Powered by Deep Web Technologies
Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Detailed analysis of an endoreversible fuel cell : Maximum power and optimal operating temperature determination  

E-Print Network (OSTI)

Producing useful electrical work in consuming chemical energy, the fuel cell have to reject heat to its surrounding. However, as it occurs for any other type of engine, this thermal energy cannot be exchanged in an isothermal way in finite time through finite areas. As it was already done for various types of systems, we study the fuel cell within the finite time thermodynamics framework and define an endoreversible fuel cell. Considering different types of heat transfer laws, we obtain an optimal value of the operating temperature, corresponding to a maximum produced power. This analysis is a first step of a thermodynamical approach of design of thermal management devices, taking into account performances of the whole system.

A. Vaudrey; P. Baucour; F. Lanzetta; R. Glises

2009-05-18T23:59:59.000Z

2

Detailed analysis of an endoreversible fuel cell : Maximum power and optimal operating temperature determination  

E-Print Network (OSTI)

Producing useful electrical work in consuming chemical energy, the fuel cell have to reject heat to its surrounding. However, as it occurs for any other type of engine, this thermal energy cannot be exchanged in an isothermal way in finite time through finite areas. As it was already done for various types of systems, we study the fuel cell within the finite time thermodynamics framework and define an endoreversible fuel cell. Considering different types of heat transfer laws, we obtain an optimal value of the operating temperature, corresponding to a maximum produced power. This analysis is a first step of a thermodynamical approach of design of thermal management devices, taking into account performances of the whole system.

Vaudrey, A; Lanzetta, F; Glises, R

2009-01-01T23:59:59.000Z

3

Optimally moderated nuclear fission reactor and fuel source therefor  

DOE Patents (OSTI)

An improved nuclear fission reactor of the continuous fueling type involves determining an asymptotic equilibrium state for the nuclear fission reactor and providing the reactor with a moderator-to-fuel ratio that is optimally moderated for the asymptotic equilibrium state of the nuclear fission reactor; the fuel-to-moderator ratio allowing the nuclear fission reactor to be substantially continuously operated in an optimally moderated state.

Ougouag, Abderrafi M. (Idaho Falls, ID); Terry, William K. (Shelley, ID); Gougar, Hans D. (Idaho Falls, ID)

2008-07-22T23:59:59.000Z

4

Optimally Controlled Flexible Fuel Powertrain System  

SciTech Connect

A multi phase program was undertaken with the stated goal of using advanced design and development tools to create a unique combination of existing technologies to create a powertrain system specification that allowed minimal increase of volumetric fuel consumption when operating on E85 relative to gasoline. Although on an energy basis gasoline / ethanol blends typically return similar fuel economy to straight gasoline, because of its lower energy density (gasoline ~ 31.8MJ/l and ethanol ~ 21.1MJ/l) the volume based fuel economy of gasoline / ethanol blends are typically considerably worse. This project was able to define an initial engine specification envelope, develop specific hardware for the application, and test that hardware in both single and multi-cylinder test engines to verify the ability of the specified powertrain to deliver reduced E85 fuel consumption. Finally, the results from the engine testing were used in a vehicle drive cycle analysis tool to define a final vehicle level fuel economy result. During the course of the project, it was identified that the technologies utilized to improve fuel economy on E85 also enabled improved fuel economy when operating on gasoline. However, the E85 fueled powertrain provided improved vehicle performance when compared to the gasoline fueled powertrain due to the improved high load performance of the E85 fuel. Relative to the baseline comparator engine and considering current market fuels, the volumetric fuel consumption penalty when running on E85 with the fully optimized project powertrain specification was reduced significantly. This result shows that alternative fuels can be utilized in high percentages while maintaining or improving vehicle performance and with minimal or positive impact on total cost of ownership to the end consumer. The justification for this project was two-fold. In order to reduce the US dependence on crude oil, much of which is imported, the US Environmental Protection Agency (EPA) developed the Renewable Fuels Standard (RFS) under the Energy Policy Act of 2005. The RFS specifies targets for the amount of renewable fuel to be blended into petroleum based transportation fuels. The goal is to blend 36 billion gallons of renewable fuels into transportation fuels by 2022 (9 billion gallons were blended in 2008). The RFS also requires that the renewable fuels emit fewer greenhouse gasses than the petroleum fuels replaced. Thus the goal of the EPA is to have a more fuel efficient national fleet, less dependent on petroleum based fuels. The limit to the implementation of certain technologies employed was the requirement to run the developed powertrain on gasoline with minimal performance degradation. The addition of ethanol to gasoline fuels improves the fuels octane rating and increases the fuels evaporative cooling. Both of these fuel property enhancements make gasoline / ethanol blends more suitable than straight gasoline for use in downsized engines or engines with increased compression ratio. The use of engine downsizing and high compression ratios as well as direct injection (DI), dual independent cam phasing, external EGR, and downspeeding were fundamental to the fuel economy improvements targeted in this project. The developed powertrain specification utilized the MAHLE DI3 gasoline downsizing research engine. It was a turbocharged, intercooled, DI engine with dual independent cam phasing utilizing a compression ratio of 11.25 : 1 and a 15% reduction in final drive ratio. When compared to a gasoline fuelled 2.2L Ecotec engine in a Chevrolet HHR, vehicle drive cycle predictions indicate that the optimized powertrain operating on E85 would result in a reduced volume based drive cycle fuel economy penalty of 6% compared to an approximately 30% penalty for current technology engines.

Duncan Sheppard; Bruce Woodrow; Paul Kilmurray; Simon Thwaite

2011-06-30T23:59:59.000Z

5

Optimally Controlled Flexible Fuel Powertrain System  

DOE Green Energy (OSTI)

The primary objective of this project was to develop a true Flex Fuel Vehicle capable of running on any blend of ethanol from 0 to 85% with reduced penalty in usable vehicle range. A research and development program, targeting 10% improvement in fuel economy using a direct injection (DI) turbocharged spark ignition engine was conducted. In this project a gasoline-optimized high-technology engine was considered and the hardware and configuration modifications were defined for the engine, fueling system, and air path. Combined with a novel engine control strategy, control software, and calibration this resulted in a highly efficient and clean FFV concept. It was also intended to develop robust detection schemes of the ethanol content in the fuel integrated with adaptive control algorithms for optimized turbocharged direct injection engine combustion. The approach relies heavily on software-based adaptation and optimization striving for minimal modifications to the gasoline-optimized engine hardware system. Our ultimate objective was to develop a compact control methodology that takes advantage of any ethanol-based fuel mixture and not compromise the engine performance under gasoline operation.

Hakan Yilmaz; Mark Christie; Anna Stefanopoulou

2010-12-31T23:59:59.000Z

6

Measurement Protocols for Optimized Fuel Assembly Tags  

Science Conference Proceedings (OSTI)

This report describes the measurement protocols for optimized tags that can be applied to standard fuel assemblies used in light water reactors. This report describes work performed by the authors at Pacific Northwest National Laboratory for NA-22 as part of research to identify specific signatures that can be developed to support counter-proliferation technologies.

Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

2008-11-01T23:59:59.000Z

7

Selected Isotopes for Optimized Fuel Assembly Tags  

SciTech Connect

In support of our ongoing signatures project we present information on 3 isotopes selected for possible application in optimized tags that could be applied to fuel assemblies to provide an objective measure of burnup. 1. Important factors for an optimized tag are compatibility with the reactor environment (corrosion resistance), low radioactive activation, at least 2 stable isotopes, moderate neutron absorption cross-section, which gives significant changes in isotope ratios over typical fuel assembly irradiation levels, and ease of measurement in the SIMS machine 2. From the candidate isotopes presented in the 3rd FY 08 Quarterly Report, the most promising appear to be Titanium, Hafnium, and Platinum. The other candidate isotopes (Iron, Tungsten, exhibited inadequate corrosion resistance and/or had neutron capture cross-sections either too high or too low for the burnup range of interest.

Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

2008-10-01T23:59:59.000Z

8

Design optimization and analysis of coated particle fuel using advanced fuel performance modeling techniques  

E-Print Network (OSTI)

Modifying material properties provides another approach to optimize coated particle fuel used in pebble bed reactors. In this study, the MIT fuel performance model (TIMCOAT) was applied after benchmarking against the ...

Soontrapa, Chaiyod

2005-01-01T23:59:59.000Z

9

Determination of Plutonium Content in Spent Fuel with Nondestructive Assay  

E-Print Network (OSTI)

LBNL- Determination of Plutonium Content in Spent Fuel withSwinhoe. “Determination of Plutonium Content in Spent FuelS. Tobin, “Measurement of Plutonium in Spent Nuclear Fuel by

Tobin, S. J.

2010-01-01T23:59:59.000Z

10

Fuel Cycle Options for Optimized Recycling of Nuclear Fuel  

E-Print Network (OSTI)

The reduction of transuranic inventories of spent nuclear fuel depends upon the deployment of advanced fuels that can be loaded with recycled transuranics (TRU), and the availability of facilities to separate and reprocess ...

Aquien, A.

11

Optimization of the Spatial and Temporal Fuel Distribution for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimization of the Spatial and Temporal Fuel Distribution for Stable Combustion in Lean Premixed Combustors Speaker(s): Jong Guen Lee Date: November 30, 2000 - 12:00pm Location:...

12

Optimization of the Spatial and Temporal Fuel Distribution for Stable  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimization of the Spatial and Temporal Fuel Distribution for Stable Optimization of the Spatial and Temporal Fuel Distribution for Stable Combustion in Lean Premixed Combustors Speaker(s): Jong Guen Lee Date: November 30, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Robert Cheng The limited success that has been achieved to date in suppressing unstable combustion in lean premixed combustors has been based on the use one of three approaches: a pilot flame, active combustion control using either primary or secondary fuel flow modulation, or modification of the fuel time lag. What these approaches have in common is that they all involve changing the spatial and/or temporal fuel distribution in a manner, which suppresses a given instability. In this presentation, results are presented from an experimental study of the effect of the spatial and temporal fuel

13

Gasifiers optimized for fuel cell applications  

DOE Green Energy (OSTI)

Conventional coal gasification carbonate fuel cell systems are typically configured as shown in Figure 1, where the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45--53% (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

Steinfeld, G.; Fruchtman, J.; Hauserman, W.B.; Lee, A.; Meyers, S.J.

1992-01-01T23:59:59.000Z

14

Gasifiers optimized for fuel cell applications  

DOE Green Energy (OSTI)

Conventional coal gasification carbonate fuel cell systems are typically configured as shown in Figure 1, where the fuel gas is primarily hydrogen, carbon monoxide, and carbon dioxide, with waste heat recovery for process requirements and to produce additional power in a steam bottoming cycle. These systems make use of present day gasification processes to produce the low to medium Btu fuel gas which in turn is cleaned up and consumed by the fuel cell. These conventional gasification/fuel cell systems have been studied in recent years projecting system efficiencies of 45--53% (HHV). Conventional gasification systems currently available evolved as stand-alone systems producing low to medium Btu gas fuel gas. The requirements of the gasification process dictates high temperatures to carry out the steam/carbon reaction and to gasify the tars present in coal. The high gasification temperatures required are achieved by an oxidant which consumes a portion of the feed coal to provide the endothermic heat required for the gasification process. The thermal needs of this process result in fuel gas temperatures that are higher than necessary for most end use applications, as well as for gas cleanup purposes. This results in some efficiency and cost penalties. This effort is designed to study advanced means of power generation by integrating the gasification process with the unique operating characteristics of carbonate fuel cells to achieve a more efficient and cost effective coal based power generating system. This is to be done by altering the gasification process to produce fuel gas compositions which result in more efficient fuel cell operation and by integrating the gasification process with the fuel cell as shown in Figure 2. Low temperature catalytic gasification was chosen as the basis for this effort due to the inherent efficiency advantages and compatibility with fuel cell operating temperatures.

Steinfeld, G.; Fruchtman, J.; Hauserman, W.B.; Lee, A.; Meyers, S.J.

1992-12-01T23:59:59.000Z

15

Optimizing Energy Management Strategy and Degree of Hybridization for a Hydrogen Fuel Cell SUV  

E-Print Network (OSTI)

Previous work examined degree of hybridization on the fuel economy of a hybrid electric sport utility vehicle. It was observed that not only was the vehicle control strategy important, but that its definition should be coupled with the component sizing process. Both degree of hybridization and the energy management strategy have been optimized simultaneously in this study. Simple mass scaling algorithms were employed to capture the effect of component and vehicle mass variations as a function of degree of hybridization. Additionally, the benefits of regenerative braking and power buffering have been maximized using optimization methods to determine appropriate battery pack sizing. Both local and global optimization routines were applied to improve the confidence in the solution being close to the true optimum. An optimal configuration and energy management strategy that maximizes the benefit of hybridization for a hydrogen fuel cell hybrid SUV was derived. The optimal configuration was explored, and sensitivity to drive cycle in the optimization process was studied.

Keith Wipke Tony; Tony Markel; Doug Nelson

2001-01-01T23:59:59.000Z

16

Fuel cycle optimization of thorium and uranium fueled PWR systems  

E-Print Network (OSTI)

The burnup neutronics of uniform PWR lattices are examined with respect to reduction of uranium ore requirements with an emphasis on variation of the fuel-to-moderator ratio

Garel, Keith Courtnay

1977-01-01T23:59:59.000Z

17

Fuel cycle options for optimized recycling of nuclear fuel  

E-Print Network (OSTI)

The accumulation of transuranic inventories in spent nuclear fuel depends on both deployment of advanced reactors that can be loaded with recycled transuranics (TRU), and on availability of the facilities that separate and ...

Aquien, Alexandre

2006-01-01T23:59:59.000Z

18

ATR LEU Fuel and Burnable Absorber Neutronics Performance Optimization by Fuel Meat Thickness Variation  

SciTech Connect

The Advanced Test Reactor (ATR) is a high power density and high neutron flux research reactor operating in the United States. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth. Because of the large test volumes located in high flux areas, the ATR is an ideal candidate for assessing the feasibility of converting an HEU driven reactor to a low-enriched core. The present work investigates the necessary modifications and evaluates the subsequent operating effects of this conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed and validated for a fuel cycle burnup comparison analysis. Using the current HEU U 235 enrichment of 93.0 % as a baseline, an analysis can be performed to determine the low-enriched uranium (LEU) density and U-235 enrichment required in the fuel meat to yield an equivalent K-eff between the HEU core and the LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the U-235 loading in the LEU core, such that the differences in K-eff and heat flux profile between the HEU and LEU core can be minimized. The depletion methodology MCWO was used to calculate K-eff versus EFPDs in this paper. The MCWO-calculated results for the LEU cases with foil (U-10Mo) types demonstrated adequate excess reactivity such that the K-eff versus EFPDs plot is similar to the reference ATR HEU case. Each HEU fuel element contains 19 fuel plates with a fuel meat thickness of 0.508 mm. In this work, the proposed LEU (U-10Mo) core conversion case with a nominal fuel meat thickness of 0.508 mm and the same U-235 enrichment (15.5 wt%) can be used to optimize the radial heat flux profile by varying the fuel plate thickness from 0.254 to 0.457 mm at the inner 4 fuel plates (1-4) and outer 4 fuel plates (16-19). In addition, a 0.7g of burnable absorber Boron-10 was added in the inner and outer plates to reduce the initial excess reactivity, and the inner/outer heat flux more effectively. The optimized LEU relative radial fission heat flux profile is bounded by the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Updated Final Safety Analysis Report (UFSAR) safety requirements, additional studies will be necessary to evaluate and compare safety parameters such as void reactivity and Doppler coefficients, control components worth (outer shim control cylinders, safety rods and regulating rod), and shutdown margins between the HEU and LEU cores.

G. S. Chang

2007-09-01T23:59:59.000Z

19

NETL: Advanced NOx Emissions Control: Control Technology - Optimized Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

Optimized Fuel Injector Design Optimized Fuel Injector Design This project includes fundamental research and engineering development of low NOx burners and reburning fuel injectors. The team of Reaction Engineering International (REI), the University of Utah, Brown University and DB Riley, Inc., will develop fundamental information on low NOx burners. The work has two phases. In the first phase, the University of Utah will examine two-phase mixing and near-field behavior of coal injectors using a 15-million Btu/hr bench-scale furnace, Brown University will examine char deactivation and effectiveness of reburning, and REI will develop a comprehensive burner model using the data produced by the University of Utah and Brown University. In the second phase, an optimized injector design will be tested at the 100-million Btu/hr Riley Coal Burner Test Facility. It is anticipated that this work will provide improved hardware designs and computer simulation models for reduced NOx emissions and minimized carbon loss.

20

Optimization of Driving Styles for Fuel Economy Improvement  

SciTech Connect

Modern vehicles have sophisticated electronic control units, particularly to control engine operation with respect to a balance between fuel economy, emissions, and power. These control units are designed for specific driving conditions and testing. However, each individual driving style is different and rarely meets those driving conditions. In the research reported here we investigate those driving style factors that have a major impact on fuel economy. An optimization framework is proposed with the aim of optimizing driving styles with respect to these driving factors. A set of polynomial metamodels are constructed to reflect the responses produced by changes of the driving factors. Then we compare the optimized driving styles to the original ones and evaluate the efficiency and effectiveness of the optimization formulation.

Malikopoulos, Andreas [ORNL; Aguilar, Juan P. [Georgia Institute of Technology

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Minor Actinides Loading Optimization for Proliferation Resistant Fuel Design - BWR  

Science Conference Proceedings (OSTI)

One approach to address the United States Nuclear Power (NP) 2010 program for the advanced light water reactor (LWR) (Gen-III+) intermediate-term spent fuel disposal need is to reduce spent fuel storage volume while enhancing proliferation resistance. One proposed solution includes increasing burnup of the discharged spent fuel and mixing minor actinide (MA) transuranic nuclides (237Np and 241Am) in the high burnup fuel. Thus, we can reduce the spent fuel volume while increasing the proliferation resistance by increasing the isotopic ratio of 238Pu/Pu. For future advanced nuclear systems, MAs are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. A typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of adding MAs (237Np and/or 241Am) to enhance proliferation resistance and improve fuel cycle performance for the intermediate-term goal of future nuclear energy systems. However, adding MAs will increase plutonium production in the discharged spent fuel. In this work, the Monte-Carlo coupling with ORIGEN-2.2 (MCWO) method was used to optimize the MA loading in the UO2 fuel such that the discharged spent fuel demonstrates enhanced proliferation resistance, while minimizing plutonium production. The axial averaged MA transmutation characteristics at different burnup were compared and their impact on neutronics criticality and the ratio of 238Pu/Pu discussed.

G. S. Chang; Hongbin Zhang

2009-09-01T23:59:59.000Z

22

Determination of optimum electrolyte composition for molten carbonate fuel cells  

DOE Green Energy (OSTI)

The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have on state-of-the-art cell voltage and lifetime.

Yuh, C.Y.; Pigeaud, A.

1987-01-01T23:59:59.000Z

23

Optimization of fossil fuel sources: An exergy approach  

SciTech Connect

We performed linear programming for optimization of fossil fuel supply in 2000 in Turkey. For this, an exergy analysis is made because the second law of thermodynamics takes into account the quality of energy as well as quantity of energy. Our analyses showed that the interfuel substitution between different fossil fuels will lead to a best energy mix of the country. The total retail price of fossil fuels can be lowered to 11.349 billion US$ from 13.012 billion US$ by increasing the domestic production of oil, lignite, and hard coal and by decreasing imports. The remaining demand can be met by natural gas imports. In conclusion, our analysis showed that a reduction of 1.663 billion US$ in fossil fuel cost can be made possible by giving more emphasis on domestic production, particularly of oil, lignite and hard coal.

Camdali, U. [Development Bank of Turkey, Ankara (Turkey)

2007-02-15T23:59:59.000Z

24

Enterprise level fuel inventory management simulation and optimization.  

Science Conference Proceedings (OSTI)

The objective is to find the optimal fuel inventory management strategy roadmap for each supplier along the fuel delivery supply chain. SoSAT (System of Systems Analysis Toolset) Enterprise is a suite of software tools: State Model tool; Stochastic simulation tool; Advanced data visualization tools; and Optimization tools. Initially designed to provide DoDand supporting organizations the capability to analyze a System-of-Systems (SoS) and its various platforms: (1) Supporting multiple US Army Program Executive Office Integration (PEO-I) trade studies; (2) Supporting US Army Program Executive Office of Ground Combat Systems (PEO GCS) for Fleet Management and Modernization Planning initiative; and (3) Participating in formal Verification, Validation & Accreditation effort with Army Organizations (AMSAA and ATEC).

Kao, Gio K.; Eddy, John P.

2010-06-01T23:59:59.000Z

25

Microstructure Optimization in Fuel Cell Electrodes using Materials Design  

DOE Green Energy (OSTI)

Abstract A multiscale model based on statistical continuum mechanics is proposed to predict the mechanical and electrical properties of heterogeneous porous media. This model is applied within the framework of microstructure sensitive design (MSD) to guide the design of the microstructure in porous lanthanum strontium manganite (LSM) fuel cell electrode. To satisfy the property requirement and compatibility, porosity and its distribution can be adjusted under the guidance of MSD to achieve optimized microstructure.

Li, Dongsheng; Saheli, Ghazal; Khaleel, Mohammad A.; Garmestani, Hamid

2006-08-01T23:59:59.000Z

26

Determination and Optimization Best Condition for Bioleaching of ...  

Science Conference Proceedings (OSTI)

Presentation Title, Determination and Optimization Best Condition for Bioleaching of Sulfide Low Grade Copper Ore by Using DOE(Design of Experimental) ...

27

Optimal Control of the Solid Fuel Ignition Model with H1-Cost  

Science Conference Proceedings (OSTI)

Optimal control problems for the stationary as well as the time-dependent solid fuel ignition model are investigated. Existence of optimal controls is proved, and optimality systems are derived. The analysis is based on a closedness lemma for the exponential ... Keywords: control of exponential nonlinearity, explosion phenomena, optimal control, optimality conditions

Kazufumi Ito; Karl Kunisch

2001-05-01T23:59:59.000Z

29

Obtaining the optimal fuel conserving investment mix: a linear programming hedonic technique approach  

SciTech Connect

The objectives of this study were to: (1) determine how energy efficiency affects the resale value of homes; (2) use this information concerning the implicit price of energy efficiency to estimate the resale value of fuel saving investments; and (3) incorporate these resale values into the investment decision process and determine the efficient investment mix for a household planning to own a given home for three alternative time periods. Two models were used to accomplish these objectives. A hedonic price model was used to determine the impact of energy efficiency on housing prices. The hedonic technique is a method used to attach implicit prices to characteristics that are not themselves bought and sold in markets, but are components of market goods. The hedonic model in this study provided an estimate of the implicit price paid for an increase in energy efficiency in homes on the Des-Moines housing market. In order to determine how the length of time the home is to be owned affects the optimal investment mix, a linear programming model was used to determine the cost minimizing investment mix for a baseline house under the assumption that it would be owned for 6, 20, and 50 years, alternatively. The results of the hedonic technique revealed that a premium is paid for energy efficient homes in Des Moines. The results of the linear programming model reveal that the optimal fuel saving investment mix for a home is sensitive to the time the home is to be owned.

Dinan, T.M.

1984-01-01T23:59:59.000Z

30

Design and fuel management of PWR cores to optimize the once-through fuel cycle  

SciTech Connect

The once-through fuel cycle has been analyzed to see if there are substantial prospects for improved uranium ore utilization in current light water reactors, with a specific focus on pressurized water reactors. The types of changes which have been examined are: (1) re-optimization of fuel pin diameter and lattice pitch, (2) axial power shaping by enrichment gradation in fresh fuel, (3) use of 6-batch cores with semi-annual refueling, (4) use of 6-batch cores with annual refueling, hence greater extended (approximately doubled) burnup, (5) use of radial reflector assemblies, (6) use of internally heterogeneous cores (simple seed/blanket configurations), (7) use of power/temperature coastdown at the end of life to extend burnup, (8) use of metal or diluted oxide fuel, (9) use of thorium, and (10) use of isotopically separated low sigma/sub a/ cladding material. State-of-the-art LWR computational methods, LEOPARD/PDQ-7/FLARE-G, were used to investigate these modifications.

Fujita, E.K.; Driscoll, M.J.; Lanning, D.D.

1978-08-01T23:59:59.000Z

31

The Fuel Control System and Performance Optimization of a Spark-Ignition LPG Engine  

Science Conference Proceedings (OSTI)

This paper presents an approach to control air fuel ratio of a Liquefied Petroleum Gas (LPG) automotive engine. The optimization of compression ratio is also described in this paper. HC, CO & NOx emissions of LPG engines can be reduced after the application ... Keywords: control, LPG engine, air fuel ratio, optimization

Hongwei Cui

2009-04-01T23:59:59.000Z

32

Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques  

E-Print Network (OSTI)

LBNL- Determining Plutonium Mass in Spent Fuel withSwinhoe. “Determination of Plutonium Content in Spent FuelS. Tobin, “Measurement of Plutonium in Spent Nuclear Fuel by

Tobin, S. J.

2010-01-01T23:59:59.000Z

33

Stochastic Optimal Power Flow for Reserve Determination  

Science Conference Proceedings (OSTI)

With significant levels of renewable generation to be integrated in the future electric power systems, new balancing techniques and better forecasting are needed for system operators to maintain power system security. The impact of uncertainty and variability associated with renewable generation motivates the introduction of stochastic methods when determining reserve requirements. These methods enable operators to make better use of system flexibility in order to maintain system reliability and ...

2012-12-31T23:59:59.000Z

34

Fuzzy possibilistic modeling and sensitivity analysis for optimal fuel gas scheduling in refinery  

Science Conference Proceedings (OSTI)

In refinery, fuel gas which is continuously generated during the production process is one of the most important energy sources. Optimal scheduling of fuel gas system helps the refinery to achieve energy cost reduction and cleaner production. However, ... Keywords: Fuel gas, Fuzzy possibilistic programming, Marginal value analysis, Refinery, Scheduling, Sensitivity analysis

J. D. Zhang; G. Rong

2010-04-01T23:59:59.000Z

35

Optimization of Fuel Cell System Operating Conditions for Fuel Cell Vehicles  

E-Print Network (OSTI)

An Indirect Methanol Pem Fuel Cell System, SAE 2001, (paperof automotive PEM fuel cell stacks, SAE 2000 (paper numberParasitic Loads in Fuel Cell Vehicles, International Journal

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

36

Design of gasifiers to optimize fuel cell systems. Final report, September 1990--September 1993  

Science Conference Proceedings (OSTI)

Pursuing the key national goal of clean and efficient utilization of the abundant domestic coal resources for power generation, this study was conducted to evaluate the potential of optimizing the integrated catalytic gasification/carbonate fuel cell power generation system. ERC in close collaboration with Fluor Daniel (providing engineering design and costing), conducted a detailed system configuration study to evaluate various catalytic gasification/carbonate fuel cell power plant configurations and compare them to present day, as well as emerging, alternate coal-based power plant technologies to assess their competitive position. A Topical Report (1992) was submitted documenting this effort, and the three catalytic gasification case studies are summarized in Appendix A. Results of this study indicate that system efficiencies approaching 55% (HHV) can be achieved by integrating low temperature catalytic gasification with high efficiency carbonate fuel cells. Thermal balance in the gasifier is achieved without oxygen by recycling hydrogen from the fuel cell anode exhaust. A small amount of air is added to the gasifier to minimize hydrogen recycle. In order to validate the assumptions made in the case configurations, experimental studies were performed to determine the reactivity of Illinois No. 6 coal with the gasification catalysts. The reactivity of the catalyzed coal has significant bearing on gasifier sizing and hence system cost and efficiency.

Not Available

1993-08-01T23:59:59.000Z

37

Integration and Optimization of Trigeneration Systems with Solar Energy, Biofuels, Process Heat and Fossil Fuels  

E-Print Network (OSTI)

The escalating energy prices and the increasing environmental impact posed by the industrial usage of energy have spurred industry to adopt various approaches to conserving energy and mitigating negative environmental impact. This work aims at developing a systematic approach to integrate solar energy into industrial processes to drive thermal energy transfer systems producing power, cool, and heat. Solar energy is needed to be integrated with other different energy sources (biofuels, fossil fuels, process waste heat) to guarantee providing a stable energy supply, as industrial process energy sources must be a stable and reliable system. The thermal energy transform systems (turbines, refrigerators, heat exchangers) must be selected and designed carefully to provide the energy demand at the different forms (heat, cool, power). This dissertation introduces optimization-based approaches to address the following problems: • Design of cogeneration systems with solar and fossil systems • Design and integration of solar-biofuel-fossil cogeneration systems • Design of solar-assisted absorption refrigeration systems and integration with the processing facility • Development of thermally-coupled dual absorption refrigeration systems, and • Design of solar-assisted trigeneration systems Several optimization formulations are introduced to provide methodical and systematic techniques to solve the aforementioned problems. The approach is also sequenced into interacting steps. First, heat integration is carried out to minimize industrial heating and cooling utilities. Different forms of external-energy sources (e.g., solar, biofuel, fossil fuel) are screened and selected. To optimize the cost and to overcome the dynamic fluctuation of the solar energy and biofuel production systems, fossil fuel is used to supplement the renewable forms of energy. An optimization approach is adopted to determine the optimal mix of energy forms (fossil, bio fuels, and solar) to be supplied to the process, the system specifications, and the scheduling of the system operation. Several case studies are solved to demonstrate the effectiveness and applicability of the devised procedure. The results show that solar trigeneration systems have higher overall performance than the solar thermal power plants. Integrating the absorption refrigerators improves the energy usage and it provides the process by its cooling demand. Thermal coupling of the dual absorption refrigerators increases the coefficient of performance up to 33 percent. Moreover, the process is provided by two cooling levels.

Tora, Eman

2010-12-01T23:59:59.000Z

38

Method for Determining Optimal Residential Energy Efficiency Retrofit Packages  

SciTech Connect

Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

2011-04-01T23:59:59.000Z

39

Optimization of hydride fueled pressurized water reactor cores  

E-Print Network (OSTI)

This thesis contributes to the Hydride Fuels Project, a collaborative effort between UC Berkeley and MIT aimed at investigating the potential benefits of hydride fuel use in light water reactors (LWRs). This pursuit involves ...

