Powered by Deep Web Technologies
Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

How ORISE is Making a Difference: Nurse Triage Lines Support  

NLE Websites -- All DOE Office Websites (Extended Search)

Nurse Triage Lines Support Nurse Triage Lines Support ORISE contributes to CDC Public Health Policy Competition win The Centers for Disease Control and Prevention (CDC), Influenza Coordination Unit (ICU) recently won the 2012 Annual Public Health Policy Competition for a proposal to explore the use of nurse triage lines during an influenza pandemic. As a key partner, the Oak Ridge Institute for Science and Education (ORISE) provided critical coordination, research, development of educational materials, and consultation to support the project, which has been underway since September 2011. The CDC ICU hosted the Nurse Triage Line Stakeholders Meeting in March of 2012. The project is exploring the use of nurse triage lines as a promising method for reducing disparities in access to quality health care during an

2

Radiological Triage | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Triage | National Nuclear Security Administration Triage | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Radiological Triage Home > About Us > Our Programs > Emergency Response > Responding to Emergencies > Render Safe > Radiological Triage Radiological Triage Triage Logo NNSA's Triage is a non-deployable, secure, on-line capability

3

Is conservation triage just smart decision making?  

E-Print Network (OSTI)

Is conservation triage just smart decision making? Madeleine C. Bottrill1 , Liana N. Joseph1, Townsville, QLD 4811, Australia 4 Landcare Research, Private Bag 1930, Dunedin 9054, New Zealand Conservation efforts and emergency medicine face com- parable problems: how to use scarce resources wisely to conserve

Kark, Salit

4

Hospital Triage in First Hours After Nuclear or Radiological...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Medical professionals with the Radiation Emergency Assistance CenterTraining Site (REACTS) at the...

5

Bidirectional slapper detonator  

SciTech Connect

The disclosure is directed to a bidirectional slapper detonator. One embodiment utilizes a single bridge circuit to detonate a pair of opposing initiating pellets. A line generator embodiment uses a plurality of bridges in electrical series to generate opposing cylindrical wavefronts.

McCormick, Robert N. (Los Alamos, NM); Boyd, Melissa D. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

6

Forensic triage for mobile phones with DEC0DE  

Science Conference Proceedings (OSTI)

We present DEC0DE, a system for recovering information from phones with unknown storage formats, a critical problem for forensic triage. Because phones have myriad custom hardware and software, we examine only the stored data. Via flexible descriptions ...

Robert J. Walls; Erik Learned-Miller; Brian Neil Levine

2011-08-01T23:59:59.000Z

7

Nuclear Detonation Detection | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Nuclear Nonproliferation Program Offices > Office of Nonproliferation Research & Development > Nuclear Detonation Detection Nuclear Detonation Detection Develop, Demonstrate, and...

8

Miniature plasma accelerating detonator and method of detonating insensitive materials  

DOE Patents (OSTI)

The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives. 3 figs.

Bickes, R.W. Jr.; Kopczewski, M.R.; Schwarz, A.C.

1985-01-04T23:59:59.000Z

9

Miniature plasma accelerating detonator and method of detonating insensitive materials  

DOE Patents (OSTI)

The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives.

Bickes, Jr., Robert W. (Albuquerque, NM); Kopczewski, Michael R. (Albuquerque, NM); Schwarz, Alfred C. (Albuquerque, NM)

1986-01-01T23:59:59.000Z

10

Nuclear Detonation Detection | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Research and Development > Nuclear Detonation Detection Nuclear Detonation Detection NNSA builds the nation's operational sensors that monitor the entire planet from space to...

11

Detonator-activated ball shutter  

DOE Patents (OSTI)

A detonator-activated ball shutter for closing an aperture in about 300[mu] seconds. The ball shutter containing an aperture through which light, etc., passes, is closed by firing a detonator which propels a projectile for rotating the ball shutter, thereby blocking passage through the aperture. 3 figs.

McWilliams, R.A.; Holle, W.G. von.

1983-08-16T23:59:59.000Z

12

Educational Triage: A Comparative Study of Two High School Principals in Program Improvement Schools  

E-Print Network (OSTI)

energy to think about triage measures merely as they related to test scores might have been a welcomed problem for Principals Jordan

Garrity, Kyle M.

2013-01-01T23:59:59.000Z

13

DSD front models : nonideal explosive detonation  

SciTech Connect

The Detonation Shock Dynamics (DSD) method for propagating detonation in numerical simulation of detonation in high explosive (HE) is based on three elements: (1) a subscale theory of multi-dimensional detonation that treats the evolving detonation as a front with dynamics that depends only on metrics of the front (such as curvature, etc.), (2) high-resolution direct numerical sirnuliltion of detonation serving both to test existing subscale theories and suggest modifications, and (3) physical experiments to characterize multi-dimensional detonation propagation on real explosives and to calibrate the front models for use in engineering simulations. In this paper we describe our work on all three of these elements of the DSD method as it applies to detonation in nonideal explosives.

Bdzil, J. B. (John Bohdan); Short, M. (Mark Short); Aslam, T. D. (Tariq D.); Catanach, R. A. (Richard A.); Hill, L. G. (Larry G.)

2001-01-01T23:59:59.000Z

14

Roundness of Molded Detonator Heads  

SciTech Connect

The magnitude of the deviations from roundness of molded detonator heads, caused by the geometry of the part and by different materials, was investigated to provide a scientific basis which can be used to predict dimensions and tolerances of size and roundness for new heads. Injection presses were used to mold detonator heads to precision tolerances. Twenty parts were molded under optimum conditions in two different molds using both DAP filled with long glass fibers and DAP filled with asbestos. Each of the parts was analyzed for size and roundness, and the data were analyzed statistically. The results indicate: 1. Geometry is highly significant. 2. Material is highly significant. 3. Geometry and material do not interact. 4. Geometry affects magnitude of deviation from roundness. 5. Geometry affects magnitude of shrinkage.

Wendeln, D. E.; Waldfogle, E. A.

1968-12-12T23:59:59.000Z

15

Non-detonable explosive simulators  

DOE Patents (OSTI)

A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

Simpson, R.L.; Pruneda, C.O.

1994-11-01T23:59:59.000Z

16

Non-detonable explosive simulators  

DOE Patents (OSTI)

A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

1994-01-01T23:59:59.000Z

17

A summary of hydrogen-air detonation experiments  

DOE Green Energy (OSTI)

Dynamic detonation parameters are reviewed for hydrogen-air-diluent detonations and deflagration-to-detonation transitions (DDT). These parameters include the characteristic chemical length scale, such as the detonation cell width, associated with the three-dimensional cellular structure of detonation waves, critical transmission conditions of confined detonations into unconfined environments, critical initiation energy for unconfined detonations, detonability limits, and critical conditions for DDT. The detonation cell width, which depends on hydrogen and diluent concentrations, pressure, and temperature, is an important parameter in the prediction of critical geometry-dependent conditions for the transmission of confined detonations into unconfined environments and the critical energies for the direct initiation of unconfined detonations. Detonability limits depend on both initial and boundary conditions and the limit has been defined as the onset of single head spin. Four flame propagation regimes have been identified and the criterion for DDT in a smooth tube is discussed. 108 refs., 28 figs., 5 tabs.

Guirao, C.M.; Knystautas, R.; Lee, J.H.

1989-05-01T23:59:59.000Z

18

Useful and Undesirable Chemical Reactions during Detonation ...  

Science Conference Proceedings (OSTI)

In our work, we consider chemical changes in the sprayed materials induced by reducing or oxidizing species in the detonation products and interactions ...

19

Radioactive Fallout from Terrorist Nuclear Detonations  

SciTech Connect

Responding correctly during the first hour after a terrorist nuclear detonation is the key to reducing casualties from a low-yield surface burst, and a correct response requires an understanding of the rapidly changing dose rate from fallout. This report provides an empirical formula for dose rate as a function of time and location that can guide the response to an unexpected nuclear detonation. At least one post-detonation radiation measurement is required if the yield and other characteristics of the detonation are unknown.

Marrs, R E

2007-05-03T23:59:59.000Z

20

Redeye: A Digital Library for Forensic Document Triage  

SciTech Connect

Forensic document analysis has become an important aspect of investigation of many different kinds of crimes from money laundering to fraud and from cybercrime to smuggling. The current workflow for analysts includes powerful tools, such as Palantir and Analyst s Notebook, for moving from evidence to actionable intelligence and tools for finding documents among the millions of files on a hard disk, such as FTK. However, the analysts often leave the process of sorting through collections of seized documents to filter out the noise from the actual evidence to a highly labor-intensive manual effort. This paper presents the Redeye Analysis Workbench, a tool to help analysts move from manual sorting of a collection of documents to performing intelligent document triage over a digital library. We will discuss the tools and techniques we build upon in addition to an in-depth discussion of our tool and how it addresses two major use cases we observed analysts performing. Finally, we also include a new layout algorithm for radial graphs that is used to visualize clusters of documents in our system.

Bogen, Paul Logasa [ORNL; McKenzie, Amber T [ORNL; Gillen, Rob [ORNL

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Study of detonation process: numerical approach  

Science Conference Proceedings (OSTI)

This paper is based on non-linear finite element analysis of the effects of the blast wave on structures, caused by the detonation of explosive materials. Dynamic response of a pipeline subjected to the shock wave produced by the detonation of high explosive ... Keywords: blast, coupling, explosive, numerical analysis, pipeline, safety

Jerzy Malachowski

2008-09-01T23:59:59.000Z

22

Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster  

NLE Websites -- All DOE Office Websites (Extended Search)

Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Hospital Triage in the First 24 Hours after a Nuclear or Radiological Disaster Berger, ME; Leonard, RB; Ricks, RC; Wiley, AL; Lowry, PC; Flynn, DF Abstract: This article addresses the problems emergency physicians would face in the event of a nuclear or radiological catastrophe. It presents information about what needs to be done so that useful information will be gathered and reasonable decisions made in the all important triage period. A brief introductory explanation of radiation injury is followed by practical guides for managing the focused history, physical exam, laboratory tests, initial treatment, and disposition of victims of acute radiation syndrome and combined injury. The guides are not intended to serve as a hospital's "emergency

23

Abnormal diagnosis of Emergency Department triage explored with data mining technology: An Emergency Department at a Medical Center in Taiwan taken as an example  

Science Conference Proceedings (OSTI)

Triage helps to classify patients at emergency departments to make the most effective use of resources distributed. What is more important is that accuracy in carrying out triage matters greatly in terms of medical quality, patient satisfaction and life ... Keywords: Data mining, Decision tree, Emergency medicine, K-means, Triage

Wen-Tsann Lin; Shen-Tsu Wang; Ta-Cheng Chiang; Yu-xin Shi; Wei-yu Chen; Huei-min Chen

2010-04-01T23:59:59.000Z

24

Detonation Diffraction into a Confined Volume  

E-Print Network (OSTI)

Detonation diffraction has been, and remains, an active area of research. However, detonation diffraction into a confined volume, and specifically the transformation of a planar detonation into a cylindrical detonation, is an area which has received little attention. Experimental work needs to be conducted on detonation diffraction into a confined volume to better understand how the interaction of the diffracted shock wave with a confining wall impacts the detonation diffraction process. Therefore, a facility was constructed to study this problem, and experiments were conducted to determine under what conditions a planar detonation could be successfully transformed into a cylindrical detonation. Four different fuel-oxidizer mixtures, C?H?+ 2.5 O?, C?H?+ 4 O?, C?H?+ 3 O? and H?+ 0.5 O?, were tested in this study using a combination of pressure transducers and soot foil records as diagnostics. Three different regimes of successful transmission; spontaneous re-ignition, continuous reflected re-initiation, and discontinuous reflected re-initiation, were identified. The detonation cell size and the distance from the tube exit to the confining wall, or gap size, were determined to be the most important parameters in the transmission process and a linear correlation for determining whether or not transmission will be successful for a given set of initial conditions was developed for gap sizes between 10 and 35 mm. For gap sizes smaller than 10 mm or gap size larger than 35 mm the linear correlation does not apply. Finally, the results of this study are compared to results on detonation diffraction into a confined volume available in the literature and explanations for any disagreements are given. This study showed that when compared to transmission of a detonation into an unconfined volume, the transmission of a detonation into a confined volume, for the majority of gap sizes, is possible for a wider range of conditions. However, for extremely small gap sizes, when compared to transmission into an unconfined volume, the range of conditions for which successful transmission is possible into a confined volume is actually narrower.

Polley, Nolan Lee

2010-12-01T23:59:59.000Z

25

Pipeline response to nearby detonations  

SciTech Connect

Texas Gas Transmission Corp. has supplemented the findings of Southwest Research Institute's study of detonation-induced stresses on pipelines by applying SwRI's equations to actual field problems. Texas Gas used the blasting-stress equations to fix the minimum allowable stand-off distance and maximum particle velocities for strip-mining operations planned along a transmission line right-of-way. The ultimate goal was to ensure that the combined stresses of blasting and operating pressures would not exceed 72% of the pipe's specified minimum yield strength. These stress calculations enabled Texas Gas to maintain normal operating conditions throughout the time that overburden blasting was taking place 100-500 ft from the line.

Bart, G.J.

1979-01-01T23:59:59.000Z

26

The growing need for on-scene triage of mobile devices  

Science Conference Proceedings (OSTI)

The increasing number of mobile devices being submitted to Digital Forensic Laboratories (DFLs) is creating a backlog that can hinder investigations and negatively impact public safety and the criminal justice system. In a military context, delays in ... Keywords: Cell phone forensics, Mobile device forensics, Mobile device technician, On-scene triage inspection

Richard P. Mislan; Eoghan Casey; Gary C. Kessler

2010-05-01T23:59:59.000Z

27

Detonability of H/sub 2/-air-diluent mixtures  

DOE Green Energy (OSTI)

This report describes the Heated Detonation Tube (HDT). Detonation cell width and velocity results are presented for H/sub 2/-air mixtures, undiluted and diluted with CO/sub 2/ and H/sub 2/O for a range of H/sub 2/ concentration, initial temperature and pressure. The results show that the addition of either CO/sub 2/ or H/sub 2/O significantly increases the detonation cell width and hence reduces the detonability of the mixture. The results also show that the detonation cell width is reduced (detonability is increased) for increased initial temperature and/or pressure.

Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.; Berman, M.

1987-06-01T23:59:59.000Z

28

The Office of Nuclear Detonation Detection (NDD) | National Nuclear...  

National Nuclear Security Administration (NNSA)

Detonation Detection (NDD) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

29

MC3196 Detonator Shipping Package Hazard Classification Assessment  

SciTech Connect

An investigation was made to determine whether the MC3196 detonator should be assigned a DOT hazard classification of Detonating Fuze, Class C Explosives per 49 CFR 173.113. This study covers the Propagation Test and the External Heat Test as approved by DOE Albuquerque Operations Office. Test data led to the recommeded hazard classification of detonating fuze, Class C explosives.

Jones; Robert B.

1979-05-31T23:59:59.000Z

30

Detonation of hydrogen-air mixtures. [PWR; BWR  

DOE Green Energy (OSTI)

The detonation of a hydrogen-air cloud subsequent to an accidental release of hydrogen into ambient surroundings cannot be totally ruled out in view of the relative sensitivity of the hydrogen-air system. The present paper investigates the key parameters involved in hydrogen-air detonations and attempts to establish quantitative correlations between those that have important practical implications. Thus, for example, the characteristic length scale lambda describing the cellular structure of a detonation front is measured for a broad range of hydrogen-air mixtures and is quantitatively correlated with the key dynamic detonation properties such as detonability, transmission and initiation.

Lee, J.H.S.; Knystautas, R.; Benedick, W.B.

1983-01-01T23:59:59.000Z

31

Hydrogen detonation and detonation transition data from the High-Temperature Combustion Facility  

DOE Green Energy (OSTI)

The BNL High-Temperature Combustion Facility (HTCF) is an experimental research tool capable of investigating the effects of initial thermodynamic state on the high-speed combustion characteristic of reactive gas mixtures. The overall experimental program has been designed to provide data to help characterize the influence of elevated gas-mixture temperature (and pressure) on the inherent sensitivity of hydrogen-air-steam mixtures to undergo detonation, on the potential for flames accelerating in these mixtures to transition into detonations, on the effects of gas venting on the flame-accelerating process, on the phenomena of initiation of detonations in these mixtures by jets of hot reactant product,s and on the capability of detonations within a confined space to transmit into another, larger confined space. This paper presents results obtained from the completion of two of the overall test series that was designed to characterize high-speed combustion phenomena in initially high-temperature gas mixtures. These two test series are the intrinsic detonability test series and the deflagration-to-detonation (DDT) test series. A brief description of the facility is provided below.

Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology; Tagawa, H. [Nuclear Power Engineering Corp., Tokyo (Japan); Malliakos, A. [Nuclear Regulatory Commission, Washington, DC (United States)

1995-12-31T23:59:59.000Z

32

Detonation propagation in a high loss configuration  

SciTech Connect

This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter of the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.

Jackson, Scott I [Los Alamos National Laboratory; Shepherd, Joseph E [CALTECH

2009-01-01T23:59:59.000Z

33

Studies of fast reactions in detonations  

SciTech Connect

The time-dependent behavior of the flow in reaction zones of the detonating homogeneous explosives nitromethane, liquid TNT, and ideal gases has been investigated using one- and two-dimensional Lagrangian and Eulerian numerical hydrodynamics with Arrhenius chemical reaction. A general model for bulk decomposition of heterogeneous explosives, called Forest Fire, has been developed, which gives the rate of explosive decomposition as a function of local pressure. The model permits description of the process of heterogeneous explosive initiation, propagation, and failure.

Mader, C.L.

1980-01-01T23:59:59.000Z

34

Characterizing detonator output using dynamic witness plates  

SciTech Connect

A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of the shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire.

Murphy, Michael John [Los Alamos National Laboratory; Adrian, Ronald J [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

35

Cyclic Oxidation Behavior of Detonation Gun Sprayed Ni-20Cr ...  

Science Conference Proceedings (OSTI)

Presentation Title, Cyclic Oxidation Behavior of Detonation Gun Sprayed Ni-20Cr Coating on a Boiler Steel at 900°C. Author(s), Gagandeep Kaushal, Harpreet ...

36

Early Science High Speed Combustion and Detonation Project  

NLE Websites -- All DOE Office Websites (Extended Search)

Science High Speed Combustion and Detonation Project (HSCD) Alexei Khokhlov, University of Chicago Joanna Austin, University of Illinois Andrew Knisely, University of Illinois...

37

Ground-Based Nuclear Detonation Detection | National Nuclear...  

National Nuclear Security Administration (NNSA)

Ground-Based Nuclear Detonation Detection | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency...

38

The Office of Nuclear Detonation Detection (NDD) | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Nuclear Detonations: Develops and builds space sensors for the nation's operational nuclear test treaty monitoring and Integrated Threat WarningAttack Assessment...

39

Safety and performance enhancement circuit for primary explosive detonators  

DOE Patents (OSTI)

A safety and performance enhancement arrangement for primary explosive detonators. This arrangement involves a circuit containing an energy storage capacitor and preset self-trigger to protect the primary explosive detonator from electrostatic discharge (ESD). The circuit does not discharge into the detonator until a sufficient level of charge is acquired on the capacitor. The circuit parameters are designed so that normal ESD environments cannot charge the protection circuit to a level to achieve discharge. When functioned, the performance of the detonator is also improved because of the close coupling of the stored energy.

Davis, Ronald W. (Tracy, CA)

2006-04-04T23:59:59.000Z

40

THE DETONATION MECHANISM OF THE PULSATIONALLY ASSISTED GRAVITATIONALLY CONFINED DETONATION MODEL OF Type Ia SUPERNOVAE  

Science Conference Proceedings (OSTI)

We describe the detonation mechanism composing the 'pulsationally assisted' gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and {sup 56}Ni yields conform better to observational values than is the case for the 'classical' GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

Jordan, G. C. IV; Graziani, C.; Weide, K.; Norris, J.; Hudson, R.; Lamb, D. Q. [Flash Center for Computational Science, University of Chicago, Chicago, IL 60637 (United States); Fisher, R. T. [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); Townsley, D. M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Meakin, C. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Reid, L. B. [NTEC Environmental Technology, Subiaco WA 6008 (Australia)

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Detector Photon Response and Absorbed Dose and Their Applications to Rapid Triage Techniques  

E-Print Network (OSTI)

As radiation specialists, one of our primary objectives in the Navy is protecting people and the environment from the effects of ionizing and non-ionizing radiation. Focusing on radiological dispersal devices (RDD) will provide increased personnel protection as well as optimize emergency response assets for the general public. An attack involving an RDD has been of particular concern because it is intended to spread contamination over a wide area and cause massive panic within the general population. A rapid method of triage will be necessary to segregate the unexposed and slightly exposed from those needing immediate medical treatment. Because of the aerosol dispersal of the radioactive material, inhalation of the radioactive material may be the primary exposure route. The primary radionuclides likely to be used in a RDD attack are Co-60, Cs-137, Ir-192, Sr-90 and Am-241. Through the use of a MAX phantom along with a few Simulink MATLAB programs, a good anthropomorphic phantom was created for use in MCNPX simulations that would provide organ doses from internally deposited radionuclides. Ludlum model 44-9 and 44-2 detectors were used to verify the simulated dose from the MCNPX code. Based on the results, acute dose rate limits were developed for emergency response personnel that would assist in patient triage.

Voss, Shannon Prentice

2008-08-01T23:59:59.000Z

42

Computation of a diverging Comp-B detonation  

Science Conference Proceedings (OSTI)

The expansion which occurs in diverging detonations weakens the wave and yields pressures and densities below those occurring in planar geometry. We study the problem of a spherically expanding detonation of Comp-B. The effect of varying the order of reaction as well as the rate law parameters (using an Arrhenius burn model) is studied. 14 refs., 3 figs.

Bukiet, B.G.

1989-01-01T23:59:59.000Z

43

Adaptive high-resolution simulation of realistic gaseous detonation waves  

DOE Green Energy (OSTI)

The numerical approximation of detonation waves in gaseous combustible mixtures is extremely demanding since a wide range of scales needs to be resolved. A dynamically adaptive high-resolution finite volume method is described that has enabled accurately resolved computational investigations of the transient behavior of regularly oscillating detonations in low-pressure hydrogen-oxygen mixtures in realistic two-dimensional geometry.

Deiterding, Ralf [ORNL

2007-01-01T23:59:59.000Z

44

Detonation wave velocity and curvature of brass encased PBXN-111  

Science Conference Proceedings (OSTI)

Detonation velocities and wave front curvatures were measured for PBXN-111 charges encased in 5 mm thick brass tubes. In all the experiments (charge diameters from 19 to 47 mm) the brass case affected the detonation properties of PBXN-111. Steady detonation waves propagated in brass encased charges with diameters as small as 19 mm, which is about half of the unconfined failure diameter. The radii of curvature of the detonation waves at the center of the wave fronts ranged from 52 to 141 mm for charge diameters of 25 to 47 mm. The angles between the detonation wave fronts and the brass/charge interfaces were between 72 and 74 degrees. {copyright} {ital 1996 American Institute of Physics.}

Forbes, J.W.; Lemar, E.R. [Naval Surface Warfare Center, Indian Head Division, Silver Spring, Maryland 20903-5640 (United States)

1996-05-01T23:59:59.000Z

45

Blasting detonators incorporating semiconductor bridge technology  

SciTech Connect

The enormity of the coal mine and extraction industries in Russia and the obvious need in both Russia and the US for cost savings and enhanced safety in those industries suggests that joint studies and research would be of mutual benefit. The author suggests that mine sites and well platforms in Russia offer an excellent opportunity for the testing of Sandia`s precise time-delay semiconductor bridge detonators, with the potential for commercialization of the detonators for Russian and other world markets by both US and Russian companies. Sandia`s semiconductor bridge is generating interest among the blasting, mining and perforation industries. The semiconductor bridge is approximately 100 microns long, 380 microns wide and 2 microns thick. The input energy required for semiconductor bridge ignition is one-tenth the energy required for conventional bridgewire devices. Because semiconductor bridge processing is compatible with other microcircuit processing, timing and logic circuits can be incorporated onto the chip with the bridge. These circuits can provide for the precise timing demanded for cast effecting blasting. Indeed tests by Martin Marietta and computer studies by Sandia have shown that such precise timing provides for more uniform rock fragmentation, less fly rock, reduce4d ground shock, fewer ground contaminants and less dust. Cost studies have revealed that the use of precisely timed semiconductor bridges can provide a savings of $200,000 per site per year. In addition to Russia`s vast mineral resources, the Russian Mining Institute outside Moscow has had significant programs in rock fragmentation for many years. He anticipated that collaborative studies by the Institute and Sandia`s modellers would be a valuable resource for field studies.

Bickes, R.W. Jr.

1994-05-01T23:59:59.000Z

46

Lattice Boltzmann model for combustion and detonation  

E-Print Network (OSTI)

In this paper we present a lattice Boltzmann model for combustion and detonation. In this model the fluid behavior is described by a finite-difference lattice Boltzmann model by Gan et al. [Physica A, 2008, 387: 1721]. The chemical reaction is described by the Lee-Tarver model [Phys. Fluids, 1980, 23: 2362]. The reaction heat is naturally coupled with the flow behavior. Due to the separation of time scales in the chemical and thermodynamic processes, a key technique for a successful simulation is to use the operator-splitting scheme. The new model is verified and validated by well-known benchmark tests. As a specific application of the new model, we studied the simple steady detonation phenomenon. To show the merit of LB model over the traditional ones, we focus on the reaction zone to study the non-equilibrium effects. It is interesting to find that, at the von Neumann peak, the system is nearly in its thermodynamic equilibrium. At the two sides of the von Neumann peak, the system deviates from its equilibrium in opposite directions. In the front of von Neumann peak, due to the strong compression from the reaction product behind the von Neumann peak, the system experiences a sudden deviation from thermodynamic equilibrium. Behind the von Neumann peak, the release of chemical energy results in thermal expansion of the matter within the reaction zone, which drives the system to deviate the thermodynamic equilibrium in the opposite direction. From the deviation from thermodynamic equilibrium, defined in this paper, one can understand more on the macroscopic effects of the system due to the deviation from its thermodynamic equilibrium.

Bo Yan; Aiguo Xu; Guangcai Zhang; Yangjun Ying; Hua Li

2013-04-28T23:59:59.000Z

47

High-Speed Combustion and Detonation (HSCD) | Argonne Leadership...  

NLE Websites -- All DOE Office Websites (Extended Search)

in a hydrogen-oxygen mixture in a square channel, performed within the high-speed combustion and detonation project (HSCD). Pseudo-schlieren image of a temperature field....

48

Detonation cell widths in hydrogen-air-diluent mixtures  

DOE Green Energy (OSTI)

In this paper I report on the influence of steam and carbon dioxide on the detonability of hydrogen-air mixtures. Data were obtained on the detonation cell width in a heated detonation tube that is 0.43 m in diameter and 13.1 m long. The detonation cell widths were correlated using a characteristic length calculated from a chemical kinetic model. The addition of either diluent to a hydrogen-air mixture increased the cell width for all equivalence ratios. For equal diluent concentrations, however, carbon dioxide not only yielded larger increases in the cell width than steam, but its efficacy relative to steam was predicted to increase with increasing concentration. The range of detonable hydrogen concentrations in a hydrogen-air mixture initially at 1 atm pressure was found to be between 11.6 percent and 74.9 percent for mixtures at 20{degree}C and 9.4 percent and 76.9 percent for mixtures at 100{degree}C. The detonation limit was between 38.8 percent and 40.5 percent steam for a stoichiometric hydrogen-air-steam mixture initially at 100{degree}C and 1 atm. 10 refs., 4 figs., 1 tab.

Stamps, D.W.

1990-01-01T23:59:59.000Z

49

HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation  

Science Conference Proceedings (OSTI)

HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where

Reaugh, J E

2011-11-22T23:59:59.000Z

50

HERMES: A Model to Describe Deformation, Burning, Explosion, and Detonation  

SciTech Connect

HERMES (High Explosive Response to MEchanical Stimulus) was developed to fill the need for a model to describe an explosive response of the type described as BVR (Burn to Violent Response) or HEVR (High Explosive Violent Response). Characteristically this response leaves a substantial amount of explosive unconsumed, the time to reaction is long, and the peak pressure developed is low. In contrast, detonations characteristically consume all explosive present, the time to reaction is short, and peak pressures are high. However, most of the previous models to describe explosive response were models for detonation. The earliest models to describe the response of explosives to mechanical stimulus in computer simulations were applied to intentional detonation (performance) of nearly ideal explosives. In this case, an ideal explosive is one with a vanishingly small reaction zone. A detonation is supersonic with respect to the undetonated explosive (reactant). The reactant cannot respond to the pressure of the detonation before the detonation front arrives, so the precise compressibility of the reactant does not matter. Further, the mesh sizes that were practical for the computer resources then available were large with respect to the reaction zone. As a result, methods then used to model detonations, known as {beta}-burn or program burn, were not intended to resolve the structure of the reaction zone. Instead, these methods spread the detonation front over a few finite-difference zones, in the same spirit that artificial viscosity is used to spread the shock front in inert materials over a few finite-difference zones. These methods are still widely used when the structure of the reaction zone and the build-up to detonation are unimportant. Later detonation models resolved the reaction zone. These models were applied both to performance, particularly as it is affected by the size of the charge, and to situations in which the stimulus was less than that needed for reliable performance, whether as a result of accident, hazard, or a fault in the detonation train. These models describe the build-up of detonation from a shock stimulus. They are generally consistent with the mesoscale picture of ignition at many small defects in the plane of the shock front and the growth of the resulting hot-spots, leading to detonation in heterogeneous explosives such as plastic-bonded explosives (PBX). The models included terms for ignition, and also for the growth of reaction as tracked by the local mass fraction of product gas, {lambda}. The growth of reaction in such models incorporates a form factor that describes the change of surface area per unit volume (specific surface area) as the reaction progresses. For unimolecular crystalline-based explosives, the form factor is consistent with the mesoscale picture of a galaxy of hot spots burning outward and eventually interacting with each other. For composite explosives and propellants, where the fuel and oxidizer are segregated, the diffusion flame at the fuel-oxidizer interface can be interpreted with a different form factor that corresponds to grains burning inward from their surfaces. The form factor influences the energy release rate, and the amount of energy released in the reaction zone. Since the 19th century, gun and cannon propellants have used perforated geometric shapes that produce an increasing surface area as the propellant burns. This helps maintain the pressure as burning continues while the projectile travels down the barrel, which thereby increases the volume of the hot gas. Interior ballistics calculations use a geometric form factor to describe the changing surface area precisely. As a result, with a suitably modified form factor, detonation models can represent burning and explosion in damaged and broken reactant. The disadvantage of such models in application to accidents is that the ignition term does not distinguish between a value of pressure that results from a shock, and the same pressure that results from a more gradual increase. This disagrees with experiments, where

Reaugh, J E

2011-11-22T23:59:59.000Z

51

Reducing the Consequences of a Nuclear Detonation.  

SciTech Connect

The 2002 National Strategy to Combat Weapons of Mass Destruction states that 'the United States must be prepared to respond to the use of WMD against our citizens, our military forces, and those of friends and allies'. Scenario No.1 of the 15 Department of Homeland Security national planning scenarios is an improvised nuclear detonation in the national capitol region. An effective response involves managing large-scale incident response, mass casualty, mass evacuation, and mass decontamination issues. Preparedness planning activities based on this scenario provided difficult challenges in time critical decision making and managing a large number of casualties within the hazard area. Perhaps even more challenging is the need to coordinate a large scale response across multiple jurisdictions and effectively responding with limited infrastructure and resources. Federal response planning continues to make improvements in coordination and recommending protective actions, but much work remains. The most critical life-saving activity depends on actions taken in the first few minutes and hours of an event. The most effective way to reduce the enormous national and international social and economic disruptions from a domestic nuclear explosion is through planning and rapid action, from the individual to the federal response. Anticipating response resources for survivors based on predicted types and distributions of injuries needs to be addressed.

Buddemeier, B R

2007-11-09T23:59:59.000Z

52

Reducing the Consequences of a Nuclear Detonation.  

SciTech Connect

The 2002 National Strategy to Combat Weapons of Mass Destruction states that 'the United States must be prepared to respond to the use of WMD against our citizens, our military forces, and those of friends and allies'. Scenario No.1 of the 15 Department of Homeland Security national planning scenarios is an improvised nuclear detonation in the national capitol region. An effective response involves managing large-scale incident response, mass casualty, mass evacuation, and mass decontamination issues. Preparedness planning activities based on this scenario provided difficult challenges in time critical decision making and managing a large number of casualties within the hazard area. Perhaps even more challenging is the need to coordinate a large scale response across multiple jurisdictions and effectively responding with limited infrastructure and resources. Federal response planning continues to make improvements in coordination and recommending protective actions, but much work remains. The most critical life-saving activity depends on actions taken in the first few minutes and hours of an event. The most effective way to reduce the enormous national and international social and economic disruptions from a domestic nuclear explosion is through planning and rapid action, from the individual to the federal response. Anticipating response resources for survivors based on predicted types and distributions of injuries needs to be addressed.

Buddemeier, B R

2007-11-09T23:59:59.000Z

53

Ferrite core coupled slapper detonator apparatus and method  

DOE Patents (OSTI)

Method and apparatus are provided for coupling a temporally short electric power pulse from a thick flat-conductor power cable into a thin flat-conductor slapper detonator circuit. A first planar and generally circular loop is formed from an end portion of the power cable. A second planar and generally circular loop, of similar diameter, is formed from all or part of the slapper detonator circuit. The two loops are placed together, within a ferrite housing that provides a ferrite path that magnetically couples the two loops. Slapper detonator parts may be incorporated within the ferrite housing. The ferrite housing may be made vacuum and water-tight, with the addition of a hermetic ceramic seal, and provided with an enclosure for protecting the power cable and parts related thereto.

Boberg, Ralph E. (Livermore, CA); Lee, Ronald S. (Livermore, CA); Weingart, Richard C. (Livermore, CA)

1989-01-01T23:59:59.000Z

54

Type Ia Supernova: Burning and Detonation in the Distributed Regime  

E-Print Network (OSTI)

A simple, semi-analytic representation is developed for nuclear burning in Type Ia supernovae in the special case where turbulent eddies completely disrupt the flame. The speed and width of the ``distributed'' flame front are derived. For the conditions considered, the burning front can be considered as a turbulent flame brush composed of corrugated sheets of well-mixed flames. These flames are assumed to have a quasi-steady-state structure similar to the laminar flame structure, but controlled by turbulent diffusion. Detonations cannot appear in the system as long as distributed flames are still quasi-steady-state, but this condition is violated when the distributed flame width becomes comparable to the size of largest turbulent eddies. When this happens, a transition to detonation may occur. For current best estimates of the turbulent energy, the most likely density for the transition to detonation is in the range 0.5 - 1.5 x 10^7 g cm^{-3}.

S. E. Woosley

2007-09-26T23:59:59.000Z

55

Ideal detonation characteristics of biogas-hydrogen and -hydrogen peroxide mixtures  

Science Conference Proceedings (OSTI)

This article reports the ideal detonation characteristics of various mixtures of biogas-hydrogen and biogas-hydrogen peroxide with air. The results obtained by the chemical equilibrium calculations reveal the fundamental improvement of the biogas detonation ... Keywords: bio-energy, biogas detonation, biogas utilization, equilibrium thermochemistry, hydrogen, hydrogen peroxide

Khalid M. Saqr; Hassan I. Kassem; Mohsin M. Sies; Mazlan A. Wahid

2010-07-01T23:59:59.000Z

56

Flame acceleration and transition to detonation in channels  

DOE Green Energy (OSTI)

Experimental results are reported for combustion of pre-mixed H/sub 2/-air mixtures in a 136 m/sup 3/ channel and a 1:12.6 linear scale model. Test variables include H/sub 2/-air equivalence ratio, obstacles and degree of transverse venting. The results show that flame acceleration is increased by sensitive mixtures, presence of obstacles, large scales, and insufficient venting. The results also support the hypothesis that deflagration to detonation transition (DDT) can occur if the ratio of detonation cell width to channel width is less than a critical value, provided that the flame speed prior to transition has approached the isobaric sound speed.

Sherman, M.P.; Tieszen, S.R.; Benedick, W.B.

1987-01-01T23:59:59.000Z

57

Using an electronic detonator system and expanded blast patterns to prevent sympathetic detonation at Powder River Basin coal mines  

Science Conference Proceedings (OSTI)

This paper describes a systematic approach to prevent cast blast holes from detonating sympathetically through the use of the electronic initiation and expanded blast patterns. In-situ measurements were recorded from pressure probes, velocity of detonation probes and near field accelerometers, along with digital images generated from a high speed CCD camera. Large diameter angled drill holes were also checked for any measurable amount of deviation by a cable type borehole measurement tool. The field measurements provided the scientific evidence, statistical data, and documentation necessary to develop a sound method or a 'road map' that would minimize and in some situations prevent the occurrence of blast hole sympathetic detonation. 2 refs., 3 figs.

Yang, R.; Fleetwood, K.; Haid, J. [Orica USA Inc., Watkins, CO (United States). Advanced Mining Solutions

2005-07-01T23:59:59.000Z

58

In-Situ Continuous Detonation Velocity Measurements Using Fiber-optic Bragg Grating Sensors  

Science Conference Proceedings (OSTI)

In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation and detonation research requires continuous measurement of low order detonation velocities as the detonation runs up to full order detonation for a given density and initiation pressure pulse. A novel detector of detonation velocity is presented using a 125 micron diameter optical fiber with an integral chirped fiber Bragg grating as an intrinsic sensor. This fiber is embedded in the explosive under study and interrogated during detonation as the fiber Bragg grating scatters light back along the fiber to a photodiode, producing a return signal dependant on the convolution integral of the grating reflection bandpass, the ASE intensity profile and the photodetector response curve. Detonation velocity is measured as the decrease in reflected light exiting the fiber as the grating is consumed when the detonation reaction zone proceeds along the fiber sensor axis. This small fiber probe causes minimal perturbation to the detonation wave and can measure detonation velocities along path lengths tens of millimeters long. Experimental details of the associated equipment and preliminary data in the form of continuous detonation velocity records within nitromethane and PBX-9502 are presented.

Benterou, J; Udd, E; Wilkins, P; Roeske, F; Roos, E; Jackson, D

2007-07-25T23:59:59.000Z

59

Conditions For Successful Helium Detonations In Astrophysical Environments  

E-Print Network (OSTI)

Several models for type Ia-like supernovae events rely on the production of a self-sustained detonation powered by nuclear reactions.In the absence of hydrogen, the fuel that powers these detonations typically consists of either pure helium (He) or a mixture of carbon and oxygen (C/O). Studies that systematically determine the conditions required to initiate detonations in C/O material exist, but until now no analogous investigation of degenerate He matter has been conducted. We perform one-dimensional reactive hydrodynamical simulations at a variety of initial density and temperature combinations and find critical length scales for the initiation of He detonations that range between 1 -- $10^{10}$ cm. These sizes are consistently smaller than the corresponding Chapman-Jouguet (CJ) length scales by a factor of ~100, providing opportunities for thermonuclear explosions in a wider range of low mass white dwarfs (WDs) than previously thought possible. We find that virialized WDs with as little mass as 0.24 $M_\\o...

Holcomb, Cole; De Colle, Fabio; Ramirez-Ruiz, Enrico

2013-01-01T23:59:59.000Z

60

Simulations of Deflagration-to-Detonation Transition in Reactive Gases |  

NLE Websites -- All DOE Office Websites (Extended Search)

numerically generated pseudo-schlieren image numerically generated pseudo-schlieren image Weak ignition behind a reflected Mach=1.5 shock in a stoichiometric hydrogen-oxygen mixture at 0.1 atm initial pressure. Picture shows a numerically generated pseudo-schlieren image of the onset of a detonation in a turbulent boundary layer. Alexei Khokhlov, University of Chicago; Charles Bacon, Argonne National Laboratory, Joanna Austin, Andrew Knisely, University of Illinois at Urbanna-Champaign Simulations of Deflagration-to-Detonation Transition in Reactive Gases PI Name: Alexei Khokhlov PI Email: ajk@oddjob.uchicago.edu Institution: The University of Chicago Allocation Program: INCITE Allocation Hours at ALCF: 130 Million Year: 2013 Research Domain: Chemistry Hydrogen is an abundant, environmentally friendly fuel with the potential

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Engineering models of deflagration-to-detonation transition  

Science Conference Proceedings (OSTI)

For the past two years, Los Alamos has supported research into the deflagration-to-detonation transition (DDT) in damaged energetic materials as part of the explosives safety program. This program supported both a theory/modeling group and an experimentation group. The goal of the theory/modeling group was to examine the various modeling structures (one-phase models, two-phase models, etc.) and select from these a structure suitable to model accidental initiation of detonation in damaged explosives. The experimental data on low-velocity piston supported DDT in granular explosive was to serve as a test bed to help in the selection process. Three theoretical models have been examined in the course of this study: (1) the Baer-Nunziato (BN) model, (2) the Stewart-Prasad-Asay (SPA) model and (3) the Bdzil-Kapila-Stewart model. Here we describe these models, discuss their properties, and compare their features.

Bdzil, J.B.; Son, S.F.

1995-07-01T23:59:59.000Z

62

Initial hydrogen detonation data from the High-Temperature Combustion Facility  

DOE Green Energy (OSTI)

The Brookhaven National Laboratory High-Temperature Combustion Facility (HTCF) is described and data from initial hydrogen detonation experiments are presented. Initial phase of the inherent detonability experimental program is described. Test gases thus far tested are hydrogen-air mixtures at one atmosphere initial pressure and temperatures 300K-650K. Detonation pressure, wave speed, and detonation cell size were measured. Data were consistent with earlier SSDA (small-scale development apparatus) test results. HTCF results confirm the conclusion from the SSDA program that the gas temperature decreases the cell size and, therefore, increases the sensitivity of mixtures to detonation. Data from the larger HTCF test vessel, however, also demonstrates that the effect of increased scale is to extend the range of detonable mixtures to lower concentration.

