National Library of Energy BETA

Sample records for determine end-use product

  1. Energy balances in the production and end-use of methanol derived from coal

    SciTech Connect (OSTI)

    1980-12-10

    Analysis is performed for three combinations of fuels, specifically: net petroleum gain (petroleum only); net premium fuel gain (natural gas and petroleum); and net energy gain (includes all fuels; does not include free energy from sun). The base case selected for evaluation was that of an energy-efficient coal-to-methanol plant located in Montana/Wyoming and using the Lurgi conversion process. The following variations of the base coal-methanol case are also analyzed: gasoline from coal with methanol as an intermediate step (Mobil-M); and methanol from coal (Texaco gasification process). For each process, computations are made for the product methanol as a replacement for unleaded gasoline in a conventional spark ignition engine and as a chemical feedstock. For the purpose of the energy analysis, computations are made for three situations regarding mileage of methanol/ gasoline compared to that of regular unleaded gasoline: mileage of the two fuels equal, mileage 4 percent better with gasohol, and mileage 4 percent worse with gasohol. The standard methodology described for the base case applies to all of the variations.

  2. Trends in End-Use Industries to Shape Growth in Global Forest Products Market, According to a New Report by Global Industry Analysts

    E-Print Network [OSTI]

    , such as origin of raw materials, and manufacturing process. Globalization offers several benefits to the industry technologically improved products. Globalization has also brought about a gradual change, with sourcing of raw materials shifting to emerging forest producing regions. Demand for forest products is also determined

  3. End Use and Fuel Certification

    Broader source: Energy.gov [DOE]

    Breakout Session 2: Frontiers and Horizons Session 2–B: End Use and Fuel Certification John Eichberger, Vice President of Government Relations, National Association for Convenience Stores

  4. End-Use Sector Flowchart

    Broader source: Energy.gov [DOE]

    This system of energy intensity indicators for total energy covers the economy as a whole and each of the major end-use sectors—transportation, industry, commercial and residential—identified in Figure 1. By clicking on any of the boxes with the word "Sector" in the title will reveal the more detailed structure within that sector.

  5. Biomass Resource Allocation among Competing End Uses

    SciTech Connect (OSTI)

    Newes, E.; Bush, B.; Inman, D.; Lin, Y.; Mai, T.; Martinez, A.; Mulcahy, D.; Short, W.; Simpkins, T.; Uriarte, C.; Peck, C.

    2012-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model developed by the U.S. Department of Energy as a tool to better understand the interaction of complex policies and their potential effects on the biofuels industry in the United States. However, it does not currently have the capability to account for allocation of biomass resources among the various end uses, which limits its utilization in analysis of policies that target biomass uses outside the biofuels industry. This report provides a more holistic understanding of the dynamics surrounding the allocation of biomass among uses that include traditional use, wood pellet exports, bio-based products and bioproducts, biopower, and biofuels by (1) highlighting the methods used in existing models' treatments of competition for biomass resources; (2) identifying coverage and gaps in industry data regarding the competing end uses; and (3) exploring options for developing models of biomass allocation that could be integrated with the BSM to actively exchange and incorporate relevant information.

  6. End-use taxes: Current EIA practices

    SciTech Connect (OSTI)

    Not Available

    1994-08-17

    There are inconsistencies in the EIA published end-use price data with respect to Federal, state, and local government sales and excise taxes; some publications include end-use taxes and others do not. The reason for including these taxes in end-use energy prices is to provide consistent and accurate information on the total cost of energy purchased by the final consumer. Preliminary estimates are made of the effect on prices (bias) reported in SEPER (State Energy Price and Expenditure Report) resulting from the inconsistent treatment of taxes. EIA has undertaken several actions to enhance the reporting of end-use energy prices.

  7. Healthcare Energy End-Use Monitoring

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Healthcare Energy End-Use Monitoring Michael Sheppy, Shanti Pless, and Feitau Kung National Renewable Energy Laboratory Technical Report NRELTP-5500-61064 August 2014 NREL is a...

  8. Alabama Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"OmahaEnergy Sources and End Uses Topics: Energy Sources and End Uses End-UseA 6 J 9 U B u o f l53DecadeVehicle

  9. Alaska Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"OmahaEnergy Sources and End Uses Topics: Energy Sources and End Uses End-UseA 6 J 9 U BEstimatedSales (Billion342,261

  10. Arizona Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"OmahaEnergy Sources and End Uses Topics: Energy Sources and End Uses End-UseA 6 J 9Cubic Feet) Oil1369,739 330,914

  11. Arkansas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"OmahaEnergy Sources and End Uses Topics: Energy Sources and End Uses End-UseA 6 J 9CubicFeet)

  12. Preliminary CBECS End-Use Estimates

    U.S. Energy Information Administration (EIA) Indexed Site

    For the past three CBECS (1989, 1992, and 1995), we used a statistically-adjusted engineering (SAE) methodology to estimate end-use consumption. The core of the SAE methodology...

  13. Healthcare Energy End-Use Monitoring

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes the NREL partnership with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, which can be used to more effectively prioritize and refine the scope of investments in new metering and energy audits.

  14. Healthcare Energy End-Use Monitoring

    SciTech Connect (OSTI)

    Sheppy, M.; Pless, S.; Kung, F.

    2014-08-01

    NREL partnered with two hospitals (MGH and SUNY UMU) to collect data on the energy used for multiple thermal and electrical end-use categories, including preheat, heating, and reheat; humidification; service water heating; cooling; fans; pumps; lighting; and select plug and process loads. Additional data from medical office buildings were provided for an analysis focused on plug loads. Facility managers, energy managers, and engineers in the healthcare sector will be able to use these results to more effectively prioritize and refine the scope of investments in new metering and energy audits.

  15. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of34 End3.

  16. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of34 End3.7

  17. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of34 End3.78

  18. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of34

  19. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of348 End

  20. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of348 End7

  1. " Row: End Uses;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of348 End78

  2. Office Buildings - End-Use Equipment

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan FebElements)Feet) Decade8 45YearYearEnd-Use

  3. Realizing Building End-Use Efficiency with Ermerging Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    Information about the implementation of emerging technologies to maximize end-use efficiency in buildings.

  4. Engineered Products: Noncompliance Determination (2012-SE-5401)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Engineered Products Company finding that basic model 15701 of metal halide lamp fixture does not comport with the energy conservation standards.

  5. Monitoring of Electrical End-Use Loads in Commercial Buildings 

    E-Print Network [OSTI]

    Martinez, M.; Alereza, T.; Mort, D.

    1988-01-01

    custom-designed to facilitate collection and validation of the end-use load data. For example, the Load Profile Viewer is a PC-based software program for reviewing and validating the end-use load data....

  6. Engineer End Uses for Maximum Efficiency; Industrial Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    specified by the manufacturer, and the air going to all end uses should be free of condensate to maximize tool life and effectiveness. 6 End uses having similar air requirements...

  7. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energy’s (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed table of energy end use by sector with mechanical drives broken down by pumps, fans, compressed air, and drives.

  8. Detailed End Use Load Modeling for Distribution System Analysis

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Fuller, Jason C.

    2010-04-09

    The field of distribution system analysis has made significant advances in the past ten years. It is now standard practice when performing a power flow simulation to use an algorithm that is capable of unbalanced per-phase analysis. Recent work has also focused on examining the need for time-series simulations instead of examining a single time period, i.e., peak loading. One area that still requires a significant amount of work is the proper modeling of end use loads. Currently it is common practice to use a simple load model consisting of a combination of constant power, constant impedance, and constant current elements. While this simple form of end use load modeling is sufficient for a single point in time, the exact model values are difficult to determine and it is inadequate for some time-series simulations. This paper will examine how to improve simple time invariant load models as well as develop multi-state time variant models.

  9. Energy End-Use Intensities in Commercial Buildings1992 -- Overview/End-Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul1998,(Million CubicEnd1995 End-Use

  10. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimates The end-use estimates had two main sources: the 1989 Commercial Buildings Energy Consumption Survey (CBECS) and the Facility Energy Decision Screening (FEDS) system....

  11. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    as buildings of the 1980's. In this section, intensities are based upon the entire building stock, not just those buildings using a particular fuel for a given end use. This...

  12. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    N ATIONAL L ABORATORY India Energy Outlook: End Use DemandTables Figures Figure 1. India Primary Energy Supply by fuel33 Table 15. India Industry Energy Intensities (GJ/

  13. United States Industrial Sector Energy End Use Analysis

    E-Print Network [OSTI]

    Shehabi, Arman

    2014-01-01

    by end uses (e.g. , boilers, process, electric drives,MECS 2002, and MECS 1998 data. Indirect Uses-Boiler FuelConventional Boiler Use CHP and/or Cogeneration Process

  14. Residential Behavioral Savings: An Analysis of Principal Electricity End Uses in British Columbia

    E-Print Network [OSTI]

    Tiedemann, Kenneth Mr.

    2013-01-01

    of residential end use electricity consumption for Britishresidential electricity consumption by end use Apply theresidential end use electricity consumption using a

  15. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3 End Uses

  16. Refining and End Use Study of Coal Liquids

    SciTech Connect (OSTI)

    1997-10-01

    This report summarizes revisions to the design basis for the linear programing refining model that is being used in the Refining and End Use Study of Coal Liquids. This revision primarily reflects the addition of data for the upgrading of direct coal liquids.

  17. Industrial Steam Power Cycles Final End-Use Classification 

    E-Print Network [OSTI]

    Waterland, A. F.

    1983-01-01

    Final end uses of steam include two major classifications: those uses that condense the steam against heat transfer surfaces to provide heat to an item of process or service equipment; and those that require a mass flow of steam for stripping...

  18. Energy end-use intensities in commercial buildings

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This report examines energy intensities in commercial buildings for nine end uses: space heating, cooling, ventilation, lighting, water heating, cooking, refrigeration, office equipment, and other. The objective of this analysis was to increase understanding of how energy is used in commercial buildings and to identify targets for greater energy efficiency which could moderate future growth in demand. The source of data for the analysis is the 1989 Commercial Buildings Energy Consumption survey (CBECS), which collected detailed data on energy-related characteristics and energy consumption for a nationally representative sample of approximately 6,000 commercial buildings. The analysis used 1989 CBECS data because the 1992 CBECS data were not yet available at the time the study was initiated. The CBECS data were fed into the Facility Energy Decision Screening (FEDS) system, a building energy simulation program developed by the US Department of Energy`s Pacific Northwest Laboratory, to derive engineering estimates of end-use consumption for each building in the sample. The FEDS estimates were then statistically adjusted to match the total energy consumption for each building. This is the Energy Information Administration`s (EIA) first report on energy end-use consumption in commercial buildings. This report is part of an effort to address customer requests for more information on how energy is used in buildings, which was an overall theme of the 1992 user needs study. The end-use data presented in this report were not available for publication in Commercial Buildings Energy Consumption and Expenditures 1989 (DOE/EIA-0318(89), Washington, DC, April 1992). However, subsequent reports on end-use energy consumption will be part of the Commercial Buildings Energy Consumption and Expenditures series, beginning with a 1992 data report to be published in early 1995.

  19. REFINING AND END USE STUDY OF COAL LIQUIDS

    SciTech Connect (OSTI)

    Unknown

    2002-01-01

    This document summarizes all of the work conducted as part of the Refining and End Use Study of Coal Liquids. There were several distinct objectives set, as the study developed over time: (1) Demonstration of a Refinery Accepting Coal Liquids; (2) Emissions Screening of Indirect Diesel; (3) Biomass Gasification F-T Modeling; and (4) Updated Gas to Liquids (GTL) Baseline Design/Economic Study.

  20. Marx's Thesis that the Forces of Production Determine the Relations of Production

    E-Print Network [OSTI]

    Tollefson, Erik

    's Thesis that the Forces of Production Determine the Relations of Production ERIK TOLLEFSON University of Kansas A perennial objection against historical materi­ alism is that that which is determined seems capable of becoming independent....e. the forces of production, the relations of production, and the superstructure), rather than the usual two (i.e. the economic base and its superstructure). Distinguishing the forces of pro­ duction from relations of production is advantageous...

  1. Healthcare Energy: Using End-Use Data to Inform Decisions | Department...

    Energy Savers [EERE]

    Using End-Use Data to Inform Decisions Healthcare Energy: Using End-Use Data to Inform Decisions The Building Technologies Office conducted a healthcare energy end-use monitoring...

  2. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of Fuel

  3. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of Fuel3.

  4. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of Fuel3.4.

  5. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of Fuel3.4.1

  6. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of

  7. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3 End

  8. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3 End1 End

  9. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3 End1

  10. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3 End13

  11. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3 End134

  12. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3 End1341

  13. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3 End13412

  14. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3

  15. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of34 End

  16. Table 5.3 End Uses of Fuel Consumption, 2010;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan995 1555.3 End Uses of Fuel

  17. Table 5.4 End Uses of Fuel Consumption, 2010;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan995 1555.3 End Uses of

  18. Table 5.5 End Uses of Fuel Consumption, 2010;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan995 1555.3 End Uses of5 End

  19. Table 5.6 End Uses of Fuel Consumption, 2010;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan995 1555.3 End Uses of5

  20. Table 5.7 End Uses of Fuel Consumption, 2010;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan995 1555.3 End Uses of57

  1. Table 5.8 End Uses of Fuel Consumption, 2010;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan995 1555.3 End Uses of578

  2. Energy End-Use Intensities in Commercial Buildings 1989 -- Executive

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul1998,(Million CubicEnd Use:‹Home

  3. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    SciTech Connect (OSTI)

    McKone, Thomas E.; Lobscheid, A.B.

    2006-06-01

    This study assesses for California how increasing end-use electrical energy efficiency from installing residential insulation impacts exposures and disease burden from power-plant pollutant emissions. Installation of fiberglass attic insulation in the nearly 3 million electricity-heated homes throughout California is used as a case study. The pollutants nitrous oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), fine particulate matter (PM2.5), benzo(a)pyrene, benzene, and naphthalene are selected for the assessment. Exposure is characterized separately for rural and urban environments using the CalTOX model, which is a key input to the US Environmental Protection Agency (EPA) Tool for the Reduction and Assessment of Chemicals and other environmental Impacts (TRACI). The output of CalTOX provides for urban and rural populations emissions-to-intake factors, which are expressed as an individual intake fraction (iFi). The typical iFi from power plant emissions are on the order of 10{sup -13} (g intake per g emitted) in urban and rural regions. The cumulative (rural and urban) product of emissions, population, and iFi is combined with toxic effects factors to determine human damage factors (HDFs). HDF are expressed as disability adjusted life years (DALYs) per kilogram pollutant emitted. The HDF approach is applied to the insulation case study. Upgrading existing residential insulation to US Department of Energy (DOE) recommended levels eliminates over the assmned 50-year lifetime of the insulation an estimated 1000 DALYs from power-plant emissions per million tonne (Mt) of insulation installed, mostly from the elimination of PM2.5 emissions. In comparison, the estimated burden from the manufacture of this insulation in DALYs per Mt is roughly four orders of magnitude lower than that avoided.

  4. Financing end-use solar technologies in a restructured electricity industry: Comparing the cost of public policies

    SciTech Connect (OSTI)

    Jones, E.; Eto, J.

    1997-09-01

    Renewable energy technologies are capital intensive. Successful public policies for promoting renewable energy must address the significant resources needed to finance them. Public policies to support financing for renewable energy technologies must pay special attention to interactions with federal, state, and local taxes. These interactions are important because they can dramatically increase or decrease the effectiveness of a policy, and they determine the total cost of a policy to society as a whole. This report describes a comparative analysis of the cost of public policies to support financing for two end-use solar technologies: residential solar domestic hot water heating (SDHW) and residential rooftop photovoltaic (PV) systems. The analysis focuses on the cost of the technologies under five different ownership and financing scenarios. Four scenarios involve leasing the technologies to homeowners in return for a payment that is determined by the financing requirements of each form of ownership. For each scenario, the authors examine nine public policies that might be used to lower the cost of these technologies: investment tax credits (federal and state), production tax credits (federal and state), production incentives, low-interest loans, grants (taxable and two types of nontaxable), direct customer payments, property and sales tax reductions, and accelerated depreciation.

  5. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Statistics and Programme Implementation published a condensed version of statics related to energy production and consumption (

  6. Renewable Electricity Futures Study Volume 3: End-Use Electricity Demand

    Broader source: Energy.gov [DOE]

    This volume details the end-use electricity demand and efficiency assumptions. The projection of electricity demand is an important consideration in determining the extent to which a predominantly renewable electricity future is feasible. Any scenario regarding future electricity use must consider many factors, including technological, sociological, demographic, political, and economic changes (e.g., the introduction of new energy-using devices; gains in energy efficiency and process improvements; changes in energy prices, income, and user behavior; population growth; and the potential for carbon mitigation).

  7. India Energy Outlook: End Use Demand in India to 2020

    SciTech Connect (OSTI)

    de la Rue du Can, Stephane; McNeil, Michael; Sathaye, Jayant

    2009-03-30

    Integrated economic models have been used to project both baseline and mitigation greenhouse gas emissions scenarios at the country and the global level. Results of these scenarios are typically presented at the sectoral level such as industry, transport, and buildings without further disaggregation. Recently, a keen interest has emerged on constructing bottom up scenarios where technical energy saving potentials can be displayed in detail (IEA, 2006b; IPCC, 2007; McKinsey, 2007). Analysts interested in particular technologies and policies, require detailed information to understand specific mitigation options in relation to business-as-usual trends. However, the limit of information available for developing countries often poses a problem. In this report, we have focus on analyzing energy use in India in greater detail. Results shown for the residential and transport sectors are taken from a previous report (de la Rue du Can, 2008). A complete picture of energy use with disaggregated levels is drawn to understand how energy is used in India and to offer the possibility to put in perspective the different sources of end use energy consumption. For each sector, drivers of energy and technology are indentified. Trends are then analyzed and used to project future growth. Results of this report provide valuable inputs to the elaboration of realistic energy efficiency scenarios.

  8. Method of determining forest production from remotely sensed forest parameters

    DOE Patents [OSTI]

    Corey, J.C.; Mackey, H.E. Jr.

    1987-08-31

    A method of determining forest production entirely from remotely sensed data in which remotely sensed multispectral scanner (MSS) data on forest 5 composition is combined with remotely sensed radar imaging data on forest stand biophysical parameters to provide a measure of forest production. A high correlation has been found to exist between the remotely sensed radar imaging data and on site measurements of biophysical 10 parameters such as stand height, diameter at breast height, total tree height, mean area per tree, and timber stand volume.

  9. Energy Demand: Limits on the Response to Higher Energy Prices in the End-Use Sectors (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    Energy consumption in the end-use demand sectorsresidential, commercial, industrial, and transportationgenerally shows only limited change when energy prices increase. Several factors that limit the sensitivity of end-use energy demand to price signals are common across the end-use sectors. For example, because energy generally is consumed in long-lived capital equipment, short-run consumer responses to changes in energy prices are limited to reductions in the use of energy services or, in a few cases, fuel switching; and because energy services affect such critical lifestyle areas as personal comfort, medical services, and travel, end-use consumers often are willing to absorb price increases rather than cut back on energy use, especially when they are uncertain whether price increases will be long-lasting. Manufacturers, on the other hand, often are able to pass along higher energy costs, especially in cases where energy inputs are a relatively minor component of production costs. In economic terms, short-run energy demand typically is inelastic, and long-run energy demand is less inelastic or moderately elastic at best.