Shuffler, Carter Alexander

2004-01-01T23:59:59.000Z

40

Pwr fuel assembly optimization using adaptive simulated annealing coupled with translat  

E-Print Network (OSTI)

Optimization methods have been developed and refined throughout many scientific fields of study. This work utilizes one such developed technique of optimization called simulated annealing to produce optimal operation parameters for a 15x15 fuel assembly to be used in an operating nuclear power reactor. The two main cases of optimization are: one that finds the optimal 235U enrichment layout of the fuel pins in the assembly and another that finds both the optimal 235U enrichments where gadolinium burnable absorber pins are also inserted. Both of these optimizations can be performed by coupling Adaptive Simulated Annealing to TransLAT which successfully searches the optimization space for a fuel assembly layout that produces the minimized pin power peaking factor. Within given time constraints this package produces optimal layouts within a given set of assumptions and constraints. Each layout is forced to maintain the fuel assembly average 235U enrichment as a constraint. Reductions in peaking factors that are produced through this method are on the order of 2% to 3% when compared to the baseline results. As with any simulated annealing approach, families of optimal layouts are produced that can be used at the engineer’s discretion.

Rogers, Timothy James

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Determination of alternative fuels combustion products: Phase 3 report  

DOE Green Energy (OSTI)

This report describes the laboratory efforts to characterize particulate and gaseous exhaust emissions from a passenger vehicle operating on alternative fuels. Tests were conducted at room temperature (nominally 72 F) and 20 F utilizing the chassis dynamometer portion of the FTP for light-duty vehicles. Fuels evaluated include Federal RFG, LPG meeting HD-5 specifications, a national average blend of CNG, E85, and M85. Exhaust particulate generated at room temperature was further characterized to determine polynuclear aromatic content, trace element content, and trace organic constituents. For all fuels except M85, the room temperature particulate emission rate from this vehicle was about 2 to 3 mg/mile. On M85, the particulate emission rate was more than 6 mg/mile. In addition, elemental analysis of particulate revealed an order of magnitude more sulfur and calcium from M85 than any other fuel. The sulfur and calcium indicate that these higher emissions might be due to engine lubricating oil in the exhaust. For RFG, particulate emissions at 20 F were more than six times higher than at room temperature. For alcohol fuels, particulate emissions at 20 F were two to three times higher than at room temperature. For CNG and LPG, particulate emissions were virtually the same at 72 F and 20 F. However, PAH emissions from CNG and LPG were higher than expected. Both gaseous fuels had larger amounts of pyrene, 1-nitropyrene, and benzo(g,h,i)perylene in their emissions than the other fuels.

Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1997-12-01T23:59:59.000Z

42

Metallic Fuel Casting Development and Parameter Optimization Simulations  

SciTech Connect

One of the advantages of metallic fuel is the abilility to cast the fuel slugs to near net shape with little additional processing. However, the high aspect ratio of the fuel is not ideal for casting. EBR-II fuel was cast using counter gravity injection casting (CGIC) but, concerns have been raised concerning the feasibility of this process for americium bearing alloys. The Fuel Cycle Research and Development program has begun developing gravity casting techniques suitable for fuel production. Compared to CGIC gravity casting does not require a large heel that then is recycled, does not require application of a vacuum during melting, and is conducive to re-usable molds. Development has included fabrication of two separate benchscale, approximately 300 grams, systems. To shorten development time computer simulations have been used to ensure mold and crucible designs are feasible and to identify which fluid properties most affect casting behavior and therefore require more characterization.

R.S. Fielding; J. Crapps; C. Unal; J.R. Kennedy

2013-03-01T23:59:59.000Z

43

Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks  

NLE Websites -- All DOE Office Websites (Extended Search)

AURORA Program Overview Topic 4A. Transport within the PEM Stack / Transport Studies Transport Studies Enabling Efficiency Optimization of Cost-Competitive Fuel Cell Stacks Award#: DE-EE0000472 US DOE Fuel Cell Projects Kickoff Meeting Washington, DC September 30, 2009 Program Objectives The objective of this program is to optimize the efficiency of a stack technology meeting DOE cost targets. As cost reduction is of central importance in commercialization, the objective of this program addresses all fuel cell applications. AURORA C. Performance Technical Barriers Premise: DOE cost targets can be met by jointly exceeding both the Pt loading (1.0 W/cm2) targets.

44

Determination of alternative fuels combustion products: Phase 1 report  

DOE Green Energy (OSTI)

This report describes the laboratory effort to identify and quantify organic exhaust species generated from alternative-fueled light-duty vehicles operating over the Federal Test Procedure on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline. The exhaust species from these vehicles were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without a vehicle catalyst in place to determine the influence of a catalytic converter on species formation.

Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

1997-09-01T23:59:59.000Z

45

Performance Evaluation and Optimization of Diesel Fuel Properties and Chemistry in an HCCI Engine  

DOE Green Energy (OSTI)

The nine CRC fuels for advanced combustion engines (FACE fuels) have been evaluated in a simple, premixed HCCI engine under varying conditions of fuel rate, air-fuel ratio, and intake temperature. Engine performance was found to vary mainly as a function of combustion phasing as affected by fuel cetane and engine control variables. The data was modeled using statistical techniques involving eigenvector representation of the fuel properties and engine control variables, to define engine response and allow optimization across the fuels for best fuel efficiency. In general, the independent manipulation of intake temperature and air-fuel ratio provided some opportunity for improving combustion efficiency of a specific fuel beyond the direct effect of targeting the optimum combustion phasing of the engine (near 5 CAD ATDC). High cetane fuels suffer performance loss due to easier ignition, resulting in lower intake temperatures, which increase HC and CO emissions and result in the need for more advanced combustion phasing. The FACE fuels also varied in T90 temperature and % aromatics, independent of cetane number. T90 temperature was found to have an effect on engine performance when combined with high centane, but % aromatics did not, when evaluated independently of cetane and T90.

Bunting, Bruce G [ORNL; Eaton, Scott J [ORNL; Crawford, Robert W [Rincon Ranch Consulting

2009-01-01T23:59:59.000Z

46

Design of gasifiers to optimize fuel cell systems  

DOE Green Energy (OSTI)

The objective of this project is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. (VC)

Not Available

1992-02-01T23:59:59.000Z

47

Method for Determining Optimal Residential Energy Efficiency Retrofit Packages  

NLE Websites -- All DOE Office Websites (Extended Search)

Method for Determining Method for Determining Optimal Residential Energy Efficiency Retrofit Packages B. Polly, M. Gestwick, M. Bianchi, R. Anderson, S. Horowitz, C. Christensen, and R. Judkoff National Renewable Energy Laboratory April 2011 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process,

48

PLUTONIUM PROCESSING OPTIMIZATION IN SUPPORT OF THE MOX FUEL PROGRAM  

SciTech Connect

After Los Alamos National Laboratory (LANL) personnel completed polishing 125 Kg of plutonium as highly purified PuO{sub 2} from surplus nuclear weapons, Duke, COGEMA, Stone, and Webster (DCS) required as the next process stage, the validation and optimization of all phases of the plutonium polishing flow sheet. Personnel will develop the optimized parameters for use in the upcoming 330 kg production mission.

GRAY, DEVIN W. [Los Alamos National Laboratory; COSTA, DAVID A. [Los Alamos National Laboratory

2007-02-02T23:59:59.000Z

49

Multidisciplinary Modeling, Control, and Optimization of a Solid Oxide Fuel Cell/Gas Turbine Hybrid Power System.  

E-Print Network (OSTI)

??This thesis describes a systematical study, including multidisciplinary modeling, simulation, control, and optimization, of a fuel cell - gas turbine hybrid power system that aims… (more)

Abbassi Baharanchi, Atid

2009-01-01T23:59:59.000Z

50

Computational Modeling and Optimization of Proton Exchange Membrane Fuel Cells  

E-Print Network (OSTI)

power density (HPD) solid oxide fuel cell (SOFC) is a geometry based on a tubular type SOFC increased power density, but still maintains the beneficial feature of secure sealing for a tubular SOFC. In this paper, the electric performance of a flat-tube HPD SOFC is studied. This paper also investigates

Victoria, University of

51

Optimal fuel cell system design considering functional performance and production costs  

E-Print Network (OSTI)

In this work the optimization-based, integrated concurrent design method is applied to the modelling, analysis, and design of a transportation fuel cell system. A general optimal design model considering both functional performance and production costs is first introduced. Using the Ballard Mark V Transit Bus fuel cell system as an example, the study explores the intrinsic relations among various fuel cell system performance and cost aspects to provide insights for new cost-effective designs. A joint performance and cost optimization is carried out to demonstrate this new approach. This approach breaks the traditional barrier between design Žconcerning functional performance. and manufacturing Ž concerning production costs., allowing both functional performance and production costs to

D. Xue A; Z. Dong B

1998-01-01T23:59:59.000Z

52

Design and fuel management of PWR cores to optimize the once-through fuel cycle  

E-Print Network (OSTI)

The once-through fuel cycle has been analyzed to see if there are substantial prospects for improved uranium ore utilization in current

Fujita, Edward Kei

53

Design of gasifiers to optimize fuel cell systems  

DOE Green Energy (OSTI)

The objective of this program is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. During this quarter the topical report covering Tasks 1, 2, and 3 was submitted. this study evaluates various catalytic gasification/fuel cell power plant configurations. The competitive position of the configurations are assessed in a comparison with present-day as well as emerging alternate coal-based power plant technologies. The work plan for Task 4, Experimental Studies, was also submitted this quarter. This plan outlines the series of tests which will evaluate the feasibility of using the disposable gasification catalysts recommended in Task 3 of this program. (VC)

Not Available

1992-01-01T23:59:59.000Z

54

Alloy Optimization for Metallic Inert Matrix Nuclear Fuels  

Science Conference Proceedings (OSTI)

Conference Tools for 2011 TMS Annual Meeting & Exhibition ... Computational optimization based on coupling between thermodynamic software and a global constrained search ... Prepared by LLNL under Contract DE-AC52-07NA27344. ... of TIG Welded and Laser-surface Melted SUS 304 for Nuclear Power Plants.

55

Fuel Assembly Shaker Test for Determining Loads on a PWR Assembly...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Assembly Shaker Test for Determining Loads on a PWR Assembly under Surrogate Normal Conditions of Truck Transport R0.1 Fuel Assembly Shaker Test for Determining Loads on a PWR...

56

Determining the Bayesian optimal sampling strategy in a hierarchical system.  

SciTech Connect

Consider a classic hierarchy tree as a basic model of a 'system-of-systems' network, where each node represents a component system (which may itself consist of a set of sub-systems). For this general composite system, we present a technique for computing the optimal testing strategy, which is based on Bayesian decision analysis. In previous work, we developed a Bayesian approach for computing the distribution of the reliability of a system-of-systems structure that uses test data and prior information. This allows for the determination of both an estimate of the reliability and a quantification of confidence in the estimate. Improving the accuracy of the reliability estimate and increasing the corresponding confidence require the collection of additional data. However, testing all possible sub-systems may not be cost-effective, feasible, or even necessary to achieve an improvement in the reliability estimate. To address this sampling issue, we formulate a Bayesian methodology that systematically determines the optimal sampling strategy under specified constraints and costs that will maximally improve the reliability estimate of the composite system, e.g., by reducing the variance of the reliability distribution. This methodology involves calculating the 'Bayes risk of a decision rule' for each available sampling strategy, where risk quantifies the relative effect that each sampling strategy could have on the reliability estimate. A general numerical algorithm is developed and tested using an example multicomponent system. The results show that the procedure scales linearly with the number of components available for testing.

Grace, Matthew D.; Ringland, James T.; Boggs, Paul T.; Pebay, Philippe Pierre

2010-09-01T23:59:59.000Z

57

Determination of Plutonium Content in Spent Fuel with Nondestructive Assay  

E-Print Network (OSTI)

of Plutonium in Spent Nuclear Fuel by Self-Induced X-ray,”Requirements for Spent Nuclear Fuel Recycling Facility –Content in PWR Spent Nuclear Fuel,” European Safeguards R&D

Tobin, S. J.

2010-01-01T23:59:59.000Z

58

Modelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles  

E-Print Network (OSTI)

of emissions to global climate change. Although electric cars and buses have been the focus of much of electricModelling and Design Optimization of Low Speed Fuel Cell Hybrid Electric Vehicles by Matthew Blair Supervisors: Dr. Zuomin Dong ABSTRACT Electric vehicles, as an emerging transportation platform, have been

Victoria, University of

59

New Optimal Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications  

DOE Green Energy (OSTI)

Accomplishments during Phase II of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring. During this program work period, major progress has been experienced in the development of the sensor hardware, and the planning of the system installation and operation. The major focus of the next work period will be the installation of sensors in the Hamilton, Ohio power plant, and demonstration of high-temperature strain gages during mechanical testing of SOFC components.

John Coggin; Jonas Ivasauskas; Russell G. May; Michael B. Miller; Rena Wilson

2006-09-30T23:59:59.000Z

60

Design of gasifiers to optimize fuel cell systems  

DOE Green Energy (OSTI)

The activities in this task are designed to evaluate experimentally the performance of the gasification catalysts chosen for the system study in the first year of this effort. The objectives of this task have been broken down as follows: To experimentally characterize the performance of the previously recommended gasification catalysts for integrates gasification carbonate fuel cell systems as identified in the system study performed during Tasks 1, 2, and 3. The catalysts which will be tested include Potassium carbonates. limestone and taconite in dry form as well as a coal-impregnated with soluble salts of potassium, calcium and iron. To evaluate the degree to which SO[sub 2] in a recycled stream, and or sulfur in the feed, can be captured by the selected calcium or iron containing catalyst at the operation conditions in the catalytic gasifier. To carry out tests under simulated conditions approaching the preferred final process design conditions identified in the system study. The first phase of experimental testing consists of a cost-effective minimum scale screening by Thermogravimetric Analysis (TGA).

Steinfeld, G.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Optimal Incentive/Disincentive Determination Between Cost and Benefit  

E-Print Network (OSTI)

In an effort to motivate contractors to complete construction projects early on high-impact highway pavement construction projects, state transportation agencies (STAs) including TxDOT have often used incentive/disincentive (I/D) contracts. However, determining I/D rates is extremely difficult due largely to the lack of systematic methods for helping STAs determine effective I/D rates. The primary goal of this project is to develop a novel framework for determining the most realistic and economical I/D dollar amounts for high-impact highway improvement projects. To achieve its goal, this project proposes an integration analysis including project schedule and the lower and upper bounds of the I/D contract. The lower bound is the contractor’s additional cost of acceleration, and the upper is the total savings to road users and to the agency. The study data were gathered using Construction Analysis for Pavement Rehabilitation Strategies (CA4PRS) software. These data were then grouped by four different types of pavements, namely Joint Plain Concrete Pavement (JPCP), Continuously Reinforced Concrete Pavement (CRCP), Hot Mix Asphalt (HMA), and Milling and Asphalt Concrete Overlay (MACO). With these data, a series of regression analyses were carried out to develop predictive models for the validation of time-cost tradeoff to determine I/D lower bound. Road user cost and agency cost savings were quantified using CA4PRS to develop lookup tables to determine I/D upper bound. Adjustment of contractors’ additional cost of acceleration with Level of Service (LOS) and total savings adjustment using Net Present Value (NPV) were incorporated in the research study to calculate point based estimates of I/D for lower and upper bound, respectively. Lastly, case studies on real world projects were conducted to evaluate robustness of the model. The research results reveal that the predictive models give appropriate results for the case studies in determining the I/D dollar amount for the lower and upper bound. This study will provide the research community with the first view and systematic estimation method that STAs can use to determine the most economical and realistic I/D dollar amount for a given project–an optimal value that allows the agency to stay within budget while effectively motivating contractors to complete projects ahead of schedule. It will also significantly reduce the agency’s expenses in the time and effort required for determining I/D dollar amounts.

Sharma, Piyush

2013-08-01T23:59:59.000Z

62

Compaction Scale Up and Optimization of Cylindrical Fuel Compacts for the Next Generation Nuclear Plant  

Science Conference Proceedings (OSTI)

Multiple process approaches have been used historically to manufacture cylindrical nuclear fuel compacts. Scale-up of fuel compacting was required for the Next Generation Nuclear Plant (NGNP) project to achieve an economically viable automated production process capable of providing a minimum of 10 compacts/minute with high production yields. In addition, the scale-up effort was required to achieve matrix density equivalent to baseline historical production processes, and allow compacting at fuel packing fractions up to 46% by volume. The scale-up approach of jet milling, fluid-bed overcoating, and hot-press compacting adopted in the U.S. Advanced Gas Reactor (AGR) Fuel Development Program involves significant paradigm shifts to capitalize on distinct advantages in simplicity, yield, and elimination of mixed waste. A series of designed experiments have been completed to optimize compaction conditions of time, temperature, and forming pressure using natural uranium oxycarbide (NUCO) fuel. Results from these experiments are included. The scale-up effort is nearing completion with the process installed and operational using nuclear fuel materials. The process is being certified for manufacture of qualification test fuel compacts for the AGR-5/6/7 experiment at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL).

Jeffrey J. Einerson; Jeffrey A. Phillips; Eric L. Shaber; Scott E. Niedzialek; W. Clay Richardson; Scott G. Nagley

2012-10-01T23:59:59.000Z

63

Determination of Light Water Reactor Fuel Burnup with the Isotope Ratio Method  

Science Conference Proceedings (OSTI)

For the current project to demonstrate that isotope ratio measurements can be extended to zirconium alloys used in LWR fuel assemblies we report new analyses on irradiated samples obtained from a reactor. Zirconium alloys are used for structural elements of fuel assemblies and for the fuel element cladding. This report covers new measurements done on irradiated and unirradiated zirconium alloys, Unirradiated zircaloy samples serve as reference samples and indicate starting values or natural values for the Ti isotope ratio measured. New measurements of irradiated samples include results for 3 samples provided by AREVA. New results indicate: 1. Titanium isotope ratios were measured again in unirradiated samples to obtain reference or starting values at the same time irradiated samples were analyzed. In particular, 49Ti/48Ti ratios were indistinguishably close to values determined several months earlier and to expected natural values. 2. 49Ti/48Ti ratios were measured in 3 irradiated samples thus far, and demonstrate marked departures from natural or initial ratios, well beyond analytical uncertainty, and the ratios vary with reported fluence values. The irradiated samples appear to have significant surface contamination or radiation damage which required more time for SIMS analyses. 3. Other activated impurity elements still limit the sample size for SIMS analysis of irradiated samples. The sub-samples chosen for SIMS analysis, although smaller than optimal, were still analyzed successfully without violating the conditions of the applicable Radiological Work Permit

Gerlach, David C.; Mitchell, Mark R.; Reid, Bruce D.; Gesh, Christopher J.; Hurley, David E.

2007-11-01T23:59:59.000Z

64

Determination of Plutonium Content in Spent Fuel with Nondestructive Assay  

E-Print Network (OSTI)

for safeguards of LEU and MOX spent fuel,” Internationalsystems in use today (Safeguards Mox Python Detector, 1 Fork

Tobin, S. J.

2010-01-01T23:59:59.000Z

65

Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques NGSI Research Overview and Update on NDA Techniques  

E-Print Network (OSTI)

Determining Plutonium Mass in Spent Fuel with Non-CN-184/137 Determining Plutonium Mass in Spent Fuel withthe Direct Measurement of Plutonium in Spent LWR Fuels by

A., V. Mozin, S.J. Tobin, L.W. Cambell, J.R. Cheatham, C.R. Freeman, C.J. Gesh,

2012-01-01T23:59:59.000Z

66

Water Transport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

in PEM Fuel Cells: in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing, and Design Optimization J. Vernon Cole and Ashok Gidwani CFDRC Prepared for: DOE Hydrogen Fuel Cell Kickoff Meeting February 13, 2007 This presentation does not contain any proprietary or confidential information. Background Water Management Issues Arise From: ƒ Generation of water by cathodic reaction ƒ Membrane humidification requirements ƒ Capillary pressure driven transport through porous MEA and GDL materials ƒ Scaling bipolar plate channel dimensions J.H. Nam and M. Kaviany, Int. J. Heat Mass Transfer, 46, pp. 4595-4611 (2003) Relevant Barriers and Targets ƒ Improved Gas Diffusion Layer, Flow Fields, Membrane Electrode Assemblies Needed to Improve Water Management: * Flooding blocks reactant transport

67

Spatially Resolved Strain Fields in Nuclear Fuel Plates Determined ...  

Science Conference Proceedings (OSTI)

Abstract Scope, The U.S. Reduced Enrichment for Research and Test Reactors program converts research reactors which utilize highly enriched uranium fuel to  ...

68

Determination of Plutonium Content in Spent Fuel with Nondestructive Assay  

E-Print Network (OSTI)

Down Spectroscopy for Direct Pu Mass Measurements,” 8thof reasons for quantifying plutonium (Pu) in spent fuel suchas independently verifying the Pu content declared by a

Tobin, S. J.

2010-01-01T23:59:59.000Z

69

Determining Compost Carryover for Optimal Use in an Organic Corn Squash Rotation.  

E-Print Network (OSTI)

?? Organically certified farms using compost to improve or maintain fertility rarely consider compost carryover and its impact on the determination of economically optimal application… (more)

Olsen, Davey J.R.

2012-01-01T23:59:59.000Z

70

Z .Journal of Power Sources 76 1998 6980 Optimal fuel cell system design considering functional performance and  

E-Print Network (OSTI)

a semi-permeable Zmembrane, generating DC electricity, some heat at about .808C , and water of Victoria to develop the next generation fuel Z .cells for transportation NGFT , in collaborationZ .Journal of Power Sources 76 1998 69­80 Optimal fuel cell system design considering functional

Xue, Deyi

71

Optimal design and integration of solar systems and fossil fuels for process cogeneration  

E-Print Network (OSTI)

Because of the fluctuations in incident solar power, outlet power also changes over time (e.g., on an hourly basis or seasonally). If there is a need for a stable power outlet, there are options towards a steady state output of the system. This work is aimed at the development of systematic design procedures for two solar-based power generation strategies. The first is integration of fossil-fuel with the solar system to provide a compensation effect (power backup to supplement the power main source from solar energy). The second is the use of thermal energy storage (TES) systems to save solar energy in a thermal form and use it when solar input decreases. A common TES configuration is the two-tank system which allows the use of the collector heat transfer fluid (HTF) as a storing medium. For the two tanks, one tank has the hot medium (e.g., a molten salt) and the second has the cold storage media. Specifically, the following design challenges are addressed: 1. What is the optimal mix of energy forms to be supplied to the process? 2. What are the optimal scenario and integration mode to deliver the selected energy forms? How should they be integrated among themselves and with the process? 3. What is the optimal design of the energy systems? 4. What is the optimal dynamic strategy for operating the various energy systems? 5. What is the feasibility of using thermal energy storage to this optimum fossil fuel system? The developed procedure includes gathering and generation of relevant solar and climatic data, modeling of the various components of the solar, fossil, and power generation systems, and optimization of several aspects of the hybrid system. A case study is solved to demonstrate the effectiveness and applicability of the devised procedure.

Tora, Eman Abdel-Hakim Aly Mohamed

2008-08-01T23:59:59.000Z

72

H-mode fueling optimization with the supersonic deuterium jet in NSTX  

SciTech Connect

High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphite Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi-pulse ms-scale controls and a reservoir gas pressure up to P{sub 0} = 5000 Torr. In this paper we summarize recent progress toward optimization of H-mode fueling in NSTX using the SGI-U.

Soukhanovskii, V A; Bell, M G; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Lundberg, D P; Maingi, R; Menard, J E; Raman, R; Roquemore, A L; Stotler, D P

2008-06-18T23:59:59.000Z

73

Design method to determine the optimal distribution and amount of insulation for in-ground heat storage tanks  

DOE Green Energy (OSTI)

The seasonal sensible heat storage model developed by F.C. Hooper and C.R. Attwater is modified to describe the thermal behaviour of the soil regime surrounding cylindrical, in-ground, heat storage tanks with optimally distributed insulation. The model assumes steady-state heat transfer, and the surrounding soil is considered to be homogeneous and isotropic. Changes in soil thermal properties due to moisture migration, whether driven by thermal or hydrostatic gradients, are assumed negligible. The optimal distribution is determined using the method of Lagrange multipliers. It is shown that the marginal cost per unit of energy lost and per unit of tank surface area must be the same at all points on the surface of the tank as the condition for minimum total heat loss with a given total investment in insulation. This condition appears to apply for all axi-symmetric in-ground tank geometries. For a given volume of insulation, the incremental increase in storage efficiency with an optimal redistribution of the insulation is a function of tank geometry. The problem of determining the optimal total investment in insulation for a given marginal cost of fuel is described and a method of solution is outlined.

Williams, G.T.; Attwater, C.R.; Hooper, F.C.

1979-05-01T23:59:59.000Z

74

Rapid determination of wood fuel moisture content using a microwave oven for drying  

SciTech Connect

A method of determining moisture content (MC) of wood fuel using a microwave oven for drying the wood was evaluated by drying paired samples of five different wood fuel types in a microwave oven and a conventional oven. When compared to the conventional oven drying method, the microwave technique produces consistently lower MC determinations, although the differences are less than 1 percent. The advantage of the microwave technique is the speed at which MC determinations can be determined (less than 15 minutes). Schedules for drying five wood fuel types are presented. (Refs. 7).

Harris, R.A.

1982-10-01T23:59:59.000Z

75

Quantifying the passive gamma signal from spent nuclear fuel in support of determining the plutonium content in spent nuclear fuel with nondestructive assay  

SciTech Connect

The objective of safeguarding nuclear material is to deter diversions of significant quantities of nuclear materials by timely monitoring and detection. There are a variety of motivations for quantifying plutonium in spent fuel (SF), by means of nondestructive assay (NDA), in order to meet this goal. These motivations include the following: strengthening the capabilities of the International Atomic Energy Agencies ability to safeguard nuclear facilities, shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories. Many NDA techniques exist for measuring signatures from SF; however, no single NDA technique can, in isolation, quantify elemental plutonium in SF. A study has been undertaken to determine the best integrated combination of 13 NDA techniques for characterizing Pu mass in spent fuel. This paper focuses on the development of a passive gamma measurement system in support the spent fuel assay system. Gamma ray detection for fresh nuclear fuel focuses on gamma ray emissions that directly coincide with the actinides of interest to the assay. For example, the 186-keV gamma ray is generally used for {sup 235}U assay and the 384-keV complex is generally used for assaying plutonium. In spent nuclear fuel, these signatures cannot be detected as the Compton continuum created from the fission products dominates the signal in this energy range. For SF, the measured gamma signatures from key fission products ({sup 134}Cs, {sup 137}Cs, {sup 154}Eu) are used to ascertain burnup, cooling time, and fissile content information. In this paper the Monte Carlo modeling set-up for a passive gamma spent fuel assay system will be described. The set-up of the system includes a germanium detector and an ion chamber and will be used to gain passive gamma information that will be integrated into a system for determining Pu in SF. The passive gamma signal will be determined from a library of {approx} 100 assemblies that have been created to examine the capability of all 13 NDA techniques. Presented in this paper is a description of the passive gamma monitoring instrument, explanation of the work completed thus far involving the source set up methodology and the design optimization process, details of key fission product ratios of interest, limitations and key strengths of the measurement technique, and considerations for integrating this technique with other NDA techniques in order to develop a complete spent fuel assay strategy.

Fensin, Michael L [Los Alamos National Laboratory; Tobin, Steven J [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

76

Fuzzy linear programming based optimal fuel scheduling incorporating blending/transloading facilities  

Science Conference Proceedings (OSTI)

In this paper the blending/transloading facilities are modeled using an interactive fuzzy linear programming (FLP), in order to allow the decision-maker to solve the problem of uncertainty of input information within the fuel scheduling optimization. An interactive decision-making process is formulated in which decision-maker can learn to recognize good solutions by considering all possibilities of fuzziness. The application of the fuzzy formulation is accompanied by a careful examination of the definition of fuzziness, appropriateness of the membership function and interpretation of results. The proposed concept provides a decision support system with integration-oriented features, whereby the decision-maker can learn to recognize the relative importance of factors in the specific domain of optimal fuel scheduling (OFS) problem. The formulation of a fuzzy linear programming problem to obtain a reasonable nonfuzzy solution under consideration of the ambiguity of parameters, represented by fuzzy numbers, is introduced. An additional advantage of the FLP formulation is its ability to deal with multi-objective problems.

Djukanovic, M.; Babic, B.; Milosevic, B. [Electrical Engineering Inst. Nikola Tesla, Belgrade (Yugoslavia); Sobajic, D.J. [EPRI, Palo Alto, CA (United States). Power System Control; Pao, Y.H. [Case Western Reserve Univ., Cleveland, OH (United States)]|[AI WARE, Inc., Cleveland, OH (United States)

1996-05-01T23:59:59.000Z

77

Determination of optimum electrolyte composition for molten carbonate fuel cells. Quarterly technical progress report, April--June 1987  

DOE Green Energy (OSTI)

The objective of this study is to determine the optimum electrolyte composition for molten carbonate fuel cells. To accomplish this, the contractor will provide: (1) Comprehensive reports of on-going efforts to optimize carbonate composition. (2) A list of characteristics affected by electrolyte composition variations (e.g. ionic conductivity, vapor pressure, melting range, gas solubility, exchange current densities on NiO, corrosion and cathode dissolution effects). (3) Assessment of the overall effects that these characteristics have on state-of-the-art cell voltage and lifetime.

Yuh, C.Y.; Pigeaud, A.

1987-12-31T23:59:59.000Z

78

A model and optimization of alternative fuel vehicle fleet composition with triple bottom line concerns .  

E-Print Network (OSTI)

??Alternative fuel types and technologies are increasingly being advocated for transportation needs to ameliorate concerns around energy security, climate change, and fuel cost. Each fuel… (more)

Zullo, Johnathon

2012-01-01T23:59:59.000Z

79

Modeling and Optimization of PEMFC Systems and its Application to Direct Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Polymer Electrolyte Fuel Cell Model, J. Electrochem. Soc. ,in Polymer Electrolyte Fuel Cells, J. Electrochem. Soc. ,Solid-Polymer- Electrolyte Fuel Cell, J. Electrochem. Soc. ,

Zhao, Hengbing; Burke, Andy

2008-01-01T23:59:59.000Z

80

Optimization of Boiling Water Reactor Fuel Crud Characteristics for Reducing Radiation Fields: Evaluation of BWR Fuel Crud Properties  

Science Conference Proceedings (OSTI)

Fuel crud formation and its properties are the combined result of many factors, including corrosion product input, zinc addition rates, reactor coolant chemistry, and fuel and core design. Crud deposition may impact fuel performance as well as radiation field generation. Many projects have evaluated changes in fuel crud properties resulting from changing reactor coolant chemistry. However, the desired crud properties for both good fuel performance and mitigation of radiation field source term are ...

