies where weighing factors of the reactions follows a Gaussian distribution about the reaction with the mean activation energy (Figure 1). Unfortunately, the mean activation energy derived from this approach is high (typically {approx}75 kcal/mol) so that negligible sintering is predicted for temperatures below 40 C. To make more reliable predictions, we've established a three-part effort to understand PETN mobility. First, we've measured the rates of step movement and pit nucleation as a function of temperature from 30 to 50 C for single crystals. Second, we've measured the evaporation rate from single crystals and powders from 105 to 135 C to obtain an activation energy for evaporation. Third, we've pursued mechanistic kinetic modeling of surface mobility, evaporation, and ripening.

  11. Bibliography of reports on studies of the geology, hydrogeology and hydrology at the Nevada Test Site, Nye County, Nevada, from 1951--1996

    SciTech Connect (OSTI)

    Seaber, P.R.; Stowers, E.D.; Pearl, R.H.

    1997-04-01

    The Nevada Test Site (NTS) was established in 1951 as a proving ground for nuclear weapons. The site had formerly been part of an Air Force bombing and gunnery range during World War II. Sponsor-directed studies of the geology, hydrogeology, and hydrology of the NTS began about 1956 and were broad based in nature, but were related mainly to the effects of the detonation of nuclear weapons. These effects included recommending acceptable media and areas for underground tests, the possibility of off-site contamination of groundwater, air blast and surface contamination in the event of venting, ground-shock damage that could result from underground blasts, and studies in support of drilling and emplacement. The studies were both of a pure scientific nature and of a practical applied nature. The NTS was the site of 828 underground nuclear tests and 100 above-ground tests conducted between 1951 and 1992 (U.S. Department of Energy, 1994a). After July 1962, all nuclear tests conducted in the United States were underground, most of them at the NTS. The first contained underground nuclear explosion was detonated on September 19, 1957, following extensive study of the underground effect of chemical explosives. The tests were performed by U.S. Department of Energy (DOE) and its predecessors, the U.S. Atomic Energy Commission and the Energy Research and Development Administration. As part of a nationwide complex for nuclear weapons design, testing and manufacturing, the NTS was the location for continental testing of new and stockpiled nuclear devices. Other tests, including Project {open_quotes}Plowshare{close_quotes} experiments to test the peaceful application of nuclear explosives, were conducted on several parts of the site. In addition, the Defense Nuclear Agency tested the effect of nuclear detonations on military hardware.

  12. Hydraulic Characterization of Overpressured Tuffs in Central Yucca Flat, Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    K.J. Halford; R.J. Laczniak; D.L. Galloway

    2005-10-07

    A sequence of buried, bedded, air-fall tuffs has been used extensively as a host medium for underground nuclear tests detonated in the central part of Yucca Flat at the Nevada Test Site. Water levels within these bedded tuffs have been elevated hundreds of meters in areas where underground nuclear tests were detonated below the water table. Changes in the ground-water levels within these tuffs and changes in the rate and distribution of land-surface subsidence above these tuffs indicate that pore-fluid pressures have been slowly depressurizing since the cessation of nuclear testing in 1992. Declines in ground-water levels concurrent with regional land subsidence are explained by poroelastic deformation accompanying ground-water flow as fluids pressurized by underground nuclear detonations drain from the host tuffs into the overlying water table and underlying regional carbonate aquifer. A hydraulic conductivity of about 3 x 10-6 m/d and a specific storage of 9 x 10-6 m-1 are estimated using ground-water flow models. Cross-sectional and three-dimensional ground-water flow models were calibrated to measured water levels and to land-subsidence rates measured using Interferometric Synthetic Aperture Radar. Model results are consistent and indicate that about 2 million m3 of ground water flowed from the tuffs to the carbonate rock as a result of pressurization caused by underground nuclear testing. The annual rate of inflow into the carbonate rock averaged about 0.008 m/yr between 1962 and 2005, and declined from 0.005 m/yr in 2005 to 0.0005 m/yr by 2300.