  10. North Dakota Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb MarthroughFeet) DecadeProduction 0Decade Year-03,806

  11. Letter Report on Testing of Distributed Energy Resource, Microgrid, and End-Use

    E-Print Network [OSTI]

    Letter Report on Testing of Distributed Energy Resource, Microgrid, and End-Use Efficiency of Distributed Energy Resource, Microgrid, and End Use Efficiency Technologies (Task 8) This completes Under Cooperative Agreement No. DE-FC26-06NT42847 Hawai`i Distributed Energy Resource Technologies

  12. Efficient Multi-Level Modeling and Monitoring of End-use Energy Profile in Commercial Buildings

    E-Print Network [OSTI]

    Kang, Zhaoyi

    2015-01-01

    buildings”. In: Energy Efficiency 5.2 (2012), pp. 149–162. [Sys- tems for Energy-Efficiency in Buildings. ACM. 2011, pp.Efficient Multi-Level Modeling and Monitoring of End-use

  13. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01

    4. Figure 5-5. 1993 Electricity Consumption Estimates by EndkWh/ft ) 1993 Electricity Consumption Estimates by End Useof Total) 1993 Electricity Consumption Estimates by End Use

  14. ,"U.S. Distillate Fuel Oil and Kerosene Sales by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Distillate Fuel Oil and Kerosene Sales by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  15. Passive sampling methods to determine household and personal care product use

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    Passive sampling methods to determine household and personal care product use DEBORAH H. BENNETTa, cleaning products, passive sampling, SUPERB, longitudinal. Introduction Personal care and household care products, such as cleaning products and pesticides, are frequently used in most house- holds although

  16. GridLAB-D Technical Support Document: Residential End-Use Module Version 1.0

    SciTech Connect (OSTI)

    Taylor, Zachary T.; Gowri, Krishnan; Katipamula, Srinivas

    2008-07-31

    1.0 Introduction The residential module implements the following end uses and characteristics to simulate the power demand in a single family home: • Water heater • Lights • Dishwasher • Range • Microwave • Refrigerator • Internal gains (plug loads) • House (heating/cooling loads) The house model considers the following four major heat gains/losses that contribute to the building heating/cooling load: 1. Conduction through exterior walls, roof and fenestration (based on envelope UA) 2. Air infiltration (based on specified air change rate) 3. Solar radiation (based on CLTD model and using tmy data) 4. Internal gains from lighting, people, equipment and other end use objects. The Equivalent Thermal Parameter (ETP) approach is used to model the residential loads and energy consumption. The following sections describe the modeling assumptions for each of the above end uses and the details of power demand calculations in the residential module.

  17. ,"South Carolina Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by End Use" ,"ClickConsumption by End Use"

  18. ,"South Dakota Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by End Use"Summary"Consumption by End Use"

  19. A functional analysis of electrical load curve modelling for some households specific electricity end-uses

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    domestic end-uses, the development of plug-in hybrid and electric vehicles, the increase of heat pumps heating systems such as heat pumps in new building or which will replace old installed fossil fuels based influences: · best building insulation which will reduce the energy needs for heating and cooling; · new

  20. Wood stove use in the end-use load and consumer assessment program residential base sample

    SciTech Connect (OSTI)

    LeBaron, B.A.

    1988-11-01

    This report examines wood heating in the End-Use Load and Consumer Assessment Program (ELCAP) Residential Base Sample during the 1985/1986 heating season. The goals of this study were to assess the frequency of wood burning in homes having wood burning equipment and to estimate the quantity of electrical space heat displaced by it use. 15 refs., 18 figs., 6 tabs.

  1. Electricity end-use efficiency: Experience with technologies, markets, and policies throughout the world

    SciTech Connect (OSTI)

    Levine, M.D.; Koomey, J.; Price, L. [Lawrence Berkeley Lab., CA (United States); Geller, H.; Nadel, S. [American Council for an Energy-Efficient Economy, Washington, DC (United States)

    1992-03-01

    In its August meeting in Geneva, the Energy and Industry Subcommittee (EIS) of the Policy Response Panel of the Intergovernmental Panel on Climate Change (IPCC) identified a series of reports to be produced. One of these reports was to be a synthesis of available information on global electricity end-use efficiency, with emphasis on developing nations. The report will be reviewed by the IPCC and approved prior to the UN Conference on Environment and Development (UNCED), Brazil, June 1992. A draft outline for the report was submitted for review at the November 1991 meeting of the EIS. This outline, which was accepted by the EIS, identified three main topics to be addressed in the report: status of available technologies for increasing electricity end-use efficiency; review of factors currently limiting application of end-use efficiency technologies; and review of policies available to increase electricity end-use efficiency. The United States delegation to the EIS agreed to make arrangements for the writing of the report.

  2. Implementation of Reverse Logistics in the Determination and Formulation of Product End-of-Life Strategies

    E-Print Network [OSTI]

    Aristomenis, Antoniadis

    1 Implementation of Reverse Logistics in the Determination and Formulation of Product End-of-life strategies, reverse logistics, product design. 1. INTRODUCTION Traditionally, product design and #12;2 government have to manage reverse logistics according to the existing end-of-life options

  3. Determination of alternative fuels combustion products: Phase 1 report

    SciTech Connect (OSTI)

    Whitney, K.A.

    1997-09-01

    This report describes the laboratory effort to identify and quantify organic exhaust species generated from alternative-fueled light-duty vehicles operating over the Federal Test Procedure on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline. The exhaust species from these vehicles were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without a vehicle catalyst in place to determine the influence of a catalytic converter on species formation.

  4. Determination of alternative fuels combustion products: Phase 2 final report

    SciTech Connect (OSTI)

    Whitney, K.A.

    1997-06-01

    This report describes the laboratory efforts to accomplish four independent tasks: (1) speciation of hydrocarbon exhaust emissions from a light-duty vehicle operated over the chassis dynamometer portion of the light-duty FTP after modifications for operation on butane and butane blends; (2) evaluation of NREL`s Variable Conductance Vacuum Insulated Catalytic Converter Test Article 4 for the reduction of cold-start FTP exhaust emissions after extended soak periods for a Ford FFV Taurus operating on E85; (3) support of UDRI in an attempt to define correlations between engine-out combustion products identified by SwRI during chassis dynamometer testing, and those found during flow tube reactor experiments conducted by UDRI; and (4) characterization of small-diameter particulate matter from a Ford Taurus FFV operating in a simulated fuel-rich failure mode on CNG, LPG, M85, E85, and reformulated gasoline. 22 refs., 18 figs., 17 tabs.

  5. Determination of alternative fuels combustion products: Phase 3 report

    SciTech Connect (OSTI)

    Whitney, K.A.

    1997-12-01

    This report describes the laboratory efforts to characterize particulate and gaseous exhaust emissions from a passenger vehicle operating on alternative fuels. Tests were conducted at room temperature (nominally 72 F) and 20 F utilizing the chassis dynamometer portion of the FTP for light-duty vehicles. Fuels evaluated include Federal RFG, LPG meeting HD-5 specifications, a national average blend of CNG, E85, and M85. Exhaust particulate generated at room temperature was further characterized to determine polynuclear aromatic content, trace element content, and trace organic constituents. For all fuels except M85, the room temperature particulate emission rate from this vehicle was about 2 to 3 mg/mile. On M85, the particulate emission rate was more than 6 mg/mile. In addition, elemental analysis of particulate revealed an order of magnitude more sulfur and calcium from M85 than any other fuel. The sulfur and calcium indicate that these higher emissions might be due to engine lubricating oil in the exhaust. For RFG, particulate emissions at 20 F were more than six times higher than at room temperature. For alcohol fuels, particulate emissions at 20 F were two to three times higher than at room temperature. For CNG and LPG, particulate emissions were virtually the same at 72 F and 20 F. However, PAH emissions from CNG and LPG were higher than expected. Both gaseous fuels had larger amounts of pyrene, 1-nitropyrene, and benzo(g,h,i)perylene in their emissions than the other fuels.

  6. Latitudinal gradients in sea ice and primary production determine Arctic seabird colony

    E-Print Network [OSTI]

    Laidre, Kristin L.

    -scale control on energy flux and primary and secondary production, ultimately reaching the top of the food chainLatitudinal gradients in sea ice and primary production determine Arctic seabird colony size Naturama, Dronningemaen 30, 5700 Svendborg, Denmark 4 Department of Arctic Environment, National

  7. Energy Conservation: Policy Issues and End-Use Scenarios of Savings Potential -- Part 3, Policy Barriers and Investment Decisions in Industry

    E-Print Network [OSTI]

    Benenson, Peter

    2011-01-01

    CONAES) and FEA End Use Energy Consumption Data Base: 1978).and FEA End Use Energy Consumption Data Base: 1978). (3)CONAES) and FEA End Use Energy Consumption Data Base: 1978).

  8. Correct quantitative determination of ethanol and volatile compounds in alcohol products

    E-Print Network [OSTI]

    Charapitsa, Siarhei; Sytova, Svetlana; Yakuba, Yurii

    2014-01-01

    Determination of the volume content of ethanol in the alcohol products in practice is usually determined by pycnometry, electronic densimetry, or densimetry using a hydrostatic balance in accordance with Commission Regulation No 2870/2000. However, these methods determine directly only density of the tested liquid sample and does not take into account the effects of other volatile components such as aldehydes, esters and higher alcohols. So they are appropriate only for binary water-ethanol solutions in accordance with international table adopted by the International Legal Metrology Organization in its Recommendation No 22. Availability notable concentrations of the higher alcohols and ethers in different alcohol-based products, e. g. in whisky, cognac, brandy, wine as well as in waste alcohol and alcohol beverage production, leads to the significant contribution of these compounds in the value of the density of tested alcohol-containing sample. As a result, determination of the volume of ethanol content for ...

  9. Refining and end use study of coal liquids. Quarterly report, July-- September 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-31

    Bechtel, with Southwest Research Institute, Amoco Oil R&D, and the M.W. Kellogg Co. as subcontractors, initiated a study on November 1, 1993, for the US Department of Energy`s (DOE`s) Pittsburgh Energy Technology Center (PETC) to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An integral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products. The cost analyses is for the incremental processing cost; in other words, the feed is priced at zero dollars. The study reflects costs for operations using state of the art refinery technology; no capital costs for building new refineries is considered. Some modifications to the existing refinery may be required. Economy of scale dictates the minimum amount of feedstock that should be processed.

  10. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of348

  11. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3482. End

  12. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3482. End5

  13. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3482.

  14. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3482.5 End

  15. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3482.5

  16. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3482.55

  17. " Row: End Uses;" " Column: Energy Sources, including Net Electricity;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.9612. End Uses of3482.556

  18. ,"Massachusetts Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNGUndergroundDryAnnual",2014Consumption by End Use"

  19. ,"Ohio Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead Price (Dollars per Thousand Cubic Feet)"Consumption by End Use"

  20. ,"Rhode Island Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008Wellhead PriceConsumption by End Use" ,"Click worksheet name or tab at

  1. ,"West Virginia Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA -Annual",2014Proved Reserves, WetGas,Consumption by End Use" ,"Click

  2. ,"Colorado Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG Storage NetConsumption by End Use" ,"Click worksheet

  3. ,"Connecticut Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008LNG Storage NetConsumptionConsumption by End Use"

  4. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of33 2,297 809 245 15504 End Uses of1

  5. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of33 2,297 809 245 15504 End Uses of12

  6. Energy End-Use Intensities in Commercial Buildings 1989 data -- Publication

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul1998,(Million CubicEnd Use:‹Homeand

  7. Energy End-Use Intensities in Commercial Buildings 1995 - Index Page

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul1998,(Million CubicEnd1995 End-Use Data

  8. Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses

    E-Print Network [OSTI]

    Large CO2 reductions via offshore wind power matched to inherent storage in energy end-uses Willett develop methods for assessing offshore wind resources, using a model of the vertical structure offshore wind power matched to inherent storage in energy end- uses, Geophys. Res. Lett., 34, L02817, doi

  9. Determination of {sup 140}La fission product interference factor for INAA

    SciTech Connect (OSTI)

    Ribeiro Jr, Iberê S.; Genezini, Frederico A.; Saiki, Mitiko; Zahn, Guilherme S.

    2014-11-11

    Instrumental Neutron Activation Analysis (INAA) is a technique widely used to determine the concentration of several elements in several kinds of matrices. However if the sample of interest has higher relative uranium concentration the obtained results can be interfered by the uranium fission products. One of these cases that is affected by interference due to U fission is the {sup 140}La, because this radioisotope used in INAA for the determination of concentration the La is also produced by the {sup ?}? of {sup 140}Ba, an uranium fission product. The {sup 140}La interference factor was studied in this work and a factor to describe its time dependence was obtained.

  10. Scalar products in GL(3)-based models with trigonometric R-matrix. Determinant representation

    E-Print Network [OSTI]

    N. A. Slavnov

    2015-03-20

    We study quantum integrable GL(3)-based models with a trigonometric R-matrix solvable by the nested algebraic Bethe ansatz. We derive a determinant representation for a special case of scalar products of Bethe vectors. This representation allows one to find a determinant formula for the form factor of one of the monodromy matrix entries. We also point out essential difference between form factors in the models with the trigonometric R-matrix and their analogs in GL(3)-invariant models.

  11. Refining and end use study of coal liquids. Quarterly report, April--June 1996

    SciTech Connect (OSTI)

    NONE

    1997-12-31

    Bechtel, with Southwest Research Institute, Amoco Oil R&D, and the M.W. Kellogg Co. as subcontractors, initiated a study on November 1, 1993, for the U.S. Department of Energy`s (DOE`s) Pittsburgh Energy Technology Center (PETC) to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. This 47-month study, with an approved budget of $4.4 million dollars, is being performed under DOE Contract Number DE-AC22-93PC91029. A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An integral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards.

  12. The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions

    SciTech Connect (OSTI)

    Kyle, G. Page; Smith, Steven J.; Clarke, Leon E.; Kim, Son H.; Wise, Marshall A.

    2007-11-27

    This report documents a scenario analysis exploring the value of advanced technologies in the U.S. buildings, industrial, and transportation sectors in stabilizing atmospheric greenhouse gas concentrations. The analysis was conducted by staff members of Pacific Northwest National Laboratory (PNNL), working at the Joint Global Change Research Institute (JGCRI) in support of the strategic planning process of the U.S. Department of Energy (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The conceptual framework for the analysis is an integration of detailed buildings, industrial, and transportation modules into MiniCAM, a global integrated assessment model. The analysis is based on three technology scenarios, which differ in their assumed rates of deployment of new or presently available energy-saving technologies in the end-use sectors. These technology scenarios are explored with no carbon policy, and under two CO2 stabilization policies, in which an economic price on carbon is applied such that emissions follow prescribed trajectories leading to long-term stabilization of CO2 at roughly 450 and 550 parts per million by volume (ppmv). The costs of meeting the emissions targets prescribed by these policies are examined, and compared between technology scenarios. Relative to the reference technology scenario, advanced technologies in all three sectors reduce costs by 50% and 85% for the 450 and 550 ppmv policies, respectively. The 450 ppmv policy is more stringent and imposes higher costs than the 550 ppmv policy; as a result, the magnitude of the economic value of energy efficiency is four times greater for the 450 ppmv policy than the 550 ppmv policy. While they substantially reduce the costs of meeting emissions requirements, advanced end-use technologies do not lead to greenhouse gas stabilization without a carbon policy. This is due mostly to the effects of increasing service demands over time, the high consumption of fossil fuels in the electricity sector, and the use of unconventional feedstocks in the liquid fuel refining sector. Of the three end-use sectors, advanced transportation technologies have the greatest potential to reduce costs of meeting carbon policy requirements. Services in the buildings and industrial sectors can often be supplied by technologies that consume low-emissions fuels such as biomass or, in policy cases, electricity. Passenger transportation, in contrast, is especially unresponsive to climate policies, as the fuel costs are small compared to the time value of transportation and vehicle capital and operating costs. Delaying the transition from reference to advanced technologies by 15 years increases the costs of meeting 450 ppmv stabilization emissions requirements by 21%, but the costs are still 39% lower than the costs assuming reference technology. The report provides a detailed description of the end-use technology scenarios and provides a thorough analysis of the results. Assumptions are documented in the Appendix.

  13. Residential Lighting End-Use Consumption Study: Estimation Framework and Initial Estimates

    SciTech Connect (OSTI)

    Gifford, Will R.; Goldberg, Miriam L.; Tanimoto, Paulo M.; Celnicker, Dane R.; Poplawski, Michael E.

    2012-12-01

    The U.S. DOE Residential Lighting End-Use Consumption Study is an initiative of the U.S. Department of Energy’s (DOE’s) Solid-State Lighting Program that aims to improve the understanding of lighting energy usage in residential dwellings. The study has developed a regional estimation framework within a national sample design that allows for the estimation of lamp usage and energy consumption 1) nationally and by region of the United States, 2) by certain household characteristics, 3) by location within the home, 4) by certain lamp characteristics, and 5) by certain categorical cross-classifications (e.g., by dwelling type AND lamp type or fixture type AND control type).

  14. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect (OSTI)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  15. Determination of combustion products from alternative fuels - part 1. LPG and CNG combustion products

    SciTech Connect (OSTI)

    Whitney, K.A.; Bailey, B.K.

    1994-10-01

    This paper describes efforts underway to identify volatile organic exhaust species generated by a light-duty vehicle operating over the Federal Test Procedure (FTP) on CNG and LPG, and to compare them to exhaust constituents generated from the same vehicle operating on a fuel blended to meet California Phase 2 specifications. The exhaust species from this vehicle were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without the vehicle`s catalytic converter in place to determine the influence of the vehicle`s catalyst on species formation. Speciation data showed greater than 87 percent of all LPG and greater than 95 percent of all CNG hydrocarbon exhaust constituents to be composed of C{sub 1} to C{sub 3} compounds. In addition, toxic emissions from the combustion of CNG and LPG were as low as 10 percent of those generated by combustion of gasoline. A comparison of ozone forming potential of the three fuels was made based on the Maximum Incremental Reactivity scale used by the California Air Resources Board. Post-catalyst results from stoichiometric operation indicated that LPG and CNG produced 63 percent and 88 percent less potential ozone than reformulated gasoline, respectively. On average over all equivalence ratios, CNG and LPG exhaust constituents were approximately 65 percent less reactive than those from reformulated gasoline. 4 refs., 3 figs., 14 tabs.

  16. July 11 Public Meeting: Physical Characterization of Grid-Connected Commercial And Residential Building End-Use Equipment And Appliances

    Broader source: Energy.gov [DOE]

    These documents contain the three slide decks presented at the public meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances, held on July 11, 2014 in Washington, DC.