Ginsberg, T.; Ciccarelli, G.; Boccio, J. [and others

1994-12-31T23:59:59.000Z

63

THE DEVELOPMENT AND TESTING OF PULSED DETONATION ENGINE GROUND  

E-Print Network (OSTI)

/4 in.) i.d., to two 25 mm (1 in.) i.d. setups, to a 101 mm (4 in.) i.d. dual-stage PDE setup with a pre valves were tested at up to 30 Hz on a 25 mm i.d. PDE. The dual-stage PDE was run at both 1 Hz and 10 Hz ................................................................................................................47 2.5 Detonation Nomenclature

Texas at Arlington, University of

64

Method for fabricating non-detonable explosive simulants  

DOE Patents (OSTI)

A simulator is disclosed which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

Simpson, R.L.; Pruneda, C.O.

1995-05-09T23:59:59.000Z

65

Method for fabricating non-detonable explosive simulants  

DOE Patents (OSTI)

A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

1995-01-01T23:59:59.000Z

66

Shock and Detonation Physics at Los Alamos National Laboratory  

Science Conference Proceedings (OSTI)

WX-9 serves the Laboratory and the Nation by delivering quality technical results, serving customers that include the Nuclear Weapons Program (DOE/NNSA), the Department of Defense, the Department of Homeland Security and other government agencies. The scientific expertise of the group encompasses equations-of-state, shock compression science, phase transformations, detonation physics including explosives initiation, detonation propagation, and reaction rates, spectroscopic methods and velocimetry, and detonation and equation-of-state theory. We are also internationally-recognized in ultra-fast laser shock methods and associated diagnostics, and are active in the area of ultra-sensitive explosives detection. The facility capital enabling the group to fulfill its missions include a number of laser systems, both for laser-driven shocks, and spectroscopic analysis, high pressure gas-driven guns and powder guns for high velocity plate impact experiments, explosively-driven techniques, static high pressure devices including diamond anvil cells and dilatometers coupled with spectroscopic probes, and machine shops and target fabrication facilities.

Robbins, David L [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Sheffield, Steve A [Los Alamos National Laboratory

2012-08-22T23:59:59.000Z

67

Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation  

DOE Patents (OSTI)

The invention provides a more efficient electric gun or slapper detonator ich provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal.

Osher, John E. (Alamo, CA)

1992-01-01T23:59:59.000Z

68

Material properties effects on the detonation spreading and propagation of diaminoazoxyfurazan (DAAF)  

Science Conference Proceedings (OSTI)

Recent dynamic testing of Diaminoazoxyfurazan (DAAF) has focused on understanding the material properties affecting the detonation propagation, spreading, behavior and symmetry. Small scale gap testing and wedge testing focus on the sensitivity to shock with the gap test including the effects of particle size and density. Floret testing investigates the detonation spreading as it is affected by particle size, density, and binder content. The polyrho testing illustrates the effects of density and binder content on the detonation velocity. Finally the detonation spreading effect can be most dramatically seen in the Mushroom and Onionskin tests where the variations due to density gradients, pressing methods and geometry can be seen on the wave breakout behavior.

Francois, Elizabeth Green [Los Alamos National Laboratory; Morris, John S [Los Alamos National Laboratory; Novak, Alan M [Los Alamos National Laboratory; Kennedy, James E [HERE LLC

2010-01-01T23:59:59.000Z

69

Detonation Spraying of TiO2-Ag: Controlling the Phase Composition ...  

Science Conference Proceedings (OSTI)

Presentation Title, Detonation Spraying of TiO2-Ag: Controlling the Phase Composition and Microstructure ... Using Ice to Make Nature Inspired Hybrid Materials.

70

Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air  

Science Conference Proceedings (OSTI)

Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

Li, J.; Lai, W.H. [National Cheng Kung University, Institute of Aeronautics and Astronautics, Tainan (China); Chung, K. [National Cheng Kung University, Aerospace Science and Technology Research Center, Tainan (China); Lu, F.K. [University of Texas at Arlington, Mechanical and Aerospace Engineering Department, Aerodynamics Research Center, TX 76019 (United States)

2008-08-15T23:59:59.000Z

71

Nightingale College of Nursing Scorebook  

Science Conference Proceedings (OSTI)

... Limited performance projections are reported, including ... needs, meet state demand for nurses ... air conditioning (HVAC) and energy, clinical supplies ...

2012-09-15T23:59:59.000Z

72

Method and system for making integrated solid-state fire-sets and detonators  

DOE Patents (OSTI)

A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.

O' Brien, Dennis W. (Livermore, CA); Druce, Robert L. (Union City, CA); Johnson, Gary W. (Livermore, CA); Vogtlin, George E. (Fremont, CA); Barbee, Jr., Troy W. (Palo Alto, CA); Lee, Ronald S. (Livermore, CA)

1998-01-01T23:59:59.000Z

73

Multi-Dimensional Adaptive Simulation of Shock-Induced Detonation in a Shock Tube  

E-Print Network (OSTI)

Multi-Dimensional Adaptive Simulation of Shock-Induced Detonation in a Shock Tube P. Ravindran applications, primarily in propulsion.1 Detonations use a reacting flow mechanism wherein a strong shock wave of intense chemical re- actions. The leading shock causes a compression of the combustible mixture, which

Texas at Arlington, University of

74

Detonation cell size measurements in H/sub 2/-air-H/sub 2/O mixtures  

DOE Green Energy (OSTI)

Conclusions of this study are: (1) For H/sub 2/-air mixtures at 20/sup 0/C and a total pressure of 101 kPa, detonations have been achieved between 13.5% and 70% H/sub 2/ mole fraction. This compositional range is wider than the detonability limits previously reported for smaller tubes. (2) The addition of CO/sub 2/ to H/sub 2/-air mixtures greatly reduces the detonability of the mixture. (3) For a given initial temperature, air density and equivalence ratio, the addition of steam to a H/sub 2/-Air mixture greatly decreases the detonability of the mixture. (4) At 100/sup 0/C and an air density of 41.6 moles/m/sup 3/, detonation of H/sub 2/-air mixtures with up to 30% steam have been recorded. (5) For H/sub 2/-air mixtures, the detonability increases with increasing initial temperature at constant density. Consequently, the diluent effect of the addition of steam to a fixed volume of an H/sub 2/-air mixture in reducing detonability is partially offset if there is a concomitant temperature increase. (6) At 100/sup 0/C and an air density of 41.6 moles/m/sup 3/, a 13.0% H/sub 2/-air mixture has been detonated. 18 refs., 7 figs.

Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.; Shepherd, J.E.; Knystautas, R.; Lee, J.H.

1985-01-01T23:59:59.000Z

75

The Plowshare Program: Peaceful Applications for Nuclear Detonations  

Science Conference Proceedings (OSTI)

The U.S. Atomic Energy Commission's Plowshare Program focused on developing the capability to use nuclear detonations for civil works projects and industrial applications. The participants envisioned canals and harbors constructed quickly and cheaply and the augmentation of natural gas, oil, and geothermal power production. The Plowshare Program began in the 1950s and ended in the 1970s. The archaeological effort to relocate and record places associated with this project has identified a unique and varied historical legacy on the landscape in the western United States and discovered that the range and types of projects considered and planned are more diverse than formerly recognized.

C. Beck; S. Edwards; M. King

2008-05-30T23:59:59.000Z

76

Development of the triage, monitoring and treatment Handbook for Members of the Public Affected by Radiological Terrorism - A European Response  

Science Conference Proceedings (OSTI)

European national emergency response plans have long been focused on accidents at nuclear power plants. Recently, the possible threats by disaffected groups have shifted the focus to being prepared also for malevolent use of radiation that are aimed at creating disruption and panic in the society. The casualties will most likely be members of the public. According to the scenario, the number of affected people can vary from a few to mass casualties. The radiation exposure can range from very low to substantial, possibly combined with conventional injuries. There is a need to develop practicable tools for the adequate response to such acts and more specifically to address European guidelines for triage, monitoring and treatment of exposed people. Although European countries have developed emergency response plans for nuclear accidents they have not all made plans for handling malevolent use of radioactive material. Indeed, there is a need to develop practical guidance on emergency response and medical treatment of the public affected by malevolent acts. Generic guidance on this topic has been published by international organisations. They are, however, not operational documents to be used in emergency situations. The Triage, Monitoring and Treatment (TMT) Handbook aims to strengthen the European ability to efficiently respond to malevolent acts in terms of protecting and treating exposed people. Part of the Handbook is also devoted to public information and communication issues which would contribute to public reassurance in emergency situations. The Handbook will be drafted by European and international experts before it is circulated to all emergency response institutions in Europe that would be a part of the handling of malevolent acts using radioactive material. The institutions would be given a 6 months consultation time with encouragement to test the draft Handbook in national exercises. A workshop will allow feedback from these end users on the content, structure and usefulness of the Handbook before a final version is produced. In order to achieve the project's objectives a consortium has been drawn together including, Belgian Nuclear Research Centre, the Norwegian Radiation Protection Authority, Radiation and Nuclear Safety Authority of Finland, the UK Health Protection Agency, the Central Laboratory for Radiological Protection of Poland and the World Health Organisation. Enviros Consulting is acting as the technical secretariat for the project. The Handbook will aim to harmonise the approaches to handling malevolent acts across Europe. This harmonisation will have an added value on the public confidence in authorities since differing approaches in neighbouring countries could lead to public confusion and mistrust. (authors)

Kruse, P. [Enviros Consulting Limited, Culham Science Centre, Abingdon OX (United Kingdom); Rojas-Palma, C. [Belgian Nuclear Research Centre (SCK-CEN), Radiation Protection Div., Mol (Belgium)

2007-07-01T23:59:59.000Z

77

An Equilibrium-Based Model of Gas Reaction and Detonation  

Science Conference Proceedings (OSTI)

During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999.

Trowbridge, L.D.

2000-04-01T23:59:59.000Z

78

Non-detonable and non-explosive explosive simulators  

DOE Patents (OSTI)

A simulator which is chemically equivalent to an explosive, but is not detonable or explodable. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive.

Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

1997-01-01T23:59:59.000Z

79

Non-detonable and non-explosive explosive simulators  

DOE Patents (OSTI)

A simulator which is chemically equivalent to an explosive, but is not detonable or explodable is disclosed. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive. 11 figs.

Simpson, R.L.; Pruneda, C.O.

1997-07-15T23:59:59.000Z

80

Detonating Failed Deflagration Model of Thermonuclear Supernovae I. Explosion Dynamics  

E-Print Network (OSTI)

We present a detonating failed deflagration model of Type Ia supernovae. In this model, the thermonuclear explosion of a massive white dwarf follows an off-center deflagration. We conduct a survey of asymmetric ignition configurations initiated at various distances from the stellar center. In all cases studied, we find that only a small amount of stellar fuel is consumed during deflagration phase, no explosion is obtained, and the released energy is mostly wasted on expanding the progenitor. Products of the failed deflagration quickly reach the stellar surface, polluting and strongly disturbing it. These disturbances eventually evolve into small and isolated shock-dominated regions which are rich in fuel. We consider these regions as seeds capable of forming self-sustained detonations that, ultimately, result in the thermonuclear supernova explosion. Preliminary nucleosynthesis results indicate the model supernova ejecta are typically composed of about 0.1-0.25 Msun of silicon group elements, 0.9-1.2 Msun of iron group elements, and are essentially carbon-free. The ejecta have a composite morphology, are chemically stratified, and display a modest amount of intrinsic asymmetry. The innermost layers are slightly egg-shaped with the axis ratio ~1.2-1.3 and dominated by the products of silicon burning. This central region is surrounded by a shell of silicon-group elements. The outermost layers of ejecta are highly inhomogeneous and contain products of incomplete oxygen burning with only small admixture of unburned stellar material. The explosion energies are ~1.3-1.5 10^51 erg.

Tomasz Plewa

2006-11-24T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Sources of History of Nursing in Korea  

E-Print Network (OSTI)

Sources of Nursing History in Korea, 1886-1911. Commissionedthe nursing profession in Korea. Regarding the publicationearly modern and colonial Korea, and stimulate the in-depth

UCLA Center for the Study of Women

2012-01-01T23:59:59.000Z

82

First-Principles Simulations of High-Speed Combustion and Detonation |  

NLE Websites -- All DOE Office Websites (Extended Search)

Picture shows a numerically generated pseudo-schlieren image of the onset of a detonation in a turbulent boundary layer. Picture shows a numerically generated pseudo-schlieren image of the onset of a detonation in a turbulent boundary layer. Weak ignition behind a reflected Mach=1.5 shock in a stoichiometric hydrogen-oxygen mixture at 0.1 atm initial pressure. Picture shows a numerically generated pseudo-schlieren image of the onset of a detonation in a turbulent boundary layer. Alexei Khokhlov, University of Chicago, Charles Bacon, Argonne National Laboratory, Joanna Austin and Andrew Knisely, University of Illinois at Urbanna-Champaign. First-Principles Simulations of High-Speed Combustion and Detonation PI Name: Alexei Khokhlov PI Email: ajk@oddjob.uchicago.edu Institution: University of Chicago Allocation Program: INCITE Allocation Hours at ALCF: 150 Million Year: 2014

83

Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation  

DOE Patents (OSTI)

The invention provides a more efficient electric gun or slapper detonator which provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal. 8 figs.

Osher, J.E.

1992-01-14T23:59:59.000Z

84

Failure modes of a concrete nuclear-containment building subjected to hydrogen detonation  

DOE Green Energy (OSTI)

Calculated response for the Indian Point reactor containment building to static internal pressure and one case of a dynamic pressure representing hydrogen combustion and detonation are presented. Comparison of the potential failure modes is made. 9 figures.

Fugelso, L.E.; Butler, T.A.

1983-01-01T23:59:59.000Z

85

NUCLEOSYNTHESIS IN TWO-DIMENSIONAL DELAYED DETONATION MODELS OF TYPE Ia SUPERNOVA EXPLOSIONS  

SciTech Connect

For the explosion mechanism of Type Ia supernovae (SNe Ia), different scenarios have been suggested. In these, the propagation of the burning front through the exploding white dwarf (WD) star proceeds in different modes, and consequently imprints of the explosion model on the nucleosynthetic yields can be expected. The nucleosynthetic characteristics of various explosion mechanisms are explored based on three two-dimensional explosion simulations representing extreme cases: a pure turbulent deflagration, a delayed detonation following an approximately spherical ignition of the initial deflagration, and a delayed detonation arising from a highly asymmetric deflagration ignition. Apart from this initial condition, the deflagration stage is treated in a parameter-free approach. The detonation is initiated when the turbulent burning enters the distributed burning regime. This occurs at densities around 10{sup 7} g cm{sup -3}-relatively low as compared to existing nucleosynthesis studies for one-dimensional spherically symmetric models. The burning in these multidimensional models is different from that in one-dimensional simulations as the detonation wave propagates both into unburned material in the high-density region near the center of a WD and into the low-density region near the surface. Thus, the resulting yield is a mixture of different explosive burning products, from carbon-burning products at low densities to complete silicon-burning products at the highest densities, as well as electron-capture products synthesized at the deflagration stage. Detailed calculations of the nucleosynthesis in all three models are presented. In contrast to the deflagration model, the delayed detonations produce a characteristic layered structure and the yields largely satisfy constraints from Galactic chemical evolution. In the asymmetric delayed detonation model, the region filled with electron capture species (e.g., {sup 58}Ni, {sup 54}Fe) is within a shell, showing a large off-set, above the bulk of {sup 56}Ni distribution, while species produced by the detonation are distributed more spherically.

Maeda, K. [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Roepke, F.K.; Fink, M.; Hillebrandt, W.; Travaglio, C. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, 85741 Garching (Germany); Thielemann, F.-K., E-mail: keiichi.maeda@ipmu.j [Department Physik, Universitaet Basel, CH-4056 Basel (Switzerland)

2010-03-20T23:59:59.000Z

86

Instrumentation techniques for monitoring shock and detonation waves  

SciTech Connect

CORRTEX (Continuous Reflectometry for Radius Versus Time Experiments), SLIFER (Shorted Location Indication by Frequency of Electrical Resonance), and pin probes were used to monitor several conditions of blasting such as the detonation velocity of the explosive, the functioning of the stemming column confining the explosive, and rock mass motion. CORRTEX is a passive device that employs time-domain reflectometry to interrogate the two-way transit time of a coaxial cable. SLIFER is an active device that monitors the changing frequency resulting from a change in length of a coaxial cable forming an element of an oscillator circuit. Pin probes in this application consist of RG-174 coaxial cables, each with an open circuit, placed at several known locations within the material. Each cable is connected to a pulse-forming network and a voltage source. When the cables are shorted by the advancing wave, time-distance data are produced from which a velocity can be computed. This paper describes each technique, installation of the gauge, examples of the signals, and interpretation of the records. 11 refs., 11 figs.

Dick, R.D.; Parrish, R.L.

1985-01-01T23:59:59.000Z

87

Impurity-doped optical shock, detonation and damage location sensor  

DOE Patents (OSTI)

A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.

Weiss, Jonathan D. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

88

Impurity-doped optical shock, detonation and damage location sensor  

DOE Patents (OSTI)

A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.

Weiss, J.D.

1995-02-07T23:59:59.000Z

89

Detonation Shock Dynamics (DSD) Calibration for LX-17  

Science Conference Proceedings (OSTI)

The goal of this report is to summarize the results of a Detonation shock dynamics (DSD) calibration for the explosive LX-17. Considering that LX-17 is very similar to PBX 9502 (LX-17 is 92.5% TATB with 7.5% Kel-F 800 binder, while PBX 9502 is 95% TATB with 5% Kel-F 800 binder), we proceed with the analysis assuming many of the DSD constants are the same. We only change the parameters D{sub CJ}, B and {bar C}{sub 6} ({bar C}{sub 6} controls the how D{sub CJ} changes with pressing density). The parameters D{sub CJ} and {bar C}{sub 6} were given by Josh Coe and Sam Shaw's EOS. So, only B was optimized in fitting all the calibration data. This report first discusses some general DSD background, followed by a presentation of the available dataset to perform the calibration, and finally gives the results of the calibration and draws some conclusions. A DSD calibration of LX-17 has been conducted using the existing diameter effect data and shock shape records. The new DSD fit is based off the current PBX 9502 calibration and takes into account the effect of pressing density. Utilizing the PBX 9502 calibration, the effects of initial temperature can also be taken into account.

Aslam, Tariq D [Los Alamos National Laboratory

2012-04-24T23:59:59.000Z

90

Flame-driven deflagration-to-detonation transitions in Type Ia supernovae?  

E-Print Network (OSTI)

Although delayed detonation models of thermonuclear explosions of white dwarfs seem promising for reproducing Type Ia supernovae, the transition of the flame propagation mode from subsonic deflagration to supersonic detonation remains hypothetical. A potential instant for this transition to occur is the onset of the distributed burning regime, i.e. the moment when turbulence first affects the internal flame structure. Some studies of the burning microphysics indicate that a deflagration-to-detonation transition may be possible here, provided the turbulent intensities are strong enough. Consequently, the magnitude of turbulent velocity fluctuations generated by the deflagration flame is analyzed at the onset of the distributed burning regime in several three-dimensional simulations of deflagrations in thermonuclear supernovae. It is shown that the corresponding probability density functions fall off towards high turbulent velocity fluctuations much more slowly than a Gaussian distribution. Thus, values claimed to be necessary for triggering a detonation are likely to be found in sufficiently large patches of the flame. Although the microphysical evolution of the burning is not followed and a successful deflagration-to-detonation transition cannot be guaranteed from simulations presented here, the results still indicate that such events may be possible in Type Ia supernova explosions.

F. K. Roepke

2007-09-26T23:59:59.000Z

91

Transient characteristics of C3H8/O2turbulent mixing in a hypersonic pulse detonation engine  

Science Conference Proceedings (OSTI)

We present the results of a time-dependent three-dimensional numerical simulation of the turbulent mixing characteristics in the mixing chamber of a hypersonic pulse detonation engine (PDE). Fuel (C3H8) was injected through one supersonic injector, while ... Keywords: high altitude aircrafts, hypersonic propulsion, ionospheric flight, pulse detonation engine, supersonic jet, turbulent mixing

Khalid M. Saqr; Ahmed Faiz; Hassan Kassem; Mohsin Sies; Mazlan A. Wahid

2010-03-01T23:59:59.000Z

92

High-Speed Combustion and Detonation Project Scaling Up for Mira | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Speed Combustion and Detonation Project Scaling Up for Mira High-Speed Combustion and Detonation Project Scaling Up for Mira March 26, 2013 Printer-friendly version Researchers at the Argonne Leadership Computing Facility (ALCF) are simulating the high-speed combustion and detonation of hydrogen-oxygen mixtures to enable safer and more widespread use of hydrogen as an alternative fuel. This is one of 16 projects in the ALCF's Early Science Program (ESP), which is aimed at preparing key scientific applications for the architecture and scale of Mira, Argonne's new 10-petaflop IBM Blue Gene/Q supercomputer. Using pre-production time on Mira for real scientific problems, these projects vet the system and gather knowledge that will help future projects take full advantage of Mira's vastly increased power and capabilities when it goes into production later this year.

93

Surface chemical reaction of laser ablated aluminum sample for detonation initiation  

Science Conference Proceedings (OSTI)

We explore the evolution of metal plasma generated by high laser irradiances and its effect on the surrounding air by using shadowgraph images after laser pulse termination; hence the formation of laser supported detonation and combustion processes has been investigated. The essence of the paper is in observing initiation of chemical reaction between ablated aluminum plasma and oxygen from air by inducing high power laser pulse (>1000 mJ/pulse) and conduct a quantitative comparison of chemically reactive laser initiated waves with the classical detonation of exploding aluminum (dust) cloud in air. Findings in this work may lead to a new method of initiating detonation from metal sample in its bulk form without the need of mixing nano-particles with oxygen for initiation.

Kim, Chang-hwan; Yoh, Jack J. [School of Mechanical and Aerospace Engineering, Seoul National University, 599 Kwanakro, Kwanakgu, Seoul, Korea 151-742 (Korea, Republic of)

2011-05-01T23:59:59.000Z

94

Analysis of sheltering and evacuation strategies for a Chicago nuclear detonation scenario.  

SciTech Connect

Development of an effective strategy for shelter and evacuation is among the most important planning tasks in preparation for response to a low yield, nuclear detonation in an urban area. Extensive studies have been performed and guidance published that highlight the key principles for saving lives following such an event. However, region-specific data are important in the planning process as well. This study examines some of the unique regional factors that impact planning for a 10 kt detonation in Chicago. The work utilizes a single scenario to examine regional impacts as well as the shelter-evacuate decision alternatives at selected exemplary points. For many Chicago neighborhoods, the excellent assessed shelter quality available make shelter-in-place or selective transit to a nearby shelter a compelling post-detonation strategy.

Yoshimura, Ann S.; Brandt, Larry D.

2011-09-01T23:59:59.000Z

95

Analysis of sheltering and evacuation strategies for a national capital region nuclear detonation scenario.  

SciTech Connect

Development of an effective strategy for shelter and evacuation is among the most important planning tasks in preparation for response to a low yield, nuclear detonation in an urban area. Extensive studies have been performed and guidance published that highlight the key principles for saving lives following such an event. However, region-specific data are important in the planning process as well. This study examines some of the unique regional factors that impact planning for a 10 kT detonation in the National Capital Region. The work utilizes a single scenario to examine regional impacts as well as the shelter-evacuate decision alternatives at one exemplary point. For most Washington, DC neighborhoods, the excellent assessed shelter quality available make shelter-in-place or selective transit to a nearby shelter a compelling post-detonation strategy.

Yoshimura, Ann S.; Brandt, Larry D.

2011-12-01T23:59:59.000Z

96

LA-UR-11-05233 Page 1 Session 3: High Explosive Topics Modeling of Detonation Propagation  

National Nuclear Security Administration (NNSA)

233 233 Page 1 Session 3: High Explosive Topics Modeling of Detonation Propagation Tariq D. Aslam Los Alamos National Laboratory Summary A simple methodology for propagation of detonation waves, Detonation Shock Dynamics (DSD), is presented. Theory, experiments and computational issues regarding DSD will be addressed. Introduction Detonation Shock Dynamics is based on a weak curvature, quasi-steady analysis of the compressible reactive Euler equations. See [1] for a recent review of the field. The key result from DSD is that to a first order approximation, a detonation wave will propagate normal to itself at a velocity related to its local curvature. This is expressed as a D n -k relation. This D n -k relation is an intrinsic propagation rule (i.e., all

97

Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures  

DOE Green Energy (OSTI)

The present research reports on the effect of initial mixture temperature on the experimentally measured detonation cell size for hydrogen-air-steam mixtures. Experimental and theoretical research related to combustion phenomena in hydrogen-air-steam mixtures has been ongoing for many years. However, detonation cell size data currently exists or hydrogen-air-steam mixtures up to a temperature of only 400K. Sever accident scenarios have been identified for light water reactors (LWRs) where hydrogen-air mixture temperatures in excess of 400K could be generated within containment. The experiments in this report focus on extending the cell size data base for initial mixture temperatures in excess of 400K. The experiments were carried out in a 10-cm inner-diameter, 6.1-m long heated detonation tube with a maximum operating temperature of 700K and spatial temperature uniformity of {plus_minus}14K. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air initial gas mixture temperature, in the range 300K--650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside-diameter test vessel, based upon the onset of single-head spin, decreased from 15 percent by hydrogen at 300K down to about 9 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments.

Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.

1994-01-01T23:59:59.000Z

98

Flashing Dark Matter-- Gamma-Ray Bursts from Relativistic Detonations of Electro-Dilaton Stars  

E-Print Network (OSTI)

We speculate that the universe is filled with stars composed of electromagnetic and dilaton fields which are the sources of the powerful gamma-ray bursts impinging upon us from all directions of the universe. We calculate soliton-like solutions of these fields and show that their energy can be converted into a relativistic plasma in an explosive way. As in classical detonation theory the conversion proceeds by a relativistic self-similar solution for a spherical detonation wave which extracts the energy from the scalar field via a plasma in the wave front.

V. Folomeev; V. Gurovich; H. Kleinert; H. -J. Schmidt

2002-06-15T23:59:59.000Z

99

LATERALLY PROPAGATING DETONATIONS IN THIN HELIUM LAYERS ON ACCRETING WHITE DWARFS  

SciTech Connect

Theoretical work has shown that intermediate mass (0.01 M{sub Sun} < M{sub He} < 0.1 M{sub Sun }) helium shells will unstably ignite on the accreting white dwarf (WD) in an AM CVn binary. For more massive (M > 0.8 M{sub Sun }) WDs, these helium shells can be dense enough (>5 Multiplication-Sign 10{sup 5} g cm{sup -3}) that the convectively burning region runs away on a timescale comparable to the sound travel time across the shell, raising the possibility for an explosive outcome rather than an Eddington limited helium novae. The nature of the explosion (i.e., deflagration or detonation) remains ambiguous, is certainly density dependent, and likely breaks spherical symmetry. In the case of detonation, this causes a laterally propagating front whose properties in these geometrically thin and low-density shells we begin to study here. Our calculations show that the radial expansion time of <0.1 s leads to incomplete helium burning, in agreement with recent work by Sim and collaborators, but that the nuclear energy released is still adequate to realize a self-sustaining laterally propagating detonation. These detonations are slower than the Chapman-Jouguet speed of 1.5 Multiplication-Sign 10{sup 9} cm s{sup -1}, but still fast enough at 0.9 Multiplication-Sign 10{sup 9} cm s{sup -1} to go around the star prior to the transit through the star of the inwardly propagating weak shock. Our simulations resolve the subsonic region behind the reaction front in the detonation wave. The two-dimensional nucleosynthesis is shown to be consistent with a truncated one-dimensional Zeldovich-von Neumann-Doering calculation at the slower detonation speed. The ashes from the lateral detonation are typically He rich, and consist of predominantly {sup 44}Ti, {sup 48}Cr, along with a small amount of {sup 52}Fe, with very little {sup 56}Ni and with significant {sup 40}Ca in carbon-enriched layers. If this helium detonation results in a Type Ia supernova, its spectral signatures would appear for the first few days after explosion.

Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487-0324 (United States); Moore, Kevin; Bildsten, Lars, E-mail: Dean.M.Townsley@ua.edu [Department of Physics, University of California, Santa Barbara, CA 93106-9530 (United States)

2012-08-10T23:59:59.000Z

100

American Institute of Aeronautics and Astronautics Application of Pulsed Detonation Engine for Electric Power  

E-Print Network (OSTI)

efficiencies and specific impulses. Therefore, PDEs have simpler geometries and less moving parts than regular produced electric power at 27 W and the compressor pumped air at a rate of 0.055 kg/s. The exhaust to increase the static pressure and temperature of the fluid before heat addition, in a PDE, a detonation wave

Texas at Arlington, University of

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Modeling Human Behavior in the Aftermath of a Hypothetical Improvised Nuclear Detonation  

E-Print Network (OSTI)

Modeling Human Behavior in the Aftermath of a Hypothetical Improvised Nuclear Detonation Nidhi, human-initiated crisis in the center of Washington D.C. Prior studies of this scenario have focused on the agent design and multiagent interaction, and present initial results on how rapid restoration

Swarup, Samarth

102

Vulnerability Analysis of a Nuclear Power Plant Considering Detonations of Explosive Devices  

E-Print Network (OSTI)

Vulnerability Analysis of a Nuclear Power Plant Considering Detonations of Explosive Devices Marko threats to a nuclear power plant in the year 1991 and after the 9/11 events in 2001. The methodology which strength and injuries of human beings with nuclear power plant models used in probabilistic safety

Cizelj, Leon

103

A virtual test facility for simulating detonation-induced fracture of thin flexible shells  

Science Conference Proceedings (OSTI)

The fluid-structure interaction simulation of detonation- and shock-wave-loaded fracturing thin-walled structures requires numerical methods that can cope with large deformations as well as topology changes. We present a robust level-set-based approach ...

Ralf Deiterding; Fehmi Cirak; Sean P. Mauch; Daniel I. Meiron

2006-05-01T23:59:59.000Z

104

An efficient numerical method for the onset of blast waves generated by spherical detonation  

Science Conference Proceedings (OSTI)

Blast wave, generated by a high detonating spherical charge, is modeled using the Euler equations. The problem is split into two parts. The first part makes use of the isotropy to solve the problem in spherical radial coordinate. Overpressure distribution ... Keywords: Cartesian methods, blast wave, remapping techniques

Adel M. Benselama; Mame J. P. William-Louis; François Monnoyer

2008-11-01T23:59:59.000Z

105

Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame  

E-Print Network (OSTI)

Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame S. E structure which, de- pending on density, may involve separate regions of carbon, oxygen and silicon burning, all propagating in a self-similar, subsonic front. The separation between these three burning regions

106

The influence of initial temperature on flame acceleration and deflagration-to-detonation transition  

DOE Green Energy (OSTI)

The influence of initial mixture temperature on deflagration-to-detonation transition (DDT) has been investigated experimentally. The experiments were carried out in a 27-cm-inner diameter, 21.3-meter-long heated detonation tube, which was equipped with periodic orifice plates to promote flame acceleration. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in transition to detonation corresponded to the mixture whose detonation cell size, {lambda}, was approximately equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}{approximately}1). The only exception was in dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 m/s and then decelerated to below 2 m/s. This observation indicates that the d/{lambda} = 1 DDT limit criterion provides a necessary condition but not a sufficient one for the onset of DDT in obstacle-laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the onset of detonation was a function of both the hydrogen mole fraction and the mixture initial temperature. For example, decreasing the hydrogen mole fraction or increasing the initial mixture temperature resulted in longer transition distances.

Ciccarelli, G.; Boccio, J.L.; Ginsberg, T. [and others

1996-07-01T23:59:59.000Z

107

Modeling unit cell interactions for the microstructure of a heterogeneous explosive: detonation diffraction past an inert sphere  

SciTech Connect

We describe an approach being used to model multi-phase blast explosive, that is mostly condensed explosive by volume with inert embedded particles. The asymptotic theory of detonation shock dynamics is used to describe the detonation shock propagation in the explosive. The shock motion rule in the explosive requires that the shock move at a normal speed that depends on the shock curvature. The angle that the shock makes with the particle boundary is also prescribed. We describe theory that can be used to predict the behavior of a collection of such detonation shock/particle interactions in the larger aggregate. A typical unit cell problem of a detonation shock diffraction over a sphere is analyzed by analytical and numerical means and the properties of an ensemble of such unit cell problems is discussed with implications for the macroscopic limiting behavior of the heterogeneous explosive.

Bdzil, John B [Los Alamos National Laboratory; Stewart, Donald S [Los Alamos National Laboratory; Walter, John W [Los Alamos National Laboratory; Aida, Toru [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

108

A study of detonation timing and fragmentation using 3-D finite element techniques and a damage constitutive model  

SciTech Connect

The transient dynamics finite element computer program, PRONTO-3D, has been used in conjunction with a damage constitutive model to study the influence of detonation timing on rock fragmentation during blasting. The primary motivation of this study is to investigate the effectiveness of precise detonators in improving fragmentation. PRONTO-3D simulations show that a delay time of 0.0 sec between adjacent blastholes results in significantly more fragmentation than a 0.5 ms delay.

Preece, D.S.; Thorne, B.J.

1996-03-01T23:59:59.000Z

109

From detonation to diapers: Los Alamos computer codes at core of advanced  

NLE Websites -- All DOE Office Websites (Extended Search)

From detonation to diapers From detonation to diapers Los Alamos computer codes at core of advanced manufacturing tools The computer codes used for predictive fluid modeling are part of the Los Alamos Computational Fluid Dynamics Library. July 27, 2011 This simulation of a droplet of liquid falling into a pool of liquid was modeled using Los Alamos National Laboratory's Computational Fluid Dynamics Library This simulation of a droplet of liquid falling into a pool of liquid was modeled using Los Alamos National Laboratory's Computational Fluid Dynamics Library (CFDLib), which was also used by Procter and Gamble to simulate a manufacturing process. The computer code is now available to help American industries become more competitive. Contact James Rickman Communicatons Office (505) 665-9203

110

Indexes of the proceedings for the nine symposia (international) on detonation, 1951--89  

Science Conference Proceedings (OSTI)

The Proceedings of the nine Detonation Symposia have become the major archival source of information of international research in explosive phenomenology, theory, experimental techniques, numerical modeling, and high-rate reaction chemistry. In many cases, they contain the original reference or the only reference to major progress in the field. For some papers, the information is more complete than the complementary article appearing in a formal journal, yet for others, authors elected to publish only an abstract in the Proceedings. For the large majority of papers, the Symposia Proceedings provide the only published reference to a body of work. This report indexes the nine existing Proceedings of the Detonation Symposia by paper titles, topic phrases, authors, and first appearance of acronyms and code names.

Crane, S.L.; Deal, W.E.; Ramsay, J.B.; Roach, A.M.; Takala, B.E.

1993-01-01T23:59:59.000Z

111

Indexes of the proceedings for the nine symposia (international) on detonation, 1951--89  

Science Conference Proceedings (OSTI)

The Proceedings of the nine Detonation Symposia have become the major archival source of information of international research in explosive phenomenology, theory, experimental techniques, numerical modeling, and high-rate reaction chemistry. In many cases, they contain the original reference or the only reference to major progress in the field. For some papers, the information is more complete than the complementary article appearing in a formal journal, yet for others, authors elected to publish only an abstract in the Proceedings. For the large majority of papers, the Symposia Proceedings provide the only published reference to a body of work. This report indexes the nine existing Proceedings of the Detonation Symposia by paper titles, topic phrases, authors, and first appearance of acronyms and code names.

Crane, S.L.; Deal, W.E.; Ramsay, J.B.; Roach, A.M.; Takala, B.E.

1993-07-01T23:59:59.000Z

112

Modeling and analysis of hydrogen detonation events in the Advanced Neutron Source reactor containment  

DOE Green Energy (OSTI)

This paper describes salient aspects of the modeling, analyses, and evaluations for hydrogen detonation in selected regions of the Advanced Neutron Source (ANS) containment during hypothetical severe accident conditions. Shock wave generation and transport modeling and analyses were conducted for two stratified configurations in the dome region of the high bay. Principal tools utilized for these purposes were the CTH and CET89 computer codes. Dynamic pressure loading functions were generated for key locations and used for evaluating structural response behavior for which a finite-element model was developed using the ANSYS code. For the range of conditions analyzed in the two critical dome regions, it was revealed that the ANS containment would be able to withstand detonation loads without failure.

Taleyarkhan, R.P.; Georgevich, V.; Kim, S.H.; Valenti, S.N.; Simpson, D.B. [Oak Ridge National Lab., TN (United States); Sawruk, W. [Gilbert/Commonwealth, Inc., Reading, PA (United States)

1994-07-01T23:59:59.000Z

113

JCZS: An Intermolecular Potential Database for Performing Accurate Detonation and Expansion Calculations  

Science Conference Proceedings (OSTI)

Exponential-13,6 (EXP-13,6) potential pammeters for 750 gases composed of 48 elements were determined and assembled in a database, referred to as the JCZS database, for use with the Jacobs Cowperthwaite Zwisler equation of state (JCZ3-EOS)~l) The EXP- 13,6 force constants were obtained by using literature values of Lennard-Jones (LJ) potential functions, by using corresponding states (CS) theory, by matching pure liquid shock Hugoniot data, and by using molecular volume to determine the approach radii with the well depth estimated from high-pressure isen- tropes. The JCZS database was used to accurately predict detonation velocity, pressure, and temperature for 50 dif- 3 Accurate predictions were also ferent explosives with initial densities ranging from 0.25 glcm3 to 1.97 g/cm . obtained for pure liquid shock Hugoniots, static properties of nitrogen, and gas detonations at high initial pressures.

Baer, M.R.; Hobbs, M.L.; McGee, B.C.

1998-11-03T23:59:59.000Z

114

Evaluation of the effects of detonation in a spherical bomb. [PWR; BWR  

DOE Green Energy (OSTI)

An analysis is presented of the time-dependent pressure forces and impulse loadings on the walls of the hemispherical dome of a nuclear reactor pressure vessel arising from a centrally ignited hydrogen-oxygen detonation. Investigated in this context are the effects of richness of the detonable gas mixture as well as those due to the inclusion of water vapor. In the analysis the gas mixture was treated as a perfect gas, and the partial differential equations governing the gasdynamic flow were integrated using the CLOUD CODE - a finite-difference technique set in Lagrangian coordinates and incorporating the smoothing action of artificial viscosity. The most interesting results pertain to the ringing of pressure pulses at the walls. Their frequency is quite uniform, and their pressure peaks, at levels significantly higher than that of combustion at constant volume, decay at a negligible rate.

Kurylo, J.; Oppenheim, A.K.

1979-11-01T23:59:59.000Z

115

Indexes of the Proceedings for the Ten International Symposia on Detonation 1951-93  

Science Conference Proceedings (OSTI)

The Proceedings of the ten Detonation Symposia have become the major archival source of information of international research in explosive phenomenology, theory, experimental techniques, numerical modeling, and high-rate reaction chemistry. In many cases, they contain the original reference or the only reference to major progress in the field. For some papers, the information is more complete than the complementary article appearing in a formal journal; yet for others, authors elected to publish only an abstract in the Proceedings. For the large majority of papers, the Symposia Proceedings provide the only published reference to a body of work. This report indexes the ten existing Proceedings of the Detonation Symposia by paper titles, topic phrases, authors, and first appearance of acronyms and code names.

Deal, William E.; Ramsay, John B.; Roach, Alita M.; Takala, Bruce E.

1998-09-01T23:59:59.000Z

116

SNFP detonation phenomena of hydrogen/oxygen in spent fuel containers  

DOE Green Energy (OSTI)

Movement of spent nuclear fuels from the Hanford K Basins near the Columbia River to dry interim storage facility on the Hanford plateau will require repackaging the fuel in the basin into multi-canister overpacks (MCOs), drying of the fuel, transporting the contained fuel, hot conditioning, and finally interim storage. Each of these functions will be accomplished while the fuel is contained in the MCOs. Hydrogen and oxygen can be generated within the MCOs by several mechanisms. The principal source of hydrogen and oxygen within the MCOs is residual water from the vacuum drying and hot conditioning operations. This document assesses the detonation phenomena of hydrogen and oxygen in the spent fuel containers. Several process scenarios have been identified that could generate detonation pressures that exceed the nominal 10 atmosphere design limit of the MCOs. Only 42 grams of radiolized water are required to establish this condition.

Cooper, T.D.

1996-05-30T23:59:59.000Z

117

Spent nuclear fuel project detonation phenomena of hydrogen/oxygen in spent fuel containers  

DOE Green Energy (OSTI)

Movement of Spent N Reactor fuels from the Hanford K Basins near the Columbia River to Dry interim storage facility on the Hanford plateau will require repackaging the fuel in the basins into multi-canister overpacks (MCOs), drying of the fuel, transporting the contained fuel, hot conditioning, and finally interim storage. Each of these functions will be accomplished while the fuel is contained in the MCOs by several mechanisms. The principal source of hydrogenand oxygen within the MCOs is residual water from the vacuum drying and hot conditioning operations. This document assesses the detonation phenomena of hydrogen and oxygen in the spent fuel containers. Several process scenarios have been identified that could generate detonation pressures that exceed the nominal 10 atmosphere design limit ofthe MCOS. Only 42 grams of radiolized water are required to establish this condition.

Cooper, T.D.

