National Library of Energy BETA

Sample records for determine area wind

  1. Impact of Balancing Areas Size, Obligation Sharing, and Ramping Capability on Wind Integration: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.

    2007-06-01

    This paper examines wind integration costs as a function of balancing area size to determine if the larger system size helps mitigate wind integration cost increases.

  2. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study...

  3. Analysis of Offshore Wind Energy Leasing Areas for the Rhode Island/Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.

    2013-04-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to BOEM on the identification and delineation of offshore leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM in 2012. This report focuses on NREL's evaluation of BOEM's Rhode Island/Massachusetts (RIMA) WEA leasing areas. The objective of the NREL evaluation was to assess the proposed delineation of the two leasing areas and determine if the division is reasonable and technically sound. Additionally, the evaluation aimed to identify any deficiencies in the delineation. As part of the review, NREL performed the following tasks: 1. Performed a limited review of relevant literature and RIMA call nominations. 2. Executed a quantitative analysis and comparison of the two proposed leasing areas 3. Conducted interviews with University of Rhode Island (URI) staff involved with the URI Special Area Management Plan (SAMP) 4. Prepared this draft report summarizing the key findings.

  4. Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind· vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you· made! The biggest differences

  5. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Maryland Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-06-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's evaluation of the delineation proposed by the Maryland Energy Administration (MEA) for the Maryland (MD) WEA and two alternative delineations. The objectives of the NREL evaluation were to assess MEA's proposed delineation of the MD WEA, perform independent analysis, and recommend how the MD WEA should be delineated.

  6. Assessment of Offshore Wind Energy Leasing Areas for the BOEM New Jersey Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Elliott, D.; Fields, J.; Parker, Z.; Scott, G.; Draxl, C.

    2013-10-01

    The National Renewable Energy Laboratory (NREL), under an interagency agreement with the U.S. Department of the Interior's Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development and evaluation of the delineations for the New Jersey (NJ) WEA. The overarching objective of this study is to develop a logical process by which the New Jersey WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL identified a selection of leasing areas and proposed delineation boundaries within the established NJ WEA. The primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  7. Stochastic Modeling of Multi-Area Wind Power Production

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Stochastic Modeling of Multi-Area Wind Power Production Anthony Papavasiliou Department model accounts for the inter-temporal and spatial dependencies of multi-area wind power production. Results are presented for a case study of the California power system. Keywords - Wind power generation

  8. WIND SPEED VARIABILITY AND ADAPTATION STRATEGIES IN COASTAL AREAS

    E-Print Network [OSTI]

    Kohfeld, Karen

    WIND SPEED VARIABILITY AND ADAPTATION STRATEGIES IN COASTAL AREAS OF THE PACIFIC NORTHWEST of Thesis: Wind Speed Variability and Adaptation Strategies in Coastal Areas of the Pacific Northwest/Approved: ___________________________________________ #12;iii ABSTRACT Overall, previous wind speed studies in the Pacific Northwest (PNW) present

  9. Assessment of Offshore Wind Energy Leasing Areas for the BOEM Massachusetts Wind Energy Area

    SciTech Connect (OSTI)

    Musial, W.; Parker, Z.; Fields, M.; Scott, G.; Elliott, D.; Draxl, C.

    2013-12-01

    The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL), under an interagency agreement with the Bureau of Ocean Energy Management (BOEM), is providing technical assistance to identify and delineate leasing areas for offshore wind energy development within the Atlantic Coast Wind Energy Areas (WEAs) established by BOEM. This report focuses on NREL's development of three delineated leasing area options for the Massachusetts (MA) WEA and the technical evaluation of these leasing areas. The overarching objective of this study is to develop a logical process by which the MA WEA can be subdivided into non-overlapping leasing areas for BOEM's use in developing an auction process in a renewable energy lease sale. NREL worked with BOEM to identify an appropriate number of leasing areas and proposed three delineation alternatives within the MA WEA based on the boundaries announced in May 2012. A primary output of the interagency agreement is this report, which documents the methodology, including key variables and assumptions, by which the leasing areas were identified and delineated.

  10. Distributed Array of GPS Receivers for 3D Wind Profile Determination in Wind Farms

    E-Print Network [OSTI]

    Gao, Grace Xingxin

    Distributed Array of GPS Receivers for 3D Wind Profile Determination in Wind Farms Derek Chen, and inexpensively is critical for both optimizing the installation of wind turbines on a wind farm, and predicting. Finally, the system is tested on a local wind farm. It has been shown that GPS provides a viable method

  11. Wide Area Wind Field Monitoring Status & Results

    SciTech Connect (OSTI)

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  12. Trimont Area Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown ofTransportToolkitTrenton,Kentucky)Trimont Area

  13. VHF profiler observations of winds and waves in the troposphere during the Darwin Area

    E-Print Network [OSTI]

    Alexander, M. Joan

    VHF profiler observations of winds and waves in the troposphere during the Darwin Area Wave radar (wind profiler) was used to study tropospheric winds during the Darwin Area Wave Experiment (DAWEX heights occurring when convective activity was strongest. Mean winds observed between October and December

  14. Determination of wind from Nimbus-6 satellite sounding data 

    E-Print Network [OSTI]

    Carle, William Everett

    1979-01-01

    DETERMINATION OF WIND FROM NIMBUS-6 SATELLITE SOUNDING DATA A Thesis by WILLIAM EVERETT CARLE Submitted to the Graduate College of Texas A&M University in partial fulfil!. ment of the requirement for the deg. . ec of MASTER OF SCIENCE... December 1979 Major Subject: Meteorology DETEIQ&INATION OE WIND PROS1 NINEDS-6 SATELLITE SOUNDING DATA A Thesis WILLIA11 EVERETT CARLE Aporoved as to style and content by: (Chairman of Commi tee) Nember) (Head of Department) December 1979...