  13. Site Characterization Work Plan for Gnome-Coach Site, New Mexico

    SciTech Connect (OSTI)

    DOE/NV

    2001-02-13

    Project Gnome was the first nuclear experiment conducted under the U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE), Plowshare Program. Gnome was part of a joint government-industry experiment focused on developing nuclear devices exclusively for peaceful purposes. The intent of the Gnome experiment was to evaluate the effects of a nuclear detonation in a salt medium. Historically, Project Gnome consisted of a single detonation of a nuclear device on December 10, 1961. Since the Gnome detonation, the AEC/DOE has conducted surface restoration, site reconnaissance, and decontamination and decommissioning activities at the site. In addition, annual groundwater sampling is performed under a long-term hydrological monitoring program begun in 1980. Coach, an experiment to be located near the Gnome project, was initially scheduled for 1963. Although construction and rehabilitation were completed for Coach, the experiment was canceled and never executed. Known collectively as Project Gnome-Coach, the site is situated within the Salado Formation approximately 25 miles east of Carlsbad, New Mexico, in Eddy County, and is comprised of nearly 680 acres, of which 60 acres are disturbed from the combined AEC/DOE operations. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the project. The subsurface at the Gnome-Coach site has two contaminant sources that are fundamentally different in terms of both their stratigraphic location and release mechanism. The goal of this characterization is to collect data of sufficient quantity and quality to establish current site conditions and to use the data to identify and evaluate if further action is required to protect human health and the environment and achieve permanent closure of the site. The results of these activities will be presented in a subsequent corrective action decision document.

  14. Site Characterization Work Plan for the Gnome-Coach Site, New Mexico (Rev. 1, January 2002)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2002-01-14

    Project Gnome was the first nuclear experiment conducted under the U.S. Atomic Energy Commission (AEC), predecessor to the U.S. Department of Energy (DOE), Plowshare Program. The Plowshare Program focused on developing nuclear devices exclusively for peaceful purposes. The intent of the Gnome experiment was to evaluate the effects of a nuclear detonation in a salt medium. Historically, Project Gnome consisted of a single detonation of a nuclear device on December 10, 1961 with the Salado Formation. Since the Gnome detonation, the AEC/DOE has conducted surface restoration, site reconnaissance, and decontamination and decommissioning activities at the site. In addition, annual groundwater sampling is performed under a long-term hydrological monitoring program begun in 1972. Coach, an experiment to be located near the Gnome project, was initially scheduled for 1963. Although construction and rehabilitation were completed for Coach, the experiment was canceled and never executed. Known collectively as Project Gnome-Coach, the site is located approximately 25 miles east of Carlsbad, New Mexico, in Eddy County, and is comprised of nearly 680 acres, of which approximately 60 acres are disturbed from the combined AEC/DOE operations. The scope of this work plan is to document the environmental objectives and the proposed technical site investigation strategies that will be utilized for the site characterization of the project. The subsurface at the Gnome-Coach site has two contaminant sources that are fundamentally different in terms of both their stratigraphic location and release mechanism. The goal of this characterization is to collect data of sufficient quantity and quality to establish current site conditions and to use the data to identify and evaluate if further action is required to protect human health and the environment and achieve permanent closure of the site. The results of these activities will be presented in a subsequent corrective action decision document.

  15. DESIGN, DEVELOPMENT AND FIELD DEPLOYMENT OF A TELEOPERATED SAMPLING SYSTEM

    SciTech Connect (OSTI)