  17. Refining and end use of coal liquids. Quarterly report, January--March 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An intregral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products. The cost analyses is for the incremental processing cost; in other words, the feed is priced at zero dollars. The study reflects costs for operations using state of the art refinery technology; no capital costs for building new refineries is considered. Some modifications to the existing refinery may be required. Economy of scale dictates the minimum amount of feedstock that should be processed. To enhance management of the study, the work has been divided into two parts, the Basic Program and Option 1. The objectives of the Basic Program are to: characterize the coal liquids; develop, an optimized refinery configuration for processing indirect and direct coal liquids; and develop a LP refinery model with the Process Industry Modeling System (PICS) software. The objectives of Option 1 are to: confirm the validity of the optimization work of the Basic Program; produce large quantities of liquid transportation fuel blending stocks; conduct engine emission tests; and determine the value and the processing costs of the coal liquids. The major efforts conducted during the first quarter of 1994 were in the areas of: subcontract preparation and negotiation; and linear programming modeling.

  18. Refining and end use of coal liquids. Quarterly report, November--December 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An intregral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products. The cost analyses is for the incremental processing cost; in other words, the feed is priced at zero dollars CIF refinery. The study reflects costs for operations using state of the art refinery technology; no capital costs for building of new refineries or units is considered. Economy of scale dictates the minimum amount of feedstock that should be processed. To enhance management of the study, the work has been divided into two parts, the Basic Program and Option 1. The objectives of the Basic Program are to: Characterize the coal liquids; Develop an optimized refinery configuration for processing indirect and direct coal liquids; and Develop a LP refinery model with the Process Industry Modeling System (PIMS) software. The objectives of Option 1 are to: Confirm the validity of the optimization work of the Basic Program; Produce large quantities of liquid transportation fuel blending stocks; Conduct engine emission tests; Determine the value and the processing costs of the coal liquids

  19. Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1

    SciTech Connect (OSTI)

    Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.

    1994-05-01

    This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

  20. 1980 survey and evaluation of utility conservation, load management, and solar end-use projects. Volume 3: utility load management projects. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The results of the 1980 survey of electric utility-sponsored energy conservation, load management, and end-use solar energy conversion projects are described. The work is an expansion of a previous survey and evaluation and has been jointly sponsored by EPRI and DOE through the Oak Ridge National Laboratory. There are three volumes and a summary document. Each volume presents the results of an extensive survey to determine electric utility involvement in customer-side projects related to the particular technology (i.e., conservation, solar, or load management), selected descriptions of utility projects and results, and first-level technical and economic evaluations.

  1. The use of negotiated agreements to improve efficiency of end-use appliances: First results from the European experience

    SciTech Connect (OSTI)

    Bertoldi, P.; Bowie, R.; Hagen, L.

    1998-07-01

    The European Union is pursuing measures to improve end-use equipment efficiency through a variety of policy instruments, in particular for domestic appliances. One of the most effective methods to achieve market transformation is through minimum efficiency performance standards (MEPS). However, after the difficulties and controversy following the adoption of legislation for MEPS for domestic refrigerators/freezers, a new policy instrument, i.e. negotiated agreements by manufacturers, has been investigated and tested for two type of appliances: domestic washing machines and TVs and VCRs. Based on the positive experience of the above two agreements, other products (e.g. dryers, dishwasher, electric water heaters, etc.) will be the subject of future negotiated agreements. Based on the results of the two negotiated agreements, this paper describes the energy efficiency potential, the procedures, and the advantages and disadvantages of negotiated agreements compared to legislated mandatory for MEPS, as developed in the European context. The paper concludes that negotiated agreements are a viable policy option, which allow flexibility in the implementation of the efficiency targets and therefore the adoption of cost-effective solutions for manufacturers. In addition, negotiated agreements can be implemented more quickly compared to mandatory MEPS and they allow a closer monitoring of the results. The main question asked in the paper is whether the negotiated agreements can deliver the results in the long term compared to what could be achieved through legislation. The European experience indicates that this instrument can deliver the results and that it offer a number of advantages compared to MEPS.

  2. 2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses

    E-Print Network [OSTI]

    Firestone, Jeremy

    2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses 4] We develop methods for assessing offshore wind 9 resources, using a model of the vertical structure. Dhanju, R. W. 26 Garvine, and M. Z. Jacobson (2007), Large CO2 reductions via 27 offshore wind power

  3. 2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses

    E-Print Network [OSTI]

    Firestone, Jeremy

    2 Large CO2 reductions via offshore wind power matched to inherent 3 storage in energy end-uses 4 by matching the winds of the 14 Middle-Atlantic Bight (MAB) to energy demand in the 15 adjacent states] We develop methods for assessing offshore wind 9 resources, using a model of the vertical structure

  4. Development of a Method Using BIM Technology to Determine the Utility Bill and Total Cost of Ownership of a Single-family Home 

    E-Print Network [OSTI]

    McGarity, Ashley

    2010-07-14

    Perspective ........................................................................ 23 5 Production: Annual Fuel End Use ........................................................................ 26 6 Production: Annual Electric End Use... .............................................. 18 3 Affordable: Amortized Payment of Single-Family Home ................................... 21 4 Method #1, Total Time ......................................................................................... 21 5 Production: Mortgage...

  5. IMPACTS OF GREENHOUSE GAS AND PARTICULATE EMISSIONS FROM WOODFUEL PRODUCTION AND END-USE IN SUB-SAHARAN AFRICA

    E-Print Network [OSTI]

    Kammen, Daniel M.

    resources like Gabon, Nigeria, and Angola, biomass constitutes the majority of national energy consumption-SAHARAN AFRICA Robert Bailis1 , David Pennise2 , Majid Ezzati3 , Daniel M. Kammen1,4 , Evans Kituyi5 1 Energy & African Center for Technology Studies, Nairobi, Kenya ABSTRACT: Household energy in sub-Saharan Africa

  6. Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results

    SciTech Connect (OSTI)

    Koomey, J.G.; Brown, R.E.; Richey, R.

    1995-12-01

    This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

  7. Understanding Superconducting Magnetic Energy Storage (SMES) technology, applications, and economics, for end-use workshop

    SciTech Connect (OSTI)

    Ferraro, R.J.; McConnell, B.W.

    1993-06-01

    The overall objective of this project was to determine the state-of-the-art and to what extent existing SMES is a viable option in meeting the needs of utilities and their customers for improving electric service power quality. By defining and analyzing SMES electrical/mechanical performance characteristics, and comparing SMES application benefits with competitive stored energy systems, industry will be able to determine SMES unique applications and potential market penetration. Building on this information base, it would also be possible to evaluate the impact of high temperature superconductors (77 K and 20-35 K) on SMES technology applications. The authors of this report constructed a network of industry contacts and research consultants that were used to collect, update, and analyze ongoing SMES R&D and marketing activities in industries, utilities, and equipment manufacturers. These key resources were utilized to assemble performance characteristics on existing SMES, battery, capacitor, flywheel, and high temperature superconductor (HTS) stored energy technologies. From this information, preliminary stored energy system comparisons were accomplished. In this way, the electric load needs would be readily comparable to the potential solutions and applications offered by each aforementioned energy storage technology.

  8. Determinants of export marketing strategies of forest products companies in the context of transition --The case of Slovakia

    E-Print Network [OSTI]

    Determinants of export marketing strategies of forest products companies in the context of export performance have been extensively examined in the literature. Although marketing strategy is considered to be one of the major determinants of export performance, little attention has been paid

  9. End Uses Mechanical Properties Settled By The Modified Sintering Conditions Of The Metal Injection Molding Process

    SciTech Connect (OSTI)

    Marray, Tarek [Laboratoire Materiaux, ECAM, 40 montee Saint Barthelemy, 69321, Lyon, Cedex 05 (France); Arts et Metiers ParisTech, MecaSurf Laboratory (EA 4496), 2, Cours des Arts et Metiers, 13617 Aix en Provence (France); Jaccquet, Philippe; Moinard-Checot, Delphine [Laboratoire Materiaux, ECAM, 40 montee Saint Barthelemy, 69321, Lyon, Cedex 05 (France); Arts et Metiers ParisTech, LaBoMaP, Rue Porte de Paris, 71250 CLUNY (France); Fabre, Agnes; Barrallier, Laurent [Arts et Metiers ParisTech, MecaSurf Laboratory (EA 4496), 2, Cours des Arts et Metiers, 13617 Aix en Provence (France)

    2011-01-17

    Most common mechanical applications require parts with specific properties as hard faced features. It is well known that treating parts under suitable atmospheres may improve hardness and strength yield of steels. Heat treatment process and more particularly thermo-chemical diffusion processes (such as carburizing or its variation: carbonitriding) can be performed to reach the industrial hardness profile requirements. In this work, a low-alloyed steel feedstock based on water soluble binder system is submitted to the MIM process steps (including injection molding, debinding and sintering). As-sintered parts are then treated under a low pressure carbonitriding treatment. This contribution focuses on preliminary results such as microstructural analyses and mechanical properties which are established at each stage of the process to determine and monitor changes.

  10. Agenda for Public Meeting on the Physical Characterization of Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    Download the agenda below for the July 11 Public Meeting on the Physical Characterization of Grid-Connected Commercial and  Residential Buildings End-Use Equipment and Appliances.

  11. Refining and end use study of coal liquids. Second quarter 1995 technical progress report, April--June 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01

    Bechtel, with Southwest Research Institute, Amoco Oil R&D, and the M.W. Kellogg Co. as subcontractors, initiated a study on November 1, 1993, for the U.S. Department of Energy`s (DOE`s) Pittsburgh Energy Technology Center (PETC) to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. This 47-month study, with an approved budget of $4.4 million dollars, is being performed under DOE Contract Number DE-AC22-93PC91029. A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An integral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products.

  12. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential Consumers (Number of33 2,297 809 245 15504 End Uses of

  13. Refining and end use study of coal liquids. Sixth quarterly technical progress report, December 19, 1994--March 26, 1995

    SciTech Connect (OSTI)

    NONE

    1995-08-01

    Bechtel, with Southwest Research Institute, Amoco Oil R&D, and the M.W. Kellogg Co. as subcontractors, initiated a study on November 1, 1993, for the U.S. Department of Energy`s (DOE`s) Pittsburgh Energy Technology Center (PETC) to determine the most cost effective and suitable combination of existing petroleum refinery processes needed to make specification transportation fuels or blending stocks, from direct and indirect coal liquefaction product liquids. This 47-month study, with an approved budget of $4.4 million dollars, is being performed under DOE Contract Number DE-AC22-93PC91029. A key objective is to determine the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g. year 2000, Clean Air Act Amendment (CAAA) standards. An integral part of the above objectives is to test the fuels or blends produced and compare them with established ASTM fuels. The comparison will include engine tests to ascertain compliance of the fuels produced with CAAA and other applicable fuel quality and performance standards. The final part of the project includes a detailed economic evaluation of the cost of processing the coal liquids to their optimum products. The cost analyses is for the incremental processing cost; in other words, the feed is priced at zero dollars. The study reflects costs for operations using state of the art refinery technology; no capital costs for building new refineries is considered. Some modifications to the existing refinery may be required. Economy of scale dictates the minimum amount of feedstock that should be processed.

  14. A RAPID SPECTROSCOPIC TECHNIQUE FOR DETERMINING THE POTENTIAL ALPHA ENERGY CONCENTRATION OF RADON DECAY PRODUCTS

    E-Print Network [OSTI]

    Revzan, K.L.

    2013-01-01

    Comparison of the Attachment the Decay Products of Radon-220and Radon-222 to Monodispersed Aerosols,". :! _. Aerosol.Kusnetz H.L. , 1956, "Radon Daughters in Mine Atmosphers.

  15. The evolution of carbon dioxide emissions from energy use in industrialized countries: an end-use analysis

    SciTech Connect (OSTI)

    Schipper, L.; Ting, M.; Khrushch, M.; Unander, F.; Monahan, P.; Golove, W.

    1996-08-01

    There has been much attention drawn to plans for reductions or restraint in future C02 emissions, yet little analysis of the recent history of those emissions by end use or economic activity. Understanding the components of C02 emissions, particularly those related to combustion of fossil fuels, is important for judging the likely success of plans for dealing with future emissions. Knowing how fuel switching, changes in economic activity and its structure, or changes in energy-use efficiency affected emissions in the past, we can better judge both the realism of national proposals to restrain future emissions and the outcome as well. This study presents a first step in that analysis. The organization of this paper is as follows. We present a brief background and summarize previous work analyzing changes in energy use using the factorial method. We then describe our data sources and method. We then present a series of summary results, including a comparison of C02 emissions in 1991 by end use or sector. We show both aggregate change and change broken down by factor, highlighting briefly the main components of change. We then present detailed results, sector by sector. Next we highlight recent trends. Finally, we integrate our results, discussing -the most important factors driving change - evolution in economic structure, changes in energy intensities, and shifts in the fuel mix. We discuss briefly some of the likely causes of these changes - long- term technological changes, effects of rising incomes, the impact of overall changes in energy prices, as well as changes in the relative prices of energy forms.

  16. Role of ex-vessel interactions in determining the severe reactor-accident source term for fission products. [PWR; BWR

    SciTech Connect (OSTI)

    Powers, D.A.; Brockmann, J.E.; Bradley, D.R.; Tarbell, W.W.

    1983-01-01

    The role fission-product release and aerosol generation outside the primary system can have in determining the severe reactor-accident source term is reviewed. Recent analytical and experimental studies of major causes of ex-vessel fission product release and aerosol generation are described. The ejection of molten-core debris from a pressurized-reactor vessel is shown to be a potentially large source of aerosols that has not been recognized in past severe-accident evaluations. A mechanistic model of fission-product release during core-debris interactions with concrete is discussed. Calculations with this model are compared to correlations of experimental data and previous estimates of ex-vessel fission-product release. Predictions with the mechanistic model agree quite well with the data correlations but do not agree at all well with estimates made in the past.

  17. 2014-04-30 Public Meeting Agenda: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    This document is the agenda for the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting being held on April 30, 2014.

  18. 2014-04-30 Public Meeting Presentation Slides: Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014.

  19. H + D2 reaction dynamics. Determination of the product state distributions at a collision energy of 1.3 eV

    E-Print Network [OSTI]

    H + D2 reaction dynamics. Determination of the product state distributions at a collision energy-photon resonance, three-photon ionization has been used to determine the HD product internal state distribution by a 266 nm laser pulse to dissociate the former, giving a center- of-mass collision energy of about 1

  20. Determining the ground-state probability of a quantum simulation with product-state measurements

    E-Print Network [OSTI]

    Bryce Yoshimura; J. K. Freericks

    2015-08-21

    One of the goals in quantum simulation is to adiabatically generate the ground state of a complicated Hamiltonian by starting with the ground state of a simple Hamiltonian and slowly evolving the system to the complicated one. If the evolution is adiabatic and the initial and final ground states are connected due to having the same symmetry, then the simulation will be successful. But in most experiments, adiabatic simulation is not possible because it would take too long, and the system has some level of diabatic excitation. In this work, we quantify the extent of the diabatic excitation even if we do not know {\\it a priori} what the complicated ground state is. Since many quantum simulator platforms, like trapped ions, can measure the probabilities to be in a product state, we describe techniques that can employ these measurements to estimate the probability of being in the ground state of the system after the diabatic evolution. These techniques do not require one to know any properties about the Hamiltonian itself, nor to calculate its eigenstate properties. All the information is derived by analyzing the product-state measurements as functions of time.

  1. Determining the Cause of a Header Failure in a Natural Gas Production Facility

    SciTech Connect (OSTI)

    Matthes, S.A.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Holcomb, G.R.

    2007-03-01

    An investigation was made into the premature failure of a gas-header at the Rocky Mountain Oilfield Testing Center (RMOTC) natural gas production facility. A wide variety of possible failure mechanisms were considered: design of the header, deviation from normal pipe alloy composition, physical orientation of the header, gas composition and flow rate, type of corrosion, protectiveness of the interior oxide film, time of wetness, and erosion-corrosion. The failed header was examined using metallographic techniques, scanning electron microscopy, and microanalysis. A comparison of the failure site and an analogous site that had not failed, but exhibited similar metal thinning was also performed. From these studies it was concluded that failure resulted from erosion-corrosion, and that design elements of the header and orientation with respect to gas flow contributed to the mass loss at the failure point.

  2. Intracellular L-arginine concentration does not determine NO production in endothelial cells: Implications on the 'L-arginine paradox'

    SciTech Connect (OSTI)

    Shin, Soyoung; Mohan, Srinidi; Fung, Ho-Leung

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Our findings provide a possible solution to the 'L-arginine paradox'. Black-Right-Pointing-Pointer Extracellular L-arginine concentration is the major determinant of NO production. Black-Right-Pointing-Pointer Cellular L-arginine action is limited by cellular ARG transport, not the K{sub m} of NOS. Black-Right-Pointing-Pointer We explain how L-arginine supplementation can work to increase endothelial function. -- Abstract: We examined the relative contributory roles of extracellular vs. intracellular L-arginine (ARG) toward cellular activation of endothelial nitric oxide synthase (eNOS) in human endothelial cells. EA.hy926 human endothelial cells were incubated with different concentrations of {sup 15}N{sub 4}-ARG, ARG, or L-arginine ethyl ester (ARG-EE) for 2 h. To modulate ARG transport, siRNA for ARG transporter (CAT-1) vs. sham siRNA were transfected into cells. ARG transport activity was assessed by cellular fluxes of ARG, {sup 15}N{sub 4}-ARG, dimethylarginines, and L-citrulline by an LC-MS/MS assay. eNOS activity was determined by nitrite/nitrate accumulation, either via a fluorometric assay or by{sup 15}N-nitrite or estimated {sup 15}N{sub 3}-citrulline concentrations when {sup 15}N{sub 4}-ARG was used to challenge the cells. We found that ARG-EE incubation increased cellular ARG concentration but no increase in nitrite/nitrate was observed, while ARG incubation increased both cellular ARG concentration and nitrite accumulation. Cellular nitrite/nitrate production did not correlate with cellular total ARG concentration. Reduced {sup 15}N{sub 4}-ARG cellular uptake in CAT-1 siRNA transfected cells vs. control was accompanied by reduced eNOS activity, as determined by {sup 15}N-nitrite, total nitrite and {sup 15}N{sub 3}-citrulline formation. Our data suggest that extracellular ARG, not intracellular ARG, is the major determinant of NO production in endothelial cells. It is likely that once transported inside the cell, ARG can no longer gain access to the membrane-bound eNOS. These observations indicate that the 'L-arginine paradox' should not consider intracellular ARG concentration as a reference point.

  3. Direct Determination of Equilibrium Potentials for Hydrogen Oxidation/Production by Open Circuit Potential Measurements in Acetonitrile

    SciTech Connect (OSTI)

    Roberts, John A.; Bullock, R. Morris

    2013-03-14

    Open circuit potentials were measured for acetonitrile solutions of a variety of acids and their conjugate bases under 1 atm H2. Acids examined include triethylammonium, dimethylformamidium, 2,6-dichloroanilinium, 4-cyanoanilinium, 4-bromoanilinium, and 4-anisidinium salts. These potentials, together with the pKa values of the acids, establish the value of the standard hydrogen electrode (SHE) potential in acetonitrile as ?0.028(4) V vs the ferrocenium/ferrocene couple. Dimethylformamidium is shown to form homoconjugates and other aggregates with dimethylformamide; open circuit potentials are used to quantify the extent of these reactions. Overpotentials for electrocatalytic hydrogen production and oxidation were determined from open circuit potentials and voltammograms of acidic or basic catalyst solutions under H2. This method requires neither pKa values, homoconjugation constants, nor an estimate for the SHE potential and thus allows direct comparison of catalytic systems in different media.