  15. USAGE OF RADARS FOR WIND ENERGY APPICATIONS Determine the benefit of using radar observations for wind energy applications by

    E-Print Network [OSTI]

    USAGE OF RADARS FOR WIND ENERGY APPICATIONS TASK: Determine the benefit of using radar observations for wind energy applications by analyzing i) the resolution effects and ii) sensitivity effects of weather radar systems. MOTIVATION: Wind energy applications strongly focus high-resolution wind observations

  16. A Framework to Determine the Probability Density Function for the Output Power of Wind Farms

    E-Print Network [OSTI]

    Dominguez-Garcia, Alejandro

    A Framework to Determine the Probability Density Function for the Output Power of Wind Farms Sairaj to the power output of a wind farm while factoring in the availability of the wind turbines in the farm availability model for the wind turbines, we propose a method to determine the wind-farm power output pdf

  17. Pollutant transport in coastal areas with and without background wind , J. Massons1

    E-Print Network [OSTI]

    Boyer, Edmond

    Pollutant transport in coastal areas with and without background wind J. Camps1 , J. Massons1 , M dispersion model are used to study the eects of a uniform large-scale wind on the dispersion of a non a background wind. A comparison between model results and measured data (wind and pollutant concentrations

  18. Property:PotentialOnshoreWindArea | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2FlatDemandMonth3PotentialOnshoreWindArea Jump to: navigation, search

  19. Determination of leakage areas in nuclear piping

    SciTech Connect (OSTI)

    Keim, E.

    1997-04-01

    For the design and operation of nuclear power plants the Leak-Before-Break (LBB) behavior of a piping component has to be shown. This means that the length of a crack resulting in a leak is smaller than the critical crack length and that the leak is safely detectable by a suitable monitoring system. The LBB-concept of Siemens/KWU is based on computer codes for the evaluation of critical crack lengths, crack openings, leakage areas and leakage rates, developed by Siemens/KWU. In the experience with the leak rate program is described while this paper deals with the computation of crack openings and leakage areas of longitudinal and circumferential cracks by means of fracture mechanics. The leakage areas are determined by the integration of the crack openings along the crack front, considering plasticity and geometrical effects. They are evaluated with respect to minimum values for the design of leak detection systems, and maximum values for controlling jet and reaction forces. By means of fracture mechanics LBB for subcritical cracks has to be shown and the calculation of leakage areas is the basis for quantitatively determining the discharge rate of leaking subcritical through-wall cracks. The analytical approach and its validation will be presented for two examples of complex structures. The first one is a pipe branch containing a circumferential crack and the second one is a pipe bend with a longitudinal crack.

  20. Analysis of Sub-Hourly Ramping Impacts of Wind Energy and Balancing Area Size (Poster)

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.

    2008-06-01

    WindPower 2008 conference sponsored by AWEA held in Houston, TX on June 1-4 2008. This poster illustrates the data collected for an analysis of sub-hourly ramping impacts of wind energy and balancing area size.

  1. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Environmental Management (EM)

    Desert Southwest Region Categorical Exclusion Determinations: Western Area Power Administration-Desert Southwest Region Categorical Exclusion Determinations issued by Western Area...

  2. Area wind farm energy production BACKGROUND -In Central New York State, home of the New York State Fair, wind turbine construction has had a noticeable

    E-Print Network [OSTI]

    Keinan, Alon

    Area wind farm energy production ­ BACKGROUND - In Central New York State, home of the New York State Fair, wind turbine construction has they are then trucked to their destinations, and quite a few wind farms dot the hills. One

  3. Capacity Requirements to Support Inter-Balancing Area Wind Delivery

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2009-07-01

    Paper examines the capacity requirements that arise as wind generation is integrated into the power system and how those requirements change depending on where the wind energy is delivered.

  4. Field studies of the potential for wind transport of plutonium- contaminated soils at sites in Areas 6 and 11, Nevada Test Site

    SciTech Connect (OSTI)

    Lancaster, N.; Bamford, R.; Metzger, S.

    1995-07-01

    This report describes and documents a series of field experiments carried out in Areas 6 and 11 of the Nevada Test Site in June and July 1994 to determine parameters of boundary layer winds, surface characteristics, and vegetation cover that can be used to predict dust emissions from the affected sites. Aerodynamic roughness of natural sites is determined largely by the lateral cover of the larger and more permanent roughness elements (shrubs). These provide a complete protection of the surface from wind erosion. Studies using a field-portable wind tunnel demonstrated that natural surfaces in the investigated areas of the Nevada Test Site are stable except at very high wind speeds (probably higher than normally occur, except perhaps in dust devils). However, disturbance of silty-clay surfaces by excavation devices and vehicles reduces the entrainment threshold by approximately 50% and makes these areas potentially very susceptible to wind erosion and transport of sediments.

  5. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Center October 26, 2009 CX-005544: Categorical Exclusion Determination Power Rate Formula for the Provo River Project of the Western Area Power Administration CX(s) Applied:...

  6. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offices(s): Western Area Power Administration-Upper Great Plains Region March 22, 2013 CX-010553: Categorical Exclusion Determination Appledorn Substation Construction CX(s)...

  7. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Broader source: Energy.gov (indexed) [DOE]

    California Offices(s): Western Area Power Administration-Sierra Nevada Region July 3, 2013 CX-010684: Categorical Exclusion Determination Cottonwood-Roseville Optical Groundwire...

  8. NCS area of applicability determination for AVLIS

    SciTech Connect (OSTI)

    Gross, C.; Koopman, R.P.

    1999-07-01

    The authors present a method for examining congruence between the processes that make up an AVLIS enrichment plant and the benchmark critical experiments that are used to establish the bias and validate the codes used for nuclear criticality safety (NCS) calculations of those processes. A measure of the validity of the process of selecting critical experiments that are similar in nature to processes found in the plant is presented. The probability of fission depends primarily on neutron energy and the interaction cross sections of the materials in the process. The physics of fission has led one to consider the energy of neutrons causing fission to be the fundamental parameter for examining the area of applicability. Benchmark experiments are chosen to cover the material compositions, geometric arrangements, neutron energy spectra, and other parameters such as material heterogeneity, neutron leakage or reflection, interaction, and absorption in special materials. These parameters influence the process by affecting the number of neutrons available to cause fission at any given energy. The neutron energy distribution is established primarily as a result of the energy-dependent cross sections for the materials that are present. Thus, the energy of neutrons causing fission is the fundamental parameter needed for examining the effects of other parameters within the area of applicability.

  9. Wind Forecast Improvement Project Southern Study Area Final Report |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -Energy Costs by IncreasingWholeWind Energy

  10. Bird Mortaility at the Altamont Pass Wind Resource Area: March 1998--September 2001

    SciTech Connect (OSTI)

    Smallwood, K. S.; Thelander, C. G.