1996-09-30T23:59:59.000Z

118

Detonation product equation-of-state directly from the cylinder test  

SciTech Connect

A quasi-analytic method is presented for obtaining the detonation-product expansion isentrope directly from cylinder test data. The idea actually dates to G.I. Taylor`s invention of the cylinder test--though he did not implement it for lack of data--but has received little attention since. The method uses the fact that the pressure may be determined from the measured wall trajectory, whereupon the associated specific volume follows from the equations of continuity and momentum. Using the HMX-based explosive PBX9501 as an example, the method makes a good prediction of the detonation pressure and the basic form of {gamma}, the isentropic exponent. However, the model isentrope is slightly low in the mid-range, perhaps because the standard cylinder test is not optimal for this analysis. A better-suited design is proposed, and a simple ad-hoc correction is offered that reconciles the standard test.

Hill, L.G.

1997-10-01T23:59:59.000Z

119

Nitrate analysis of snow and ice core samples collected in the vicinity of a waste detonation event, McMurdo Station, Antarctica  

Science Conference Proceedings (OSTI)

On December 30, 1991, a small quantity of hazardous materials was detonated at a site near McMurdo Station, Antarctica. The materials involved in the detonation represented highly reactive or explosive wastes that could not be transported safely for disposal in the United States. Detonation was therefore considered the safest and most effective means for disposing these hazardous materials. One concern regarding the detonation of these substances was that the process could generate or distribute measurable quantities of contaminants to the area surrounding the detonation site. Nitrate was selected as a tracer to document the distribution of contaminants from the detonation. Snow and ice cores were collected about 4 months after the event. These cores were analyzed for nitrate concentrations in May 1993, and a map was generated to show the extent of nitrate contamination. This report describes the collection of these samples and summarizes the analytical results.

White, G.J.; Lugar, R.M.; Crockett, A.B.

1994-07-01T23:59:59.000Z

120

Application of Statistical Quality Control Techniques to Detonator Fabrication: Feasibility Study  

SciTech Connect

A feasibility study was performed on the use of process control techniques which might reduce the need for a duplicate inspection by production inspection and quality control inspection. Two active detonator fabrication programs were selected for the study. Inspection areas accounting for the greatest percentage of total inspection costs were selected by applying "Pareto's Principle of Maldistribution." Data from these areas were then gathered and analyzed by a process capabiltiy study.

Jones, J. Frank

1971-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wireless sensor network system for supporting nursing context-awareness  

Science Conference Proceedings (OSTI)

We developed a wireless sensor network system for supporting context-awareness of nursing activities in hospitals. Our system is aimed at automated recording of nursing work, providing context-aware services to nurses and visualising analytical results ...

Futoshi Naya; Ren Ohmura; Masakazu Miyamae; Haruo Noma; Kiyoshi Kogure; Michita Imai

2011-11-01T23:59:59.000Z

122

Detonability of DMSO/LX-10-1 and DMSO/PBX-9404 solutions  

SciTech Connect

Although Lawrence Livermore National Laboratory has been involved in weapons disassembly since its involvement in weapons design, the Lab was recently requested by the Department of Energy to extend its responsibility for LLNL-designed weapons to include dismantlement of some systems in the cold war arsenal. Dissolution of LX-10-1 and PBX-9404 explosive from two artillery fired atomic projectiles (AFAPs) can be accomplished using dimethyl sulfoxide. The composition of LX-10-1 and PBX-9404 are given. The authors have evaluated the detonability of solutions of these two plastic bonded explosives in dimethyl sulfoxide (DMSO) under shock and thermal scenarios based on the UN ``Recommendations on the Transport of Dangerous Goods - Tests and Criteria`` (ST/SG/AC.10/11) and US Army Technical Bulletin 700-2. Prior to the relatively large scale shock and thermal sensitivity testing, small scale safety tests and thermochemical code calculations were used as a preliminary estimate of the detonability and hazards associated with up to 33% of these explosives in DMSO. Thermochemical calculations, small scale safety testing, and gap testing all indicate that these solutions are not detonable. They are currently in the process of evaluating these solutions using the small scale cookoff bomb (SCB) test.

Helm, F.; Hoffman, D.M.

1994-06-29T23:59:59.000Z

123

Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN  

Science Conference Proceedings (OSTI)

Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

Chipman, V D

2011-09-20T23:59:59.000Z

124

Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario  

E-Print Network (OSTI)

We develop an improved method for tracking the nuclear flame during the deflagration phase of a Type Ia supernova, and apply it to study the variation in outcomes expected from the gravitationally confined detonation (GCD) paradigm. A simplified 3-stage burning model and a non-static ash state are integrated with an artificially thickened advection-diffusion-reaction (ADR) flame front in order to provide an accurate but highly efficient representation of the energy release and electron capture in and after the unresolvable flame. We demonstrate that both our ADR and energy release methods do not generate significant acoustic noise, as has been a problem with previous ADR-based schemes. We proceed to model aspects of the deflagration, particularly the role of buoyancy of the hot ash, and find that our methods are reasonably well-behaved with respect to numerical resolution. We show that if a detonation occurs in material swept up by the material ejected by the first rising bubble but gravitationally confined to the white dwarf (WD) surface (the GCD paradigm), the density structure of the WD at detonation is systematically correlated with the distance of the deflagration ignition point from the center of the star. Coupled to a suitably stochastic ignition process, this correlation may provide a plausible explanation for the variety of nickel masses seen in Type Ia Supernovae.

D. M. Townsley; A. C. Calder; S. M. Asida; I. R. Seitenzahl; F. Peng; N. Vladimirova; D. Q. Lamb; J. W. Truran

2007-06-07T23:59:59.000Z

125

Daily Scheduling of Nurses in Operating Suites  

E-Print Network (OSTI)

This, in turn, leads to reduced patient safety and substandard treatment ... to improve the nurse scheduling process (Ernst et al., 2004). Recent surveys include ...

126

Research utilisation in nursing practice : Barriers and facilitators.  

E-Print Network (OSTI)

??Research utilisation in nursing practice - barriers and facilitators To improve and develop nursing practice it is important that research findings are utilised by the… (more)

Nilsson Kajermo, Kerstin

2004-01-01T23:59:59.000Z

127

The effect of initial temperature on flame acceleration and deflagration-to-detonation transition phenomenon  

SciTech Connect

The High-Temperature Combustion Facility at BNL was used to conduct deflagration-to-detonation transition (DDT) experiments. Periodic orifice plates were installed inside the entire length of the detonation tube in order to promote flame acceleration. The orifice plates are 27.3-cm-outer diameter, which is equivalent to the inner diameter of the tube, and 20.6-cm-inner diameter. The detonation tube length is 21.3-meters long, and the spacing of the orifice plates is one tube diameter. A standard automobile diesel engine glow plug was used to ignite the test mixture at one end of the tube. Hydrogen-air-steam mixtures were tested at a range of temperatures up to 650K and at an initial pressure of 0.1 MPa. In most cases, the limiting hydrogen mole fraction which resulted in DDT corresponded to the mixture whose detonation cell size, {lambda}, was equal to the inner diameter of the orifice plate, d (e.g., d/{lambda}=1). The only exception was in the dry hydrogen-air mixtures at 650K where the DDT limit was observed to be 11 percent hydrogen, corresponding to a value of d/{lambda} equal to 5.5. For a 10.5 percent hydrogen mixture at 650K, the flame accelerated to a maximum velocity of about 120 mIs and then decelerated to below 2 mIs. By maintaining the first 6.1 meters of the vessel at the ignition end at 400K, and the rest of the vessel at 650K, the DDT limit was reduced to 9.5 percent hydrogen (d/{lambda}=4.2). This observation indicates that the d/{lambda}=1 DDT limit criteria provides a necessary condition but not a sufficient one for the onset of DDT in obstacle laden ducts. In this particular case, the mixture initial condition (i.e., temperature) resulted in the inability of the mixture to sustain flame acceleration to the point where DDT could occur. It was also observed that the distance required for the flame to accelerate to the point of detonation initiation, referred to as the run-up distance, was found to be a function of both the hydrogen mole fraction and the mixture initial temperature. Decreasing the hydrogen mole fraction or increasing the initial mixture temperature resulted in longer run-up distances. The density ratio across the flame and the speed of sound in the unburned mixture were found to be two parameters which influence the run-up distance.

Ciccarelli, G.; Boccio, J.L.; Ginsberg, T.; Finfrock, C.; Gerlach, L. [Brookhaven National Lab., Upton, NY (United States); Tagawa, H. [Nuclear Power Engineering Corp., Tokyo (Japan); Malliakos, A. [Nuclear Regulatory Commission, Washington, DC (United States)

1998-05-01T23:59:59.000Z

128

HELIUM SHELL DETONATIONS ON LOW-MASS WHITE DWARFS AS A POSSIBLE EXPLANATION FOR SN 2005E  

SciTech Connect

Recently, several Type Ib supernovae (SNe; with the prototypical SN 2005E) have been shown to have atypical properties. These SNe are faint (absolute peak magnitude of {approx} - 15) and fast SNe that show unique composition. They are inferred to have low ejecta mass (a few tenths of a solar mass) and to be highly enriched in calcium, but poor in silicon elements and nickel. These SNe were therefore suggested to belong to a new class of calcium-rich faint SNe explosions. Their properties were proposed to be the result of helium detonations that may occur on helium accreting white dwarfs. In this paper, we theoretically study the scenario of helium detonations and focus on the results of detonations in accreted helium layers on low-mass carbon-oxygen (CO) cores. We present new results from one-dimensional simulations of such explosions, including their light curves and spectra. We find that when the density of the helium layer is low enough the helium detonation produces large amounts of intermediate elements, such as calcium and titanium, together with a large amount of unburnt helium. Alternatively, enough carbon enrichment of the accreted helium as a result of convective undershoot at the early stages of the runaway can avoid the production of iron group elements as the alpha particles are consumed avoiding iron production. Our results suggest that the properties of calcium-rich faint SNe could indeed be consistent with the helium-detonation scenario on small CO cores. Above a certain density (larger CO cores) the detonation leaves mainly {sup 56}Ni and unburnt helium, and the predicted spectrum will unlikely fit the unique features of this class of SNe. Finally, none of our studied models reproduces the bright, fast-evolving light curves of another type of peculiar SNe suggested to originate in helium detonations (SNe 1885A, 1939B, and 2002bj).

Waldman, Roni; Livne, Eli; Glasner, Ami [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Sauer, Daniel [Stockholm University, Department for Astronomy, AlbaNova University Center, 106 91 Stockholm (Sweden); Perets, Hagai [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Mazzali, Paolo [Max-Planck Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); Truran, James W. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Gal-Yam, Avishay [Benoziyo Center for Astrophysics, Faculty of Physics, Weizmann Institute of Science, Rehovot 76100 (Israel)

2011-09-01T23:59:59.000Z

129

Iterated local search in nurse rostering problem  

Science Conference Proceedings (OSTI)

This paper presents how to solve a nurse rostering problem over the real datasets of Centre hospitalier régional de Trois-Rivières hospital in Canada. Due to the complexity of this problem with plenty of hard constraints, we propose an ... Keywords: greedy, iterated local search, nurse rostering, tabu search

Sen Ngoc Vu, Minh H. Nhat Nguyen, Le Minh Duc, Chantal Baril, Viviane Gascon, Tien Ba Dinh

2013-12-01T23:59:59.000Z

130

School of Nursing A Resource Guide for Faculty and Staff  

E-Print Network (OSTI)

­ Contents 2012-2013 Page i CONTENTS SECTION 1: OHSU SCHOOL OF NURSING · School of Nursing Overview-Year, Tenure-Track, Tenured #12;School of Nursing Handbook ­ Contents 2012-2013 Page ii o Affiliate and Joint ............................................................ 44 #12;School of Nursing Handbook ­ Contents 2012-2013 Page iii SECTION 7: ADMINISTRATIVE SERVICES

Chapman, Michael S.

131

Improved estimates of separation distances to prevent unacceptable damage to nuclear power plant structures from hydrogen detonation for gaseous hydrogen storage. Technical report  

DOE Green Energy (OSTI)

This report provides new estimates of separation distances for nuclear power plant gaseous hydrogen storage facilities. Unacceptable damage to plant structures from hydrogen detonations will be prevented by having hydrogen storage facilities meet separation distance criteria recommended in this report. The revised standoff distances are based on improved calculations on hydrogen gas cloud detonations and structural analysis of reinforced concrete structures. Also, the results presented in this study do not depend upon equivalencing a hydrogen detonation to an equivalent TNT detonation. The static and stagnation pressures, wave velocity, and the shock wave impulse delivered to wall surfaces were computed for several different size hydrogen explosions. Separation distance equations were developed and were used to compute the minimum separation distance for six different wall cases and for seven detonating volumes (from 1.59 to 79.67 lbm of hydrogen). These improved calculation results were compared to previous calculations. The ratio between the separation distance predicted in this report versus that predicted for hydrogen detonation in previous calculations varies from 0 to approximately 4. Thus, the separation distances results from the previous calculations can be either overconservative or unconservative depending upon the set of hydrogen detonation parameters that are used. Consequently, it is concluded that the hydrogen-to-TNT detonation equivalency utilized in previous calculations should no longer be used.

Not Available

1994-05-01T23:59:59.000Z

132

Chemical stability of salt cake in the presence of organic materials. [Detonation hazard  

DOE Green Energy (OSTI)

High-level waste stored as salt cake is principally NaNO/sub 3/. Some organic material is known to have been added to the waste tanks. It has been suggested that some of this organic material may have become nitrated and transformed to a detonable state. Arguments are presented to discount the presence of nitrated organics in the waste tanks. Nitrated organics generated accidentally usually explode at the time of formation. Detonation tests show that salt cake and ''worst-case'' organic mixtures are not detonable. Organic mixtures with salt cake are compared with black powder, a related exothermic reactant. Black-powder mixtures of widely varying composition can and do burn explosively; ignition temperatures are 300-450/sup 0/C. However, black-powder-type mixes cannot be ignited by radiation and are shock-insensitive. Temperatures generated by radionuclide decay in the salt are below 175/sup 0/C and would be incapable of igniting any of these mixtures. The expected effect of radiation on organics in the waste tanks is a slow dehydrogenation and depolymerization along with a slight increase in sensitivity to oxidation. The greatest explosion hazard, if any exists, is a hydrogen--oxygen explosion from water radiolysis, but the hydrogen must first be generated and then trapped so that the concentration of hydrogen can rise above 4 vol percent. This is impossible in salt cake. Final confirmation of the safety against organic-related explosive reactions in the salt cake will be based upon analytical determinations of organic concentrations. 12 tables, 5 fig. (DLC)

Beitel, G.A.

1976-04-01T23:59:59.000Z

133

Large-scale molecular dynamics simulations of shock-induced plasticity, phase transformations, and detonation  

SciTech Connect

Modern computers enable routine multimillion-atom molecular dynamics simulations of shock propagation in solids using realistic interatomic potentials, and offer a direct insight into the atomistic processes underlying plasticity, phase transformations, and the detonation of energetic materials. Past, present, and prospects for future simulations will be discussed in the context of prototypical systems for each of these three classes of problems. Initial samples ranging from perfect single crystals, to those with specific isolated defects, to full-fledged polycrystalline materials will be considered.

Germann, T. C. (Timothy C.)

2001-06-01T23:59:59.000Z

134

CONTAINED NUCLEAR DETONATIONS IN FOUR MEDIA-GEOLOGICAL FACTORS IN CAVITY AND CHIMNEY FORMATION  

SciTech Connect

Underground nuclear tests in tuff, alluvium, rock salt, and granite have yielded data essential to the evaluation of the effects of contained nuclear detonations. The data indicate that for these mediums the cavity radius is predictable within plus or minus 20% without regard to the physical or chemical properties of the rock in the immediate shot environment. Properties of the chimney of broken rock resulting from collapse of the cavity, on the other hand, were found to be related to the physical properties of the rock and to preshot structural weaknesses within the rock. (auth)

Boardman, C.R.; Rabb, D.D.; McArthur, R.D.

1964-02-01T23:59:59.000Z

135

High-temperature hydrogen-air-steam detonation experiments in the BNL small-scale development apparatus  

DOE Green Energy (OSTI)

The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a 10-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed initial pressure of 0.1 MPa. Hydrogen-air mixtures with hydrogen composition from 9 to 60 percent by volume and steam fractions up to 35 percent by volume were studied for stoichiometric hydrogen-air-steam mixtures. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K-650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside diameter SSDA test vessel, based upon the onset of single-head spin, decreased from 15 percent hydrogen at 300K down to between 9 and 10 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments.

Ciccarelli, G.; Ginsburg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L. [Brookhaven National Lab., Upton, NY (United States); Sato, K.; Kinoshita, M. [Nuclear Power Engineering Corp., Tokyo (Japan)

1994-08-01T23:59:59.000Z

136

Planning and Response to the Detonation of an Improvised Nuclear Device: Past, Present, and Future Research  

SciTech Connect

While the reality of an improvised nuclear device (IND) being detonated in an American city is unlikely, its destructive power is such that the scenario must be planned for. Upon reviewing the academic literature on the effects of and response to IND events, this report looks to actual responders from around the country. The results from the meetings of public officials in the cities show where gaps exist between theoretical knowledge and actual practice. In addition to the literature, the meetings reveal areas where future research needs to be conducted. This paper recommends that local response planners: meet to discuss the challenges of IND events; offer education to officials, the public, and responders on IND events; incorporate 'shelter-first' into response plans; provide information to the public and responders using the 3 Cs; and engage the private sector (including media) in response plans. In addition to these recommendations for the response planners, the paper provides research questions that once answered will improve response plans around the country. By following the recommendations, both groups, response planners and researchers, can help the country better prepare for and mitigate the effects of an IND detonation.

Bentz, A

2008-07-31T23:59:59.000Z

137

Utilization of the noble gases in studies of underground nuclear detonations  

SciTech Connect

From symposium on noble gases; Las Vegas, Nevada, USA (24 Sep 1973). The Livermore Gas Diagnostics Program employs a number of rare gas isotopes, both stable and radioactive, in its investigations of the phenomenology of underground nuclear detonations. Radioactive gases in a sample are radiochemically purified by elution chromatography, and the separated gases are radioassayed by gamma-ray spectrometry and by internal or thin-window beta proportional counting. Concentrations of the stable gases are determined by mass-spectrometry, following chemical removal of the reactive gases in the sample. The most general application of the noble gases is as device fraction indicators to provide a basis for estimating totals of chimney-gas components. All of the stable rare gases except argon have been used as tracers, as have /sup 127/Xe and /sup 85/Kr. /sup 37/Ar and /sup 85/Kr have proven to be of particular value in the absence of a good tracer material as reference species for studies of chimney-gas chemistry. The rate of mixing of chimney gases and the degree to which the sampled gas truly represents the underground gas mixture can be studied with the aid of the fission- product gases. /sup 222/Ra and He are released to the cavity from the surrounding rock and are therefore useful in studies of the interaction of the detonation with the surrounding medium. (auth)

Smith, C.F.

1973-09-17T23:59:59.000Z

138

Dehydration of the Elderly in Nursing Homes  

E-Print Network (OSTI)

51. 6. Gasper, PM. Water intake of nursing home residents. Jrequires 2,500 mL/day water intake from foods and fluids (determining adequate water intake: 100 mL/kg for the first

Garcia, Marcela Esperanza

2001-01-01T23:59:59.000Z

139

The use of post detonation analysis of stable isotope ratios to determine the type and production process of the explosive involved  

SciTech Connect

The detonation of a series of explosives was performed in a controlled manner to collect the resulting, solid residue or {open_quotes}soot.{close_quotes} This residue was examined to determine the ratios of the stable carbon, hydrogen, and nitrogen isotopes. The goal of the experiment was to determine if these ratios could be used to indicate, from the post detonation residues, the type and origin of the detonated explosive. The ratios of the stated stable isotopes in the undetonated explosive were also determined. Despite some reservations in the quality of the data resulting from contamination by nonexplosive components, certain trends can be discerned. (1) Carbon isotopes allow aromatic explosives to be distinguished from nonaromatic explosives. This trend seems to carry through the detonation so that the distinction might be made after the fact. (2) The amination process for TATB can be detected through the hydrogen and, to some extent, the nitrogen isotope ratios. Unfortunately, the data are not sufficiently good to determine if this differential carries through the detonation. (3) The relative magnitude and sign of the nitrogen isotope ratio seems to carry through the detonation: some exchange with atmospheric nitrogen is probable. Even though this set of experiments must also be viewed as preliminary, there is a definite indication that certain qualitative characteristics of explosives can be detected after the detonation. This {open_quotes}signature{close_quotes} could have application to both intelligence and counter terrorism.

McGuire, R.R.; Velsko, C.A.; Lee, C.G.; Raber, E.

1993-03-05T23:59:59.000Z

140

High-temperature hydrogen-air-steam detonation experiments in the BNL Small-Scale Development Apparatus  

DOE Green Energy (OSTI)

The Small-Scale Development Apparatus (SSDA) was constructed to provide a preliminary set of experimental data to characterize the effect of temperature on the ability of hydrogen-air-steam mixtures to undergo detonations and, equally important, to support design of the larger-scale High-Temperature Combustion Facility (HTCF) by providing a test bed for solution of a number of high-temperature design and operational problems. The SSDA, the central element of which is a lo-cm inside diameter, 6.1-m long tubular test vessel designed to permit detonation experiments at temperatures up to 700K, was employed to study self-sustained detonations in gaseous mixtures of hydrogen, air, and steam at temperatures between 300K and 650K at a fixed pressure of 0.1 MPa. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air gas mixture temperature, in the range 300K to 650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments. Experiments were conducted to measure the rate of hydrogen oxidation in the absence of ignition sources at temperatures of 500K and 650K, for hydrogen-air mixtures of 15 percent and 50 percent, and for a mixture of equimolar hydrogen-air and 30 percent steam at 650K. The rate of hydrogen oxidation was found to be significant at 650K. Reduction of hydrogen concentration by chemical reaction from 50 to 44 percent hydrogen, and from 15 to 11 percent hydrogen, were observed on a time frame of minutes.

Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.; Finfrock, C.; Gerlach, L.; Sato, K.

1993-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

The Trauma: Focus on Triage  

Science Conference Proceedings (OSTI)

This does not occur commonly in civilian circum- ..... ATS 5: Less urgent: 120 min ... Hodgkinson PE, Stewart M (1998) Coping with catastrophe: A handbook of ...

142

Method of detonating explosives for fragmenting oil shale formation toward a vertical free face  

SciTech Connect

A description is given of a method for explosively expanding oil shale formation toward a limited void volume provided by a void excavated in a retort site in formation containing oil shale, wherein said void has at least one vertical free face, the improvement comprising the steps of: placing explosive in a roiw of blasting holes in a remaining portion of unfragmented formation within the retort site adjacent such a vertical free face, said blasting holes being mutually spaced apart along the length of the void; and detonating explosive in the blasting holes in a single round in a time delay sequence progressing along the length of the row of blasting holes for explosivelyexpanding formation in said remaining portion of unfragmented formation toward such vertical free face for forming at least a portion of a fragmented permeable mass of formation particles containing oil shale in an in situ oil shale retort.

Hutchins, N.; Ridley, R.

1980-07-01T23:59:59.000Z

143

Oblique shock wave calculations for detonation waves in brass confined and bare PBXN-111 cylindrical charges  

SciTech Connect

Shock polar theory is used to calculate the angles detonation fronts make with the cylinder wall for brass cased and bare PBXN-111 cylinders. Two extrapolated unreacted PBXN-111 Hugoniot curves are used to calculate these angles. Measured and calculated angles for bare PBXN-111 cylinders are in good agreement for one of the unreacted PBXN-111 Hugoniots. Except for the 100 mm diameter charge, the differences between calculated and measured angles for brass cased charges are beyond experimental error. Limited data suggests that the wave front curvature exhibits a large change right at the brass wall and the resolution in the experiments may not be fine enough to show it clearly. {copyright} {ital 1998 American Institute of Physics.}

Lemar, E.R. [Naval Surface Warfare Center, Indian Head Division, Indian Head, Maryland 20640 (United States); Forbes, J.W. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Cowperthwaite, M. [Enig Associates, Inc., Silver Spring, Maryland 20904 (United States)

1998-07-01T23:59:59.000Z

144

Analysis of sheltering and evacuation strategies for an urban nuclear detonation scenario.  

SciTech Connect

Development of an effective strategy for shelter and evacuation is among the most important planning tasks in preparation for response to a low yield, nuclear detonation in an urban area. This study examines shelter-evacuate policies and effectiveness focusing on a 10 kt scenario in Los Angeles. The goal is to provide technical insights that can support development of urban response plans. Results indicate that extended shelter-in-place can offer the most robust protection when high quality shelter exists. Where less effective shelter is available and the fallout radiation intensity level is high, informed evacuation at the appropriate time can substantially reduce the overall dose to personnel. However, uncertainties in the characteristics of the fallout region and in the exit route can make evacuation a risky strategy. Analyses indicate that only a relatively small fraction of the total urban population may experience significant dose reduction benefits from even a well-informed evacuation plan.

Yoshimura, Ann S.; Brandt, Larry D.

2009-05-01T23:59:59.000Z

145

BIOLOGICAL EFFECTS OF PRESSURE PHENOMENA OCCURRING INSIDE PROTECTIVE SHELTERS FOLLOWING A NUCLEAR DETONATION  

SciTech Connect

In two series of experiments 277 experimental animals, including 66 dogs, 52 rabbits, 52 guinea pigs, 63 rats, and 44 mice, were exposed under selected conditions in six different general types of instrumented above- and belowground shelters to blast produced by nuclear explosions. The distance of the several structures from Ground Zero ranged from 1050 to 5500 ft. The most severe alterations in the pressure environment occurring inside the structures followed the detonation of a nuclear device with a yield approximately 50% greater than nominal. The highest overpressure to which animals were exposed was 85.8 psi, the rise time of which was 4 msec. The overpressure endured for about 570 msec. Overpressures ranged from this maximum downward in 15 other exposure situations to a minimum of 1.3 psi enduring for nearly 1346 msec but rising to a maximum in about 420 msec. The latter pressure occurred inside a reinforced concrete bathroom shelter, which was the only surviving part of a house otherwise totally destroyed, at 4700 ft where the outside incident pressure was about 5 psi. Following the nuclear explosions, all animals were recovered, examined, sacrificed, and subjected to gross and microscopic pathological study. All lesions were tabulated and described. The results of pressure-time data, documenting the variations on the pressure environment, are presented and analyzed, and an exploratory attempt is made to relate the alterations in the pressure environment to the associated pathology observed. A critical review of selected material from the blast and related literature is presented. All data are discussed, and the several problems related to the design and construction of protective shelters are noted and briefly, but analytically, assessed. The most outstanding contribution of the field experiments and the related study of the literature was the unequivocal demonstration that the provision of adequate protective structures can indeed be an effective means of sharply reducing casualties which would otherwise be associated with the detonation of modern large-scale explosive devices. (auth)

White, C.S.; Chiffelle, T.L.; Richmond, D.R.; Lockyear, W.H.; Bowen, I.G.; Goldizen, V.C.; Merideth, H.W.; Kilgore, D.E.; Longwell, B.B.; Parker, J.T.; Sherping, F.; Cribb, M.E.

1956-10-01T23:59:59.000Z

146

White House honors Sandia nurse for helping women veterans, children...  

NLE Websites -- All DOE Office Websites (Extended Search)

Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > White House honors Sandia nurse for helping ... White House honors Sandia nurse for helping women...

147

Nursing Simulation: A Review of the Past 40 Years  

Science Conference Proceedings (OSTI)

Simulation, in its many forms, has been a part of nursing education and practice for many years. The use of games, computer-assisted instruction, standardized patients, virtual reality, and low-fidelity to high-fidelity mannequins have appeared in the ... Keywords: anatomical models, computer-assisted instruction, health care education, high-fidelity patient simulation, low-fidelity patient simulation, nursing education, nursing practice, nursing research, objective structured clinical experience, partial task trainers, standardized patients, virtual reality

Wendy M. Nehring; Felissa R. Lashley

2009-08-01T23:59:59.000Z

148

Measurement of critical energy for direct initiation of spherical detonations in stoichiometric high-pressure H{sub 2}-O{sub 2} mixtures  

SciTech Connect

In this study, the critical energy for direct initiation of spherical detonations in stoichiometric high-pressure hydrogen-oxygen mixtures are measured and investigated to look at the effect of explosion limits on the detonation sensitivity. Results up to an initial pressure of 20 atm are obtained. Experiments are carried out in a spherical bomb and direct initiation is achieved via spark ignition from a high-voltage capacitor discharge. A detailed description of different methods to obtain a good estimate of the correct amount of energy deposited into the mixture used to initiate the detonation, including the calorimeter method and current method, is provided. It is demonstrated that at elevated initial pressure, the second explosion limit effect plays a significant role leading to slow-branching reactions and the detonation sensitivity of hydrogen mixtures is comparable to other common hydrocarbon mixtures at such condition. (author)

Kamenskihs, Vsevolods; Lee, John H.S. [Department of Mechanical Engineering, McGill University, Montreal, Quebec (Canada); Ng, Hoi Dick [Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec (Canada)

2010-09-15T23:59:59.000Z

149

HARVARD MEDICAL SCHOOL NURSES' HEALTH STUDY Please reply to  

E-Print Network (OSTI)

HARVARD MEDICAL SCHOOL NURSES' HEALTH STUDY Please reply to: Channing Laboratory 181 Longwood just a moment to complete this short form! #12;HARVARD MEDICAL SCHOOL NURSES' HEALTH STUDY #12;BEFORE NURSES' HEALTH STUDY - HARVARD MEDICAL SCHOOL 1. 3. 4. What is your date of birth? Have your menstrual

Church, George M.

150

Shock initiation and detonation study on high concentration H2O2/H2O solutions using in-situ magnetic gauges  

SciTech Connect

Concentrated hydrogen peroxide (H{sub 2}O{sub 2}) has been known to detonate for many years. However, because of its reactivity and the difficulty in handling and confining it, along with the large critical diameter, few studies providing basic information about the initiation and detonation properties have been published. We are conducting a study to understand and quantify the initiation and detonation properties of highly concentrated H{sub 2}O{sub 2} using a gas-driven two-stage gun to produce well defined shock inputs. Multiple magnetic gauges are used to make in-situ measurements of the growth of reaction and subsequent detonation in the liquid. These experiments are designed to be one-dimensional to eliminate any difficulties that might be encountered with large critical diameters. Because of the concern of the reactivity of the H{sub 2}O{sub 2} with the confining materials, a remote loading system has been developed. The gun is pressurized, then the cell is filled and the experiment shot within less than three minutes. Several experiments have been completed on {approx}98 wt % H{sub 2}O{sub 2}/H{sub 2}O mixtures; homogeneous shock initiation behavior has been observed in the experiments where reaction is observed. The initial shock pressurizes and heats the mixture. After an induction time, a thermal explosion type reaction produces an evolving reactive wave that strengthens and eventually overdrives the first wave producing a detonation. From these experiments, we have determined unreacted Hugoniot points, times-to-detonation points that indicate low sensitivity (an input of 13.5 GPa produces detonation in 1 {micro}s compared to 9.5 GPa for neat nitromethane), and detonation velocities of high concentration H{sub 2}O{sub 2}/H{sub 2}O solutions of over 6.6 km/s.

Sheffield, Stephen A [Los Alamos National Laboratory; Dattelbaum, Dana M [Los Alamos National Laboratory; Stahl, David B [Los Alamos National Laboratory; Gibson, L Lee [Los Alamos National Laboratory; Bartram, Brian D [Los Alamos National Laboratory; Engelke, Ray [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

151

A Mobile Nursing Information System Based on Human-Computer Interaction Design for Improving Quality of Nursing  

Science Conference Proceedings (OSTI)

A conventional Nursing Information System (NIS), which supports the role of nurse in some areas, is typically deployed as an immobile system. However, the traditional information system can't response to patients' conditions in real-time, causing delays ... Keywords: Human-computer interaction, Nursing information system, Personal digital assistant, Small-screen interface design

Kuo-Wei Su; Cheng-Li Liu

2012-06-01T23:59:59.000Z

152

ENVIRONMENTAL IlONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS  

Office of Legacy Management (LM)

IlONITORING REPORT FOR THE NEVADA TEST SITE IlONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1975 Nonitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 APRIL 1976 This work performed under a Memorandum of Understanding No. AT(26-1)-539 for the U . S . ENERGY RESEARCH & DEVELOPMENT ADMINISTRATION EMSL-LV-5 39-4 May 1976 ENVIRONMENTAL 14ONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December I975 Monitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 APRIL 1976 This work performed under a Memorandum of

153

NUclear EVacuation Analysis Code (NUEVAC) : a tool for evaluation of sheltering and evacuation responses following urban nuclear detonations.  

SciTech Connect

The NUclear EVacuation Analysis Code (NUEVAC) has been developed by Sandia National Laboratories to support the analysis of shelter-evacuate (S-E) strategies following an urban nuclear detonation. This tool can model a range of behaviors, including complex evacuation timing and path selection, as well as various sheltering or mixed evacuation and sheltering strategies. The calculations are based on externally generated, high resolution fallout deposition and plume data. Scenario setup and calculation outputs make extensive use of graphics and interactive features. This software is designed primarily to produce quantitative evaluations of nuclear detonation response options. However, the outputs have also proven useful in the communication of technical insights concerning shelter-evacuate tradeoffs to urban planning or response personnel.

Yoshimura, Ann S.; Brandt, Larry D.

2009-11-01T23:59:59.000Z

154

Parallel Adaptive Simulation of Weak and Strong Transverse-Wave Structures in H2-O2 Detonations  

DOE Green Energy (OSTI)

Two- and three-dimensional simulation results are presented that investigate at great detail the temporal evolution of Mach reflection sub-structure patterns intrinsic to gaseous detonation waves. High local resolution is achieved by utilizing a distributed memory parallel shock-capturing finite volume code that employs block-structured dynamic mesh adaptation. The computational approach, the implemented parallelization strategy, and the software design are discussed.

Deiterding, Ralf [ORNL

2010-01-01T23:59:59.000Z

155

DEFLAGRATION-TO-DETONATION TRANSITION IN LX-04 AS A FUNCTION OF LOADING DENSITY, TEMPERATURE, AND CONFINEMENT  

DOE Green Energy (OSTI)

The potential for deflagration-to-detonation transition (DDT) in LX-04 (85/15 HMX/Viton) is being evaluated as a function of loading density, temperature, and confinement. In the high confinement arrangement, a matrix of tests will be performed with the LX-04 loaded at {approx}50, 70, 90, and {approx}99 %TMD; and temperatures of ambient, 160 C, and 190 C, at each loading density. A more limited set of tests at medium confinement will be conducted. As expected, LX-04 does not undergo DDT at near TMD loadings in both medium and high confinement, although the later still results in significant fragmentation. In high confinement at pour density (50.3 %TMD), LX-04 does not transit to detonation at 160 C, but does at ambient and 190 C with the shortest run distance to detonation (l) at ambient temperature. With a 70% TMD loading at ambient temperature, l was even less. The limited ambient temperature measurements for l in high confinement are similar to previous data for 91/9 HMX/wax, which has nearly the same %volume of HMX as LX-04.

Sandusky, H W; Granholm, R H; Bohl, D G; Hare, D E; Vandersall, K S; Garcia, F

2005-06-01T23:59:59.000Z

156

FAILED-DETONATION SUPERNOVAE: SUBLUMINOUS LOW-VELOCITY Ia SUPERNOVAE AND THEIR KICKED REMNANT WHITE DWARFS WITH IRON-RICH CORES  

SciTech Connect

Type Ia supernovae (SNe Ia) originate from the thermonuclear explosions of carbon-oxygen (C-O) white dwarfs (WDs). The single-degenerate scenario is a well-explored model of SNe Ia where unstable thermonuclear burning initiates in an accreting, Chandrasekhar-mass WD and forms an advancing flame. By several proposed physical processes, the rising, burning material triggers a detonation, which subsequently consumes and unbinds the WD. However, if a detonation is not triggered and the deflagration is too weak to unbind the star, a completely different scenario unfolds. We explore the failure of the gravitationally confined detonation mechanism of SNe Ia, and demonstrate through two-dimensional and three-dimensional simulations the properties of failed-detonation SNe. We show that failed-detonation SNe expel a few 0.1 M{sub Sun} of burned and partially burned material and that a fraction of the material falls back onto the WD, polluting the remnant WD with intermediate-mass and iron-group elements that likely segregate to the core forming a WD whose core is iron rich. The remaining material is asymmetrically ejected at velocities comparable to the escape velocity from the WD, and in response, the WD is kicked to velocities of a few hundred km s{sup -1}. These kicks may unbind the binary and eject a runaway/hypervelocity WD. Although the energy and ejected mass of the failed-detonation SN are a fraction of typical thermonuclear SNe, they are likely to appear as subluminous low-velocity SNe Ia. Such failed detonations might therefore explain or are related to the observed branch of peculiar SNe Ia, such as the family of low-velocity subluminous SNe (SN 2002cx/SN 2008ha-like SNe).

Jordan, George C. IV; Van Rossum, Daniel R. [Center for Astrophysical Thermonuclear Flashes, University of Chicago, Chicago, IL 60637 (United States); Perets, Hagai B. [Physics Department, Technion, Israel Institute of Technology, Haifa 32000 (Israel); Fisher, Robert T. [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States)

2012-12-20T23:59:59.000Z

157

Method of detonating explosives for fragmenting oil shale formation toward a vertical free face  

SciTech Connect

An oil shale formation is explosively expanded toward a limited void volume for forming an in situ oil shale retort in a subterranean formation. A void in the form of a narrow vertical slot is excavated within a retort site, leaving at least one portion of unfragmented formation within the retort site adjacent a vertical free face of the slot. Explosive is placed in a row of vertical blasting holes in the remaining portion of unfragmented formation adjacent the vertical free face. The blasting holes are mutually spaced apart along the length of the slot, and the row of blasting holes extends parallel to the vertical free face. Explosive in the blasting holes is detonated in a time delay sequence starting near one end of the slot and progressing along the length of the slot for explosively expanding the formation in the vertical free face. A fragmented permeable mass of formation particles containing oil shale is formed in an in situ oil shale retort. 34 claims.

Hutchins, N.M.; Ridley, R.D.

1980-07-01T23:59:59.000Z

158

Estimating the exposure to first receivers from a contaminated victim of a radiological dispersal device detonation  

E-Print Network (OSTI)

The threat of a Radiological Dispersal Device (RDD) detonation arouses the concern of contaminated victims of all ages. The purpose of this study was to investigate the dose to a uniformly contaminated five-year old male. It also explores the exposure rates surrounding the victim to be used by first receivers to estimate their exposure from the victim. The victim was modeled as an anthropomorphic phantom using the BodyBuilder program. A thin layer of source material was added to the surface of the phantom’s skin to simulate whole-body contamination. The computer code MCNP5 was used to tally the doses to the individual organs of the phantom and create a mesh to generate contour exposure rate lines. Using an activity of 37 GBq m-2, the five-year-old victim received an effective dose 158.23 mSv in one hour. Contour lines were produced that showed the exposure rates around the victims ranging from 0.5 to 10 R/h. The contour exposure-rate contour lines were also generated after the removal of contaminated clothing. Removing the victim’s clothing reduced the exposure rates by eighty percent.

Phillips, Holly Anne

2008-08-01T23:59:59.000Z

159

Detonation shock dynamics calibration for pBX 9502 with temperature, density, and material lot variations  

Science Conference Proceedings (OSTI)

We present a methodology for scaling the detonation shock dynamics D{sub n}[{kappa}] calibration function to accommodate variations in the HE starting material. We apply our model to the insensitive TATB-based explosive PBX 9502, for which we have enough front curvature rate stick data to characterize three material attributes: initial temperature T{sub 0}, nominal density {rho}{sub 0}, and manufacturing lot (representing different microstructures). A useful feature of the model is that it returns an absolute estimate for the reaction zone thickness, {delta}. Lacking demonstrated material metrics(s), we express microstructural variation indirectly, in terms of its effect on {delta}. This results in a D{sub n}[{kappa}] function that depends on T{sub 0}, {rho}{sub 0}, and {delta}. After examining the separate effects of each parameter on D{sub n}[{kappa}], we compute an arc geometry as a validation problem. We compare the calculation to a PBX 9502 arc experiment that was pressed from one of the calibrated HE lots. The agreement between the model and experiment is excellent. We compute worst, nominal, and best-performing material parameter combinations to show how much difference accrues throughout the arc.

Hill, Larry G [Los Alamos National Laboratory; Aslam, Tariq D [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

160

Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort  

DOE Patents (OSTI)

In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.

Studebaker, Irving G. (Grand Junction, CO); Hefelfinger, Richard (Grand Junction, CO)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Non-molecular Phases of H2O and HF Under Detonation-like Conditions  

DOE Green Energy (OSTI)

Energetic materials are known to produce simple molecular species, such as HF and H{sub 2}O, during detonation. The behavior of such species under conditions of simultaneous high pressure and temperature are unknown. The predicted high pressure superionic phases of water and HF are investigated via ab initio molecular dynamics. We study water at densities of 2.0-3.0 g/cc (34 -115 GPa) along the 2000 K isotherm. We find that extremely rapid (superionic) diffusion of protons occurs in a fluid phase at pressures between 34 and 58 GPa. A transition to a stable body-centered cubic (bcc) O lattice with superionic proton conductivity is observed between 70 and 75 GPa. We find that all molecular species at pressures greater than 75 GPa are too short lived to be classified as bound states. Up to 95 GPa, we find a solid superionic phase characterized by covalent O-H bonding. Above 95 GPa, a transient network phase is found characterized by symmetric O-OH hydrogen bonding with nearly 50% covalent character. Ab initio molecular dynamics H simulations of HF were conducted at densities of 1.8-4.0 g/cc along the 900 K isotherm. According to our simulations, a unique form of (symmetric) hydrogen bonding could play a significant role in superionic conduction. Our work shows that the Chapman-Jouget and Zeldovich-von Neumann Doring (ZND) states of some energetic materials are close to the molecular to non-molecular transition.