    Dalmaso, M; Robert Fogle, R; Tony Hicks, T; Larry Harpring, L; Daniel Odell, D

    2007-11-09

    A teleoperated sampling system for the identification, collection and retrieval of samples following the detonation of an Improvised Nuclear Device (IND) or Radiological Dispersion Devise (RDD) has been developed and tested in numerous field exercises. The system has been developed as part of the Defense Threat Reduction Agency's (DTRA) National Technical Nuclear Forensic (NTNF) Program. The system is based on a Remotec ANDROS Mark V-A1 platform. Extensive modifications and additions have been incorporated into the platform to enable it to meet the mission requirements. The Defense Science Board Task Force on Unconventional Nuclear Warfare Defense, 2000 Summer Study Volume III report recommended the Department of Defense (DOD) improve nuclear forensics capabilities to achieve accurate and fast identification and attribution. One of the strongest elements of protection is deterrence through the threat of reprisal, but to accomplish this objective a more rapid and authoritative attribution system is needed. The NTNF program provides the capability for attribution. Early on in the NTNF program, it was recognized that there would be a desire to collect debris samples for analysis as soon as possible after a nuclear event. Based on nuclear test experience, it was recognized that mean radiation fields associated with even low yield events could be several thousand R/Hr near the detonation point for some time after the detonation. In anticipation of pressures to rapidly sample debris near the crater, considerable effort is being devoted to developing a remotely controlled vehicle that could enter the high radiation field area and collect one or more samples for subsequent analysis.

  16. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    SciTech Connect (OSTI)

    Souers, P C; Hernandez, A; Cabacungen, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2007-05-30

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in the Linked Cheetah V4.0 reactive flow code at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. A report card of 25 tests run with the same settings on LX-17 is shown, possibly the most extensive simultaneous calibration yet tried with an explosive. The physical basis of some of the input parameters is considered.

  17. Fewer lights, Brighter Shine in New Hampshire County

    Broader source: Energy.gov [DOE]

    The parking lot to the county courthouse and nursing home facility in Strafford County, New Hampshire needed new lights. And thanks to an Energy Efficiency and Conservation Block Grant from the Energy Department, Strafford got what it needed and more.

  18. CX-007566: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kent County Nursing Home Wind Project CX(s) Applied: B5.18 Date: 01/09/2012 Location(s): Texas Offices(s): Golden Field Office

  19. file://\\\\troi2\\wwwroot\\TeamWorks\\index.htm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of transuranic radioactive waste, but few may realize the degree to which its safety umbrella extends beyond the plant. WIPP employs a nursing staff and a crew of emergency...

  20. front cover

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    registered nurses who are available 24 hours a day, 7 days a week. 247 Nurseline toll-free telephone number: 1-800-973-6329 When you have a non- medical benefit question or...

  1. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, David J. (Oakland, CA)

    1999-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  2. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, David J. (Oakland, CA)

    1997-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  3. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1997-06-24

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  4. Dual initiation strip charge apparatus and methods for making and implementing the same

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos (Albuquerque, NM); Todd,; Steven N. (Rio Rancho, NM); Polisar, Stephen (Albuquerque, NM); Hughs, Chance (Tijeras, NM)

    2011-03-22

    A Dual Initiation Strip Charge (DISC) apparatus is initiated by a single initiation source and detonates a strip of explosive charge at two separate contacts. The reflection of explosively induced stresses meet and create a fracture and breach a target along a generally single fracture contour and produce generally fragment-free scattering and no spallation. Methods for making and implementing a DISC apparatus provide numerous advantages over previous methods of creating explosive charges by utilizing steps for rapid prototyping; by implementing efficient steps and designs for metering consistent, repeatable, and controlled amount of high explosive; and by utilizing readily available materials.

  5. Explosive-driven, high speed, arcless switch

    DOE Patents [OSTI]

    Skogmo, P.J.; Tucker, T.J.

    1987-07-14

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed. 7 figs.

  6. Explosive-driven, high speed, arcless switch

    DOE Patents [OSTI]

    Skogmo, Phillip J. (Albuquerque, NM); Tucker, Tillman J. (Albuquerque, NM)

    1987-01-01

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.

  7. ZEST flight test experiments, Kauai Test Facility, Hawaii. Test report

    SciTech Connect (OSTI)

    Cenkci, M.J.

    1991-07-01

    The Strategic Defense Initiative Organization (SDIO) is proposing to execute two ZEST flight experiments to obtain information related to the following objectives: validation of payload modeling; characterization of a high energy release cloud; and documentation of scientific phenomena that may occur as a result of releasing a high energy cloud. The proposed action is to design, develop, launch, and detonate two payloads carrying high energy explosives. Activities required to support this proposal include: (1) execution of component assembly tests at Space Data Division (SDD) in Chandler, Arizona and Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico, and (2) execution of pre-flight flight test activities at Kauai Test Facility.