    2005-09-01

    Over the past 15 years, research has shown that wind turbines in the Altamont Pass Wind Resource Area (APWRA) kill many birds, including raptors, which are protected by the Migratory Bird Treaty Act (MBTA), the Bald and Golden Eagle Protection Act, and/or state and federal Endangered Species Acts. Early research in the APWRA on avian mortality mainly attempted to identify the extent of the problem. In 1998, however, the National Renewable Energy Laboratory (NREL) initiated research to address the causal relationships between wind turbines and bird mortality. NREL funded a project by BioResource Consultants to perform this research directed at identifying and addressing the causes of mortality of various bird species from wind turbines in the APWRA.With 580 megawatts (MW) of installed wind turbine generating capacity in the APWRA, wind turbines there provide up to 1 billion kilowatt-hours (kWh) of emissions-free electricity annually. By identifying and implementing new methods and technologies to reduce or resolve bird mortality in the APWRA, power producers may be able to increase wind turbine electricity production at the site and apply similar mortality-reduction methods at other sites around the state and country.

  11. Greater Sage-Grouse Habitat Use and Population Demographics at the Simpson Ridge Wind Resource Area, Carbon County, Wyoming

    SciTech Connect (OSTI)

    Gregory D. Johnson; Chad W. LeBeau; Ryan Nielsen; Troy Rintz; Jamey Eddy; Matt Holloran

    2012-03-27

    This study was conducted to obtain baseline data on use of the proposed Simpson Ridge Wind Resource Area (SRWRA) in Carbon County, Wyoming by greater sage-grouse. The first two study years were designed to determine pre-construction seasonally selected habitats and population-level vital rates (productivity and survival). The presence of an existing wind energy facility in the project area, the PacifiCorp Seven Mile Hill (SMH) project, allowed us to obtain some information on initial sage-grouse response to wind turbines the first two years following construction. To our knowledge these are the first quantitative data on sage-grouse response to an existing wind energy development. This report presents results of the first two study years (April 1, 2009 through March 30, 2011). This study was selected for continued funding by the National Wind Coordinating Collaborative Sage-Grouse Collaborative (NWCC-SGC) and has been ongoing since March 30, 2011. Future reports summarizing results of this research will be distributed through the NWCC-SGC. To investigate population trends through time, we determined the distribution and numbers of males using leks throughout the study area, which included a 4-mile radius buffer around the SRWRA. Over the 2-year study, 116 female greater sage-grouse were captured by spotlighting and use of hoop nets on roosts surrounding leks during the breeding period. Radio marked birds were located anywhere from twice a week to once a month, depending on season. All radio-locations were classified to season. We developed predictor variables used to predict success of fitness parameters and relative probability of habitat selection within the SRWRA and SMH study areas. Anthropogenic features included paved highways, overhead transmission lines, wind turbines and turbine access roads. Environmental variables included vegetation and topography features. Home ranges were estimated using a kernel density estimator. We developed resource selection functions (RSF) to estimate probability of selection within the SRWRA and SMH. Fourteen active greater sage-grouse leks were documented during lek surveys Mean lek size decreased from 37 in 2008 to 22 in 2010. Four leks located 0.61, 1.3, 1.4 and 2.5 km from the nearest wind turbine remained active throughout the study, but the total number of males counted on these four leks decreased from 162 the first year prior to construction (2008), to 97 in 2010. Similar lek declines were noted in regional leks not associated with wind energy development throughout Carbon County. We obtained 2,659 sage-grouse locations from radio-equipped females, which were used to map use of each project area by season. The sage-grouse populations within both study areas are relatively non-migratory, as radio-marked sage-grouse used similar areas during all annual life cycles. Potential impacts to sage-grouse from wind energy infrastructure are not well understood. The data rom this study provide insight into the early interactions of wind energy infrastructure and sage-grouse. Nest success and brood-rearing success were not statistically different between areas with and without wind energy development in the short-term. Nest success also was not influenced by anthropogenic features such as turbines in the short-term. Additionally, female survival was similar among both study areas, suggesting wind energy infrastructure was not impacting female survival in the short-term; however, further analysis is needed to identify habitats with different levels of risk to better understand the impact of wind enregy development on survival. Nest and brood-rearing habitat selection were not influenced by turbines in the short-term; however, summer habitat selection occurred within habitats closer to wind turbines. Major roads were avoided in both study areas and during most of the seasons. The impact of transmission lines varied among study areas, suggesting other landscape features may be influencing selection. The data provided in this report are preliminary and are not meant to provide a basis for fo

  12. Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand for deployment of autonomous

    E-Print Network [OSTI]

    Remote area wind energy harvesting for low-power autonomous sensors Abstract--A growing demand a wide range of wind speeds. Results show that power harvesting capability using the discussed alternator electronics to be less than the available power for harvest, which varies as a function of wind speed

  13. Facility Effluent Monitoring Plan determinations for the 600 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01

    This document determines the need for Facility Effluent Monitoring Plans for Westinghouse Hanford Company's 600 Area facilities on the Hanford Site. The Facility Effluent Monitoring Plan determinations were prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans (WHC 1991). Five major Westinghouse Hanford Company facilities in the 600 Area were evaluated: the Purge Water Storage Facility, 212-N, -P, and -R Facilities, the 616 Facility, and the 213-J K Storage Vaults. Of the five major facilities evaluated in the 600 Area, none will require preparation of a Facility Effluent Monitoring Plan.

  14. Determination of upwind and downwind areas of Seoul, Korea using trajectory analysis.

    SciTech Connect (OSTI)

    Oh, H. S.; Ghim, Y. S.; Kim, J. Y.; Chang, Y. S. (Environmental Science Division)

    2010-09-01

    To identify the domains that have the greatest impacts on air quality at the surface, both the upwind and downwind areas of Seoul were determined by season using refined wind fields. Four consecutive days were selected as the study period typical of each season. The mesoscale meteorology of the study period was reproduced by using the MM5 prognostic meteorological model (PSU/NCAR Mesoscale Model) with horizontally nested grids. The gridded meteorological field, which was used on the study area of 242 km x 226 km with grid spacing of 2 km, was generated by using the CALMET diagnostic meteorological model. Upwind and downwind areas of Seoul were determined by calculating 24-hour backward and forward air parcel trajectories, respectively, with u, v, and w velocity vectors. The results showed that the upwind and downwind areas were extended far to the northwest and the southeast as a result of high wind speeds in the spring and winter, while they were restricted on the fringe of Seoul in the summer and fall.