  4. April 30 Public Meeting: Physical Characterization of Smart and Grid-Connected Commercial and Residential Building End-Use Equipment and Appliances

    Broader source: Energy.gov [DOE]

    These documents contain slide decks presented at the Physical Characterization of Smart and Grid-Connected Commercial and Residential Buildings End-Use Equipment and Appliances public meeting held on April 30, 2014. The first document includes the first presentation from the meeting: DOE Vision and Objectives. The second document includes all other presentations from the meeting: Terminology and Definitions; End-User and Grid Services; Physical Characterization Framework; Value, Benefits & Metrics.

  5. Water Content Determination of Rubber Stoppers Utilized for Sealing Lyophilized Pharmaceutical Products: Assessment of Two Karl Fischer Titration Methods

    E-Print Network [OSTI]

    Voth, Laura Marie

    2013-08-31

    In the pharmaceutical industry, the success of a new drug product is strongly impacted by the stability of the drug formulation. For many formulations, stability is governed by the drug product's water content, thus the ...

  6. Production

    Broader source: Energy.gov [DOE]

    Algae production R&D focuses on exploring resource use and availability, algal biomass development and improvements, characterizing algal biomass components, and the ecology and engineering of cultivation systems.

  7. 3-D Characterization of the Structure of Paper and Paperboard and Their Application to Optimize Drying and Water Removal Processes and End-Use Applications

    SciTech Connect (OSTI)

    Shri Ramaswamy, University of Minnesota; B.V. Ramarao, State University of New York

    2004-08-29

    The three dimensional structure of paper materials plays a critical role in the paper manufacturing process especially via its impact on the transport properties for fluids. Dewatering of the wet web, pressing and drying will benefit from knowledge of the relationships between the web structure and its transport coefficients. The structure of the pore space within a paper sheet is imaged in serial sections using x-ray micro computed tomography. The three dimensional structure is reconstructed from these sections using digital image processing techniques. The structure is then analyzed by measuring traditional descriptors for the pore space such as specific surface area and porosity. A sequence of microtomographs was imaged at approximately 2 ?m intervals and the three-dimensional pore-fiber structure was reconstructed. The pore size distributions for both in-plane as well as transverse pores were measured. Significant differences in the in-plane (XY) and the transverse directions in pore characteristics are found and may help partly explain the different liquid and vapor transport properties in the in-plane and transverse directions. Results with varying sheet structures compare favorably with conventional mercury intrusion porosimetry data. Interestingly, the transverse pore structure appears to be more open with larger pore size distribution compared to the in plane pore structure. This may help explain the differences in liquid and vapor transport through the in plane and transverse structures during the paper manufacturing process and during end-use application. Comparison of Z-directional structural details of hand sheet and commercially made fine paper samples show a distinct difference in pore size distribution both in the in-plane and transverse direction. Method presented here may provide a useful tool to the papermaker to truly engineer the structure of paper and board tailored to specific end-use applications. The difference in surface structure between the top and bottom sides of the porous material, i.e. "two-sidedness" due to processing and raw material characteristics may lead to differences in end-use performance. The measurements of surface structure characteristics include thickness distribution, surface volume distribution, contact fraction distribution and surface pit distribution. This complements our earlier method to analyze the bulk structure and Z-D structure of porous materials. As one would expect, the surface structure characteristics will be critically dependent on the quality and resolution of the images. This presents a useful tool to characterize and engineer the surface structure of porous materials such as paper and board tailored to specific end-use applications. This will also help troubleshoot problems related to manufacturing and end-use applications. This study attempted to identify the optimal resolution through a comparison between 3D images obtained by monochromatic synchrotron radiation X-?CT in phase contrast mode (resolution ? 1 ?m) and polychromatic radiation X-?CT in absorption mode (res. ? 5 ?m). It was found that both resolutions have the ability to show the expected trends when comparing different paper samples. The low resolution technique shows fewer details resulting in lower specific surface area, larger pore channels, characterized as hydraulic radii, and lower tortuosities, where differences between samples and principal directions are more difficult to detect. The disadvantages of the high resolution images are high cost and limited availability of hard x-ray beam time as well as the small size of the sample volumes imaged. The results show that the low resolution images can be used for comparative studies, whereas the high resolution images may be better suited for fundamental research on the paper structure and its influence on paper properties, as one gets more accurate physical measurements. In addition, pore space diffusion model has been developed to simulate simultaneous diffusion in heterogeneous porous materials such as paper containing cellu

  8. Physics of ion acceleration in the solar flare on 2005 September 7 determines c-ray and neutron production

    E-Print Network [OSTI]

    California at Berkeley, University of

    by the neutron monitors at Mt. Chacaltaya and Mexico City and by the solar neutron telescopes at ChacaltayaPhysics of ion acceleration in the solar flare on 2005 September 7 determines c-ray and neutron-sur-Yvette, France g Konan University, Nada-ku, Kobe 657-0000, Japan h Solar-Terrestrial Environment Laboratory

  9. Determination of Optimal Process Flowrates and Reactor Design for Autothermal Hydrogen Production in a Heat-Integrated Ceramic Microchannel Network 

    E-Print Network [OSTI]

    Damodharan, Shalini

    2012-07-16

    of the study included the determination of system energy density; a gravimetric energy density of 169.34 Wh/kg and a volumetric energy density of 506.02 Wh/l were achieved from brass architectures for 10 hrs operation, which is higher than the energy density...

  10. Techniques and Methods Used to Determine the Aerosol Best Estimate Value-Added Product at SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexico Independent StatisticsSpainTurkey Determine the

  11. Production of ?¹Cu by the natZn(p,?) reaction: Improved separation and specific activity determination by titration with three chelators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Asad, Ali H.; Smith, Suzanne V.; Morandeau, Laurence M.; Chan, Sun; Jeffery, Charmaine M.; Price, Roger I.

    2015-09-01

    In this study, the cyclotron-based production of position-emitting ?¹Cu using the (p,?) reaction at 11.7 MeV was investigated starting from natural-zinc (natZn) and enriched ??Zn-foil targets, as well as its subsequent purification. For natZn, a combination of three resins were assessed to separate ?¹Cu from contaminating 66,67,68Ga and natZn. The specific activity of the purified ?¹Cu determined using ICP-MS analysis ranged from 143.3±14.3(SD) to 506.2±50.6 MBq/?g while the titration method using p-SCN-Bn-DOTA, p-SCN-Bn-NOTA and diamsar gave variable results (4.7±0.2 to 412.5±15.3 MBq/?g), with diamsar lying closest to the ICP-MS values. Results suggest that the p-SCN-Bn-DOTA and p-SCN-Bn-NOTA titration methods aremore »significantly affected by the presence of trace-metal contaminants.« less

  12. European Conference on the Mathematics of Oil Recovery --Cannes, France, 30 August -2 September 2004 The determination of optimal well locations is a challenging problem in oil production since it

    E-Print Network [OSTI]

    Bangerth, Wolfgang

    1 9 th European Conference on the Mathematics of Oil Recovery -- Cannes, France, 30 August - 2 September 2004 Abstract The determination of optimal well locations is a challenging problem in oil production since it depends on geological and fluid properties as well as on economic parameters. This work

  13. Biomass Resource Allocation among Competing End Uses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O OLaura|Bilayer GrapheneW.Help Table(SC)CRADABurningB

  14. Wyoming Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames City of",6,1,"Omaha Public PowerOECD/IEA - 2008 © OECD/IEA - 2008 © OECD/IEA - 2008 To Cover... To Cover To Cover5,227 4,543 NA

  15. Tennessee Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember

  16. Texas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015"Separation, Proved Reserves (Billion CubicReserves (Billion CubicExpected272,912

  17. Utah Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark0","AK",2010,1,5889.296,25346.726,30607,7768.547,32303.665,10842,1432.777,7587.714,510,0,0,0,15090.62,65238.105,41959 Residential+ Lease43 1,04312,965

  18. Vermont Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark0","AK",2010,1,5889.296,25346.726,30607,7768.547,32303.665,10842,1432.777,7587.714,510,0,0,0,15090.62,65238.105,419595.69 3.99 4.34(Million21 1,021498 NA

  19. Virginia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark0","AK",2010,1,5889.296,25346.726,30607,7768.547,32303.665,10842,1432.777,7587.714,510,0,0,0,15090.62,65238.105,419595.69 3.99per ThousandCoalbed5534,791

  20. Washington Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark0","AK",2010,1,5889.296,25346.726,30607,7768.547,32303.665,10842,1432.777,7587.714,510,0,0,0,15090.62,65238.105,419595.69Reserves3,357.965 1,06918,099

  1. Wisconsin Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google5.10 5.24 5.29 5.84 5.08 4.25 1989-2015 Residential Price 11.35 12.13 12.37 12.57 11.71 11.24 1989-2015 Percentage of Total Residential DeliveriesDecadeWellheadperState24,828

  2. Idaho Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricRhodeFeet)CubicCitygateC : Q U A L I T Y O387

  3. Illinois Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricRhodeFeet)CubicCitygateC : Q UYear Jan Feb956,068

  4. Indiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricRhodeFeet)CubicCitygateC : (MillionSame4 15.8Year

  5. Iowa Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-0 Year-1 Year-2 Year-3 Year-45)Decade Year-0315,186

  6. Kansas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-0 Year-1 Year-2Decade Year-0DecreasesYear Jan Feb

  7. Kentucky Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-0 Year-1Decade Year-0 Year-1Cubic0 0SalesYear Jan

  8. Louisiana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-0 Year-1Decade2,9191,189,744 1,354,641 1,420,264

  9. Maine Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.82 4.235,382 6,358 8,483 11,08220110,334 77,575

  10. Maryland Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.82 4.235,382 6,358 (Million Cubic S196,510 212,020

  11. Massachusetts Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.82 4.235,382Year Jan Feb Mar Apr May2395,852

  12. Michigan Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.82 4.235,382Year52 55 59 7135,340 746,748 776,466

  13. Minnesota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.82 4.235,382Year526)Midwest Region9 1,010Year

  14. Mississippi Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.82 (Million Cubic Feet)118Decade Year-0

  15. Missouri Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.82 (Million (MillionFeet)117 94 90 8207264,867

  16. Montana Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.82 (Millionand PlantDecade4)New0 0 0 2 075,802

  17. California Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate FuelsSales (Billion Cubic5 2 7 -5

  18. Colorado Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric and AlternateYear Jan523,726 501,350 466,680 443,750

  19. Connecticut Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric and AlternateYear(Million42Year Jan Feb Mar Apr May

  20. Delaware Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric andHousehold Vehicles Energy Usei9)Year Jan FebYear

  1. Florida Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricRhode Island2009 20103 PC'sIncreases (Billion

  2. Georgia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricRhodeFeet) Decade Year-0TobagoCommercialDecade462,799

  3. Hawaii Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricRhodeFeet)Cubic Feet)Cubic Feet)Decade2,607

  4. Nebraska Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in155 13,348 47,873165,3600 14 21 20Year

  5. Nevada Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in155Decade Year-0(Dollars perDry-76

  6. Ohio Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) Year Jan Feb Mar Apr2009 2010 201153,072 49,400

  7. Oklahoma Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) Year Jan FebAdjustmentsSales

  8. Oregon Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) YearYear Jan Feb Mar Apr2009 2010

  9. Pennsylvania Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan FebCubic Feet) Annual DownloadMay-15 Jun-15Year Jan Feb

  10. End-Use Taxes: Current EIA Practices

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReportingElectricity Glossary › FAQS ›1 March3

  11. Alabama Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic(Million CubicWorkingNewMay-15Year Jan50,430

  12. Alaska Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570 2,304 1,670Same0New2009

  13. Arizona Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570Month PreviousDry4,645Decade

  14. Arkansas Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724 2,570MonthThousand8 2 2 2 1 27,559 19,208

  15. California Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948 2,724perSales (Billion CubicYear Jan Feb Mar

  16. Colorado Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948CaliforniaFeet)Extensions2009 2010 20119722,415

  17. Connecticut Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep3,118,592NumberDecade164

  18. Delaware Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions1 0 0 02009 2010 20113

  19. Florida Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun20032,485,331Gas2001Year2009 2010

  20. Georgia Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan Feb Mar87.1 81.2 38.0 37.32009Year Jan

  1. Hawaii Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear Jan FebMississippi119,4562009 2010228 245 243

  2. Idaho Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYear JanThousandThousand Cubic.C : Q U

  3. Illinois Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear Jan Feb Mar Apr May Jun Jul66 64

  4. Indiana Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear Jan Febper Thousand Cubic989,454.8Year

  5. Iowa Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYear JanDecadeper ThousandMay-1519,102 18,170

  6. Kansas Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr MayYearYearDecade Year-0163 258SalesNA 11,903 17,191

  7. Kentucky Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013 2014 ViewSales (Billion Cubic4,767 13,140

  8. Louisiana Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012 2013(Million Barrels)Sales (Billion10

  9. Maine Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0 Year-1 Year-2 Year-3 Year-4NA NA NA

  10. Maryland Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0 Year-1Total0.0 0.0May-15Year Jan

  11. Massachusetts Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012Decade Year-0YearDecade Year-0 Year-1

  12. Michigan Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15 15 3 2 1979-2014Year Jan

  13. Minnesota Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 15 15May-15 Jun-15 Jul-15Year

  14. Mississippi Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522 35 42 44 46SalesDecade37,493

  15. Missouri Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19 1522Decade(Million 2011 011,717

  16. Montana Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr 2012DecadeTotal19FuelYear5) Model372009 2010

  17. Nebraska Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172 3,009165,360 165,928 209,4390 14 21Year

  18. Nevada Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172Year Jan Feb Mar Apr-348,719Decade75,468

  19. Ohio Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew Field Discoveries (Billion Cubic740,925 784,293

  20. Oklahoma Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecade Year-0Year Jan33 1,032659,305

  1. Oregon Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNew FieldDecadeYear Jan Feb Mar16,78924248,864

  2. Pennsylvania Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear JanNewMajor CharacteristicsStorage 690 39

  3. Tennessee Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060 0 1216,945 257,443 264,231

  4. Texas Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawalsHome6,672 7,2060Year0 0NewSales

  5. Utah Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation Results forExtensions44 1,045Year

  6. Vermont Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation ResultsYear JanYearDay)Year Jan Feb

  7. Virginia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation ResultsYearYear JanSalesYear Jan

  8. Washington Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation10,428 285,726 264,589 264,540 318,292

  9. Wisconsin Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of6,090 7,163 10,532 14,881 23,209DecadeFeet)087,066

  10. Wyoming Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural Gas Reserves Adjustments (Billion Cubic31 1,03142,793

  11. Determining Fiber and Protein Degradation Rates of Corn Milling (Co)Products and Their Effects on Rumen Bacterial Populations and Lactating Dairy Cow Performance 

    E-Print Network [OSTI]

    Williams, Whitney

    2012-07-16

    ....................................................................... 10 2.3 Chemical composition of the diets fed to lactating dairy cows predicted by the CPM-dairy model ............................................................................ 12 2.4 Comparison of the anaerobic fermentation...-fold in what is called stillage. The stillage is then further processed and refined into nutrient dense corn (co)products. These corn milling (co)products are an excellent source of CP, specifically RUP, and digestible fiber for ruminant consumption. Ideally...

  12. Analytically expanded and integrated results for massive fermion production in two-photon collisions and a high precision alpha_s determination

    E-Print Network [OSTI]

    B. Kamal; Z. Merebashvili

    1998-06-25

    The cross section for massive fermion production in two-photon collisions was examined at next-to-leading order in QCD/QED for general photon helicity. The delta function (virtual+soft) part of the differential cross section was analytically integrated over the final state phase space. Series expansions for the complete differential and total cross sections were given up to tenth order in the parameter beta. These were shown to be of practical use and revealed much structure. Accurate parametrizations of the total cross sections were given, valid up to higher energies. The above results were applied to top quark production in the region not too far above threshold. The cross section was shown to be quite sensitive to alpha_s in the appropriate energy region.

  13. CX-006863: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    63: Categorical Exclusion Determination CX-006863: Categorical Exclusion Determination Production and Economics of Perennial-Based Woody and Herbaceous Biomass Crops under...

  14. CX-003164: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination CX-003164: Categorical Exclusion Determination Optimization of Biomass Production Across a Landscape CX(s) Applied: A9 Date: 07262010...

  15. Gamma-ray spectrometric determination of UF/sub 6/ assay with 1 percent precision for international safeguards. Part 1: product and feed in 1S and 2S sample cylinders

    SciTech Connect (OSTI)

    Ricci, E.

    1981-06-15

    The method is based on counting the 186-keV gamma rays emitted by /sup 235/U using a Pb-collimated Ge(Li) detector. Measurements of fifty UF/sub 6/ product and feed cylinders reveal the following precisions and counting times: Product - 2S, 0.98% (600 s); Feed - 2S, 0.48% (2500 s); Product - 1S, 0.62% (1000 s); Feed - 1S, 0.73% (3000 s). A 1% precision is desired for variables - attributes verification measurements of /sup 235/U assay in UF/sub 6/ sample cylinders for safeguards inspections by the International Atomic Energy Agency (IAEA). Statistically, these measurements stand between fine, high-precision (or variables) measurements and gross, low-precision (or attributes) ones. Because of their intermediate precisions, the variables-attributes measurements may not require analysis of all samples, and this could result in significant savings of IAEA inspector time. Although the precision of the above results is satisfactory, the average relative differences between gamma-ray and mass-spectrometric determinations for the last two sets of measurements (1S cylinders) have positive biases.

  16. Techno Economic Analysis of Hydrogen Production by gasification of biomass

    SciTech Connect (OSTI)

    Francis Lau

    2002-12-01

    Biomass represents a large potential feedstock resource for environmentally clean processes that produce power or chemicals. It lends itself to both biological and thermal conversion processes and both options are currently being explored. Hydrogen can be produced in a variety of ways. The majority of the hydrogen produced in this country is produced through natural gas reforming and is used as chemical feedstock in refinery operations. In this report we will examine the production of hydrogen by gasification of biomass. Biomass is defined as organic matter that is available on a renewable basis through natural processes or as a by-product of processes that use renewable resources. The majority of biomass is used in combustion processes, in mills that use the renewable resources, to produce electricity for end-use product generation. This report will explore the use of hydrogen as a fuel derived from gasification of three candidate biomass feedstocks: bagasse, switchgrass, and a nutshell mix that consists of 40% almond nutshell, 40% almond prunings, and 20% walnut shell. In this report, an assessment of the technical and economic potential of producing hydrogen from biomass gasification is analyzed. The resource base was assessed to determine a process scale from feedstock costs and availability. Solids handling systems were researched. A GTI proprietary gasifier model was used in combination with a Hysys(reg. sign) design and simulation program to determine the amount of hydrogen that can be produced from each candidate biomass feed. Cost estimations were developed and government programs and incentives were analyzed. Finally, the barriers to the production and commercialization of hydrogen from biomass were determined. The end-use of the hydrogen produced from this system is small PEM fuel cells for automobiles. Pyrolysis of biomass was also considered. Pyrolysis is a reaction in which biomass or coal is partially vaporized by heating. Gasification is a more general term, and includes heating as well as the injection of other ''ingredients'' such as oxygen and water. Pyrolysis alone is a useful first step in creating vapors from coal or biomass that can then be processed in subsequent steps to make liquid fuels. Such products are not the objective of this project. Therefore pyrolysis was not included in the process design or in the economic analysis. High-pressure, fluidized bed gasification is best known to GTI through 30 years of experience. Entrained flow, in contrast to fluidized bed, is a gasification technology applied at much larger unit sizes than employed here. Coal gasification and residual oil gasifiers in refineries are the places where such designs have found application, at sizes on the order of 5 to 10 times larger than what has been determined for this study. Atmospheric pressure gasification is also not discussed. Atmospheric gasification has been the choice of all power system pilot plants built for biomass to date, except for the Varnamo plant in Sweden, which used the Ahlstrom (now Foster Wheeler) pressurized gasifier. However, for fuel production, the disadvantage of the large volumetric flows at low pressure leads to the pressurized gasifier being more economical.