2013-11-26T23:59:59.000Z

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fuel Assembly Shaker Test for Determining Loads on a PWR Assembly under  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assembly Shaker Test for Determining Loads on a PWR Assembly Assembly Shaker Test for Determining Loads on a PWR Assembly under Surrogate Normal Conditions of Truck Transport R0.1 Fuel Assembly Shaker Test for Determining Loads on a PWR Assembly under Surrogate Normal Conditions of Truck Transport R0.1 The United States current approach of long-term storage at its nuclear power plants and independent spent fuel storage installation, and deferred transportation of used nuclear fuel (UNF), along with the trend of nuclear power plants using reactor fuel for a longer time, creates questions concerning the ability of this aged, high-burnup fuel to withstand stresses and strains seen during normal conditions of transport from its current location to a future consolidated storage facility or permanent repository. UNFD R&D conducted testing employing surrogate instrumented

82

Compact fuel cell system utilizing a combination of hydrogen storage materials for optimized performance.  

SciTech Connect

An entirely new class of light-weight reversible hydrides was recently discovered (the Ti-doped alanates)[1]. These NaAIH{sub 4}-based materials have demonstrated reversible hydrogen storage capacities of up to 5 wt%, nearly 4 times the gravimetrically density of commercial metal hydrides. For this reason, they have been considered a breakthrough for hydrogen storage in fuel cell vehicles. This project is the first to publish the use of alanates for the generation of electrical power and the first demonstration of a hydride-fueled elevated-temperature PEM Fuel Cell. Because the kinetics of hydrogen uptake and release by the alanate improves with elevated temperatures, novel concepts were tested for the purpose of developing a highly efficient stand-alone power system. A major focus of this work was on the modeling, design, construction and testing of an integrated fuel cell stack and hydrogen storage system that eliminates the need of complicated heat transfer systems and media. After extensive modeling efforts, a proof-of-concept system was built that employs an integrated fuel cell stack and hydride beds that balancing the generation of fuel cell waste heat with the endothermic release of hydrogen from the alanates. Our demonstration unit was capable of greater than one hour of operation on a single charge of hydrogen from the integrated 173 gram alanate bed. In addition, composite hydride materials with synergistic reaction heats were evaluated and tested to enhance the operational performance of the alanates. The composites provide a unique opportunity to utilize the heat produced from hydriding classic metal hydrides to improve both absorption and desorption rates of the alanates. A particular focus of the mixed storage materials work was to balance the thermodynamics and kinetics of the hydrides for start-up conditions. Modeling of the sorption properties proved invaluable in evaluating the optimum composition of hydrides. The modeling efforts were followed by full validation by experimental measurements. This project successfully completed the proof-of-concept goals and generated a powerful set of tools for optimizing the complete power-generation system. It has also created a new direction for hydrogen power generation as well the potential for new R&D based on this work.

Chan, Jennifer P.; Dedrick, Daniel E.; Gross, Karl J.; Ng, Greg L.

2004-12-01T23:59:59.000Z

83

An Exact Solution Procedure for Determining the Optimal Dispatching Times for Complex Rail Networks  

E-Print Network (OSTI)

in an optimal way is an important research issue in rail freight transportation. In this paper, we propose a new train service in order to compete with alternative modes of freight transportation. To achieve this1 An Exact Solution Procedure for Determining the Optimal Dispatching Times for Complex Rail

Dessouky, Maged

84

Determination of alternative fuels combustion products: Phase 2 final report  

DOE Green Energy (OSTI)

This report describes the laboratory efforts to accomplish four independent tasks: (1) speciation of hydrocarbon exhaust emissions from a light-duty vehicle operated over the chassis dynamometer portion of the light-duty FTP after modifications for operation on butane and butane blends; (2) evaluation of NREL`s Variable Conductance Vacuum Insulated Catalytic Converter Test Article 4 for the reduction of cold-start FTP exhaust emissions after extended soak periods for a Ford FFV Taurus operating on E85; (3) support of UDRI in an attempt to define correlations between engine-out combustion products identified by SwRI during chassis dynamometer testing, and those found during flow tube reactor experiments conducted by UDRI; and (4) characterization of small-diameter particulate matter from a Ford Taurus FFV operating in a simulated fuel-rich failure mode on CNG, LPG, M85, E85, and reformulated gasoline. 22 refs., 18 figs., 17 tabs.

Whitney, K.A.

1997-06-01T23:59:59.000Z

85

Determining Reactor Flux from Xenon-136 and Cesium-135 in Spent Fuel  

E-Print Network (OSTI)

The ability to infer the reactor flux from spent fuel or seized fissile material would enhance the tools of nuclear forensics and nuclear nonproliferation significantly. We show that reactor flux can be inferred from the ratios of xenon-136 to xenon-134 and cesium-135 to cesium-137. If the average flux of a reactor is known, the flux inferred from measurements of spent fuel could help determine whether that spent fuel was loaded as a blanket or close to the mid-plane of the reactor. The cesium ratio also provides information on reactor shutdowns during the irradiation of fuel, which could prove valuable for identifying the reactor in question through comparisons with satellite reactor heat monitoring data. We derive analytic expressions for these correlations and compare them to experimental data and to detailed reactor burn simulations. The enrichment of the original uranium fuel affects the correlations by up to 3 percent, but only at high flux.

Hayes, A C

2012-01-01T23:59:59.000Z

86

Determining Reactor Flux from Xenon-136 and Cesium-135 in Spent Fuel  

E-Print Network (OSTI)

The ability to infer the reactor flux from spent fuel or seized fissile material would enhance the tools of nuclear forensics and nuclear nonproliferation significantly. We show that reactor flux can be inferred from the ratios of xenon-136 to xenon-134 and cesium-135 to cesium-137. If the average flux of a reactor is known, the flux inferred from measurements of spent fuel could help determine whether that spent fuel was loaded as a blanket or close to the mid-plane of the reactor. The cesium ratio also provides information on reactor shutdowns during the irradiation of fuel, which could prove valuable for identifying the reactor in question through comparisons with satellite reactor heat monitoring data. We derive analytic expressions for these correlations and compare them to experimental data and to detailed reactor burn simulations. The enrichment of the original uranium fuel affects the correlations by up to 3 percent, but only at high flux.

A. C. Hayes; Gerard Jungman

2012-05-30T23:59:59.000Z

87

Regional refining models for alternative fuels using shale and coal synthetic crudes: identification and evaluation of optimized alternative fuels. Annual report, March 20, 1979-March 19, 1980  

DOE Green Energy (OSTI)

The initial phase has been completed in the project to evaluate alternative fuels for highway transportation from synthetic crudes. Three refinery models were developed for Rocky Mountain, Mid-Continent and Great Lakes regions to make future product volumes and qualities forecast for 1995. Projected quantities of shale oil and coal oil syncrudes were introduced into the raw materials slate. Product slate was then varied from conventional products to evaluate maximum diesel fuel and broadcut fuel in all regions. Gasoline supplement options were evaluated in one region for 10% each of methanol, ethanol, MTBE or synthetic naphtha in the blends along with syncrude components. Compositions and qualities of the fuels were determined for the variation in constraints and conditions established for the study. Effects on raw materials, energy consumption and investment costs were reported. Results provide the basis to formulate fuels for laboratory and engine evaluation in future phases of the project.

Sefer, N.R.; Russell, J.A.

1980-11-01T23:59:59.000Z

88

Determining plutonium mass in spent fuel using Cf-252 interrogation with prompt neutron detection  

SciTech Connect

{sup 252}Cf Interrogation with Prompt Neutron (CIPN) detection is proposed as one of 14 NDA techniques to determine Pu mass in spent fuel assemblies (FAs). CIPN is a low-cost and portable instrument, and it looks like a modified fork detector combined with an active interrogation source. Fission chamber (FC) is chosen as neutron detector because of its insensitivity to {gamma} radiation. The CIPN assay is comprised of two measurements, a background count and an active count, without and with the {sup 252}Cf source next to the fuel respectively. The net signal above background is primarily due to the multiplication of Cf source neutrons caused by the fissile content. The capability of CIPN to detect diversion and to determine fissile content was quantified using MCNPX simulations. New schemes were proposed (such as burnup and cooling time correction, etc.) and the results show that the fissile content of a target spent fuel assembly can be determined using CIPN signal.

Hu, Jianwei [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

89

Design and reliability optimization of a MEMS micro-hotplate for combustion of gaseous fuel  

SciTech Connect

This report will detail the process by which the silicon carbide (SiC) microhotplate devices, manufactured by GE, were imaged using IR microscopy equipment available at Sandia. The images taken were used as inputs to a finite element modeling (FEM) process using the ANSYS software package. The primary goal of this effort was to determine a method to measure the temperature of the microhotplate. Prior attempts to monitor the device's temperature by measuring its resistance had proven to be unreliable due to the nonlinearity of the doped SiC's resistance with temperature. As a result of this thermal modeling and IR imaging, a number of design recommendations were made to facilitate this temperature measurement. The lower heating value (LHV) of gaseous fuels can be measured with a catalyst-coated microhotplate calorimeter. GE created a silicon carbide (SiC) based microhotplate to address high-temperature survivability requirements for the application. The primary goal of this effort was to determine a method to measure the temperature of the microhotplate. Prior attempts to monitor the device's temperature by measuring its resistance had proven to be unreliable due to the non-linearity of the doped SiC's resistance with temperature. In this work, thermal modeling and IR imaging were utilized to determine the operation temperature as a function of parameters such as operation voltage and device sheet resistance. A number of design recommendations were made according to this work.

Manginell, R. P.

2012-03-01T23:59:59.000Z

90

Formulation and evaluation of highway transportation fuels from shale and coal oils: project identification and evaluation of optimized alternative fuels. Second annual report, March 20, 1980-March 19, 1981. [Broadcut fuel mixtures of petroleum, shale, and coal products  

DOE Green Energy (OSTI)

Project work is reported for the formulation and testing of diesel and broadcut fuels containing components from petroleum, shale oil, and coal liquids. Formulation of most of the fuels was based on refinery modeling studies in the first year of the project. Product blends were prepared with a variety of compositions for use in this project and to distribute to other, similar research programs. Engine testing was conducted in a single-cylinder CLR engine over a range of loads and speeds. Relative performance and emissions were determined in comparison with typical petroleum diesel fuel. With the eight diesel fuels tested, it was found that well refined shale oil products show only minor differences in engine performance and emissions which are related to differences in boiling range. A less refined coal distillate can be used at low concentrations with normal engine performance and increased emissions of particulates and hydrocarbons. Higher concentrations of coal distillate degrade both performance and emissions. Broadcut fuels were tested in the same engine with variable results. All fuels showed increased fuel consumption and hydrocarbon emissions. The increase was greater with higher naphtha content or lower cetane number of the blends. Particulates and nitrogen oxides were high for blends with high 90% distillation temperatures. Operation may have been improved by modifying fuel injection. Cetane and distillation specifications may be advisable for future blends. Additional multi-cylinder and durability testing is planned using diesel fuels and broadcut fuels. Nine gasolines are scheduled for testing in the next phase of the project.

Sefer, N.R.; Russell, J.A.

1981-12-01T23:59:59.000Z

91

A Micro-Computer-Based Fuel Optimization System Utilizing In-Situ Measurement of Carbon Monoxide  

E-Print Network (OSTI)

A microcomputer-based control system utilizing a distributed intelligence architecture has been developed to control combustion in hydrocarbon fuel-fired boilers and heaters to significantly reduce fuel usage. The system incorporates a unique flue gas analyzer that mounts directly in the flue or stack to continuously measure carbon monoxide, unburned hydrocarbons, opacity and temperature. The control console interfaces directly with the boiler's existing analog control system to provide precise air fuel ratio control based on carbon monoxide measurements. Significant decreases in excess air result in reduced fuel usage while meeting steam demand. Actual performance on industrial boilers shows increases in efficiency of from 1% to 3% with substantial fuel savings.

DeVivo, D. G.

1980-01-01T23:59:59.000Z

92

Optimization of efficiency and energy density of passive micro fuel cells and galvanic hydrogen generators  

E-Print Network (OSTI)

A PEM micro fuel cell system is described which is based on self-breathing PEM micro fuel cells in the power range between 1 mW and 1W. Hydrogen is supplied with on-demand hydrogen production with help of a galvanic cell, that produces hydrogen when Zn reacts with water. The system can be used as a battery replacement for low power applications and has the potential to improve the run time of autonomous systems. The efficiency has been investigated as function of fuel cell construction and tested for several load profiles.

Hahn, Robert; Krumbholz, Steffen; Reichl, Herbert

2008-01-01T23:59:59.000Z

93

MN Center for Renewable Energy: Cellulosic Ethanol, Optimization of Bio-fuels in Internal Combustion Engines, & Course Development for Technicians in These Areas  

DOE Green Energy (OSTI)

This final report for Grant #DE-FG02-06ER64241, MN Center for Renewable Energy, will address the shared institutional work done by Minnesota State University, Mankato and Minnesota West Community and Technical College during the time period of July 1, 2006 to December 30, 2008. There was a no-cost extension request approved for the purpose of finalizing some of the work. The grant objectives broadly stated were to 1) develop educational curriculum to train technicians in wind and ethanol renewable energy, 2) determine the value of cattails as a biomass crop for production of cellulosic ethanol, and 3) research in Optimization of Bio-Fuels in Internal Combustion Engines. The funding for the MN Center for Renewable Energy was spent on specific projects related to the work of the Center.

John Frey

2009-02-22T23:59:59.000Z

94

10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion  

SciTech Connect

The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

Boyd D. Christensen; Michael A. Lehto; Noel R. Duckwitz

2012-05-01T23:59:59.000Z

95

Influence of electrode stress on proton exchange membrane fuel cell performance : experimental characterization and power optimization  

E-Print Network (OSTI)

Compressive stress applied to the electrode area of a Proton Exchange Membrane (PEM) fuel cell is known to significantly affect power output. In practice, electrode stress arises during operation due to the clamping force ...

Gallant, Betar M. (Betar Maurkah)

2008-01-01T23:59:59.000Z

96

Sensitivity analysis and optimization of the nuclear fuel cycle : a systematic approach  

E-Print Network (OSTI)

For decades, nuclear energy development was based on the expectation that recycling of the fissionable materials in the used fuel from today's light water reactors into advanced (fast) reactors would be implemented as soon ...

Passerini, Stefano

2012-01-01T23:59:59.000Z

97

Design strategies for optimizing high burnup fuel in pressurized water reactors  

E-Print Network (OSTI)

This work is focused on the strategy for utilizing high-burnup fuel in pressurized water reactors (PWR) with special emphasis on the full array of neutronic considerations. The historical increase in batch-averaged discharge ...

Xu, Zhiwen, 1975-

2003-01-01T23:59:59.000Z

98

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

99

Determinants of alternative fuel vehicle choice in the continental United States.  

SciTech Connect

This paper describes the ongoing investigation into the determinants of alternative fuel vehicle choice. A stated preference vehicle choice survey was conducted for the 47 of the continental U.S. states, excluding California. The national survey is based on and is an extension of previous studies on alternative fuel vehicle choice for the State of California conducted by the University of California's Institute of Transportation Studies (UC ITS). Researchers at UC ITS have used the stated-preference national survey to produce a series of estimates for new vehicle choice models. Three of these models are presented in this paper. The first two of the models were estimated using only the data from the national survey. The third model presented in this paper pools information from the national and California surveys to estimate a true national model for new vehicle choice.

Tompkins, M.

1997-12-18T23:59:59.000Z

100

Enlarging the Potential Market for Stationary Fuel Cells Through System Design Optimization - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Chris Ainscough (Primary Contact), Sam Sprik, Michael Penev National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-3781 Email: chris.ainscough@nrel.gov DOE Manager HQ: Kathi Epping Martin Phone: (202) 586-7425 Email: Kathi.Epping@ee.doe.gov Subcontractor: University of California Irvine, Irvine, CA (planned) Project Start Date: January 1, 2011 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Develop a complete stationary fuel cell model user's * guide including: Operational details on the model with guidance on - appropriate inputs. Documentation of control strategy algorithms. -

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

OPTIMIZED FUEL INJECTOR DESIGN FOR MAXIMUM IN-FURNACE NOx REDUCTION AND MINIMUM UNBURNED CARBON  

SciTech Connect

Reaction Engineering International (REI) has established a project team of experts to develop a technology for combustion systems which will minimize NO x emissions and minimize carbon in the fly ash. This much need technology will allow users to meet environmental compliance and produce a saleable by-product. This study is concerned with the NO x control technology of choice for pulverized coal fired boilers, ?in-furnace NO x control,? which includes: staged low-NO x burners, reburning, selective non-catalytic reduction (SNCR) and hybrid approaches (e.g., reburning with SNCR). The program has two primary objectives: 1) To improve the performance of ?in-furnace? NO x control processes. 2) To devise new, or improve existing, approaches for maximum ?in-furnace? NO x control and minimum unburned carbon. The program involves: 1) fundamental studies at laboratory- and bench-scale to define NO reduction mechanisms in flames and reburning jets; 2) laboratory experiments and computer modeling to improve our two-phase mixing predictive capability; 3) evaluation of commercial low-NO x burner fuel injectors to develop improved designs, and 4) demonstration of coal injectors for reburning and low-NO x burners at commercial scale. The specific objectives of the two-phase program are to: 1 Conduct research to better understand the interaction of heterogeneous chemistry and two phase mixing on NO reduction processes in pulverized coal combustion. 2 Improve our ability to predict combusting coal jets by verifying two phase mixing models under conditions that simulate the near field of low-NO x burners. 3 Determine the limits on NO control by in-furnace NO x control technologies as a function of furnace design and coal type. 5 Develop and demonstrate improved coal injector designs for commercial low-NO x burners and coal reburning systems. 6 Modify the char burnout model in REI?s coal combustion code to take account of recently obtained fundamental data on char reactivity during the late stages of burnout. This will improve our ability to predict carbon burnout with low-NO x firing systems.

A.F. SAROFIM; BROWN UNIVERSITY. R.A. LISAUSKAS; D.B. RILEY, INC.; E.G. EDDINGS; J. BROUWER; J.P. KLEWICKI; K.A. DAVIS; M.J. BOCKELIE; M.P. HEAP; REACTION ENGINEERING INTERNATIONAL. D.W. PERSHING; UNIVERSITY OF UTAH. R.H. HURT

1998-01-01T23:59:59.000Z

102

Low cost fuel cell diffusion layer configured for optimized anode water management  

DOE Patents (OSTI)

A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

2013-08-27T23:59:59.000Z

103

Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques  

E-Print Network (OSTI)

Near 2 MeV in U and 239 Pu,” PHYSICAL REVIEW C 78, 041601(C. Rudy, “Determination of Pu in Spent Fuel Assemblies by X-Induced XRF to Quantify the Pu Content in PWR Spent Nuclear

Tobin, S. J.

2010-01-01T23:59:59.000Z

104

Modeling and Optimization of Commercial Buildings and Stationary Fuel Cell Systems (Presentation)  

DOE Green Energy (OSTI)

This presentation describes the Distributed Generation Building Energy Assessment Tool (DG-BEAT) developed by the National Renewable Energy Laboratory and the University of California Irvine. DG-BEAT is designed to allow stakeholders to assess the economics of installing stationary fuel cell systems in a variety of building types in the United States.

Ainscough, C.; McLarty, D.; Sullivan, R.; Brouwer, J.

2013-10-01T23:59:59.000Z

105

A fuzzy diagnosis and advice system for optimization of emissions and fuel consumption  

Science Conference Proceedings (OSTI)

In this study, a fuzzy expert system has been developed, which is used for defining possible fuel system faults, ignition system faults, intake valve and exhaust valve faults and refers solution advice for these faults, which uses measurements of CO, ... Keywords: Diagnosis software, Emissions, Fuzzy expert systems, Spark ignition engine

Yavuz Kilagiz; Ahmet Baran; Zerrin Yildiz; Murat Çetin

2005-02-01T23:59:59.000Z

106

Optimal Simultaneous Production of Hydrogen and Liquid Fuels from Glycerol: Integrating the  

E-Print Network (OSTI)

fuel production Fischer-Tropsch or methanol synthesis . Moreover, under the reaction conditions hydrocarbons through the Fischer-Tropsch process. To do this, it is necessary to partially oxidize the CH4 production Fischer- Tropsch . Moreover, under the reaction conditions explored, no CO2 was detected, i

Grossmann, Ignacio E.

107

WaterTransport in PEM Fuel Cells: Advanced Modeling, Material Selection, Testing and Design Optimization  

Science Conference Proceedings (OSTI)

Water management in Proton Exchange Membrane, PEM, Fuel Cells is challenging because of the inherent conflicts between the requirements for efficient low and high power operation. Particularly at low powers, adequate water must be supplied to sufficiently humidify the membrane or protons will not move through it adequately and resistance losses will decrease the cell efficiency. At high power density operation, more water is produced at the cathode than is necessary for membrane hydration. This excess water must be removed effectively or it will accumulate in the Gas Diffusion Layers, GDLs, between the gas channels and catalysts, blocking diffusion paths for reactants to reach the catalysts and potentially flooding the electrode. As power density of the cells is increased, the challenges arising from water management are expected to become more difficult to overcome simply due to the increased rate of liquid water generation relative to fuel cell volume. Thus, effectively addressing water management based issues is a key challenge in successful application of PEMFC systems. In this project, CFDRC and our partners used a combination of experimental characterization, controlled experimental studies of important processes governing how water moves through the fuel cell materials, and detailed models and simulations to improve understanding of water management in operating hydrogen PEM fuel cells. The characterization studies provided key data that is used as inputs to all state-of-the-art models for commercially important GDL materials. Experimental studies and microscopic scale models of how water moves through the GDLs showed that the water follows preferential paths, not branching like a river, as it moves toward the surface of the material. Experimental studies and detailed models of water and airflow in fuel cells channels demonstrated that such models can be used as an effective design tool to reduce operating pressure drop in the channels and the associated costs and weight of blowers and pumps to force air and hydrogen gas through the fuel cell. Promising improvements to materials structure and surface treatments that can potentially aid in managing the distribution and removal of liquid water were developed; and improved steady-state and freeze-thaw performance was demonstrated for a fuel cell stack under the self-humidified operating conditions that are promising for stationary power generation with reduced operating costs.

J. Vernon Cole; Abhra Roy; Ashok Damle; Hari Dahr; Sanjiv Kumar; Kunal Jain; Ned Djilai

2012-10-02T23:59:59.000Z

108

Determination of combustion products from alternative fuels - part 1. LPG and CNG combustion products  

SciTech Connect

This paper describes efforts underway to identify volatile organic exhaust species generated by a light-duty vehicle operating over the Federal Test Procedure (FTP) on CNG and LPG, and to compare them to exhaust constituents generated from the same vehicle operating on a fuel blended to meet California Phase 2 specifications. The exhaust species from this vehicle were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without the vehicle`s catalytic converter in place to determine the influence of the vehicle`s catalyst on species formation. Speciation data showed greater than 87 percent of all LPG and greater than 95 percent of all CNG hydrocarbon exhaust constituents to be composed of C{sub 1} to C{sub 3} compounds. In addition, toxic emissions from the combustion of CNG and LPG were as low as 10 percent of those generated by combustion of gasoline. A comparison of ozone forming potential of the three fuels was made based on the Maximum Incremental Reactivity scale used by the California Air Resources Board. Post-catalyst results from stoichiometric operation indicated that LPG and CNG produced 63 percent and 88 percent less potential ozone than reformulated gasoline, respectively. On average over all equivalence ratios, CNG and LPG exhaust constituents were approximately 65 percent less reactive than those from reformulated gasoline. 4 refs., 3 figs., 14 tabs.

Whitney, K.A.; Bailey, B.K.

1994-10-01T23:59:59.000Z

109

Fuel Economy and Emissions of the Ethanol-Optimized Saab 9-5 Biopower  

Science Conference Proceedings (OSTI)

Saab Automobile recently released the BioPower engines, advertised to use increased turbocharger boost and spark advance on ethanol fuel to enhance performance. Specifications for the 2.0 liter turbocharged engine in the Saab 9-5 Biopower 2.0t report 150 hp on gasoline and a 20% increase to 180 hp on E85 (nominally 85% ethanol, 15% gasoline). While FFVs sold in the U.S. must be emissions certified on Federal Certification Gasoline as well as on E85, the European regulations only require certification on gasoline. Owing to renewed and growing interest in increased ethanol utilization in the U.S., a European-specification 2007 Saab 9-5 Biopower 2.0t was acquired by the Department of Energy and Oak Ridge National Laboratory (ORNL) for benchmark evaluations. Results show that the BioPower vehicle's gasoline equivalent fuel economy on the Federal Test Procedure (FTP) and the Highway Fuel Economy Test (HFET) are on par with similar U.S.-legal flex-fuel vehicles. Regulated and unregulated emissions measurements on the FTP and the US06 aggressive driving test (part of the supplemental FTP) show that despite the lack of any certification testing requirement in Europe on E85 or on the U.S. cycles, the BioPower is within Tier 2, Bin 5 emissions levels (note that full useful life emissions have not been measured) on the FTP, and also within the 4000 mile US06 emissions limits. Emissions of hydrocarbon-based hazardous air pollutants are higher on Federal Certification Gasoline while ethanol and aldehyde emissions are higher on ethanol fuel. The advertised power increase on E85 was confirmed through acceleration tests on the chassis dyno as well as on-road.

West, Brian H [ORNL; Lopez Vega, Alberto [ORNL; Theiss, Timothy J [ORNL; Graves, Ronald L [ORNL; Storey, John Morse [ORNL; Lewis Sr, Samuel Arthur [ORNL

2007-01-01T23:59:59.000Z

110

Hydrogen Fuel Cells and Storage Technology: Fundamental Research for Optimization of Hydrogen Storage and Utilization  

SciTech Connect

Design and development of improved low-cost hydrogen fuel cell catalytic materials and high-capacity hydrogenn storage media are paramount to enabling the hydrogen economy. Presently, effective and durable catalysts are mostly precious metals in pure or alloyed form and their high cost inhibits fuel cell applications. Similarly, materials that meet on-board hydrogen storage targets within total mass and volumetric constraints are yet to be found. Both hydrogen storage performance and cost-effective fuel cell designs are intimately linked to the electronic structure, morphology and cost of the chosen materials. The FCAST Project combined theoretical and experimental studies of electronic structure, chemical bonding, and hydrogen adsorption/desorption characteristics of a number of different nanomaterials and metal clusters to develop better fundamental understanding of hydrogen storage in solid state matrices. Additional experimental studies quantified the hydrogen storage properties of synthesized polyaniline(PANI)/Pd composites. Such conducting polymers are especially interesting because of their high intrinsic electron density and the ability to dope the materials with protons, anions, and metal species. Earlier work produced contradictory results: one study reported 7% to 8% hydrogen uptake while a second study reported zero hydrogen uptake. Cost and durability of fuel cell systems are crucial factors in their affordability. Limits on operating temperature, loss of catalytic reactivity and degradation of proton exchange membranes are factors that affect system durability and contribute to operational costs. More cost effective fuel cell components were sought through studies of the physical and chemical nature of catalyst performance, characterization of oxidation and reduction processes on system surfaces. Additional development effort resulted in a new hydrocarbon-based high-performance sulfonated proton exchange membrane (PEM) that can be manufactured at low cost and accompanied by improved mechanical and thermal stability.

Perret, Bob; Heske, Clemens; Nadavalath, Balakrishnan; Cornelius, Andrew; Hatchett, David; Bae, Chusung; Pang, Tao; Kim, Eunja; Hemmers, Oliver

2011-03-28T23:59:59.000Z

111

Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond  

DOE Patents (OSTI)

A detector head for in situ inspection of irradiated nuclear fuel assemblies submerged in a water-filled nuclear fuel storage pond. The detector head includes two parallel arms which extend from a housing and which are spaced apart so as to be positionable on opposite sides of a submerged fuel assembly. Each arm includes an ionization chamber and two fission chambers. One fission chamber in each arm is enclosed in a cadmium shield and the other fission chamber is unshielded. The ratio of the outputs of the shielded and unshielded fission chambers is used to determine the boron content of the pond water. Correcting for the boron content, the neutron flux and gamma ray intensity are then used to verify the declared exposure, cooling time and fissile material content of the irradiated fuel assembly.

Phillips, J.R.; Halbig, J.K.; Menlove, H.O.; Klosterbuer, S.F.

1984-01-01T23:59:59.000Z

112

Apparatus for in situ determination of burnup, cooling time and fissile content of an irradiated nuclear fuel assembly in a fuel storage pond  

DOE Patents (OSTI)

A detector head for in situ inspection of irradiated nuclear fuel assemblies submerged in a water-filled nuclear fuel storage pond. The detector head includes two parallel arms which extend from a housing and which are spaced apart so as to be positionable on opposite sides of a submerged fuel assembly. Each arm includes an ionization chamber and two fission chambers. One fission chamber in each arm is enclosed in a cadmium shield and the other fission chamber is unshielded. The ratio of the outputs of the shielded and unshielded fission chambers is used to determine the boron content of the pond water. Correcting for the boron content, the neutron flux and gamma ray intensity are then used to verify the declared exposure, cooling time and fissile material content of the irradiated fuel assembly.

Phillips, John R. (Los Alamos, NM); Halbig, James K. (Los Alamos, NM); Menlove, Howard O. (Los Alamos, NM); Klosterbuer, Shirley F. (Los Alamos, NM)

1985-01-01T23:59:59.000Z

113

Methods of economic analysis applied to fusion research: discount rate determination and the fossil fuel price effect  

SciTech Connect

In current and previous efforts, ECON has provided a preliminary economic assessment of a fusion research program. Part of this effort was the demonstration of a methodology for the estimation of reactor system costs and risk and for the treatment of program alternatives as a series of steps (tests) to buy information, thereby controlling program risk and providing a sound economic rationale for properly constructed research programs. The first phase of work also identified two areas which greatly affect the overall economic evaluation of fusion research and which warranted further study in the second phase. This led to the two tasks of the second phase reported herein: (1) discount rate determination and (2) evaluation of the effect of the expectation of the introduction of fusion power on current fossil fuel prices. In the first task, various conceptual measures of the social rate of discount were reviewed and critiqued. In the second task, a benefit area that had been called out by ECON was further examined. Long-range R and D yields short-term benefits in the form of lower nonrenewable energy resource prices because the R and D provides an expectation of future competition for the remaining reserves at the time of technology availability. ECON developed a model of optimal OPEC petroleum pricing as a function of the expectation of future competing technologies. It was shown that the existence of this expectation lowers the optimal OPEC export price and that accelerated technology R and D programs should provide further price decreases. These price reductions translate into benefits to the U.S. of at least a billion dollars.