  15. Stochastic Modeling of Multi-Area Wind Power Production Anthony Papavasiliou

    E-Print Network [OSTI]

    Oren, Shmuel S.

    Stochastic Modeling of Multi-Area Wind Power Production Anthony Papavasiliou CORE, UCL anthony for planning reserves in transmission-constrained systems with large amounts of integrated renewable power system. 1. Introduction The large-scale integration of renewable power supply in power systems has

  16. Facility effluent monitoring plan determinations for the 300 Area facilities

    SciTech Connect (OSTI)

    Nickels, J.M.

    1991-08-01

    Facility Effluent Monitoring Plan determinations were conducted for the Westinghouse Hanford Company 300 Area facilities on the Hanford Site. These determinations have been prepared in accordance with A Guide For Preparing Hanford Site Facility Effluent Monitoring Plans. Sixteen Westinghouse Hanford Company facilities in the 300 Area were evaluated: 303 (A, B, C, E, F, G, J and K), 303 M, 306 E, 308, 309, 313, 333, 334 A, and the 340 Waste Handling Facility. The 303, 306, 313, 333, and 334 facilities Facility Effluent Monitoring Plan determinations were prepared by Columbia Energy and Environmental Services of Richland, Washington. The 340 Central Waste Complex determination was prepared by Bovay Northwest, Incorporated. The 308 and 309 facility determinations were prepared by Westinghouse Handford Company. Of the 16 facilities evaluated, 3 will require preparation of a Facility effluent Monitoring Plan: the 313 N Fuels Fabrication Support Building, 333 N Fuels fabrication Building, and the 340 Waste Handling Facility. 26 refs., 5 figs., 10 tabs.

  17. Sun, Wind, and Comfort A Study of Open Spaces and Sidewalks in Four Downtown Areas

    E-Print Network [OSTI]

    1984-01-01

    as o f Bibliography Sun, Wind, and Comfort Arens, Edward, "for an Acceptable Wind Environment," TransportationI) 1970. Gandemer, J. "Wind Environment Around Buildings:

  18. A detailed assessment of snow accumulation in katabatic wind areas on the Ross Ice Shelf, Antarctica

    E-Print Network [OSTI]

    Braaten, David A.

    1997-12-27

    to activate the aerosol generators and disperse the microspheres. The MDSs at both sites were programmed to activate every 14 days for 10 s, dispersing -75 mL of the inert, colored microspheres from a height of-1.2 m. The microspheres have a terminal... planned for Willie Field and Ferrell, BRAATEN: SNOW ACCUMULATION IN KATABATIC WIND AREAS 30,051 First Field Survey- January 1995 Willie Field MDS site o o o øø o øo 0 o ß AWS 70m Ferrell MDS site ß o ß ø e ß e  õ o co ß ß ß ee ee O ß 0...

  19. Sun, wind, and pedestrian comfort: a study of Toronto's Central Area

    E-Print Network [OSTI]

    Bosselmann, P.; Arens, Edward A; Dunker, K.; Wright, R.

    1990-01-01

    J. C. Mumford. "The Effects of Wind on People," Building andJackson. "The Evaluation of Wind Environments," Building andB. "Developing the San Francisco Wind Ordinance and its

  20. System and method for determining stator winding resistance in an AC motor using motor drives

    DOE Patents [OSTI]

    Lu, Bin; Habetler, Thomas G; Zhang, Pinjia

    2013-02-26

    A system and method for determining the stator winding resistance of AC motors is provided. The system includes an AC motor drive having an input connectable to an AC source and an output connectable to an input terminal of an AC motor, a pulse width modulation (PWM) converter having switches therein to control current flow and terminal voltages in the AC motor, and a control system connected to the PWM converter. The control system generates a command signal to cause the PWM converter to control an output of the AC motor drive corresponding to an input to the AC motor, selectively generates a modified command signal to cause the PWM converter to inject a DC signal into the output of the AC motor drive, and determines a stator winding resistance of the AC motor based on the DC signal of at least one of the voltage and current.

  1. System and method for determining stator winding resistance in an AC motor

    DOE Patents [OSTI]

    Lu, Bin (Kenosha, WI); Habetler, Thomas G. (Snellville, GA); Zhang, Pinjia (Atlanta, GA); Theisen, Peter J. (West Bend, WI)

    2011-05-31

    A system and method for determining stator winding resistance in an AC motor is disclosed. The system includes a circuit having an input connectable to an AC source and an output connectable to an input terminal of an AC motor. The circuit includes at least one contactor and at least one switch to control current flow and terminal voltages in the AC motor. The system also includes a controller connected to the circuit and configured to modify a switching time of the at least one switch to create a DC component in an output of the system corresponding to an input to the AC motor and determine a stator winding resistance of the AC motor based on the injected DC component of the voltage and current.

  2. BIRD BEHAVIORS IN THE ALTAMONT PASS WIND RESOURCE AREA 8.1 INTRODUCTION

    E-Print Network [OSTI]

    with operating wind turbines (Estep 1989; Howell and DiDonato 1991; Howell and Noone 1992; Orloff and Flannery proposed as a contributing factor to the susceptibility of birds to collide with wind turbines (Cade 1995 was confounded by evidence that the existence and operation of wind turbines may have already changed bird

  3. BIRD MORTALITY IN THE ALTAMONT PASS WIND RESOURCE AREA 3.1 INTRODUCTION

    E-Print Network [OSTI]

    The approximately 5,400 wind turbines operating in the APWRA generate about 580 MW of electricity, but they also relative to the number of megawatts generated by the wind turbines and the time span over which and the recruitment rate of each species, thus estimating the degree to which the wind turbines adversely affect

  4. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    of larger balancing areas, the use of regional wind powerbalancing areas. The successful use of regional wind power

  5. Economic and Technical Feasibility Study of Utility-Scale Wind Generation for the New York Buffalo River and South Buffalo Brownfield Opportunity Areas

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2014-04-01

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.