  17. Essays on Product Recalls, New Product Preannouncements, and Shareholder Value 

    E-Print Network [OSTI]

    Yun, Wonjoo

    2014-08-08

    Product recalls are widely recognized as a manufacturer’s worst nightmare. They put the value generated by product innovation at risk. In my dissertation, I investigate the factors that determine the effects of product recalls on firm value...

  18. Ash Determinations 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Germination of Ashe juniper seed were compared in a controlled environment at different levels of fruit maturation, lengths of storage, and seed stratification to determine potential germination. Annual mean germination varied by an order...

  19. 2014-02-21 Issuance: Proposed Determination of Computer Servers...

    Office of Environmental Management (EM)

    Servers as a Covered Consumer Product; Withdrawal 2014-02-21 Issuance: Proposed Determination of Computer Servers as a Covered Consumer Product; Withdrawal This document is a...

  20. Morris: Noncompliance Determination (2013-SE-5403)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Morris Products, Inc. finding that various models of metal halide lamp fixtures do not comport with the energy conservation standards.

  1. Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1995-1996 Annual Report.

    SciTech Connect (OSTI)

    Rien, Thomas A.; Beiningen, Kirk T.

    1997-07-01

    This project began in July 1986 and is a cooperative effort of federal, state, and tribal fisheries entities to determine (1) the status and habitat requirements, and (2) effects of mitigative measures on productivity of white sturgeon populations in the lower Colombia and Snake rivers.

  2. Pottery Production

    E-Print Network [OSTI]

    Nicholson, Paul T.

    2009-01-01

    Paul T. Nicholson. ) Pottery Production, Nicholson, UEE 2009Short Citation: Nicholson 2009, Pottery Production. UEE.Paul T. , 2009, Pottery Production. In Willeke Wendrich (

  3. Cordage Production

    E-Print Network [OSTI]

    Veldmeijer, André J.

    2009-01-01

    294: fig. 15-3). Cordage Production, Veldmeijer, UEE 2009Short Citation: Veldmeijer, 2009, Cordage Production. UEE.André J. , 2009, Cordage Production. In Willeke Wendrich (

  4. Glass Production

    E-Print Network [OSTI]

    Shortland, Andrew

    2009-01-01

    40, pp. 162 - 186. Glass Production, Shortland, UEE 2009AINES Short Citation: Shortland 2009, Glass Production. UEE.Andrew, 2009, Glass Production. In Willeke Wendrich (ed. ),

  5. End-use Breakdown: The Building Energy Modeling Blog

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    class"field-items">

    The AEC Technology Symposium and Hackathon brings together software developers that work in and...

  6. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    2006. “All India Electricity Statistics, General Review2005, “Industrial Statistics of India: Status and Issues”,is reported in India’s national statistics for this sector,

  7. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Intensities The purpose of this section is to provide information on how energy was used for space conditioning--heating, cooling, and ventilation--in commercial...

  8. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Active Solar: As an energy source, energy from the sun collected and stored using mechanical pumps or fans to circulate heat-laden fluids or air between solar collectors and the...

  9. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Energy Use in Commercial Buildings The purpose of this section is to provide an overview of how energy was used in commercial buildings. Focusing on 1989 buildings, the section...

  10. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Past Trend and Future Outlook",LBNL forthcoming. de la Rue2006. “Building up India: Outlook for India’s real estate”,2006a. “World Energy Outlook”, IEA/OECD, Paris, France.

  11. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    rural, k=Kerosene m=rural, k=biogas m =urban, k=LPG m=urban,k=LPG k=wood k=kerosene k=biogas k=electricity k=electricity

  12. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    of oil use for the need of LPG and kerosene for cooking andSector PJ Fuel Oil Diesel Oil LPG Electricity Source: CEA,PJ) PJ fuel oil diesel LPG electricity Energy consumption is

  13. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Tables Figures Figure 1. India Primary Energy Supply by fuel7 Figure 2. Final and Primary Energy (including biomass) by19 Figure 10. Final and Primary Energy Consumption in the

  14. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Efficiency in Electricity Consumption", HWWA Discussionelectricity includes electricity consumption plus thedistribution. Total electricity consumption represents 1,654

  15. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Crises & Climate Challenges - 30 Years of Energy Use in IEACountries”, IEA/OECD, Paris, France. International Energy2006a. “World Energy Outlook”, IEA/OECD, Paris, France.

  16. Refining and End Use Study of Coal Liquids.

    SciTech Connect (OSTI)

    NONE

    1997-12-31

    A study of the most desirable ways of integrating coal liquefaction liquids into existing petroleum refineries to produce transportation fuels meeting current and future, e.g., year 2000, Clean Air Act Amendments (CAAA) standards. This report is the 12th quarterly progress report in the series covering January 1, 1997 to March 31, 1997.

  17. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Technology for Indian Pulp and Paper Industry” Newsletter ofwith 13% and the pulp and paper industry with 9%. Similarly,and Paper The Indian pulp and paper industry is the sixth

  18. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    for cooking and lighting. Biomass energy consumption willused in an economy, biomass energy consumption is certainlyby a large share of biomass energy use representing 50% of

  19. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    7 Figure 3. Energy Consumption in the Agriculture Sector (13 Figure 6. Energy Consumption in the ServiceFinal and Primary Energy Consumption in the Industry Sector,

  20. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    2002, “TEDDY: TERI’s energy data directory and yearbook2006. “TEDDY: TERI’s energy data directory and yearbookU.S. DOE, 2006, “Buildings Energy Data Book 2006”, September

  1. Canadian Industrial Energy End-use Data and Analysis

    E-Print Network [OSTI]

    technologies. CIEEDAC is responsible for the industrial energy data under this initiative. The Centre operates as part clearinghouse, part depository, and part analysis centre for energy data on the Canadian

  2. Biogas end-use in the European community

    SciTech Connect (OSTI)

    Constant, M.; Naveau, H.; Nyns, E.J. ); Ferrero, G.L.

    1989-01-01

    In Europe over the past few years the generation of biogas for energy and environmental purposes has been gaining in importance. Industrial wastewaters, cattle manure, sewage sludges, urban wastes, crop residues, algae and aquatic biomass are all typical of the materials being utilized. In contrast to the extensive inventory of biomethanation processes which has been carried out within the EEC, until recently a detailed, up-to-date investigation of the end-sues of biogas had not been undertaken. To supply the necessary information, the Commission of the European Communities and the Belgian Science Policy Office jointly entrusted a study to the Unit of Bioengineering at the Catholic University of Louvain, Belgium. This book is record of the study and has the following key features: it gives a broad overview of the ongoing use of biogas in Europe; it summarizes available data on storage, purification and engines using biogas; it draws several conclusions concerning the technical and economic viability of the processes; it discusses the problems of using biogas; and it outlines recommendations and future R and D and demonstration projects in the field.

  3. Refining and end use study of coal liquids

    SciTech Connect (OSTI)

    Choi, G.

    1998-05-01

    A conceptual design and ASPEN Plus process flowsheet simulation model was developed for a Battelle biomass-based gasification, Fischer-Tropsch (F-T) liquefaction and combined-cycle power plant. This model was developed in a similar manner to those coal liquefaction models that were developed under DOE contract DE-AC22-91PC90027. As such, this process flowsheet simulation model was designed to be a research guidance tool and not a detailed process design tool. However, it does contain some process design features, such as sizing the F-T synthesis reactors. This model was designed only to predict the effects of various process and operating changes on the overall plant heat and material balances, utilities, capital and operating costs.

  4. Energy End-Use Intensities in Commercial Buildings1995 -- Overview...

    U.S. Energy Information Administration (EIA) Indexed Site

    by the Commercial Buildings Energy Consumption Survey (CBECS) and (2) building energy simulations provided by the Facility Energy Decision Screening (FEDS) system. The...

  5. Energy End-Use Intensities in Commercial Buildings1995 -- Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    model using survey data from the 1995 commercial buildings energy consumption survey and building energy simulations provided by the Facility Energy Decision Screening system....

  6. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Petroleum pricing in India: balancing efficiency andand Tables Figures Figure 1. India Primary Energy Supply by28 Table 13. India, US and France Farm Machinery

  7. Canadian Industrial Energy End-use Data and Analysis

    E-Print Network [OSTI]

    Resources Canada's National Energy Use Database (NEUD) initiative. The primary goal of the NEUD to further analyze specific data- related issues. In terms of its database role, the Centre focuses-to-date documentation of the various databases; houses a specialized library of published reports; and maintains

  8. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    same activities that require energy today will continue toaccounting of how energy is consumed today. For each sector,

  9. Average End Use Breakdown: Massachusetts General Hospital Gray...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exhaust Fans Pumps for Hot Water and Heat Recovery Chiller Plant (Allocated): Chillers, Cooling Tower Fans, and Cooling System Pumps Return to Gray Building information page....

  10. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    2005a. “Statistics of the Indian Paper Industry: Directoryof Indian Paper Industry”. Volume II. Saharanpur, India. de2005. “The Indian Paper Industry: Towards Sustainability”,

  11. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    and 6 million diesel irrigation pump sets in operation (rural areas, pump sets are installed to provide irrigation

  12. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    5% of its reserve is coking coal used by the steel industry.imports around 70% of coking coal annually. More recently,

  13. U.S. Natural Gas Consumption by End Use

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download...

  14. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    Diesel, 18% Primary Electricity Diesel, 49% Electricty,51% Electricty Data Adjustment Electricity consumption from

  15. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    gas oil nuclear hydro Energy output Own Uses Transmissiongas oil nuclear hydro Energy output Own Uses Transmissionenergy equivalence of electricity generated from hydro or

  16. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    photovoltaic water pumping systems since 1993- 94. About 7,000 pump set were installed with a capacity

  17. Alternative Strategies for Low-Pressure End Uses; Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    lower pressures. The ones that can operate at low pressure could be supported with alternative methods. * Consider a professional compressed air system evaluation. Such an exam...

  18. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    of 43% of total oil consumption. The residential sectorrepresenting 63% and oil consumption representing the rest.the diesel and fuel oil consumption are included, the total

  19. Canadian Industrial Energy End-use Data and Analysis

    E-Print Network [OSTI]

    in Canadian Oil Refineries, 1990, 1994 to the current year Detailed reports on energy consumption, an initiative begun in October, 1991, is to expand and improve the existing knowledge on energy consumption data on energy consumption, on the characteristics of energy using equipment and buildings

  20. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    pumps in India”, Renewable and Sustainable Energy Reviews,Renewable Energy (MNES), 2008. “Annual Report 2007-08”. Government of India.

  1. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01

    first electricity distribution and transmission (T&D)Own Uses Transmission and distribution losses ElectricityOwn Uses Transmission and distribution loses Electricity

  2. End-Use Intensity in Commercial Buildings 1992 (TABLES)

    U.S. Energy Information Administration (EIA) Indexed Site

    3 9 21 5 64 1 9 Food Service . . . . . . . . . . . . . . 307 43 53 9 37 28 116 17 1 5 Health Care . . . . . . . . . . . . . . . 403 88 32 11 128 52 30 6 15 41 Lodging . . . . . ....

  3. Energy End-Use Intensities in Commercial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    lighting intensities per lighted square foot-hour (Figure 23). * Food service and health care buildings had the highest water-heating intensities per square foot--more than...

  4. " Row: End Uses within NAICS Codes;"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page|Monthly","10/2015","1/15/1981" ,"DataWorking17.2 116.9 107.6 104.961

  5. West Virginia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google5.10 5.24 5.29 5.84 5.08 4.25 1989-2015 Residential Price 11.35 12.13 12.37 12.57 11.71 11.24 1989-2015 Percentage of Total Residential Deliveries includedFeet)4,917 4,766

  6. District of Columbia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, Electric andHousehold VehiclesVehicleYear Jan Feb Mar AprYear

  7. Gulf of Mexico Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear, ElectricRhodeFeet)Cubic Feet) Decade(Million(Million--

  8. Residential Lighting End-Use Consumption | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Disease |Records Management Field OfficerPaylor, Director ofDepartment of

  9. New Hampshire Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996) in155DecadeFeet)VehicleYear8DecadeNA NA

  10. New Jersey Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996)Price (Dollars2009 2010 2011 2012

  11. New Mexico Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996)Price780 922 960 1,069Feet)2009 09,390 NA

  12. New York Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996)Price780 922Separation 080,348 71,555

  13. North Carolina Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Marthrough 1996)Price780YearSeparationMay-155,890 38,346

  14. Rhode Island Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November 2013 Independent Statistics &Decade Year-07,259

  15. South Carolina Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November 2013 IndependentYear JanFeet)20 40

  16. South Dakota Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November 2013 IndependentYearFeet)Year JanYear

  17. Energy End-Use Intensities in Commercial Buildings

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReportingElectricity Glossary › FAQS ›1

  18. Energy End-Use Intensities in Commercial Buildings 1989

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969Central RegionReportingElectricity Glossary › FAQS ›19

  19. Table 5.1 End Uses of Fuel Consumption, 2010;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan995 1555. Light3Emission5.1

  20. Table 5.2 End Uses of Fuel Consumption, 2010;

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan995 1555.

  1. U.S. Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData2009 2010 2011 2012 2013YearCubic Feet)Gulf

  2. 1999 Commercial Buildings Characteristics--End-Use Equipment

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic Monthly ActualActivities

  3. 1999 Commercial Buildings Characteristics--Energy Sources and End Uses

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade Year-0Cubic Monthly ActualActivitiesEnergy Sources

  4. District of Columbia Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions1 0Delaware2Year Jan Feb

  5. Energy End-Use Intensities in Commercial Buildings 1992

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul1998,(Million CubicEnd

  6. Energy Information Administration - Table 2. End Uses of Fuel Consumption,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun2003 Detailed Tablesof1998 and 2002 2

  7. Engineer End Uses for Maximum Efficiency | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergyNatural GasDepartmentApril 13, 2010|Earned Value (EV)

  8. Alternative Strategies for Low Pressure End Uses | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y AEfficiency Rebate ProgramsAlpena<fuelalternative

  9. Driving Biofuels End Use: BETO/VTO Collaborations

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2 Federal

  10. Vehicle Technologies Office: Biofuels End-Use Research | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeedofDepartmentVOICESEnergy

  11. U.S. Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Jan Feb Mar Apr May JunDecadeHawaii

  12. Distribution Infrastructure and End Use | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAbout Us|of EnergySmall-

  13. U.S. Adjusted Sales of Kerosene by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global Crude Oil General Industries and TBD

  14. U.S. Sales of Kerosene by End Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15 Jun-15Area: U.S. EastArea:

  15. New Hampshire Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172Year Jan Feb (MillionDecade59,950 60,378

  16. New Jersey Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172Year JanDecade Year-0 Year-129620,790

  17. New Mexico Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,Decade Year-03.823,172YearDecade Year-0 Year-1 Year-2

  18. New York Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan Feb Mar Apr May Jun JulFeet) NewSales1

  19. North Carolina Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan Feb Mar Apr721,507 836,698 867,922247,047 304,148

  20. North Dakota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYear Jan Feb MarFeet) EstimatedSales

  1. Rhode Island Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars1.840 2.318 3.1195) Model8)32392,743

  2. South Carolina Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearby the(Dollars1.840YearDecadeThousandDecade

  3. South Dakota Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal, Nuclear,DecadeYearbyWithdrawals (MillionYear Jan Feb Mar Apr May Jun

  4. West Virginia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home PageMonthly","10/2015"4,"Ames5 Tables July 1996 Energy Information Administration Office of Coal,Demand Module of theCubicEstimation10,428 (Million20Decade Year-009,652

  5. Measurement of the inclusive 3-jet production differential cross section in proton–proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    E-Print Network [OSTI]

    Apyan, Aram

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton–proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb[superscript ?1] ...

  6. Determination of W boson helicity fractions in top quark decays in p anti-p collisions at CDF Run II and production of endcap modules for the ATLAS Silicon Tracker

    SciTech Connect (OSTI)

    Moed, Shulamit; /Geneva U.

    2007-01-01

    The thesis presented here includes two parts. The first part discusses the production of endcap modules for the ATLAS SemiConductor Tracker at the University of Geneva. The ATLAS experiment is one of the two multi-purpose experiments being built at the LHC at CERN. The University of Geneva invested extensive efforts to create an excellent and efficient module production site, in which 655 endcap outer modules were constructed. The complexity and extreme requirements for 10 years of LHC operation with a high resolution, high efficiency, low noise tracking system resulted in an extremely careful, time consuming production and quality assurance of every single module. At design luminosity about 1000 particles will pass through the tracking system each 25 ns. In addition to requiring fast tracking techniques, the high particle flux causes significant radiation damage. Therefore, modules have to be constructed within tight and accurate mechanical and electrical specification. A description of the ATLAS experiment and the ATLAS Semiconductor tracker is presented, followed by a detailed overview of the module production at the University of Geneva. My personal contribution to the endcap module production at the University of Geneva was taking part, together with other physicists, in selecting components to be assembled to a module, including hybrid reception tests, measuring the I-V curve of the sensors and the modules at different stages of the production, thermal cycling the modules and performing electrical readout tests as an initial quality assurance of the modules before they were shipped to CERN. An elaborated description of all of these activities is given in this thesis. At the beginning of the production period the author developed a statistics package which enabled us to monitor the rate and quality of the module production. This package was then used widely by the ATLAS SCT institutes that built endcap modules of any type, and kept being improved and updated. The production monitoring and summary using this package is shown in this thesis. The second part of the thesis reports a measurement of the fraction of longitudinal and right-handed helicity states of W bosons in top quark decays. This measurement was done using 955 pb{sup -1} of data collected with the CDF detector at the TEvatron, where protons and anti-protons are collided with a center-of-mass energy of 1.96 TeV. the helicity fraction measurements take advantage of the fact that the angular distribution of the W boson decay products depends on the helicity state of the W which they originate from. They analyze t{bar t} events in the 'lepton+jets' channel and look at the leptonic side of decay. They construct templates for the distribution of cos{theta}*, the angle between the charged lepton and the W flight direction in the rest frame of the top quark. Using Monte Carlo techniques, they construct probability distributions ('templates') for cos{theta}* in the case of left-handed, longitudinal and right-handed Ws and a template for the background model. They extract the W helicity fractions using an unbinned likelihood fitter based on the information of these templates. The Standard Model predicts the W helicity fractions to be about 70% longitudinal and 30% left-handed, while the fraction of right-handed W bosons in top decays is highly suppressed and vanishes when neglecting the mass of the b quark.