Fried, L E; Goldman, N; Kuo, I W; Mundy, C J

2006-07-10T23:59:59.000Z

162

FLAMES IN TYPE Ia SUPERNOVA: DEFLAGRATION-DETONATION TRANSITION IN THE OXYGEN-BURNING FLAME  

Science Conference Proceedings (OSTI)

The flame in a Type Ia supernova is a conglomerate structure that, depending on density, may involve separate regions of carbon, oxygen, and silicon burning, all propagating in a self-similar, subsonic front. The separation between these three burning regions increases as the density declines until eventually, below about 2 x 10{sup 7} g cm{sup -3}, only carbon burning remains active, the other two burning phases having 'frozen out' on stellar scales. Between 2 and 3 x 10{sup 7} g cm{sup -3}, however, there remains an energetic oxygen-burning region that trails the carbon burning by an amount that is sensitive to the turbulence intensity. As the carbon flame makes a transition to the distributed regime (Karlovitz number {approx}> 10), the characteristic separation between the carbon- and oxygen-burning regions increases dramatically, from a fraction of a meter to many kilometers. The oxygen-rich mixture between the two flames is created at a nearly constant temperature, and turbulence helps to maintain islands of well-mixed isothermal fuel as the temperature increases. The delayed burning of these regions can be supersonic and could initiate a detonation.

Woosley, S. E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Kerstein, A. R. [Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551 (United States); Aspden, A. J., E-mail: woosley@ucolick.org, E-mail: arkerst@sandia.gov, E-mail: ajaspden@lbl.gov [Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, CA 94720 (United States)

2011-06-10T23:59:59.000Z

163

OLDER HOME HEALTH REGISTERED NURSES: WORK PERCEPTIONS AND SATISFACTION.  

E-Print Network (OSTI)

??There is a current and growing nursing shortage in the United States, at the same time that more aging baby boomers require health services. This… (more)

Rossman, Therese L.

2011-01-01T23:59:59.000Z

164

Predictors of Nursing Home Placement for Home Care Consumers.  

E-Print Network (OSTI)

??The purpose of this study was to identify predictors of nursing home placement for individuals receiving home care services through a locally funded levy program.… (more)

Nelson, Ian M

2004-01-01T23:59:59.000Z

165

An experimental study of deflagration to detonation transition supported by dust layers  

SciTech Connect

The roles which dust layers play in severe dust explosions were investigated in a 70-m-long and 30-cm-diameter horizontal Flame Acceleration Tube (FAT) with one end closed and the other end open to the atmosphere. A variety of dusts such as corn dust, cornstarch, Mira Gel starch, wheat dust, and wood flour were layered on the bottom half of the FAT. Flame and detonation propagation parameters were closely monitored at different locations along the FAT. The study demonstrated that the moisture content of the dust, the exposed area of the dust layers to the convective flow, and the physical characteristics of the dust are the factors that most determine the severity of layered dust explosions, indicating that prelayered dust combustion is dominated by the dust/air mixing process. While the dust explosion rate constant K{sub st} can be used to characterize dust explosibility in predispersed dust in constant volume enclosures, it does not appear to characterize the behavior of layered dust explosions. Qualitative measurements of the variation of dust concentration during a layered dust explosion were obtained. The measurements indicated that the dust concentration at the time of flame arrival is highly nonuniform. The maximum pressure rise (P{sub max} {minus} P{sub 0}) within the FAT during a layered dust explosion was found to vary linearly with the flame velocity V{sub f} when V{sub f} is subsonic. As V{sub f} reaches supersonic values the maximum pressure increase was found to vary with the V{sub f}{sup 2}, the square of the flame velocity. This result was found to be independent of dust type and concentration.

Li, Y.C.; Kauffman, C.W.; Sichel, M. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Aerospace Engineering] [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Aerospace Engineering

1995-02-01T23:59:59.000Z

166

Ignition of a deuterium micro-detonation with a gigavolt super marx generator  

E-Print Network (OSTI)

The Centurion-Halite experiment demonstrated the feasibility of igniting a deuterium-tritium micro-explosion with an energy of not more than a few megajoule, and the Mike test, the feasibility of a pure deuterium explosion with an energy of more than 10^6 megajoule. In both cases the ignition energy was supplied by a fission bomb explosive. While an energy of a few megajoule, to be released in the time required of less than 10^-9 sec, can be supplied by lasers and intense particle beams, this is not enough to ignite a pure deuterium explosion. Because the deuterium-tritium reaction depends on the availability of lithium, the non-fusion ignition of a pure deuterium fusion reaction would be highly desirable. It is shown that this goal can conceivably be reached with a "Super Marx Generator", where a large number of "ordinary" Marx generators charge (magnetically insulated) fast high voltage capacitors of a second stage Marx generator, called a "Super Marx Generator", ultimately reaching gigavolt potentials with an energy output of 100 megajoule. An intense 10^7 Ampere-GeV proton beam drawn from a "Super Marx Generator" can ignite a deuterium thermonuclear detonation wave in a compressed deuterium cylinder, where the strong magnetic field of the proton beam entraps the charged fusion reaction products inside the cylinder. In solving the stand-off problem, the stiffness of a GeV proton beam permits to place the deuterium target at a comparatively large distance from the wall of a cavity confining the deuterium micro-explosion.

Friedwardt Winterberg

2008-12-01T23:59:59.000Z

167

The State of the Art of Nurse Rostering  

Science Conference Proceedings (OSTI)

Nurse rostering is a complex scheduling problem that affects hospital personnel on a daily basis all over the world. The need for quality software solutions is acute for a number of reasons. In particular, it is very important to efficiently utilise ... Keywords: hospital personnel scheduling, nurse rostering

Edmund K. Burke; Patrick De Causmaecker; Greet Vanden Berghe; Hendrik Van Landeghem

2004-11-01T23:59:59.000Z

168

Late Wash/Nitric Acid flowsheet hydrogen generation bases for simulation of a deflagration/detonation in the DWPF CPC  

DOE Green Energy (OSTI)

Hydrogen generation data obtained from IDMS runs PX4 and PX5 will be used to determine a bases for a deflagration/detonation simulation in the DWPF CPC. This simulation is necessary due to the new chemistry associated with the Late Wash/ Nitric Acid flowsheet and process modifications associated with the presence of H{sub 2} in the offgas. The simulation will be performed by Professor Van Brunt from the University of South Carolina. The scenario which leads up to the deflagration/detonation simulation will be chosen such that the following conditions apply. The SRAT is filled to its maximum operating level with 9,600 gal of sludge, which corresponds to the minimum vapor space above the sludge. The SRAT is at the boiling point, producing H{sub 2} at a very low rate (about 10 % of the peak) and 15 scfm of air inleakage is entering the SRAT. Then, the H{sub 2} generation rate will be allowed to increase exponentially (catalyst activation) until it readies the peak H{sub 2} generation rate of the IDMS run, after which the H{sub 2} generation rate will be allowed to decay exponentially (catalyst deactivation) until the total amount of H2 produced is between 85 and 100% of that produced during the IDMS run.

Ritter, J.A.

1993-05-07T23:59:59.000Z

169

Propagation or failure of detonation across an air gap in an LX-17 column: continuous time-dependent detonation or shock speed using the Embedded Fiber Optic (EFO) technique  

SciTech Connect

The detailed history of the shock/detonation wave propagation after crossing a room-temperature-room-pressure (RTP) air gap between a 25.4 mm diameter LX-17 donor column and a 25.4 mm diameter by 25.4 mm long LX-17 acceptor pellet is investigated for three different gap widths (3.07, 2.08, and 0.00 mm) using the Embedded Fiber Optic (EFO) technique. The 2.08 mm gap propagated and the 3.07 mm gap failed and this can be seen clearly and unambiguously in the EFO data even though the 25.4 mm-long acceptor pellet would be considered quite short for a determination by more traditional means such as pins.

Hare, D E; Chandler, J B; Compton, S M; Garza, R G; Grimsley, D A; Hernandez, A; Villafana, R J; Wade, J T; Weber, S R; Wong, B M; Souers, P C

2008-01-16T23:59:59.000Z

170

Slag characterization and removal using pulse detonation for coal gasification. Quarterly research report, October--December, 1995  

SciTech Connect

Experiments will mainly focus on breaking the bonds within the slag itself using detonation wave. For the experiments, initial suggestion was to build up slag deposit around a representative tube by placing it inside the convection pass of an actual boiler at the Northern States Power Company. But it was later concluded that once the tube is cooled to room condition, the thermal stress will greatly reduce the bonding between the heat transfer surface and the slag. It was concluded that the slag will be attached to the tube using high density epoxy resin. High density epoxy will be used so that they do not diffuse into the slag and strengthen the bonding within the slag. Suggestions on candidate epoxy are provided by MTI lab. MTI also provided PVAMU with different kinds of slags for testing. The deposits for characterization were from a subbituminous coal fired utility boiler.

Huque, Z.; Zhou, J.; Mei, D.; Biney, P.O.

1995-12-25T23:59:59.000Z

171

Homecare risk management: nursing issues related to technology  

Science Conference Proceedings (OSTI)

Traditional risk management may not address the needs of technology being introduced into homecare situations for nurses. We propose to augment traditional risk management with insights from Prevention through Design and The 8 Rights giving a more technology ...

Juliana J. Brixey, James P. Turley

2013-07-01T23:59:59.000Z

172

Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Hillbrook Nursing Home Space Heating Low Temperature Geothermal Facility Facility Hillbrook Nursing Home Sector Geothermal energy Type Space Heating Location Clancy, Montana Coordinates 46.4652096°, -111.9863826° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

173

White House honors Sandia nurse for helping women veterans, children |  

National Nuclear Security Administration (NNSA)

White House honors Sandia nurse for helping women veterans, children | White House honors Sandia nurse for helping women veterans, children | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > White House honors Sandia nurse for helping ... White House honors Sandia nurse for helping women veterans, children Posted By Office of Public Affairs

174

Predicting injury among nursing personnel using personal risk factors  

E-Print Network (OSTI)

The purpose of this thesis was to develop a means of predicting future injury among nursing personnel working in a hospital system. Nursing has one of the highest incidence rates of musculoskeletal injuries among U.S. occupations. Endemic to the job are tasks such as rolling, sitting, standing, and transferring large, and often times, uncooperative patients. These tasks often place large biomechanical stresses on the musculoskeletal system and, in some cases, contribute to or cause a musculoskeletal injury. Given the current nursing shortage, it is imperative to keep nurses injury-free and productive so they can provide patient care services. Even though a large number of nursing personnel are injured every year and most are exposed to these high levels of biomechanical stress, the majority of nurses are injury-free. The question then arises "Why do some nurses have injuries while others do not?" The purpose of this thesis was to determine whether individual attributes in a population of nurses were associated with risk of future injury. The subject population was comprised of 140 nursing personnel at a local hospital system hired between April 1995 and February 1999. Data on individual attributes, such as patient demographics, previous injuries, posture, joint range of motion, flexibility, and muscular strength, was ascertained during a post-offer screening on these personnel. Twenty six (19%) nurses experienced an injury associated with the axial skeleton. Chi square test for homogeneity for the categorical predictor variables, and the Student's T-test for continuous predictor variables were used to determine if any individual attributes were associated with future injuries. None of the variables were associated with a risk of future axial skeletal injury. Practical application of these results for St. Joseph Regional Health Center, and possibly other acute care facilities, directs us to stop costly pre-employment/post-offer testing for the purpose of identifying injury prone nurse applicants. Secondly, it allows the focus of limited resources to be on making the job safer through administrative and engineering controls.

Gjolberg, Ivar Henry

2003-12-01T23:59:59.000Z

175

Detonation cell size measurements in high-temperature hydrogen-air-steam mixtures at the BNL high-temperature combustion facility  

DOE Green Energy (OSTI)

The High-Temperature Combustion Facility (HTCF) was designed and constructed with the objective of studying detonation phenomena in mixtures of hydrogen-air-steam at initially high temperatures. The central element of the HTCF is a 27-cm inner-diameter, 21.3-m long cylindrical test vessel capable of being heating to 700K {+-} 14K. A unique feature of the HTCF is the {open_quotes}diaphragmless{close_quotes} acetylene-oxygen gas driver which is used to initiate the detonation in the test gas. Cell size measurements have shown that for any hydrogen-air-steam mixture, increasing the initial mixture temperature, in the range of 300K to 650K, while maintaining the initial pressure of 0.1 MPa, decreases the cell size and thus makes the mixture more detonable. The effect of steam dilution on cell size was tested in stoichiometric and off-stoichiometric (e.g., equivalence ratio of 0.5) hydrogen-air mixtures. Increasing the steam dilution in hydrogen-air mixtures at 0.1 MPa initial pressure increases the cell size, irrespective of initial temperature. It is also observed that the desensitizing effect of steam diminished with increased initial temperature. A 1-dimensional, steady-state Zel`dovich, von Neumann, Doring (ZND) model, with full chemical kinetics, has been used to predict cell size for hydrogen-air-steam mixtures at different initial conditions. Qualitatively the model predicts the overall trends observed in the measured cell size versus mixture composition and initial temperature and pressure. It was found that the proportionality constant used to predict detonation cell size from the calculated ZND model reaction zone varies between 10 and 100 depending on the mixture composition and initial temperature. 32 refs., 35 figs.

Ciccarelli, G.; Ginsberg, T.; Boccio, J.L. [and others

1997-11-01T23:59:59.000Z

176

Radiological Triage | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

177

THE UNIVERSITY OF TEXAS MEDICAL BRANCH SCHOOL OF NURSING  

E-Print Network (OSTI)

of the fundamental principles of pharmacology and pathophysiology for nursing practice. Learning objectives://www.utmb.edu/enrollmentservices/about/catalogs.html), and SON Student Handbook, (http://www.son.utmb.edu/studentaffairs/handbooks/), taken together guide. Student Handbook: Each student is responsible for knowing and adhering to the University of Texas Medical

Wood, James B.

178

A 0-1 goal programming model for nurse scheduling  

Science Conference Proceedings (OSTI)

In this study, a computerized nurse-scheduling model is developed. The model is approached through a 0-1 linear goal program. It is adapted to Riyadh Al-Kharj hospital Program (in Saudi Arabia) to improve the current manual-made schedules. The developed ...

M. N. Azaiez; S. S. Al Sharif

2005-03-01T23:59:59.000Z

179

Nursing home leadership styles and performance outcomes| A quantitative study about leader relationships.  

E-Print Network (OSTI)

?? This quantitative multivariate correlational research study used data about nursing home quality from the Centers for Medicare and Medicaid Services and data collected with… (more)

Olinger, Jean Lorraine

2011-01-01T23:59:59.000Z

180

Detonating an insensitive explosive  

DOE Patents (OSTI)

A method for making 3-amino-5-nitro-1,2,4-triazole using ammonium 3,5-dinitro-1,2,4-triazole and hydrazine hydrate as starting materials and a method for providing energy derived from 3-amino-5-nitro-1,2,4-triazole.

Lee, Kien-yin (Los Alamos, NM); Storm, Carlyle B. (Santa Fe, NM)

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geothermal greenhouse-heating facilities for the Klamath County Nursing Home, Klamath Falls, Oregon  

DOE Green Energy (OSTI)

The Klamath County Nursing Home, located in Klamath Falls, Oregon, was constructed in 1976. The building of 55,654 square feet currently houses care facilities for approximately 120 persons. During the initial planning for the Nursing Home, the present site was selected primarily on the basis of its geothermal resource. This resource (approx. 190/sup 0/F) currently provides space and domestic hot water heating for the Nursing Home, Merle West Medical Center and the Oregon Institute of Technology. The feasibility of installing a geothermal heating system in a planned greenhouse for the Nursing Home is explored. The greenhouse system would be tied directly to the existing hot water heating system for the Nursing Home.

Not Available

1982-02-01T23:59:59.000Z

182

Restaurant-style dining in skilled nursing facilities: resident and employee satisfaction.  

E-Print Network (OSTI)

??The culture-change movement in skilled nursing facilities is challenging foodservices to consider their role in supporting the paradigm shift to person-centered care. Optimal nutrition for… (more)

Leson, Suzanne M.

2009-01-01T23:59:59.000Z

183

A Humanist Approach to Understanding the Migration of Filipino Nurses to the United States  

E-Print Network (OSTI)

The global nursing shortage created opportunities for registered nurses from less developed countries to improve their working and living conditions through migration to more progressive and affluent nations. In the Philippines, this phenomenon left the country devoid of the much needed health care professionals. In this research study, I described the lived experiences of eleven indigenous Filipino nurses who migrated to the United States. Through the phenomenology approach, I was able to probe into the meaning of the migration as the participants lived through it, approaching it from a humanist perspective and using Abraham Maslow's theory on the hierarchy of needs as the framework. The study was intended to illustrate how the economic, social, and political characteristics of both countries impacted the Filipino nurses' behavior and thought processes while in pursuit of personal goals. Ultimately, this study could be used as a guide in the development of employment and health care policies that are more responsive to the current state of the nursing profession.

Yumol, Benjamin B.

2009-05-01T23:59:59.000Z

184

Open apex shaped charge-type explosive device having special disc means with slide surface thereon to influence movement of open apex shaped charge liner during collapse of same during detonation  

DOE Patents (OSTI)

An open apex shape charge explosive device is disclosed having an inner liner defining a truncated cone, an explosive charge surrounding the truncated inner liner, a primer charge, and a disc located between the inner liner and the primer charge for directing the detonation of the primer charge around the end edge of the disc means to the explosive materials surrounding the inner liner. The disc comprises a material having one or more of: a higher compressive strength, a higher hardness, and/or a higher density than the material comprising the inner liner, thereby enabling the disc to resist deformation until the liner collapses. The disc has a slide surface thereon on which the end edge of the inner liner slides inwardly toward the vertical axis of the device during detonation of the main explosive surrounding the inner liner, to thereby facilitate the inward collapse of the inner liner. In a preferred embodiment, the geometry of the slide surface is adjusted to further control the collapse or {beta} angle of the inner liner.

Murphy, M.J.

1992-12-31T23:59:59.000Z

185

THE RABIT: A RAPID AUTOMATED BIODOSIMETRY TOOL FOR RADIOLOGICAL TRIAGE  

E-Print Network (OSTI)

rates in human populations--experiences from the Chernobyl catastrophe. Environ Mol Mutagen 30. Radio- biological evaluation of immigrants from the vicinity of Chernobyl. Int J Radiat Biol 72

Brenner, David Jonathan

186

Triage: balancing energy and quality of service in a microserver  

Science Conference Proceedings (OSTI)

The ease of deployment of battery-powered and mobile systems is pushing the network edge far from powered infrastructures. A primary challenge in building untethered systems is offering powerful aggregation points and gateways between heterogeneous end-points---a ... Keywords: embedded devices, low-power computing, microservers, pervasive computing, power management, quality of service, sensor networks

Nilanjan Banerjee; Jacob Sorber; Mark D. Corner; Sami Rollins; Deepak Ganesan

2007-06-01T23:59:59.000Z

187

Expensive Moisture/Insulation System Problems at Several Central Florida and South Texas Nursing Homes  

E-Print Network (OSTI)

These nursing homes were designed and built in the 80's and 90's. They experienced similar design and construction deficiencies and expensive repairs. Some of the issues to be discussed in this paper are the interactions of architectural and HVAC shortcomings that result in a synergistic increase in mold, mildew, corrosion and rot. ASHRAE 62 requires 24 hour per day toilet exhaust and fresh air. What do you do to control humidity when the A/C duty cycles when the thermostat is satisfied? There needs to be humidity control designed into the HVAC system. Architects and contractors frequently take a "head in the sand" approach to wall and attic vapor barriers. This needs to be looked at realistically. We have seen several nursing homes whose moisture/sheet rock damage was severe due to design defects that allowed free interchange of hot humid air between the attic and the space inside interior partitions. Allowing air interchange between the attic and outdoors: can cause overheating of water in pipes in attics where temperaturs reach 150° F. increases condensation due to inadequate details in mechanical insulation on ducts and pipes Vinyl wall covering is well known to be a disaster in this climate but interior decorators continue to specify it on various walls. HVAC balance needs to be considered. Frequently the kitchen exhaust design is not coordinated with the HVAC engineer. There needs to be a reasonable balance between air in and air out of the building. When air is allowed to flow through the insulation system R value is reduced to near 0. In order to prevent mold and mildew and expensive failures, along with even more expensive lawsuits, the HVAC system design and the insulation system design must be integrated.

Lotz, W. A.

2000-01-01T23:59:59.000Z

188

Health-hazard evaluation report No. HETA 90-252-2167, Northland Terrace Nursing and Rehabilitation Center, Columbus, Ohio  

SciTech Connect

In response to a request from management at the Northland Terrace Nursing and Rehabilitation Center (SIC-8051), Columbus, Ohio, a study was undertaken of headaches in workers in the laundry facility and upper respiratory infections associated with delivering Attends diapers. The study included employee interviews, environmental monitoring, and an assessment of the adequacy of the design and performance of the heating, ventilating, and air conditioning system. Northland Terrace was a nursing and rehabilitation center. Employees who work in the laundry facility reported that they experience headache while present in this area which was renovated in 1989. Carbon-dioxide (124389) concentrations exceeded 1000 parts per million. Biologically significant carbon-monoxide (630080) concentrations were not observed. Temperatures in the laundry rooms ranged from 86 to 92 degrees-F. Relative humidities ranged from 48 to 56%. A possible reaction to the dust or the fragrance associated with Attends diapers was not followed to completion as the nursing facility stopped using this product during the study. The authors conclude that there was an inadequate supply of outside air in the laundry and basement areas. The authors recommend measures to improve the ventilation system and reduce the potential for heat stress in the laundry.

Hanley, K.W.; Deitchman, S.

1991-12-01T23:59:59.000Z

189

Perfluorocarbon vapor tagging of blasting cap detonators  

DOE Patents (OSTI)

A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

Dietz, Russell N. (Shoreham, NY); Senum, Gunnar I. (Patchogue, NY)

1981-01-01T23:59:59.000Z

190

Perfluorocarbon vapor tagging of blasting cap detonators  

SciTech Connect

A plug for a blasting cap is made of an elastomer in which is dissolved a perfluorocarbon. The perfluorocarbon is released as a vapor into the ambient over a long period of time to serve as a detectable taggant.

Dietz, R.N.; Senum, G.I.

1981-03-17T23:59:59.000Z

191

Open Detonation Permit Modification Public Information Meeting  

E-Print Network (OSTI)

.................................................................................... 30 c. RCRA Closure Activities.......................................................................... 33 e. Other RCRA Activities ................................................................................. 33 f. RCRA Compliance Inspection

192

On the transition from deflagration to detonation  

SciTech Connect

Feedback between the turbulent-flow and deflagration-wave parameters leads to breakage of the combustion regime. Critical conditions of the development of this instability are formulated.

Rumanov, E. N., E-mail: ed@ism.ac.ru [Russian Academy of Sciences, Institute of Structural Macrokinetics and Materials Science (Russian Federation)

2013-06-15T23:59:59.000Z

193

Weapon Detonation Forensics | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

194

A triage approach to streamline environmental footprinting : a case study for liquid crystal displays  

E-Print Network (OSTI)

Quantitative environmental performance evaluation methods are desired given the growing certification and labeling landscape for consumer goods. Challenges associated with existing methods, such as life cycle assessment ...

Zgola, Melissa Lee

2011-01-01T23:59:59.000Z

195

Educational Triage: A Comparative Study of Two High School Principals in Program Improvement Schools  

E-Print Network (OSTI)

D. (2009). State High School Exit Examiniations And NAEPManaging In the Middle: School Leaders and the Enactment ofJ. (2001). Investigating School Leadership Practice: A

Garrity, Kyle M.

2013-01-01T23:59:59.000Z

196

Educational Triage: A Comparative Study of Two High School Principals in Program Improvement Schools  

E-Print Network (OSTI)

incentives, and environmental fallout of standardized test-and crop production, and fallout from the tri-county areaincluded mental health. The fallout of poverty for Sierra

Garrity, Kyle M.

2013-01-01T23:59:59.000Z

197

The RABiT: A Rapid Automated Biodosimetry Tool for radiological triage. II. Technological developments  

E-Print Network (OSTI)

of the illumination path with the dichroic used for merging light from the UV light emitting diode (LED) exposed UV light source based on a high intensity Light Emitting Diode (LED) (Hamamatsu Photonics, Bridge camera (CMOS). Sample illumination is provided from a mercury lamp (Hg) and an ultraviolet light emitting

Brenner, David Jonathan

198

Pipeline response to buried explosive detonations. Vol. 2. Technical report  

SciTech Connect

Volume II of SwRI's blasting research results details the background, the experiments and the development of the groundmotion and pipe-stress solution. It includes sample problems solved with the equations and discusses the assumptions and limitations of the solutions, the sensitivity of the point and parallel-line stress equations, the total state of stress on a pipe, and the yield theories and safety factors used in some blasting codes.

Esparza, E.D.; Westine, P.S.; Wenzel, A.B.

1981-01-01T23:59:59.000Z

199

Steady detonation problem for slow and fast chemical reactions  

E-Print Network (OSTI)

mathematical modelling of chemically reacting gas mixtures in view of practical applications is a fundamental problem in the scientific lit- erature [Cer00, Gio99]. On the other hand, kinetic approaches to chemical is conserved only if each particle is endowed with its chemical energy Es, in addition to its kinetic energy 1

Ceragioli, Francesca

200

EVALUATION OF THE EFFECTS OF DETONATION IN A SPHERICAL BOMB  

E-Print Network (OSTI)

Institute, Palo Alto, CA. NUREG-0560 (Hay 1979), StaffCommission, Washington, O.C. NUREG-75/014 [WASH-1400] (Octfted water (NSAC-1, 1979; NUREG-0560, 1979). Unlike previous

Kurylo, J.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Modification of the Colony Tower for the RIO BLANCO detonation  

SciTech Connect

The tower is a 180-ft tall steel-frame experimental oil shale processing retort structure with heavy process equipment on various levels. The structural response of the tower to the ground motion from Project Rio Blanco is analyzed and the necessary structural modifications described. (TFD)

Blume, J.A.; Lee, L.A.; Freeman, S.A.; Honda, K.K.

1974-04-30T23:59:59.000Z

202

The Performance of ATZ Produced by Emulsion Detonation ...  

Science Conference Proceedings (OSTI)

Synthesis and Characterization of Plasma Polymerized Thin Films Deposited from Benzene and Hexamethyldisiloxane Using (PECVD) Method · Synthesis and ...

203

EVALUATION OF THE EFFECTS OF DETONATION IN A SPHERICAL BOMB  

E-Print Network (OSTI)

Wilcox Company. Office of Nuclear Reactor Regulation, Unitedthe hemispherical dome of a nuclear reactor pressure vesselPower Plants. Reactor Safety Study, United States Nuclear

Kurylo, J.

2010-01-01T23:59:59.000Z

204

SPECTROSCOPIC STUDIES OF IMPLODING PLASMA RINGS IN DETONABLE GAS MIXTURES  

DOE Green Energy (OSTI)

Spectroscopic observations were made of the flow field behind a cylindrical hypersonic wave front resulting from an imploding electrical dischange into an initially low pressure quiescert gas. Sub-microsecond resolved spectra were obtained by use of a quartz prism monochromatorphotomultiplier detector system with photographic recording of an oscilloscope displayed output signal. Electrically produced plasma rings were established in detonabie as well as non-reactive gases. Strong indications were observed that exothermic reactions, as evidenced by H/sub 2/O emission, proceed in H/sub 2/ + 1/2 O/sub 2/ reactant mixtures within less than one microsecond under certain initial low pressure conditions. A reaction threshold at 1 mm Hg pressure was found for the particular reaction vessel used. Timeintegrated spectrometer photos support the conclusions reached with the transient spectra analysis equipment. (auth)

Foreman, K.M.; Levy, M.E.

1962-07-30T23:59:59.000Z

205

Structure and Properties of Detonation Sprayed Conventional and ...  

Science Conference Proceedings (OSTI)

Long-Term Surface Restoration Effect Introduced by Advanced Lubricant Additive · Nanocomposite Thermal Spray Coatings. New Hardfacing Overlay Claddings ...

206

Medical Evaluation and Triage of the Agitated Patient: Consensus Statement of the American Association for Emergency Psychiatry Project BETA Medical Evaluation Workgroup  

E-Print Network (OSTI)

Am J emergency department medical clearance. Ann Emerg Med.laboratory testing for medical 7. Caplan LR. Delirium: aof agitation from a general medical condition should be

2012-01-01T23:59:59.000Z

207

Some perspectives on pulse detonation propulsion F.K. Lu and D.R. Wilson  

E-Print Network (OSTI)

is simplicity, where the PDE is easy to manufacture and requires few moving parts, with the possibility of eliminating high-pressure pumps in rocket applications, or reducing turbomachinery stages in air. Each segment can accept instrumenta- tion, such as pressure transducers, thermocouples, heat flux

Texas at Arlington, University of

208

Recent research results in the analysis of pipeline response to buried explosive detonations  

SciTech Connect

The increasing use of explosives over the past several years for strip mining and urban development calls for some method to predict the effects of blasting within 100 ft of buried natural gas pipelines; previous methods applied only to greater standoff distances or to aboveground pipelines. Consequently, A.G.A.'s Pipeline Research Committee hired Southwest Research Institute to develop an analytical approach, a test program, and several techniques for defining the maximum blasting stresses on a pipeline and predicting the pipe's response under a wide variety of conditions. A review of this research includes a synopsis of the theoretical approach, the experimental methods used, and a basic procedure for handling blasting encroachment, from the initial notification through the post-blast activities.

Means, J.K.

1980-01-01T23:59:59.000Z

209

An Eulerian-Lagrangian Computational Model for Deflagration and Detonation of High Explosives  

E-Print Network (OSTI)

," Thermochim. Acta, vol. 382, no. 1/2, pp. 89­98, Jan. 2002. [21] B. Xie, M. Mecklenburg, B. Danielsson, O fraction collector," Int. J. Nonlinear Sci. Numer. Simul., vol. 3, no. 3/4, pp. 267­272, Aug. 2002. [35] J on calorimetric detection," Thermochim. Acta, vol. 337, no. 1, pp. 27­38, Oct. 1999. [37] Y. N. Xia and G. M

Utah, University of

210

On the existence of multiphase thermal detonations W.W. Yuen, T.G. Theofanous*  

E-Print Network (OSTI)

(than tin) nuclear reactor fuel, as illustrated in Fig. 5. It is important to note that in this case of explosive melt-water inter- actions. Advances in Heat Transfer: Heat Transfer in Nuclear Reactor Safety 29 state theory in terms of fully dynamic propagations computed numerically. A sample of the physical

Yuen, Walter W.

211

Standard KDF0C4 Fallout Calculations for Buried Nuclear Detonations  

SciTech Connect

The collateral damage caused by fallout from shallow-buried nuclear devices is of considerable interest. In this paper, we present results for ''standard'' calculations using the KDFOC4 fallout computer code. Results are presented for a parametric range of yields from 0.1 kt to 1 Mt in equally-spaced logarithmic increments and for emplacement depths of 5 meters in hard, dry rock and 20 meters in moist soil. We will see that for low yields, this emplacement depth has a marked influence on the shape of the fallout patterns but for the highest yields, the fallout patterns are insensitive to the emplacement medium and depth. We look at two categories of doses: (1) Those for which health effects begin to be serious and range upward to lethal, and (2) Doses that are politically very sensitive but for which any deleterious health effects are difficult to prove.

Serduke, F J D

2001-09-14T23:59:59.000Z

212

The Urgent Requirements for New Radioanalytical CRMs  

Science Conference Proceedings (OSTI)

... or a Radiological Dispersion Device detonation scenario. ... post-detonation debris analysis of actinides ... and nondestructive analyses for safeguards ...

2012-06-27T23:59:59.000Z

213

Nightingale College of Nursing Case Study  

Science Conference Proceedings (OSTI)

... Percentage h Sales h Revenues ? Budgets (Check one above ... and Samson—campus bookstore; DeeGeeMan Corporation—HVAC and energy ...

2012-10-24T23:59:59.000Z

214

College of Nursing Post Registration BSN Program  

E-Print Network (OSTI)

to be where we are today." The EPA SmartWays program has certified the UnderTray system components with a 6

Saskatchewan, University of

215

BMC Nursing BioMed Central  

E-Print Network (OSTI)

Research article Experience of unpleasant sensations in the mouth after injection of saline from prefilled syringes

Ulf E Kongsgaard; Anders Andersen; Marina Øien; Inger-ann Y Oswald; Laila I Bruun; Laila I Bruun

2010-01-01T23:59:59.000Z

216

Cost-effectiveness of recommended nurse staffing levels for short-stay skilled nursing facility patients  

E-Print Network (OSTI)

Anonymous: Employer Costs for Employee Compensation--BioMed Central Open Access Cost-effectiveness of recommendeddiagnoses. However, the cost-effectiveness of increasing

Ganz, David A; Simmons, Sandra F; Schnelle, John F

2005-01-01T23:59:59.000Z

217

Initial measurements of BN-350 spent fuel in dry storage casks using the dual slab verification detonator  

Science Conference Proceedings (OSTI)

The Dual Slab Verification Detector (DSVD) has been developed, built, and characterized by Los Alamos National Laboratory in cooperation with the International Atomic Energy Agency (IAEA) as part of the dry storage safeguards system for the spent fuel from the BN-350 fast reactor. The detector consists of two rows of 3He tubes embedded in a slab of polyethylene which has been designed to be placed on the outer surface of the dry storage cask. By performing DSVD measurements at several different locations around the outer surface of the DUC, a signature 'fingerprint' can be established for each DUC based on the neutron flux emanating from inside the dry storage cask. The neutron fingerprint for each individual DUC will be dependent upon the spatial distribution of nuclear material within the cask, thus making it sensitive to the removal of a certain amount of material from the cask. An initial set of DSVD measurements have been performed on the first set of dry storage casks that have been loaded with canisters of spent fuel and moved onto the dry storage pad to both establish an initial fingerprint for these casks as well as to quantify systematic uncertainties associated with these measurements. The results from these measurements will be presented and compared with the expected results that were determined based on MCNPX simulations of the dry storage facility. The ability to safeguard spent nuclear fuel is strongly dependent on the technical capabilities of establishing and maintaining continuity of knowledge (COK) of the spent fuel as it is released from the reactor core and either reprocessed or packaged and stored at a storage facility. While the maintenance of COK is often done using continuous containment and surveillance (C/S) on the spent fuel, it is important that the measurement capabilities exist to re-establish the COK in the event of a significant gap in the continuous CIS by performing measurements that independently confirm the presence and content of Plutonium (Pu) in the spent fuel. The types of non-destructive assay (NDA) measurements that can be performed on the spent fuel are strongly dependent on the type of spent fuel that is being safeguarded as well as the location in which the spent fuel is being stored. The BN-350 Spent Fuel Disposition Project was initiated to improve the safeguards and security of the spent nuclear fuel from the BN-350 fast-breeder reactor and was developed cooperatively to meet the requirements of the International Atomic Energy Agency (IAEA) as well as the terms of the 1993 CTR and MPC&A Implementing Agreements. The unique characteristics of fuel from the BN-350 fast-breeder reactor have allowed for the development of an integrated safeguards measurement program to inventory, monitor, and if necessary, re-verify Pu content of the spent fuel throughout the lifetime of the project. This approach includes the development of a safeguards measurement program to establish and maintain the COK on the spent fuel during the repackaging and eventual relocation of the spent-fuel assemblies to a long-term storage site. As part of the safeguards measurement program, the Pu content of every spent-fuel assembly from the BN-350 reactor was directly measured and characterized while the spent-fuel assemblies were being stored in the spent-fuel pond at the BN-350 facility using the Spent Fuel Coincidence Counter (SFCC). Upon completion of the initial inventory of the Pu content of the individual spent-fuel assemblies, the assemblies were repackaged into welded steel canisters that were filled with inert argon gas and held either four or six individual spent-fuel assemblies depending on the type of assembly that was being packaged. This repackaging of the spent-fuel assemblies was performed in order to improve the stability of the spent-fuel assemblies for long-term storage and increase the proliferation resistance of the spent fuel. To maintain the capability of verifying the presence of the spent-fuel assemblies inside the welded steel canisters, measurements were performed on the canis

Santi, Peter Angelo [Los Alamos National Laboratory; Browne, Michael C [Los Alamos National Laboratory; Freeman, Corey R [Los Alamos National Laboratory; Parker, Robert F [Los Alamos National Laboratory; Williams, Richard B [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

218

Photoacoustically Measured Speeds of Sound and the Equation of State of HBO2: On Understanding Detonation with Boron Fuel  

SciTech Connect

Elucidation of geodynamic, geochemical, and shock induced processes is limited by challenges to accurately determine molecular fluid equations of state (EOS). High pressure liquid state reactions of carbon species underlie physiochemical mechanisms such as differentiation of planetary interiors, deep carbon sequestration, propellant deflagration, and shock chemistry. In this proceedings paper we introduce a versatile photoacoustic technique developed to measure accurate and precise speeds of sound (SoS) of high pressure molecular fluids and fluid mixtures. SoS of an intermediate boron oxide, HBO{sub 2} are measured up to 0.5 GPa along the 277 C isotherm. A polarized exponential-6 interatomic potential form, parameterized using our SoS data, enables EOS determinations and corresponding semi-empirical evaluations of >2000 C thermodynamic states including energy release from bororganic formulations. Our thermochemical model propitiously predicts boronated hydrocarbon shock Hugoniot results.

Zaug, J M; Bastea, S; Crowhurst, J; Armstrong, M; Fried, L; Teslich, N

2010-03-09T23:59:59.000Z

219

Next-Generation Petascale Simulations of Type Ia Supernovae ...  

NLE Websites -- All DOE Office Websites (Extended Search)

deflagration to detonation transition model Deflagration to detonation transition model. Min lOng, Dan van Rossum, Sean Couch, George Jordan, Brad Gallagher, Don Lamb, University...

220

The Energy Endoscope: Real-time Detailed Energy Accounting for Wireless Sensor Nodes  

E-Print Network (OSTI)

visibility into the energy consumption of 32-bit WirelessTriage: Balancing Energy Consumption and Quality of Serviceinterdependencies in energy consumption between different

Stathopoulos, Thanos; McIntire, Dustin; Kaiser, W J

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Nurse-Physician Teamwork in the Emergency Department  

E-Print Network (OSTI)

theory suggested that organizational health care structuress theory proposed that organizational health care structuresand the organizational dichotomy of the United States health

Ajeigbe, David Oladipo

2012-01-01T23:59:59.000Z

222

Nurse-Physician Teamwork in the Emergency Department  

E-Print Network (OSTI)

theory suggested that organizational health care structuress theory proposed that organizational health care structures

Ajeigbe, David Oladipo

2012-01-01T23:59:59.000Z

223

Atlantic Energy Services, Inc. and Chemung County Nursing Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

224

Nurse-Physician Teamwork in the Emergency Department  

E-Print Network (OSTI)

Journal, 320(7237), 745-749. Shader, K. , Broome, M. E. ,policy formation. A study by Shader, Broome, Broome, West,intention to quit increased (Shader et al. , 2001). Also,

Ajeigbe, David Oladipo

2012-01-01T23:59:59.000Z

225

Exceptional service in the national interest www.sandia.gov  

E-Print Network (OSTI)

encompasses Sandia's work in Nonproliferation R&D, the US Nuclear Detonation Detection System (USNDS

226

 

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial PETN detonators will be irradiated in the Digital Radiography unit in 781-A, totaling 1 gram TNT equivalent at a time. Four detonators will Commercial PETN detonators will be irradiated in the Digital Radiography unit in 781-A, totaling 1 gram TNT equivalent at a time. Four detonators will be removed periodically. Each detonator holds 50 mg PETN. One detonator will be fired inside a Detonation Vessel installed in the Gun Barrel of 723-A. One powder PETN detonator will be used in XRD analysis in SREL. Two detonators will be shipped to LANL for their testing and disposition. Explosive residues and unexploded detonators will be treated as chemical waste. Explosives Stabilization Testing Savannah River Site Aiken South Carolina TC - A - 2010 - 010, Rev.0 02Mar10 Andrew R. Grainger Digitally signed by Andrew R. Grainger DN: CN = Andrew R. Grainger, C = US, O = EQMD, OU = DOE-SR Date: 2010.03.10 11:14:13

227

Drilling research on the electrical detonation and subsequent cavitation in a liquid technique (spark drilling). Status report, July 1--December 31, 1976  

DOE Green Energy (OSTI)

The electrical characteristics of water during a rapid electrical discharge have been determined. These characteristics were used in predicting energy in the spark drilling arc and in designing a new-generation spark drill. The design of this drill system is described, along with the proposed schedule of its fabrication and use. Other activities accomplished during this report period are also discussed.

Not Available

1976-04-01T23:59:59.000Z

228

Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces  

E-Print Network (OSTI)

. Yao, K. Gouhara, N. Kato, Thermochim. Acta 88, 143 (1985). 58. G. Dolino, F. Mogeon, P. Bastie, Phys flux measurements at a depth of 8 cm. Conditional sampling (filled octa- gons) was simulated from

Douglas, Thomas A.

229

Historic Properties  

NLE Websites -- All DOE Office Websites (Extended Search)

at Trinity Site), the Little Boy weapon (the gun-assembled device detonated over Hiroshima) and the Fat Man weapon (the implosion device detonated over Nagasaki), as well as...

230

UCRL-ID-117240 CHEETAH: A Next Generation Thermochemical Code  

Office of Scientific and Technical Information (OSTI)

the detonation energy. The energy of detonation is broken out into a mechanical and a thermal part. 2 . 1 5 S t a n d a r d r u n command The standaid CHEETAH run performed at...

231

Microsoft Word - Blurbs for Nik.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

1 Unstable if heated ALK-alkali 2 Violent chemical change COR-corrosive 3 Shock or heat may detonate OX-oxidizer 4 Rapidly capable of detonation or explosion...

232

Transcriptomic and Secretomic Profiling of Isolated Leukocytes Exposed to Alpha-Particle and Photon Radiation - Applications in Biodosimetry .  