1978-09-25T23:59:59.000Z

114

Auto-Calibration and Control Strategy Determination for a Variable-Speed Heat Pump Water Heater Using Optimization  

SciTech Connect

This paper introduces applications of the GenOpt optimizer coupled with a vapor compression system model for auto-calibration and control strategy determination towards the development of a variable-speed ground-source heat pump water heating unit. The GenOpt optimizer can be linked with any simulation program using input and output text files. It effectively facilitates optimization runs. Using our GenOpt wrapper program, we can flexibly define objectives for optimizations, targets, and constraints. Those functionalities enable running extensive optimization cases for model calibration, configuration design and control strategy determination. In addition, we describe a methodology to improve prediction accuracy using functional calibration curves. Using the calibrated model, we investigated control strategies of the ground-source heat pump water heater, considering multiple control objectives, covering the entire operation range.

Shen, Bo [ORNL; Abdelaziz, Omar [ORNL; Rice, C Keith [ORNL

2012-01-01T23:59:59.000Z

115

Methodology for Determining the Optimal Operating Strategies for a Chilled Water Storage System  

E-Print Network (OSTI)

This dissertation proposed a new methodology for determining the optimal operating strategies for a chilled water storage system under a Time-of-Use electricity rate structure. It is based on a new classification of operating strategies and an investigation of multiple search paths. Each operating strategy consists of a control strategy and the maximum number of chillers running during the off-peak and on-peak periods. For each month, the strategy with the lowest monthly billing cost and minimal water level higher than the setpoint is selected as the optimal operating strategy for the current month. A system model is built to simulate the tank water level at the end of each time step and the system total power during each time step. This model includes six sub-models. Specifically, the plant model is a forward model using a wire-to-water concept to simulate the plant total power. For the Thermal Energy Storage (TES) model, the tank state is described with total chilled water volume in the tank and its derivation is the tank charging or discharging flow rate. A regression model is adopted to simulate the loop supply and return temperature difference as well as the loop total flow rate demand. In the control strategy sub-model, except for three conventional control strategies and the operation without TES, a new control strategy is advanced to load the chiller optimally. The final results will be a table showing the monthly control strategy and maximal number of chillers staged on during the off-peak and on-peak periods, an approach which is easy for the operators to follow. Two project applications of this methodology are introduced in this dissertation. One is an existing TES system with state-of-the-art control and metering systems. The monthly optimal operating strategies are generated, which will achieve significant savings. The comparisons among different control strategies are also provided. The other application consists of multiple plants with little data. The purpose of the study is to evaluate the economic feasibility of designing a new chilled water storage tank and sharing it among four plants. This problem can be solved with a simplified system model, and an optimal tank size is recommended.

Zhang, Zhiqin

2010-05-01T23:59:59.000Z

116

Minimization of Pressurized Water Reactor Radiation Fields through Fuel Deposit Engineering: Deposit Property Evaluation and Optimization  

Science Conference Proceedings (OSTI)

The purpose of this report is to provide an initial assessment of the options for modification of pressurized water reactor (PWR) primary side corrosion product deposits (crud) to minimize the incorporation of activated crud into out-of-core surfaces, thus reducing the intensity of out-of-core radiation fields. This report summarizes the current knowledge of PWR fuel crud characteristics, including crystallographic structure (crystal habits), and buildup mechanisms. The report also reviews the ...

2013-11-11T23:59:59.000Z

117

Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels  

DOE Green Energy (OSTI)

This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

Steven Markovich

2010-06-30T23:59:59.000Z

118

Determination of Basic Structure-Property Relations for Processing and Modeling in Advanced Nuclear Fuel: Microstructure Evolution and Mechanical Properties  

SciTech Connect

The project objective is to study structure-property relations in solid solutions of nitrides and oxides with surrogate elements to simulate the behavior of fuels of inert matrix fuels of interest to the Advanced Fuel Cycle Initiative (AFCI), with emphasis in zirconium-based materials. Work with actual fuels will be carried out in parallel in collaboration with Los Alamos National Laboratory (LANL). Three key aspects will be explored: microstructure characterization through measurement of global texture evolution and local crystallographic variations using Electron Backscattering Diffraction (EBSD); determination of mechanical properties, including fracture toughness, quasi-static compression strength, and hardness, as functions of load and temperature, and, finally, development of structure-property relations to describe mechanical behavior of the fuels based on experimental data. Materials tested will be characterized to identify the mechanisms of deformation and fracture and their relationship to microstructure and its evolution. New aspects of this research are the inclusion of crystallographic information into the evaluation of fuel performance and the incorporation of statistical variations of microstructural variables into simplified models of mechanical behavior of fuels that account explicitly for these variations. The work is expected to provide insight into processing conditions leading to better fuel performance and structural reliability during manufacturing and service, as well as providing a simplified testing model for future fuel production.

Kirk Wheeler; Manuel Parra; Pedro Peralta

2009-03-01T23:59:59.000Z

119

Fuel  

E-Print Network (OSTI)

heavy-water-moderated, light-water-moderated and liquid-metal cooled fast breeder reactors fueled with natural or low-enriched uranium and containing thorium mixed with the uranium or in separate target channels. U-232 decays with a 69-year half-life through 1.9-year half-life Th-228 to Tl-208, which emits a 2.6 MeV gamma ray upon decay. We find that pressurized light-water-reactors fueled with LEU-thorium fuel at high burnup (70 MWd/kg) produce U-233 with U-232 contamination levels of about 0.4 percent. At this contamination level, a 5 kg sphere of U-233 would produce a gammaray dose rate of 13 and 38 rem/hr at 1 meter one and ten years after chemical purification respectively. The associated plutonium contains 7.5 percent of the undesirable heat-generating 88-year half-life isotope Pu-238. However, just as it is possible to produce weapon-grade plutonium in low-burnup fuel, it is also practical to use heavy-water reactors to produce U-233 containing only a few ppm of U-232 if the thorium is segregated in “target ” channels and discharged a few times more frequently than the natural-uranium “driver ” fuel. The dose rate from a 5-kg solid sphere of U-233 containing 5 ppm U-232 could be reduced by a further factor of 30, to about 2 mrem/hr, with a close-fitting lead sphere weighing about 100 kg. Thus the proliferation resistance of thorium fuel cycles depends very much upon how they are implemented. The original version of this manuscript was received by Science & Global Security on

Jungmin Kang A

2001-01-01T23:59:59.000Z

120

Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel  

SciTech Connect

The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform postclosure criticality calculations. The validation process applies the criticality analysis methodology approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report. The application systems for this validation consist of waste packages containing transport, aging, and disposal canisters (TAD) loaded with commercial spent nuclear fuel (CSNF) of varying assembly types, initial enrichments, and burnup values that are expected from the waste stream and of varying degree of internal component degradation that may occur over the 10,000-year regulatory time period. The criticality computational tool being evaluated is the general-purpose Monte Carlo N-Particle (MCNP) transport code. The nuclear cross-section data distributed with MCNP 5.1.40 and used to model the various physical processes are based primarily on the Evaluated Nuclear Data File/B Version VI (ENDF/B-VI) library. Criticality calculation bias and bias uncertainty and lower bound tolerance limit (LBTL) functions for CSNF waste packages are determined based on the guidance in ANSI/ANS 8.1-1998 (Ref. 4) and ANSI/ANS 8.17-2004 (Ref. 5), as described in Section 3.5.3 of Ref. 1. The development of this report is consistent with Test Plan for: Range of Applicability and Bias Determination for Postclosure Criticality. This calculation report has been developed in support of licensing activities for the proposed repository at Yucca Mountain, Nevada, and the results of the calculation may be used in the criticality evaluation for CSNF waste packages based on a conceptual TAD canister.

Radulescu, Georgeta [ORNL; Mueller, Don [ORNL; Goluoglu, Sedat [ORNL; Hollenbach, Daniel F [ORNL; Fox, Patricia B [ORNL

2007-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Optimization and Demonstration of a Solid Oxide Regenerative Fuel Cell System  

Science Conference Proceedings (OSTI)

Single cell solid oxide regenerative fuel cells (SORFCs) have been demonstrated for over 1000 hours of operation at degradation rates as low as 0.5% per thousand hours for current densities as high as 300mA/cm{sup 2}. Efficiency levels (fuel cell power out vs. electrolysis power in) have been demonstrated in excess of 80% at 100mA/cm{sup 2}. All testing has been performed with metallic based interconnects and non-noble metal electrodes in order to limit fabrication costs for commercial considerations. The SORFC cell technology will be scaled up to a 1kW sized stack which will be demonstrated in Year 2 of the program. A self contained SORFC system requires efficient thermal management in order to maintain operating temperatures during exothermic and endothermic operational modes. The use of LiF as a phase change material (PCM) was selected as the optimum thermal storage medium by virtue of its superior thermal energy density by volume. Thermal storage experiments were performed using LiF and a simulated SORFC stack. The thermal storage concept was deemed to be technically viable for larger well insulated systems, although it would not enable a high efficiency thermally self-sufficient SORFC system at the 1 kW level.

James F. McElroy; Darren B. Hickey; Fred Mitlitsky

2006-09-30T23:59:59.000Z

122

Application of Spatial Data Modeling Systems, Geographical Information Systems (GIS), and Transportation Routing Optimization Methods for Evaluating Integrated Deployment of Interim Spent Fuel Storage Installations and Advanced Nuclear Plants  

SciTech Connect

The objective of this siting study work is to support DOE in evaluating integrated advanced nuclear plant and ISFSI deployment options in the future. This study looks at several nuclear power plant growth scenarios that consider the locations of existing and planned commercial nuclear power plants integrated with the establishment of consolidated interim spent fuel storage installations (ISFSIs). This research project is aimed at providing methodologies, information, and insights that inform the process for determining and optimizing candidate areas for new advanced nuclear power generation plants and consolidated ISFSIs to meet projected US electric power demands for the future.

Mays, Gary T [ORNL; Belles, Randy [ORNL; Cetiner, Mustafa Sacit [ORNL; Howard, Rob L [ORNL; Liu, Cheng [ORNL; Mueller, Don [ORNL; Omitaomu, Olufemi A [ORNL; Peterson, Steven K [ORNL; Scaglione, John M [ORNL

2012-06-01T23:59:59.000Z

123

Determination of the proper operating range for the CAFCA IIB fuel cycle model  

E-Print Network (OSTI)

The fuel cycle simulation tool, CAFCA II was previously modified to produce the most recent version, CAFCA IIB. The code tracks the mass distribution of transuranics in the fuel cycle in one model and also projects costs ...

Warburton, Jamie (Jamie L.)

2007-01-01T23:59:59.000Z

124

Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution  

Science Conference Proceedings (OSTI)

The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

Dr. Chenn Zhou

2012-08-15T23:59:59.000Z

125

Materials accounting in a fast-breeder-reactor fuels-reprocessing facility: optimal allocation of measurement uncertainties  

Science Conference Proceedings (OSTI)

This report describes the conceptual design of a materials accounting system for the feed preparation and chemical separations processes of a fast breeder reactor spent-fuel reprocessing facility. For the proposed accounting system, optimization techniques are used to calculate instrument measurement uncertainties that meet four different accounting performance goals while minimizing the total development cost of instrument systems. We identify instruments that require development to meet performance goals and measurement uncertainty components that dominate the materials balance variance. Materials accounting in the feed preparation process is complicated by large in-process inventories and spent-fuel assembly inputs that are difficult to measure. To meet 8 kg of plutonium abrupt and 40 kg of plutonium protracted loss-detection goals, materials accounting in the chemical separations process requires: process tank volume and concentration measurements having a precision less than or equal to 1%; accountability and plutonium sample tank volume measurements having a precision less than or equal to 0.3%, a shortterm correlated error less than or equal to 0.04%, and a long-term correlated error less than or equal to 0.04%; and accountability and plutonium sample tank concentration measurements having a precision less than or equal to 0.4%, a short-term correlated error less than or equal to 0.1%, and a long-term correlated error less than or equal to 0.05%. The effects of process design on materials accounting are identified. Major areas of concern include the voloxidizer, the continuous dissolver, and the accountability tank.

Dayem, H.A.; Ostenak, C.A.; Gutmacher, R.G.; Kern, E.A.; Markin, J.T.; Martinez, D.P.; Thomas, C.C. Jr.

1982-07-01T23:59:59.000Z

126

The Development of Models to Optimize Selection of Nuclear Fuels through Atomic-Level Simulation  

SciTech Connect

Demonstrated that FRAPCON can be modified to accept data generated from first principles studies, and that the result obtained from the modified FRAPCON make sense in terms of the inputs. Determined the temperature dependence of the thermal conductivity of single crystal UO2 from atomistic simulation.

Prof. Simon Phillpot; Prof. Susan B. Sinnott; Prof. Hans Seifert; Prog. James Tulenko

2009-01-26T23:59:59.000Z

127

Determining an optimal sampling frequency for measuring bulk temporal changes in ground-water quality  

Science Conference Proceedings (OSTI)

In the Data Quality Objectives (DQO) process, statistical methods are used to determine an optimal sampling and analysis plan. When the DQO decision rule for instituting remedial actions is based on a critical change in water quality, the monitoring program design must ensure that this change can be detected and measured with a specified confidence. Usually the focus is on the change at a single monitoring location and the process is limited to addressing the uncertainty inherent in the analytical methods and the variability at that location. However, new strategies that permit ranking the waste sites and prioritizing remedial activities require the means for assessing overall changes for small regions over time, where both spatial and temporal variability exist and where the uncertainty associated with these variations far exceeds measurement error. Two new methods for assessing these overall changes have been developed and are demonstrated by application to a waste disposal site in Oak Ridge, Tennessee. These methods incorporate historical data where available and allow the user to either test the statistical significance of a linear trend or of an annual change compared to a baseline year for a group of water quality wells.

Moline, G.R.; Beauchamp, J.J.; Wright, T. [Oak Ridge National Lab., TN (United States)

1996-07-01T23:59:59.000Z

128

A national survey to determine an optimal fourth year curriculum for dermatology candidates  

E-Print Network (OSTI)

and well-balanced curriculum. Away dermatology electives areAW. A suggested fourth-year curriculum for medical studentsan optimal fourth year curriculum for dermatology candidates

Alikhan, Ali; Ledo, Lynda; Armstrong, April W

2009-01-01T23:59:59.000Z

129

Cost of stockouts in the microprocessor business and its impact in determining the optimal service level/  

E-Print Network (OSTI)

In order to develop optimal inventory policies, it is essential to know the consequences of stockouts and the costs related to each kind of stockout; at Intel, however, such costs have not yet been quantified. The primary ...

Sonnet, Maria Claudia

2005-01-01T23:59:59.000Z

130

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power  

E-Print Network (OSTI)

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application, the coolant is pumped to a heat recovery system. A water-to-air heat exchange system or water-to-water heat

Victoria, University of

131

A method for determining the spent-fuel contribution to transport cask containment requirements  

Science Conference Proceedings (OSTI)

This report examines containment requirements for spent-fuel transport containers that are transported under normal and hypothetical accident conditions. A methodology is described that estimates the probability of rod failure and the quantity of radioactive material released from breached rods. This methodology characterizes the dynamic environment of the cask and its contents and deterministically models the peak stresses that are induced in spent-fuel cladding by the mechanical and thermal dynamic environments. The peak stresses are evaluated in relation to probabilistic failure criteria for generated or preexisting ductile tearing and material fractures at cracks partially through the wall in fuel rods. Activity concentrations in the cask cavity are predicted from estimates of the fraction of gases, volatiles, and fuel fines that are released when the rod cladding is breached. Containment requirements based on the source term are calculated in terms of maximum permissible volumetric leak rates from the cask. Calculations are included for representative cask designs.

Sanders, T.L.; Seager, K.D. [Sandia National Labs., Albuquerque, NM (United States); Rashid, Y.R.; Barrett, P.R. [ANATECH Research Corp., La Jolla, CA (United States); Malinauskas, A.P. [Oak Ridge National Lab., TN (United States); Einziger, R.E. [Pacific Northwest Lab., Richland, WA (United States); Jordan, H. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Duffey, T.A.; Sutherland, S.H. [APTEK, Inc., Colorado Springs, CO (United States); Reardon, P.C. [GRAM, Inc., Albuquerque, NM (United States)

1992-11-01T23:59:59.000Z

132

Interim Action Determination Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS), DOE/EIS-0283-S2. DOE is evaluating, among many other things, the environmental impacts of any design and operations changes to the MFFF, which is under construction at the Savannah River Site near Aiken, South Carolina. DOE

133

Determination of the Accuracy of Utility Spent-Fuel Burnup Records  

Science Conference Proceedings (OSTI)

Uncertainties in reactor records for fuel assembly burnup are a key consideration in the acceptance of burnup credit by the U.S. NRC. This report summarizes the results of an investigation into uncertainties associated with nuclear power plant burnup records. The results indicate there is an overall uncertainty of about 2 percent in the burnup records, which must be accounted for in spent-fuel applications.

1999-07-14T23:59:59.000Z

134

Interim Action Determination Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS), DOE/EIS-0283-S2. DOE is evaluating, among many other things, the environmental impacts of any design and operations changes to the MFFF, which is under construction at the Savannah River Site near Aiken, South Carolina. DOE

135

Enhanced discrete differential evolution to determine optimal coordination of directional overcurrent relays in a power system  

Science Conference Proceedings (OSTI)

This paper presents an enhanced differential evolution technique to solve the optimal coordination of directional overcurrent relays in a power system. The most vital task when installing directional relays on the system is selecting suitable current ... Keywords: directional overcurrent relays (DOCRs), enhanced discrete differential evolution algorithm (EDDEA), pickup current settings (Ip), relay coordination, time dial settings (TDS)

Joymala Moirangthem; Subranshu Sekhar Dash; Bijaya Ketan Panigrahi

2011-12-01T23:59:59.000Z

136

Monitoring of Olympic National Park Beaches to determine fate and effects of spilled bunker C fuel oil  

SciTech Connect

On December 23, 1988, the barge Nestucca was accidentally struck by its tow, a Souse Brothers Towing Company tug, releasing approximately 230,000 gallons of Bunker C fuel oil and fouling beaches from Grays Harbor north to Vancouver Island. Affected beaches in Washington included a 40-mile-long strip that has been recently added to Olympic National Park. The purpose of the monitoring program documented in this report was to determine the fate of spilled Bunker C fuel oil on selected Washington coastal beaches. We sought to determine (1) how much oil remained in intertidal and shallow subtidal habitats following clean-up and weathering, (2) to what extent intertidal and/or shallow subtidal biotic assemblages have been contaminated, and (3) how rapidly the oil has left the ecosystem. 45 refs., 18 figs., 8 tabs.

Strand, J.A.; Cullinan, V.I.; Crecelius, E.A.; Fortman, T.J.; Citterman, R.J.; Fleischmann, M.L.

1990-10-01T23:59:59.000Z

137

Integrated Multi-Well Reservoir and Decision Model to Determine Optimal Well Spacing in Unconventional Gas Reservoirs  

E-Print Network (OSTI)

Optimizing well spacing in unconventional gas reservoirs is difficult due to complex heterogeneity, large variability and uncertainty in reservoir properties, and lack of data that increase the production uncertainty. Previous methods are either suboptimal because they do not consider subsurface uncertainty (e.g., statistical moving-window methods) or they are too time-consuming and expensive for many operators (e.g., integrated reservoir characterization and simulation studies). This research has focused on developing and extending a new technology for determining optimal well spacing in tight gas reservoirs that maximize profitability. To achieve the research objectives, an integrated multi-well reservoir and decision model that fully incorporates uncertainty was developed. The reservoir model is based on reservoir simulation technology coupled with geostatistical and Monte Carlo methods to predict production performance in unconventional gas reservoirs as a function of well spacing and different development scenarios. The variability in discounted cumulative production was used for direct integration of the reservoir model with a Bayesian decision model (developed by other members of the research team) that determines the optimal well spacing and hence the optimal development strategy. The integrated model includes two development stages with a varying Stage-1 time span. The integrated tools were applied to an illustrative example in Deep Basin (Gething D) tight gas sands in Alberta, Canada, to determine optimal development strategies. The results showed that a Stage-1 length of 1 year starting at 160-acre spacing with no further downspacing is the optimal development policy. It also showed that extending the duration of Stage 1 beyond one year does not represent an economic benefit. These results are specific to the Berland River (Gething) area and should not be generalized to other unconventional gas reservoirs. However, the proposed technology provides insight into both the value of information and the ability to incorporate learning in a dynamic development strategy. The new technology is expected to help operators determine the combination of primary and secondary development policies early in the reservoir life that profitably maximize production and minimize the number of uneconomical wells. I anticipate that this methodology will be applicable to other tight and shale gas reservoirs.

Ortiz Prada, Rubiel Paul

2010-12-01T23:59:59.000Z

138

Preliminary Simulations for Geometric Optimization of a High-Energy Delayed Gamma Spectrometer for Direct Assay of Pu in Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

High-energy, beta-delayed gamma-ray spectroscopy is under investigation as part of the Next Generation Safeguard Initiative effort to develop non-destructive assay instruments for plutonium mass quantification in spent nuclear fuel assemblies. Results obtained to date indicate that individual isotope-specific signatures contained in the delayed gamma-ray spectra can potentially be used to quantify the total fissile content and individual weight fractions of fissile and fertile nuclides present in spent fuel. Adequate assay precision for inventory analysis can be obtained using a neutron generator of sufficient strength and currently available detection technology. In an attempt to optimize the geometric configuration and material composition for a delayed gamma measurement on spent fuel, the current study applies MCNPX, a Monte Carlo radiation transport code, in order to obtain the best signal-to-noise ratio. Results are presented for optimizing the neutron spectrum tailoring material, geometries to maximize thermal or fast fissions from a given neutron source, and detector location to allow an acceptable delayed gamma-ray signal while achieving a reasonable detector lifetime while operating in a high-energy neutron field. This work is supported in part by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.

Kulisek, Jonathan A.; Campbell, Luke W.; Rodriguez, Douglas C.

2012-06-07T23:59:59.000Z

139

Determination of the Operating Envelope for a Direct Fired Fuel Cell Turbine Hybrid Using Hardware Based Simulation  

Science Conference Proceedings (OSTI)

The operating range of a direct fired solid oxide fuel cell gas turbine (SOFC/GT) hybrid with bypass control of cathode airflow was determined using a hardware-based simulation facility designed and built by the U.S. Department of Energy, National Energy Technology Laboratory (NETL). Three methods of cathode airflow management using bypass valves in a hybrid power system were evaluated over the maximum range of operation. The cathode air flow was varied independently over the full range of operation of each bypass valve. Each operating point was taken at a steady state condition and was matched to the thermal, pressure and flow output of a corresponding fuel cell operation condition. Turbine electric load was also varied so that the maximum range of fuel cell operation could be studied, and a preliminary operating map could be made. Results are presented to show operating envelopes in terms of cathode air flow, fuel cell and turbine load, and compressor surge margin to be substantial.

David Tucker; Eric Liese; Randall Gemmen

2009-02-10T23:59:59.000Z

140

New improved standard for electron probe determination of organic sulfur in fossil fuels  

Science Conference Proceedings (OSTI)

This paper reports on petroleum coke that is stable under an electron beam and contains a uniform sulfur content. Hence, it is a suitable standard for analysis of organic sulfur content of coal. It should be as applicable for analysis of organic sulfur in other fossil fuels. This standard is available for distribution.

Harris, L.A.; Raymond, R. Jr.; Gooley, R.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Determining plasma-fueling sources with an end-loss ion spectrometer  

DOE Green Energy (OSTI)

To help identify the major sources of fueling gas in Tandem Mirror Experiment-Upgrade (TMX-U), we mounted a mass-sensitive, EVertical BarVertical BarB, end-loss ion spectrometer (ELIS) near the machine's centerline. We set the electric field in the ELIS to simultaneously measure the axial loss currents of both hydrogen and deuterium. We then initiated plasma discharges, where we injected either hydrogen or deuterium gas into the central cell. We also selected and deselected the central-cell neutral beams that were fueled with hydrogen gas. The end-cell neutral beams were always selected and fueled with deuterium. By taking the ratio of the hydrogen end-loss current to the deuterium end-loss current (with a known deuterium-gas feed rate), we were able to infer the effective fueling rates that were due to wall reflux, central-cell beams, and end-cell beams. The results were the following: wall reflux, 6 Torr l/s; central-cell beams, 15 Torr l/s; and end-cell beams 1 Torr l/s.

Grubb, D.P.; Foote, J.H.

1986-08-01T23:59:59.000Z

142

Determination of the Accuracy of Utility Spent Fuel Burnup Records (Interim Report)  

Science Conference Proceedings (OSTI)

This report summarizes the results of an initial investigation into the uncertainties associated with the burnup records maintained by nuclear power plants. The results indicate that there is an overall uncertainty of about 2 percent in the burnup records, which must be accounted for in spent fuel applications.

1998-05-11T23:59:59.000Z

143

Optimal Determination of Parameters for Gamma-Type Drop Size Distributions Based on Moments  

Science Conference Proceedings (OSTI)

Measured raindrop size distributions are often approximated by analytical functions. The parameters determining such functions are usually derived from measured data. This procedure can suffer from various uncertainties. The most important of ...

Jan Handwerker; Winfried Straub

2011-04-01T23:59:59.000Z

144

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

145

Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques  

E-Print Network (OSTI)

Content in PWR Spent Nuclear Fuel,” European Safeguards R&Dof Plutonium in Spent Nuclear Fuel by Self-Induced X- ray,”high fissile content spent fuel. ” Nuclear Technology, 140,

Tobin, S. J.

2010-01-01T23:59:59.000Z

146

Determining System Parameters for Optimal Performance of Hybrid DS/FFH Spread-Spectrum  

SciTech Connect

In recent years there has been great interest in using hybrid spread-spectrum (HSS) techniques for commercial applications, particularly in the Smart Grid, in addition to their use in military communications because they accommodate high data rates with high link integrity, even in the presence of significant multipath effects and interfering signals. A highly useful form of this transmission technique for many types of command, control, and sensing applications is the specific code-related combination of standard direct sequence (DS) modulation with "fast" frequency hopping (FFH), denoted hybrid DS/FFH, wherein multiple frequency hops occur within a single data-bit time. In this paper, an optimization problem is formulated that maximizes the DS/FFH communication system performance in terms of probability of bit error and solves for the system design parameters. The objective function is non-convex and can be solved by applying the Karush-Kuhn-Tucker conditions. System design parameters of interest are the length of the DS code sequence, number of frequency hopping channels, number of channels corrupted by wide-band jamming, and number of hops per bit. The proposed formulation takes into account the effects from wide-band and partial-band jamming, multi-user interference and/or varying degrees of Rayleigh and Rician multipath fading. Numerical results are presented to demonstrate the method s viability.

Ma, Xiao [ORNL; Olama, Mohammed M [ORNL; Kuruganti, Phani Teja [ORNL; Smith, Stephen Fulton [ORNL; Djouadi, Seddik M [ORNL

2012-01-01T23:59:59.000Z

147

Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques  

Science Conference Proceedings (OSTI)

There are a variety of motivations for quantifying Pu in spent (used) fuel assemblies by means of nondestructive assay (NDA) including the following: strengthen the capabilities of the International Atomic Energy Agencies to safeguards nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at reprocessing facilities and providing quantitative input to burnup credit determination for repositories. For the purpose of determining the Pu mass in spent fuel assemblies, twelve NDA techniques were identified that provide information about the composition of an assembly. A key point motivating the present research path is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the elemental Pu mass of an assembly and (2) detecting the diversion of a significant number of pins. As such, the focus of this work is determining how to best integrate 2 or 3 techniques into a system that can quantify elemental Pu and to assess how well this system can detect material diversion. Furthermore, it is important economically to down-select among the various techniques before advancing to the experimental phase. In order to achieve this dual goal of integration and down-selection, a Monte Carlo library of PWR assemblies was created and is described in another paper at Global 2009 (Fensin et al.). The research presented here emphasizes integration among techniques. An overview of a five year research plan starting in 2009 is given. Preliminary modeling results for the Monte Carlo assembly library are presented for 3 NDA techniques: Delayed Neutrons, Differential Die-Away, and Nuclear Resonance Fluorescence. As part of the focus on integration, the concept of"Pu isotopic correlation" is discussed and the role of cooling time determination.

Tobin, S. J.; Fensin, M. L.; Ludewigt, B. A.; Menlove, H. O.; Quiter, B. J.; Sandoval, N. P.; Swinhoe, M. T.; Thompson, S. J.

2009-08-03T23:59:59.000Z

148

WAvelength selection for optimal determination of glucose concentration in biological media  

E-Print Network (OSTI)

Current research in the large scale production of cell culture samples will require the use of a dedicated monitoring system capable of determining concentrations of the important growth controlling factors within cell culture media. Current methods are limited to bench top laboratory use and require the large amounts of extra resources of space, materials and time. Other researchers have shown the ability to determine glucose concentration in solution through spectroscopic techniques but have required large regions of the electromagnetic spectrum to be accurate. This research presents the results of using wavelength selection routines to decrease the required spectral region to nearly 10% of the original while achieving similar or in some instance better predictive accuracy. Using concentrations of 0-27.3mM glucose in solution, predictive errors of 0.3 mM were achieved.

Robinson, Stewart Hughes

1996-01-01T23:59:59.000Z

149

Determination of Optimal Process Flowrates and Reactor Design for Autothermal Hydrogen Production in a Heat-Integrated Ceramic Microchannel Network  

E-Print Network (OSTI)

The present work aimed at designing a thermally efficient microreactor system coupling methanol steam reforming with methanol combustion for autothermal hydrogen production. A preliminary study was performed by analyzing three prototype reactor configurations to identify the optimal radial distribution pattern upon enhancing the reactor self-insulation. The annular heat integration pattern of Architecture C showed superior performance in providing efficient heat retention to the system with a 50 - 150 degrees C decrease in maximum external-surface temperature. Detailed work was performed using Architecture C configuration to optimize the catalyst placement in the microreactor network, and optimize reforming and combustion flows, using no third coolant line. The optimized combustion and reforming catalyst configuration prevented the hot-spot migration from the reactor midpoint and enabled stable reactor operation at all process flowrates studied. Best results were obtained at high reforming flowrates (1800 sccm) with an increase in combustion flowrate (300 sccm) with the net H2 yield of 53% and thermal efficiency of >80% from methanol with minimal insulation to the heatintegrated microchannel network. The use of the third bank of channels for recuperative heat exchange by four different reactor configurations was explored to further enhance the reactor performance; the maximum overall hydrogen yield was increased to 58% by preheating the reforming stream in the outer 16 heat retention channels. An initial 3-D COMSOL model of the 25-channeled heat-exchanger microreactor was developed to predict the reactor hotspot shape, location, optimum process flowrates and substrate thermal conductivity. This study indicated that low thermal conductivity materials (e.g. ceramics, glass) provides enhanced efficiencies than high conductivity materials (e.g. silicon, stainless steel), by maintaining substantial thermal gradients in the system through minimization of axial heat conduction. Final summary of the study included the determination of system energy density; a gravimetric energy density of 169.34 Wh/kg and a volumetric energy density of 506.02 Wh/l were achieved from brass architectures for 10 hrs operation, which is higher than the energy density of Li-Ion batteries (120 Wh/kg and 350 Wh/l). Overall, this research successfully established the optimal process flowrates and reactor design to enhance the potential of a thermally-efficient heat-exchanger microchannel network for autothermal hydrogen production in portable applications.