  6. Categorical Exclusion Determinations: Western Area PowerAdministratio...

    Energy Savers [EERE]

    Mountain Region August 14, 2014 CX-012767: Categorical Exclusion Determination Medicine Bow Substation Control Building Installation Project Carbon County, Wyoming CX(s)...

  7. Analysis of Sub-Hourly Ramping Impacts of Wind Energy and Balancing Area Size: Preprint

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.

    2008-06-01

    In this paper, we analyze sub-hourly ramping requirements and the benefit of combining Balancing Authority operations with significant wind penetrations.

  8. Determining the Optimal Search Area for a Serial Mike O'Leary

    E-Print Network [OSTI]

    O'Leary, Michael

    Determining the Optimal Search Area for a Serial Criminal Mike O'Leary Department of Mathematics Towson University INFORMS Annual Meeting 2008 Mike O'Leary (Towson University) Determining the Optimal Department Mike O'Leary (Towson University) Determining the Optimal Search Area for a Serial Criminal

  9. Challenges and strategies for increasing adoption of small wind turbines in urban areas

    E-Print Network [OSTI]

    Ferrigno, Kevin J. (Kevin James)

    2010-01-01

    A student group at MIT in cooperation with the MIT Department of Facilities is currently working to install a Skystream 3.7 wind turbine on MIT's campus. This has raised several questions about how to best develop small ...

  10. Atmospheric Environment 34 (2000) 595}601 Determination of domain for diagnostic wind "eld

    E-Print Network [OSTI]

    Dabdub, Donald

    2000-01-01

    of generating gridded wind "eld data for input into air quality models (Seinfeld, 1988; Solomon, 1995). There are two approaches generally followed to generate the wind "elds: prognostic and diagnostic approaches. Diagnostic analy- sis employs measured data to generate the gridded wind "eld. It generally requires less

  11. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    directly charging wind power projects for balancing servicesin smaller balancing areas. The successful use of wind power

  12. Response of Red-Tailed Hawks and Golden Eagles to Topographical Features, Weather, and Abundance of a Dominant Prey Species at the Altamont Pass Wind Resource Area, California: April 1999-December 2000

    SciTech Connect (OSTI)

    Hoover, S.

    2002-06-01

    Studies have shown that raptors flying within the Altamont Pass WRA are vulnerable to fatal turbine collisions, possibly because of their specific foraging and flight behavior. Between June 1999 and June 2000, I conducted 346.5 hours of raptor observations within the Atlamont Pass WRA. Behavior was recorded in relation to characteristics of the topography (slope aspect, elevation, and inclination), the weather, and ground squirrel abundance, as determined by active burrow entrances. The most significant finding of this study revealed that red-tailed hawks and golden eagles flew more in strong winds than in weak winds, particularly along hillsides facing into prevailing winds (as opposed to hillsides shielded from the wind). This is likely a result of the birds' use of declivity currents for lift during flights. These results suggest that certain combinations of topography and weather produce wind currents that are sought out by foraging red-tailed hawks and golden eagles within the Altamont Pass WRA. To decrease raptor mortality, mitigation measures can be targeted to specific areas likely to attract foraging raptors because of their capacity to create particularly favorable wind currents.

  13. Determination of delaminated area of coated steel using electrochemical impedance spectroscopy 

    E-Print Network [OSTI]

    Alwohaibi, Mohammed Abdullaziz

    1992-01-01

    DETERMINATION OF DELAMINATED AREA OF COATED STEEL USING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY A Thesis by MOHAMMED ABDULLAZIZ ALWOHAIBI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE December 1992 Major Subject: Chemical Engineering DETERMINATION OF DELAMINATED AREA OF COATED STEEL USING ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY A Thesis by MOHAMMED ABDULLAZIZ ALWOHAIBI Appmved...

  14. Determining the Optimal Search Area for a Serial Mike O'Leary

    E-Print Network [OSTI]

    O'Leary, Michael

    Determining the Optimal Search Area for a Serial Criminal Mike O'Leary Department of Mathematics Towson University Joint Mathematics Meetings Washington DC, 2009 Mike O'Leary (Towson University) Optimal Department Mike O'Leary (Towson University) Optimal Search Areas for Serial Criminals January 7, 2009 2 / 31

  15. Photochemical age determinations in the Phoenix metropolitan area L. I. Kleinman,1

    E-Print Network [OSTI]

    Photochemical age determinations in the Phoenix metropolitan area L. I. Kleinman,1 P. H. Daum,1 Y oxidant field campaign conducted in the Phoenix air basin in the late spring of 1998. Sampling was done, Phoenix Citation: Kleinman, L. I., et al., Photochemical age determinations in the Phoenix metropolitan

  16. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    SciTech Connect (OSTI)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.

  17. Design of Wind Turbines in an Area with Tropical Cyclones Niels-Erik Clausen, niels-erik.clausen@risoe.dk, Sren Ott, Niels-Jacob Tarp-Johansen, Per Nrgrd and

    E-Print Network [OSTI]

    Design of Wind Turbines in an Area with Tropical Cyclones Niels-Erik Clausen, niels and cost of wind turbines is influenced by a combination of fatigue and extreme loads and the applied design codes. In general wind turbines are designed for 20 years of operation using design standards

  18. AREA FACTOR DETERMINATIONS FOR AN INDUSTRIAL WORKER EXPOSED TO A CONCRETE SLAB END-STATE

    SciTech Connect (OSTI)

    Jannik, T; Patricia Lee, P; Eduardo Farfan, E; Jesse Roach, J

    2007-02-08

    The U.S. Department of Energy's (DOE) Savannah River Site (SRS) is decommissioning many of its excess facilities through removal of the facility structures leaving only the concrete-slab foundations in place. Site-specific, risk-based derived concentration guideline levels (DCGLs) for radionuclides have been determined for a future industrial worker potentially exposed to residual contamination on these concrete slabs as described in Jannik [1]. These risk-based DCGLs were estimated for an exposure area of 100 m{sup 2}. During deactivation and decommissioning (D&D) operations at SRS, the need for area factors for larger and smaller contaminated areas arose. This paper compares the area factors determined for an industrial worker exposed to a concrete slab end-state for several radionuclides of concern at SRS with (1) the illustrative area factors provided in MARSSIM [2], (2) the area correction factors provided in the U.S. Environmental Protection Agency's (EPA) Soil Screening Guidance [3], and (3) the hot spot criterion for field application provided in the RESRAD User's Manual [4].