E-Print Network (OSTI)

??The general public is at risk of ionising-radiation exposure. The development of high-throughput methods to triage exposures is warranted. Current biodosimetry techniques are low-throughput and… (more)

Howland, Matthew

2013-01-01T23:59:59.000Z

233

Analysis of Senate Bill 1245: Cervical Cancer Screening Test  

E-Print Network (OSTI)

Pap=Papanicolaou (Pap) test Table B-1b. Triage Studies Name,of the human papillomavirus test and Papanicolaou smear as aManagement of women who test positive for high-risk types of

California Health Benefits Review Program (CHBRP)

2006-01-01T23:59:59.000Z

234

DOE O 452.1D Admin Chg 1, Nuclear Explosive and Weapon Surety Program  

Directives, Delegations, and Requirements

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. ...

2009-04-14T23:59:59.000Z

235

Vibration Reduction Technology for Directional Blasting Demolition of 210m Chimney in Complex Environment  

Science Conference Proceedings (OSTI)

This paper describes the successful experience of the directional control blasting demolition of 210m reinforced concrete chimney, and elucidates the determination of the project scheme, parameter design, electronic digital detonator detonating network ... Keywords: reinforced concrete chimney, directional blasting, electronic digital detonator, blasting vibration, vibration reduction technology

Shunxiang Xu, Dezhi Chen

2013-01-01T23:59:59.000Z

236

Downhole delay assembly for blasting with series delay  

DOE Patents (OSTI)

A downhole delay assembly is provided which can be placed into a blasthole for initiation of explosive in the blasthole. The downhole delay assembly includes at least two detonating time delay devices in series in order to effect a time delay of longer than about 200 milliseconds in a round of explosions. The downhole delay assembly provides a protective housing to prevent detonation of explosive in the blasthole in response to the detonation of the first detonating time delay device. There is further provided a connection between the first and second time delay devices. The connection is responsive to the detonation of the first detonating time delay device and initiates the second detonating time delay device. A plurality of such downhole delay assemblies are placed downhole in unfragmented formation and are initiated simultaneously for providing a round of explosive expansions. The explosive expansions can be used to form an in situ oil shale retort containing a fragmented permeable mass of formation particles.

Ricketts, Thomas E. (Grand Junction, CO)

1982-01-01T23:59:59.000Z

237

Monitoring the Development of Nurse Plant Species to Improve the Performances of  

E-Print Network (OSTI)

:289­295 Maremammani A, Bedini S, Matosevic I, Tomei PE, Giovannetti M (2003) Type of mycorrhizal associations in two

Thioulouse, Jean

238

Advocates aim to help nurses be the first medical responders to confront climate  

E-Print Network (OSTI)

to go back and forth over the potential merits of a carbon tax or incentives for clean technology are huge energy users and lead to more greenhouse gas emissions than standard offices due to on

Klein, Ophir

239

Physician and Nurse Acceptance of Technicians to Screen for Geriatric Syndromes in the Emergency Department  

E-Print Network (OSTI)

61. Heidt JW, Carpenter CR. Occult cognitive impairment inoften fail to recognize occult dementia, delirium, or high-have been used to identify occult cognitive dysfunction and

Carpenter, Chris; Griffey, Richard T; Stark, Susan; Coopersmith, Craig M; Gage, Brian F

2011-01-01T23:59:59.000Z

240

Utilisation of research findings by graduate nurses and midwives and their attitude towards research.  

E-Print Network (OSTI)

??The aim of this study was to assess the impact of research education on the attitudes toward research and use of research findings in practice… (more)

Veeramah, Rangasamy Ven

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Assessment of Dose to the Nursing Infant from Radionuclides in Breast Milk  

SciTech Connect

A computer software package was developed to predict tissue doses to an infant due to intake of radionuclides in breast milk based on bioassay measurements and exposure data for the mother. The package is intended mainly to aid in decisions regarding the safety of breast feeding by a mother who has been acutely exposed to a radionuclide during lactation or pregnancy, but it may be applied to previous intakes during the mother s adult life. The package includes biokinetic and dosimetric information needed to address intake of Co-60, Sr-90, Cs-134, Cs-137, Ir-192, Pu-238, Pu-239, Am-241, or Cf-252 by the mother. It has been designed so that the library of biokinetic and dosimetric files can be expanded to address a more comprehensive set of radionuclides without modifying the basic computational module. The methods and models build on the approach used in Publication 95 of the International Commission on Radiological Protection (ICRP 2004), Doses to Infants from Ingestion of Radionuclides in Mothers Milk . The software package allows input of case-specific information or judgments such as chemical form or particle size of an inhaled aerosol. The package is expected to be more suitable than ICRP Publication 95 for dose assessment for real events or realistic planning scenarios in which measurements of the mother s excretion or body burden are available.

Leggett, Richard Wayne [ORNL; Eckerman, Keith F [ORNL

2010-03-01T23:59:59.000Z

242

Navy explosive ordnance disposal project: Optical ordnance system development. Final report  

SciTech Connect

An optical ordnance firing system consisting of a portable hand held solid state rod laser and an optically ignited detonator has been developed for use in explosive ordnance disposal (EOD) activities. Solid state rod laser systems designed to have an output of 150 mJ in a 500 microsecond pulse have been produced and evaluated. A laser ignited detonator containing no primary explosives has been designed and fabricated. The detonator has the same functional output as an electrically fired blasting cap. The optical ordnance firing system has demonstrated the ability to reliably detonate Comp C-4 through 1000 meters of optical fiber.

Merson, J.A.; Salas, F.J.; Helsel, F.M.

1996-03-01T23:59:59.000Z

243

KIVA: Increases engine efficiency while improving fuel economy  

NLE Websites -- All DOE Office Websites (Extended Search)

in automotive catalytic converters Design of fire suppression systems Pulsed detonation propulsion systems design Benefits: Increases engine efficiency while reducing harmful...

244

Selective Laser Sintering of Magnesium Powder for Fabrication of ...  

Science Conference Proceedings (OSTI)

Cyclic Oxidation Behavior of Detonation Gun Sprayed Ni-20Cr Coating on a Boiler Steel at 900°C · Distortion Assessment of a Direct Cast Uranium - 6 wt.

245

General Abstracts: Materials Processing and Manufacturing Division  

Science Conference Proceedings (OSTI)

Cyclic Oxidation Behavior of Detonation Gun Sprayed Ni-20Cr Coating on a Boiler Steel at 900°C · Distortion Assessment of a Direct Cast Uranium - 6 wt.

246

CMR12  

NLE Websites -- All DOE Office Websites (Extended Search)

9 High Speed Combustion and Detonation (HSCD) ALCF-2 Early Science Program Technical Report Argonne Leadership Computing Facility About Argonne National Laboratory Argonne is a...

247

Earthquake-safe conditions for construction of the dam for the Kambarata HPP-2  

SciTech Connect

A parametric description of a blasting process is proposed on the basis of analysis and codification of data on experimental detonations simulating planned blasts.

Shuifer, M. I. [JSC 'SPII 'Gidrospetsproekt' (Russian Federation); Kamchybekov, M. P.; Egemberdieva, K. A. [National Academy of Sciences, Institute of Seismology (Kyrgyzstan); Dobrynin, I. A. [JSC 'SPII 'Gidrospetsproekt' (Russian Federation)

2010-05-15T23:59:59.000Z

248

DESIGN SAFETY FEATURES OF THE BNL HIGH-TEMPERATURE COMBUSTION FACILITY  

DOE Green Energy (OSTI)

The Brookhaven National Laboratory (BNL) High-Temperature Combustion Facility (HTCF) was used to perform hydrogen deflagration and detonation experiments at temperatures to 650 K. Safety features that were designed to ensure safe and reliable operation of the experimental program are described. Deflagration and detonation experiments have been conducted using mixtures of hydrogen, air, and steam. Detonation cell size measurements were made as a function of mixture composition and thermodynamic gas conditions. Deflagration-to-detonation transition experiments were also conducted. Results of the experimental program are presented, and implications with respect to hydrogen safety are discussed.

GINSBERG,T.; CICCARELLI,G.; BOCCIO,J.

2000-06-11T23:59:59.000Z

249

Preventing Molten Aluminium Water Explosions through the Use of ...  

Science Conference Proceedings (OSTI)

The energy released from one kilogram of molten aluminium reacted with oxygen is equivalent to detonating 3 kilograms of trinitrotoluene (TNT). For over 60 ...

250

Aluminum Cast Shop IV  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... The energy released from one kilogram of molten aluminium reacted with oxygen is equivalent to detonating 3 kilograms of trinitrotoluene ...

251

Nano-sized Ceramics Synthesis by Means of Highly Energetic ...  

Science Conference Proceedings (OSTI)

In the research under discussion, an unconventional process based on the detonation of a charge made of an highly energetic material (explosive) previously ...

252

Processing and Microstructure-Properties Relationships  

Science Conference Proceedings (OSTI)

In the research under discussion, an unconventional process based on the detonation of a charge made of an highly energetic material (explosive) previously ...

253

Development of CAST3M and TONUS condensation models for ternary mixtures and qualification against experimental data.  

E-Print Network (OSTI)

??Tonus code allows to simulate the distibution, combustion and detonation of hydrogen in the case of severe accident in a pressurized water reactor. The first… (more)

Arcipreti, Paolo

2006-01-01T23:59:59.000Z

254

Los Alamos National Laboratory marks 20 years without full-scale...  

NLE Websites -- All DOE Office Websites (Extended Search)

nuclear testing Los Alamos National Laboratory marks 20 years without full-scale nuclear testing The test, code named "Divider," was detonated on Sept. 23, 1992 as the...

255

Numerical and experimental studies of ethanol flames and autoignition theory for higher alkanes  

E-Print Network (OSTI)

initiated ignition in methane-propane mixtures”, Combustiontemperature ignition of propane with MTBE as an additive:detonation in ethylene and propane mixtures”, Combustion and

Saxena, Priyank

2007-01-01T23:59:59.000Z

256

Harvesting Alternate energies from our Planet  

Science Conference Proceedings (OSTI)

Braden Lusk (right), Detonators co-host and assistant professor in the Department of Mining Engineering, University of Kentucky, surveys the remains of a coal ...

257

Development of a hand-held computer platform for real-time behavioral assessment of physicians and nurses  

Science Conference Proceedings (OSTI)

We developed a hand-held data collection tool to facilitate real-time collection of data on the factors that affect hospital staff performance. To assure high-yield of data from busy clinicians, the design objectives included low response burden, the ... Keywords: Computer-assisted data collection, Ecological momentary assessment, Hand-held computer, Hospital-based clinicians, Response burden, Software development, Usability engineering, User-centered design

Nabyl Tejani; Timothy R. Dresselhaus; Matthew B. Weinger

2010-02-01T23:59:59.000Z

258

The Effect of the Social Organization of Work on Voluntary Tunover of Hospital Nurses in the United States  

E-Print Network (OSTI)

Organizational performance: managing for efficiency and effectiveness. In Healthorganizational performance and is a reflection of its general healthorganizational economic opportunity were included: 1) number of non-professional benefits offered by category: medical benefits (life insurance, basic health

Bloom, Joan R.; Alexander, Jeffrey A.; Nuchols, Beverly A.

1991-01-01T23:59:59.000Z

259

BMC Nursing BioMed Central Research article Perimenopausal contraception in Turkish women: A cross-sectional  

E-Print Network (OSTI)

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background: Epidemiologic research has shown that perimenopausal contraception is an important medical issue, because women during the perimenopause still need effective contraception. The objective of the study was to assess the contraceptive choices of perimenopausal Turkish women. Methods: This is a descriptive cross-sectional study that in a non – random fashion recruited 202 perimenopausal and naturally menopausal women who lived in a suburban area of Istanbul. Women who took part were aged between 45–59 years old. Chief database used to identify the suitable participants in the district. Subjects who voluntarily participated in the study were interviewed in their homes by the researcher. The analysis of the data was evaluated using percentages. Results: The percentage of sexually active women among the participants was 87.6%. A large majority – 80.2 % – of the participants did not have any idea of when they should bring contraception to an end. The method most commonly used was withdrawal (Coitus Interruptus), represented by 38.8%. In regard to the participants ' choices of medical contraception, those being

Nevin H ?ahin; Sema B Kharbouch Open Access; Nevin H ?ahin; Sema B Kharbouch

2007-01-01T23:59:59.000Z

260

Design and Simulation of a Four-channel Security System of Rocket Fuze  

Science Conference Proceedings (OSTI)

The light armored equipment has been widely used in modern wars, but it is vulnerable to be destroyed by the incoming projectile, so its battlefield survivability can not be guaranteed. In this paper, a four-channel security system has been designed ... Keywords: rocket fuse, security system, multi-point detonation, directional detonation

Shao-Jie Ma; Hao Qin; He Zhang; Hui Li

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Coal-mine explosives: their characteristics, selection, and safe use  

SciTech Connect

Characteristics of nonpermissible explosives and dangers attending their use are pointed out. Instructions are given on storage, distribution, and use of explosives. Detonation of electric blasting caps, primers, delay-action detonators, and blasting units, causes of premature explosions, and blasting with permissible explosives are discussed. ''Permissible'' explosives are defined and their characteristics given.

Tiffany, J.E.

1938-01-01T23:59:59.000Z

262

Explosively pumped laser light  

DOE Patents (OSTI)

A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

263

Progress in BNL High-Temperature Hydrogen Combustion Research Program  

DOE Green Energy (OSTI)

The objectives of the BNL High-Temperature Hydrogen Combustion Research Program are discussed. The experimental facilities are described and two sets of preliminary experiments are presented. Chemical reaction time experiments have been performed to determine the length of time reactive mixtures of interest can be kept at temperature before reaction in the absence of ignition sources consumes the reactants. Preliminary observations are presented for temperatures in the range 588K--700K. Detonation experiments are described in which detonation cell width is measured as a measure of mixture sensitivity to detonation. Preliminary experiments are described which are being carried out to establish data reproducibility with previous measurements in the literature and to test out and refine experimental methods. Intensive studies of hydrogen combustion phenomena were carried out during the 1980s. Much of this effort was driven by issues related to nuclear reactor safety. The high-speed'' combustion phenomena of flame acceleration, deflagration-to-detonation transition, direct initiation of detonation, detonation propagation, limits of detonation in tubes and channels, transmission of detonations from confined to unconfined geometry and other related phenomena were studied using a variety of gaseous fuel-oxidant systems, including hydrogen-steam-air systems of interest in reactor safety studies. Several reviews are available which document this work [Lee, 1989; Berman, 1986].

Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Curtiss, J.; Economos, C.; Jahelka, J.; Sato, K.

1992-01-01T23:59:59.000Z

264

Progress in BNL High-Temperature Hydrogen Combustion Research Program  

DOE Green Energy (OSTI)

The objectives of the BNL High-Temperature Hydrogen Combustion Research Program are discussed. The experimental facilities are described and two sets of preliminary experiments are presented. Chemical reaction time experiments have been performed to determine the length of time reactive mixtures of interest can be kept at temperature before reaction in the absence of ignition sources consumes the reactants. Preliminary observations are presented for temperatures in the range 588K--700K. Detonation experiments are described in which detonation cell width is measured as a measure of mixture sensitivity to detonation. Preliminary experiments are described which are being carried out to establish data reproducibility with previous measurements in the literature and to test out and refine experimental methods. Intensive studies of hydrogen combustion phenomena were carried out during the 1980s. Much of this effort was driven by issues related to nuclear reactor safety. The ``high-speed`` combustion phenomena of flame acceleration, deflagration-to-detonation transition, direct initiation of detonation, detonation propagation, limits of detonation in tubes and channels, transmission of detonations from confined to unconfined geometry and other related phenomena were studied using a variety of gaseous fuel-oxidant systems, including hydrogen-steam-air systems of interest in reactor safety studies. Several reviews are available which document this work [Lee, 1989; Berman, 1986].

Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Curtiss, J.; Economos, C.; Jahelka, J.; Sato, K.

1992-12-31T23:59:59.000Z

265

2 VCSELS Polarization controllers Semiconductor  

E-Print Network (OSTI)

Complete system including source shown on previous slide #12;3 Custom laser-based systems are then used Base, Ohio rocket plume, Orbitec shock tube, UW #12;Fiber-optic access: Pulse detonation engine example 4 Pulse detonation engine at Wright-Patterson Air Force Base, OH Custom laser light distributed

Suresh, Krishnan

266

CEBRERO containment data report  

SciTech Connect

The CEBRERO event was detonated in hole U9cw of the Nevada Test Site. Detonation time was 1:00 PM PST on August 14, 1985. No subsidence was observed. Radiation arrivals were detected to a depth of 145 m in the emplacement hole; however, no radiation was detected at any elevation above that. The CEBRERO event containment was satisfactory.

Hudson, B.; Stubbs, T.; Heinle, R.

1995-05-01T23:59:59.000Z

267

GEORDI: A Handheld Tool for Remote System Administration  

Science Conference Proceedings (OSTI)

This paper discusses the design and implementation of a tool for allowing technical staff to perform diagnosis, triage and remediation of system problems from a commodity handheld device (e.g., a PalmOS PDA) with a wireless network connection using industry ...

Stephen J. Okay; Gale E. Pedowitz

2001-12-01T23:59:59.000Z

268

Priority Assignment in Emergency Response  

Science Conference Proceedings (OSTI)

In the aftermath of mass-casualty events, key resources (such as ambulances and operating rooms) can be overwhelmed by the sudden jump in patient demand. To ration these resources, patients are assigned different priority levels, a process that is called ... Keywords: dynamic programming, emergency response, stochastic orders, stochastic scheduling, triage

Evin Uzun Jacobson; Nilay Tan?k Argon; Serhan Ziya

2012-07-01T23:59:59.000Z

269

UHF measurement of breathing and heartbeat at a distance  

Science Conference Proceedings (OSTI)

The detection of breathing and heartbeat from a distance is important for medical triage and mass casualty events as well as routine monitoring of higher-risk patients. Typical approaches include wiring up patients to devices and wearable devices, but ... Keywords: UHF, breathing, heartbeat, radar

Jerry Silvious; David Tahmoush

2010-01-01T23:59:59.000Z

270

Participatory user centered design techniques for a large scale ad-hoc health information system  

Science Conference Proceedings (OSTI)

During mass casualty incidents, an enormous amount of data, including the vital signs of the patients, the location of the patients, and the location of the first responders must be gathered and communicated efficiently. The Advanced Health and Disaster ... Keywords: embedded medical systems, participatory design, triage

Tia Gao; Tammara Massey; Majid Sarrafzadeh; Leo Selavo; Matt Welsh

2007-06-01T23:59:59.000Z

271

Exploring the analytical processes of intelligence analysts  

Science Conference Proceedings (OSTI)

We present an observational case study in which we investigate and analyze the analytical processes of intelligence analysts. Participating analysts in the study carry out two scenarios where they organize and triage information, conduct intelligence ... Keywords: artifact analysis, collaboration, homeland security, intelligence analysis, national security, participant observation, participatory design, work practices, work-oriented design

George Chin, Jr.; Olga A. Kuchar; Katherine E. Wolf

2009-04-01T23:59:59.000Z

272

Improving scheduling of emergency physicians using data mining analysis  

Science Conference Proceedings (OSTI)

Emergency departments are the first line in hospitals to face emergency patients. As a major function of emergency medicine, when a patient comes to the emergency department, the emergency medical personnel will first perform a triage procedure and then ... Keywords: 6-Sigma, Classification, Data mining, Emergency department, Performance evaluation matrix

C. C. Yang; W. T. Lin; H. M. Chen; Y. H. Shi

2009-03-01T23:59:59.000Z

273

Diagnostic Imaging Emergency Medicine  

E-Print Network (OSTI)

UC Davis Veterinary Diagnostic Imaging Symposium Emergency Medicine May 15, 2011 Gladys Valley Hall devoted to triage, assessment, and imaging diagnostics in emergency medicine. Speakers in this year's symposium include specialists in diagnostic imaging, and emergency and critical care. Sunday May 15, 2011 8

Hammock, Bruce D.

274

Precision Grinding of Diallyl Phthalate Thermosetting Plastic  

SciTech Connect

A semiautomatic grinder was designed and built at Mound Laboratory to grind molded plastic detonator heads to close tolerances. It uses a vertical spindle, dry grinding technique to decrease grinding time of some diallyl phthalate (DAP) detonator heads with wire inserts and to eliminate the problem of error in repeatability which is characteristic of the manual grinding process. The semiautomatic grinder is essentially air-operated with electrical control and was primarily designed using standard components for ease of manufacture and maintenance. As development of the semiautomatic grinder progressed, DAP detonator heads with wire inserts ground using the manual surface grinder were evaluated along with the same type of detonator heads ground using the semiautomatiac grinder. Also, a time study was conducted to determine the cost savings of grinding miniature DAP detonator heads with wire inserts using the semiautomatic grinder. Inspection and analytical results and radiographic sections of ground detonator head surfaces from each grinding technique indicated that the semiautomatic grinding technique provides acceptable ground DAP detonator heads with wire inserts at a cost savings of 83.5% and a significant reduction in grinding time.

Weeks, J. E.; Osborne, J. M.

1969-04-04T23:59:59.000Z

275

LEADERSHIP FORUM "Pragmatic Implementation of Public Policy"  

E-Print Network (OSTI)

Partners of Rhode Island where he directed CMS's national nursing home-based quality improvement effort

Paulsson, Johan

276

Q:\\My Documents\\COURSES\\SCH-NRS\\schnrs-guid.S09.doc Miami University  

E-Print Network (OSTI)

Nurse License program. Official transcripts of previous college work must be sent to the Admission Nurse Licensure Program Guidelines Purpose: The School Nurse Licensure program is designed to prepare, their families, and the school community. The program is a sub-specialty of Community Health Nursing. The focus

Dollar, Anna

277

Stockpile Stewardship Quarterly  

National Nuclear Security Administration (NNSA)

1, Number 3 * October 2011 1, Number 3 * October 2011 Message from the Assistant Deputy Administrator for Stockpile Stewardship, Chris Deeney Comments Questions or comments regarding the Stockpile Stewardship Quarterly should be directed to Terri.Batuyong@nnsa.doe.gov Technical Editor: Chris Werner, Publication Editor: Millicent Mischo Defense Programs Stockpile Stewardship in Action Volume 1, Number 3 Inside this Issue 2 Simulation: A Window into the Detonation of High Explosives 3 Modeling of High-Explosive Detonation Performance 5 The Detonation Sandwich 6 Joint DoD/DOE Munitions Technology Development Program-High Explosives 9 New Faces at the Office of Stockpile Stewardship

278

Factors in selecting and applying commercial explosives and blasting agents  

SciTech Connect

In this report, commercial blasting compounds are classified according to their nitroglycerin (or equivalent explosive oil) and ammonium nitrate content as dynamites, gelatins, blasting agents, military explosives, and blasting accessories. The ingredients and more significant properties of each explosive are tabulated and briefly discussed. Properties discussed are weight strength, cartridge strength, detonation velocity, density, detonation pressure, water resistance, and fume class. The weakness of the strength rating system and the importance of detonation pressure, density, and detonation velocity in rating explosives are discussed. The terms blasting agent and slurry, which are often misused, are defined. Trends indicate that blasting agents (that is, blasting mixtures with none of the ingredients singly classified as an explosive), particularly high-density slurry blasting agents, will dominate the explosives field in the future. (22 refs.)

Dick, R.A.

1968-01-01T23:59:59.000Z

279

Corrosion Studies on the USS Arizona with Application to a ...  

Science Conference Proceedings (OSTI)

... 1) corresponds to the action report filed by Ward identifying the submarine as the ... a total loss when a bomb penetrated the deck and sympathetically detonated .... n is the number of equivalent electrons transferred per gram atomic weight, ...

280

Fat Man  

NLE Websites -- All DOE Office Websites (Extended Search)

and built at Los Alamos, was an implosion-type bomb. It consisted of a core of plutonium-239 surrounded by explosive chemicals. When the explosives were detonated properly,...

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Manhattan Project: Trinity Images  

Office of Scientific and Technical Information (OSTI)

IMAGES IMAGES Trinity Test Site (July 16, 1945) Resources > Photo Gallery The first 0.11 seconds of the Nuclear Age These seven photographs of the Trinity test were taken by time-lapse cameras. The last is 109 milliseconds, or 0.109 seconds, after detonation. Scroll down to view each individual image. The photographs are courtesy the Los Alamos National Laboratory, via the Federation of American Scientists web site. The animation is original to the Office of History and Heritage Resources. The dawn of the Nuclear Age (Trinity image #1) The dawn of the Nuclear Age Trinity image #2 Trinity image #3 Trinity image #4 Trinity image #5 Trinity, 0.09 seconds after detonation (Trinity image #6) Trinity, 0.09 seconds after detonation Trinity, 0.11 seconds after detonation (Trinity image #7)

282

Letter Report: Scoping Analysis of Gas Phase Transport from the Rulison Underground Nuclear Test  

DOE Green Energy (OSTI)

This letter report documents the results of a computer model to quantify the travel time of tritium (radioactive hydrogen) from an underground nuclear detonation in 1969 toward a proposed producing gas well located 1,500 feet (457 meters) away.

Clay Cooper

2004-05-06T23:59:59.000Z

283

Multiscale Local Forcing of the Arabian Desert Daytime Boundary Layer, and Implications for the Dispersion of Surface-Released Contaminants  

Science Conference Proceedings (OSTI)

Four 6-day simulations of the atmospheric conditions over the Arabian Desert during the time of the 1991 detonation and release of toxic material at the Khamisiyah, Iraq, weapons depot were performed using a mesoscale model run in a data-...

Thomas T. Warner; Rong-Shyang Sheu

2000-05-01T23:59:59.000Z

284

Microsoft Word - S04902_LetterReport Cover Letter.doc  

Office of Legacy Management (LM)

gas-bearing sandstone formations in the Piceance Basin for enhanced natural gas production. A 43 kiloton device was detonated on September 10, 1969, at a depth of 8,426 feet...

285

Microsoft Word - S08407_LTHMP  

Office of Legacy Management (LM)

the tight, gas-bearing formations in the Piceance Basin for enhanced natural gas production. A 43-kiloton device was detonated on September 10, 1969, at a depth of 8,426 feet...

286

Microsoft Word - RUL_1Q2012_Gas_Samp_Results_8G1Iwells.doc  

Office of Legacy Management (LM)

at what is now the Rulison, Colorado, Site. Following the detonation a series of production tests were conducted with the site being ultimately shut down and the site being...

287

Microsoft Word - S06010_Ltr.doc  

Office of Legacy Management (LM)

the tight, gas-bearing formations in the Piceance Basin for enhanced natural gas production. A 43 kiloton device was detonated on September 10, 1969, at a depth of 8,426 feet...

288

Compact chemical energy system for seismic applications  

SciTech Connect

A chemical energy system is formed for producing detonations in a confined environment. An explosive mixture is formed from nitromethane (NM) and diethylenetriamine (DETA). A slapper detonator is arranged adjacent to the explosive mixture to initiate detonation of the mixture. NM and DETA are not classified as explosives when handled separately and can be safely transported and handled by workers in the field. In one aspect of the present invention, the chemicals are mixed at a location where an explosion is to occur. For application in a confined environment, the chemicals are mixed in an inflatable container to minimize storage space until it is desired to initiate an explosion. To enable an inflatable container to be used, at least 2.5 wt % DETA is used in the explosive mixture. A barrier is utilized that is formed of a carbon composite material to provide the appropriate barrel geometry and energy transmission to the explosive mixture from the slapper detonator system.

Engelke, Raymond P. (Los Alamos, NM); Hedges, Robert O. (Los Alamos, NM); Kammerman, Alan B. (Los Alamos, NM); Albright, James N. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

289

MiraCon2013_Tuning_HSCD_2013-03-07  

NLE Websites -- All DOE Office Websites (Extended Search)

High Speed Combustion and Detonation code for Mira Alexei Khokhlov, U niversity o f C hicago Joanna A us:n, U niversity o f I llinois Andrew Knisely, U niversity o f I llinois...

290

Supply chain management for fast-moving products in the electronic industry  

E-Print Network (OSTI)

The objective of this Thesis was to strategically redesign and transform the supply chain of a series of detonators in a leading Company serving the oil and gas industry. The scope of the Thesis included data gathering and ...

Zafiriou, Konstantinos F

2006-01-01T23:59:59.000Z

291

United States Nuclear Tests, July 1945 through September 1992, December 2000  

SciTech Connect

This document list chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Revision 15, dated December 2000.

U.S. Department of Energy, Nevada Operations Office

2000-12-01T23:59:59.000Z

292

Sandia Sled Track PNOV Press Release  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A LANL employee received a potentially fatal electric shock while working on a 3,570-volt direct current electronic detonator in a trainer device that resulted in a first-...

293

Timeline of events: 1951 to 1970 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1991-2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Institutional Origins of DOE Manhattan Project October 31, 1952: Mike Test The Atomic Energy Commission detonates the...

294

Super cpRAD: 1663 Science and Technology Magazine | Los National...  

NLE Websites -- All DOE Office Websites (Extended Search)

been a remarkable boon to the nuclear weapons community, which, since the days of the Manhattan Project, has wanted to peer inside a detonated nuclear weapon and watch its...

295

It's Elemental - The Element Einsteinium  

NLE Websites -- All DOE Office Websites (Extended Search)

by a team of scientists led by Albert Ghiorso in 1952 while studying the radioactive debris produced by the detonation of the first hydrogen bomb. The isotope they discovered,...

296

October 31, 1952: Mike Test | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 1952: Mike Test October 31, 1952: Mike Test October 31, 1952: Mike Test October 31, 1952 The Atomic Energy Commission detonates the first thermonuclear device, code-named...

297

A TeraFLOP Supercomputer in 1996: The ASCI TFLOP System  

Science Conference Proceedings (OSTI)

To maintain the integrity of the US nuclear stockpile without detonating nuclear weapons, the DOE needs the results of computer-simulations that overwhelm the world's most powerful supercomputers. Responding to this need, the DOE initiated the Accelerated ...

Timothy G. Mattson; David Scott; Stephen R. Wheat

1996-04-01T23:59:59.000Z

298

Explosive welding of a tube into a tube sheet  

DOE Patents (OSTI)

A cartridge containing an explosive charge is placed within a tube assembled within a tube sheet. The charge is detonated through use of a detonator cord containing a minimum but effective amount of explosive material. The cord is contained inside a tubular shield throughout most of its length within the cartridge. A small length of the cord extends beyond the tubular shield to contact and detonate the explosive charge in its rear portion near the cartridge base. The cartridge base is provided of substantial mass and thickness in respect to side and front walls of the cartridge to minimize bulging beyond the rear face of the tube sheet. For remote activation an electrically activated detonator of higher charge density than the cord is attached to the cord at a location spaced from the tube sheet, cartridge and tube.

Green, Sheryll C. (London, OH); Linse, Vonne D. (Columbus, OH)

1978-10-03T23:59:59.000Z

299

Design and evaluation of a wireless electronic health records system for field care in mass  

E-Print Network (OSTI)

in Iraq, Afghanistan, and Pakistan; the coordinated bombings in Madrid1 and London;2 the Tsunami disaster prepares for: a dirty bomb (an explosive-dispersed radiation device) or nuclear-bomb detonation,6

Kirsh, David

300

Operation Dominic. Project Stemwinder. Final report  

SciTech Connect

The objective of Project Stemwinder was to probe and sample nuclear clouds as soon as possible after cloud stabilization in order to investigate the amount of radioactive debris which stabilizes in the troposphere and its distribution with height. Sampling was accomplished by the RB-57 aircraft. The detonations investigated were all air bursts over water during Operation Dominic I at Christmas Island. Some data for surface detonations obtained by sampling aircraft during Operation Redwing are used to compare with the Stemwinder data.

Ferber, G.J.

1985-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Barrier breaching device  

DOE Patents (OSTI)

A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.

Honodel, Charles A. (Tracy, CA)

1985-01-01T23:59:59.000Z

302

Mound bridge-wire welding, testing and corrosion seminar, Miamisburg, OH, May 7-8, 1968  

SciTech Connect

Brief summaries are presented on the following presentations: welding for low voltage operation, welding techniques at Mound, welding/joining at Sandia, Ultrasonic`s plastic assemblies of detonator components, laser welding bridge-wires, laser safety in the Biorad industrial environment, nondestructive testing at Mound, thermal cycle data and evaluation, thermal cycle nondestructive testing, corrosion of detonator electrode and bridge-wire, and corrosion studies and fabrication of bridge-wire at Sigmund Cohn.

Richards, M.A.

1968-08-07T23:59:59.000Z

303

Safe arming system for two-explosive munitions  

DOE Patents (OSTI)

A system for safely and positively detonating high-explosive munitions, including a source of electrical signals, a split-phase square-loop transformer responsive solely to a unique series of signals from the source for charging an energy storage circuit through a voltage doubling circuit, and a spark-gap trigger for initiating discharge of the energy in the storage circuit to actuate a detonator and thereby fire the munitions.

Jaroska, Miles F. (Livermore, CA); Niven, William A. (Livermore, CA); Morrison, Jasper J. (Livermore, CA)

1978-01-01T23:59:59.000Z

304

Barrier breaching device  

DOE Patents (OSTI)

A barrier breaching device that is designed primarily for opening holes in interior walls of buildings uses detonating fuse for explosive force. The fuse acts as the ribs or spokes of an umbrella-like device that may be opened up to form a cone. The cone is placed against the wall so that detonating fuse that rings the base of the device and which is ignited by the spoke-like fuses serves to cut a circular hole in the wall.

Honodel, C.A.

1983-06-01T23:59:59.000Z

305

Understanding Taiwanese home healthcare nurse managers' empowerment and international learning experiences| Community-based participatory research approach using a US home healthcare learning tour.  

E-Print Network (OSTI)

?? Home healthcare is an essential service for frail, aged, and disabled persons. Taiwan has a rapidly aging population. Consequently, there is an urgent need… (more)

Tyan, Mei

2010-01-01T23:59:59.000Z

306

Agreement between the California State Employees Association (CSEA), Bargaining Unit 17 (Registered Nurse) and the State of California, 1999-2001  

E-Print Network (OSTI)

employees of the State of California in Bargaining Unit 17shall mean the State of California. BU 17 4. "Gross Income."17 by the State of California as defined in the Internal

California State Employees Association (CSEA)

1999-01-01T23:59:59.000Z

307

Ignition and Growth Modeling of LX-17 Hockey Puck Experiments  

Science Conference Proceedings (OSTI)

Detonating solid plastic bonded explosives (PBX) formulated with the insensitive molecule triaminotrinitrobenzene (TATB) exhibit measurable reaction zone lengths, curved shock fronts, and regions of failing chemical reaction at abrupt changes in the charge geometry. A recent set of ''hockey puck'' experiments measured the breakout times of diverging detonation waves in ambient temperature LX-17 (92.5 % TATB plus 7.5% Kel-F binder) and the breakout times at the lower surfaces of 15 mm thick LX-17 discs placed below the detonator-booster plane. The LX-17 detonation waves in these discs grow outward from the initial wave leaving regions of unreacted or partially reacted TATB in the corners of these charges. This new experimental data is accurately simulated for the first time using the Ignition and Growth reactive flow model for LX-17, which is normalized to a great deal of detonation reaction zone, failure diameter and diverging detonation data. A pressure cubed dependence for the main growth of reaction rate yields excellent agreement with experiment, while a pressure squared rate diverges too quickly and a pressure quadrupled rate diverges too slowly in the LX-17 below the booster equatorial plane.

Tarver, C M

2004-04-19T23:59:59.000Z

308

University of Washington Undergraduate Majors http://www.washington.edu/uaa/gateway/advising/majors/majoff.php  

E-Print Network (OSTI)

Medicine, School of Clinical Health Services (MEDEX) Laboratory Medicine (Medical Technology) Prosthetics Ethnomusicology Public Health Technical Writing International Studies Asian Studies Canadian Studies Comparative and Orthotics Nursing, School of Nursing Public Health, School of Environmental Health Health Informatics

Kaminsky, Werner

309

Projected Smoking-Related Deaths Among U.S. Youth: A 2000 Update  

E-Print Network (OSTI)

Ellen J. Hahn University of Kentucky College of Nursing andMary Kay Rayens University of Kentucky College of NursingNBER Chizimuzo T.C. Okoli University of Kentucky College of

Hahn, Ellen J DNS, RN; Rayens, Mary Kay PhD; Chaloupka, Frank J. PhD; Okoli, Chizimuzo T.C. BSN, RN; Yang, Jun MS

2002-01-01T23:59:59.000Z

310

SELF-ASSESSMENT AND ACTION PLANNING: USING THE ...  

Science Conference Proceedings (OSTI)

... 561, Administrative and Support Services. 562, Waste Management and Remediation Services. ... 623, Nursing and Residential Care Facilities. ...

311

1. Your Organization  

Science Conference Proceedings (OSTI)

... 6114 Business Schools and Computer and Management Training. 6115 Technical and Trade Schools. ... 623 Nursing and Residential Care Facilities. ...

2013-03-25T23:59:59.000Z

312

Examiner Application Guide  

Science Conference Proceedings (OSTI)

... 6114 Business Schools and Computer and Management Training 6115 ... Care Services 622 Hospitals 623 Nursing and Residential Care Facilities ...

2012-10-10T23:59:59.000Z

313

Explosion containment device  

DOE Patents (OSTI)

The disclosure relates to an explosives storage container for absorbing and containing the blast, fragments and detonation products from a possible detonation of a contained explosive. The container comprises a layer of distended material having sufficient thickness to convert a portion of the kinetic energy of the explosion into thermal energy therein. A continuous wall of steel sufficiently thick to absorb most of the remaining kinetic energy by stretching and expanding, thereby reducing the momentum of detonation products and high velocity fragments, surrounds the layer of distended material. A crushable layer surrounds the continuous steel wall and accommodates the stretching and expanding thereof, transmitting a moderate load to the outer enclosure. These layers reduce the forces of the explosion and the momentum of the products thereof to zero. The outer enclosure comprises a continuous pressure wall enclosing all of the layers. In one embodiment, detonation of the contained explosive causes the outer enclosure to expand which indicates to a visual observer that a detonation has occurred.

Benedick, William B. (Albuquerque, NM); Daniel, Charles J. (Albuquerque, NM)

1977-01-01T23:59:59.000Z

314

Pahute Mesa Well Development and Testing Analyses for Wells ER-20-8 and ER-20-4, Nevada National Security Site, Nye County, Nevada, Revision 0  

SciTech Connect

Wells ER-20-4 and ER-20-8 were drilled during fiscal year (FY) 2009 and FY 2010 (NNSA/NSO, 2011a and b). The closest underground nuclear test detonations to the area of investigation are TYBO (U-20y), BELMONT (U-20as), MOLBO (U-20ag), BENHAM (U-20c), and HOYA (U-20 be) (Figure 1-1). The TYBO, MOLBO, and BENHAM detonations had working points located below the regional water table. The BELMONT and HOYA detonation working points were located just above the water table, and the cavity for these detonations are calculated to extend below the water table (Pawloski et al., 2002). The broad purpose of Wells ER-20-4 and ER-20-8 is to determine the extent of radionuclide-contaminated groundwater, the geologic formations, groundwater geochemistry as an indicator of age and origin, and the water-bearing properties and hydraulic conditions that influence radionuclide migration. Well development and testing is performed to determine the hydraulic properties at the well and between other wells, and to obtain groundwater samples at the well that are representative of the formation at the well. The area location, wells, underground nuclear detonations, and other features are shown in Figure 1-1. Hydrostratigraphic cross sections A-A’, B-B’, C-C’, and D-D’ are shown in Figures 1-2 through 1-5, respectively.

Greg Ruskauff and Sam Marutzky

2012-09-01T23:59:59.000Z

315

A Small-Scale Safety Test for Initiation Components  

SciTech Connect

We have developed a small-scale safety test for initiation train components. A low-cost test was needed to assess the response of initiation components to an abnormal shock environment and to detect changes in the sensitivity of initiation components as they age. The test uses a disk of Detasheet to transmit a shock through a PMMA barrier into a the test article. A schematic drawing of the fixture is shown. The 10-cm-diameter disk of 3-mm-thick Detasheet, initiated at its center by a RISI, RP detonator, produces a shock wave that is attenuated by a variable-thickness PMMA spacer (gap). Layers of metal and plastic above the test article and the material surrounding the test article may be chosen to mock up the environment of the test article at its location in a warhead. A metal plate at the bottom serves as a witness plate to record whether or not the test article detonated. For articles containing a small amount of explosive, it can be difficult to determine whether or not a detonation has occurred. In such cases, one can use a pressure transducer or laser velocimeter to detect the shock wave from the detonation of the article. The assembly is contained in a 10-cm-ID section of PVC pipe and fired in a containment vessel rated at 100 g. Test results are given for a hemispherical, exploding-bridgewire (EBW) detonator.

Cutting, J; Chow, C; Chau, H; Hodgin, R; Lee, R

2002-04-22T23:59:59.000Z

316

Sandia National Laboratories: News: Publications: Lab News  

NLE Websites -- All DOE Office Websites (Extended Search)

Sept. 21, 2012 Sept. 21, 2012 Sandia's Explosives Technology Group discovers key detonation behavior in common explosive NOT SO BIG BANG - Alex Tappan (left) and Rob Knepper (both 2554) watch the detonation of a Sandia critical thickness experiment. The experiment typically uses less explosive material than the size of one-tenth of an aspirin tablet to determine small-scale detonation properties. The bench-top experiment is so small, researchers can stand next to the firing chamber with eye and ear protection. (Photo by Randy Montoya) by Sue Major Holmes The explosive PETN (pentaerythritol tetranitrate) has been around for a century and is used by everyone from miners to the military, but it took new research by Sandia to begin to discover key mechanisms behind what causes it to fail at very small scales.