Damodharan, Shalini

2012-05-01T23:59:59.000Z

150

Categorical Exclusion Determinations: Minnesota | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 11, 2009 December 11, 2009 CX-000423: Categorical Exclusion Determination Geomechanical Simulation of Fluid-Driven Fractures CX(s) Applied: B3.6 Date: 12/11/2009 Location(s): Minneapolis, Minnesota Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-002598: Categorical Exclusion Determination Determining Optimal Fuel Performance in Adapting Onsite Electrical Generation Platforms to Operate on Producer Gas from Fuels of Opportunity CX(s) Applied: B3.6 Date: 12/11/2009 Location(s): Morris, Minnesota Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 11, 2009 CX-002600: Categorical Exclusion Determination Determining Optimal Fuel Performance in Adapting Onsite Electrical Generation Platforms to Operate on Producer Gas from Fuels of Opportunity

151

Effect of Highly Enriched/Highly Burnt UO2 Fuels on Fuel Cycle Costs, Radiotoxicity, and Nuclear Design Parameters  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Increased Enrichment/High Burnup and Light Water Reactor Fuel Cycle Optimization

Robert Gregg; Andrew Worrall

152

The evaluation of the use of metal alloy fuels in pressurized water reactors. Final report  

Science Conference Proceedings (OSTI)

The use of metal alloy fuels in a PWR was investigated. It was found that it would be feasible and competitive to design PWRs with metal alloy fuels but that there seemed to be no significant benefits. The new technology would carry with it added economic uncertainty and since no large benefits were found it was determined that metal alloy fuels are not recommended. Initially, a benefit was found for metal alloy fuels but when the oxide core was equally optimized the benefit faded. On review of the optimization of the current generation of ``advanced reactors,`` it became clear that reactor design optimization has been under emphasized. Current ``advanced reactors`` are severely constrained. The AP-600 required the use of a fuel design from the 1970`s. In order to find the best metal alloy fuel design, core optimization became a central effort. This work is ongoing.

Lancaster, D.

1992-10-26T23:59:59.000Z

153

Design of gasifiers to optimize fuel cell systems. Quarterly technical progress report No. 6, January 1, 1992--March 31, 1992  

DOE Green Energy (OSTI)

The objective of this program is to configure coal gasification/carbonate fuel cell systems that can significantly improve the economics, performance, and efficiency of electric power generation systems. During this quarter the topical report covering Tasks 1, 2, and 3 was submitted. this study evaluates various catalytic gasification/fuel cell power plant configurations. The competitive position of the configurations are assessed in a comparison with present-day as well as emerging alternate coal-based power plant technologies. The work plan for Task 4, Experimental Studies, was also submitted this quarter. This plan outlines the series of tests which will evaluate the feasibility of using the disposable gasification catalysts recommended in Task 3 of this program. (VC)

Not Available

1992-08-01T23:59:59.000Z

154

Optimization of the Mode of the Uranium-233 Accumulation for Application in Thorium Self-Sufficient Fuel Cycle of Candu Power Reactor  

SciTech Connect

Results of calculation studies of the first stage of self-sufficient thorium cycle for CANDU reactor are presented in the paper. The first stage is preliminary accumulation of {sup 233}U in the CANDU reactor itself. Parameters of active core and scheme of fuel reloading were accepted the same as those for CANDU reactor. It was assumed for calculations, that enriched {sup 235}U or plutonium was used as additional fissile material to provide neutrons for {sup 233}U production. Parameters of 10 different variants of the elementary cell of active core were calculated for the lattice pitch, geometry of fuel channels, and fuel assembly of the CANDU reactor. The results presented in the paper allow to determine the time of accumulation of the required amount of {sup 233}U and corresponding number of targets going into processing for {sup 233}U extraction. Optimum ratio of the accumulation time to number of processed targets can be determined using the cost of electric power produced by the reactor and cost of targets along with their processing. (authors)

Bergelson, Boris; Gerasimov, Alexander [Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117259 Moscow (Russian Federation); Tikhomirov, Georgy [Moscow Engineering Physics Institute, Kashirskoe Shosse 31, Moscow (Russian Federation)

2006-07-01T23:59:59.000Z

155

DATING: A computer code for determining allowable temperatures for dry storage of spent fuel in inert and nitrogen gases  

Science Conference Proceedings (OSTI)

The DATING (Determining Allowable Temperatures in Inert and Nitrogen Gases) code can be used to calculate allowable initial temperatures for dry storage of light-water-reactor spent fuel. The calculations are based on the life fraction rule using both measured data and mechanistic equations as reported by Chin et al. (1986). The code is written in FORTRAN and utilizes an efficient numerical integration method for rapid calculations on IBM-compatible personal computers. This report documents the technical basis for the DATING calculations, describes the computational method and code statements, and includes a user's guide with examples. The software for the DATING code is available through the National Energy Software Center operated by Argonne National Laboratory, Argonne, Illinois 60439. 5 refs., 8 figs., 5 tabs.

Simonen, E.P.; Gilbert, E.R.

1988-12-01T23:59:59.000Z

156

Production Cost Optimization Assessments  

Science Conference Proceedings (OSTI)

The benefits of improved thermal performance of coal-fired power plants continue to grow, as the costs of fuel rise and the prospect of a carbon dioxide cap and trade program looms on the horizon. This report summarizes the efforts to date of utilities committed to reducing their heat rate by 1.0% in the Production Cost Optimization (PCO) Project. The process includes benchmarking of plant thermal performance using existing plant data and a site-specific performance appraisal. The appraisal determines po...

2008-12-11T23:59:59.000Z

157

Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques  

E-Print Network (OSTI)

for safeguards of LEU and MOX spent fuel,” Internationalsystems in use today (Safeguards Mox Python Detector, 1 Fork

Tobin, S. J.

2010-01-01T23:59:59.000Z

158

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.  

SciTech Connect

Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

159

OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING  

DOE Green Energy (OSTI)

This project focused on addressing the two main problems associated with state of art Molten Carbonate Fuel Cells, namely loss of cathode active material and stainless steel current collector deterioration due to corrosion. We followed a dual approach where in the first case we developed novel materials to replace the cathode and current collector currently used in molten carbonate fuel cells. In the second case we improved the performance of conventional cathode and current collectors through surface modification. States of art NiO cathode in MCFC undergo dissolution in the cathode melt thereby limiting the lifetime of the cell. To prevent this we deposited cobalt using an electroless deposition process. We also coated perovskite (La{sub 0.8}Sr{sub 0.2}CoO{sub 3}) in NiO thorough a sol-gel process. The electrochemical oxidation behavior of Co and perovskites coated electrodes is similar to that of the bare NiO cathode. Co and perovskite coatings on the surface decrease the dissolution of Ni into the melt and thereby stabilize the cathode. Both, cobalt and provskites coated nickel oxide, show a higher polarization compared to that of nickel oxide, which could be due to the reduced surface area. Cobalt substituted lithium nickel oxide (LiNi{sub 0.8}Co{sub 0.2}O{sub 2}) and lithium cobalt oxide were also studied. LiNi{sub x}Co{sub 1-x}O{sub 2} was synthesized by solid-state reaction procedure using lithium nitrate, nickel hydroxide and cobalt oxalate precursor. LiNi{sub x}Co{sub 1-x}O{sub 2} showed smaller dissolution of nickel than state of art nickel oxide cathode. The performance was comparable to that of nickel oxide. The corrosion of the current collector in the cathode side was also studied. The corrosion characteristics of both SS304 and SS304 coated with Co-Ni alloy were studied. This study confirms that surface modification of SS304 leads to the formation of complex scales with better barrier properties and better electronic conductivity at 650 C. A three phase homogeneous model was developed to simulate the performance of the molten carbonate fuel cell cathode and the complete fuel cell. The homogeneous model is based on volume averaging of different variables in the three phases over a small volume element. This approach can be used to model porous electrodes as it represents the real system much better than the conventional agglomerate model. Using the homogeneous model the polarization characteristics of the MCFC cathode and fuel cell were studied under different operating conditions. Both the cathode and the full cell model give good fits to the experimental data.

Hector Colonmer; Prabhu Ganesan; Nalini Subramanian; Dr. Bala Haran; Dr. Ralph E. White; Dr. Branko N. Popov

2002-09-01T23:59:59.000Z

160

multimaterial topology optimization by volume constrained allen ...  

E-Print Network (OSTI)

In [22], the optimization of the position of fuel assemblies in a nuclear reactor core has ... topology optimization problem based on the homogenization theory.

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING  

DOE Green Energy (OSTI)

The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Lithium cobalt oxide coating onto the porous nickel electrode has been adopted to modify the conventional MCFC cathode which is believed to increase the stability of the cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. Two approaches have been adopted to get a stable cathode material. First approach is the use of LiNi{sub 0.8}Co{sub 0.2}O{sub 2}, a commercially available lithium battery cathode material and the second is the use of tape cast electrodes prepared from cobalt coated nickel powders. The morphology and the structure of LiNi{sub 0.8}Co{sub 0.2}O{sub 2} and tape cast Co coated nickel powder electrodes were studied using scanning electron microscopy and X-Ray diffraction studies respectively. The electrochemical performance of the two materials was investigated by electrochemical impedance spectroscopy and polarization studies. A three phase homogeneous model was developed to simulate the performance of the molten carbonate fuel cell cathode. The homogeneous model is based on volume averaging of different variables in the three phases over a small volume element. The model gives a good fit to the experimental data. The model has been used to analyze MCFC cathode performance under a wide range of operating conditions.

Dr. Ralph E. White; Dr. Branko N. Popov

2002-04-01T23:59:59.000Z

162

Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics  

Science Conference Proceedings (OSTI)

In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the state-of-the-art techniques of {sup 13}C and {sup 1}H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two well-characterized, ultra-low-sulfur No.2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found.

Mueller, C. J.; Cannella, W. J.; Bruno, T. J.; Bunting, B.; Dettman, H. D.; Franz, J. A.; Huber, M. L.; Natarajan, M.; Pitz, W. J.; Ratcliff, M. A.; Wright, K.

2012-06-21T23:59:59.000Z

163

Diagnostic development for determining the joint temperature/soot statistics in hydrocarbon-fueled pool fires : LDRD final report.  

SciTech Connect

A joint temperature/soot laser-based optical diagnostic was developed for the determination of the joint temperature/soot probability density function (PDF) for hydrocarbon-fueled meter-scale turbulent pool fires. This Laboratory Directed Research and Development (LDRD) effort was in support of the Advanced Simulation and Computing (ASC) program which seeks to produce computational models for the simulation of fire environments for risk assessment and analysis. The development of this laser-based optical diagnostic is motivated by the need for highly-resolved spatio-temporal information for which traditional diagnostic probes, such as thermocouples, are ill-suited. The in-flame gas temperature is determined from the shape of the nitrogen Coherent Anti-Stokes Raman Scattering (CARS) signature and the soot volume fraction is extracted from the intensity of the Laser-Induced Incandescence (LII) image of the CARS probed region. The current state of the diagnostic will be discussed including the uncertainty and physical limits of the measurements as well as the future applications of this probe.

Casteneda, Jaime N.; Frederickson, Kraig; Grasser, Thomas W.; Hewson, John C.; Kearney, Sean Patrick; Luketa, Anay Josephine

2009-09-01T23:59:59.000Z

164

Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

y y Categorical Exclusion Determination Form Proposed Action Title: (0471-1595) Regents of the University of Minnesota - Thermal Fuel: Solar Fuels via Partial Redox Cycles with Heat Recovery Program or Field Office: Advanced Research Projects Agency - Energy LocationCs) CCity/County/State): Minnesota, California, and Colorado. Proposed Action Description: Funding will support development of a dual zone solar thermochemical reactor to produce fuel using ceria-based reactive materials in partial redox cycles and high heat recovery levels through counter-circulation of solid state components. Proposed work consists of indoor laboratory-based research and development, including: (1) designing, fabricating, and characterizing an optimized ceria-based reactive element for use in the reactor to enable maximum fuel productivity and durability; (2) designing and fabricating a

165

OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING  

DOE Green Energy (OSTI)

The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Lithium cobalt oxide coating onto the porous nickel electrode has been adopted to modify the conventional MCFC cathode which is believed to increase the stability of the cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. Lithium Cobalt oxide was coated on Ni cathode by a sol-gel coating. The morphology and the LiCoO{sub 2} formation of LiCoO{sub 2} coated NiO was studied using scanning electron microscopy and X-Ray diffraction studies respectively. The electrochemical performance lithium cobalt oxide coated NiO cathodes were investigated with open circuit potential measurement and current-potential polarization studies. These results were compared to that of bare NiO. Dissolution of nickel into the molten carbonate melt was less in case of lithium cobalt oxide coated nickel cathodes. LiCoO{sub 2} coated on the surface prevents the dissolution of Ni in the melt and thereby stabilizes the cathode. Finally, lithium cobalt oxide coated nickel shows similar polarization characteristics as nickel oxide. Conventional theoretical models for the molten carbonate fuel cell cathode are based on the thin film agglomerate model. The principal deficiency of the agglomerate model, apart from the simplified pore structure assumed, is the lack of measured values for film thickness and agglomerate radius. Both these parameters cannot be estimated appropriately. Attempts to estimate the thickness of the film vary by two orders of magnitude. To avoid these problems a new three phase homogeneous model has been developed using the volume averaging technique. The model considers the potential and current variation in both liquid and solid phases. Using this approach, volume averaged concentrations of both gaseous and liquid phase reactants are obtained separately. The polarization characteristics of the electrode have been studied for different electrode parameters. The effect of different design parameters on the electrode performance has also been analyzed. Finally, the model has been used to analyze the impedance response of the MCFC cathode.

Dr. Ralph E. White; Dr. Branko N. Popov

2001-10-01T23:59:59.000Z

166

Design of gasifiers to optimize fuel cell systems. Quarterly technical progress report No. 9, October 1, 1992--December 31, 1992  

DOE Green Energy (OSTI)

The activities in this task are designed to evaluate experimentally the performance of the gasification catalysts chosen for the system study in the first year of this effort. The objectives of this task have been broken down as follows: To experimentally characterize the performance of the previously recommended gasification catalysts for integrates gasification carbonate fuel cell systems as identified in the system study performed during Tasks 1, 2, and 3. The catalysts which will be tested include Potassium carbonates. limestone and taconite in dry form as well as a coal-impregnated with soluble salts of potassium, calcium and iron. To evaluate the degree to which SO{sub 2} in a recycled stream, and or sulfur in the feed, can be captured by the selected calcium or iron containing catalyst at the operation conditions in the catalytic gasifier. To carry out tests under simulated conditions approaching the preferred final process design conditions identified in the system study. The first phase of experimental testing consists of a cost-effective minimum scale screening by Thermogravimetric Analysis (TGA).

Steinfeld, G.

1992-12-31T23:59:59.000Z

167

Utilization of alternative fuels in diesel engines:  

DOE Green Energy (OSTI)

The thrust of this resarch program has been to determine the effect of various alternative and synthetic fuels on the performance and emissions from Diesel engines. The purpose of research was to investigate the various fuels for extension of existing supplies or as emergency substitutes for Diesel fuels. Thus, the work did not emphasize optimization of the engines for a given fuel;the engines were generally run at manufacturers specifications for conventional fuels. During the various studies, regulated and unregualted emissions were investigated and the biological activity of the soluble organics on the particulate emissions was determined using the Ames test procedure. During the present contract period, three experimental programs were carried out. The first program investigated the utilization of methane and propane in an indirect injection, multicylinder engine. In the other two studies, a single cylinder direct injection Diesel engine was used to investigate the performance and emission characteristics of synthetic fuels derived from tar sands and oil shale and of three fuels derived from coal by the Exxon Donor Solvent (EDS) process. The body of this report consists of three chapters which summarize the experimental equipment, procedures, and major results from the studies of methane and propane fumigation, of synthetic fuels from oil shale and tar sands and of the coal-derived fuels.

Not Available

1987-06-01T23:59:59.000Z

168

Fuels processing for transportation fuel cell systems  

DOE Green Energy (OSTI)

Fuel cells primarily use hydrogen as the fuel. This hydrogen must be produced from other fuels such as natural gas or methanol. The fuel processor requirements are affected by the fuel to be converted, the type of fuel cell to be supplied, and the fuel cell application. The conventional fuel processing technology has been reexamined to determine how it must be adapted for use in demanding applications such as transportation. The two major fuel conversion processes are steam reforming and partial oxidation reforming. The former is established practice for stationary applications; the latter offers certain advantages for mobile systems and is presently in various stages of development. This paper discusses these fuel processing technologies and the more recent developments for fuel cell systems used in transportation. The need for new materials in fuels processing, particularly in the area of reforming catalysis and hydrogen purification, is discussed.

Kumar, R.; Ahmed, S.

1995-07-01T23:59:59.000Z

169

OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING  

DOE Green Energy (OSTI)

The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Microencapsulation of the NiO cathode has been adopted as a surface modification technique to increase the stability of NiO cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. A simple first principles model was developed to understand the influence of exchange current density and conductivity of the electrode material on the polarization of MCFC cathodes. The model predictions suggest that cobalt can be used to improve the corrosion resistance of NiO cathode without affecting its performance. Cobalt was deposited on NiO cathode by electroless deposition. The morphology and thermal oxidation behavior of Co coated NiO was studied using scanning electron microscopy and thermal gravimetric analysis respectively. The electrochemical performance of cobalt encapsulated NiO cathodes were investigated with open circuit potential measurement and current-potential polarization studies. These results were compared to that of bare NiO. The electrochemical oxidation behavior of cobalt-coated electrodes is similar to that of the bare NiO cathode. Dissolution of nickel into the molten carbonate melt was less in case of cobalt encapsulated nickel cathodes. Co coated on the surface prevents the dissolution of Ni in the melt and thereby stabilizes the cathode. Finally, cobalt coated nickel shows similar polarization characteristics as nickel oxide. A similar surface modification technique has been used to improve the performance of the SS 304 current collectors used in MCFC cells. SS 304 was encapsulated with nanostructured layers of NiCo and NiMo by electroless deposition. The corrosion behavior of bare and surface modified SS 304 in molten carbonate under cathode gas atmosphere was investigated with cyclic voltammetry, open circuit potential studies, Tafel polarization, impedance analysis and atomic absorption spectroscopy. This study confirms that the presence of surface modification leads to the formation of complex scales with better barrier properties and electronic conductivity.

Dr. Ralph E. White

2000-09-30T23:59:59.000Z

170

Categorical Exclusion Determinations: B3.6 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2009 1, 2009 CX-002588: Categorical Exclusion Determination A Novel Biogas Desulfurization Sorbent Technology for Molten Carbonate Fuel Cell-Based Combined Heat and Power Systems CX(s) Applied: B3.6 Date: 12/11/2009 Location(s): Danbury, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 11, 2009 CX-002598: Categorical Exclusion Determination Determining Optimal Fuel Performance in Adapting Onsite Electrical Generation Platforms to Operate on Producer Gas from Fuels of Opportunity CX(s) Applied: B3.6 Date: 12/11/2009 Location(s): Morris, Minnesota Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 11, 2009 CX-002599: Categorical Exclusion Determination Determining Optimal Fuel Performance in Adapting Onsite Electrical

171

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.  

SciTech Connect

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

172

OPTIMIZATION OF THE CATHODE LONG TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING  

DOE Green Energy (OSTI)

The cathode materials for molten carbonate fuel cells (MCFCs) must have low dissolution rate, high structural strength and good electrical conductivity. Currently available cathodes are made of lithiated NiO which have acceptable structural strength and conductivity. However a study carried out by Orfeld et al. and Shores et al. indicated that the nickel cathodes dissolved, then precipitated and reformed as dendrites across the electrolyte matrix. This results in a decrease in cell utilization and eventually leads to shorting of the cell. The solubility of NiO was found to depend upon the acidity/basicity of the melt (basicity is directly proportional to log P{sub CO2}), carbonate composition, H{sub 2}O partial pressure and temperature. Urushibata et al. found that the dissolution of the cathode is a primary life limiting constraint of MCFCs, particularly in pressurized operation. With currently available NiO cathodes, the goal of 40,000 hours for the lifetime of MCFC appears achievable with cell operation at atmospheric pressure. However, the cell life at 10 atm and higher cell pressures is in the range between 5,000 to 10,000 hours. The overall objective of this research is to develop a superior cathode for MCFC's with improved catalytic ability, enhanced corrosion resistance with low ohmic losses, improved electronic conductivity. We also plan to understand the corrosion processes occurring at the cathode/molten carbonate interface. The following cathode materials will be subjected to detailed electrochemical, performance, structural and corrosion studies. (i) Passivated NiO alloys using chemical treatment with yttrium ion implantation and anodic yttrium molybdate treatment; (ii) Novel composite materials based on NiO and nanosized Ce, Yt, Mo; (iii) Co doped LiNiO{sub 2} LiNiO{sub 2} doped with 10 to 20% Co (LiCo{sub 0.2}NiO{sub 2}) and NiO cathodes; and (iv) CoO as a replacement for NiO. Passivation treatments will inhibit corrosion and increase the stability of the cathode at high temperatures. Deposition of refractory metals (Mo, W, Li{sub 2}NiCrO{sub 4}) will impart stability to the cathode at high temperatures. Further it will also increase the electrocatalytic activity and corrosion resistance of the cathode. Doping with Co will decrease the alloy dissolution and increase the cycle life of the cathode. In the reporting period the oxidation behavior of Ni and Co in Li + Na carbonate eutectic was investigated under oxidizing environment using cyclic voltammetry, electrochemical impedance spectroscopy and potentiodynamic technique. The open circuit potential was monitored as a function of time in order to evaluate the material's reactivity in the melt.

Anand Durairajan; Bala Haran; Branko N. Popov; Ralph E. White

2000-05-01T23:59:59.000Z

173

Hour-by-Hour Cost Modeling of Optimized Central Wind-Based Water Electrolysis Production - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Genevieve Saur (Primary Contact), Chris Ainscough. National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401-3305 Phone: (303) 275-3783 Email: genevieve.saur@nrel.gov DOE Manager HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov Project Start Date: October 1, 2010 Project End Date: Project continuation and direction determined annually by DOE Fiscal Year (FY) 2012 Objectives Corroborate recent wind electrolysis cost studies using a * more detailed hour-by-hour analysis. Examine consequences of different system configuration * and operation for four scenarios, at 42 sites in five

174

A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique and Three Types of Gamma-ray Detectors  

SciTech Connect

A Feasibility Study to Determine Cooling Time and Burnup of ATR Fuel Using a Nondestructive Technique1 Rahmat Aryaeinejad, Jorge Navarro, and David W Nigg Idaho National Laboratory Abstract Effective and efficient Advanced Test Reactor (ATR) fuel management require state of the art core modeling tools. These new tools will need isotopic and burnup validation data before they are put into production. To create isotopic, burn up validation libraries and to determine the setup for permanent fuel scanner system a feasibility study was perform. The study consisted in measuring short and long cooling time fuel elements at the ATR canal. Three gamma spectroscopy detectors (HPGe, LaBr3, and HPXe) and two system configurations (above and under water) were used in the feasibility study. The first stage of the study was to investigate which detector and system configuration would be better suited for different scenarios. The second stage of the feasibility study was to create burnup and cooling time calibrations using experimental isotopic data collected and ORIGEN 2.2 burnup data. The results of the study establish that a better spectra resolution is achieve with an above the water configuration and that three detectors can be used in the permanent fuel scanner system for different situations. In addition it was conclude that a number of isotopic ratios and absolute measurements could be used to predict ATR fuel burnup and cooling times. 1This work was supported by the U.S. Depart¬ment of Energy (DOE) under Battelle Energy Alliance, LLC Contract No. DE-AC07-05ID14517.

Jorge Navarro; Rahmat Aryaeinejad,; David W. Nigg

2011-05-01T23:59:59.000Z

175

Method and apparatus for measuring irradiated fuel profiles  

DOE Patents (OSTI)

A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space). Using either of these two methods of determining burnup, one can reduce the required measurement time significantly (by more than an order of magnitude) over existing methods, yet retain equal or only slightly reduced accuracy.

Lee, David M. (Los Alamos, NM)

1982-01-01T23:59:59.000Z

176

Fuel Cycle Optimization of a Helium-Cooled, Sub-Critical, Fast Transmutation of Waste Reactor with a Fusion Neutron Source.  

E-Print Network (OSTI)

??Possible fuel cycle scenarios for a helium-cooled, sub-critical, fast reactor with a fusion neutron source for the transmutation of spent nuclear fuel have been analyzed.… (more)

Maddox, James Warren

2006-01-01T23:59:59.000Z

177

Application of a Dynamic Fuzzy Search Algorithm to Determine Optimal Wind Plant Sizes and Locations in Iowa  

DOE Green Energy (OSTI)

This paper illustrates a method for choosing the optimal mix of wind capacity at several geographically dispersed locations. The method is based on a dynamic fuzzy search algorithm that can be applied to different optimization targets. We illustrate the method using two objective functions for the optimization: maximum economic benefit and maximum reliability. We also illustrate the sensitivity of the fuzzy economic benefit solutions to small perturbations of the capacity selections at each wind site. We find that small changes in site capacity and/or location have small effects on the economic benefit provided by wind power plants. We use electric load and generator data from Iowa, along with high-quality wind-speed data collected by the Iowa Wind Energy Institute.

Milligan, M. R., National Renewable Energy Laboratory; Factor, T., Iowa Wind Energy Institute

2001-09-21T23:59:59.000Z

178

Advanced Fuels Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuels Synthesis Advanced Fuels Synthesis Coal and Coal/Biomass to Liquids Advanced Fuels Synthesis The Advanced Fuels Synthesis Key Technology is focused on catalyst and reactor optimization for producing liquid hydrocarbon fuels from coal/biomass mixtures, supports the development and demonstration of advanced separation technologies, and sponsors research on novel technologies to convert coal/biomass to liquid fuels. Active projects within the program portfolio include the following: Fischer-Tropsch fuels synthesis Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Pilot Plant for the Gasification of Coal and Coal/Biomass Blends and Conversion of Derived Syngas to Liquid Fuels Via Fischer-Tropsch Synthesis Coal Fuels Alliance: Design and Construction of Early Lead Mini Fischer-Tropsch Refinery

179

Method and apparatus for measuring irradiated fuel profiles  

DOE Patents (OSTI)

A new apparatus is used to substantially instantaneously obtain a profile of an object, for example a spent fuel assembly, which profile (when normalized) has unexpectedly been found to be substantially identical to the normalized profile of the burnup monitor Cs-137 obtained with a germanium detector. That profile can be used without normalization in a new method of identifying and monitoring in order to determine for example whether any of the fuel has been removed. Alternatively, two other new methods involve calibrating that profile so as to obtain a determination of fuel burnup (which is important for complying with safeguards requirements, for utilizing fuel to an optimal extent, and for storing spent fuel in a minimal amount of space).

Lee, D.M.

1980-03-27T23:59:59.000Z

180

GENERAL REACTOR SIZING TECHNIQUES. VOLUME I. AEROTHERMODYNAMIC OPTIMIZATION  

SciTech Connect

A method is presented for the aerothermodynamic optimization of the net power and/or propulsive thrust per unit reactor free flow area of a nuclear power plant operating on the Brayton cycle. A system so optimized will translate into the minimum size, therefore the minimum weight, nuclear system for any selection of reactor materials, lifetime, and fuel loading. The theory and development of the thermodynamic optimization process, the importance and effect of various parameters, and specific methods to be employed in the optimization of the various forms of the Brayton cycle are discussed. A sample calculation for the case of the ramjet application is included. The results of the application of these techniques to any Brayton cycle system may be used in conjunction with nuclear sizing methods, for beryllia-moderated reactors, to determine the required reactor size as a function of fuel loading and reactivity requirements. (auth)

Prickett, W.Z.

1961-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels Data Center: Ethanol Fuel Blend Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Standard to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Standard on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Standard At least 85% of gasoline supplied to a retailer or sold in Hawaii must contain a minimum of 10% ethanol (E10), unless the Director determines that

182

A Method to Determine the Optimal Tank Size for a Chilled Water Storage System Under a Time-of-Use Electricity Rate Structure  

E-Print Network (OSTI)

In the downtown area of Austin, it is planned to build a new naturally stratified chilled water storage tank and share it among four separated chilled water plants. An underground piping system is to be established to connect these four plants together. This paper presents the method of determining the optimal tank size as well as corresponding optimal operating strategies for this project. Based on the analysis of the historical log data, utility rate structures, and equipment information, the baseline profiles of electricity fed to buildings, plant cooling load, and utility billing cost for each plant are generated. A simplified TES plus four plants model is built based on some assumptions. The results show that a 3.5 million gallon tank has the shortest payback time and the projected total capital cost is within the budget. The annual billing cost savings are $907,231 and the simple payback time is 12.5 years.

Zhang, Z.; Turner, W. D.; Chen, Q.; Xu, C.; Deng, S.

2010-01-01T23:59:59.000Z

183

Performance optimization of gas turbine engine  

Science Conference Proceedings (OSTI)

Performance optimization of a gas turbine engine can be expressed in terms of minimizing fuel consumption while maintaining nominal thrust output, maximizing thrust for the same fuel consumption and minimizing turbine blade temperature. Additional control ... Keywords: Fuel control, Gas turbines, Genetic algorithms, Optimization, Temperature control

Valceres V. R. Silva; Wael Khatib; Peter J. Fleming

2005-08-01T23:59:59.000Z

184

Use of Sensitivity and Uncertainty Analysis in the Design of Reactor Physics and Criticality Benchmark Experiments for Advanced Nuclear Fuel  

Science Conference Proceedings (OSTI)

Technical Paper / Advances in Nuclear Fuel Management - Increased Enrichment/High Burnup and Light Water Reactor Fuel Cycle Optimization

B. T. Rearden; W. J. Anderson; G. A. Harms

185

Predicting Ignition Delay for Gas Turbine Fuel Flexibility  

NLE Websites -- All DOE Office Websites (Extended Search)

Predicting Ignition Delay for Gas Turbine Fuel Flexibility 15 m * Low emission combustion systems have been carefully optimized for natural gas * Future fuel diversity (including...