  8. Method and device for stand-off laser drilling and cutting

    DOE Patents [OSTI]

    Copley, John A. (Rte. 11, Box 1022, Fredericksburg, VA 22405); Kwok, Hoi S. (214 Bonner Hall, SUNY-Buffalo, Buffalo, NY 14260); Domankevitz, Yacov (214 Bonner Hall, SUNY-Buffalo, Buffalo, NY 14260)

    1989-09-26

    A device for perforating material and a method of stand-off drilling using a laser. In its basic form a free-running laser beam creates a melt on the target and then a Q-switched short duration pulse is used to remove the material through the creation of a laser detonation wave. The advantage is a drilling/cutting method capable of working a target at lengthy stand-off distance. The device may employ 2 lasers or a single one operated in a free-running/Q-switched dual mode.

  9. Simulations of vibrational relaxation in dense molecular fluids

    SciTech Connect (OSTI)

    Holian, B.L.

    1985-07-01

    In the understanding of high-temperatre and -pressure chemistry in explosives, first step is the study of the transfer of energy from translational degrees of freedom into internal vibrations of the molecules. We present new methods using nonequilibrium molecular dynamics (NEMD) for measuring vibrational relaxation in a diatomic fluid, where we expect a classical treatment of many-body collisions to be relevant because of the high densities (2 to 3 times compressed compared to the normal fluid) and high temperatures (2000 to 4000 K) involved behind detonation waves. NEMD techniques are discussed, including their limitations, and qualitative results presented.

  10. Chemical kinetics modeling

    SciTech Connect (OSTI)

    Westbrook, C.K.; Pitz, W.J.

    1993-12-01

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  11. A simple line wave generator using commercial explosives

    SciTech Connect (OSTI)

    Morris, John S; Jackson, Scott I; Hill, Larry G

    2009-01-01

    We present a simple and inexpensive explosive line wave generator has been designed using commercial sheet explosive and plane wave lens concepts. The line wave generator is constructed using PETN and RDX based sheet explosive for the slow and fast components respectively. The design permits the creation of any desired line width. A series of experiments were performed on a 100 mm design, measuring the detonation arrival time at the output of the generator using a streak camera. An iterative technique was used to adjust the line wave generator's slow and fast components, so as to minimize the arrival time deviation. Designs, test results, and concepts for improvements will be discussed.

  12. Modeling Hot-Spot Contributions in Shocked High Explosives at the Mesoscale

    SciTech Connect (OSTI)

    Harrier, Danielle

    2015-08-12

    When looking at performance of high explosives, the defects within the explosive become very important. Plastic bonded explosives, or PBXs, contain voids of air and bonder between the particles of explosive material that aid in the ignition of the explosive. These voids collapse in high pressure shock conditions, which leads to the formation of hot spots. Hot spots are localized high temperature and high pressure regions that cause significant changes in the way the explosive material detonates. Previously hot spots have been overlooked with modeling, but now scientists are realizing their importance and new modeling systems that can accurately model hot spots are underway.

  13. Zirconium hydride containing explosive composition

    DOE Patents [OSTI]

    Walker, Franklin E. (18 Shadow Oak Rd., Danville, CA 94526); Wasley, Richard J. (4290 Colgate Way, Livermore, CA 94550)

    1981-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  14. History of Sandia National Laboratories` auxiliary closure mechanisms

    SciTech Connect (OSTI)

    Weydert, J.C.; Ponder, G.M.

    1993-12-01

    An essential component of a horizontal, underground nuclear test setup at the Nevada Test Site is the auxiliary closure system. The massive gates that slam shut immediately after a device has been detonated allow the prompt radiation to pass, but block debris and hot gases from continuing down the tunnel. Thus, the gates protect experiments located in the horizontal line-of-sight steel pipe. Sandia National Laboratories has been the major designer and developer of these closure systems. This report records the history of SNL`s participation in and contributions to the technology of auxiliary closure systems used in horizontal tunnel tests in the underground test program.