  19. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01

    of the Northern Europe offshore wind resource, Journal ofof theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction and

  20. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01

    of the Northern Europe offshore wind resource, Journal ofof theoretical offshore wind farm for Jacksonville, Florida,the interesting areas for offshore wind farm construction

  1. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01

    of theoretical offshore wind farm for Jacksonville, Florida,interesting areas for offshore wind farm construction andof theoretical offshore wind farm on Jacksonville, Florida

  2. Wind Resource Maps (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

  3. Infauna Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    #12;Infauna Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2004 Published: 21 April-2004................................................. 48 Wind farm area (Turbine), Reference area (Ref

  4. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    balancing areas, the use of wind forecasts, and intra-hourchallenges and costs. Wind forecasts are most accurate andare the cost of day-ahead wind forecast error; the remaining

  5. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Bioenergy Power Systems Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Wind Power Introduction The Wind Power...

  6. continuum mechanics inviscid fluids Efficiency of a Wind Turbine

    E-Print Network [OSTI]

    continuum mechanics inviscid fluids Efficiency of a Wind Turbine In this problem, we will determine the maximal possible power that can be extracted from a wind turbine. We imagine the following setup. Consider a tube of cross-sectional area A, with incident gas velocity v. We place some turbine

  7. Wind Energy Resource Atlas of the Philippines

    SciTech Connect (OSTI)

    Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

    2001-03-06

    This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

  8. Wind energy and SAR wind mapping Charlotte Hasager(2) and merete christiansen(1)

    E-Print Network [OSTI]

    offshore wind farms are operating and more are in construction. Thus the study is focussed on an area is ongoing, and the series of wind maps are used for investigation of offshore wind resources. In wind energy the siting of a wind farm is dependent upon reliable information about the wind climate within the area

  9. Hualapai Wind Project Feasibility Report

    SciTech Connect (OSTI)

    Davidson, Kevin; Randall, Mark; Isham, Tom; Horna, Marion J; Koronkiewicz, T; Simon, Rich; Matthew, Rojas; MacCourt, Doug C.; Burpo, Rob

    2012-12-20

    The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

  10. Wind Power Career Chat

    SciTech Connect (OSTI)

    L. Flowers

    2011-01-01

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  11. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations. The Southern Study Area, Final Report

    SciTech Connect (OSTI)

    Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

    2014-04-30

    This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP) -- Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute - 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 - 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 - 3 hours.

  12. Quantifying Offshore Wind Resources from Satellite Wind Maps

    E-Print Network [OSTI]

    Pryor, Sara C.

    the spatial extent of the wake behind large offshore wind farms. Copyright © 2006 John Wiley & Sons, LtdQuantifying Offshore Wind Resources from Satellite Wind Maps: Study Area the North Sea C. B National Laboratory, Roskilde, Denmark Offshore wind resources are quantified from satellite synthetic

  13. Searchlight Wind Energy Project FEIS Appendix E

    Office of Environmental Management (EM)

    June 2, 2009 District Las Vegas Field Office Resource Area Activity (program) Proposed Wind Generation SECTION A. PROJECT INFORMATION 1. Project Name Searchlight Wind Project 4....

  14. Wind Fins: Novel Lower-Cost Wind Power System

    SciTech Connect (OSTI)

    David C. Morris; Dr. Will D. Swearingen

    2007-10-08

    This project evaluated the technical feasibility of converting energy from the wind with a novel “wind fin” approach. This patent-pending technology has three major components: (1) a mast, (2) a vertical, hinged wind structure or fin, and (3) a power takeoff system. The wing structure responds to the wind with an oscillating motion, generating power. The overall project goal was to determine the basic technical feasibility of the wind fin technology. Specific objectives were the following: (1) to determine the wind energy-conversion performance of the wind fin and the degree to which its performance could be enhanced through basic design improvements; (2) to determine how best to design the wind fin system to survive extreme winds; (3) to determine the cost-effectiveness of the best wind fin designs compared to state-of-the-art wind turbines; and (4) to develop conclusions about the overall technical feasibility of the wind fin system. Project work involved extensive computer modeling, wind-tunnel testing with small models, and testing of bench-scale models in a wind tunnel and outdoors in the wind. This project determined that the wind fin approach is technically feasible and likely to be commercially viable. Project results suggest that this new technology has the potential to harvest wind energy at approximately half the system cost of wind turbines in the 10kW range. Overall, the project demonstrated that the wind fin technology has the potential to increase the economic viability of small wind-power generation. In addition, it has the potential to eliminate lethality to birds and bats, overcome public objections to the aesthetics of wind-power machines, and significantly expand wind-power’s contribution to the national energy supply.

  15. A GIS study for determining hurricane risk areas and estimating population, Texas Coastal Counties 

    E-Print Network [OSTI]

    Blakely, Christopher Todd

    1997-01-01

    The objectives of this study are to create and implement a new Geographic Information System (GIS) for the definition of areas along the Texas coast at risk from hurricane impacts and to estimate populations for those areas. The threat to lives...

  16. Remote sensing for wind power potential: a prospector's handbook

    SciTech Connect (OSTI)

    Wade, J.E.; Maule, P.A.; Bodvarsson, G.; Rosenfeld, C.L.; Woolley, S.G.; McClenahan, M.R.

    1983-02-01

    Remote sensing can aid in identifying and locating indicators of wind power potential from the terrestrial, marine, and atmospheric environments (i.e.: wind-deformed trees, white caps, and areas of thermal flux). It is not considered as a tool for determining wind power potential. A wide variety of remotely sensed evidence is described in terms of the scale at which evidence of wind power can be identified, and the appropriate remote sensors for finding such evidence. Remote sensing can be used for regional area prospecting using small-scale imagery. The information from such small-scale imagery is most often qualitative, and if it is transitory, examination of a number of images to verify presistence of the feature may be required. However, this evidence will allow rapid screening of a large area. Medium-scale imagery provides a better picture of the evidence obtained from small-scale imagery. At this level it is best to use existing imagery. Criteria relating to land use, accessibility, and proximity of candidate sites to nearby transmission lines can also be effectively evaluated from medium-scale imagery. Large-scale imagery provides the most quantitative evidence of the strength of wind. Wind-deformed trees can be identified at a large number of sites using only a few hours in locally chartered aircraft. A handheld 35mm camera can adequately document any evidence of wind. Three case studies that employ remote sensing prospecting techniques are described. Based on remotely sensed evidence, the wind power potential in three geographically and climatically diverse areas of the United States is estimated, and the estimates are compared to actual wind data in those regions. In addition, the cost of each survey is discussed. The results indicate that remote sensing for wind power potential is a quick, cost effective, and fairly reliable method for screening large areas for wind power potential.