  7. Energy Conservation Program for Consumer Products and Certain...

    Energy Savers [EERE]

    Program for Consumer Products and Certain Commercial and Industrial Equipment: Proposed Determination of Computer Servers as a Covered Consumer Product, EERE-2013-BT-DET-0034...

  8. Transcriptional profiling and flux measurements of polyhydroxybutyrate production in Synechocystis

    E-Print Network [OSTI]

    Silva, Saliya Sudharshana, 1976-

    2004-01-01

    (cont.) to determine the CO? uptake rates and PHB production rates of strains engineered for enhanced CO? fixation and PHB production respectively.

  9. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases

    E-Print Network [OSTI]

    Korge, P; Calmettes, G; Weiss, JN

    2015-01-01

    hydrogen peroxide production as determined by the pyridinereactive oxygen production, J. Biol. Chem. 280 (2005) 25305–NADPH fuels superoxide production in the failing heart, J.

  10. Rapid and Precise Determination of Cellular Amino Acid Flux Rates

    E-Print Network [OSTI]

    Wikswo, John

    in hepa- tocyte and hepatoma cell lines where extensive gluconeogen- esis, urea production, and protein, therefore, can increase productivity compared to offline methods. Consistent automated OPARapid and Precise Determination of Cellular Amino Acid Flux Rates Using HPLC with Automated

  11. Measurement of production asymmetries

    E-Print Network [OSTI]

    Hamish Gordon; for the LHCb collaboration

    2013-11-22

    The knowledge of charm production asymmetries is an important prerequisite for many of the possible searches for CP violation in charm. Measurements of these asymmetries at hadron colliders can also help to improve our understanding of QCD. These proceedings review existing measurements and discuss some of the experimental challenges of determining charge asymmetries at the per-mille level.

  12. Quarkonium production at ATLAS

    E-Print Network [OSTI]

    Darren D Price

    2012-01-24

    The production of quarkonium is an important testing ground for QCD calculations. The J/\\psi\\ and \\Upsilon\\ production cross-sections are measured in proton-proton collisions at a centre-of-mass energy of 7~TeV with the ATLAS detector at the LHC. Differential cross-sections are presented as a function of transverse momentum and rapidity. The fraction of J/\\psi\\ produced in B-hadron decays is also measured and the differential cross-sections of prompt and non-prompt J/\\psi\\ production determined separately. Measurements of the fiducial production cross-section of the \\Upsilon(1S) and observation of the \\chi_{c,bJ} states are also discussed.

  13. Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    SciTech Connect (OSTI)

    Khachatryan, Vardan

    2015-05-01

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb$^{-1}$ collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD at next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to parameters of the theory such as the parton distribution functions of the proton and the strong coupling constant $\\alpha_S$ is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of $\\alpha_S(M_\\mathrm{Z})$ = 0.1171 $\\pm$ 0.0013 (exp) $^{+0.0073}_{-0.0047}$ (theo).

  14. Measurement of the inclusive 3-jet production differential cross section in proton-proton collisions at 7 TeV and determination of the strong coupling constant in the TeV range

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2015-05-01

    This paper presents a measurement of the inclusive 3-jet production differential cross section at a proton-proton centre-of-mass energy of 7 TeV using data corresponding to an integrated luminosity of 5 fb$^{-1}$ collected with the CMS detector. The analysis is based on the three jets with the highest transverse momenta. The cross section is measured as a function of the invariant mass of the three jets in a range of 445-3270 GeV and in two bins of the maximum rapidity of the jets up to a value of 2. A comparison between the measurement and the prediction from perturbative QCD atmore »next-to-leading order is performed. Within uncertainties, data and theory are in agreement. The sensitivity of the observable to parameters of the theory such as the parton distribution functions of the proton and the strong coupling constant $\\alpha_S$ is studied. A fit to all data points with 3-jet masses larger than 664 GeV gives a value of the strong coupling constant of $\\alpha_S(M_\\mathrm{Z})$ = 0.1171 $\\pm$ 0.0013 (exp) $^{+0.0073}_{-0.0047}$ (theo).« less

  15. Hydrogen Production

    SciTech Connect (OSTI)

    2014-09-01

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produce hydrogen. It includes an overview of research goals as well as “quick facts” about hydrogen energy resources and production technologies.

  16. Ethyl Alcohol Production

    E-Print Network [OSTI]

    O'Neal, Henry

    1981-01-01

    is added to and mixed with 150 gallons of water (12 gallons per bushel) at 120 degrees F. This begins the cooking process, during which the grain mixture or mash is constantly agitated. A liquefying enzyme (Taka Therm by Miles Laboratories Inc... exchanger is disposed of as waste water. However, it could be stored, cooled and used again as cooling water for the heat exchanger. Heat exchanger water use was determined from January through April production batches. Water use increases during summer...

  17. Hydrogen Production

    Fuel Cell Technologies Publication and Product Library (EERE)

    This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

  18. A Comparison of Iron and Steel Production Energy Use and Energy Intensity in China and the U.S.

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2012-01-01

    is equal to the electricity consumption at the end-use. Inis equal to the electricity consumption at the end-use. Inis equal to the electricity consumption at the end-use. In

  19. Top-quark production measurements

    E-Print Network [OSTI]

    Markus Cristinziani

    2015-11-13

    Recent measurements of top-quark production at hadron colliders are reviewed. The inclusive top-quark pair production is determined at four centre-of-mass energies at Tevatron and LHC with experimental uncertainties that are close to the uncertainties in theoretical calculations at next-to-next-to-leading order in QCD. Several differential measurements are performed and compared to simulation. Production of single top quarks is studied in the three different production channels. Top-quark pair production with neutral and charged vector bosons has been observed by the LHC experiments. Finally, production of additional heavy flavour quark pairs ($b\\bar{b}$, $t\\bar{t}$) is studied or searched for.

  20. Homework set 2 1 Hartree product 2 Slater determinate

    E-Print Network [OSTI]

    2015-09-24

    Jan 15, 2007 ... the H atom, because the 1s electron is considered the valence shell a double zeta basis set is used. For the carbon atom, a split valence ...

  1. Disentangling Biodiversity and Climatic Determinants of Wood Production

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    an important role in carbon sequestration. Methodology/Principal Findings: We tested whether tree wood incorporating the role of biodiversity in management and policy plans for forest carbon sequestration. Citation

  2. Determining coal permeabilities through constant pressure production interference testing 

    E-Print Network [OSTI]

    Schubarth, Stephen Kurt

    1983-01-01

    COMPUTER TEST NO. 2. . . Page 3 RESULTS OF COMPUTER SIMULATION TEST DATA ANALYSIS. . . . . . 16 4 GRID PATTERN BREAKUP USED IN RESERVOIR SIMULATOR TESTS 18 5 SIMULATOR INPUT PARAMETERS REMAINING CONSTANT. . . 6 FINE GRID BREAKUP USED IN MODEL... to the diffusivity equation. & A variety of both inner and outer boundary conditions were investigated. The diffusivity equation appeared in the following form. a r2 r 3 r at . 002637 Solutions to this equation were derived assuming that a slightly compressible...

  3. DOE Issues Proposed Coverage Determination for Hearth Products | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i pStateDOE Federal AviationSynchrophasor Engineeringof Energy

  4. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G. (Albuquerque, NM); Gurary, Alexander I. (Bridgewater, NJ); Boguslavskiy, Vadim (Princeton, NJ)

    2002-01-01

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  5. NEPA Determination Complete

    Broader source: Energy.gov [DOE]

    DOE has determined that this proposed project is a major Federal action that may significantly affect the quality of the human environment. To comply with the National Environmental Policy Act ...

  6. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E. (Hempfield Township, Westmoreland County, PA)

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  7. The Productivity Dilemma in Manufacturing 

    E-Print Network [OSTI]

    Byrer, T. G.

    1983-01-01

    to assist many segments of U.S. industry in determining the best route to improve their productivity. It is the intent of this paper to examine technical information development in the U.S., the forms in which it is available, the technology transfer dilemma...

  8. Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls -Hydro-Pac Inc.,1 DOE HydrogenProduction Hydrogen is

  9. Planning and scheduling of PPG glass production, model and implementation.

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    production and consumption rates x compatibility matrix between colors x selling price Determine: x sequencePlanning and scheduling of PPG glass production, model and implementation. Ricardo Lima Ignacio of the glass production x capture the essence of the process that is not considered in the Master Production

  10. Soil microbes drive the classic plant diversity­ productivity pattern

    E-Print Network [OSTI]

    Schnitzer, Stefan A.; Klironomos, John N.; HilleRisLambers, Jannek; Kinkel, Linda L.; Reich, Peter B.; Xiao, Kun; Rillig, Matthias C.; Sikes, Benjamin A.; Callaway, Ragan M.; Mangan, Scott A.; van Nes, Egbert H.; Scheffer, Marten

    2011-02-01

    and empirically that host-specific soil microbes can be major determinants of the diversity–productivity relationship in grasslands. In the presence of soil microbes, plant disease decreased with increasing diversity, and productivity increased nearly 500...

  11. Determinants of official OPEC crude prices

    SciTech Connect (OSTI)

    Verleger, P.K. Jr.

    1982-05-01

    The hypothesis of this paper is that crude oil, like any other unfinished commodity, is valued for the products derived from it; the purpose is to offer an empirical explanation for changes in the crude price charged by the members of OPEC. The model results show that the market-clearing prices reported to prevail for petroleum products on the principal petroleum spot market at Rotterdam are the primary determinants of changes in official crude prices. A systematic relationship between offical and spot prices is argued to have prevailed since 1974. An appendix clarifies five types of data required for the model. 13 references, 4 tables.

  12. Fluid properties determine flow line blockage potential

    SciTech Connect (OSTI)

    Hunt, A.

    1996-07-15

    A thorough understanding of fluid properties helps in determining the potential of hydrates, paraffins, or asphaltenes to block subsea flow lines. Thermal, chemical, and mechanical methods are the main ways for preventing deposition. Already in both the North Sea and the Gulf of Mexico, blockages have led to significant losses in production and reserves recovery. This first article in a two-part series discusses thermal and chemical methods in overcoming fluid behavior problems caused by hydrate and other fluid constituents in subsea multiphase flow. The paper discusses subsea production, possible problems, nucleation, growth, deposition, preventing deposition, hydrate predictions, multiphase flow, and hydrate inhibition.

  13. EMPOWERING DIGITAL SELF DETERMINATION

    E-Print Network [OSTI]

    Das, Rhiju

    an ecosystem that lives and breathes on information about us. We are grateful to others who have been thinking, and interact with the information, products, and industries of tomorrow. MediaX is located at Stanford stakeholders in the digital data ecosystem, including service providers of digital technologies, consumers

  14. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    E-Print Network [OSTI]

    Djurcic, Zelimir

    2009-01-01

    neutrino Production at Nuclear Reactors Z. Djurcic 1 , ?emission rates from nuclear reactors are determined fromlarge commercial nuclear reactors are playing an important

  15. Determining the Gluonic Content of Isoscalar Mesons

    E-Print Network [OSTI]

    Glennys R. Farrar

    1996-12-13

    The gluonic widths of four leading glueball candidates are determined from their production in radiative quarkonium decays, allowing quantitative estimation of their glue content. Lattice predictions for the scalar and tensor channels seem to be in reasonable agareement with present data (allowing for mixing with $q \\bar{q}$ states). However there is a glueball-like-state in the pseudoscalar spectrum whose mass is considerably lower than expected from lattice estimates.

  16. Determining Bounds for a Pressure Hazard Rating to Augment the NFPA 704 Standard 

    E-Print Network [OSTI]

    Hodge, Phillip

    2012-02-14

    were then used to determine the amount of gas generated, the gas generation rate, the gas generation product, the onset temperature, and the instantaneous power density. These properties were analyzed to determine those that best represented...

  17. Language Production General Points about Speech Production

    E-Print Network [OSTI]

    Coulson, Seana

    Language Production #12;General Points about Speech Production 15 speech sounds per second => 2, shall I say `t' or `d'' (Levelt) Production side has gotten less attention in Psycholinguistics than the comprehension side. Evidence for speech production behaviour has until recently relied heavily on speech errors

  18. The cosmic production of Helium

    E-Print Network [OSTI]

    Raul Jimenez; Chris Flynn; James MacDonald; Brad K. Gibson

    2003-03-07

    We estimate the cosmic production rate of helium relative to metals ($\\Delta Y/\\Delta Z$) using K dwarf stars in the Hipparcos catalog with accurate spectroscopic metallicities. The best fitting value is $\\Delta Y/\\Delta Z=2.1 \\pm 0.4$ at the 68% confidence level. Our derived value agrees with determinations from HII regions and with theoretical predictions from stellar yields with standard assumptions for the initial mass function. The amount of helium in stars determines how long they live and therefore how fast they will enrich the insterstellar medium with fresh material.

  19. Photovoltaic Product Directory and Buyers Guide

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

    1984-04-01

    The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

  20. HAWAII NATURAL ENERGY INSTITUTEwww.hnei.hawaii.edu Bioenergy Products from Fiber

    E-Print Network [OSTI]

    turbines, fuel cells, etc. #12; for transportation, greater power generation efficiency, greater number of potential end uses ­ Gasification fiber · Advantages: greater power generation efficiency, greater number of potential end uses

  1. On coaxial minors of determinants

    E-Print Network [OSTI]

    Babcock, Wealthy Consuelo

    1922-01-01

    . Approved by: ROOlOb SlSb^ Contents Page I. Introduction 1 II. Independence of Coaxial Minors of Special Determinants 9 A. Symmetric Determinant 9 B. Skew-symmetric Determinant ...14 C. Circulant 17 D. Hankel's Determinant 19 III... Introduction The work on coaxial minors of a deter­ minant has centered about the problems of deter­ mining the number of independent coaxial minors, of finding independent sets, and of expressing the determinant in terms of the minors of an independent set...

  2. Synthesis of Polycyclic Natural Products

    SciTech Connect (OSTI)

    Tuan Hoang Nguyen

    2003-05-31

    With the continuous advancements in molecular biology and modern medicine, organic synthesis has become vital to the support and extension of those discoveries. The isolations of new natural products allow for the understanding of their biological activities and therapeutic value. Organic synthesis is employed to aid in the determination of the relationship between structure and function of these natural products. The development of synthetic methodologies in the course of total syntheses is imperative for the expansion of this highly interdisciplinary field of science. In addition to the practical applications of total syntheses, the structural complexity of natural products represents a worthwhile challenge in itself. The pursuit of concise and efficient syntheses of complex molecules is both gratifying and enjoyable.

  3. Mississippi State Biodiesel Production Project

    SciTech Connect (OSTI)

    Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

    2008-03-20

    Biodiesel is a renewable fuel conventionally generated from vegetable oils and animal fats that conforms to ASTM D6751. Depending on the free fatty acid content of the feedstock, biodiesel is produced via transesterification, esterification, or a combination of these processes. Currently the cost of the feedstock accounts for more than 80% of biodiesel production cost. The main goal of this project was to evaluate and develop non-conventional feedstocks and novel processes for producing biodiesel. One of the most novel and promising feedstocks evaluated involves the use of readily available microorganisms as a lipid source. Municipal wastewater treatment facilities (MWWTF) in the USA produce (dry basis) of microbial sludge annually. This sludge is composed of a variety of organisms, which consume organic matter in wastewater. The content of phospholipids in these cells have been estimated at 24% to 25% of dry mass. Since phospholipids can be transesterified they could serve as a ready source of biodiesel. Examination of the various transesterification methods shows that in situ conversion of lipids to FAMEs provides the highest overall yield of biodiesel. If one assumes a 7.0% overall yield of FAMEs from dry sewage sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11. Since the lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, the product can be used as is for renewable fuel. As transesterification efficiency increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield. An overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to compete with soybean oil in the marketplace. Twelve plant species with potential for oil production were tested at Mississippi State, MS. Of the species tested, canola, rapeseed and birdseed rape appear to have potential in Mississippi as winter annual crops because of yield. Two perennial crops were investigated, Chinese tallow tree and tung tree. High seed yields from these species are possible because, there stature allows for a third dimension in yield (up). Harvest regimes have already been worked out with tung, and the large seed makes shedding of the seed with tree shakers possible. While tallow tree seed yields can be mind boggling (12,000 kg seed/ha at 40% oil), genotypes that shed seed easily are currently not known. Efficient methods were developed to isolate polyunsaturated fatty acid methyl esters from bio-diesel. The hypothesis to isolate this class of fatty acids, which are used as popular dietary supplements and prescription medicine (OMACOR), was that they bind transition metal ions much stronger than their harmful saturated analogs. AgBF4 has the highest extraction ability among all the metal ions tested. Glycerol is a key product from the production of biodiesel. It is produced during the transesterification process by cleaving the fatty acids from the glycerol backbone (the fatty acids are used as part of the biodiesel, which is a fatty acid methyl ester). Glycerol is a non-toxic compound with many uses; however, if a surplus exists in the future, more uses for the produced glycerol needs to be found. Another phase of the project was to find an add-on process to the biodiesel production process that will convert the glycerol by-product into more valuable substances for end uses other than food or cosmetics, focusing at present on 1,3-propanediol and lactic acid.All three MSU cultures produced products at concentrations below that of the benchmark microorganisms. There was one notable isolate the caught the eye of the investigators and that was culture J6 due to the ability of this microorganism to co-produce both products and one in particularly high concentrations. This culture with more understanding of its metabolic pathways could prove a useful biological agent for the conversion of glycerol. Heterogeneous catalysis was examined as an alternative to overcome the disadvantages of homogeneous transesterification, such as the presence of salts in the glycer

  4. Biological production of products from waste gases

    DOE Patents [OSTI]

    Gaddy, James L. (Fayetteville, AR)

    2002-01-22

    A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

  5. Modeling Fission Product Sorption in Graphite Structures

    SciTech Connect (OSTI)

    Szlufarska, Izabela; Morgan, Dane; Allen, Todd

    2013-04-08

    The goal of this project is to determine changes in adsorption and desorption of fission products to/from nuclear-grade graphite in response to a changing chemical environment. First, the project team will employ principle calculations and thermodynamic analysis to predict stability of fission products on graphite in the presence of structural defects commonly observed in very high- temperature reactor (VHTR) graphites. Desorption rates will be determined as a function of partial pressure of oxygen and iodine, relative humidity, and temperature. They will then carry out experimental characterization to determine the statistical distribution of structural features. This structural information will yield distributions of binding sites to be used as an input for a sorption model. Sorption isotherms calculated under this project will contribute to understanding of the physical bases of the source terms that are used in higher-level codes that model fission product transport and retention in graphite. The project will include the following tasks: Perform structural characterization of the VHTR graphite to determine crystallographic phases, defect structures and their distribution, volume fraction of coke, and amount of sp2 versus sp3 bonding. This information will be used as guidance for ab initio modeling and as input for sorptivity models; Perform ab initio calculations of binding energies to determine stability of fission products on the different sorption sites present in nuclear graphite microstructures. The project will use density functional theory (DFT) methods to calculate binding energies in vacuum and in oxidizing environments. The team will also calculate stability of iodine complexes with fission products on graphite sorption sites; Model graphite sorption isotherms to quantify concentration of fission products in graphite. The binding energies will be combined with a Langmuir isotherm statistical model to predict the sorbed concentration of fission products on each type of graphite site. The model will include multiple simultaneous adsorbing species, which will allow for competitive adsorption effects between different fission product species and O and OH (for modeling accident conditions).