  15. Donor free radical explosive composition

    DOE Patents [OSTI]

    Walker, Franklin E. [15 Way Points Rd., Danville, CA 94526; Wasley, Richard J. [4290 Colgate Way, Livermore, CA 94550

    1980-04-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising an organic compound or mixture of organic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and which is not an explosive, or an inorganic compound or mixture of inorganic compounds capable of releasing low molecular weight free radicals or ions under mechanical or electrical shock conditions and selected from ammonium or alkali metal persulfates.

  16. Fallout forecasting: 1945-1962

    SciTech Connect (OSTI)

    Kennedy, W.R. Jr.

    1986-03-01

    The delayed hazards of fallout from the detonations of nuclear devices in the atmosphere have always been the concern of those involved in the Test Program. Even before the Trinity Shot (TR-2) of July 16, 1945, many very competent, intelligent scientists and others from all fields of expertise tried their hand at the prediction problems. This resume and collection of parts from reports, memoranda, references, etc., endeavor to chronologically outline prediction methods used operationally in the field during Test Operations of nuclear devices fired into the atmosphere.

  17. The development of the atomic bomb, Los Alamos

    SciTech Connect (OSTI)

    Seidel, R.W.

    1993-11-01

    The historical presentation begins with details of the selection of Los Alamos as the site of the Army installation. Wartime efforts of the Army Corps of Engineers, and scientists to include the leader of Los Alamos, Robert Oppenheimer are presented. The layout and construction of the facilities are discussed. The monumental design requirements of the bombs are discussed, including but not limited to the utilization of the second choice implosion method of detonation, and the production of bomb-grade nuclear explosives. The paper ends with a philosophical discussion on the use of nuclear weapons.

  18. The name has changed, and the new mission has evolved into a 21st

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    name has changed, and the new mission has evolved into a 21st century focus on threat reduction and homeland security, but the Nevada National Security Site - formerly known as the Nevada Test Site - celebrates 60 years of rich history this year. From 1951 to 1992, there were 928 nuclear tests involving 1,021 detonations at the test site. The Site played a vital role in the United States winning the Cold War. Today, the NNSS still plays a vital role in fighting terrorism, training first

  19. Rulison Monitoring Plan

    SciTech Connect (OSTI)

    2010-07-01

    The Project Rulison Monitoring Plan has been developed as part of the U.S. Department of Energy (DOE) Office of Legacy Management's mission to protect human health and the environment. The purpose of the plan is to monitor fluids from gas wells for radionuclides that would indicate contamination is migrating from the Rulison detonation zone to producing gas wells, allowing action to be taken before the contamination could pose a risk. The Monitoring Plan (1) lists the contaminants present and identifies those that have the greatest potential to migrate from the detonation zone (radionuclide source term), (2) identifies locations that monitor the most likely transport pathways, (3) identifies which fluids will be sampled (gas and liquid) and why, (4) establishes the frequency of sampling, and (5) specifies the most practical analyses and where the analysis results will be reported. The plan does not affect the long-term hydrologic sampling conducted by DOE since 1972, which will continue for the purpose of sampling shallow groundwater and surface water near the site. The Monitoring Plan was developed in anticipation of gas wells being drilled progressively nearer the Rulison site. DOE sampled 10 gas wells in 1997 and 2005 at distances ranging from 2.7 to 7.6 miles from the site to establish background concentrations for radionuclides. In a separate effort, gas industry operators and the Colorado Oil and Gas Conservation Commission (COGCC) developed an industry sampling and analysis plan that was implemented in 2007. The industry plan requires the sampling of gas wells within 3 miles of the site, with increased requirements for wells within 1 mile of the site. The DOE plan emphasizes the sampling of wells near the site (Figure 1), specifically those with a bottom-hole location of 1 mile or less from the detonation, depending on the direction relative to the natural fracture trend of the producing formation. Studies indicate that even the most mobile radionuclides created by the test are unlikely to migrate appreciable distances (hundreds of feet) from the detonation zone (Cooper et al. 2007, 2009). The Monitoring Plan was developed to provide a cautious and comprehensive approach for detecting any potential contaminant migration from the Rulison test site. It also provides an independent confirmation of results from the industry sampling and analysis plan while effectively increasing the sampling frequency of wells near the site.

  20. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-06-08

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.