317

Emulsion based cast booster - a priming system  

Science Conference Proceedings (OSTI)

This paper explores the potential of emulsion based cast booster to be used as primer to initiate bulk delivered emulsion explosives used in mines. An attempt has been made for comparative study between conventional cast booster and emulsion based cast booster in terms of the initiation process developed and their capability to develop and maintain the stable detonation process in the column explosives. The study has been conducted using a continuous velocity of detonation (VOD) measuring instrument. During this study three blasts have been monitored. In each blast two holes have been selected for study, the first hole being initiated with conventional cast booster while the other one with emulsion based cast booster. The findings of the study advocates that emulsion based cast booster is capable of efficient priming of bulk delivered column explosive with stable detonation process in the column. Further, the booster had advantages over the conventional PETN/TNT based cast booster. 5 refs., 2 figs., 1 tab., 1 photo.

Gupta, R.N.; Mishra, A.K. [National Institute of Rock Mechanics, KGF (India)

2005-07-01T23:59:59.000Z

318

High-temperature explosive development for geothermal well stimulation. Final report  

DOE Green Energy (OSTI)

A two-component, temperature-resistant liquid explosive called HITEX has been developed which is capable of withstanding 561/sup 0/K (550/sup 0/F) for 24 hours in a geothermal environment. The explosive is intended for the stimulation of nonproducing or marginally producing geothermal (hot dry rock, vapor-dominated or hydrothermal) reservoirs by fracturing the strata in the vicinity of a borehole. The explosive is inherently safe because it is mixed below ground downhole from two nondetonable liquid components. Development and safety tests included differential scanning calorimetry, thermal stability, minerals compatibility, drop-weight sensitivity, adiabatic compression, electrostatic discharge sensitivity, friction sensitivity, detonation arrest capability, cook-off tests, detonability at ambient and elevated pressure, detonation velocity and thin film propagation in a wedge.

Schmidt, E.W.; Mars, J.E.; Wang, C.

1978-03-31T23:59:59.000Z

319

Microsoft Word - RUL_3Q2010_Rpt_Gas_Samp_Results_18Wells.doc  

Office of Legacy Management (LM)

Monitoring Results Monitoring Results Natural Gas Wells near the Project Rulison Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 13 July 2010 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom hole locations (BHLs) of the 18 gas wells sampled are within 1.1 miles of the Project Rulison detonation horizon. All wells sampled have produced or are producing gas from the Williams Fork Formation. Background: Project Rulison is the Plowshare Program code name for the detonation of a 40-kiloton-yield nuclear device on 10 September 1969. The detonation point was 8,426 feet (about 1.6 miles) below ground surface in the Williams Fork Formation. The purpose of the test

320

rulison_model.cdr  

Office of Legacy Management (LM)

and and its prede- cessor agencies conducted a program in the 1960s and 1970s that evaluated the use of nuclear detonations to enhance production from low-permeability natural gas reservoirs. Project Rulison was the second of three Plowshare Program tests designed to stimulate the production of natural gas by detonating a nuclear device in a deep, low-permeability geologic formation. On September 10, 1969, the U.S. Atomic Energy Commission, a predecessor agency of DOE, detonated a 43-kiloton nuclear device 8,426 feet below the ground surface in an attempt to release commercially marketable quantities of natural gas from the Williams Fork Formation of the Mesaverde Group. The natural gas reservoirs of the Williams Fork Formation occur in low-permeability sandstone lenses interbedded with shale. A variety of radionuclides, primarily fission products, were generated as a result

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Prospects for Type Ia Supernova explosion mechanism identification with gamma rays  

E-Print Network (OSTI)

The explosion mechanism associated with thermonuclear supernovae (SNIa) is still a matter of debate. There is a wide agreement that high amounts of of radioactive nuclei are produced during these events and they are expected to be strong gamma-ray emitters. In the past, several authors have investigated the use of this gamma-ray emission as a diagnostic tool. In this paper we have done a complete study of the gamma-ray spectra associated with all the different scenarios currently proposed. This includes detonation, delayed detonation, deflagration and the off-center detonation. We have performed accurate simulations for this complete set of models in order to determine the most promising spectral features that could be used to discriminate among the different models. Our study is not limited to qualitative arguments. Instead, we have quantified the differences among the spectra and established distance limits for their detection. The calculations have been performed considering the best current response estim...

Gómez-Gomar, J; Jean, P; Gomez-Gomar, Jordi; Isern, Jordi; Jean, Pierre

1997-01-01T23:59:59.000Z

322

Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives  

SciTech Connect

Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.

Vitello, P A; Fried, L E; Howard, W M; Levesque, G; Souers, P C

2011-07-21T23:59:59.000Z

323

Method for making generally cylindrical underground openings  

DOE Patents (OSTI)

A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

Routh, J.W.

1983-05-26T23:59:59.000Z

324

Explosive fracturing method  

SciTech Connect

A method of inducing a fracture system and multiple cavities in earthen formations is described. A first explosive, preferably nuclear, is buried at a sufficient depth so that its subsequent detonation is fully contained within the earth. Thereafter a second explosive, also preferably nuclear, is buried a predetermined distance from the situs of the first explosive. After detonation of the first explosive, time is allowed to elapse during which the cavity formed by the first explosive collapses to form a rubblized chimney. Thereafter, the second explosive is detonated to create a second chimney parallel to that of the first explosive together with a zone of enhanced permeability between the first and second. (10 claims)

Boardman, C.R.; Knutson, C.F.

1973-12-11T23:59:59.000Z

325

GEOFRAC: an explosives stimulation technique for a geothermal well  

DOE Green Energy (OSTI)

The first known use of explosives for stimulating a geothermal well was successfully conducted in December 1981 with a process called GEOFRAC. The 260/sup 0/C well was located at the Union Oil Company's Geysers Field in northern California. For the initial test, 364 kg of a new explosive called HITEX II was placed at a depth of 2256 meters and detonated to verify techniques. The explosive was contained in an aluminum canister to separate it from the well fluids. In the second test, 5000 kg of explosive was used representing a column length of approximately 191 meters. The explosive was detonated at a depth of 1697 meters in the same well. The results of these tests show that HITEX II can be safely emplaced and successfully detonated in a hot geothermal well without causing damage to the well bore or casing.

Mumma, D.M.; McCullough, F. Jr.; Schmidt, E.W.; Pye, D.S.; Allen, W.C.; Pyle, D.; Hanold, R.J.

1982-01-01T23:59:59.000Z

326

EDS V25 containment vessel explosive qualification test report.  

SciTech Connect

The V25 containment vessel was procured by the Project Manager, Non-Stockpile Chemical Materiel (PMNSCM) as a replacement vessel for use on the P2 Explosive Destruction Systems. It is the first EDS vessel to be fabricated under Code Case 2564 of the ASME Boiler and Pressure Vessel Code, which provides rules for the design of impulsively loaded vessels. The explosive rating for the vessel based on the Code Case is nine (9) pounds TNT-equivalent for up to 637 detonations. This limit is an increase from the 4.8 pounds TNT-equivalency rating for previous vessels. This report describes the explosive qualification tests that were performed in the vessel as part of the process for qualifying the vessel for explosive use. The tests consisted of a 11.25 pound TNT equivalent bare charge detonation followed by a 9 pound TNT equivalent detonation.

Rudolphi, John Joseph

2012-04-01T23:59:59.000Z

327

Explosive Model Tarantula 4d/JWL++ Calibration of LX-17  

Science Conference Proceedings (OSTI)

Tarantula is an explosive kinetic package intended to do detonation, shock initiation, failure, corner-turning with dead zones, gap tests and air gaps in reactive flow hydrocode models. The first, 2007-2008 version with monotonic Q is here run inside JWL++ with square zoning from 40 to 200 zones/cm on ambient LX-17. The model splits the rate behavior in every zone into sections set by the hydrocode pressure, P + Q. As the pressure rises, we pass through the no-reaction, initiation, ramp-up/failure and detonation sections sequentially. We find that the initiation and pure detonation rate constants are largely insensitive to zoning but that the ramp-up/failure rate constant is extremely sensitive. At no time does the model pass every test, but the pressure-based approach generally works. The best values for the ramp/failure region are listed here in Mb units.

Souers, P C; Vitello, P A

2008-09-30T23:59:59.000Z

328

Catalytic Behavior of Dense Hot Water  

DOE Green Energy (OSTI)

Water is known to exhibit fascinating physical properties at high pressures and temperatures. Its remarkable structural and phase complexity suggest the possibility of exotic chemical reactivity under extreme conditions, though this remains largely unstudied. Detonations of high explosives containing oxygen and hydrogen produce water at thousands of K and tens of GPa, similar to conditions of giant planetary interiors. These systems thus provide a unique means to elucidate the chemistry of 'extreme water'. Here we show that water plays an unexpected role in catalyzing complex explosive reactions - contrary to the current view that it is simply a stable detonation product. Using first-principles atomistic simulations of the detonation of high explosive pentaerythritol tetranitrate (PETN), we discovered that H{sub 2}O (source), H (reducer) and OH (oxidizer) act as a dynamic team that transports oxygen between reaction centers. Our finding suggests that water may catalyze reactions in other explosives and in planetary interiors.

Wu, C J; Fried, L E; Yang, L H; Goldman, N; Bastea, S

2008-06-05T23:59:59.000Z

329

Categorical Exclusion Determinations: B1.12 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Categorical Exclusion Determinations: B1.12 Existing Regulations B1.12: Detonation or burning of explosives or propellants after testing Outdoor detonation or burning of explosives or propellants that failed (duds), were damaged (such as by fracturing), or were otherwise not consumed in testing. Outdoor detonation or burning would be in areas designated and routinely used for those purposes under existing applicable permits issued by Federal, state, and local authorities (such as a permit for a RCRA miscellaneous unit (40 CFR part 264, subpart X)). Previous Regulations Categorical Exclusion Determinations dated before November 14th, 2011 were issued under previous DOE NEPA regulations. See the Notice of Final Rulemaking (76 FR 63763, 10/13/2011) for information changes to this

330

Chemical Kinetic Modeling of Hydrogen Combustion Limits  

Science Conference Proceedings (OSTI)

A detailed chemical kinetic model is used to explore the flammability and detonability of hydrogen mixtures. In the case of flammability, a detailed chemical kinetic mechanism for hydrogen is coupled to the CHEMKIN Premix code to compute premixed, laminar flame speeds. The detailed chemical kinetic model reproduces flame speeds in the literature over a range of equivalence ratios, pressures and reactant temperatures. A series of calculation were performed to assess the key parameters determining the flammability of hydrogen mixtures. Increased reactant temperature was found to greatly increase the flame speed and the flammability of the mixture. The effect of added diluents was assessed. Addition of water and carbon dioxide were found to reduce the flame speed and thus the flammability of a hydrogen mixture approximately equally well and much more than the addition of nitrogen. The detailed chemical kinetic model was used to explore the detonability of hydrogen mixtures. A Zeldovich-von Neumann-Doring (ZND) detonation model coupled with detailed chemical kinetics was used to model the detonation. The effectiveness on different diluents was assessed in reducing the detonability of a hydrogen mixture. Carbon dioxide was found to be most effective in reducing the detonability followed by water and nitrogen. The chemical action of chemical inhibitors on reducing the flammability of hydrogen mixtures is discussed. Bromine and organophosphorus inhibitors act through catalytic cycles that recombine H and OH radicals in the flame. The reduction in H and OH radicals reduces chain branching in the flame through the H + O{sub 2} = OH + O chain branching reaction. The reduction in chain branching and radical production reduces the flame speed and thus the flammability of the hydrogen mixture.

Pitz, W J; Westbrook, C K

2008-04-02T23:59:59.000Z

331

Supercomputers' Pictorial Superpowers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supercomputers' Pictorial Superpowers Supercomputers' Pictorial Superpowers Supercomputers' Pictorial Superpowers August 18, 2011 - 3:08pm Addthis The ability to do 3D, large-scale simulations of supernovae, such as above, led to the discovery of an entirely new and unexpected explosion mechanism, termed the gravitationally confined detonation (GCD) model. Click here to view a slideshow of images. | Image: Courtesy Flash Center for Computational Science, University of Chicago The ability to do 3D, large-scale simulations of supernovae, such as above, led to the discovery of an entirely new and unexpected explosion mechanism, termed the gravitationally confined detonation (GCD) model. Click here to

332

Optimizing cast blasting efficiency using ANFO with liners  

Science Conference Proceedings (OSTI)

As part of a five research project funded by the National Science Foundation, Peabody Energy studied three experimental cast blasts conducted at the North Antelope Rochelle mine site on July 24,28 and 31 2005. The initial purpose of this research project was to determine the influence that blast initiation sequence have on: NOx production; Face Displacement; Highwall damage; Explosive performance; Vibration emissions; Displacement; Surface swell; and Cast benefit. Two new discoveries on velocity of detonation (VoD) and pressure of detonation (PoD) were made as a result of this research project. Furthermore, a relationship between surface swell velocity and face velocity was also noted. 7 figs., 3 tabs.

Madsen, A.

2007-01-15T23:59:59.000Z

333

Lithium niobate explosion monitor  

DOE Patents (OSTI)

Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

Bundy, Charles H. (Clearwater, FL); Graham, Robert A. (Los Lunas, NM); Kuehn, Stephen F. (Albuquerque, NM); Precit, Richard R. (Albuquerque, NM); Rogers, Michael S. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

334

Selectable fragmentation warhead  

DOE Patents (OSTI)

This report discusses a selectable fragmentation warhead which is capable of producing a predetermined number of fragments from a metal plate, and accelerating the fragments toward a target. A first explosive located adjacent to the plate is detonated at selected number of points by laser-driven slapper detonators. In one embodiment, a smoother-disk and a second explosive, located adjacent to the first explosive, serve to increase acceleration of the fragments toward a target. The ability to produce a selected number of fragments allows for effective destruction of a chosen target.

Bryan, C.S.; Paisley, D.L.; Montoya, N.I.; Stahl, D.B.

1992-12-31T23:59:59.000Z

335

Material Evaluation Test Series 07, 08A, and 09A  

SciTech Connect

This research effort examines the post-detonation environmental, safety, health and operational aspects of experimental explosive tests with mercury. Specific experimental information is necessary for the evaluation of post-detonation by-products in comparison with those potentially resulting from mercury-bearing material accumulation in biomass accumulation areas, such as landfills, from batteries, electrical switches, thermometers, and fluorescent lights (Lindberg et al 2001). This will assist in determining appropriate abatement techniques for cleaning the work environment and environmental mitigation to determine waste stream components and risk assessment protocol. Determination of the by-products for personal protection equipment and personal exposure monitoring parameters are also part of this experimental work.

Zalk, D; Ingram, C; Simmons, L; Arganbright, R; Koester, C; Lyle, J

2006-04-11T23:59:59.000Z

336

Reactive Flow Modeling of Liquid Explosives via ALE3D/Cheetah Simulations  

SciTech Connect

We carried out reactive flow simulations of liquid explosives such as nitromethane using the hydrodynamic code ALE3D coupled with equations of state and reaction kinetics modeled by the thermochemical code Cheetah. The simulation set-up was chosen to mimic cylinder experiments. For pure unconfined nitromethane we find that the failure diameter and detonation velocity dependence on charge diameter are in agreement with available experimental results. Such simulations are likely to be useful for determining detonability and failure behavior for a wide range of experimental conditions and explosive compounds.

Kuo, I W; Bastea, S; Fried, L E

2010-03-10T23:59:59.000Z

337

Apparatus for reducing shock and overpressure  

DOE Patents (OSTI)

The design is given of an apparatus for reducing shock and overpressure particularly useful in connection with the sequential detonation of a series of nuclear explosives underground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accommodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure.

Walter, C.E.

1975-10-21T23:59:59.000Z

338

LDRD summary report. Part 1: initiation studies of thin film explosvies used for scabbling concrete. Part 2: investigation of spray techniques for use in explosive scabbling of concrete  

SciTech Connect

We describe a new method for the scabbling of concrete surfaces using a thin layer of explosive material sprayed onto the surfaces. We also developed a new explosive mixture that could be applied with commercial spray painting equipment. The first part of our record describes experiments that studied methods for the initiation of the sprayed explosive. We successfully initiated layers 0.36 mm thick using a commercial EBW detonator, a flying plate detonator, and by pellet impact. The second part of our report describes a survey of spray methods and tests with two commercial spray systems that we believe could be used for developing a robotic spray system.

Benham, R.A.; Bickes, R.W. Jr.; Grubelich, M.C.; Wackerbarth, D.E.; Brock, J.L.

1996-11-01T23:59:59.000Z

339

Apparatus for reducing shock and overpressure  

DOE Patents (OSTI)

An apparatus for reducing shock and overpressure is particularly useful in connection with the sequential detonation of a series of nuclear explosives under ground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accomodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure. (10 claims)

Walter, C.E.

1975-01-28T23:59:59.000Z

340

PROTON RADIOGRAPHY EXAMINATION OF UNBURNED REGIONS IN PBX 9502 CORNER TURNING EXPERIMENTS  

SciTech Connect

PBX 9502 Corner Turning Experiments have been used with various diagnostics techniques to study detonation wave propagation and the boosting of the insensitive explosive. In this work, the uninitiated region of the corner turning experiment is examined using Proton Radiography. Seven transmission radiographs obtained on the same experiment are used to map out the undetonated regions on each of three different experiments. The results show regions of high-density material, a few percent larger than initial explosive density. These regions persist at nearly this density while surrounding material, which has reacted, is released as expected. Calculations using Detonation Shock Dynamics are used to examine the situations that lead to the undetonated regions.

E. N. FERM; C. L. MORRIS; ET AL

2001-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Large scale obscuration and related climate effects open literature bibliography  

SciTech Connect

Large scale obscuration and related climate effects of nuclear detonations first became a matter of concern in connection with the so-called ``Nuclear Winter Controversy`` in the early 1980`s. Since then, the world has changed. Nevertheless, concern remains about the atmospheric effects of nuclear detonations, but the source of concern has shifted. Now it focuses less on global, and more on regional effects and their resulting impacts on the performance of electro-optical and other defense-related systems. This bibliography reflects the modified interest.

Russell, N.A.; Geitgey, J.; Behl, Y.K.; Zak, B.D.

1994-05-01T23:59:59.000Z

342

Ultrasonic Assembly of Thermoplastic Parts  

SciTech Connect

Four ultrasonic methods were evaluated for assembly of experimental plastic parts for detonators: (1) welding, (2) crimping and staking, (3) insertion, and (4) reactivation of adhesives. For welding, staking and insertion, plastics with low elastic moduli, such as acrylics and polycarbonate, produced the best results. Thermosetting, hot-melt, and solution adhesives could all be activated ultrasonically to form good bonds on plastics and other materials. This evaluation indicated that thermoplastic detonator parts could be assembled ultrasonically in shorter times than by present production techniques with high bond strengths and high product acceptance rates.

Schurman, W. R.

1970-03-31T23:59:59.000Z

343

ORISE: Radiation Emergency Assistance Center/Training Site (REAC/TS)  

NLE Websites -- All DOE Office Websites (Extended Search)

How ORISE is Making a Difference How ORISE is Making a Difference Overview CBL International Exercise Emergency Response Training International Training RANET Asset CBL BioDoseNet CBL's Empire 09 Support NASA Support International Partnerships Resources Overview Frequently Asked Questions about Radiation Understanding Radiation Video Series The Medical Aspects of Radiation Incidents Dose Estimates and Compendia Procedure Demonstrations for Contaminated Patients Hospital Triage Article Radiation Treatment Medication Package Inserts Cytogenetic Biodosimetry Laboratory Video Cytogenetic Biodosimetry Laboratory Brochure Dose Coefficients for Intakes of Radionuclides via Contaminated Wounds How to Work With Us Contact Us Featured Resources The Medical Aspects of Radiation Incidents The Medical Aspects of Radiation Incidents

344

Effect of Dietary Intake of Stable Iodine on Dose-per-unit-intake Factors for 99Tc  

SciTech Connect

It is well-known that the human thyroid concentrates iodine more than 100 times the concentration in plasma. Also well-known is the fact that large amounts of stable iodine in the diet can limit thyroid uptake of total iodine; this is the basis for administering potassium iodide following a release of radioiodine from a nuclear reactor accident or nuclear weapon detonation. Many researchers have shown enhanced concentrations of both organic and inorganic iodine in saliva and breast milk. Technetium-99 is a long-lived (231,000 year half-life) radionuclide of concern in the management of high-level radioactive waste. There is no doubt that 99Tc, if it is in groundwater, will be found in the chemical form of pertechnetate, 99TcO4?. Pertechnetate is a large anion, almost identical in size to iodide, I?. The nuclear medicine literature shows that pertechnetate concentrates in the thyroid, salivary glands, and lactating breast in addition to the stomach, liver, and alimentary tract as currently recognized by the International Commission on Radiological Protection (ICRP). The fact that large intakes of stable iodine (127I) in the diet limit uptake of iodine by the thyroid leads one to generalize that stable iodine in the diet may also limit thyroid uptake of pertechnetate. While there is at least one report that iodine in the diet blocks uptake of 99mTcO4? by the thyroid and salivary glands (which have the same Na/I symporter, the biochemical concentration mechanism), the level of protective effect seen for blocking radioactive iodine is not expected for 99TcO4? because pertechnetate does not become organically bound in the thyroid and thus is not retained for months the way iodide is. While it does account for Tc concentration in the thyroid, the existing ICRP biokinetic model for technetium does not take enhanced concentrations in salivary gland and breast tissue into account. From the survey of the nuclear medicine literature, it is not possible to compute the effect of stable iodine in the diet on the dose per unit intake factors for 99Tc without developing an improved biokinetic model for technetium. Specific experiments should be designed to quantitatively evaluate 99TcO4? metabolism, excretion, and secretion, as well as to evaluate its chemical toxicity It is recommended that the ICRP reexamine its biokinetics models for Tc based on nuclear medicine data that have accumulated over the years. In particular, the ICRP ignores the lactation pathway, the enhanced concentration of Tc in breast and breast milk, and enhanced concentration of Tc (and I) in the salivary glands as well as in the thyroid. The ICRP should also explicitly incorporate the effect of stable iodine in the diet into both its models for iodine and technetium. The effect of concentration of Tc in breast milk needs further study for dosimetric implications to nursing infants whose mothers may ingest 99TcO4? from groundwater sources. The ICRP should also investigate the possibility of enhanced concentration of both I and Tc in the non-lactating female breast. To do these re-evaluations of biokinetic models, new experiments designed specifically to evaluate these questions concerning the biokinetics of Tc and I are needed.

Strom, Daniel J.

2003-09-30T23:59:59.000Z

345

Randomised controlled trial of a complex intervention by primary care nurses to increase walking in patients aged 60¿74 years: protocol of the PACE-Lift (Pedometer Accelerometer Consultation Evaluation - Lift) trial  

E-Print Network (OSTI)

-count and accelerometer data and step-count diary 10,19, Encourage progress in increasing walking and achieving goals 12,13, Troubleshoot any problems with equipment or diary 8, Barriers and facilitators to increasing physical activity, overcoming barriers 8 Review target... walking and achieving goals 12,13, Troubleshoot any problems with equipment or diary 8, Preparing for setbacks: discussion of coping strategies, building social support 29,35, Introduce pacing; general pacing tips and plans 9,35 Building habits – generate...

Harris, Tess; Kerry, Sally; Victor, Christina; Ekelund, Ulf; Woodcock, Alison; Iliffe, Steve; Whincup, Peter; Beighton, Carole; Ussher, Michael; David, Lee; Brewin, Debbie; Adams, Fredrika; Rogers, Annabelle; Cook, Derek

2013-01-04T23:59:59.000Z

346

Queensland Health Patient Safety and Quality Executive Committee Distribution List Clinical CEOs Patient Safety Officers Directors of Medical Services Directors of Nursing District Quality Coordinators Directors of Pharmacy Source Of Problem  

E-Print Network (OSTI)

Subject Medication incidents involving the administration of liquid oral medications using hypodermic syringes Issue Incidents have occurred locally, nationally and internationally where oral liquid medications have been drawn up into a hypodermic syringe and administered intravenously (IV) in error. Issued by

unknown authors

2009-01-01T23:59:59.000Z

347

CINAHL with Full Text is the world's most comprehensive source of full text for nursing & allied health journals, providing full text for more than 600 journals indexed in CINAHL. This authoritative file  

E-Print Network (OSTI)

for appropriate subject terms. Example: Click on CINAHL Heading, then enter Migraine in the search box and click mode than for the Basic search mode. CINAHL Headings Searching for subject terms (controlled vocabulary Ranked. Note that your search term appears at the bottom of the list with the option to search

348

Microsoft Word - RBL_3Q2010_Rpt_Gas_Samp_Results_3Wells  

Office of Legacy Management (LM)

near the Project Rio Blanco Horizon near the Project Rio Blanco Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 13 September 2010 Purpose: The purpose of this sample collection is to monitor natural gas wells for radionuclides from Project Rio Blanco. The bottom-hole locations (BHLs) of the 3 gas wells sampled are within 1.4 miles of the Project Rio Blanco detonation horizon. All wells sampled have produced or are producing gas from the Mesaverde Group. Background: Project Rio Blanco is the Plowshare Program code name for the near-simultaneous detonation of a three 33-kiloton-yield nuclear devices in one emplacement well (RB-E-01) on 17 May 1973. The devices were detonated at 5,839-feet, 6,230-feet, and 6,689-feet below the ground surface. The shallowest device (at 5,839 feet) was detonated in the lower part of the Fort Union Formation, the

349

Proceedings of the tenth annual symposium on explosives and blasting research  

Science Conference Proceedings (OSTI)

These proceedings contain 26 papers presented at the conference. Topics relate to blast vibration analysis and modeling, malfunctioning explosives, detonators, rock fragmentation, structural response of buildings to blasting, computer modeling, blast design, and measurement of rock properties. Most of the papers have been processed separately for inclusion on the data base.

NONE

1994-12-31T23:59:59.000Z

350

Methods for generating and shaping a seismic energy pulse. [Primacord explosive under water  

SciTech Connect

A straight piece of Primacord is suspended in water and detonated by a blasting cap. The primary and surface-reflected pulses are combined to shape the seismic signal by choosing the length and depth of the Primacord and the position of the blasting cap. The effects of the bubble or secondary seismic pulses are reduced because of the elongated bubbles generated.

Itria, O.A.

1975-09-30T23:59:59.000Z

351

98 Volume 6, no. 1 (January 1996) Cover page.  

E-Print Network (OSTI)

consulting, in particular for the military, and played a limited r^ole in the atomic bomb project since with industry, and with the U.S government and its military, left an extensive paper trail of formal reports September 1943. The implosion detonation design for the plutonium bomb, promoted by von Neumann, required

Ruitenburg, Wim

352

United Press International: U.S. to join international fusion project Friday, January 31, 2003  

E-Print Network (OSTI)

energy used explosively -- require atomic or fission bombs as detonators. As envisioned, ITER of matter so hot that even atoms cannot hold together. Speaking on the campus of Princeton's Plasma Physics told an audience of reporters and representatives of some of the other nations involved in the ITER

353

Tatyana V. Wilds, Most Pure Heart of Mary School, Topeka, KS  

E-Print Network (OSTI)

in San Francisco Stalin, Churchill/Attlee meet in Potsdam US drops Atomic Bomb on Hiroshima and Nagasaki) Churchill's "Iron Curtain" speech in Fulton, Missouri 1949 Soviets detonate their first Atomic Bomb in the Cold War. For example, what if Truman had not fired General Macarthur and he had decided to drop bombs

Peterson, Blake R.

354

CSU -Fall 2013 ART 496H: ART HISTORY SEMINAR  

E-Print Network (OSTI)

of the first atomic bomb on Hiroshima, to Cold War weapons testing and research that led to an environment culture started at the beginning of the Cold War when televised atomic bomb detonations swept the nation into an atomic craze. Miss Atomic Bomb beauty contests became media spectacles while American citizens learned

Stephens, Graeme L.

355

CSU -Spring 2012 ART 492A: ART HISTORY SEMINAR  

E-Print Network (OSTI)

and culture. Atomic tourism started at the beginning of the Cold War when televised atomic bomb detonations swept the nation into an atomic craze. Miss Atomic Bomb beauty contests became media spectacles while to Chernobyl and Fukushima Watching the Bombs go off: Nuclear Test Sites and the Spectacle Miss Atomic Bomb

Stephens, Graeme L.

356

Operation REDWING 1956. Technical report  

SciTech Connect

REDWING was a 17-detonation atmospheric nuclear weapons test series conducted in the Marshall Islands at Enewetak and Bikini atolls in spring and summer 1956. This is a report of DOD personnel in REDWING with an emphasis on operations and radiological safety.

Bruce-Henderson, S.; Gladeck, F.R.; Hallowell, J.H.; Martin, E.J.; McMullan, F.W.

1982-08-01T23:59:59.000Z

357

SWIFT for High Explosive Initiation Research  

SciTech Connect

SWIFT diagnostics coupled with PDV and other tools represent an exciting new source of data with many possible applications - Basic HE and detonator characterization. SIAS is the name for the methodology we use to couple our SWIFT data to calculations for maximum utilization - Each experiment design requires a new load curve/table and associated ALE3D input file.

Johnson, Carl E. [Los Alamos National Laboratory; Murphy, Michael J. [Los Alamos National Laboratory; Clarke, Steven A. [Los Alamos National Laboratory

2012-08-03T23:59:59.000Z

358

Gasbuggy Site Assessment and Risk Evaluation  

SciTech Connect

This report describes the geologic and hydrologic conditions and evaluates potential health risks to workers in the natural gas industry in the vicinity of the Gasbuggy, New Mexico, site, where the U.S. Atomic Energy Commission detonated an underground nuclear device in 1967. The 29-kiloton detonation took place 4,240 feet below ground surface and was designed to evaluate the use of a nuclear detonation to enhance natural gas production from the Pictured Cliffs Formation in the San Juan Basin, Rio Arriba County, New Mexico, on land administered by Carson National Forest. A site-specific conceptual model was developed based on current understanding of the hydrologic and geologic environment. This conceptual model was used for establishing plausible contaminant exposure scenarios, which were then evaluated for human health risk potential. The most mobile and, therefore, the most probable contaminant that could result in human exposure is tritium. Natural gas production wells were identified as having the greatest potential for bringing detonation-derived contaminants (tritium) to the ground surface in the form of tritiated produced water. Three exposure scenarios addressing potential contamination from gas wells were considered in the risk evaluation: a gas well worker during gas-well-drilling operations, a gas well worker performing routine maintenance, and a residential exposure. The residential exposure scenario was evaluated only for comparison; permanent residences on national forest lands at the Gasbuggy site are prohibited

None

2011-03-01T23:59:59.000Z

359

A review on boiler deposition/foulage prevention and removal techniques for power plant  

Science Conference Proceedings (OSTI)

Burning coal in power plants produces significant amounts of deposits like fouling and slagging on boiler surfaces which contributes to the overall poor performance of the power plants (by reducing electricity generation capacity, decreasing boiler efficiency ... Keywords: coal, electricity generation, fouling, intelligent shoot blower, pulse detonation wave, slagging

N. Hare; M. G. Rasul; S. Moazzem

2010-02-01T23:59:59.000Z

360

Capacitive discharge firing system for providing acoustic sources in the hot dry rock geothermal energy development project  

DOE Green Energy (OSTI)

The development of a capacitive discharge firing unit designed to initiate electrically exploded foil slapper detonators in a subsurface, high-pressure (5000 psi), high-temperature (> 200/sup 0/C) environment is described. The unit is used to conduct acoustic ranging experiments in deep boreholes (approx. = 10,000 ft) in the Los Alamos Scientific Laboratory Geothermal Hot Dry Rock experiment.

Patterson, W.W.; Deam, D.R.; MacDonald, H.J.; Rochester, R.H.

1979-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Critical Look at Design, Veri cation, and Validation of Large Scale Simulations  

E-Print Network (OSTI)

presented two papers on the Department of Energy's Accel- erated Scienti c Computing Initiative or ASCI: Jan 28, 2003. This just in. From Makkah, Saudi Arabia. An FA-18 ghter carrying a tac- tical nuclear, the weapon detonated. US experts cannot explain how this explosion could have occurred. The city was lled

Hallstrom, Jason

362

Proceedings of the 2013 Winter Simulation Conference R. Pasupathy, S.-H. Kim, A. Tolk, R. Hill, and M. E. Kuhl, eds.  

E-Print Network (OSTI)

that can allow policy makers to study various counter-factual experiments in the event of a large human-initiated crisis. The specific scenario we consider is a ground detonation caused by an improvised nuclear device period after the initial blast. A novel computing and data processing architecture is described

Swarup, Samarth

363

Building an Efficient Model for Afterburn Energy Release  

Science Conference Proceedings (OSTI)

Many explosives will release additional energy after detonation as the detonation products mix with the ambient environment. This additional energy release, referred to as afterburn, is due to combustion of undetonated fuel with ambient oxygen. While the detonation energy release occurs on a time scale of microseconds, the afterburn energy release occurs on a time scale of milliseconds with a potentially varying energy release rate depending upon the local temperature and pressure. This afterburn energy release is not accounted for in typical equations of state, such as the Jones-Wilkins-Lee (JWL) model, used for modeling the detonation of explosives. Here we construct a straightforward and efficient approach, based on experiments and theory, to account for this additional energy release in a way that is tractable for large finite element fluid-structure problems. Barometric calorimeter experiments have been executed in both nitrogen and air environments to investigate the characteristics of afterburn for C-4 and other materials. These tests, which provide pressure time histories, along with theoretical and analytical solutions provide an engineering basis for modeling afterburn with numerical hydrocodes. It is toward this end that we have constructed a modified JWL equation of state to account for afterburn effects on the response of structures to blast. The modified equation of state includes a two phase afterburn energy release to represent variations in the energy release rate and an afterburn energy cutoff to account for partial reaction of the undetonated fuel.

Alves, S; Kuhl, A; Najjar, F; Tringe, J; McMichael, L; Glascoe, L

2012-02-03T23:59:59.000Z

364

POINTWISE GREEN FUNCTION BOUNDS AND STABILITY OF COMBUSTION WAVES  

E-Print Network (OSTI)

POINTWISE GREEN FUNCTION BOUNDS AND STABILITY OF COMBUSTION WAVES GREGORY LYNG, MOHAMMADREZA ROOFI for traveling wave solutions of an abstract viscous combustion model including both Majda's model and the full-wave) approximation. Notably, our results apply to combustion waves of any type: weak or strong, detonations or defla

Texier, Benjamin - Institut de Mathématiques de Jussieu, Université Paris 7

365

On the ChapmanJouguet Limit for a Combustion Model  

E-Print Network (OSTI)

On the Chapman­Jouguet Limit for a Combustion Model Bernard Hanouzet \\Lambda , Roberto Natalini y and Alberto Tesei z Abstract We study the limiting behaviour of solutions to a simple model for combustion detonations and deflagrations with respect to the reaction rate. Key words and phrases: combustion

366

Safety Concrete Principal Investigators: Hamlin Jennings  

E-Print Network (OSTI)

is to minimize casualties from large fragments of concrete propelled by a vehicle bomb detonated outside TO REDUCE BLAST-RELATED CASUALTIES Edward F. O'Neil, Hamlin Jennings, Jeffrey Thomas, Weiguo Shen, Toney materials. Jeffrey Thomas is a Professor of Civil Engineering whose primary research interest is the atomic

367

GROSS BETA RADIOACTIVITY OF THE ALGAE AT ENIWETOK ATOLL, 1954-1956  

SciTech Connect

A study was made to determine the amounts of radioactivity in marine algae, water, and lagoon bottom sand collected at Eniwetok Atoll during the period April 1954 to April 1956. The highest levels of beta radioactivity of algae collected after the detonation of a nuclear device (Nectar) were in algae from those islands closest to the site of detonation and in the downwind path of the fallout. With time after detonation, the decline of radioactivity in the algae at Belle Island was faster than can be accounted for on the basis of physical decay alone. In March 1955, algae and bottom sand collected in the deeper waters (20 to 140 feet) of the lagoon, one half to two miles offshore, contained as much or more radioactivity than samples collected in the shallow water near shore. The radioactive decay rates of algae samples collected from Leroy and Henry Islands were greater than those of algae from other islands, indicating that there was less residual contamination from previous detonations at these two islands. Study of the radioactive decay rates of the algae at Belle Island showed that the radioactivity was decaying at a relatively low rate, which became slower with samples collected late in the survey. These observations indicate that the longer-lived isotopes were being taken up by the algae. (auth)

Palumbo, R.F.

1959-08-31T23:59:59.000Z

368

Raqs Media Collective Flash Force  

E-Print Network (OSTI)

extended only to a couple of inches. With the invention of light bulbs, scientists started detonatingRaqs Media Collective Flash Force: A Visual History of Might, Right and Light Perhaps the greatest of light and divorcing these from the potent explosions that initially produced them. It is a history

Canales, Jimena

369

A Model for Assisting Business Users along Analytical Processes  

E-Print Network (OSTI)

information. Credit Hours: 3 hour lecture Prerequisites: None CC 7967, ERP 345, Use of Business Intelligence data-oriented techniques for business intelligence. Topics include Business Intelligence architecture and the hydrodynamic theory to determine the properties of high explosives; application of detonation theory to steady-state

370

Australia-Bermuda Sound Transmission Experiment (1960) Revisited  

Science Conference Proceedings (OSTI)

Detonations at the depth of the sound channel axis off Perth, Australia were recorded on Bermuda hydrophones at a 178°.2 range (180° is antipodal). The analysis by Shockley et al. of this 1960 transmission experiment allows for the geographic ...

W. H. Munk; W. C. O'Reilly; J. L. Reid

1988-12-01T23:59:59.000Z

371

Underwater Bomb Trajectory Prediction for Stand-off Assault (Mine/IED) Breaching Weapon  

E-Print Network (OSTI)

Underwater Bomb Trajectory Prediction for Stand-off Assault (Mine/IED) Breaching Weapon Fuse to determine accurately underwater (full-size) bomb trajectory path so that the final detonation position of a six degrees of freedom (6-DOF) model to predict underwater high-speed bomb trajectory and orientation

Chu, Peter C.

372

January 3, 2007 National Nuclear Security AdministrationNational Nuclear Security Administration  

E-Print Network (OSTI)

January 3, 2007 National Nuclear Security AdministrationNational Nuclear Security Administration & Objectives Reduce the threat to national security posed by nuclear weapons proliferation/detonation or the illicit trafficking of nuclear materials through the development of new and novel technology. Mission

Learned, John

373

Ash Deposit Physical and Chemical Analysis  

Science Conference Proceedings (OSTI)

This report focuses on identifying ash deposit materials and mounting them to a heat transfer surface for further study. A group of synthetic slag of various compositions was also produced using a sodium silicate binder, Powder River Basin (PRB) bottom ash, and ash cenospheres for porosity to test the effects of pulse detonation techniques on the removal of ash deposits.

2010-12-17T23:59:59.000Z

374

The history of nuclear weapon safety devices  

SciTech Connect

The paper presents the history of safety devices used in nuclear weapons from the early days of separables to the latest advancements in MicroElectroMechanical Systems (MEMS). Although the paper focuses on devices, the principles of Enhanced Nuclear Detonation Safety implementation will also be presented.

Plummer, D.W.; Greenwood, W.H.

1998-06-01T23:59:59.000Z

375

Station blackout at nuclear power plants: Radiological implications for nuclear war  

Science Conference Proceedings (OSTI)

Recent work on station blackout is reviewed its radiological implications for a nuclear war scenario is explored. The major conclusion is that the effects of radiation from many nuclear weapon detonations in a nuclear war would swamp those from possible reactor accidents that result from station blackout.

Shapiro, C.S.

1986-12-01T23:59:59.000Z

376

A 1D-3D mixed method for the numerical simulation of blast waves in confined geometries  

Science Conference Proceedings (OSTI)

Blast wave generated by a high detonating spherical charge and propagating in confined domains is modeled using the Euler equations. The problem is split into two parts. The first calculation part relies on spherical isotropy to solve the problem in ... Keywords: 47.40.Rs, Blast waves, Cartesian mesh, Confined domains, Remapping techniques

Adel M. Benselama; Mame J. -P. William-Louis; François Monnoyer

2009-10-01T23:59:59.000Z

377

Development of Java multi-threaded simulation for chemical reacting flow of ethanol  

Science Conference Proceedings (OSTI)

Multi-threading in Java enhances computational performance and facilitates the development of parallel software. To obtain high performance on multi-core systems, this study develops a multi-threaded simulation code using Java for the chemical reacting ... Keywords: Benchmark, Chemical reaction, Computational fluid dynamics, Ethanol detonation, Java, Multi-thread

E. Yamada; T. Shimada; A. K. Hayashi

2012-12-01T23:59:59.000Z

378

Measurement and modeling of energetic material mass transfer to soil pore water :project CP-1227 FY03 annual technical report.  

Science Conference Proceedings (OSTI)

Military test and training ranges operate with live fire engagements to provide realism important to the maintenance of key tactical skills. Ordnance detonations during these operations typically produce minute residues of parent explosive chemical compounds. Occasional low order detonations also disperse solid phase energetic material onto the surface soil. These detonation remnants are implicated in chemical contamination impacts to groundwater on a limited set of ranges where environmental characterization projects have occurred. Key questions arise regarding how these residues and the environmental conditions (e.g., weather and geostratigraphy) contribute to groundwater pollution impacts. This report documents interim results of experimental work evaluating mass transfer processes from solid phase energetics to soil pore water. The experimental work is used as a basis to formulate a mass transfer numerical model, which has been incorporated into the porous media simulation code T2TNT. This report documents the results of the Phase III experimental effort, which evaluated the impacts of surface deposits versus buried deposits, energetic material particle size, and low order detonation debris. Next year, the energetic material mass transfer model will be refined and a 2-d screening model will be developed for initial site-specific applications. A technology development roadmap was created to show how specific R&D efforts are linked to technology and products for key customers.

Phelan, James M.; Barnett, James L.; Kerr, Dayle R.

2004-01-01T23:59:59.000Z

379

Model for Shock Wave Chaos  

E-Print Network (OSTI)

We propose the following model equation, u[subscript t]+1/2(u[superscript 2]-uu[subscript s])[subscript x]=f(x,u[subscript s]) that predicts chaotic shock waves, similar to those in detonations in chemically reacting ...