  17. Variability of wind power near Oklahoma City and implications for siting of wind turbines

    SciTech Connect (OSTI)

    Kessler, E.; Eyster, R.

    1987-09-01

    Data from five sites near Oklahoma City were examined to assess wind power availability. Wind turbines of identical manufacture were operated at three of the sites, one of which was also equipped with anemometers on a 100-ft tower. Comprehensive anemometric data were available from the other two sites. The study indicates that the average wind speed varies substantially over Oklahoma's rolling plains, which have often been nominally regarded as flat for purposes of wind power generation. Average wind differences may be as much as 5 mph at 20 ft above ground level, and 7 mph at 100 ft above ground level for elevation differences of about 200 ft above mean sea level, even in the absence of substantial features of local terrain. Local altitude above mean sea level seems to be as influential as the shape of local terrain in determining the average wind speed. The wind turbine used at a meteorologically instrumented site in the study produced the power expected from it for the wind regime in which it was situated. The observed variations of local wind imply variations in annual kWh of as much as a factor of four between identical turbines located at similar heights above ground level in shallow valleys and on hilltops or elevated extended flat areas. 17 refs., 39 figs., 11 tabs.

  18. Wind energy applications guide

    SciTech Connect (OSTI)

    anon.

    2001-01-01

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  19. San Diego County- Wind Regulations

    Office of Energy Efficiency and Renewable Energy (EERE)

    The County of San Diego has established zoning guidelines for wind turbine systems of varying sizes in the unincorporated areas of San Diego County. Wind turbine systems can be classified as small,...

  20. Collegiate Wind Competition Identity Guidelines | Department...

    Energy Savers [EERE]

    Collegiate Wind Competition Identity Guidelines Collegiate Wind Competition Identity Guidelines Use this identity guideline to determine propoer formatting for all materials...

  1. Philippines Wind Energy Resource Atlas Development

    SciTech Connect (OSTI)

    Elliott, D.

    2000-11-29

    This paper describes the creation of a comprehensive wind energy resource atlas for the Philippines. The atlas was created to facilitate the rapid identification of good wind resource areas and understanding of the salient wind characteristics. Detailed wind resource maps were generated for the entire country using an advanced wind mapping technique and innovative assessment methods recently developed at the National Renewable Energy Laboratory.

  2. Wind Tunnel 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    The increased interest in the offshore wind resource in both industry and academic and the extension of the wind field where offshore wind turbine can be deployed has stimulated quite a number of offshore wind turbines concepts. This thesis presents...

  3. Radiological Modeling for Determination of Derived Concentration Levels of an Area with Uranium Residual Material - 13533

    SciTech Connect (OSTI)

    Perez-Sanchez, Danyl [CIEMAT, Avenida Complutense 40, 28040, Madrid (Spain)] [CIEMAT, Avenida Complutense 40, 28040, Madrid (Spain)

    2013-07-01

    As a result of a pilot project developed at the old Spanish 'Junta de Energia Nuclear' to extract uranium from ores, tailings materials were generated. Most of these residual materials were sent back to different uranium mines, but a small amount of it was mixed with conventional building materials and deposited near the old plant until the surrounding ground was flattened. The affected land is included in an area under institutional control and used as recreational area. At the time of processing, uranium isotopes were separated but other radionuclides of the uranium decay series as Th-230, Ra-226 and daughters remain in the residue. Recently, the analyses of samples taken at different ground's depths confirmed their presence. This paper presents the methodology used to calculate the derived concentration level to ensure that the reference dose level of 0.1 mSv y-1 used as radiological criteria. In this study, a radiological impact assessment was performed modeling the area as recreational scenario. The modelization study was carried out with the code RESRAD considering as exposure pathways, external irradiation, inadvertent ingestion of soil, inhalation of resuspended particles, and inhalation of radon (Rn-222). As result was concluded that, if the concentration of Ra-226 in the first 15 cm of soil is lower than, 0.34 Bq g{sup -1}, the dose would not exceed the reference dose. Applying this value as a derived concentration level and comparing with the results of measurements on the ground, some areas with a concentration of activity slightly higher than latter were found. In these zones the remediation proposal has been to cover with a layer of 15 cm of clean material. This action represents a reduction of 85% of the dose and ensures compliance with the reference dose. (authors)

  4. NANA Wind Resource Assessment Program Final Report

    SciTech Connect (OSTI)

    Jay Hermanson

    2010-09-23

    NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

  5. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01

    to generate in this way wind speed fluctuations with similar statistics as observed in nature. Forces wereWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wächter ForWind-Center for Wind

  6. Field Wind Tunnel Assessment of the Potential for Wind Transport of Soils

    SciTech Connect (OSTI)

    Lancaster, Nicholas [Desert Research Inst. (DRI), Reno, NV (United States); Metzger, Steve [Desert Research Inst. (DRI), Reno, NV (United States)

    2005-02-01

    This report documents a series of field experiments carried out in the Double Tracks area of the Tonopah Test Range in June, July, and August 1996 and March and July 1997. The aim of the experiments was to: (1) determine the wind speeds necessary to entrain surface particles from excavated surfaces in the study area and (2) determine dust emissions from surfaces that had been stabilized permanently by planted natural vegetation. This investigation assessed the potential for wind transport of surface soils, including resuspension and emission of dust sized particles from areas of surface heavy metal contamination, following site remediation, as well as the actual emissions from these areas. The remediation site is located in Area 73 of the Tonopah Test Range. The goal of the field experiments was to measure the velocities with which boundary layer winds might initiate dust emissions from the affected site, and to gage the effectiveness of surface stabilization procedures to prevent such emissions. Particle movement measurements were generated through the use of a portable wind tunnel laid directly on the excavated surface.