186

Determination of total Pu content in a Spent Fuel Assembly by Measuring Passive Neutron Count rate and Multiplication with the Differential Die-Away Instrument  

Science Conference Proceedings (OSTI)

A key objective of the Next Generation Safeguards Initiative (NGSI) is to evaluate and develop non-destructive assay (NDA) techniques to determine the elemental plutonium content in a commercial-grade nuclear spent fuel assembly (SFA) [1]. Within this framework, we investigate by simulation a novel analytical approach based on combined information from passive measurement of the total neutron count rate of a SFA and its multiplication determined by the active interrogation using an instrument based on a Differential Die-Away technique (DDA). We use detailed MCNPX simulations across an extensive set of SFA characteristics to establish the approach and demonstrate its robustness. It is predicted that Pu content can be determined by the proposed method to a few %.

Henzl, Vladimir [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory

2012-07-18T23:59:59.000Z

187

Optimization of the Standard Addition Method (SAM) Using  

Science Conference Proceedings (OSTI)

Optimization of the Standard Addition Method (SAM) Using Monte Carlo Simulation. Summary: ... Energy & Fuels, 22:2488-2490 (2008). Contact. ...

2012-10-22T23:59:59.000Z

188

BWR Assembly Optimization for Minor Actinide Recycling  

Science Conference Proceedings (OSTI)

The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

2010-03-22T23:59:59.000Z

189

Optimization Online  

E-Print Network (OSTI)

NEOS Optimization Server · NEOS Optimization Guide · Linear Programming FAQ · Nonlinear Programming FAQ · Mathematical Programming Glossary ...

190

Optimized hydrogen piston engines  

DOE Green Energy (OSTI)

Hydrogen piston engines can be simultaneously optimized for improved thermal efficiency and for extremely low emissions. Using these engines in constant-speed, constant-load systems such as series hybrid-electric automobiles or home cogeneration systems can result in significantly improved energy efficiency. For the same electrical energy produced, the emissions from such engines can be comparable to those from natural gas-fired steam power plants. These hydrogen-fueled high-efficiency, low-emission (HELE) engines are a mechanical equivalent of hydrogen fuel cells. HELE engines could facilitate the transition to a hydrogen fuel cell economy using near-term technology.

Smith, J.R.

1994-05-10T23:59:59.000Z

191

E85 Optimized Engine  

SciTech Connect

A 5.0L V8 twin-turbocharged direct injection engine was designed, built, and tested for the purpose of assessing the fuel economy and performance in the F-Series pickup of the Dual Fuel engine concept and of an E85 optimized FFV engine. Additionally, production 3.5L gasoline turbocharged direct injection (GTDI) â??EcoBoostâ? engines were converted to Dual Fuel capability and used to evaluate the cold start emissions and fuel system robustness of the Dual Fuel engine concept. Project objectives were: to develop a roadmap to demonstrate a minimized fuel economy penalty for an F-Series FFV truck with a highly boosted, high compression ratio spark ignition engine optimized to run with ethanol fuel blends up to E85; to reduce FTP 75 energy consumption by 15% - 20% compared to an equally powered vehicle with a current production gasoline engine; and to meet ULEV emissions, with a stretch target of ULEV II / Tier II Bin 4. All project objectives were met or exceeded.

Stanley Bower

2011-12-31T23:59:59.000Z

192

Methodology for Formulating Diesel Surrogate Fuels with Accurate Compositional, Ignition-Quality, and Volatility Characteristics  

Science Conference Proceedings (OSTI)

In this study, a novel approach was developed to formulate surrogate fuels having characteristics that are representative of diesel fuels produced from real-world refinery streams. Because diesel fuels typically consist of hundreds of compounds, it is difficult to conclusively determine the effects of fuel composition on combustion properties. Surrogate fuels, being simpler representations of these practical fuels, are of interest because they can provide a better understanding of fundamental fuel-composition and property effects on combustion and emissions-formation processes in internal-combustion engines. In addition, the application of surrogate fuels in numerical simulations with accurate vaporization, mixing, and combustion models could revolutionize future engine designs by enabling computational optimization for evolving real fuels. Dependable computational design would not only improve engine function, it would do so at significant cost savings relative to current optimization strategies that rely on physical testing of hardware prototypes. The approach in this study utilized the stateof- the-art techniques of 13C and 1H nuclear magnetic resonance spectroscopy and the advanced distillation curve to characterize fuel composition and volatility, respectively. The ignition quality was quantified by the derived cetane number. Two wellcharacterized, ultra-low-sulfur #2 diesel reference fuels produced from refinery streams were used as target fuels: a 2007 emissions certification fuel and a Coordinating Research Council (CRC) Fuels for Advanced Combustion Engines (FACE) diesel fuel. A surrogate was created for each target fuel by blending eight pure compounds. The known carbon bond types within the pure compounds, as well as models for the ignition qualities and volatilities of their mixtures, were used in a multiproperty regression algorithm to determine optimal surrogate formulations. The predicted and measured surrogate-fuel properties were quantitatively compared to the measured target-fuel properties, and good agreement was found. This paper is dedicated to the memory of our friend and colleague Jim Franz. Funding for this research was provided by the U.S. Department of Energy (U.S. DOE) Office of Vehicle Technologies, and by the Coordinating Research Council (CRC) and the companies that employ the CRC members. The study was conducted under the auspices of CRC. The authors thank U.S. DOE program manager Kevin Stork for supporting the participation of the U.S. national laboratories in this study.

Mueller, Charles J.; Cannella, William J.; Bruno, Thomas J.; Bunting, Bruce G.; Dettman, Heather; Franz, James A.; Huber, Marcia L.; Natarajan, Mani; Pitz, William J.; Ratcliff, Matthew A.; Wright, Ken

2012-07-26T23:59:59.000Z

193

Tracing Fuel Component Carbon in the Emissions from Diesel Engines  

DOE Green Energy (OSTI)

The addition of oxygenates to diesel fuel can reduce particulate emissions, but the underlying chemical pathways for the reductions are not well understood. While measurements of particulate matter (PM), unburned hydrocarbons (HC), and carbon monoxide (CO) are routine, determining the contribution of carbon atoms in the original fuel molecules to the formation of these undesired exhaust emissions has proven difficult. Renewable bio-derived fuels (ethanol or bio-diesel) containing a universal distribution of contemporary carbon are easily traced by accelerator mass spectrometry (AMS). These measurements provide general information about the emissions of bio-derived fuels. Another approach exploits synthetic organic chemistry to place {sup 14}C atoms in a specific bond position in a specific fuel molecule. The highly labeled fuel molecule is then diluted in {sup 14}C-free petroleum-derived stock to make a contemporary petroleum fuel suitable for tracing. The specific {sup 14}C atoms are then traced through the combustion event to determine whether they reside in PM, HC, CO, CO{sub 2}, or other emission products. This knowledge of how specific molecular structures produce certain emissions can be used to refine chemical-kinetic combustion models and to optimize fuel composition to reduce undesired emissions. Due to the high sensitivity of the technique and the lack of appreciable {sup 14}C in fossil fuels, fuels for AMS experiments can be labeled with modern levels of {sup 14}C and still produce a strong signal. Since the fuel is not radioactive, emission tests can be conducted in any conventional engine lab, dynamometer facility, or on the open road.

Buchholz, B A; Mueller, C J; Martin, G C; Cheng, A S E; Dibble, R W; Frantz, B R

2002-10-14T23:59:59.000Z

194

FLOWSHEET EVALUATION FOR THE DISSOLVING AND NEUTRALIZATION OF SODIUM REACTOR EXPERIMENT USED NUCLEAR FUEL  

Science Conference Proceedings (OSTI)

This report includes the literature review, hydrogen off-gas calculations, and hydrogen generation tests to determine that H-Canyon can safely dissolve the Sodium Reactor Experiment (SRE; thorium fuel), Ford Nuclear Reactor (FNR; aluminum alloy fuel), and Denmark Reactor (DR-3; silicide fuel, aluminum alloy fuel, and aluminum oxide fuel) assemblies in the L-Bundles with respect to the hydrogen levels in the projected peak off-gas rates. This is provided that the number of L-Bundles charged to the dissolver is controlled. Examination of SRE dissolution for potential issues has aided in predicting the optimal batching scenario. The calculations detailed in this report demonstrate that the FNR, SRE, and DR-3 used nuclear fuel (UNF) are bounded by MURR UNF and may be charged using the controls outlined for MURR dissolution in a prior report.

Daniel, W. E.; Hansen, E. K.; Shehee, T. C.

2012-10-30T23:59:59.000Z

195

Case Study of Optimal Byproduct Gas Distribution in Integrated Steel Mill Using Multi-Period Optimization  

E-Print Network (OSTI)

Energy constitutes about 20 % of the total production cost in an integrated steel mill, and therefore energy efficiency is crucial for profitability within the environmental policy context. An integrated steel mill generates high calorific value byproduct gases at varying rates. The differences between gas generation and consumption rates are compensated with gas holders. However, under certain circumstances the imbalances can lead to the flaring of excessive gas or require the purchase of supplementary fuel. This presentation describes a steel mill energy management system with sophisticated monitoring, planning, and optimization tools. It models the complex energy interconnections between various processes of the mill and determines the optimal trade-off between gas holder level control, flare minimization, and optimization of electricity purchase versus internal power generation. The system reduces energy cost, improves energy efficiency, manages carbon footprint, and provides environmental reporting features.

Makinen, K.; Kymalainen, T.; Junttila, J.

2012-01-01T23:59:59.000Z

196

Fossil fuels -- future fuels  

Science Conference Proceedings (OSTI)

Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

NONE

1998-03-01T23:59:59.000Z

197

FUEL INTERCHANGEABILITY FOR LEAN PREMIXED COMBUSTION IN GAS TURBINE ENGINES  

DOE Green Energy (OSTI)

In response to environmental concerns of NOx emissions, gas turbine manufacturers have developed engines that operate under lean, pre-mixed fuel and air conditions. While this has proven to reduce NOx emissions by lowering peak flame temperatures, it is not without its limitations as engines utilizing this technology are more susceptible to combustion dynamics. Although dependent on a number of mechanisms, changes in fuel composition can alter the dynamic response of a given combustion system. This is of particular interest as increases in demand of domestic natural gas have fueled efforts to utilize alternatives such as coal derived syngas, imported liquefied natural gas and hydrogen or hydrogen augmented fuels. However, prior to changing the fuel supply end-users need to understand how their system will respond. A variety of historical parameters have been utilized to determine fuel interchangeability such as Wobbe and Weaver Indices, however these parameters were never optimized for today’s engines operating under lean pre-mixed combustion. This paper provides a discussion of currently available parameters to describe fuel interchangeability. Through the analysis of the dynamic response of a lab-scale Rijke tube combustor operating on various fuel blends, it is shown that commonly used indices are inadequate for describing combustion specific phenomena.

Don Ferguson; Geo. A. Richard; Doug Straub

2008-06-13T23:59:59.000Z

198

CX-005902: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Categorical Exclusion Determination CX-005902: Categorical Exclusion Determination Wisconsin Bio-Fuels Retail Availability Improvement Network; Bio-Blend Fuels Biodiesel...

199

CX-001084: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Categorical Exclusion Determination CX-001084: Categorical Exclusion Determination Alternative Fuel Fueling Infrastructure CX(s) Applied: B2.5 Date: 02092010 Location(s):...

200

CX-008445: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-008445: Categorical Exclusion Determination Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels CX(s) Applied: B3.6 Date: 0620...

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Extending the lifetime of fuel cell based hybrid systems  

E-Print Network (OSTI)

Fuel cells are clean power sources that have much higher energy densities and lifetimes compared to batteries. However, fuel cells have limited load following capabilities and cannot be efficiently utilized if used in isolation. In this work, we consider a hybrid system where a fuel cell based hybrid power source is used to provide power to a DVFS processor. The hybrid power source consists of a room temperature fuel cell operating as the primary power source and a Li-ion battery (that has good load following capability) operating as the secondary source. Our goal is to develop polices to extend the lifetime of the fuel cell based hybrid system. First, we develop a charge based optimization framework which minimizes the charge loss of the hybrid system (and not the energy consumption of the DVFS processor). Next, we propose a new algorithm to minimize the charge loss by judiciously scaling the load current. We compare the performance of this algorithm with one that has been optimized for energy, and demonstrate its superiority. Finally, we evaluate the performance of the hybrid system under different system configurations and show how to determine the best combination of fuel cell size and battery capacity for a given embedded application.

Jianli Zhuo; Chaitali Chakrabarti; Naehyuck Chang; Sarma Vrudhula

2006-01-01T23:59:59.000Z

202

DISSOLUTION OF IRRADIATED MURR FUEL ASSEMBLIES  

DOE Green Energy (OSTI)

A literature survey on the dissolution of spent nuclear fuel from the University of Missouri Research Reactor (MURR) has been performed. This survey encompassed both internal and external literature sources for the dissolution of aluminum-clad uranium alloy fuels. The most limiting aspect of dissolution in the current facility configuration involves issues related to the control of the flammability of the off-gas from this process. The primary conclusion of this work is that based on past dissolution of this fuel in H-Canyon, four bundles of this fuel (initial charge) may be safely dissolved in a nitric acid flowsheet catalyzed with 0.002 M mercuric nitrate using a 40 scfm purge to control off-gas flammability. The initial charge may be followed by a second charge of up to five bundles to the same dissolver batch depending on volume and concentration constraints. The safety of this flowsheet relies on composite lower flammability limits (LFL) estimated from prior literature, pilot-scale work on the dissolution of site fuels, and the proposed processing flowsheet. Equipment modifications or improved LFL data offer the potential for improved processing rates. The fuel charging sequence, as well as the acid and catalyst concentrations, will control the dissolution rate during the initial portion of the cycle. These parameters directly impact the hydrogen and off-gas generation and, along with the purge flowrate determine the number of bundles that may be charged. The calculation approach within provides Engineering a means to determine optimal charging patterns. Downstream processing of this material should be similar to that of recent processing of site fuels requiring only minor adjustments of the existing flowsheet parameters.

Kyser, E.

2010-06-17T23:59:59.000Z

203

High-burnup fuel and the impact on fuel management  

SciTech Connect

Competition in the electric utility industry has forced utilities to reduce cost. For a nuclear utility, this means a reduction of both the nuclear fuel cost and the operating and maintenance cost. To this extent, utilities are pursuing longer cycles. To reduce the nuclear fuel cost, utilities are trying to reduce batch size while increasing cycle length. Yankee Atomic Electric Company has performed a number of fuel cycle studies to optimize both batch size and cycle length; however, certain burnup-related constraints are encountered. As a result of these circumstances, longer fuel cycles make it increasingly difficult to simultaneously meet the burnup-related fuel design constraints and the technical specification limits. Longer cycles require fuel assemblies to operate for longer times at relatively high power. If utilities continue to pursue longer cycles to help reduce nuclear fuel cost, changes may need to be made to existing fuel burnup limits.

Cacciapouti, R.J.; Weader, R.J. [Yankee Atomic Electric Co., Bolton, MA (United States)

1996-12-31T23:59:59.000Z

204

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

205

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

206

A Total Cost of Ownership Model for Design and Manufacturing Optimization of Fuel Cells in Stationary and Emerging Market Applications - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Max Wei (Primary Contact), Tom McKone, Tim Lipman 1 , David Dornfeld 2 , Josh Chien 2 , Chris Marnay, Adam Weber, Paul Beattie 3 , Patricia Chong 3 Lawrence Berkeley National Laboratory (LBNL) 1 Cyclotron Road MS 90R-4000 Berkeley, CA 94706 Phone: (510) 486-5220 Email: mwei@lbl.gov DOE Manager HQ: Jason Marcinkoski Phone: (202) 586-7466 Email: Jason.Marcinkoski@ee.doe.gov Subcontractors: 1 University of California, Berkeley, Transportation Sustainability Research Center and DOE Pacific Region Clean Energy Application Center, Berkeley, CA 2 University of California, Berkeley, Laboratory for Manufacturing and Sustainability, Department of Mechanical Engineering, Berkeley, CA

207

NETL: Gasification Systems - Gasifier Optimization  

NLE Websites -- All DOE Office Websites (Extended Search)

Gasifier Opt & Plant Supporting Systems Gasifier Opt & Plant Supporting Systems Gasification Systems Gasifier Optimization and Plant Supporting Systems The gasifier is the core system component in the gasification process. It determines both the primary requirements for raw material inputs and the product gas composition. The gasifier is generally a high temperature/pressure vessel where oxygen (or air) and steam are directly contacted with a fuel, such as coal, causing a series of chemical reactions to occur that result in production of a fuel gas. This fuel gas (also referred to either as synthesis gas or syngas) consists primarily of hydrogen, carbon monoxide, and carbon dioxide. Minor constituents present in the feedstock are converted to such products as hydrogen sulfide, ammonia, and ash/slag (mineral residues from coal). These products can be separated and captured for use or safe disposal. After cleaning to remove contaminants, the syngas consists mainly of carbon monoxide and hydrogen. According to the Department of Energy's vision for coal gasification, at this point steam may be added and the syngas sent through a water-gas shift (WGS) reactor to convert the carbon monoxide to nothing but carbon dioxide and additional hydrogen. After a gas separation process, the carbon dioxide is ready for utilization (such as for Enhanced Oil Recovery) or safe storage, and the hydrogen can be fired in a gas-turbine/steam-turbine generator set to produce electricity with stack emissions containing no greenhouse gases. Alternately, syngas or hydrogen can be used to produce highly-valued fuels and chemicals. Co-production of combinations of these products and electricity is also possible.

208

Computational Fluid Dynamics Simulation of Steam Reforming and Autothermal Reforming for Fuel Cell Applications.  

E-Print Network (OSTI)

??With the increasing demand for fuel cell applications in transportation, the performance of reformers using gasoline or diesel as the fuel needs to be optimized.… (more)

Shi, Liming

2009-01-01T23:59:59.000Z

209

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

210

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

211

Hydrogen Fuel Quality  

DOE Green Energy (OSTI)

For the past 6 years, open discussions and/or meetings have been held and are still on-going with OEM, Hydrogen Suppliers, other test facilities from the North America Team and International collaborators regarding experimental results, fuel clean-up cost, modeling, and analytical techniques to help determine levels of constituents for the development of an international standard for hydrogen fuel quality (ISO TC197 WG-12). Significant progress has been made. The process for the fuel standard is entering final stages as a result of the technical accomplishments. The objectives are to: (1) Determine the allowable levels of hydrogen fuel contaminants in support of the development of science-based international standards for hydrogen fuel quality (ISO TC197 WG-12); and (2) Validate the ASTM test method for determining low levels of non-hydrogen constituents.

Rockward, Tommy [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

212

Categorical Exclusion Determinations: Office of Energy Efficiency and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2009 1, 2009 CX-002602: Categorical Exclusion Determination Determining Optimal Fuel Performance in Adapting Onsite Electrical Generation Platforms to Operate on Producer Gas from Fuels of Opportunity CX(s) Applied: A9, A11 Date: 12/11/2009 Location(s): Minneapolis, Minnesota Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 11, 2009 CX-000294: Categorical Exclusion Determination A Novel Biogas Desulphurization Sorbent Technology for Molten Carbonate Fuel Cell- Based Combined Heat and Power Systems CX(s) Applied: B3.6 Date: 12/11/2009 Location(s): Golden, Colorado Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 11, 2009 CX-000293: Categorical Exclusion Determination A Novel Biogas Desulphurization Sorbent Technology for Molten Carbonate

213

Categorical Exclusion Determinations: B3.6 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11, 2009 11, 2009 CX-002601: Categorical Exclusion Determination Determining Optimal Fuel Performance in Adapting Onsite Electrical Generation Platforms to Operate on Producer Gas from Fuels of Opportunity CX(s) Applied: B3.6 Date: 12/11/2009 Location(s): Fridley, Minnesota Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 11, 2009 CX-002606: Categorical Exclusion Determination Decommissioning of Room 94-03 CX(s) Applied: B3.6 Date: 12/11/2009 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-000294: Categorical Exclusion Determination A Novel Biogas Desulphurization Sorbent Technology for Molten Carbonate Fuel Cell- Based Combined Heat and Power Systems

214

Fuel Cell Technologies Office: Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Fuel...

215

Maximum Fuel Energy Saving of a Brayton Cogeneration Cycle  

Science Conference Proceedings (OSTI)

An endoreversible Joule-Brayton cogeneration cycle has been optimized with fuel energy saving as an assessment criterion. The effects of power-to-heat ratio, cycle temperature ratio, and user temperature ratio on maximum fuel energy saving and efficiency ... Keywords: cogeneration cycle, fuel energy saving, thermodynamic optimization

Xiaoli Hao; Guoqiang Zhang

2009-10-01T23:59:59.000Z

216

PROGRESS REPORT ON FUEL ELEMENT DEVELOPMENT AND ASSOCIATED PROJECTS  

SciTech Connect

; 9 < 4 6 9 7 ; 6 8 7 6 sting Deactor (MTR) has sought to develop improved, economical, long-life fuel assemblies through a comprehensive study of various fuel compositions, enrichments, claddings, burnable poisons, fuel and poison distributions, and fuelelement geometry optimization. The core materials, including uranium -- aluminum alloys, uranium oxide -aluminum cermets, thorium, thorium oxide, boron, gadolinium, dysprosium, and iridium, are tested in pilot-plant scale by irradiating them as sandwich type sample fuel plates. In the procurement of these sample plates, fabrication techniques were developed and evaluated for incorporation of all the fuels and poisons (except Ir/sub 2/O/sub 3/) into cores of aluminum or aluminum alloys. Methods were developed to minimize "dog-boning" and to produce graded fuels. Some of the sample plate compcsitions have been irradiated to high burn-up, i.e., over 50% of the U/sup 235/ content, and have operated successfully in the MTR for seven or more cycles. The irradiated uranium-- aluminum alloy and uranium oxide-- aluminum cermet fuel plates have shown excellent dimensional stability and good corrosion resistance to long-term irradiation. However, some of the thorium oxide fuel plates failed during one cycle of irradiation because of blistering, rupturing, or forming of pinholes in the cladding. The isostatic bonding procedure used to bond aluminum plates to the ThO/sub 2/ cores is apparently not adequate for reactor use. The sample fuel plate work has demonstrated the suitability of high wt.% uranium oxide--aluminum fuels for testing reactors, indicated the potential of systematically varying the fuel loading within a single plate, and experimentally verified the applicability of burnable poisons for reducing reactivity changes resulting from fuel burnup. The Deactivity Measurement Facility has proved to be an excellent nondestructive analytical tool for determination of fuel and poison burn-up. This program has stimulated several new developments and revealed many interesting facts in the fabrication and testing of reactor fuel materials. For example: (1) ultrasonic inspection has proved to be an excellent nondestructive method for determination of small voids in the core and unbonded cladding not otherwise detected by radiographing, (2) the ultrasonic inspection of irradiated fuel plates in the MTR canal is feasible, and (3) analytical procedures were developed for the determination of the small quantities of gadolinium added to the cores. The prototype studies consisted of theoretical and experimental evaluations of the hydraulic and heat- transfer characteristics, the structural properties, the economics and the reactor operating characteristics of various full-sized fuel assemblies and shim rods. The results of the sample fuel plate studies were incorporated in these prototypes to obtain optimum practical designs for testing reactors. The fuel element geometries investigated include plates, tube bundles, hexagonal honeycomb, and concentric cylinders. A MTR shim rod with renewable fuel and poison sections was designed, tested hydraulically, and is now considered ready for final in-pile testing. This rod outlasts the existing shim rods, is cheaper, and allows more operational flexibility. A theoretical analysis, hydraulic tests, and a mechanical evaluation have shown that an improvement can be made in plate type fuel elements by using an increased number of thinner high-strength fuel plates in the fuel element. An in-pile prototype test of such an element is now planned. An analysis of roughened surfaces indicates that economy or increases in reactor power may be gained through the use of roughened heat- transfer surfaces in nonboiling watercooled reactors. Preliminary hydraulic tests were performed and indicate that practical roughened surfaces may be formed. Out-of-pile heat-transfer tests are now planned. The theoretical analysis of geometries indicates that tube bundles, honeycomb, and concentric cylinder de

Francis, W.C.; Craig, S.E. ed.

1960-08-16T23:59:59.000Z

217

Optimal Carbon Capture and Storage policies  

E-Print Network (OSTI)

Following the IPCC's report (2005), which recommended the development and the use of carbon capture and sequestration (CCS) technologies in order to achieve the environmental goals, de ned by the Kyoto Protocol, the issue addressed in this paper concerns the optimal strategy regarding the long-term use of CCS technologies. The aim of this paper is to study the optimal carbon capture and sequestration policy. The CCS technologies has motivated a number of empirical studies, via complex integrated assessment models. This literature always considers that the existing technology allows sequestrating a fraction of the carbon emissions and concludes that the early introduction of sequestration can lead to a substantial decrease in the cost of environmental externality. But, the level of complexity of such operational models, aimed at de ning some speci c climate policies. We develop a very simple growth model so as to obtain analytical and tractable results and therefore exhibit the main driving forces that should determine the optimal CSS policy. We show within this stylized framework that, under some conditions on the cost of extractions, CSS may be a long-term solution for the carbon emissions problem. Besides, it is also shown that the social planner will optimally choose to decrease the rate of capture and sequestration. Besides, we also introduce the decentralization of this simple economy, by considering the individual program of the fossil resource-holder and the one of the representative consumer. This helps us to compute analytically the optimal environmental policy, that is the optimal tax scheme, and also the optimal fossil fuel price pro le.

Alain Ayong; Le Kama; Mouez Fodha; Gilles La Orgue

2009-01-01T23:59:59.000Z

218

Amtrak fuel consumption study  

Science Conference Proceedings (OSTI)

This report documents a study of fuel consumption on National Railroad Passenger Corporation (Amtrak) trains and is part of an effort to determine effective ways of conserving fuel on the Amtrak system. The study was performed by the Transportation Systems Center (TSC). A series of 26 test runs were conducted on Amtrak trains operating between Boston, Massachusetts, and New Haven, Connecticut, to measure fuel consumption, trip time and other fuel-use-related parameters. The test data were analyzed and compared with results of the TSC Train Performance Simulator replicating the same operations.

Hitz, J.

1981-02-01T23:59:59.000Z

219

Fuel pin  

DOE Patents (OSTI)

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

220

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Categorical Exclusion Determinations: Massachusetts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 2, 2010 June 2, 2010 CX-003107: Categorical Exclusion Determination Harvard Medical School, Wyss Institute - Engineering a Bacterial Reverse Fuel Cell CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Massachusetts Office(s): Advanced Research Projects Agency - Energy May 28, 2010 CX-002457: Categorical Exclusion Determination Development of Novel Non-Platinum Group Metal Electrocatalysts for Polymer Electrolyte Membrane Fuel Cell Applications CX(s) Applied: B3.6 Date: 05/28/2010 Location(s): Massachusetts Office(s): Energy Efficiency and Renewable Energy, Golden Field Office May 24, 2010 CX-002405: Categorical Exclusion Determination Fluid Flow Optimization of Aerogel Blanket Manufacturing Process CX(s) Applied: B3.6, B5.1 Date: 05/24/2010 Location(s): Massachusetts Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

222

Optimizing Consumer Utility Systems to Drive Engagement and Action  

NLE Websites -- All DOE Office Websites (Extended Search)

to optimize across all utilities (electricity, gas, water - and other fuels as propane, oil and wood) to meet objectives that are defined by the owneroperator (homeowner,...

223

Fuel Flexible Turbine System (FFTS) Program  

SciTech Connect

In this fuel flexible turbine system (FFTS) program, the Parker gasification system was further optimized, fuel composition of biomass gasification process was characterized and the feasibility of running Capstone MicroTurbine(TM) systems with gasification syngas fuels was evaluated. With high hydrogen content, the gaseous fuel from a gasification process of various feed stocks such as switchgrass and corn stover has high reactivity and high flashback propensity when running in the current lean premixed injectors. The research concluded that the existing C65 microturbine combustion system, which is designed for natural gas, is not able to burn the high hydrogen content syngas due to insufficient resistance to flashback (undesired flame propagation to upstream within the fuel injector). A comprehensive literature review was conducted on high-hydrogen fuel combustion and its main issues. For Capstone?s lean premixed injector, the main mechanisms of flashback were identified to be boundary layer flashback and bulk flow flashback. Since the existing microturbine combustion system is not able to operate on high-hydrogen syngas fuels, new hardware needed to be developed. The new hardware developed and tested included (1) a series of injectors with a reduced propensity for boundary layer flashback and (2) two new combustion liner designs (Combustion Liner Design A and B) that lead to desired primary zone air flow split to meet the overall bulk velocity requirement to mitigate the risk of core flashback inside the injectors. The new injector designs were evaluated in both test apparatus and C65/C200 engines. While some of the new injector designs did not provide satisfactory performance in burning target syngas fuels, particularly in improving resistance to flashback. The combustion system configuration of FFTS-4 injector and Combustion Liner Design A was found promising to enable the C65 microturbine system to run on high hydrogen biomass syngas. The FFTS-4 injector was tested in a C65 engine operating on 100% hydrogen and with the redesigned combustion liner - Combustion Liner Design A - installed. The results were promising for the FFTS program as the system was able to burn 100% hydrogen fuel without flashback while maintaining good combustion performance. While initial results have been demonstrated the feasibility of this program, further research is needed to determine whether these results will be repeated with FFTS-4 injectors installed in all injector ports and over a wide range of operating conditions and fuel variations.

None

2012-12-31T23:59:59.000Z

224

CX-000294: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-000294: Categorical Exclusion Determination A Novel Biogas Desulphurization Sorbent Technology for Molten Carbonate Fuel Cell- Based Combined...

225

CX-000293: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-000293: Categorical Exclusion Determination A Novel Biogas Desulphurization Sorbent Technology for Molten Carbonate Fuel Cell - Based Combined...

226

CX-010952: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination CX-010952: Categorical Exclusion Determination Biofuels Retail Availability Improvement Network - Biodiesel Fueling Infrastructure CX(s)...

227

CX-011024: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination CX-011024: Categorical Exclusion Determination Biofuels Retail Availability Improvement Network - Biodiesel Fueling Infrastructure CX(s)...

228

CX-006521: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006521: Categorical Exclusion Determination Solid Oxide Fuel Cells Cathodes: Unraveling the Relationship Between Structure and Surface Chemistry...