Kasimov, Aslan R.

380

Shipping containers for small samples of high explosives  

Science Conference Proceedings (OSTI)

Two sizes of shipping containers for high explosives have been designed and tested at the Los Alamos National Laboratory. The containers have been tested by detonating a powerful, HMX-based explosive in the containers. The containers were approved for shipping 70% of the minimum weight of explosive that could cause vessel failure.

Hildner, R.A.; Urizar, M.J.

1981-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Dead Zones in LX-17 and PBX 9502  

Science Conference Proceedings (OSTI)

Pin and X-ray corner-turning data have been taken on ambient LX-17 and PBX 9052, and the results are listed in tables as an aid to future modeling. The results have been modeled at 4 zones/mm with a reactive flow approach that varies the burn rate as a function of pressure. A single rate format is used to simulate failure and detonation in different pressure regimes. A pressure cut-off must also be reached to initiate the burn. Corner-turning and failure are modeled using an intermediate pressure rate region, and detonation occurs at high pressure. The TATB booster is also modeled using reactive flow, and X-ray tomography is used to partition the ram-pressed hemisphere into five different density regions. The model reasonably fits the bare corner-turning experiment but predicts a smaller dead zone with steel confinement, in contradiction with experiment. The same model also calculates the confined and unconfined cylinder detonation velocities and predicts the failure of the unconfined cylinder at 3.75 mm radius. The PBX 9502 shows a smaller dead zone than LX-17. An old experiment that showed a large apparent dead zone in Comp B was repeated with X-ray transmission and no dead zone was seen. This confirms the idea that a variable burn rate is the key to modeling. The model also produces initiation delays, which are shorter than those found in time-to-detonation.

Souers, P C; Andreski, H G; Batteux, J; Bratton, B; Cabacungan, C; Cook, III, C F; Fletcher, S; Garza, R; Grimsley, D; Handly, J; Hernandez, A; McMaster, P; Molitoris, J D; Palmer, R; Prindiville, J; Rodriguez, J; Schneberk, D; Wong, B; Vitello, P

2005-09-06T23:59:59.000Z

382

Galley Proof 26/01/2007; 10:02 File: sav392.tex; BOKCTP/ljl p. 1 Shock and Vibration 14 (2007) 121 1  

E-Print Network (OSTI)

­21 1 IOS Press Application of the modified compaction material model to the analysis of landmine buried in sand to different depths is carried out using the software package AUTODYN. The mechanical for the magnitude, spatial distribution and the temporal evolution of the dynamic loads accompanying detonation

Grujicic, Mica

383

Hydrogen and water reactor safety: proceedings  

DOE Green Energy (OSTI)

Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

Not Available

1982-01-01T23:59:59.000Z

384

United States nuclear tests, July 1945 through September 1992  

Science Conference Proceedings (OSTI)

This document lists chronologically and alphabetically by name all nuclear tests and simultaneous detonations conducted by the United States from July 1945 through September 1992. Several tests conducted during Operation Dominic involved missile launches from Johnston Atoll. Several of these missile launches were aborted, resulting in the destruction of the missile and nuclear device either on the pad or in the air.

Not Available

1994-12-01T23:59:59.000Z

385

Annular precision linear shaped charge flight termination system for the ODES program  

SciTech Connect

The work for the development of an Annular Precision Linear Shaped Charge (APLSC) Flight Termination System (FTS) for the Operation and Deployment Experiment Simulator (ODES) program is discussed and presented in this report. The Precision Linear Shaped Charge (PLSC) concept was recently developed at Sandia. The APLSC component is designed to produce a copper jet to cut four inch diameter holes in each of two spherical tanks, one containing fuel and the other an oxidizer that are hyperbolic when mixed, to terminate the ODES vehicle flight if necessary. The FTS includes two detonators, six Mild Detonating Fuse (MDF) transfer lines, a detonator block, detonation transfer manifold, and the APLSC component. PLSCs have previously been designed in ring components where the jet penetrating axis is either directly away or toward the center of the ring assembly. Typically, these PLSC components are designed to cut metal cylinders from the outside inward or from the inside outward. The ODES program requires an annular linear shaped charge. The (Linear Shaped Charge Analysis) LESCA code was used to design this 65 grain/foot APLSC and data comparing the analytically predicted to experimental data are presented. Jet penetration data are presented to assess the maximum depth and reproducibility of the penetration. Data are presented for full scale tests, including all FTS components, and conducted with nominal 19 inch diameter, spherical tanks.

Vigil, M.G.; Marchi, D.L.

1994-06-01T23:59:59.000Z

386

Neutrino Counter Nuclear Weapon  

E-Print Network (OSTI)

Radiations produced by neutrino-antineutrino annihilation at the Z0 pole can be used to heat up the primary stage of a thermonuclear warhead and can in principle detonate the device remotely. Neutrino-antineutrino annihilation can also be used as a tactical assault weapon to target hideouts that are unreachable by conventional means.

Alfred Tang

2008-05-26T23:59:59.000Z

387

ORKNEY: Containment data report  

SciTech Connect

The ORKNEY event was detonated in hole U10be of the Nevada Test Site at 6:50 PST on May 2, 1984. This paper contains a discussion of that event, with special attention given to the instrumentation for monitoring stemming emplacement and performance of the event. Data from these instruments are presented.

Heinle, R.; Hudson, B.; Stubbs, T.

1995-03-01T23:59:59.000Z

388

Monte Carlo Simulations for Homeland Security Using Anthropomorphic Phantoms  

Science Conference Proceedings (OSTI)

A radiological dispersion device (RDD) is a device which deliberately releases radioactive material for the purpose of causing terror or harm. In the event that a dirty bomb is detonated, there may be airborne radioactive material that can be inhaled as well as settle on an individuals leading to external contamination.

Burns, Kimberly A.

2008-01-01T23:59:59.000Z

389

4 nature physics | VOL 3 | JANUARY 2007 | www.nature.com/naturephysics Seismic signature  

E-Print Network (OSTI)

@LDEO.columbia.edu T he Comprehensive Nuclear Test Ban Treaty (CTBT) bans all nuclear explosions, whether made detonation was the first nuclear test since the CTBT Organization -- headquartered in Vienna (Austria provided excellent seismic data following the test in October 2006. The nuclear explosion in North Korea

Loss, Daniel

390

Kingman reef  

SciTech Connect

This memorandum describes the search for an acceptable test site for surface detonations of nuclear devices. Concern is expressed over possible Tsunami hazards. Kingman Reef is recommended as a designated target area, and it is recommended that Palmyra Island be investigated as to availability.

Gilbert, F. C.

1965-02-17T23:59:59.000Z

391

FY06 L2C2 HE program report Zaug et al.  

SciTech Connect

The purpose of this project is to advance the improvement of LLNL thermochemical computational models that form the underlying basis or input for laboratory hydrodynamic simulations. Our general work approach utilizes, by design, tight experimental-theoretical research interactions that allow us to not empirically, but rather more scientifically improve LLNL computational results. The ultimate goal here is to confidently predict through computer models, the performance and safety parameters of currently maintained, modified, and newly designed stockpile systems. To attain our goal we make relevant experimental measurements on candidate detonation products constrained under static high-pressure and temperature conditions. The reduced information from these measurements is then used to construct analytical forms that describe the potential surface (repulsive energy as a function of interatomic separation distance) of single and mixed fluid or detonation product species. These potential surface shapes are also constructed using input from well-trusted shock wave physics and assorted thermodynamic data available in the open literature. Our potential surfaces permit one to determine the equations of state (P,V,T), the equilibrium chemistry, phase, and chemical interactions of detonation products under a very wide range of extreme pressure temperature conditions. Using our foundation of experimentally refined potential surfaces we are in a position to calculate, with confidence, the energetic output and chemical speciation occurring from a specific combustion and/or detonation reaction. The thermochemical model we developed and use for calculating the equilibrium chemistry, kinetics, and energy from ultrafast processes is named 'Cheetah'. Computational results from our Cheetah code are coupled to laboratory ALE3D hydrodynamic simulation codes where the complete response behavior of an existing or proposed system is ultimately predicted. The Cheetah thermochemical code is also used by well over 500 U.S. government DoD and DOE community users who calculate the chemical properties of detonated high explosives, propellants, and pyrotechnics. To satisfy the growing needs of LLNL and the general user community we continue to improve the robustness of our Cheetah code. The P-T range of current speed of sound experiments will soon be extended by a factor of four and our recently developed technological advancements permit us to, for the first time, study any chemical specie or fluid mixture. New experiments will focus on determining the miscibility or coexistence curves of detonation product mixtures. Our newly constructed ultrafast laser diagnostics will permit us to determine what chemical species exist under conditions approaching Chapman-Jouguet (CJ) detonation states. Furthermore we will measure the time evolution of candidate species and use our chemical kinetics data to develop new and validate existing rate laws employed in future versions of our Cheetah thermochemical code.

Zaug, J M; Crowhurst, J C; Howard, W M; Fried, L E; Glaesemann, K R; Bastea, S

2008-08-01T23:59:59.000Z

392

Lodging Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

a nursing home, assisted living center, or other residential care building a half-way house some other type of lodging Lodging Buildings by Subcategory Figure showing lodging...

393

Effect of Heat and Electricity Storage and Reliability on Microgrid Viability: A Study of Commercial Buildings in California and New York States  

E-Print Network (OSTI)

ES 2. CA nursing home electricity pattern: July weekday lowJanuary and July weekday electricity and total heat (space +CA school weekday total electricity (inclusive of cooling)

Stadler, Michael

2009-01-01T23:59:59.000Z

394

--No Title--  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

including replacement of lighting in the CourthouseJustice Center parking lot and boiler and exterior door replacements for the Strafford County Nursing Home. Energy...

395

Fishery Effects on Dolphins Targeted by Tuna Purse-seiners in the Eastern Tropical Pacific Ocean  

E-Print Network (OSTI)

nursing dolphin calves in a tuna purse-seine fishery. MarineStenella attenuata, in Tuna Purse Seine Nets. Fisheryeastern tropical Pacific tuna fishery. Administrative Report

Edwards, Elizabeth F

2007-01-01T23:59:59.000Z

396

Atlanta TEC Meeting -- Tribal Group Summary 3-6-07  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Acoma), Bob Lupton (DOE Yucca Mountain Project), Corinne Macaluso (OCRWM), Kevin Mariano (Pueblo of Acoma), Linda Minton (Emergency Nurses Association), James Montague...

397

JArri~·i982  

Science Conference Proceedings (OSTI)

... 10/ (23rd edition, 1973)" apply to skilled nursing facilities.-- Another ... the doctrine that legislative power cannot be delegated to an ...

2011-08-11T23:59:59.000Z

398

Characterization of an engineered human purine nucleoside phosphorylase fused to an anti-her2/neu single chain Fv for use in ADEPT  

E-Print Network (OSTI)

lifetime." Sir Paul Nurse, Cancer Research UK Your researchof Experimental & Clinical Cancer Research Research BioMedof Experimental & Clinical Cancer Research 2009, 28:147 doi:

Afshar, Sepideh; Olafsen, Tove; Wu, Anna M; Morrison, Sherie L

2009-01-01T23:59:59.000Z

399

Nyutexaminerade sjuksköterskor yrkessocialisation - Erfarenheter av ett introduktionsprogram.  

E-Print Network (OSTI)

??ABSTRACT Through the ”VÅRD 77” amendment and the higher education reform from 1993, nursing education has been changed from vocational to academic. Theoretical aspects of… (more)

Bisholt, Birgitta

2009-01-01T23:59:59.000Z

400

Education  

NLE Websites -- All DOE Office Websites (Extended Search)

Teacher Education, Nursing, and Science Santa Fe Community College Advanced Technologies, Biofuels, Environmental, Facilities, and Green Building University of New Mexico-Los...

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Microsoft Word - SPP_Success_Story_AtlanticEnergy_Chemung_4-26...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemung County Nursing Facility and is currently assisting them in installing a cogeneration plant. Atlantic Energy Services, Inc. provides the facility with a turnkey approach...

402

Results with Baldrige in Health Care  

Science Conference Proceedings (OSTI)

... the management of diabetes, a condition experienced by Alaska Native and ... rates for nurses were substantially lower than the state average for ...

2013-06-16T23:59:59.000Z

403

Low-frequency RF Coupling To Unconventional (Fat Unbalanced) Dipoles  

SciTech Connect

The report explains radio frequency (RF) coupling to unconventional dipole antennas. Normal dipoles have thin equal length arms that operate at maximum efficiency around resonance frequencies. In some applications like high-explosive (HE) safety analysis, structures similar to dipoles with ''fat'' unequal length arms must be evaluated for indirect-lightning effects. An example is shown where a metal drum-shaped container with HE forms one arm and the detonator cable acts as the other. Even if the HE is in a facility converted into a ''Faraday cage'', a lightning strike to the facility could still produce electric fields inside. The detonator cable concentrates the electric field and carries the energy into the detonator, potentially creating a hazard. This electromagnetic (EM) field coupling of lightning energy is the indirect effect of a lightning strike. In practice, ''Faraday cages'' are formed by the rebar of the concrete facilities. The individual rebar rods in the roof, walls and floor are normally electrically connected because of the construction technique of using metal wire to tie the pieces together. There are two additional requirements for a good cage. (1) The roof-wall joint and the wall-floor joint must be electrically attached. (2) All metallic penetrations into the facility must also be electrically connected to the rebar. In this report, it is assumed that these conditions have been met, and there is no arcing in the facility structure. Many types of detonators have metal ''cups'' that contain the explosives and thin electrical initiating wires, called bridge wires mounted between two pins. The pins are connected to the detonator cable. The area of concern is between the pins supporting the bridge wire and the metal cup forming the outside of the detonator. Detonator cables usually have two wires, and in this example, both wires generated the same voltage at the detonator bridge wire. This is called the common-mode voltage. The explosive component inside a detonator is relatively sensitive, and any electrical arc is a concern. In a safety analysis, the pin-to-cup voltage, i.e., detonator voltage, must be calculated to decide if an arc will form. If the electric field is known, the voltage between any two points is simply the integral of the field along a line between the points. Eq. 1.1. For simplicity, it is assumed that the electric field and dipole elements are aligned. Calculating the induced detonator voltage is more complex because of the field concentration caused by metal components. If the detonator cup is not electrically connected to the metal HE container, the portion of the voltage generated by the dipole at the detonator will divide between the container-to-cup and cup-to-pin gaps. The gap voltages are determined by their capacitances. As a simplification, it will be assumed the cup is electrically attached, short circuited, to the HE container. The electrical field in the pin-to-cup area is determined by the field near the dipole, the length of the dipole, the shape of the arms, and the orientation of the arms. Given the characteristics of a lightning strike and the inductance of the facility, the electric fields in the ''Faraday cage'' can be calculated. The important parameters for determining the voltage in an empty facility are the inductance of the rebars and the rate of change of the current, Eq. 1.3. The internal electric fields are directly related to the facility voltages, however, the electric fields in the pin-to-cup space is much higher than the facility fields because the antenna will concentrate the fields covered by the arms. Because the lightning current rise-time is different for every strike, the maximum electric field and the induced detonator voltage should be described by probability distributions. For pedantic purposes, the peak field in the simulations will be simply set to 1 V/m. Lightning induced detonator voltages can be calculated by scaling up with the facility fields. Any metal object around the explosives, such as a work stand, will also distort the electric

Ong, M M; Brown, C G; Perkins, M P; Speer, R D; Javedani, J B

2010-12-07T23:59:59.000Z

404

Cross-workplace perspectives: relating studies from hospitals to an oil and gas workplace  

Science Conference Proceedings (OSTI)

This discussion paper highlights how two apparently contrasting professions - an oil and gas refinery operator and a hospital nurse - share similar properties in how they collaborate, communicate and use artifacts. We relate literature on the nursing ... Keywords: collaboration, cooperative work, oil and gas, pervasive computing, workplace study

Clint Heyer; Ingeborg Grønning

2008-10-01T23:59:59.000Z

405

Posn Desc Title Dept Authorities  

E-Print Network (OSTI)

CtrSustainableProduction Dir - Laboratory Services Toxic Use Reduction Institute Dir - CVIP ComrcialVenture&Intelct Prprty Dir's Services Student Affairs Exec Dir Of Univ Health Svs Health Services Asst. Director Health Services Health Services Asst. Dir. Health Ed. Health Services Nurse Practitioner (2) Health Services Registered Nurse (2

Massachusetts at Lowell, University of

406

TERRACE, KITIMAT & THE NASS 2008 Danny Ansems  

E-Print Network (OSTI)

Hales BComm Accounting & General Business Carl Haugland BComm Accounting Danna Haworth BScN Nursing Bursary, Dr. Mary John Bursary, Minerva Foundation Award Prabhjot More Fred Garnett Memorial Scholarship Melissa Morrison Jane Layhew Nursing Bursary, UNBC In-Course Bursary Nathan Park UNBC In-Course Bursary

Northern British Columbia, University of

407

13 August 2010 TOP 7 CAREER SERVICES  

E-Print Network (OSTI)

13 August 2010 TOP 7 CAREER SERVICES UTILIZED BY STUDENTS #1 UNLV CareerLink (Online Recruiting Sciences Business (Except MBA) Education Engineering Fine Arts Hotel Liberal Arts MBA Nursing Public Health% All Allied Health Sciences Business Education Engineering Fine Arts Hotel Liberal Arts MBA Nursing

Hemmers, Oliver

408

Gasbuggy Site Assessment and Risk Evaluation  

Science Conference Proceedings (OSTI)

The Gasbuggy site is in northern New Mexico in the San Juan Basin, Rio Arriba County (Figure 1-1). The Gasbuggy experiment was designed to evaluate the use of a nuclear detonation to enhance natural gas production from the Pictured Cliffs Formation, a tight, gas-bearing sandstone formation. The 29-kiloton-yield nuclear device was placed in a 17.5-inch wellbore at 4,240 feet (ft) below ground surface (bgs), approximately 40 ft below the Pictured Cliffs/Lewis shale contact, in an attempt to force the cavity/chimney formed by the detonation up into the Pictured Cliffs Sandstone. The test was conducted below the southwest quarter of Section 36, Township 29 North, Range 4 West, New Mexico Principal Meridian. The device was detonated on December 10, 1967, creating a 335-ft-high chimney above the detonation point and a cavity 160 ft in diameter. The gas produced from GB-ER (the emplacement and reentry well) during the post-detonation production tests was radioactive and diluted, primarily by carbon dioxide. After 2 years, the energy content of the gas had recovered to 80 percent of the value of gas in conventionally developed wells in the area. There is currently no technology capable of remediating deep underground nuclear detonation cavities and chimneys. Consequently, the U.S. Department of Energy (DOE) must continue to manage the Gasbuggy site to ensure that no inadvertent intrusion into the residual contamination occurs. DOE has complete control over the 1/4 section (160 acres) containing the shot cavity, and no drilling is permitted on that property. However, oil and gas leases are on the surrounding land. Therefore, the most likely route of intrusion and potential exposure would be through contaminated natural gas or contaminated water migrating into a producing natural gas well outside the immediate vicinity of ground zero. The purpose of this report is to describe the current site conditions and evaluate the potential health risks posed by the most plausible contaminant exposure scenario, drilling of natural gas wells near the site. The results of this risk evaluation will guide DOE's future surveillance and monitoring activities in the area to ensure that site conditions are adequately protective of human health. This evaluation is not a comprehensive risk assessment for the site; it is intended to provide assurance that DOE's monitoring approach can detect the presence of site-related contamination at levels well below those that would pose an unacceptable risk to human health.

None

2011-03-01T23:59:59.000Z

409

EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Makes Significant Progress on Dispositioning Transuranic Waste EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 - 12:00pm Addthis Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. Distillation equipment is shown prior to transport to the Idaho site. Distillation equipment is shown prior to transport to the Idaho site. In these 2010 photographs, unexploded ordnance were collected and then detonated onsite at the Mass Detonation Area.

410

CX-010562: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Categorical Exclusion Determination 2: Categorical Exclusion Determination CX-010562: Categorical Exclusion Determination Pratt and Whitney Rocketdyne - Continuous Detonation Engine Combustor for Natural Gas Turbine CX(s) Applied: B3.6 Date: 05/09/2013 Location(s): California, Connecticut Offices(s): Advanced Research Projects Agency-Energy Pratt and Whitney Rocketdyne (PWR), in conjunction with United Technologies Research Center (UTRC), will design, build, and test small-scale continuous detonation combustion in a simulated gas turbine environment to establish the feasibility of incorporating this technology into natural gas- fueled gas turbine electric generator. CX-010562.pdf More Documents & Publications CX-010561: Categorical Exclusion Determination Identified Patent Waiver W(I)2012-009

411

Microsoft Word - 3Q2012_Samp_Results.docx  

Office of Legacy Management (LM)

Third Quarter 2012 Third Quarter 2012 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: September 20, 2012 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterward, the site was shut down, then remediated, and the emplacement well (R-E) and reentry well (R-Ex) plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

412

Blasting charge and method  

SciTech Connect

This is a process for setting off a blasting charge employing nitrate explosions in a thick aqueous slurry. There is formed in the bore a blasting charge consisting, in part, of a thick aqueous slurry of dispersed ammonium nitrate particles as the predominant explosive material with or without a lesser amount of sodium, calcium, or other nitrate in like dispersion. In addition, one or more localized or undispersed solid bodies of booster explosive are included in the body of the slurry. Conventional means are used for detonating the booster, such as a blasting cap, an electric blasting cap, or a detonating fuse. The slurry may be formed in the bore or may be preformed and packaged for shipment, the latter being preferable.

Towle, L.W.

1966-02-22T23:59:59.000Z

413

Misers gold dust collection and cloud characterization  

SciTech Connect

MISERS GOLD was a surface detonation of 2445 tons of ammonium nitrate-fuel oil blasting agent conducted by the Defense Nuclear Agency for a variety of research purposes. This report presents the results of an experiment designed to study the dust cloud over the 24-hour period following the detonation. The cloud was sampled by aircraft to obtain material needed to characterize the quantity of dust lofted, the source regions of the cloud, and the size, shape, and mineralogical characteristics of the particles. Elemental tracers and organic dyes were emplaced in the charge and in surrounding areas. Analyses were done by instrumental neutron activation analysis (INAA), fluorimetry, scanning electron microscopy (SEM), and energy-dispersive spectrometry (EDS). Tracer data define the source regions of the dust cloud. Extensive particle size distribution data were obtained. 12 figs.

Mason, A.S.; Finnegan, D.L.; Bayhurst, G.K.; Raymond, R. Jr.; Hagan, R.C.; Luedemann, G.; Wohletz, K.H.

1991-01-01T23:59:59.000Z

414

Blasting arrangement for oil shale mining  

SciTech Connect

A blasting technique for use in excavation of an oil-shale deposit during the subterranean mining of it is described. Primary blasting holes are provided in a working zone, such as a heading or bench within the mine. In addition, a row of explosive-loaded secondary blasting holes is provided along a line between the working zone and a support zone adjacent to the working zone. Thus, in a benching round, secondary holes extend downward through the bench from the top thereof and in a heating round the secondary holes extend into the heading from the heading face. The secondary and primary blasting holes are detonated in a desired sequence. Preferably, the secondary blasting holes are detonated first although this sequence of operation may be reversed. The secondary blasting holes carry a lower explosive charge than the primary holes, and also are spaced closer together than the primary holes. (14 claims)

Haworth, G.R.; Zambas, P.G.

1969-09-09T23:59:59.000Z

415

Shock airwaves in short-delayed blasting for open pit mining  

SciTech Connect

The authors discuss the choice of the optimum delay interval in terms of seismic and shock airwaves (SAW) intensity reduction during short-delayed blasting (SDB) of surface and hole blasts depending on the position of the charges relative to the objects being protected, such as the direction of detonation from charge to charge, etc. It was observed that during a short delayed blasting with a delay interval between groups of 50 m/sec, a complete separation of SAW pulses is produced by individual charges. Calculations also show that when blasting along a linear string of charges, the delay interval at which SAW pulses are fully separated depends on the direction at which detonation propogates.

Ganopol' skii, M.I.; Smolii, N.I.

1986-09-01T23:59:59.000Z

416

Monitoring Results Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

Natural Gas Wells Near Project Rulison Third Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: June 12, 2013 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterwards, the site was shut down, then remediated and the emplacement well (R-E) and reentry well (R-Ex) plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

417

Microsoft Word - RUL_2Q2012_GasPW_Samp_Results_19June2012.docx  

Office of Legacy Management (LM)

Second Quarter 2012 Second Quarter 2012 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 19 June 2012 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low permeability formations. On 10 September 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterwards, the site was shut down, then remediated and the emplacement well (R-E) and reentry well (R-Ex) plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

418

Microsoft Word - RUL_4Q2010_Rpt_Gas_Samp_Results_8Wells  

Office of Legacy Management (LM)

the Project Rulison Horizon the Project Rulison Horizon U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: 21 October 2010 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom hole locations (BHLs) of the 8 gas wells sampled are within 0.75 and 1.0 mile of the Project Rulison detonation horizon. All wells sampled have produced or are producing gas from the Williams Fork Formation. Background: Project Rulison was the second Plowshare Program to try stimulation natural gas in tight sandstone formations using a nuclear device. On 10 September 1969, a 40- nuclear device was detonated 8,426 feet (about 1.6 miles) below ground surface in the Williams Fork Formation. Samples Collected:

419

Microsoft Word - RUL_1Q2011_Gas_Samp_Results_7Wells  

Office of Legacy Management (LM)

31 March 2011 31 March 2011 Purpose: The purpose of this sample collection is to monitor for radionuclides from Project Rulison. The bottom-hole locations (BHLs) of the seven gas wells sampled are between 0.75 and 0.90 mile from the Project Rulison detonation point. All wells sampled are producing gas from the Williams Fork Formation. Background: Project Rulison was the second test under the Plowshare Program to stimulate natural-gas recovery from tight sandstone formations. On 10 September 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation. Samples Collected: * 7 gas samples from 7 wells * 7 produced water samples from 6 wells and 1 drip tank; one well was dry Findings:

420

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pratt & Whitney Rocketdyne - Pratt & Whitney Rocketdyne - Continuous Detonation Engine Combustor for Natural Gas Turbine Program or Field Office: Advanced Research Project Agency- Energy Location(s) (CitvJCouuty/Statel: Simi Valley, CA; East Hartford, CT Proposed Action Description: Pratt & Whitney Rocketdyne (PWR), in conjunction with United Technologies Research Center (UTRC), will design, build, and test small-scale continuous detonation combustion in a simulated gas turbine environment to establish the feasibility of incorporating this technology into natural- gas-fueled gas turbine electric generator. PWR and UTRC will conduct combustion testing at UTRC's Jet Burner Test Facility in East Hartford, CT, where activities of this nature are routinely conducted and administrative and engineering controls are in place to reduce potential risks. Additional project activities will be carried

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

OSTI, US Dept of Energy, Office of Scientific and Technical Information |  

Office of Scientific and Technical Information (OSTI)

OpenNet Topic OpenNet Topic OpenNet spotlights The Manhattan Project by Rita Hohenbrink 30 Jul, 2013 in Products and Content Calutron (Y-12) Operators Manhattan Project Sixty-eight years ago, an atomic bomb was detonated on an isolated corner of southern New Mexico in a weapon test named Trinity. Related Topics: atomic bomb, Calutron (Y-12) Operators, Leslie Groves, Manhattan Project, OpenNet, OpenNet Read more... OpenNet spotlights The Manhattan Project by Rita Hohenbrink 30 Jul, 2013 in Products and Content Calutron (Y-12) Operators Manhattan Project Sixty-eight years ago, an atomic bomb was detonated on an isolated corner of southern New Mexico in a weapon test named Trinity. Related Topics: atomic bomb, Calutron (Y-12) Operators, Leslie Groves, Manhattan Project, OpenNet, OpenNet Read more...

422

EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Makes Significant Progress on Dispositioning Transuranic Waste EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site EM Makes Significant Progress on Dispositioning Transuranic Waste at Idaho Site December 24, 2013 - 12:00pm Addthis Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. Workers treat sludge-bearing, transuranic waste from the Advanced Mixed Waste Treatment Project. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. A tank at the Materials and Fuels Complex containing residual sodium is moved prior to waste treatment. Distillation equipment is shown prior to transport to the Idaho site. Distillation equipment is shown prior to transport to the Idaho site. In these 2010 photographs, unexploded ordnance were collected and then detonated onsite at the Mass Detonation Area.

423

Manhattan Project: Blast  

Office of Scientific and Technical Information (OSTI)

Blast (Animation) Blast (Animation) Yucca Flat, Nevada (March 17, 1953) Resources > Photo Gallery Blast Animation The eight images above are a sequence of photographs of a house constructed 3,500 feet from "ground zero" at the Nevada Test Site being destroyed by the Annie test shot. The only source of light was the blast itself, detonated on March 17, 1953. The final image is two-and-one-third seconds after detonation. In the second image the house is actually on fire, but in the third image the fire has already been blown out by the blast. Annie, part of the "Upshot-Knothole" test series, had a yield of 16 kilotons, roughly the same size as the Trinity, Hiroshima, and Nagasaki explosions. Two photographs of the Annie mushroom cloud are at the bottom of this page.

424

Microsoft Word - Voronina_OthHyd_PE_NEW.rtf  

National Nuclear Security Administration (NNSA)

Aminov, Y.A. et al. 1 Aminov, Y.A. et al. 1 NUMERICAL SIMULATION OF EXPERIMENTS WITH COMMERCIAL EXPLOSIVES Y.A. Aminov, N.S. Eskov, G.V. Kovalenko, Y.R. Nikitenko, V.I. Volkov, V.P. Voronina Russian Federal Nuclear Center - Zababakhin Institute of Technical Physics (RFNC-VNIITF) Snezhinsk, Russia The presentation discusses numerical modeling of experiments [1] aimed at testing the properties of the commercial explosive PZhV-20U. Calculations were made with MACH code [2] that models complex 2D flows with account for physical and chemical transformations. A unique approach was used to describe experiments aimed to characterize: - detonation velocity versus diameter for cylindrical explosive charges; - the expansion of detonation-propelled copper sheathes; and

425

Natural Gas Wells Near Project Rulison  

Office of Legacy Management (LM)

for for Natural Gas Wells Near Project Rulison Second Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: April 3, 2013 Background: Project Rulison was the second underground nuclear test under the Plowshare Program to stimulate natural-gas recovery from deep, low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation, at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterward, the site was shut down and then remediated, and the emplacement well (R-E) and the reentry well (R-Ex) were plugged. Purpose: As part of the U.S. Department of Energy (DOE) Office of Legacy Management (LM) mission

426

Microsoft Word - 4Q2012_Gas PW_Samp_Results.docx  

Office of Legacy Management (LM)

Monitoring Results for Monitoring Results for Natural Gas Wells near Project Rulison Fourth Quarter 2012 and First Quarter 2013 U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Date Sampled: January 10, 2013 Background: Project Rulison was the second Plowshare Program test to stimulate natural-gas recovery from deep and low-permeability formations. On September 10, 1969, a 40-kiloton-yield nuclear device was detonated 8,426 feet (1.6 miles) below the ground surface in the Williams Fork Formation, at what is now the Rulison, Colorado, Site. Following the detonation, a series of production tests were conducted. Afterward, the site was shut down and then remediated, and the emplacement well (R-E) and the reentry well (R-Ex) were plugged.

427

OFF-SITE ENVIRONMENTAL MONITORING REPORT F O R THE NEVADA TEST SITE  

Office of Legacy Management (LM)

F F O R THE NEVADA TEST SITE ' i A N D OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1978 Nuclear Radiation Assessment D i v i s i o n Environmental Monitoring Systems Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 October 1979 This work performed under a Memorandum o f Understanding No. EY-76-A-08-0539 for t h e U.S. DEPARTMENT O F ENERGY OFF-SITE ENVIRONMENTAL MONITORING REPORT F O R THE NEVADA TEST SITE A N D OTHER TEST AREAS USED F O R UNDERGROUND NUCLEAR DETONATIONS January through December 1978 by R. F. Grossman Nuclear Radi a t i o n Assessment D i v i s i o n Environmental Monitoring Systems Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 This work performed under a Memorandum o f Understanding No. EY-76-A-08-0539

428

Injector nozzle for molten salt destruction of energetic waste materials  

DOE Patents (OSTI)

An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath. 2 figs.

Brummond, W.A.; Upadhye, R.S.

1996-02-13T23:59:59.000Z

429

MIX and Instability Growth from Oblique Shock  

SciTech Connect

We have studied the formation and evolution of shock-induced mix resulting from interface features in a divergent cylindrical geometry. In this research a cylindrical core of high-explosive was detonated to create an oblique shock wave and accelerate the interface. The interfaces studied were between the high-explosive/aluminum, aluminum/plastic, and finally plastic/air. Pre-emplaced surface features added to the aluminum were used to modify this interface. Time sequence radiographic imaging quantified the resulting instability formation from the growth phase to over 60 {micro}s post-detonation. Thus allowing the study of the onset of mix and evolution to turbulence. The plastic used here was porous polyethylene. Radiographic image data are compared with numerical simulations of the experiments.

Molitoris, J D; Batteux, J D; Garza, R G; Tringe, J W; Souers, P C; Forbes, J W

2011-07-22T23:59:59.000Z

430

Spectral Modeling of SNe Ia Near Maximum Light: Probing the Characteristics of Hydro Models  

E-Print Network (OSTI)

We have performed detailed NLTE spectral synthesis modeling of 2 types of 1-D hydro models: the very highly parameterized deflagration model W7, and two delayed detonation models. We find that overall both models do about equally well at fitting well observed SNe Ia near to maximum light. However, the Si II 6150 feature of W7 is systematically too fast, whereas for the delayed detonation models it is also somewhat too fast, but significantly better than that of W7. We find that a parameterized mixed model does the best job of reproducing the Si II 6150 line near maximum light and we study the differences in the models that lead to better fits to normal SNe Ia. We discuss what is required of a hydro model to fit the spectra of observed SNe Ia near maximum light.

E. Baron; S. Bongard; David Branch; Peter H. Hauschildt

2006-03-03T23:59:59.000Z

431

Experimental investigation of pressure and blockage effects on combustion limits in H{sub 2}-air-steam mixtures  

DOE Green Energy (OSTI)

Experiments with hydrogen-air-steam mixtures, such as those found within a containment system following a reactor accident, were conducted in the Heated Detonation Tube (43 cm diameter and 12 m long) to determine the region of benign combustion; i.e., the region between the flammability limits and the deflagration-to-detonation transition limits. Obstacles were used to accelerate the flame; these include 30% blockage ratio annular rings, and alternate rings and disks of 60% blockage ratio. The initial conditions were 110 {degree}C and one or three atmospheres pressure. A benign burning region exists for rich mixtures, but is generally smaller than for lean mixtures. Effects of the different obstacles and of the different pressures are discussed.

Sherman, M.P.; Berman, M. [Sandia National Labs., Albuquerque, NM (United States); Beyer, R.F. [Westinghouse Electric Corp., Pittsburgh, PA (US)

1993-06-01T23:59:59.000Z

432

Validation Analysis of the Groundwater Flow and Transport Model of the Central Nevada Test Area  

Science Conference Proceedings (OSTI)

The Central Nevada Test Area (CNTA) is a U.S. Department of Energy (DOE) site undergoing environmental restoration. The CNTA is located about 95 km northeast of Tonopah, Nevada, and 175 km southwest of Ely, Nevada (Figure 1.1). It was the site of the Faultless underground nuclear test conducted by the U.S. Atomic Energy Commission (DOE's predecessor agency) in January 1968. The purposes of this test were to gauge the seismic effects of a relatively large, high-yield detonation completed in Hot Creek Valley (outside the Nevada Test Site [NTS]) and to determine the suitability of the site for future large detonations. The yield of the Faultless underground nuclear test was between 200 kilotons and 1 megaton (DOE, 2000). A three-dimensional flow and transport model was created for the CNTA site (Pohlmann et al., 1999) and determined acceptable by DOE and the Nevada Division of Environmental Protection (NDEP) for predicting contaminant boundaries for the site.

A. Hassan; J. Chapman; H. Bekhit; B. Lyles; K. Pohlmann

2006-09-30T23:59:59.000Z

433

Microelectromechanical safe arm device  

SciTech Connect

Microelectromechanical (MEM) apparatus and methods for operating, for preventing unintentional detonation of energetic components comprising pyrotechnic and explosive materials, such as air bag deployment systems, munitions and pyrotechnics. The MEM apparatus comprises an interrupting member that can be moved to block (interrupt) or complete (uninterrupt) an explosive train that is part of an energetic component. One or more latching members are provided that engage and prevent the movement of the interrupting member, until the one or more latching members are disengaged from the interrupting member. The MEM apparatus can be utilized as a safe and arm device (SAD) and electronic safe and arm device (ESAD) in preventing unintentional detonations. Methods for operating the MEM apparatus include independently applying drive signals to the actuators coupled to the latching members, and an actuator coupled to the interrupting member.

Roesler, Alexander W. (Tijeras, NM)

2012-06-05T23:59:59.000Z

434

Method for loading explosive laterally from a borehole  

DOE Patents (OSTI)

There is provided a method for forming an in situ oil shale retort in a subterranean formation containing oil shale. At least one void is excavated in the formation, leaving zones of unfragmented formation adjacent the void. An array of main blastholes is formed in the zone of unfragmented formation and at least one explosive charge which is shaped for forming a high velocity gas jet is placed into a main blasthole with the axis of the gas jet extending transverse to the blasthole. The shaped charge is detonated for forming an auxiliary blasthole in the unfragmented formation adjacent a side wall of the main blasthole. The auxiliary blasthole extends laterally away from the main blasthole. Explosive is placed into the main blasthole and into the auxiliary blasthole and is detonated for explosively expanding formation towards the free face for forming a fragmented permeable mass of formation particles in the in situ oil shale retort.

Ricketts, Thomas E. (Grand Junction, CO)

1981-01-01T23:59:59.000Z

435

CORRTEX Diagnostic Deployment for the SPE-III experiment, 24 July 2012: Fielding Report and Preliminary Data Analysis  

SciTech Connect

The Continuous Reflectometry for Radius vs Time Experiments (CORRTEX) diagnostic system was deployed for the third explosives test in the Source Physics Experiment (SPE) sequence to monitor and verify several conditions of the experiment including the detonation velocity of the explosive package and functioning of explosive initiators. Six distance-marked coaxial cables were installed on the SPE-III explosives canister, and key locations documented through along-cable length measurements and photography. CORRTEX uses electrical-pulse time-domain reflectometry to continuously record the two-way transit time (TWTT) of the cables. As the shock front of the detonation advances, the coaxial cable is shorted or destroyed, and the resulting TWTT also decreases. Interpretation of these changes as a function of TWTT can be converted to positional measurements using known parameters of the cables.

Sandoval, Thomas D. [Los Alamos National Laboratory; Schultz-Fellenz, Emily S. [Los Alamos National Laboratory

2012-08-29T23:59:59.000Z

436

Corrective Action Investigation Plan for Corrective Action Unit 447: Project Shoal Area, Nevada Subsurface Site  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) describes the US Department of Energy's (DOE's) continued environmental investigation of the subsurface Project Shoal Area (PSA) Corrective Action Unit (CAU) 447. The PSA is located in the Sand Springs Mountains in Churchill County, Nevada, about 48 kilometers (km) (30 miles [mi]) southeast of Fallon, Nevada. Project Shoal was part of the Vela Uniform Program which was conducted to improve the US' ability to detect, identify, and locate underground nuclear detonations. The test consisted of detonating a 12-kiloton nuclear device deep underground in granitic rock to determine whether seismic waves produced by an underground nuclear test could be differentiated from seismic waves produced by a naturally occurring earthquake. The test was a joint effort conducted by the US Atomic Energy Commission (AEC) and the US Department of Defense (DoD) in October 1963 (AEC, 1964).

DOE /NV

1998-11-01T23:59:59.000Z

437

TARANTULA 2011 in JWL++  

SciTech Connect

Using square zoning, the 2011 version of the kinetic package Tarantula matches cylinder data, cylinder dead zones, and cylinder failure with the same settings for the first time. The key is the use of maximum pressure rather than instantaneous pressure. Runs are at 40, 200 and 360 z/cm using JWL++ as the host model. The model also does run-to-detonation, thin-pulse initiation with a P-t curve and air gap crossing, all in cylindrical geometry. Two sizes of MSAD/LX-10/LX-17 snowballs work somewhat with these settings, but are too weak, so that divergent detonation is a challenge for the future. Butterfly meshes are considered but do not appear to solve the issue.

Souers, P C; Haylett, D; Vitello, P

2011-10-27T23:59:59.000Z

438

Injector nozzle for molten salt destruction of energetic waste materials  

DOE Patents (OSTI)

An injector nozzle has been designed for safely injecting energetic waste materials, such as high explosives, propellants, and rocket fuels, into a molten salt reactor in a molten salt destruction process without premature detonation or back burn in the injection system. The energetic waste material is typically diluted to form a fluid fuel mixture that is injected rapidly into the reactor. A carrier gas used in the nozzle serves as a carrier for the fuel mixture, and further dilutes the energetic material and increases its injection velocity into the reactor. The injector nozzle is cooled to keep the fuel mixture below the decomposition temperature to prevent spontaneous detonation of the explosive materials before contact with the high-temperature molten salt bath.

Brummond, William A. (Livermore, CA); Upadhye, Ravindra S. (Pleasanton, CA)

1996-01-01T23:59:59.000Z

439

Field Sampling Plan for the Operable Units 6-05 and 10-04 Remedial Action, Phase IV  

SciTech Connect

This Field Sampling Plan outlines the collection and analysis of samples in support of Phase IV of the Waste Area Group 10, Operable Units 6-05 and 10-04 remedial action. Phase IV addresses the remedial actions to areas with the potential for unexploded ordnance at the Idaho National Laboratory Site. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. The remedial action consists of removal and disposal of ordnance by high-order detonation, followed by sampling to determine the extent, if any, of soil that might have been contaminated by the detonation activities associated with the disposal of ordnance during the Phase IV activities and explosives during the Phase II activities.