  6. Covered Product Category: Cool Roof Products

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance across a variety of product categories, including cool roof products, which are an ENERGY STAR®-qualified product category. Federal laws and requirements mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

  7. 5 February 2014 SENT TO LSU AGCENTER/LOUISIANA FOREST PRODUCTS DEVELOPMENT CENTER -FOREST SECTOR / FORESTY PRODUCTS INTEREST GROUP

    E-Print Network [OSTI]

    / FORESTY PRODUCTS INTEREST GROUP 1 Title: Social network media in the forest products industry: A look Manufacturers Inc. (AHMI) surveyed a group of their members to determine if social media was being used, and exporting. Seven appendixes list resources and agencies that provide assistance to wood products companies

  8. Radioactive Materials Product Stewardship

    E-Print Network [OSTI]

    Radioactive Materials Product Stewardship ABackground Report for the National Dialogue...................................................................................................26 Low Level Waste (LLW) Disposal Regulations on Radioactive Materials Product Stewardship Prepared by the: Product Stewardship Institute University

  9. Determining the Gluonic Content of Isoscalar Mesons

    E-Print Network [OSTI]

    Frank E. Close; Glennys R. Farrar; Zhenping Li

    1996-10-08

    We develop tools to determine the gluonic content of a resonance of known mass, width and $J^{PC}$ from its branching fraction in radiative quarkonium decays and production cross section in $\\gamma \\gamma$ collisions. We test the procedures by applying them to known $q\\bar{q}$ mesons, then analyze four leading glueball candidates. We identify inconsistencies in data for $J/\\psi \\to \\gamma f_0(1500)$ and $J/\\psi \\to \\gamma f_J(1710)$ whose resolution can quantify their glueball status.When $\\Gamma(f_0(1500) \\to \\gamma \\gamma )$ and $\\Gamma(f_J(1710) \\to \\gamma \\gamma)$ are known, the $n\\bar{n}, s\\bar{s},gg$ mixing angles can be determined. The enigmatic situation in 1400-1500 MeV region of the isosinglet $0^{-+}$ sector is discussed.

  10. Sphericity determination using resonant ultrasound spectroscopy

    DOE Patents [OSTI]

    Dixon, R.D.; Migliori, A.; Visscher, W.M.

    1994-10-18

    A method is provided for grading production quantities of spherical objects, such as roller balls for bearings. A resonant ultrasound spectrum (RUS) is generated for each spherical object and a set of degenerate sphere-resonance frequencies is identified. From the degenerate sphere-resonance frequencies and known relationships between degenerate sphere-resonance frequencies and Poisson's ratio, a Poisson's ratio can be determined, along with a 'best' spherical diameter, to form spherical parameters for the sphere. From the RUS, fine-structure resonant frequency spectra are identified for each degenerate sphere-resonance frequency previously selected. From each fine-structure spectrum and associated sphere parameter values an asphericity value is determined. The asphericity value can then be compared with predetermined values to provide a measure for accepting or rejecting the sphere. 14 figs.

  11. Determining the neutrino mass hierarchy

    SciTech Connect (OSTI)

    Parke, Stephen J.; /Fermilab

    2006-07-01

    In this proceedings I review the physics that future experiments will use to determine the neutrino mass hierarchy.

  12. Non-destructive method for determining neutron exposure

    DOE Patents [OSTI]

    Gold, R.; McElroy, W.N.

    1983-11-01

    A non-destructive method for determination of neutron exposure in an object, such as a reactor pressure vessel, is based on the observation of characteristic gamma-rays emitted by activation products in the object by using a unique continuous gamma-ray spectrometer. The spectrometer views the object through appropriate collimators to determine the absolute emission rate of these characteristic gamma-rays, thereby ascertaining the absolute activity of given activation products in the object. These data can then be used to deduce the spatial and angular dependence of neutron exposure at regions of interest within the object.

  13. Wax Point Determinations Using Acoustic Resonance Spectroscopy

    SciTech Connect (OSTI)

    Bostick, D.T.; Jubin, R.T.; Schmidt, T.W.

    2001-06-01

    The thermodynamic characterization of the wax point of a given crude is essential in order to maintain flow conditions that prevent plugging of undersea pipelines. This report summarizes the efforts made towards applying an Acoustic Cavity Resonance Spectrometer (ACRS) to the determination of pressures and temperatures at which wax precipitates from crude. Phillips Petroleum Company, Inc., the CRADA participant, supplied the ACRS. The instrumentation was shipped to Dr. Thomas Schmidt of ORNL, the CRADA contractor, in May 2000 after preliminary software development performed under the guidance of Dr. Samuel Colgate and Dr. Evan House of the University of Florida, Gainesville, Fl. Upon receipt it became apparent that a number of modifications still needed to be made before the ACRS could be precisely and safely used for wax point measurements. This report reviews the sequence of alterations made to the ACRS, as well as defines the possible applications of the instrumentation once the modifications have been completed. The purpose of this Cooperative Research and Development Agreement (CRADA) between Phillips Petroleum Company, Inc. (Participant) and Lockheed Martin Energy Research Corporation (Contractor) was the measurement of the formation of solids in crude oils and petroleum products that are commonly transported through pipelines. This information is essential in the proper design, operation and maintenance of the petroleum pipeline system in the United States. Recently, new petroleum discoveries in the Gulf of Mexico have shown that there is a potential for plugging of undersea pipeline because of the precipitation of wax. It is important that the wax points of the expected crude oils be well characterized so that the production facilities for these new wells are capable of properly transporting the expected production. The goal of this work is to perform measurements of solids formation in crude oils and petroleum products supplied by the Participant. It is anticipated that these data will be used in the design of new production facilities and in the development of thermodynamic models that describe the behavior of wax-saturated petroleum.

  14. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    dioxide control technologies. Figure 1 shows clean coal technology benefits(2) . In 1977, the conceptCenter for By-Products Utilization CLEAN COAL BY-PRODUCTS UTILIZATION IN ROADWAY, EMBANKMENTS electricity production is from the use of coal-based technologies(1) . This production is estimated

  15. Introduction to biogas production on the farm

    SciTech Connect (OSTI)

    Not Available

    1984-03-01

    A number of farmers, ranchers, and engineers received support from the US Department of Energy Appropriate Technology Small Grants Program to design, construct, and demonstrate biogas production systems. Many of these projects generated more than just biogas; grantees' work and results have contributed to a growing body of information about practical applications of this technology. This publication was developed to share some of that information, to answer the basic questions about biogas production, and to lead farmers to more information. Section I introduces biogas and the various components of a biogas production system, discusses the system's benefits and liabilities, and provides a brief checklist to determine if biogas production may be applicable to an individual's particular situation. Section II features descriptions of four biogas projects of various sizes. Section III provides sources of additional information including descriptions of other biogas production projects.

  16. Technical Analysis of Hydrogen Production

    SciTech Connect (OSTI)

    Ali T-Raissi

    2005-01-14

    The aim of this work was to assess issues of cost, and performance associated with the production and storage of hydrogen via following three feedstocks: sub-quality natural gas (SQNG), ammonia (NH{sub 3}), and water. Three technology areas were considered: (1) Hydrogen production utilizing SQNG resources, (2) Hydrogen storage in ammonia and amine-borane complexes for fuel cell applications, and (3) Hydrogen from solar thermochemical cycles for splitting water. This report summarizes our findings with the following objectives: Technoeconomic analysis of the feasibility of the technology areas 1-3; Evaluation of the hydrogen production cost by technology areas 1; and Feasibility of ammonia and/or amine-borane complexes (technology areas 2) as a means of hydrogen storage on-board fuel cell powered vehicles. For each technology area, we reviewed the open literature with respect to the following criteria: process efficiency, cost, safety, and ease of implementation and impact of the latest materials innovations, if any. We employed various process analysis platforms including FactSage chemical equilibrium software and Aspen Technologies AspenPlus and HYSYS chemical process simulation programs for determining the performance of the prospective hydrogen production processes.

  17. Nuclear Dependence of Charm Production

    SciTech Connect (OSTI)

    Blanco-Covarrubias, A.; Engelfried, J.; Akgun, U.; Alkhazov, G.; Amaro-Reyes, J.; Atamantchouk, A.G.; Ayan, A.S.; Balatz, M.Y.; Bondar, N.F.; Cooper, P.S.; Dauwe, Loretta J.; /Michigan U., Flint /Moscow, ITEP

    2009-02-01

    With data taken by SELEX, which accumulated data during the 1996-1997 fixed target run at Fermilab, we study the production of charmed hadrons on copper and carbon targets with {Sigma}{sup -}, p, {pi}{sup -}, and {pi}{sup +} beams. Parameterizing the production cross section {infinity} A{sup {alpha}}, A being the atomic number, we determine {alpha} for D{sup +}, D{sup 0}, D{sub s}{sup +}, D{sup +}(2010), {Lambda}{sub c}{sup +}, and their respective anti-particles, as a function of their transverse momentum p{sub t} and scaled longitudinal momentum x{sub F}. Within our statistics there is no dependence of {alpha} on x{sub F} for any charm species for the interval 0.1 < x{sub F} < 1.0. The average value of {alpha} for charm production by pion beams is {alpha}{sub meson} = 0.850 {+-} 0.028. This is somewhat larger than the corresponding average {alpha}{sub baryon} = 0.755 {+-} 0.016 for charm production by baryon beams ({Sigma}{sup -}, p).

  18. Bistatic SAR: Imagery & Image Products.

    SciTech Connect (OSTI)

    Yocky, David A.; Wahl, Daniel E.; Jakowatz, Charles V,

    2014-10-01

    While typical SAR imaging employs a co-located (monostatic) RADAR transmitter and receiver, bistatic SAR imaging separates the transmitter and receiver locations. The transmitter and receiver geometry determines if the scattered signal is back scatter, forward scatter, or side scatter. The monostatic SAR image is backscatter. Therefore, depending on the transmitter/receiver collection geometry, the captured imagery may be quite different that that sensed at the monostatic SAR. This document presents imagery and image products formed from captured signals during the validation stage of the bistatic SAR research. Image quality and image characteristics are discussed first. Then image products such as two-color multi-view (2CMV) and coherent change detection (CCD) are presented.

  19. CX-010689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office

  20. CX-012200: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Excess Real Property CX(s) Applied: B1.36 Date: 05/01/2014 Location(s): Colorado Offices(s): Legacy Management

  1. Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production

    E-Print Network [OSTI]

    Narasayya, Vivek

    #12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

  2. Methods of cracking a crude product to produce additional crude products

    DOE Patents [OSTI]

    Mo, Weijian (Sugar Land, TX); Roes, Augustinus Wilhelmus Maria (Houston, TX); Nair, Vijay (Katy, TX)

    2009-09-08

    A method for producing a crude product is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce one or more crude products. At least one of the crude products has a boiling range distribution from 38.degree. C. and 343.degree. C. as determined by ASTM Method D5307. The crude product having the boiling range distribution from 38.degree. C. and 343.degree. C. is catalytically cracked to produce one or more additional crude products. At least one of the additional crude products is a second gas stream. The second gas stream has a boiling point of at most 38.degree. C. at 0.101 MPa.

  3. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization DRAFT REPORT CARBON DIOXIDE SEQUESTRATION IN CEMENTITIOUS-MILWAUKEE #12;CARBON DIOXIDE SEQUESTRATION IN CEMENTITIOUS PRODUCTS Progress Report by Tarun R. Naik, Rakesh of Carbon Dioxide Sequestration Technologies

  4. Energy Efficiency Product Standards

    Broader source: Energy.gov [DOE]

    New Jersey Energy Efficiency Product Standards, enacted in 2005, include minimum standards for eight products, which were preempted by the federal Energy Policy Act of 2005. Future standards, if...

  5. Simultaneous Production and Distribution of Industrial Gas Supply-Chains Pablo A. Marchetti1

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    include production modes and rates that determine power consumption. Distribution decisions involve sourceSimultaneous Production and Distribution of Industrial Gas Supply-Chains Pablo A. Marchetti1. The objective is to minimize the total cost of production and distribution of liquid products by coordinating

  6. Production rate of cosmogenic 21 Ne in quartz estimated from 10

    E-Print Network [OSTI]

    Shuster, David L.

    Production rate of cosmogenic 21 Ne in quartz estimated from 10 Be, 26 Al, and 21 Ne concentrations Antarctica production rate calibration We estimated the production rate of 21 Ne in quartz using a set production rate. As the erosion rate can be determined from 10 Be and 26 Al concentrations, this allows

  7. CX-002256: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    From Algae to Oilgae: In Situ Studies of the Factors Controlling Growth, Oil Production, and Oil ExCX(s) Applied: B3.6Date: 03/20/2010Location(s): CaliforniaOffice(s): Sandia Site Office

  8. CX-011483: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bioprocessing for Bioremediation and Energy Production CX(s) Applied: B3.6 Date: 11/06/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  9. CX-011737: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gas Technology Institute - Dual Electrolyte Extraction Electro-Refinery for Aluminum Production CX(s) Applied: B3.6 Date: 10/23/2013 Location(s): Illinois Offices(s): Advanced Research Projects Agency-Energy

  10. CX-012427: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alaska Hydrate Production Testing: Test Site Selection and Characterization CX(s) Applied: A1, A9Date: 41879 Location(s): ColoradoOffices(s): National Energy Technology Laboratory

  11. CX-010216: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Design and Optimization of a Biochemical Production Platform with Biosensor-guided Synthetic Evolution CX(s) Applied: A9, B3.6 Date: 02/28/2013 Location(s): California Offices(s): Golden Field Office

  12. CX-009897: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    25A1543 - A Genetically Tractable Microalgal Platform for Advanced Biofuel Production CX(s) Applied: B3.6 Date: 01/19/2010 Location(s): Iowa Offices(s): Advanced Research Projects Agency-Energy

  13. CX-000842: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    25A1543 - A Genetically Tractable Microalgal Platform for Advanced Biofuel ProductionCX(s) Applied: B3.6Date: 01/19/2010Location(s): IowaOffice(s): Advanced Research Projects Agency - Energy

  14. CX-012034: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Field Demonstration of a Novel Eco-Friendly Production Enhancement Process CX(s) Applied: A9, A11, B3.7 Date: 04/15/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

  15. CX-012035: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Field Demonstration of a Novel Eco-Friendly Production Enhancement Process CX(s) Applied: A9, A11, B3.7 Date: 04/15/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

  16. CX-010188: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Field Demonstration of a Novel Eco-Friendly Production Enhancement Process CX(s) Applied: B3.11 Date: 04/17/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

  17. CX-012033: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Field Demonstration of a Novel Eco-Friendly Production Enhancement Process CX(s) Applied: A9, A11, B3.6 Date: 04/15/2014 Location(s): CX: none Offices(s): National Energy Technology Laboratory

  18. CX-009557: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recycling of Nutrients and Water in Algal Biofuels Production CX(s) Applied: A9, B3.6 Date: 12/10/2012 Location(s): California Offices(s): Golden Field Office

  19. CX-003608: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sustainable Algal Energy Production and Environmental RemediationCX(s) Applied: A9, B3.6Date: 08/25/2010Location(s): VirginiaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  20. CX-010613: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hyper Scratcher Tool: A Patented Oil, Gas, Disposal, & Injection Well Tool for Enhancing Production CX(s) Applied: B5.12 Date: 07/22/2013 Location(s): Utah Offices(s): National Energy Technology Laboratory

  1. CX-010203: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hyper Scratcher Tool: A Patented Oil, Gas, Disposal and Injection Well Tool for Enhancing Production CX(s) Applied: B3.7 Date: 04/03/2013 Location(s): Alabama Offices(s): National Energy Technology Laboratory

  2. CX-010442: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hyper Scratcher Tool: A Patented Oil, Gas, Disposal, & Injection Well Tool for Enhancing Production... CX(s) Applied: B3.7 Date: 06/19/2013 Location(s): California Offices(s): National Energy Technology Laboratory

  3. CX-009285: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydrate-Bearing Clayey Sediments: Morphology, Physical Properties, Production and Engineering... CX(s) Applied: A1, A9, B3.6 Date: 09/07/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  4. CX-004086: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Farm Deployable Microbial Bioreactor for Fuel Ethanol ProductionCX(s) Applied: A9, B3.6Date: 09/29/2010Location(s): Montgomery, AlabamaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  5. CX-003099: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pennsylvania State University - Development of Rhodobacter as a Versatile Microbial Platform for Fuels ProductionCX(s) Applied: B3.6Date: 06/02/2010Location(s): PennsylvaniaOffice(s): Advanced Research Projects Agency - Energy

  6. CX-007357: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Transition the Umatilla Coho Production Program to a Local Broodstock Program CX(s) Applied: B1.20 Date: 12/01/2011 Location(s): Oregon Offices(s): Bonneville Power Administration

  7. CX-003977: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Large Scale Production of Fuels and Feeds from Marine MicroalgaeCX(s) Applied: A9, B3.6Date: 09/22/2010Location(s): HawaiiOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  8. CX-010235: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Large-Scale Production of Fuels and Feed from Marine Microalgae CX(s) Applied: A9, B3.6 Date: 02/14/2013 Location(s): New York Offices(s): Golden Field Office

  9. CX-001964: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Biofuel Production TechnologyCX(s) Applied: B5.1Date: 02/19/2010Location(s): WisconsinOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  10. CX-004654: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    The Development of Value-Added Products from Algae Residual BiomassCX(s) Applied: B3.6Date: 12/07/2010Location(s): New MexicoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  11. CX-009925: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    The Agile Electro-Mechanical Product Accelerator CX(s) Applied: A9, A11 Date: 12/14/2012 Location(s): Pennsylvania Offices(s): Golden Field Office

  12. CX-012111: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Thermochemical Storage with Anhydrous Ammonia: Optimizing the Synthesis Reactor for Direct Production of Supercritical Steam CX(s) Applied: A9 Date: 05/06/2014 Location(s): California Offices(s): Golden Field Office

  13. CX-012296: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hyper Scratcher Tool: A Patented Oil, Gas, Disposal, & Injection Well Tool for Enhancing Production CX(s) Applied: B3.7 Date: 06/03/2014 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  14. CX-011429: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hyper Scratcher Tool: A Patented Oil, Gas, Disposal, & Injection Well Tool for Enhancing Production… CX(s) Applied: B3.7 Date: 12/03/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

  15. CX-012295: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hyper Scratcher Tool: A Patented Oil, Gas, Disposal, & Injection Well Tool for Enhancing Production CX(s) Applied: B3.7 Date: 06/03/2014 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  16. CX-010812: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Scoping Studies of Advanced Gasification Technologies for Hydrogen (H2)-Rich Syngas Production CX(s) Applied: A9, B3.6 Date: 08/02/2013 Location(s): North Carolina Offices(s): National Energy Technology Laboratory

  17. CX-000592: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    25A3400 - Catalytic Biocrude Production in a Novel, Short-contact Time ReactorCX(s) Applied: B3.6Date: 12/15/2009Location(s): North CarolinaOffice(s): Advanced Research Projects Agency - Energy