229

CX-006538: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006538: Categorical Exclusion Determination Bringing Hydrogen Fuel Cell Systems into Green Communities - University Retirement Center at Davis...

230

CX-004134: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Categorical Exclusion Determination 4: Categorical Exclusion Determination CX-004134: Categorical Exclusion Determination Electrodeposited Manganese-Cobalt Alloy Coating for Solid Oxide Fuel Cell Interconnects CX(s) Applied: B3.6, B5.1 Date: 09/17/2010 Location(s): Clayton, Ohio Office(s): Energy Efficiency and Renewable Energy Commercialization of solid oxide fuel cells requires low-cost components, materials and manufacturing processes. Specifically, the interconnect material and coating used in solid oxide fuel cells represent 45% of the total material cost for the typical stack; therefore, it is desirable that new manufacturing technologies be developed that effectively increase system durability while decreasing production costs. Faraday Technology, Inc., proposes to continue the optimization and tuning of the

231

Fuels Technology - Capabilities - FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Capabilities Fuels Technology Advanced petroleum-based fuels Fuel-borne reductants On-board reforming Alternative fuels...

232

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

233

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

234

Modifying Ceramic Fuel Pellets to Improve UO2 Properties  

Science Conference Proceedings (OSTI)

... UO2 fuel will provide manufacturers with tools to optimize fuel performance. ... Electronic Structure Calculations of Structure and Chemistry of the Y2O3/Fe Interface ... Impacts of Hydrogen in Unirradiated Zircaloy Nuclear Cladding under Dry ...

235

DOE Project 18546, AOP Task 1.1, Fuel Effects on Advanced Combustion Engines  

DOE Green Energy (OSTI)

Research in 2011 was focused on diesel range fuels and diesel combustion and fuels evaluated in 2011 included a series of oxygenated biofuels fuels from University of Maine, oxygenated fuel compounds representing materials which could be made from sewage, oxygenated marine diesel fuels for low emissions, and a new series of FACE fuel surrogates and FACE fuels with detailed exhaust chemistry and particulate size measurements. Fuels obtained in late 2011, which will be evaluated in 2012, include a series of oil shale derived fuels from PNNL, green diesel fuel (hydrotreated vegetable oil) from UOP, University of Maine cellulosic biofuel (levulene), and pyrolysis derived fuels from UOP pyrolysis oil, upgraded at University of Georgia. We were able to demonstrate, through a project with University of Wisconsin, that a hybrid strategy for fuel surrogates provided both accurate and rapid CFD combustion modeling for diesel HCCI. In this strategy, high molecular weight compounds are used to more accurately represent physical processes and smaller molecular weight compounds are used for chemistry to speed chemical calculations. We conducted a small collaboration with sp3H, a French company developing an on-board fuel quality sensor based on near infrared analysis to determine how to use fuel property and chemistry information for engine control. We were able to show that selected outputs from the sensor correlated to both fuel properties and to engine performance. This collaboration leveraged our past statistical analysis work and further work will be done as opportunity permits. We conducted blending experiments to determine characteristics of ethanol blends based on the gasoline characteristics used for blending. Results indicate that much of the octane benefits gained by high level ethanol blending can be negated by use of low octane gasoline blend stocks, as allowed by ASTM D5798. This may limit ability to optimize engines for improved efficiency with ethanol fuels. Extensive data from current and previous years was leveraged into participation with several large proposal teams, as our fuels database covers a very wide range of conventional and emerging fuels and biofuels.

Bunting, Bruce G [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

236

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

237

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

238

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

239

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

240

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nuclear fuel pin scanner  

DOE Patents (OSTI)

Systems and methods for inspection of nuclear fuel pins to determine fiss loading and uniformity. The system includes infeed mechanisms which stockpile, identify and install nuclear fuel pins into an irradiator. The irradiator provides extended activation times using an approximately cylindrical arrangement of numerous fuel pins. The fuel pins can be arranged in a magazine which is rotated about a longitudinal axis of rotation. A source of activating radiation is positioned equidistant from the fuel pins along the longitudinal axis of rotation. The source of activating radiation is preferably oscillated along the axis to uniformly activate the fuel pins. A detector is provided downstream of the irradiator. The detector uses a plurality of detector elements arranged in an axial array. Each detector element inspects a segment of the fuel pin. The activated fuel pin being inspected in the detector is oscillated repeatedly over a distance equal to the spacing between adjacent detector elements, thereby multiplying the effective time available for detecting radiation emissions from the activated fuel pin.

Bramblett, Richard L. (Friendswood, TX); Preskitt, Charles A. (La Jolla, CA)

1987-03-03T23:59:59.000Z

242

Optimal designs for conjoint experiments  

Science Conference Proceedings (OSTI)

In conjoint experiments, each respondent receives a set of profiles to rate. Sometimes, the profiles are expensive prototypes that respondents have to test before rating them. Designing these experiments involves determining how many and which profiles ... Keywords: Conjoint experiments, D-optimality, Optimal block design, Optimal block sizes, Prototype testing

Roselinde Kessels; Peter Goos; Martina Vandebroek

2008-01-01T23:59:59.000Z

243

CX-007707: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-007707: Categorical Exclusion Determination Massachusetts Institute of Technology - Thermal Fuel: HybriSol Hybrid Nanostructure for High-Energy Density Solar Thermal Fuels CX(s)...

244

CX-007709: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Regents of the University of Minnesota - Thermal Fuel: Solar Fuels via Partial Redox Cycles with Heat Recovery CX(s) Applied: B3.6...

245

Fuel Cell Technologies Office: Fuel Cells  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cells Search Search Help Fuel Cells EERE Fuel Cell Technologies Office Fuel Cells...

246

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

247

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

248

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on AddThis.com...

249

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on AddThis.com... More in this section...

250

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on AddThis.com...

251

Optimization Online - Coordinators  

E-Print Network (OSTI)

... Programming); William Hart — Sandia National Laboratory; (Combinatorial Optimization / Global Optimization / Optimization Software and Modeling Systems

252

Chemical Kinetic Modeling of Advanced Transportation Fuels  

DOE Green Energy (OSTI)

Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

PItz, W J; Westbrook, C K; Herbinet, O

2009-01-20T23:59:59.000Z

253

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Grants to someone by E-mail Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

254

Hydrogen Fuel  

NLE Websites -- All DOE Office Websites (Extended Search)

explored as a fuel for passenger vehicles. It can be used in fuel cells to power electric motors or burned in internal combustion engines (ICEs). It is an environmentally...

255

BWR Fuel Deposit Evaluation  

Science Conference Proceedings (OSTI)

With zinc injection to BWR feedwater for plant radiation dose reduction, fuel deposits often contain significant amounts of zinc and the inner layers of deposits become more adherent to the cladding. Fuel surveillance programs have revealed thick tenacious crud with surface spallation at several plants. This project determined the chemical composition and morphological features of crud flake samples from Duane Arnold Cycle 17 and Browns Ferry 2 Cycle 12 and compared the data with those obtained from othe...

2005-12-07T23:59:59.000Z

256

Optimized Fuel Formulation and Engine Control Parameters ...  

Energy & Transportation Science Division Licensing Contact SIMS, DAVID L UT-Battelle, LLC Oak Ridge National Laboratory Rm 124C, Bldg 4500N, MS: ...

257

DETERMINATION OF THE QUANTITY OF I-135 RELEASED FROM THE AGR-1 TEST FUELS AT THE END OF ATR OPERATING CYCLE 138B  

SciTech Connect

The AGR-1 experiment is a multiple fueled-capsule irradiation experiment being conducted in the Advanced Test Reactor (ATR) in support of the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and ended with shutdown of the reactor for a brief outage on February 10, 2007 at 0900. The AGR-1 experiment will continue cyclical irradiation for about 2.5 years. In order to allow estimation of the amount of radioiodine released during the first cycle, purge gas flow to all capsules continued for about 4 days after reactor shutdown. The FPMS data acquired during part of that shutdown flow period has been analyzed to elucidate the level of 135I released during the operating cycle.

J. K. Hartwell; D. M. Scates; J. B. Walter; M. W. Drigert

2007-05-01T23:59:59.000Z

258

Viscosity virtual sensor to control combustion in fossil fuel power plants  

Science Conference Proceedings (OSTI)

Thermo-electrical power plants utilize fossil fuel oil to transform the calorific power of fuel into electric power. An optimal combustion in the boiler requires the fuel oil to be in its best conditions. One of fuel's most important properties to consider ... Keywords: Automatic learning, Bayesian networks, Fuel oil, Power plants, Virtual sensors

Pablo H. Ibargüengoytia, Miguel Angel Delgadillo, Uriel A. García, Alberto Reyes

2013-10-01T23:59:59.000Z

259

A study of replacement rules for a parallel fleet replacement problem based on user preference utilization pattern and alternative fuel considerations  

Science Conference Proceedings (OSTI)

Parallel fleet replacement problems deal with determining an optimal replacement schedule that results in a minimal total cost of owning and operating a fleet within a finite planning horizon. In this paper, the fleet consists of service vehicles, varying ... Keywords: Alternative fuels, Parallel fleet replacement, Replacement rules, User preference utilization

Parthana Parthanadee; Jirachai Buddhakulsomsiri; Peerayuth Charnsethikul

2012-08-01T23:59:59.000Z

260

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Optimization Online - Optimal Design of Electrical Machines ...  

E-Print Network (OSTI)

Jun 8, 2011 ... Optimal Design of Electrical Machines: Mathematical Programming ... Science and Engineering (Multidisciplinary Design Optimization ).

262

Fuel Cell Technologies Office: Fuel Cell Animation  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Animation to someone by E-mail Share Fuel Cell Technologies Office: Fuel Cell Animation on Facebook Tweet about Fuel Cell Technologies Office: Fuel Cell Animation on...

263

Alternative Fuels Data Center: Emerging Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative Fuels Data Center: Emerging Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Emerging Alternative Fuels Several emerging alternative fuels are under development or already developed and may be available in the United States. These fuels may

264

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

265

Process Synthesis and Optimization of Biorefinery Configurations  

E-Print Network (OSTI)

The objective of this research was to develop novel and applicable methodologies to solve systematically problems along a roadmap of constructing a globally optimum biorefinery design. The roadmap consists of the following problems: (1) synthesis of conceptual biorefinery pathways from given feedstocks and products, (2) screening of the synthesized pathways to identify the most economic pathways, (3) development of a flexible biorefinery configuration, and (4) techno-economic analysis of a detailed biorefinery design. In the synthesis problem, a systems-based "forward-backward" approach was developed. It involves forward synthesis of biomass to possible intermediates and reverse synthesis starting with desired products and identifying necessary species and pathways leading to them. Then, two activities are performed to generate complete biorefinery pathways: matching (if one of the species synthesized in the forward step is also generated by the reverse step) or interception (a task is determined to take a forward-generated species with a reverse-generated species by identifying a known process or by using reaction pathway synthesis to link to two species.) In the screening problem, the Bellman's Principle of Optimality was applied to decompose the optimization problem into sub-problems in which an optimal policy of available technologies was determined for every conversion step. Subsequently, either a linear programming formulation or dynamic programming algorithm was used to determine the optimal pathways. In the configuration design problem, a new class of design problems with flexibility was proposed to build the most profitable plants that operate only when economic efficiency is favored. A new formulation approach with proposed constraints called disjunctive operation mode was also developed to solve the design problems. In the techno-economic analysis for a detailed design of biorefinery, the process producing hydrocarbon fuels from lignocellulose via the carboxylate platform was studied. This analysis employed many state-of-the-art chemical engineering fundamentals and used extensive sources of published data and advanced computing resources to yield reliable conclusions to the analysis. Case studies of alcohol-producing pathways from lignocellulosic biomass were discussed to demonstrate the merits of the proposed approaches in the former three problems. The process was extended to produce hydrocarbon fuels in the last problem.

Pham, Viet

2011-08-01T23:59:59.000Z

266

Pin diameter optimization in 1200 MWe heterogeneous vs. homogeneous LMFBRs  

SciTech Connect

LMFBRs with internal blankets (heterogeneous reactors) are known for reducing the sodium void reactivity and increasing the breeding ratio. As for homogeneous reactors, the optimization of the fuel pin diameter for heterogeneous reactors is of great interest. The optimum pin diameter is obtained by changing the fuel pin diameter until the homogenized fuel volume fraction is the same as the optimum fuel volume fraction of the homogeneous core. The optimization of the fuel pin diameter with respect to doubling time for a loosely coupled 1200 MWe oxide heterogeneous reactor is described. The results are compared with those of a homogeneous reactor.

Orechwa, Y.; Turski, R.B.; King, M.J.

1977-01-01T23:59:59.000Z

267

CX-009310: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10: Categorical Exclusion Determination CX-009310: Categorical Exclusion Determination Optimization of Reservoir Storage Capacity in Different Depositional Environments (Rock...

268

CX-010216: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-010216: Categorical Exclusion Determination Design and Optimization of a Biochemical Production Platform with Biosensor-guided Synthetic...

269

CX-009311: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Categorical Exclusion Determination CX-009311: Categorical Exclusion Determination Optimization of Reservoir Storage Capacity in Different Depositional Environments (Champaign)...

270

Using harmony search algorithm for optimization the component sizing of plug-in hybrid electric vehicle  

Science Conference Proceedings (OSTI)

In this paper, an optimal design to minimize the mass, cost and volume of the supercapacitor (SC) and fuel cell (FC) ina fuel cell hybrid electric vehicle is presented. Because of the hybrid powertrain, component sizing significantly affects vehicle ... Keywords: fuel cell hybrid electric vehicle (FCHEV), harmony search algorithm, particle swarm optimization, power management, powertrain modeling

Amir Khanjanzadeh; Alireza Rezazadeh; Mostafa Sedighizadeh

2012-03-01T23:59:59.000Z

271

Optimization of Steam Network in Tehran Oil Refinery  

E-Print Network (OSTI)

Dominated energy crisis in the world dictates to reduce energy consumption and identify energy saving opportunities in large and complex industries especially in oil refining industry. In this paper, Tehran oil refinery is considered as a proper case study and its steam network is analyzed. At the first step, using STAR software, the steam network is simulated and then optimized, which determines the optimum conditions. In this regard, energy saving potential was identified and total operating costs (TOC) in two states of fixed fuel fraction and changeable fuel fraction was calculated. In addition, different scenarios were proposed like using HRSG instead of two boilers. The results showed that amount of total operating cost has been reduced, as the result the best scenario regarding TOC is selected.

Khodaie, H.; Nasr, M. R. J.

2008-01-01T23:59:59.000Z

272

Hydrogen as a fuel  

SciTech Connect

A panel of the Committee on Advanced Energy Storage Systems of the Assembly of Engineering has examined the status and problems of hydrogen manufacturing methods, hydrogen transmission and distribution networks, and hydrogen storage systems. This examination, culminating at a time when rapidly changing conditions are having noticeable impact on fuel and energy availability and prices, was undertaken with a view to determining suitable criteria for establishing the pace, timing, and technical content of appropriate federally sponsored hydrogen R and D programs. The increasing urgency to develop new sources and forms of fuel and energy may well impact on the scale and timing of potential future hydrogen uses. The findings of the panel are presented. Chapters are devoted to hydrogen sources, hydrogen as a feedstock, hydrogen transport and storage, hydrogen as a heating fuel, automotive uses of hydrogen, aircraft use of hydrogen, the fuel cell in hydrogen energy systems, hydrogen research and development evaluation, and international hydrogen programs.

1979-01-01T23:59:59.000Z

273

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

274

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

275

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

276

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

277

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay

278

Predicting Individual Fuel Economy  

SciTech Connect

To make informed decisions about travel and vehicle purchase, consumers need unbiased and accurate information of the fuel economy they will actually obtain. In the past, the EPA fuel economy estimates based on its 1984 rules have been widely criticized for overestimating on-road fuel economy. In 2008, EPA adopted a new estimation rule. This study compares the usefulness of the EPA's 1984 and 2008 estimates based on their prediction bias and accuracy and attempts to improve the prediction of on-road fuel economies based on consumer and vehicle attributes. We examine the usefulness of the EPA fuel economy estimates using a large sample of self-reported on-road fuel economy data and develop an Individualized Model for more accurately predicting an individual driver's on-road fuel economy based on easily determined vehicle and driver attributes. Accuracy rather than bias appears to have limited the usefulness of the EPA 1984 estimates in predicting on-road MPG. The EPA 2008 estimates appear to be equally inaccurate and substantially more biased relative to the self-reported data. Furthermore, the 2008 estimates exhibit an underestimation bias that increases with increasing fuel economy, suggesting that the new numbers will tend to underestimate the real-world benefits of fuel economy and emissions standards. By including several simple driver and vehicle attributes, the Individualized Model reduces the unexplained variance by over 55% and the standard error by 33% based on an independent test sample. The additional explanatory variables can be easily provided by the individuals.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2011-01-01T23:59:59.000Z

279

Radiation Transport Simulation Studies Using MCNP for a Cow Phantom to Determine an Optimal Detector Configuration for a New Livestock Portal  

E-Print Network (OSTI)

A large radiological accident will result in the contamination of surrounding people, animal, vegetation etc. In such a situation assessing of the level of contamination becomes necessary to plan for the decontamination. There are plans existing for evaluating contamination on people. However, there are limited to no plans to evaluate animals. It is the responsibility of the United States Department of Agriculture (USDA) to decontaminate animals. So the objective of this thesis work was to design a scalable gamma radiation portal monitor (RPM) which can be used to assess the level of contamination on large animals like cattle. This work employed a Monte Carlo N-Particle (MCNP) radiation transport code for the purpose. A virtual system of cow, radiation source representing the contamination, cattle chute and different detector configurations were modeled. NaI scintillation detectors were modeled for this work. To find the optimal detector size and configuration, different detector orientations were simulated for different source positions using the MCNP code. Also simulations were carried out using different number and size of the detectors. It was found that using 2" x 4" x 16" detector yielded a minimum detectable activity (MDA) value of 0.4 microCi for 137Cs source.

Joe Justina, -

2012-08-01T23:59:59.000Z

280

Nondestrucive analysis of fuel pins  

DOE Patents (OSTI)

Disclosure is made of a method and a correspondingly adapted facility for the nondestructive analysis of the concentation of fuel and poison in a nuclear reactor fuel pin. The concentrations of fuel and poison in successive sections along the entire length of the fuel pin are determined by measuring the reactivity of a thermal reactor as each successive small section of the fuel pin is exposed to the neutron flux of the reactor core and comparing the measured reactivity with the reactivities measured for standard fuel pins having various known concentrations. Only a small section of the length of the fuel pin is exposed to the neutron flux at any one time while the remainder of the fuel pin is shielded from the neutron flux. In order to expose only a small section at any one time, a boron-10-lined dry traverse tube is passed through the test region within the core of a low-power thermal nuclear reactor which has a very high fuel sensitivity. A narrow window in the boron-10 lining is positioned at the core center line. The fuel pins are then systematically traversed through the tube past the narrow window such that successive small sections along the length of the fuel pin are exposed to the neutron flux which passes through the narrow window.

Stepan, I.E.; Allard, N.P.; Suter, C.R.

1972-11-03T23:59:59.000Z

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Novel Fuel  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2009. Symposium, Energy Materials. Presentation Title, Novel Fuel. Author(s), Naum Gosin, Igor ...

282

Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices.

283

Vehicle System Impacts of Fuel Cell System Power Response Capability  

NLE Websites -- All DOE Office Websites (Extended Search)

- 01 - 1959 - 01 - 1959 Vehicle System Impacts of Fuel Cell System Power Response Capability Tony Markel and Keith Wipke National Renewable Energy Laboratory Doug Nelson Virginia Polytechnic University and State Institute Copyright © 2002 Society of Automotive Engineers, Inc. ABSTRACT The impacts of fuel cell system power response capability on optimal hybrid and neat fuel cell vehicle configurations have been explored. Vehicle system optimization was performed with the goal of maximizing fuel economy over a drive cycle. Optimal hybrid vehicle design scenarios were derived for fuel cell systems with 10 to 90% power transient response times of 0, 2, 5, 10, 20, and 40 seconds. Optimal neat fuel cell vehicles where generated for responses times of 0, 2, 5, and 7

284

Optimal command generation for maneuvering the space station  

E-Print Network (OSTI)

The objective of this research is to obtain near minimum-fuel and minimum-time maneuver commands for large-angle maneuvers for the international space station. Attitude and angular velocity waypoints are generated using the method of differential inclusion. This approach, motivated by the inverse dynamics method, reduces the dimensionality of the discretized problem to be solved. Different types of control schemes are investigated using a combination of Thrusters and Control Moment Gyros. The optimized controls are determined using standard nonlinear optimization methods from the MATLAB program toolboxes. The maneuvers can be completed using considerably less fuel compared to eigen-axis maneuvers currently being implemented for the International Space Station. The differential inclusion method reduces the need for CMG desaturations as compared to a controller similar to the one on board the International Space Station. The near minimum-time results are comparable to eigen-axis maneuvers. The differential inclusion method is flexible and can easily be modified to accommodate the needs of problems with different constraints. The results obtained in this research use approximate models of the space environment and vehicle dynamics; however, the results can easily be used in a higher fidelity optimization.

Bryson, Amy Louise

2001-01-01T23:59:59.000Z

285

Multi-stage fuel cell system method and apparatus  

DOE Patents (OSTI)

A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

George, Thomas J. (Morgantown, WV); Smith, William C. (Morgantown, WV)

2000-01-01T23:59:59.000Z

286

Multi-stage fuel cell system method and apparatus  

DOE Patents (OSTI)

A high efficiency, multi-stage fuel cell system method and apparatus is provided. The fuel cell system is comprised of multiple fuel cell stages, whereby the temperatures of the fuel and oxidant gas streams and the percentage of fuel consumed in each stage are controlled to optimize fuel cell system efficiency. The stages are connected in a serial, flow-through arrangement such that the oxidant gas and fuel gas flowing through an upstream stage is conducted directly into the next adjacent downstream stage. The fuel cell stages are further arranged such that unspent fuel and oxidant laden gases too hot to continue within an upstream stage because of material constraints are conducted into a subsequent downstream stage which comprises a similar cell configuration, however, which is constructed from materials having a higher heat tolerance and designed to meet higher thermal demands. In addition, fuel is underutilized in each stage, resulting in a higher overall fuel cell system efficiency.

George, Thomas J.; Smith, William C.

1997-12-01T23:59:59.000Z

287

DEVELOPMENT OF OTM SYNGAS PROCESS AND TESTING OF SYNGAS-DERIVED ULTRA-CLEAN FUELS IN DIESEL ENGINES AND FUEL CELLS  

DOE Green Energy (OSTI)

This topical report summarizes work accomplished for the Program from January 1 through September 15, 2001 in the following task areas: Task 1--materials development; Task 2--composite element development; Task 3--tube fabrication; Task 4--reactor design and process optimization; Task 5--catalyst development; Task 6--P-1 operation; Task 8--fuels and engine testing; and Task 10--project management. OTM benchmark material, LCM1, exceeds the commercial oxygen flux target and was determined to be sufficiently robust to carry on process development activities. Work will continue on second-generation OTM materials that will satisfy commercial life targets. Three fabrication techniques for composite elements were determined to be technically feasible. These techniques will be studied and a lead manufacturing process for both small and large-scale elements will be selected in the next Budget Period. Experiments in six P-0 reactors, the long tube tester (LTT) and the P-1 pilot plant were conducted. Significant progress in process optimization was made through both the experimental program and modeling studies of alternate reactor designs and process configurations. Three tailored catalyst candidates for use in OTM process reactors were identified. Fuels for the International diesel engine and Nuvera fuel cell tests were ordered and delivered. Fuels testing and engine development work is now underway.

E.T. (Skip) Robinson; James P. Meagher; Ravi Prasad

2001-10-31T23:59:59.000Z

288

A Survey of Optimization Research at Sandia National Laboratories  

E-Print Network (OSTI)

to Provide Laser Weld Schedules R. Eisler Optimization of Commercial Nuclear Reactor Fuel Management Mark, M. Eldred, R. Hogan Optimization of CVD Reactor Design using Parallel Reacting Flow Simulation. A; Optimization of CVD Reactor Design using Parallel Reacting Flow Simulation. A. Salinger, S. Hutchinson, W. Hart

Neumaier, Arnold

289

Direct conversion of light hydrocarbon gases to liquid fuel  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

Foral, M.J.

1991-01-01T23:59:59.000Z

290

Direct conversion of light hydrocarbon gases to liquid fuel  

DOE Green Energy (OSTI)

The objective of this program is to investigate the direct conversion of light gaseous hydrocarbons, such as those produced during Fischer-Tropsch synthesis or as a product of gasification, to liquid transportation fuels via a partial oxidation process. The process will be tested in an existing pilot plant to obtain credible mass balances. Specific objectives to be met include determination of optimal process conditions, investigation of various processing options (e.g. feed injection, product quench, and recycle systems), and evaluation of an enhanced yield thermal/catalytic system. Economic evaluation of the various options will be performed as experimental data become available.

Foral, M.J.

1990-01-01T23:59:59.000Z

291

Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications  

Science Conference Proceedings (OSTI)

Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

2012-04-16T23:59:59.000Z

292

Optimal Maneuvers for Distributed Aperture Imaging Systems  

E-Print Network (OSTI)

Interest in space-borne, distributed multi-aperture interferometric systems is driven by a need for continuously sustained imaging with high resolution. Amplitude interferometry systems measure the Fourier components of the image corresponding to the wave vectors (locations in the so-called u-v plane) that are proportional to the relative positions of the apertures. Imaging to specified resolution demands measurement of the Fourier components with adequate signal-to-noise ratio over the interior of a disk in the u-v plane (the resolution disk). In this paper we concentrate on the case in which interferometric measurements are made while the apertures are changing their relative positions. This work discusses heuristic maneuvers and strategies for a system of two space-borne telescopes to cover the frequency plane while optimizing a cost function that includes both a measure of image quality and propulsive effort. The current study is motivated by previous research in which the optimization problem was formulated and the first-order necessary conditions (FONC) derived. The earlier work obtained short time horizon solutions to the FONC for various simple situations, but the complexity of the integro-differential equations for optimal maneuvering have heretofore prevented solution for an optimal maneuver for the entirety of the imaging process. In place of a direct attack on the FONC, the present work investigates various heuristic approaches to minimizing the cost function in the discretized state and discretized time domains in a hexagonal coordinate system. Using three classes of coverage rules, experimentation with a variety of maneuver strategies involving two apertures has led to a number of time-optimal or fuel-optimal solutions based on the initial conditions of the spacecraft. This thesis shows that an optimal maneuver can be determined from the starting positions of the spacecraft and that a self-spiral class of motion seems to be the most beneficial for long term strategies. Future work may focus on strategies for interferometric systems with more than two apertures and with a finer mesh of the hexagonal coordinate system.

Fitch, Danielle

2012-08-01T23:59:59.000Z

293

Advanced Proliferation Resistant, Lower Cost, Uranium-Thorium Dioxide Fuels for Light Water Reactors (Progress report for work through June 2002, 12th quarterly report)  

SciTech Connect

The overall objective of this NERI project is to evaluate the potential advantages and disadvantages of an optimized thorium-uranium dioxide (ThO2/UO2) fuel design for light water reactors (LWRs). The project is led by the Idaho National Engineering and Environmental Laboratory (INEEL), with the collaboration of three universities, the University of Florida, Massachusetts Institute of Technology (MIT), and Purdue University; Argonne National Laboratory; and all of the Pressurized Water Reactor (PWR) fuel vendors in the United States (Framatome, Siemens, and Westinghouse). In addition, a number of researchers at the Korean Atomic Energy Research Institute and Professor Kwangheon Park at Kyunghee University are active collaborators with Korean Ministry of Science and Technology funding. The project has been organized into five tasks: · Task 1 consists of fuel cycle neutronics and economics analysis to determine the economic viability of various ThO2/UO2 fuel designs in PWRs, · Task 2 will determine whether or not ThO2/UO2 fuel can be manufactured economically, · Task 3 will evaluate the behavior of ThO2/UO2 fuel during normal, off-normal, and accident conditions and compare the results with the results of previous UO2 fuel evaluations and U.S. Nuclear Regulatory Commission (NRC) licensing standards, · Task 4 will determine the long-term stability of ThO2/UO2 high-level waste, and · Task 5 consists of the Korean work on core design, fuel performance analysis, and xenon diffusivity measurements.

Mac Donald, Philip Elsworth

2002-09-01T23:59:59.000Z

294

Degradation mechanisms and accelerated testing in PEM fuel cells  

DOE Green Energy (OSTI)

The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To achieve a deeper understanding and improve PEM fuel cell durability LANL is conducting research to better define fuel cell component degradation mechanisms and correlate AST measurements to component in 'real-world' situations.

Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

295

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

296

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

297

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

298

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

299

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

300

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

302

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

303

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The Minnesota Department of Revenue imposes an excise tax on the first licensed distributor that receives E85 fuel products in the state and on distributors, special fuel dealers, or bulk purchasers of other alternative

304

Optimization models for ATM network planning  

Science Conference Proceedings (OSTI)

This article describes mathematical programming models that have been developed and employed to evaluate configuration strategies for metropolitan ATM telecommunication networks. The models determine the optimal placement of ATM switch hardware and fiber ... Keywords: ATM, network optimization, telecommunications

Dennis C. Dietz; Amie J. Elcan; Daphne E. Skipper

2003-04-01T23:59:59.000Z

305

CX-000625: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25: Categorical Exclusion Determination 25: Categorical Exclusion Determination CX-000625: Categorical Exclusion Determination New Membrane Electrode Assemblies Materials for Improved Direct Methanol Fuel Cell Performance, Durability and Cost CX(s) Applied: B3.6 Date: 01/21/2010 Location(s): Florida Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The University of North Florida proposes to use Department of Energy and cost share funding to examine and implement improvements in performance, durability, manufacturability, and cost to the PolyFuel membrane electrode assemblies. The propsoed work includes optimizing membranes through post-processing, examining alternate membrane chemistries and composite membrane strategies, and improving membrane electrode stability and performance.