R. Wells

2006-11-14T23:59:59.000Z

440

RussiaLANLV3-web.indd  

National Nuclear Security Administration (NNSA)

models capable of predicting the process of detonation models capable of predicting the process of detonation of high explosives (HEs) is an area of active research. Analysis of recent experiments shows that HE decomposition occurs as the result of a complex mix of a number of fundamental decomposition mechanisms, each of which has its own domain of domination. The hot spot mechanism (heterogeneous mechanism) dominates in the pressure range from 30 kbar to 200 kbar. The homogeneous mechanism dominates at pressures > 300 kbar. In the intermediate region, 200-300 kbar, we have mixture of heterogeneous and homogeneous mechanisms. At very low pressures, P < 20 kbar, decomposition is governed by the so- called dislocation mechanism. It is necessary to emphasize that the stated values of boundary pressures - 30, 200 and 300 kbar - are qualitative and have concrete values for

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

 

NLE Websites -- All DOE Office Websites (Extended Search)

Ron Walli Ron Walli Communications 865.576.0226 Nevada company, ORNL develop potential lifesaver Listen to the audio OAK RIDGE, Tenn., Dec. 20, 2007 - A Las Vegas business and Oak Ridge National Laboratory are improving the odds for people medically at risk from dehydration or congestive heart failure. The task for ORNL researchers Chuck Britton, Nance Ericson and Gary Alley was to improve and miniaturize Noninvasive Medical Technologies' ZOE, a medical device that monitors a person's hydration, or level of fluid. This is of great importance to members of the military and to thousands of home health care patients, athletes, firefighters and first responders. "Technologies that allow for better hydration management will improve performance, medical triage and treatment of soldiers and others who are

442

Environment, Health, & Safety Training Program EHS-155 Building Emergency Team Seminars  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Building Emergency Team Seminars COURSE SYLLABUS Subject Category: Building Emergency Teams Schedule: Quarterly Course Length: 2.0 hours Medical Approval: None Delivery Method: Classroom Location/Time: To be determined Course Prerequisites: EHS 154; EHS 116; EHS 530 Retraining/Recertification: N/A Course Purpose: This course is designed for Lab employees who have been assigned as members of Building Emergency Teams (BETs) and have received the basic training required (EHS 154, EHS 116, EHS 530). These seminars will update and refresh the skills already learned, i.e.: responsibilities of fire department; utility turn off switches; rescue boxes; first aid triage, etc. Course Objectives: * To update BET members on skills learned in initial training.

443

Method and apparatus to measure the depth of skin burns  

DOE Patents (OSTI)

A new device for measuring the depth of surface tissue burns based on the rate at which the skin temperature responds to a sudden differential temperature stimulus. This technique can be performed without physical contact with the burned tissue. In one implementation, time-dependent surface temperature data is taken from subsequent frames of a video signal from an infrared-sensitive video camera. When a thermal transient is created, e.g., by turning off a heat lamp directed at the skin surface, the following time-dependent surface temperature data can be used to determine the skin burn depth. Imaging and non-imaging versions of this device can be implemented, thereby enabling laboratory-quality skin burn depth imagers for hospitals as well as hand-held skin burn depth sensors the size of a small pocket flashlight for field use and triage.

Dickey, Fred M. (Albuquerque, NM); Holswade, Scott C. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

444

Interim report on updated microarray probes for the LLNL Burkholderia pseudomallei SNP array  

Science Conference Proceedings (OSTI)

The overall goal of this project is to forensically characterize 100 unknown Burkholderia isolates in the US-Australia collaboration. We will identify genome-wide single nucleotide polymorphisms (SNPs) from B. pseudomallei and near neighbor species including B. mallei, B. thailandensis and B. oklahomensis. We will design microarray probes to detect these SNP markers and analyze 100 Burkholderia genomic DNAs extracted from environmental, clinical and near neighbor isolates from Australian collaborators on the Burkholderia SNP microarray. We will analyze the microarray genotyping results to characterize the genetic diversity of these new isolates and triage the samples for whole genome sequencing. In this interim report, we described the SNP analysis and the microarray probe design for the Burkholderia SNP microarray.

Gardner, S; Jaing, C

2012-03-27T23:59:59.000Z

445

Top Ten Interaction Challenges in Extreme-Scale Visual Analytics  

Science Conference Proceedings (OSTI)

The chapter presents ten selected user interfaces and interaction challenges in extreme-scale visual analytics. The study of visual analytics is often referred to as 'the science of analytical reasoning facilitated by interactive visual interfaces' in the literature. The discussion focuses on the issues of applying visual analytics technologies to extreme-scale scientific and non-scientific data ranging from petabyte to exabyte in sizes. The ten challenges are: in situ interactive analysis, user-driven data reduction, scalability and multi-level hierarchy, representation of evidence and uncertainty, heterogeneous data fusion, data summarization and triage for interactive query, analytics of temporally evolving features, the human bottleneck, design and engineering development, and the Renaissance of conventional wisdom. The discussion addresses concerns that arise from different areas of hardware, software, computation, algorithms, and human factors. The chapter also evaluates the likelihood of success in meeting these challenges in the near future.

Wong, Pak C.; Shen, Han-Wei; Chen, Chaomei

2012-05-31T23:59:59.000Z

446

FY05 LDRD Final Report Molecular Radiation Biodosimetry LDRD Project Tracking Code: 04-ERD-076  

Science Conference Proceedings (OSTI)

In the event of a nuclear or radiological accident or terrorist event, it is important to identify individuals that can benefit from prompt medical care and to reassure those that do not need it. Achieving these goals will maximize the ability to manage the medical consequences of radiation exposure that unfold over a period of hours, days, weeks, years, depending on dose. Medical interventions that reduce near term morbidity and mortality from high but non-lethal exposures require advanced medical support and must be focused on those in need as soon as possible. There are two traditional approaches to radiation dosimetry, physical and biological. Each as currently practiced has strengths and limitations. Physical dosimetry for radiation exposure is routine for selected sites and for individual nuclear workers in certain industries, medical centers and research institutions. No monitoring of individuals in the general population is currently performed. When physical dosimetry is available at the time of an accident/event or soon thereafter, it can provide valuable information in support of accident/event triage. Lack of data for most individuals is a major limitation, as differences in exposure can be significant due to shielding, atmospherics, etc. A smaller issue in terms of number of people affected is that the same dose may have more or less biological effect on subsets of the population. Biological dosimetry is the estimation of exposure based on physiological or cellular alterations induced in an individual by radiation. The best established and precise biodosimetric methods are measurement of the decline of blood cells over time and measurement of the frequency of chromosome aberrations. In accidents or events affecting small numbers of people, it is practical to allocate the resources and time (days of clinical follow-up or specialists laboratory time) to conduct these studies. However, if large numbers of people have been exposed, or fear they may have been, these methods are not suitable. The best current option for triage radiation biodosimetry is self-report of time to onset of emesis after the event, a biomarker that is subject to many false positives. The premise of this project is that greatly improved radiation dosimetry can be achieved by research and development directed toward detection of molecular changes induced by radiation in cells or other biological materials. Basic research on the responses of cells to radiation at the molecular level, particularly of message RNA and proteins, has identified biomolecules whose levels increase (or decrease) as part of cellular responses to radiation. Concerted efforts to identify markers useful for triage and clinical applications have not been reported as yet. Such studies would scan responses over a broad range of doses, below, at and above the threshold of clinical significance in the first weeks after exposure, and would collect global proteome and/or transcriptome information on all tissue samples accessible to either first responders or clinicians. For triage, the goal is to identify those needing medical treatment. Treatment will be guided by refined dosimetry. Achieving this goal entails determining whether radiation exposure was below or above the threshold of concern, using one sample collected within days of an event, with simple devices that first responders either use or distribute for self-testing. For the clinic, better resolution of dose and tissue damage is needed to determine the nature and time sensitivity of therapy, but multiple sampling times may be acceptable and clinical staff and equipment can be utilized. Two complementary areas of research and development are needed once candidate biomarkers are identified, validation of the biomarker responses and validation of devices/instrumentation for detection of responses. Validation of biomarkers per se is confirmation that the dose, time, and tissue specific responses meet the reporting requirements in a high proportion of the population, and that variation among nonexposed people due to age,

Jones, I M; A.Coleman, M; Lehmann, J; Manohar, C F; Marchetti, F; Mariella, R; Miles, R; Nelson, D O; Wyrobek, A J

2006-02-03T23:59:59.000Z

447

FY05 LDRD Final Report Molecular Radiation Biodosimetry LDRD Project Tracking Code: 04-ERD-076  

SciTech Connect

In the event of a nuclear or radiological accident or terrorist event, it is important to identify individuals that can benefit from prompt medical care and to reassure those that do not need it. Achieving these goals will maximize the ability to manage the medical consequences of radiation exposure that unfold over a period of hours, days, weeks, years, depending on dose. Medical interventions that reduce near term morbidity and mortality from high but non-lethal exposures require advanced medical support and must be focused on those in need as soon as possible. There are two traditional approaches to radiation dosimetry, physical and biological. Each as currently practiced has strengths and limitations. Physical dosimetry for radiation exposure is routine for selected sites and for individual nuclear workers in certain industries, medical centers and research institutions. No monitoring of individuals in the general population is currently performed. When physical dosimetry is available at the time of an accident/event or soon thereafter, it can provide valuable information in support of accident/event triage. Lack of data for most individuals is a major limitation, as differences in exposure can be significant due to shielding, atmospherics, etc. A smaller issue in terms of number of people affected is that the same dose may have more or less biological effect on subsets of the population. Biological dosimetry is the estimation of exposure based on physiological or cellular alterations induced in an individual by radiation. The best established and precise biodosimetric methods are measurement of the decline of blood cells over time and measurement of the frequency of chromosome aberrations. In accidents or events affecting small numbers of people, it is practical to allocate the resources and time (days of clinical follow-up or specialists laboratory time) to conduct these studies. However, if large numbers of people have been exposed, or fear they may have been, these methods are not suitable. The best current option for triage radiation biodosimetry is self-report of time to onset of emesis after the event, a biomarker that is subject to many false positives. The premise of this project is that greatly improved radiation dosimetry can be achieved by research and development directed toward detection of molecular changes induced by radiation in cells or other biological materials. Basic research on the responses of cells to radiation at the molecular level, particularly of message RNA and proteins, has identified biomolecules whose levels increase (or decrease) as part of cellular responses to radiation. Concerted efforts to identify markers useful for triage and clinical applications have not been reported as yet. Such studies would scan responses over a broad range of doses, below, at and above the threshold of clinical significance in the first weeks after exposure, and would collect global proteome and/or transcriptome information on all tissue samples accessible to either first responders or clinicians. For triage, the goal is to identify those needing medical treatment. Treatment will be guided by refined dosimetry. Achieving this goal entails determining whether radiation exposure was below or above the threshold of concern, using one sample collected within days of an event, with simple devices that first responders either use or distribute for self-testing. For the clinic, better resolution of dose and tissue damage is needed to determine the nature and time sensitivity of therapy, but multiple sampling times may be acceptable and clinical staff and equipment can be utilized. Two complementary areas of research and development are needed once candidate biomarkers are identified, validation of the biomarker responses and validation of devices/instrumentation for detection of responses. Validation of biomarkers per se is confirmation that the dose, time, and tissue specific responses meet the reporting requirements in a high proportion of the population, and that variation among nonexposed people due to age,

Jones, I M; A.Coleman, M; Lehmann, J; Manohar, C F; Marchetti, F; Mariella, R; Miles, R; Nelson, D O; Wyrobek, A J

2006-02-03T23:59:59.000Z

448

Science & Technology Review September/October 2008  

SciTech Connect

This issue has the following articles: (1) Answering Scientists Most Audacious Questions--Commentary by Dona Crawford; (2) Testing the Accuracy of the Supernova Yardstick--High-resolution simulations are advancing understanding of Type Ia supernovae to help uncover the mysteries of dark energy; (3) Developing New Drugs and Personalized Medical Treatment--Accelerator mass spectrometry is emerging as an essential tool for assessing the effects of drugs in humans; (4) Triage in a Patch--A painless skin patch and accompanying detector can quickly indicate human exposure to biological pathogens, chemicals, explosives, or radiation; and (5) Smoothing Out Defects for Extreme Ultraviolet Lithography--A process for smoothing mask defects helps move extreme ultraviolet lithography one step closer to creating smaller, more powerful computer chips.

Bearinger, J P

2008-07-21T23:59:59.000Z

449

OI FAB for EP Detail  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Live Incident Response Live Incident Response The Law Enforcement Perspective Assistant Special Agent-in-Charge Daniel Persson U.S. Department of Energy Office of Inspector General Technology Crimes Section DOE Office of Inspector General 2  Background  Law Enforcement (LE) Mindset  Collection of Evidence  Triage  Final Thoughts OVERVIEW DOE Office of Inspector General 3 Background DOE Office of Inspector General 4  Current Duties - Assistant Special Agent-in-Charge OIG Technology Crimes Section (TCS)  Handle all LE related Tech Crimes for DOE  Digital media analysis  LE-centric intrusion cases  CP cases in DOE complex  LE POC for DOE in all joint investigations - FBI, AFOSI, ICE, etc DOE Office of Inspector General 5  What I Don't Do - I am not a Lawyer

450

Explosive performance measurements on large, multiple-hole arrays and large masses of conventional explosive  

SciTech Connect

The COntinuous Reflectometry for Radius vs. Time EXperiment (CORRTEX) system was developed by the Los Alamos National Laboratory for determining the energy released in a nuclear explosion by measuring the position of its shock front as a function of time. The CORRTEX system, fielding techniques, and the methods and software for data reduction and analysis were developed over a 15 year period with hundreds of measurements made on nuclear tests and high explosive experiments. CORRTEX is a compact, portable, fast-sampling, microprocessor-controlled system, based on time domain reflectometry, requiring only a 24 volt power source and a sensing element. Only the sensing element (a length of 50 ohm coaxial cable) is expended during the detonation. In 1979, the CORRTEX system was shown to be ideally suited for chemical explosive performance measurements. Its utility for diagnosing chemical explosives was further demonstrated with successful measurements on large multiple-hole chemical shots in rock quarries and strip mines. Accurate timing of the detonation of sequenced or ripple fired arrays, as well as data characterizing the initiation, explosive performance and detonation anomalies are obtained. This information can serve as the basis for empirical or modeled improvements to blasting operations. A summary of the special CORRTEX features and well developed analysis techniques together with the experiment designs, data, and conclusions regarding the measurements and explosive performance from several array detonations and the Chemical Kiloton Experiment, 2.9 million pounds of an ammonium nitrate-fuel oil (ANFO) and emulsion blend conducted on the Nevada Test Site in 1993, are presented.

McKown, T.O. [Los Alamos National Lab., NM (United States); Eilers, D.D. [Raytheon Services Nevada, Las Vegas, NV (United States); Williams, P.E. [New Mexico Tech., Socorro, New Mexico (United States). Energetic Materials Research and Testing Center

1994-11-01T23:59:59.000Z

451

Proceedings of the eighth annual symposium on explosives and blasting research  

Science Conference Proceedings (OSTI)

This edition of the proceedings of the annual symposium on Explosives and Blasting Research held concurrent with the 18th Annual Conference on Explosives and Blasting Technique is the eighth in a series published by the International Society of Explosives Engineers. A variety of laboratory and field research is presented on explosives, mining, detonators, and shock waves. Seventeen papers are selected for the energy data base.

Not Available

1993-01-01T23:59:59.000Z

452

Extrusion cast explosive  

DOE Patents (OSTI)

Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

Scribner, K.J.

1985-11-26T23:59:59.000Z

453

Projectile-generating explosive access tool  

DOE Patents (OSTI)

An explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.

Jakaboski, Juan-Carlos (Albuquerque, NM; Hughs, Chance G. (Tijeras, NM); Todd, Steven N. (Rio Rancho, NM)

2011-10-18T23:59:59.000Z

454

Projectile-generating explosive access tool  

DOE Patents (OSTI)

A method for generating a projectile using an explosive device that can generate a projectile from the opposite side of a wall from the side where the explosive device is detonated. The projectile can be generated without breaching the wall of the structure or container. The device can optionally open an aperture in a solid wall of a structure or a container and form a high-kinetic-energy projectile from the portion of the wall removed to create the aperture.

Jakaboski, Juan-Carlos; Hughs, Chance G; Todd, Steven N

2013-06-11T23:59:59.000Z

455

Shock Waves (1996) 6: 183-195 tCJ Springer Verlag 1996  

E-Print Network (OSTI)

observed compaction wave speeds of 432 m/s in porous HMX (¢20 =0.73) result- ing from the impact of a 100 m) for the length (0.06 m) and time (33 j.Ls) associated with DDT in porous HMX (¢20 = 0_73). The detonation wave in porous HMX. 6 Conclusions In conclusion, a two-phase continuum model was numerically solved to predict

456

Chemical processing in geothermal nuclear chimney  

DOE Patents (OSTI)

A closed rubble filled nuclear chimney is provided in a subterranean geothermal formation by detonation of a nuclear explosive device therein, with reagent input and product output conduits connecting the chimney cavity with appropriate surface facilities. Such facilities will usually comprise reagent preparation, product recovery and recycle facilities. Proccsses are then conducted in the nuclear chimney which processes are facilitated by temperature, pressure, catalytic and other conditions existent or which are otherwise provided in the nuclear chimney. (auth)

Krikorian, O.H.

1973-10-01T23:59:59.000Z

457

Explosive laser light initiation of propellants  

DOE Patents (OSTI)

This invention is comprised of an improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

Piltch, M.S.

1992-12-31T23:59:59.000Z

458

Extrusion cast explosive  

DOE Patents (OSTI)

Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

Scribner, K.J.

1985-01-29T23:59:59.000Z

459

An investigation of corrosion in semiconductor bridge explosive devices.  

SciTech Connect

In the course of a failure investigation, corrosion of the lands was occasionally found in developmental lots of semiconductor bridge (SCB) detonators and igniters. Evidence was found in both detonators and igniters of the gold layer being deposited on top of a corroded aluminum layer, but inspection of additional dies from the same wafer did not reveal any more corroded parts. In some detonators, evidence was found that corrosion of the aluminum layer also happened after the gold was deposited. Moisture and chloride must both be present for aluminum to corrode. A likely source for chloride is the adhesive used to bond the die to the header. Inspection of other SCB devices, both recently manufactured and manufactured about ten years ago, found no evidence for corrosion even in devices that contained SCBs with aluminum lands and no gold. Several manufacturing defects were noted such as stains, gouges in the gold layer due to tooling, and porosity of the gold layer. Results of atmospheric corrosion experiments confirmed that devices with a porous gold layer over the aluminum layer are susceptible to extensive corrosion when both moisture and chlorine are present. The extent of corrosion depends on the level of chlorine contamination, and corrosion did not occur when only moisture was present. Elimination of the gold plating on the lands eliminated corrosion of the lands in these experiments. Some questions remain unanswered, but enough information was gathered to recommend changes to materials and procedures. A second lot of detonators was successfully built using aluminum SCBs, limiting the use of Ablebond{trademark} adhesive, increasing the rigor in controlling exposure to moisture, and adding inspection steps.

Klassen, Sandra Ellen; Sorensen, Neil Robert

2007-05-01T23:59:59.000Z

460

Power supply  

SciTech Connect

An electric power supply employs a striking means to initiate ferroelectric elements which provide electrical energy output which subsequently initiates an explosive charge which initiates a second ferroelectric current generator to deliver current to the coil of a magnetic field current generator, creating a magnetic field around the coil. Continued detonation effects compression of the magnetic field and subsequent generation and delivery of a large output current to appropriate output loads.

Hart, Edward J. (Albuquerque, NM); Leeman, James E. (Albuquerque, NM); MacDougall, Hugh R. (Albuquerque, NM); Marron, John J. (Albuquerque, NM); Smith, Calvin C. (Amarillo, TX)

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

THE TRANSPORT OF ATOMIC DEBRIS FROM OPERATION UPSHOT-KNOTHOLE  

SciTech Connect

In connection with the Upshot-Knothole test series in network consisting of 95 U.S. and 26 forcign stations was set up. Of the 11 devices detonated, ranging in yield from 0.2 to 60 kt, highier activity was found for lower bursts than from air drops. Information relating to the optimum spacing of stations in a gummed film network and the possibility of missing local areas of intense fallout are discussed. (W.D.M.)

List, R.J.

1954-06-25T23:59:59.000Z

462

Deflagration in stainless steel storage containers containing plutonium dioxide  

DOE Green Energy (OSTI)

Detonation of hydrogen and oxygen in stainless steel storage containers produces maximum pressures of 68.5 psia and 426.7 psia. The cylinders contain 3,000 g of PuO{sub 2} with 0.05 wt% and 0.5 wt% water respectively. The hydrogen and oxygen are produced by the alpha decomposition of the water. Work was performed for the Savannah River Site.

Kleinschmidt, P.D.

1996-02-01T23:59:59.000Z

463

Method and apparatus for producing cryogenic targets  

DOE Patents (OSTI)

An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers. 6 figs.

Murphy, J.T.; Miller, J.R.

1984-08-07T23:59:59.000Z

464

Method and apparatus for producing cryogenic targets  

DOE Patents (OSTI)

An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

Murphy, James T. (Los Alamos, NM); Miller, John R. (Penfield, NY)

1984-01-01T23:59:59.000Z

465

Deep Atomic Binding (DAB) Approach in Interpretation of Fission Products Behavior in Human Body, and Health Consequences  

Science Conference Proceedings (OSTI)

According to models used to predict health effects of fission products enter the human body, a large number of fatalities, malignancies, thyroid cancer, born (genetic) defects,...etc.. But the actual data after Chernobyl and TMI accidents, and nuclear detonations in USA and Marshal Islands, were not consistent with these models. According to DAB, these data could be interpreted, and conflicts between former models predictions and actual field data explained. (author)

Ajlouni, Abdul-Wali M.S. [Ministry of Energy and Mineral Resources, Amman 11814 (Jordan)

2006-07-01T23:59:59.000Z

466

US/UK second level panel discussions on the health and value of: Ageing and lifetime predictions (u)  

SciTech Connect

Many healthy physics, engineering, and materials exchanges are being accomplished in ageing and lifetime prediction that directly supports US and UK Stockpile Management Programs. Lifetime assessment studies of silicon foams under compression - Joint AWE/LANLlLLNL study of compression set in stress cushions completed. Provides phenomenological prediction out to 50 years. Polymer volatile out-gassing studies - New exchange on the out-gassing of Ethylene Vinyl Acetate (EVA) using isotopic {sup 13}C labeling studies to interrogate mechanistic processes. Infra-red (IR) gas cell analytical capabilities developed by AWE will be used to monitor polymer out-gassing profiles. Pu Strength ageing Experiments and Constitutive Modeling - In recently compared modeling strategies for ageing effects on Pu yield strength at high strain rates, a US/UK consensus was reached on the general principle that the ageing effect is additive and not multiplicative. The fundamental mechanisms for age-strengthening in Pu remains unknown. Pu Surface and Interface Reactions - (1) US/UK secondment resulted in developing a metal-metal oxide model for radiation damaged studies consistent with a Modified Embedded Atom Method (MEAM) potential; and (2) Joint US/UK collaboration to study the role of impurities in hydride initiation. Detonator Ageing (wide range of activities) - (1) Long-term ageing study with field trials at Pantex incorporating materials from LANL, LLNL, SNL and AWE; (2) Characterization of PETN growth to detonation process; (3) Detonator performance modeling; and (4) Performance fault tree analysis. Benefits are a unified approach to lifetime prediction that Includes: materials characterization and the development of ageing models through improved understanding of the relationship between materials properties, ageing properties and detonator performance.

Castro, Richard G [Los Alamos National Laboratory

2011-01-18T23:59:59.000Z

467

Tritium Transport at the Rulison Site, a Nuclear-stimulated Low-permeability Natural Gas Reservoir  

SciTech Connect

The U.S. Department of Energy (DOE) and its predecessor agencies conducted a program in the 1960s and 1970s that evaluated technology for the nuclear stimulation of low-permeability natural gas reservoirs. The second project in the program, Project Rulison, was located in west-central Colorado. A 40-kiltoton nuclear device was detonated 2,568 m below the land surface in the Williams Fork Formation on September 10, 1969. The natural gas reservoirs in the Williams Fork Formation occur in low permeability, fractured sandstone lenses interbedded with shale. Radionuclides derived from residual fuel products, nuclear reactions, and activation products were generated as a result of the detonation. Most of the radionuclides are contained in a cooled, solidified melt glass phase created from vaporized and melted rock that re-condensed after the test. Of the mobile gas-phase radionuclides released, tritium ({sup 3}H or T) migration is of most concern. The other gas-phase radionuclides ({sup 85}Kr, {sup 14}C) were largely removed during production testing in 1969 and 1970 and are no longer present in appreciable amounts. Substantial tritium remained because it is part of the water molecule, which is present in both the gas and liquid (aqueous) phases. The objectives of this work are to calculate the nature and extent of tritium contamination in the subsurface from the Rulison test from the time of the test to present day (2007), and to evaluate tritium migration under natural-gas production conditions to a hypothetical gas production well in the most vulnerable location outside the DOE drilling restriction. The natural-gas production scenario involves a hypothetical production well located 258 m horizontally away from the detonation point, outside the edge of the current drilling exclusion area. The production interval in the hypothetical well is at the same elevation as the nuclear chimney created by the detonation, in order to evaluate the location most vulnerable to tritium migration.

C. Cooper; M. Ye; J. Chapman

2008-04-01T23:59:59.000Z

468

Study of the effects of a disaster at Grand Coulee Dam upon the Hanford Works  

SciTech Connect

Declassified 23 Nov 1973. It is assumed that the Grand Coulee Dam would be destroyed by one direct hit following detonation of an atomic bomb. Major effects of the explosion include flooding and isolation of Richland, flooding of Midway Substation, and flooding of surrounding areas. Maximum water elevations following a direct hit and indirect hits are estimated. Data are presented for flow through openings and flow through dam failure. (HLW)

Kramer, H.A.

1950-02-01T23:59:59.000Z

469

Distributed virtual environment scalability and security  

E-Print Network (OSTI)

here. I define a virtual environment (VE) as a computer simulation typically involving space and time. This definitely restricts our examination to computerized systems, where otherwise it could rightly include war simulations going back thousands... in the Manhattan Project to model nuclear detonation, implementing a narrowly scoped, non-real-time virtual environment. In subsequent years computer capacity has grown, and with it the scope and responsiveness of virtual environments. VEs are still used...

Miller, John

2011-11-08T23:59:59.000Z

470

Sampling and analysis plan for RCRA closure activities at 218-E-8 Borrow Pit Demolition Site  

Science Conference Proceedings (OSTI)

Purpose of this document is to provide guidance for sampling and analysis activities associated with the proposed Resource Conservation and Recovery Act of 1976 (RCRA) clean closure of the 218-E-8 West Ash Pit Demolition Site. The borrow pit was used for demolition of discarded explosive chemicals, asbestos disposal, tumbleweed incineration, and storage of hazardous waste. Soil samples will be taken from around the blasting pit, to verify that the concentrations of all detonation activity contaminants are below action levels.

Lucas, J.G.

1994-06-02T23:59:59.000Z

471

High speed door assembly  

DOE Patents (OSTI)

This invention is comprised of a high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

Shapiro, C.

1991-12-31T23:59:59.000Z

472

Free radical explosive composition  

DOE Patents (OSTI)

An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

Walker, Franklin E. (15 Way Points Rd., Danville, CA 94526); Wasley, Richard J. (4290 Colgate Way, Livermore, CA 94550)

1979-01-01T23:59:59.000Z

473

Violent Reactions and DDT in Hot, Thermally Damaged HMX-Based PBXs  

SciTech Connect

Conventional high explosives (e.g. PBX 9501, LX-07) have been observed to react violently following thermal insult: (1) Fast convective and compressive burns (HEVR); (2) Thermal explosions (HEVR); and (3) Deflagration-to-detonation transition (DDT). No models exist that sufficiently capture/predict these complex multiphase and multiscale behaviors. For now, research is focused on identifying vulnerabilities and factors that control this behavior.

Parker, Gary R. Jr. [Los Alamos National Laboratory; Holmes, Matthew D. [Los Alamos National Laboratory; Dickson, Peter [Los Alamos National Laboratory; Asay, Blaine W. [Los Alamos National Laboratory; McAfee, John M. [Los Alamos National Laboratory

2012-07-03T23:59:59.000Z

474

The non-proliferation experiment and gas sampling as an on-site inspection activity: A progress report  

SciTech Connect

The Non-proliferation Experiment (NPE) is contributing to the development of gas sampling methods and models that may be incorporated into future on-site inspection (OSI) activities. Surface gas sampling and analysis, motivated by nuclear test containment studies, have already demonstrated the tendency for the gaseous products of an underground nuclear test to flow hundreds of meters to the surface over periods ranging from days to months. Even in the presence of a uniform sinusoidal pressure variation, there will be a net flow of cavity gas toward the surface. To test this barometric pumping effect at Rainier Mesa, gas bottles containing sulfur hexaflouride and {sup 3}He were added to the pre-detonation cavity for the 1 kt chemical explosives test. Pre-detonation measurements of the background levels of both gases were obtained at selected sites on top of the mesa. The background levels of both tracers were found to be at or below mass spectrographic/gas chromatographic sensitivity thresholds in the parts-per-trillion range. Post-detonation, gas chromatographic analyses of samples taken during barometric pressure lows from the sampling sites on the mesa indicate the presence of significant levels (300--600 ppt) of sulfur hexaflouride. However, mass spectrographic analyses of gas samples taken to date do not show the presence of {sup 3}He. To explain these observations, several possibilities are being explored through additional sampling/analysis and numerical modeling. For the NPE, the detonation point was approximately 400 m beneath the surface of Rainier Mesa and the event did not produce significant fracturing or subsidence on the surface of the mesa. Thus, the NPE may ultimately represent an extreme, but useful example for the application and tuning of cavity gas detection techniques.

Carrigan, C.R.

1994-03-01T23:59:59.000Z

475

Method and apparatus for producing cryogenic targets  

DOE Patents (OSTI)

An improved method and apparatus are given for producing cryogenic inertially driven fusion targets in the fast isothermal freezing (FIF) method. Improved coupling efficiency and greater availability of volume near the target for diagnostic purposes and for fusion driver beam propagation result. Other embodiments include a new electrical switch and a new explosive detonator, all embodiments making use of a purposeful heating by means of optical fibers.

Murphy, J.T.; Miller, J.R.

1981-08-28T23:59:59.000Z

476

Creation of the dam for the No. 2 Kambaratinskaya HPP by large-scale blasting: analysis of planning experience and lessons learned  

SciTech Connect

Results of complex instrument observations and video taping during large-scale blasts detonated for creation of the dam at the No. 2 Kambaratinskaya HPP on the Naryn River in the Kyrgyz Republic are analyzed. Tests of the energy effectiveness of the explosives are evaluated, characteristics of LSB manifestations in seismic and air waves are revealed, and the shaping and movement of the rock mass are examined. A methodological analysis of the planning and production of the LSB is given.

Shuifer, M. I.; Argal, E. S. [JSC 'Gidrospetsproekt' (Russian Federation)

2012-05-15T23:59:59.000Z

477

The effects of the topographic bench on ground motion from mining explosions  

Science Conference Proceedings (OSTI)

Understanding the effects of the bench on ground motion can improve the design of cast blasts and achieve improved blast efficiency while remaining below vibration requirements. A new dataset recorded in September 2003 from a coal mine in Arizona has allowed us to examine the excitation of short-period Rayleigh-type surface waves from four simultaneously-detonated explosions in and below a topographic bench of a mine. The explosions were recorded on a network of over 150 seismic sensors, providing an extensive understanding of the ground motion radiation patterns from these explosions. We detonated two separate explosions in the deepest pit of the mine, thus the explosions were shot to solid rock. Within 25 meters of these two explosions, we detonated two additional explosions of similar explosive yields in a bench, thus these explosions were shot to the free face. Radiation patterns and spectral ratios from the explosions show increased amplitudes at azimuths behind the bench relative to the amplitudes in front of the bench. We compared these findings to seismic observations from two {approximately} 1.5 million pound cast blasts at the same mine and found similar radiations patterns. Modeling of these blasts shows that the variations in ground motion are caused by the topographic bench as a result of 1) horizontal spalling of the rock falling into the pit and 2) non-linear scattering near the free-face. Shooting to a buffer also causes the azimuthal variations to be significantly reduced.

Bonner, J.L.; Blomberg, W.S.; Hopper, H.; Leidig, M. [Weston Geophysical Corporation (United States)

2005-07-01T23:59:59.000Z

478

Prospects for Type Ia Supernova explosion mechanism identification with gamma rays  

E-Print Network (OSTI)

The explosion mechanism associated with thermonuclear supernovae (SNIa) is still a matter of debate. There is a wide agreement that high amounts of of radioactive nuclei are produced during these events and they are expected to be strong gamma-ray emitters. In the past, several authors have investigated the use of this gamma-ray emission as a diagnostic tool. In this paper we have done a complete study of the gamma-ray spectra associated with all the different scenarios currently proposed. This includes detonation, delayed detonation, deflagration and the off-center detonation. We have performed accurate simulations for this complete set of models in order to determine the most promising spectral features that could be used to discriminate among the different models. Our study is not limited to qualitative arguments. Instead, we have quantified the differences among the spectra and established distance limits for their detection. The calculations have been performed considering the best current response estimations of the SPI and IBIS instruments aboard INTEGRAL in such a way that our results can be used as a guideline to evaluate the capabilities of INTEGRAL in the study of type Ia supernovae. For the purpose of completeness we have also investigated the nuclear excitation and spallation reactions as a possible secondary source of gamma-rays present in some supernova scenarios. We conclude that this mechanism can be neglected due to its small contribution.

Jordi Gomez-Gomar; Jordi Isern; Pierre Jean

1997-09-05T23:59:59.000Z

479

Reactive thermal waves in energetic materials  

SciTech Connect

Reactive thermal waves (RTWs) arise in several energetic material applications, including self-propagating high-temperature synthesis (SHS), high explosive cookoff, and the detonation of heterogeneous explosives. In this paper I exmaine ideal RTWs, by which I mean that (1) material motion is neglected, (2) the state dependence of reaction is Arrhenius in the temperature, and (3) the reaction rate is modulated by an arbitrary mass-fraction-based reaction progress function. Numerical simulations demonstrate that one's natural intuition, which is based mainly upon experience with inert materials and which leads one to expect diffusion processes to become relatively slow after a short time period, is invalid for high energy, state-sensitive reactive systems. Instead, theory predicts that RTWs can propagate at very high speeds. This result agrees with estimates for detonating heterogeneous explosives, which indicate that RTWs must spread from hot-spot nucleation sites at rates comparable to the detonation speed in order to produce experimentally-observed reaction zone thicknesses. Using dimensionless scaling and further invoking the high activation energy approximation, I obtain an analytic formula for the steady plane RTW speed from numerical calculations. I then compute the RTW speed for real explosives, and discuss aspects of their behavior.

Hill, Larry G [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

480

Apparatus and method for the acceleration of projectiles to hypervelocities  

DOE Patents (OSTI)

A projectile is initially accelerated to a supersonic velocity and then injected into a launch tube filled with a gaseous propellant. The projectile outer surface and launch tube inner surface form a ramjet having a diffuser, a combustion chamber and a nozzle. A catalytic coated flame holder projecting from the projectile ignites the gaseous propellant in the combustion chamber thereby accelerating the projectile in a subsonic combustion mode zone. The projectile then enters an overdriven detonation wave launch tube zone wherein further projectile acceleration is achieved by a formed, controlled overdriven detonation wave capable of igniting the gaseous propellant in the combustion chamber. Ultrahigh velocity projectile accelerations are achieved in a launch tube layered detonation zone having an inner sleeve filled with hydrogen gas. An explosive, which is disposed in the annular zone between the inner sleeve and the launch tube, explodes responsive to an impinging shock wave emanating from the diffuser of the accelerating projectile thereby forcing the inner sleeve inward and imparting an acceleration to the projectile. For applications wherein solid or liquid high explosives are employed, the explosion thereof forces the inner sleeve inward, forming a throat behind the projectile. This throat chokes flow behind, thereby imparting an acceleration to the projectile.

Hertzberg, Abraham (Bellevue, WA); Bruckner, Adam P. (Seattle, WA); Bogdanoff, David W. (Bellevue, WA)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "detonation nurse triage" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Detailed Simulations of Shock-Bifurcation and Ignition of an Argon-diluted Hydrogen/Oxygen Mixture in a Shock Tube  

Science Conference Proceedings (OSTI)

Detailed simulations of the bifurcation and ignition of an Argon-diluted Hydrogen/Oxygen mixture in the two-stage weak ignition regime are performed. An adaptive mesh-refinement (AMR) technique is employed to resolve all relevant physical scales that are associated with the viscous boundary-layer, the reaction front, and the shock-wave. A high-order hybrid WENO/central-differencing method is used as spatial discretization scheme, and a detailed chemical mechanism is employed to describe the combustion of the H2/O2 mixture. The operating conditions considered in this study are p = 5 bar and T = 1100 K, and fall in the third explosion limit. The computations show that the mixing of the thermally stratified fluid, carrying different momentum and enthalpy, introduces inhomogeneities in the core-region behind the reflected shock. These inhomogeneities act as localized ignition kernels. During the induction period, these kernels slowly expand and eventually transition to a detonation wave that rapidly consumes the unburned mixture.In competition with this detonation wave are the presence of secondary ignition kernels that appear in the unreacted core-region between reflected shock and detonation wave.

Ihme, Matthias [University of Michigan; Sun, Yong [University of Michigan; Deiterding, Ralf [ORNL

2013-01-01T23:59:59.000Z

482

Method for explosive expansion toward horizontal free faces for forming an in situ oil shale retort  

DOE Patents (OSTI)

Formation is excavated from within a retort site in formation containing oil shale for forming a plurality of vertically spaced apart voids extending horizontally across different levels of the retort site, leaving a separate zone of unfragmented formation between each pair of adjacent voids. Explosive is placed in each zone, and such explosive is detonated in a single round for forming an in situ retort containing a fragmented permeable mass of formation particles containing oil shale. The same amount of formation is explosively expanded upwardly and downwardly toward each void. A horizontal void excavated at a production level has a smaller horizontal cross-sectional area than a void excavated at a lower level of the retort site immediately above the production level void. Explosive in a first group of vertical blast holes is detonated for explosively expanding formation downwardly toward the lower void, and explosive in a second group of vertical blast holes is detonated in the same round for explosively expanding formation upwardly toward the lower void and downwardly toward the production level void for forming a generally T-shaped bottom of the fragmented mass.

Ricketts, Thomas E. (Bakersfield, CA)

1980-01-01T23:59:59.000Z

483

TYPE Ia SUPERNOVAE: CALCULATIONS OF TURBULENT FLAMES USING THE LINEAR EDDY MODEL  

SciTech Connect

The nature of carbon burning flames in Type Ia supernovae is explored as they interact with Kolmogorov turbulence. One-dimensional calculations using the Linear Eddy Model of Kerstein elucidate three regimes of turbulent burning. In the simplest case, large-scale turbulence folds and deforms thin laminar flamelets to produce a flame brush with a total burning rate given approximately by the speed of turbulent fluctuations on the integral scale, U{sub L} , This is the regime where the supernova explosion begins and where most of its pre-detonation burning occurs. As the density declines, turbulence starts to tear the individual flamelets, making broader structures that move faster. For a brief time, these turbulent flamelets are still narrow compared to their spacing and the concept of a flame brush moving with an overall speed of U{sub L} remains valid. However, the typical width of the individual flamelets, which is given by the condition that their turnover time equals their burning time, continues to increase as the density declines. Eventually, mixed regions almost as large as the integral scale itself are transiently formed. At that point, a transition to detonation can occur. The conditions for such a transition are explored numerically and it is estimated that the transition will occur for densities near 1 x 10{sup 7} g cm{sup -3}, provided the turbulent speed on the integral scale exceeds about 20% sonic. An example calculation shows the details of a detonation actually developing.

Woosley, S. E. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Kerstein, A. R.; Sankaran, V. [Combustion Research Facility, Sandia National Laboratory, Livermore, CA 94551 (United States); Aspden, A. J. [Center for Computational Science and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Roepke, F. K., E-mail: woosley@ucolick.or, E-mail: arkerst@sandia.go, E-mail: AJAspden@lbl.go, E-mail: fritz@mpa-Garching.mpg.d [Max Planck Institut fuer Astrophysik, Garching (Germany)

2009-10-10T23:59:59.000Z

484

Uncertainty and Sensitivity of Contaminant Travel Times from the Upgradient Nevada Test Site to the Yucca Mountain Area  

Science Conference Proceedings (OSTI)

Yucca Mountain (YM), Nevada, has been proposed by the U.S. Department of Energy as the nation’s first permanent geologic repository for spent nuclear fuel and highlevel radioactive waste. In this study, the potential for groundwater advective pathways from underground nuclear testing areas on the Nevada Test Site (NTS) to intercept the subsurface of the proposed land withdrawal area for the repository is investigated. The timeframe for advective travel and its uncertainty for possible radionuclide movement along these flow pathways is estimated as a result of effective-porosity value uncertainty for the hydrogeologic units (HGUs) along the flow paths. Furthermore, sensitivity analysis is conducted to determine the most influential HGUs on the advective radionuclide travel times from the NTS to the YM area. Groundwater pathways are obtained using the particle tracking package MODPATH and flow results from the Death Valley regional groundwater flow system (DVRFS) model developed by the U.S. Geological Survey (USGS). Effectiveporosity values for HGUs along these pathways are one of several parameters that determine possible radio