  18. CX-000652: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cardinal Glass - Photovoltaic Glass ProductionCX(s) Applied: B5.1Date: 01/27/2010Location(s): Portage, WisconsinOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  19. CX-012444: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geomechanical Monitoring for CO2 Hub Storage: Production and Injection at Kevin Dome CX(s) Applied: A9Date: 41878 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  20. CX-012438: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geomechanical Monitoring for CO2 Hub Storage: Production and Injection at Kevin Dome CX(s) Applied: A1, A9Date: 41878 Location(s): MontanaOffices(s): National Energy Technology Laboratory

  1. CX-010937: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hybrid Molten Bed Gasifier for Production of High Hydrogen Syngas CX(s) Applied: A9 Date: 09/17/2013 Location(s): California Offices(s): National Energy Technology Laboratory

  2. CX-010936: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hybrid Molten Bed Gasifier for Production of High Hydrogen Syngas CX(s) Applied: A9, B3.6 Date: 09/17/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

  3. CX-100134 Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Test Procedures for Measuring Energy Efficiency of Consumer Products and Industrial Equipment CX(s) Applied: A5, A6 Date: 12/17/2014 Location(s): Nationwide Office(s): Golden Field Office

  4. CX-010491: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sludge Batch 8 (SB8) Waste Acceptance Product Specifications (WAPS) CX(s) Applied: B3.6 Date: 05/21/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  5. CX-012452: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Design/Cost Study and Commercialization Analysis for Synthetic Jet Fuel Production CX(s) Applied: A8, A9, A11Date: 41877 Location(s): New JerseyOffices(s): National Energy Technology Laboratory

  6. CX-012460: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology for Greenhouse Gas Emission Reduction & Cost Competitiveness of Mil-Spec Jet Fuel Production Using CTL CX(s) Applied: B3.6Date: 41877 Location(s): AlabamaOffices(s): National Energy Technology Laboratory

  7. CX-012459: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Design/Cost Study and Commercialization Analysis for Synthetic Jet Fuel Production CX(s) Applied: A8, A9, A11Date: 41877 Location(s): PennsylvaniaOffices(s): National Energy Technology Laboratory

  8. CX-012462: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology for Greenhouse Gas Emission Reduction & Cost Competitiveness of Mil-Spec Jet Fuel Production Using CTL CX(s) Applied: B3.6Date: 41877 Location(s): UtahOffices(s): National Energy Technology Laboratory

  9. CX-005042: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hydrogen Production and Purification from Coal and Other Heavy FeedstocksCX(s) Applied: B3.6Date: 01/19/2011Location(s): Grand Forks, North DakotaOffice(s): Fossil Energy, National Energy Technology Laboratory

  10. CX-100056 Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Advancing Commercialization of Algal Biofuels Through Increased Biomass Productivity and Technical Integration Award Number: DE-EE0006637 CX(s) Applied: A9 Date: 09/15/2014 Location(s): HI Office(s): Golden Field Office

  11. CX-011732: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    SRI International -Direct Low-Cost Production of Titanium Alloys CX(s) Applied: B3.6 Date: 12/05/2013 Location(s): California Offices(s): Advanced Research Projects Agency-Energy

  12. Insights into vitamin B?? production, acquisition, and use by marine microbes

    E-Print Network [OSTI]

    Bertrand, Erin Marie

    2012-01-01

    The distribution and magnitude of marine primary production helps determine the ocean's role in global carbon cycling. Constraining factors that impact this productivity and elucidating selective pressures that drive the ...

  13. Functional design of mechanical products based on behavior-driven function-environment-structure modeling framework

    E-Print Network [OSTI]

    Zhang, W.Y.

    The relative significance of upstream design activity to downstream design activity is widely recognized, due to its critical role in determining the final product’s functionality. Although there are now some general ...

  14. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent BondingMeeting |Design CompetitionsFuelof

  15. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. M. Beheary, and K. M. Abdel-Moneim, "Effect of dust on the Transpar- ent Cover of Solar Collectors," Energy Conversion and Management, vol. 47, no. 18-19, pp. 3192-3203,...

  16. MECS 2006- Forest Products

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Forest Products (NAICS 321, 322) Sector with Total Energy Input, October 2012 (MECS 2006)

  17. Estimation and Fate of New Production in the Marine Environment 

    E-Print Network [OSTI]

    McInnes, Allison Skinner

    2014-06-03

    The fate of carbon in the ocean determines both the amount of CO_(2) that can be sequestered and the amount of sustainable biomass. Compartmentalization into new and regenerated production allows a first order estimate of ...

  18. Changes in soil carbon and nitrogen associated with switchgrass production 

    E-Print Network [OSTI]

    Lobo Alonzo, Porfirio Jose

    2004-11-15

    Greater knowledge of the short- and long-term effects of biomass production practices on soil biological and chemical properties is needed to determine influences on sustainable land management. Soil samples under switchgrass (Panicum virgatum L...

  19. Production of subject-verb agreement in Slovene and English 

    E-Print Network [OSTI]

    Harrison, Annabel Jane

    2009-11-26

    This thesis explores the mental representation of subject-verb agreement, and the factors that can affect the determination of agreement in language production. It reports nine experiments that used a task in which ...

  20. & CONSUMPTION US HYDROPOWER PRODUCTION

    E-Print Network [OSTI]

    ENERGY PRODUCTION & CONSUMPTION US HYDROPOWER PRODUCTION In the United States hydropower supplies the NAO. ENERGY CONSUMPTION AND PRODUCTION IN NORWAY AND THE NAO The demand for heating oil in Norway Average Winter Temperature NORWAY kilotonsofoilmillibars°Cmmofrainfall Annual Heating Oil Consumption

  1. Productivity & Energy Flow

    E-Print Network [OSTI]

    Mitchell, Randall J.

    1 Productivity & Energy Flow Ecosystem approach, focuses: on flow of energy, water, and nutrients (capture) of energy by autotrophs Gross (total) Net (total ­ costs) Secondary productivity- capture of energy by herbivores http://sciencebitz.com/?page_id=204 What Controls the Primary Productivity

  2. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST OF CLASS F FLYASHAND CLEAN-COAL ASHBLENDS FOR CAST CONCRETE PRODUCTS Authors: TarunR.Naik, Director, Center,Illinois Clean Coal Institute RudolphN.Kraus, Research Associate, UWM Center forBy-Products Utilization Shiw S

  3. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    Center for By-Products Utilization USE OF CLEAN-COAL ASH FOR MANAGING ASR By Zichao Wu and Tarun R College of Engineering and Applied Science THE UNIVERSITY OF WISCONSIN­MILWAUKEE #12;USE OF CLEAN-COAL ASH combustion by-products (such as clean-coal ash) from power plants. Maximum recycling of such by- products

  4. By-Products Utilization

    E-Print Network [OSTI]

    Wisconsin-Milwaukee, University of

    combustion by-products #12;3 generated by using both conventional and clean-coal technologies. A clean-coal that obtained from clean-coal technology, are not utilized in cast-concrete masonry products (bricks, blocksCenter for By-Products Utilization RECENT ADVANCES IN RECYCLING CLEAN- COAL ASH By Tarun R. Naik

  5. Strangeness Production at COSY

    E-Print Network [OSTI]

    Frank Hinterberger; Hartmut Machner; Regina Siudak

    2010-10-08

    The paper gives an overview of strangeness-production experiments at the Cooler Synchrotron COSY. Results on kaon-pair and phi meson production in pp, pd and dd collisions, hyperon-production experiments and Lambda p final-state interaction studies are presented.

  6. MAIL DISTRIBUTION MAIL PRODUCTION

    E-Print Network [OSTI]

    MAIL DISTRIBUTION AND MAIL PRODUCTION OPERATIONS GUIDE November 07 Revised November 07 #12;2 Mail/billing......................................................................................1-5346 Mail Production of the University non-profit permit. 3. All bulk mailings must be coordinated with Mail Production at the earliest

  7. Coal production 1989

    SciTech Connect (OSTI)

    Not Available

    1990-11-29

    Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

  8. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

    1998-12-08

    A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

  9. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, Carol Maryanne (Aiken, SC); Pickett, John Butler (Aiken, SC); Brown, Kevin George (Augusta, GA); Edwards, Thomas Barry (Aiken, SC)

    1998-01-01

    A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

  10. ,"U.S. Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall to $3.43U.S.longec 188 U.S.1Sales

  11. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01

    Annual Weather Statistics (HDH = Heating Degree Hours, C DH = Cooling Degree Hours, L E H = Latent Enthalpy Hours)

  12. ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    D.C. : U.S. Agency Solid Waste Management. EnvironmentalCRRA California State Solid Waste Management Board 1977aBay Area Solid Waste Management Project - Sacramento,

  13. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    E-Print Network [OSTI]

    McKone, Thomas E.

    2011-01-01

    for coal, natural gas, oil, and waste-to-energy (WTE) firedcoal, natural gas, oil and waste-to-energy fired electricitytype (coal, oil, natural gas, or waste-to-energy, or WTE),

  14. ,"U.S. Total Sales of Residual Fuel Oil by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    to Oil Company Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to Electric Utility Consumers (Thousand Gallons)","U.S. Residual Fuel Oil SalesDeliveries to...

  15. ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    of Waste Landfilled and Landfill Closure Dates For The Loswaste landfilled and landfill closure dates the Los Angeles

  16. End-use electrification in the residential sector : a general equilibrium analysis of technology advancements

    E-Print Network [OSTI]

    Madan, Tanvir Singh

    2012-01-01

    The residential sector in the U.S. is responsible for about 20% of the country's primary energy use (EIA, 2011). Studies estimate that efficiency improvements in this sector can reduce household energy consumption by over ...

  17. ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.1

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    water consumption and solar water heaters with efficientsolar water heating systems with efficent electrical backup heaters

  18. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01

    of existing building and energy use data and obtain energydata; IFS building inventory data, building prototypes,Inventory The IFS building inventory data included building

  19. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01

    Dix Bvr Brg Bng~ Plk Bhn Lwd Iwn Sll Yma Bis Shn Hood EndBvr Brg Bng Plk Bhn HVAC Lwd Iwn SII Non-HVAC Yma Bis ShnGWh). Dix Bvr Brg Bng Plk Bhn Lwd Iwn Sll Y m a Bis Shn Hood

  20. Letter Report on Testing of Distributed Energy Resource, Microgrid, and End-Use

    E-Print Network [OSTI]

    potential renewable, distributed energy resource, and micro-grid technology initiatives. Specific activities renewable generation technologies. The more energy storage available on the grid, the more intermittent renewables such as wind and solar that can be added to the grid. Currently grids use backup power generators

  1. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    E-Print Network [OSTI]

    McKone, Thomas E.

    2011-01-01

    Hanford Woodwaste Steam Turbine, Cfb Fresno Petroleum Coke,Woodwaste MSW Steam Turbine, Cfb Riverside Corona Landfill

  2. INTERNATIONAL RESIDENTIAL ENERGY END USE DATA: ANALYSIS OF HISTORICAL AND PRESENT DAY STRUCTURE AND DYNAMICS

    E-Print Network [OSTI]

    Schipper, Lee

    2013-01-01

    PJ Elec. , TI/h City Gas,PJ LPG,PJ Oil ,PJ Coal,PJ GERMANYPJ Nat .Gas,PJ City Gas,PJ LPG, PJ Oil ,PJ Coal,PJ 3B6g I IJapan). \\\\fe have separated LPG from oil totals in some

  3. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    sectors","Residential","Commercial","Industrial","Transportation" 1,"Green Mountain Power Corp","Investor-owned",4295605,1556518,1560705,1178382,0 2,"Vermont Electric...

  4. ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    Potential Alternative Fuels Derivatives from Municipal Solid Waste. In EnergyPotential Energy Savings -- Source Separation Table 15. Comparative Energy Savings For Newsprint Recovery and MSW Fuel

  5. Renewable Electricity Futures Study. Volume 3. End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, Donna; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  6. Renewable Electricity Futures Study. Volume 3: End-Use Electricity Demand

    SciTech Connect (OSTI)

    Hostick, D.; Belzer, D.B.; Hadley, S.W.; Markel, T.; Marnay, C.; Kintner-Meyer, M.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  7. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    E-Print Network [OSTI]

    McKone, Thomas E.

    2011-01-01

    impact assessment. In Life cycle assessment: Analysis by anRebitzer, G. (2004). Life cycle assessment Part 2: CurrentHealth Response in Life Cycle Assessment Using EDI0s and

  8. Residential Behavioral Savings: An Analysis of Principal Electricity End Uses in British Columbia

    E-Print Network [OSTI]

    Tiedemann, Kenneth Mr.

    2013-01-01

    Fowlie. 2007. Demand-Side Management and Energy Efficiencyand building shells. Demand side management programs have

  9. ENERGY CONSERVATION: POLICY ISSUES AND END-USE SCENARIOS OF SAVINGS POTENTIAL PT.2

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    in the resource stream where energy recovery from materialsMSW Derived Energy Table 10. Recyclables in the Waste Stream

  10. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    E-Print Network [OSTI]

    McKone, Thomas E.

    2011-01-01

    Woodwaste Natural Gas Steam Turbine Cogen Sierra Tulare GasGas Turbine Combined Cycle Steam Turbine Cogen Not Cogen NotNot Cogen Cogen Cogen Kern Steam Turbine Steam Turbne Lassen

  11. Estimates of Energy Consumption by Building Type and End Use at U.S. Army Installations

    E-Print Network [OSTI]

    Konopacki, S.J.

    2010-01-01

    Summer Study on Energy Efficiency in Buildings, Volume 10,Summer Study on Energy Efficiency in Buildings, V o l 10, ppSummer Study on Energy Efficiency in Buildings, Volume 3, p.

  12. Residential Behavioral Savings: An Analysis of Principal Electricity End Uses in British Columbia

    E-Print Network [OSTI]

    Tiedemann, Kenneth Mr.

    2013-01-01

    Summer Study on Energy Efficiency in Buildings, Washington ,Summer Study on Energy Efficiency in Buildings, Washington,

  13. Public Health Benefits of End-Use Electrical Energy Efficiency in California: An Exploratory Study

    E-Print Network [OSTI]

    McKone, Thomas E.

    2011-01-01

    j designates the plant generating electricity from apowered electricity generating plants in a) urban and b)from electricity generating plants in California. Exposure

  14. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    5,"City of Logan - (UT)","Public",418413,97993,201096,119324,0 " ","Total Sales, Top Five Providers",,26851974,7744712,9547010,9506141,54111 " ","Percent of Total State...

  15. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"South Carolina Electric&Gas Company","Investor-owne...

  16. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"First Energy Solutions Corp.","Investor-owned",49437270...

  17. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas & Electric Co","Investor-owned",3318069,819012,2248828,250229,0 " ","Total Sales, Top Five Providers",,54871207,17074227,20258674,17538306,0 " ","Percent of Total State...

  18. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    4,"CECG Maine, LLC","Investor-owned",1045091,749511,65171,230409,0 5,"Total sales, top five providers","Investor-owned",1034503,947193,83890,3420,0 " ","Percent of total...

  19. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Elec.Util","Investor-owned",1809501,618779,820179,370543,0 5,"Total sales, top five providers","Public",1469415,508991,502794,457630,0 " ","Percent of total state...

  20. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Membership Corporation","Cooperative",3086121,2015890,810994,259237,0 5,"Total sales, top five providers","Cooperative",2639717,1569336,609511,460870,0 " ","Percent of total...

  1. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    5,"UNS Electric, Inc","Investor-owned",1699307,843617,609437,246253,0 " ","Total sales, top five providers",,67996498,30598915,26380482,11017101,0 " ","Percent of total state...

  2. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Duke Energy Carolinas, LLC","Investor-owned",553018...

  3. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Pine Elec Power Assn","Cooperative",2076084,879654,330078,866352,0 5,"Total sales, top five providers","Cooperative",1652489,1061970,374841,215678,0 " ","Percent of total...

  4. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    4,"City of Idaho Falls - (ID)","Public",694170,288450,316042,89678,0 5,"Total sales, top five providers","Cooperative",423269,289764,103709,29796,0 " ","Percent of total state...

  5. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Municipal Util Dist","Public",10446627,4655065,643332,5119004,29226 " ","Total sales, top five providers",,200125554,79975199,93237912,26587313,325130 " ","Percent of total...

  6. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utilities Board","Public",5425216,2413813,2353364,658039,0 " ","Total Sales, Top Five Providers",,42396023,14389803,15369165,12635273,1782 " ","Percent of Total State...

  7. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    5,"Black Diamond Power Co","Investor-owned",57388,40388,17000,0,0 " ","Total Sales, Top Five Providers",,31238820,11494224,7736888,12003726,3982 " ","Percent of Total State...

  8. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Total sales, top five providers" "Nevada" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Nevada Power...

  9. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    4,"JEA","Public",11555805,4852228,3899181,2801011,3385 5,"Total sales, top five providers","Investor-owned",10619889,5088829,3830886,1700174,0 " ","Percent of...

  10. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Kentucky Utilities Co","Investor-owned",18527337,61...

  11. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Lincoln People's Ut Dt","Public",1314513,428504,184101,701908,0 " ","Total sales, top five providers",,36402314,14645762,14332123,7401956,22473 " ","Percent of total state...

  12. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota" "megawatthours" ,"Entity","Type of provider","All sectors","Residential","Commercial","Industrial","Transportation" 1,"Northern States Power Co - Minnesota","Investor-owned...

  13. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Power Marketing, Ltd.","Investor-owned",2477991,0,0,2477991,0 " ","Total Sales, Top Five Providers",,29807991,12924437,11690927,5187747,4880 " ","Percent of Total State...

  14. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    NewEnergy, Inc","Investor-owned",4346122,183554,3460337,680584,21647 " ","Total sales, top five providers",,42520476,22426188,15836198,4089313,168777 " ","Percent of total state...

  15. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Illuminating Co","Investor-owned",1489615,1046289,410769,32557,0 5,"Total sales, top five providers","Investor-owned",1346191,0,1346191,0,0 " ","Percent of total state...

  16. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Utility Cooperative","Cooperative",431478,157867,113233,160378,0 " ","Total sales, top five providers",,9500991,2608786,3269094,3623111,0 " ","Percent of total state...

  17. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    Valley Elec Coop","Cooperative",2339530,1109758,636153,593619,0 " ","Total sales, top five providers",,100695208,40498252,44944817,15057535,194604 " ","Percent of total...

  18. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    5,"Midwest Energy Inc","Cooperative",1465542,320197,365898,779447,0 " ","Total sales, top five providers",,29387627,10230485,12148409,7008733,0 " ","Percent of total state...

  19. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    & Power Co","Investor-owned",74469354,28802062,39078780,6393908,194604 " ","Total Sales, Top Five Providers",,409576688,168650001,190375046,50052217,499424 " ","Percent of Total...

  20. Table 3. Top five retailers of electricity, with end use sectors...

    U.S. Energy Information Administration (EIA) Indexed Site

    4,"Connexus Energy","Cooperative",2001218,1181107,682415,137696,0 5,"Total sales, top five providers","Cooperative",1859499,931254,50650,877595,0 " ","Percent of total state...