306

Preliminary Advanced Test Reactor LEU Fuel Conversion Feasibility Study  

SciTech Connect

The Advanced Test Reactor (ATR) is a high power density, high neutron flux research reactor operating in the United States. The ATR has large irradiation test volumes located in high flux areas. Powered with highly enriched uranium (HEU), the ATR has a maximum thermal power rating of 250 MWth with a maximum unperturbed thermal neutron flux rating of 1.0 x 1015 n/cm2–s. As a result, the ATR is a representative candidate for assessing the necessary modifications and evaluating the subsequent operating effects associated with low-enriched uranium (LEU) fuel conversion. A detailed plate-by-plate MCNP ATR 1/8th core model was developed for the fuel cycle burnup comparison analysis. Using the current HEU 235U enrichment of 93.0 % as a baseline, an analysis can be performed to determine the LEU uranium density and 235U enrichment required in the fuel meat to yield an equivalent Keff between the HEU core and a LEU core versus effective full power days (EFPD). The MCNP ATR 1/8th core model will be used to optimize the 235U loading in the LEU core, such that the differences in Keff between the HEU and LEU core can be minimized for operation at 150 EFPD with a total core power of 115 MW. The Monte-Carlo with ORIGEN-2 (MCWO) method was used to calculate Keff versus EFPDs. The MCWO-calculated results for the LEU case demonstrated adequate excess reactivity such that the LEU core conversion designer should be able to optimize the 235U content of each fuel plate, so that the Keff and relative radial fission heat flux profile are similar to the reference ATR HEU case. However, to demonstrate that the LEU core fuel cycle performance can meet the Upgraded Final Safety Analysis Report (UFSAR) safety requirements, a further study will be required in order to investigate the detailed radial, axial, and azimuthal heat flux profile variations versus EFPDs.

G. S. Chang; R. G. Ambrosek

2005-11-01T23:59:59.000Z

307

Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel  

E-Print Network (OSTI)

and S.J. Thompson,“Determining Plutonium in Spent Fuel withTobin, “Determination of Plutonium Content in Spent FuelFluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

Ludewigt, Bernhard A

2011-01-01T23:59:59.000Z

308

CX-006039: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Ohio Advanced Transportation Partnership: Zanesville Energy Biogas Compressed Natural Gas Fueling Infrastructure Date: 06092011 Location(s):...

309

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Ohio Advanced Transportation Partnership: Zanesville Energy Biogas Compressed Natural Gas Fueling Infrastructure Date: 06092011 Location(s):...

310

The closed fuel cycle  

Science Conference Proceedings (OSTI)

Available in abstract form only. Full text of publication follows: The fast growth of the world's economy coupled with the need for optimizing use of natural resources, for energy security and for climate change mitigation make energy supply one of the 21. century most daring challenges. The high reliability and efficiency of nuclear energy, its competitiveness in an energy market undergoing a new oil shock are as many factors in favor of the 'renaissance' of this greenhouse gas free energy. Over 160,000 tHM of LWR1 and AGR2 Used Nuclear Fuel (UNF) have already been unloaded from the reactor cores corresponding to 7,000 tons discharged per year worldwide. By 2030, this amount could exceed 400,000 tHM and annual unloading 14,000 tHM/year. AREVA believes that closing the nuclear fuel cycle through the treatment and recycling of Used Nuclear Fuel sustains the worldwide nuclear power expansion. It is an economically sound and environmentally responsible choice, based on the preservation of natural resources through the recycling of used fuel. It furthermore provides a safe and secure management of wastes while significantly minimizing the burden left to future generations. (authors)

Froment, Antoine; Gillet, Philippe [AREVA NC (France)

2007-07-01T23:59:59.000Z

311

MathOptimizer: A nonlinear optimization package for Mathematica ...  

E-Print Network (OSTI)

introduce MathOptimizer's key features and discuss its usage options that support a ..... The option Samples determines the total number of sample points in each ..... and scientific fields such as numerical integration, potential energy models, ...

312

Alternative fuel information: Alternative fuel vehicle outlook  

DOE Green Energy (OSTI)

Major automobile manufacturers continue to examine a variety of alternative fuel vehicle (AFV) options in an effort to provide vehicles that meet the fleet requirements of the Clean Air Act Amendments of 1990 (CAAA) and the Energy Policy Act of 1992 (EPACT). The current generation of AFVs available to consumers is somewhat limited as the auto industry attempts to respond to the presently uncertain market. At the same time, however, the automobile industry must anticipate future demand and is therefore engaged in research, development, and production programs on a wide range of alternative fuels. The ultimate composition of the AFV fleet may be determined by state and local regulations which will have the effect of determining demand. Many state and regional groups may require vehicles to meet emission standards more stringent than those required by the federal government. Therefore, a significant impact on the market could occur if emission classifications begin serving as the benchmark for vehicles, rather than simply certifying a vehicle as capable of operating on an ``alternative`` to gasoline. Vehicles classified as Zero-Emissions, or even Inherently Low-Emissions, could most likely be met only by electricity or natural gas, thereby dictating that multi-fuel vehicles would be unable to participate in some clean air markets. In the near-term, the Clinton Administration desires to accelerate the use of alternative fuels as evidenced by an executive order directing the federal government to increase the rate of conversion of the federal fleet beyond that called for in EPACT. The Administration has expressed particular interest in using more compressed natural gas (CNG) as a motor fuel, which has resulted in the auto industry`s strong response of concentrating short-term efforts on CNG vehicles. For the 1994 model year, a number of CNG cars and trucks will be available from major automobile manufacturers.

Not Available

1994-06-01T23:59:59.000Z

313

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

314

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

315

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

316

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

317

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

318

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Fuel Use to Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The Iowa Department of Transportation (IDOT) may purchase biodiesel for use in IDOT vehicles through the biodiesel fuel revolving fund created in the state treasury. The fund consists of money received from the sale of Energy

319

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

320

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alternative Fuels Data Center: Hydrogen Fuel Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Hydrogen Fuel Specifications to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Specifications on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Specifications on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Specifications on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) established interim specifications for hydrogen fuels for

322

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

323

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

324

Financing Strategies for Nuclear Fuel Cycle Facility  

SciTech Connect

To help meet our nation’s energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy.

David Shropshire; Sharon Chandler

2005-12-01T23:59:59.000Z

325

Fuel Reformation: Microchannel Reactor Design  

DOE Green Energy (OSTI)

Fuel processing is used to extract hydrogen from conventional vehicle fuel and allow fuel cell powered vehicles to use the existing petroleum fuel infrastructure. Kilowatt scale micro-channel steam reforming, water-gas shift and preferential oxida-tion reactors have been developed capable of achieving DOE required system performance metrics. Use of a microchannel design effectively supplies heat to the highly endothermic steam reforming reactor to maintain high conversions, controls the temperature profile for the exothermic water gas shift reactor, which optimizes the overall reaction conversion, and removes heat to prevent the unwanted hydrogen oxidation in the prefer-ential oxidation reactor. The reactors combined with micro-channel heat exchangers, when scaled to a full sized 50 kWe automotive system, will be less than 21 L in volume and 52 kg in weight.

Brooks, Kriston P.; Davis, James M.; Fischer, Christopher M.; King, David L.; Pederson, Larry R.; Rawlings, Gregg C.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.

2005-09-01T23:59:59.000Z

326

Alternative Fuels Data Center: Alternative Fuel Infrastructure...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Type Alternative Fuel Infrastructure Development Program The Tennessee Department of Environment and Conservation provides funding for alternative fueling infrastructure...

327

Pathwise Optimization for Optimal Stopping Problems  

Science Conference Proceedings (OSTI)

We introduce the pathwise optimization (PO) method, a new convex optimization procedure to produce upper and lower bounds on the optimal value (the “price”) of a high-dimensional optimal stopping problem. The PO method builds on a dual characterization ... Keywords: American options, Bermudian options, dynamic programming, optimal control, optimal stopping

Vijay V. Desai; Vivek F. Farias; Ciamac C. Moallemi

2012-12-01T23:59:59.000Z

328

Alternative Fuels Data Center: Renewable Identification Numbers  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Renewable Identification Numbers to someone by E-mail Share Alternative Fuels Data Center: Renewable Identification Numbers on Facebook Tweet about Alternative Fuels Data Center: Renewable Identification Numbers on Twitter Bookmark Alternative Fuels Data Center: Renewable Identification Numbers on Google Bookmark Alternative Fuels Data Center: Renewable Identification Numbers on Delicious Rank Alternative Fuels Data Center: Renewable Identification Numbers on Digg Find More places to share Alternative Fuels Data Center: Renewable Identification Numbers on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Identification Numbers RIN Format EPA uses the following format to determine RINs for each physical gallon of

329

CX-003108: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3108: Categorical Exclusion Determination 3108: Categorical Exclusion Determination CX-003108: Categorical Exclusion Determination Industrial and Agricultural Waste to Clean Fuel: Qteros Facility for Development of Methods for Preparing Biomass for Hydrolysis and Fermentation into Cellulosic Ethanol CX(s) Applied: A9, B3.6 Date: 07/14/2010 Location(s): Marlborough, Massachusetts Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Qteros, Incorporated proposes to use federal funds to develop and optimize a fermentation process for cellulosic biomass conversion to ethanol. This process would work in combination with the unique set of naturally-occurring organisms developed by Qteros. The federal funds would also be used to scale up that optimized process in a pilot plant to demonstrate the technology on a scale of 1,000 liter reactors, followed by

330

Fuel Chemistry Preprints  

Science Conference Proceedings (OSTI)

Papers are presented under the following symposia titles: advances in fuel cell research; biorefineries - renewable fuels and chemicals; chemistry of fuels and emerging fuel technologies; fuel processing for hydrogen production; membranes for energy and fuel applications; new progress in C1 chemistry; research challenges for the hydrogen economy, hydrogen storage; SciMix fuel chemistry; and ultraclean transportation fuels.

NONE

2005-09-30T23:59:59.000Z

331

Failed Fuel Analysis on Fuel Rods from Exelon BWRs: Volume 2: Hot Cell Investigation Of LaSalle Fuel Rods  

Science Conference Proceedings (OSTI)

A number of fuel failures were experienced in ATRIUM-9B fuel manufactured by Framatome ANP (FANP) and operated at Exelon plants between late 2000 and 2003. The failures tended to correlate with power changes (control blade movement), but a large number of poolside inspections, documented in Volume 1 of this investigation (Failed Fuel Analyses on Fuel Rods from Exelon BWRs, Volume 1: Poolside Inspection, EPRI report 1009494), were unable to determine the precise cause of failure. This Volume 2 report desc...

2005-06-06T23:59:59.000Z

332

Solid Oxide Fuel Cells | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solid Oxide Fuel Cells Solid Oxide Fuel Cells Solid Oxide Fuel Cells FE researchers at NETL have developed a unique test platform, called the multi-cell array (MCA), to rapidly test multiple fuel cells and determine how they degrade when contaminants exist in the fuel stream, such as might occur when using syngas from a coal gasifier. FE researchers at NETL have developed a unique test platform, called the multi-cell array (MCA), to rapidly test multiple fuel cells and determine how they degrade when contaminants exist in the fuel stream, such as might occur when using syngas from a coal gasifier. Fuel cells are an energy user's dream: an efficient, combustion-less, virtually pollution-free power source, capable of being sited in downtown urban areas or in remote regions that runs almost silently and has few

333

Determination of Pu content in a Spent Fuel Assembly by Measuring Passive Total Neutron count rate and Multiplication with the Differential Die-Away Instrument  

Science Conference Proceedings (OSTI)

Inspired by approach of Bignan and Martin-Didier (ESARDA 1991) we introduce novel (instrument independent) approach based on multiplication and passive neutron. Based on simulations of SFL-1 the accuracy of determination of {sup tot}Pu content with new approach is {approx}1.3-1.5%. Method applicable for DDA instrument, since it can measure both multiplication and passive neutron count rate. Comparison of pro's & con's of measuring/determining of {sup 239}Pu{sub eff} and {sup tot}Pu suggests a potential for enhanced diversion detection sensitivity.

Henzl, Vladimir [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory

2012-07-13T23:59:59.000Z

334

FUEL ELEMENT  

DOE Patents (OSTI)

A ceramic fuel element for a nuclear reactor that has improved structural stability as well as improved cooling and fission product retention characteristics is presented. The fuel element includes a plurality of stacked hollow ceramic moderator blocks arranged along a tubular raetallic shroud that encloses a series of axially apertured moderator cylinders spaced inwardly of the shroud. A plurality of ceramic nuclear fuel rods are arranged in the annular space between the shroud and cylinders of moderator and appropriate support means and means for directing gas coolant through the annular space are also provided. (AEC)

Bean, R.W.

1963-11-19T23:59:59.000Z

335

Categorical Exclusion Determinations: Pennsylvania | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Solid-Fueled Pressurized Chemical Looping with Flue-Gas Turbine Combined Cycle for Improved Plant Efficiency and Capture CX(s) Applied: A9...

336

Method of combustion for dual fuel engine  

DOE Patents (OSTI)

Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

Hsu, Bertrand D. (Erie, PA); Confer, Gregory L. (Erie, PA); Shen, Zujing (Erie, PA); Hapeman, Martin J. (Edinboro, PA); Flynn, Paul L. (Fairview, PA)

1993-12-21T23:59:59.000Z

337

Method of combustion for dual fuel engine  

DOE Patents (OSTI)

Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

1993-12-21T23:59:59.000Z

338

PEM FUEL CELL TURBOCOMPRESSOR  

DOE Green Energy (OSTI)

The objective is to assist the Department of Energy in the development of a low cost, reliable and high performance air compressor/expander. Technical Objective 1: Perform a turbocompressor systems PEM fuel cell trade study to determine the enhanced turbocompressor approach. Technical Objective 2: Using the results from technical objective 1, an enhanced turbocompressor will be fabricated. The design may be modified to match the flow requirements of a selected fuel cell system developer. Technical Objective 3: Design a cost and performance enhanced compact motor and motor controller. Technical Objective 4: Turbocompressor/motor controller development.

Mark K. Gee

2004-04-01T23:59:59.000Z

339

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

340

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

342

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

343

Alternative Fuels Data Center: Alternative Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion The state of Hawaii has signed a memorandum of understanding (MOU) with the U.S. Department of Energy to collaborate to produce 70% of the state's

344

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

345

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

346

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

347

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

348

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

349

Alternative Fuels Data Center: Alternative Fuel Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Study Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Study As directed by the Nevada Legislature, the Legislative Commission (Commission) conducted an interim study in 2011 concerning the production and use of energy in the state. The study included information on the use

350

Fuel Reliability Program: Post-Irradiation Examination of an AREVA Atrium 10B Corner Fuel Rod from Forsmark 3  

Science Conference Proceedings (OSTI)

The Fuel Reliability Program (FRP) is co-sponsoring numerous research projects on current generation fuel for boiling water reactors (BWRs) to determine the margins for a number of fuel performance, reliability, and regulatory issues.In this particular study, Vattenfall Nuclear Fuel (VNF) initiated a post-irradiation examination project at the Studsvik Nuclear hot cell laboratory on a BWR ATRIUM-10B corner fuel rod in position A1. The fuel rod was manufactured by AREVA and then ...

2013-07-22T23:59:59.000Z

351

Fuels - Biodiesel  

NLE Websites -- All DOE Office Websites (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

352

Hydrogen Fuel  

Energy.gov (U.S. Department of Energy (DOE))

Hydrogen is a clean fuel that, when consumed, produces only water. Hydrogen can be produced from a variety of domestic sources, such as coal, natural gas, nuclear power, and renewable power. These...

353

Fuel Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

Selling your car? Advertise its fuel economy with our Used Car Label tool. Download a label for on-line ads. Print a label to attach to your car. Did you know? You can purchase...

354

Powering Cell Phones with Fuel Cells Running on Renewable Fuels  

DOE Green Energy (OSTI)

The major goals of this project were to increase lifetime, increase energy density, and reduce material costs. The combination of identifying corrosion resistant materials and changing catalysts increased lifetimes. Work to increase the energy density included increasing the concentration of the formic acid fuel from 12M (ca. 50 wt%) to 22M (ca. 85 wt%) and decreasing the amount of fuel crossing over. The largest expense of the device is the cathode catalyst. At the beginning of the project Pt loading was over 8 mg/cm2 on our cathodes. Through optimization work we managed to bring down the cathode loading to approximately half of what we started with.

Dr. Ruiming Zhang

2007-01-31T23:59:59.000Z

355

Improving combustion stability in a bi-fuel engine  

Science Conference Proceedings (OSTI)

This article describes how a new strategy for ignition timing control can reduce NOx emissions from engines using CNG and gasoline. Until a proper fueling infrastructure is established, a certain fraction of vehicles powered by compressed natural gas (CNG) must have bi-fuel capability. A bi-fuel engine, enjoying the longer range of gasoline and the cleaner emissions of CNG, can overcome the problem of having few CNG fueling stations. However, bi-fuel engines must be optimized to run on both fuels since low CNG volumetric efficiency causes power losses compared to gasoline.

NONE

1995-06-01T23:59:59.000Z

356

Free air breathing planar PEM fuel cell design for portable electronics  

E-Print Network (OSTI)

PEM fuel cell technology is an energy source that can provide several times more energy per unit volume then current lithium ion batteries. However, PEM fuel cells remain to be optimized in volume and mass to create a ...

Crumlin, Ethan J

2005-01-01T23:59:59.000Z

357

CX-010303: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Categorical Exclusion Determination CX-010303: Categorical Exclusion Determination Utah Expansion of Alternative Fueling Infrastructure CX(s) Applied: B5.22 Date: 04302013...

358

CX-010190: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: Categorical Exclusion Determination CX-010190: Categorical Exclusion Determination Utah Expansion of Alternative Fueling Infrastructure - Electric Charging Station Upgrade CX(s)...

359

CX-002588: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002588: Categorical Exclusion Determination A Novel Biogas Desulfurization Sorbent Technology for Molten Carbonate Fuel Cell-Based Combined Heat...

360

CX-010643: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-010643: Categorical Exclusion Determination Minnesota E85 Fueling Network Expansion Project CX(s) Applied: B5.22 Date: 06272013 Location(s):...

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CX-001691: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-001691: Categorical Exclusion Determination New York State Retail E85 Fueling Station Project (Summary Categorical Exclusion) CX(s) Applied: B5.1 Date: 04...

362

CX-002525: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002525: Categorical Exclusion Determination Minnesota E85 Fueling Network Expansion CX(s) Applied: A1, A9 Date: 04202010 Location(s): Saint...

363

CX-000758: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-000758: Categorical Exclusion Determination Carbon Dioxide Conversion to Fuels and Energy CX(s) Applied: B3.6 Date: 02092010 Location(s): Des Plaines,...

364

CX-001813: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Categorical Exclusion Determination CX-001813: Categorical Exclusion Determination Lean Gasoline System Development for Fuel Efficient Small Cars (Milford) CX(s) Applied: B3.6,...

365

CX-001819: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Categorical Exclusion Determination CX-001819: Categorical Exclusion Determination Lean Gasoline System Development for Fuel Efficient Small Cars (Pontiac) CX(s) Applied: B3.6,...

366

CX-009039: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

39: Categorical Exclusion Determination CX-009039: Categorical Exclusion Determination SiC-SiC Composite for Fuel Structure Applications - Electric Power Research Institute CX(s)...

367

CX-007009: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination CX-007009: Categorical Exclusion Determination Fuel Cell Program CX(s) Applied: B5.1 Date: 09222011 Location(s): New Haven, Connecticut...

368

CX-006552: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination CX-006552: Categorical Exclusion Determination Fuel Cell Program CX(s) Applied: B5.1 Date: 08182011 Location(s): Willimantic, Connecticut...

369

Categorical Exclusion (CX) Determinations By Date | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determinations By Date September 24, 2012 CX-009335: Categorical Exclusion Determination E85 (Ethanol) Retail Fueling Infrastructure Installation CX(s) Applied: B5.22 Date: 0924...

370

CX-010172: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-010172: Categorical Exclusion Determination Ignition and Combustion Characteristics of Transportation Fuels under Lean-Burn Conditions CX(s) Applied:...

371

CX-010647: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-010647: Categorical Exclusion Determination Fuel-Flexible Combustion System for Refinery and Chemical Plant Process CX(s) Applied: A1 Date: 06262013...

372

CX-010902: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-010902: Categorical Exclusion Determination Fuel-Flexible Combustion System for Refinery and Chemical Plant Process CX(s) Applied: A1 Date: 06262013...

373

CX-001806: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001806: Categorical Exclusion Determination Midwest Region Alternative Fuels Project (Summary Categorical Exclusion) CX(s) Applied: B5.1 Date: 0420...

374

CX-001788: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001788: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project (Sunnyside) CX(s) Applied: A1, A9, B5.1 Date: 0421...

375

CX-001800: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001800: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 04202010 Location(s): Omaha,...

376

CX-001325: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001325: Categorical Exclusion Determination Midwest Region Alternative Fuels Project - Biodiesel Station CX(s) Applied: B5.1 Date: 03172010...

377

CX-001790: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001790: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project (North Throop Street) CX(s) Applied: A1, A9, B5.1...

378

CX-002898: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002898: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 07082010 Location(s): Kansas...

379

CX-001789: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001789: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project (Ravenswood) CX(s) Applied: A1, A9, B5.1 Date: 0421...

380

CX-003300: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-003300: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 08052010 Location(s): Kansas...

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CX-003305: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-003305: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project (Summary Categorical Exclusion) CX(s) Applied: A1,...

382

CX-003565: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-003565: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 08242010 Location(s): Kansas...

383

CX-002358: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58: Categorical Exclusion Determination CX-002358: Categorical Exclusion Determination Fischer-Tropsch Fuels Development CX(s) Applied: B3.6 Date: 05102010 Location(s): Grand...

384

CX-005827: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005827: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 05052011 Location(s): Leawood,...

385

CX-001607: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001607: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date: 0414...

386

CX-000769: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-000769: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment - Vehicle Conversion CX(s) Applied:...

387

CX-001584: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001584: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment Date: 04152010 Location(s):...

388

CX-005144: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005144: Categorical Exclusion Determination Midwest Region Alternative Fuels Project (Award DE-EE0002538) CX(s) Applied: A7 Date: 02022011...

389

CX-005333: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005333: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7 Date: 02282011 Location(s): Wichita, Kansas...

390

CX-001601: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001601: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date: 0414...

391

CX-005215: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005215: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project CX(s) Applied: B5.1 Date: 02102011 Location(s):...

392

CX-006914: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006914: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 09282011 Location(s): Kansas City,...

393

CX-003038: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-003038: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 07132010 Location(s): Omaha,...

394

CX-007020: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-007020: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date: 0922...

395

CX-001802: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001802: Categorical Exclusion Determination Midwest Region Alternative Fuels Project (Kansas City) CX(s) Applied: B5.1 Date: 04202010 Location(s):...

396

CX-002626: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002626: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 06102010 Location(s): Kansas...

397

CX-006051: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006051: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 06072011 Location(s): Omaha, Nebraska...

398

CX-002694: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002694: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date: 0616...

399

CX-005635: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005635: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 04192011 Location(s): Lincoln,...

400

CX-006748: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006748: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date: 0913...

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CX-000766: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-000766: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment - New Vehicle Purchase CX(s)...

402

CX-006981: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006981: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7 Date: 09222011 Location(s): Kansas City and...

403

CX-001605: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001605: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date: 0414...

404

CX-002168: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002168: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date: 0503...

405

CX-005334: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005334: Categorical Exclusion Determination Maximizing Alternative Fuel Use and Distribution in Colorado CX(s) Applied: B5.1 Date: 02282011...

406

CX-006891: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006891: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 09282011 Location(s): Kansas City,...

407

CX-003176: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-003176: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project (Summary Categorical Exclusion) CX(s) Applied: A1,...

408

CX-006148: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006148: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 07132011 Location(s): Omaha,...

409

CX-006053: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006053: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 06072011 Location(s): Kansas City,...

410

CX-002956: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002956: Categorical Exclusion Determination Maximizing Alternative Fuel Use and Distribution in Colorado CX(s) Applied: B5.1 Date: 07092010...

411

CX-001702: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001702: Categorical Exclusion Determination Midwest Regional Alternative Fuels Project (Missouri Purchase Tasks) CX(s) Applied: A7 Date: 04222010...

412

CX-005349: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005349: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project CX(s) Applied: B5.1 Date: 03022011 Location(s):...

413

CX-004488: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-004488: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7 Date: 11192010 Location(s): Kansas City,...

414

CX-006174: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006174: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7 Date: 07112011 Location(s): Lincoln,...

415

CX-002167: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002167: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date: 0503...

416

CX-005811: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005811: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project CX(s) Applied: B5.1 Date: 05132011 Location(s):...

417

CX-005213: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005213: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project CX(s) Applied: B5.1 Date: 02102011 Location(s):...

418

CX-003058: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-003058: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 07192010 Location(s): Omaha,...

419

CX-006149: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006149: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 07132011 Location(s): Kansas...

420

CX-000345: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-000345: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A1, A9 Date: 12102009 Location(s): Kansas City,...

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CX-005604: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005604: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 04122011 Location(s): Overland Park,...

422

CX-006747: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006747: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date: 0913...

423

CX-005318: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

318: Categorical Exclusion Determination CX-005318: Categorical Exclusion Determination Alternative FuelAdvanced Vehicle Technology - North Carolina State University CX(s)...

424

CX-000368: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-000368: Categorical Exclusion Determination New York State Alternative Fuel Vehicle & Infrastructure Deployment CX(s) Applied: A9, A11 Date: 1210...

425

CX-005214: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005214: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project CX(s) Applied: B5.1 Date: 02102011 Location(s):...

426

CX-002628: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002628: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 06102010 Location(s): Omaha,...

427

CX-005943: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005943: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project CX(s) Applied: B5.1 Date: 06042011 Location(s):...

428

CX-006052: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006052: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 06072011 Location(s): Omaha,...

429

CX-002463: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002463: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date: 0603...

430

CX-006172: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006172: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 07112011 Location(s): Kansas City,...

431

CX-002241: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002241: Categorical Exclusion Determination Maximizing Alternative Fuel Use and Distribution in Colorado CX(s) Applied: B5.1 Date: 05132010...

432

CX-006515: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006515: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7 Date: 08252011 Location(s): Lincoln,...

433

CX-006177: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-006177: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project CX(s) Applied: B5.1 Date: 07112011 Location(s):...

434

CX-001801: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001801: Categorical Exclusion Determination Midwest Region Alternative Fuels Project (5318 L Street, Omaha) CX(s) Applied: B5.1 Date: 04202010...

435

CX-001585: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001585: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date: 0415...

436

CX-004386: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-004386: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project CX(s) Applied: B5.1 Date: 11042010 Location(s): Des...

437

CX-002970: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002970: Categorical Exclusion Determination Maximizing Alternative Fuel Use and Distribution in Colorado CX(s) Applied: B5.1 Date: 07092010...

438

CX-005332: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005332: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7 Date: 02282011 Location(s): Wichita, Kansas...

439

CX-005605: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005605: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 04122011 Location(s): Topeka, Kansas...

440

CX-005340: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005340: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7 Date: 03012011 Location(s): Greene, Missouri...

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CX-001548: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001548: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date: 0415...

442

CX-005047: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005047: Categorical Exclusion Determination Chicago Area Alternative Fuels Deployment Project CX(s) Applied: B5.1 Date: 01192011 Location(s):...

443

CX-005459: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005459: Categorical Exclusion Determination Minnesota Ethanol (E85) Fueling Network Expansion Project CX(s) Applied: B5.1 Date: 03142011...

444

CX-005081: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-005081: Categorical Exclusion Determination New York State Retail Ethanol Fueling Station Project CX(s) Applied: B5.1 Date: 01242011 Location(s): Macedon,...

445

CX-005348: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005348: Categorical Exclusion Determination E85 (Ethanol) Retail Fueling Infrastructure Installation CX(s) Applied: B5.1 Date: 03022011...

446

CX-009335: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-009335: Categorical Exclusion Determination E85 (Ethanol) Retail Fueling Infrastructure Installation CX(s) Applied: B5.22 Date: 09242012...

447

CX-005460: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005460: Categorical Exclusion Determination Minnesota Ethanol (E85) Fueling Network Expansion Project CX(s) Applied: B5.1 Date: 03152011...

448

CX-005080: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-005080: Categorical Exclusion Determination New York State Retail Ethanol Fueling Station Project CX(s) Applied: B5.1 Date: 01242011 Location(s): Rockville...

449

CX-004976: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-004976: Categorical Exclusion Determination New York State Retail Ethanol Fueling Station Project (Summary Categorical Exclusion - Seven Sites) CX(s) Applied:...

450

CX-005061: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-005061: Categorical Exclusion Determination Minnesota Ethanol Fueling Network Expansion Project CX(s) Applied: B5.1 Date: 01232011 Location(s):...

451

CX-002806: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002806: Categorical Exclusion Determination E85 (Ethanol) Retail Fueling Infrastructure Installation CX(s) Applied: B5.1 Date: 06222010...

452

CX-006533: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-006533: Categorical Exclusion Determination Installation of Retail Biofuel Fueling Infrastructure CX(s) Applied: A1, B5.1 Date: 08252011 Location(s): Byron,...

453

CX-002971: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-002971: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project CX(s) Applied: B5.1 Date: 07092010 Location(s): Glastonbury,...

454

CX-001142: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-001142: Categorical Exclusion Determination Clean Cities Refueling Infrastructure for Alternative Fuels CX(s) Applied: A1, A9 Date: 03102010...

455

CX-010185: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-010185: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project CX(s) Applied: B5.22 Date: 04182013 Location(s): Connecticut...

456

CX-009391: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-009391: Categorical Exclusion Determination Clean Cities Refueling Infrastructure for Alternative Fuels (Revised Phase 2) CX(s) Applied: B5.22...

457

CX-009392: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-009392: Categorical Exclusion Determination Clean Cities Refueling Infrastructure for Alternative Fuels - Phase Three CX(s) Applied: B5.22...

458

CX-010186: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-010186: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project CX(s) Applied: B5.22 Date: 04182013 Location(s): Connecticut...

459

CX-002342: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-002342: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project - Fairfield CX(s) Applied: B5.1, B6.3 Date: 05112010...

460

CX-003375: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-003375: Categorical Exclusion Determination Clean Cities Refueling Infrastructure for Alternative Fuels (Phase One) CX(s) Applied: B5.1 Date:...

Note: This page contains sample records for the topic "determining optimal fuel" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CX-000366: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-000366: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project CX(s) Applied: A9, A11 Date: 12102009 Location(s): Bethany,...

462

CX-003377: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-003377: Categorical Exclusion Determination Clean Cities Refueling Infrastructure for Alternative Fuels (Phase Two) CX(s) Applied: B5.1 Date:...

463

CX-002889: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-002889: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project CX(s) Applied: B5.1 Date: 07092010 Location(s): Meriden,...

464

CX-002340: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-002340: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project - Bridgeport CX(s) Applied: B5.1 Date: 05112010 Location(s):...

465

CX-003376: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-003376: Categorical Exclusion Determination Clean Cities Refueling Infrastructure for Alternative Fuels (Phase Three) CX(s) Applied: B5.1 Date:...

466