  7. EIS-0470: Cape Wind Energy Project, Nantucket Sound, Offshore...

    Broader source: Energy.gov (indexed) [DOE]

    25, 2014 EIS-0470: Cape Wind Energy Project, Final General Conformity Determination Cape Wind Energy Project, Final General Conformity Determination, June 23, 2014 December 21,...

  8. Non-Economic Determinants of Energy Use in Rural Areas of South Africa

    SciTech Connect (OSTI)

    Annecke, W.

    1999-03-29

    This project will begin to determine the forces and dimensions in rural energy-use patterns and begin to address policy and implementation needs for the future. This entails: Forecasting the social and economic benefits that electrification is assumed to deliver regarding education and women's lives; Assessing negative perceptions of users, which have been established through the slow uptake of electricity; Making recommendations as to how these perceptions could be addressed in policy development and in the continuing electrification program; Making recommendations to policy makers on how to support and make optimal use of current energy-use practices where these are socio-economically sound; Identifying misinformation and wasteful practices; and Other recommendations, which will significantly improve the success of the rural electrification program in a socio-economically sound manner, as identified in the course of the work.

  9. Impact of Electric Industry Structure on High Wind Penetration Potential

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Gramlich, R.; Goggin, M.

    2009-07-01

    This paper attempts to evaluate which balancing area (BA) characteristics best accommodate wind energy.

  10. Wind/Water Nexus

    SciTech Connect (OSTI)

    Not Available

    2006-04-01

    Nobel laureate Richard Smalley cited energy and water as among humanity's top problems for the next 50 years as the world's population increases from 6.3 billion to 9 billion. The U.S. Department of Energy's Wind and Hydropower Program has initiated an effort to explore wind energy's role as a technical solution to this critically important issue in the United States and the world. This four-page fact sheet outlines five areas in which wind energy can contribute: thermoelectric power plant/water processes, irrigation, municipal water supply, desalination, and wind/hydropower integration.

  11. Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms

    E-Print Network [OSTI]

    Pryor, Sara C.

    Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms Sten Frandsen*, Rebecca areas.As is often the need for offshore wind farms, the model handles a regular array geometry for offshore wind farms, the model handles a priori a regular array geometry with straight rows of wind

  12. Optimal wind patterns for biological production in shelf ecosystems driven by coastal upwelling

    E-Print Network [OSTI]

    Yokomizo, Hiroyuki; Botsford, Louis W.; Holland, Matthew D.; Lawrence, Cathryn A.; Hastings, Alan

    2010-01-01

    The phytoplankton bloom response to wind events and upwelled0053-5 ORIGINAL PAPER Optimal wind patterns for biologicalto their area. Upwelling winds have the counter- acting

  13. County Wind Ordinance Standards

    Broader source: Energy.gov [DOE]

    Assembly Bill 45 of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems (50 kW or smaller) outside urbanized areas but within the county's...

  14. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Energy Savers [EERE]

    Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of...

  15. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01

    , wind power has been expanding globally in recent years and it has become a dominant renewable energy the turbulent atmosphere and the wind turbine wake in order to optimize the design of the wind turbine as wellWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary

  16. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  17. Spectral Modeling Hot Star Winds

    E-Print Network [OSTI]

    Cohen, David

    Spectral Modeling of X-Rays from Hot Star Winds Emma Wollman Advisor: David Cohen #12;Hot Stars ·· Short-livedShort-lived (~ 1-10 million yrs)(~ 1-10 million yrs) #12;Stellar Winds · Net momentum · More luminosity !"stronger wind · Mass-loss rate determines the fate of the star #12;X-ray Production

  18. Wind Tunnel Building - 1 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    This paper describes a simple graphic tool that enables a building designer to evaluate the potential for wind induced ventilation cooling in several climate zones. Long term weather data were analyzed to determine the conditions for which available...

  19. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01

    per hour in both balancing areas Wind power ramps down atper hour in both balancing areas Wind power ramps down atbalancing area 2 Power and Frequency Control as it Relates to Wind-

  20. EA-1979: Summit Wind Farm, Summit, South Dakota | Department...

    Office of Environmental Management (EM)

    9: Summit Wind Farm, Summit, South Dakota EA-1979: Summit Wind Farm, Summit, South Dakota Summary Western Area Power Administration (Western) is preparing an EA to analyze the...

  1. Roadmap Prioritizes Barriers to the Deployment of Wind Technology...

    Broader source: Energy.gov (indexed) [DOE]

    in both rural and urban areas. According to the American Wind Energy Association, small wind "urban turbines" experienced a 430% sales growth between 2009 and 2010. However,...

  2. WREF 2012: THE PAST AND FUTURE COST OF WIND ENERGY

    E-Print Network [OSTI]

    Wiser, Ryan

    2013-01-01

    the Chapter on Wind Power in Energy Technology Perspectives21) IEA. (2009). Technology Roadmap – Wind Energy. Paris,WIND ENERGY R&D/Learning  Area   Potential  Changes     (For  more  detail  on  technology  

  3. Wind Powering America Initiative (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-01-01

    The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

  4. AWEA Wind Energy Regional Summit: Northeast

    Broader source: Energy.gov [DOE]

    The AWEA Wind Energy Northeast Regional Summit will connect you with New England-area wind energy professionals and offers the opportunity to discuss significant issues related to land-based and...

  5. A Stochastic DEVS Wind Turbine Component Model for Wind Farm Simulation

    E-Print Network [OSTI]

    Ding, Yu

    . Many wind farms are located in remote areas or offshore and are therefore, less accessible. FurtherA Stochastic DEVS Wind Turbine Component Model for Wind Farm Simulation Eduardo P´erez, Lewis 3131 TAMU, College Station, TX 77843, USA. eduardopr@tamu.edu and ntaimo@tamu.edu Keywords: Wind farm

  6. MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation

    E-Print Network [OSTI]

    Dyer, Bill

    MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation Equations: A= swept area = air density v= velocity R= universal gas constant Steps: 1. Measure wind speed from fan. = ___________/(________*________)= _________kg/m3 5. Theoretical Power a. Low Setting Theoretical Wind Power i. Power= ½*______*______*______*.59

  7. Wind Energy in Indian Country: Turning to Wind for the Seventh Generation

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Wind Energy in Indian Country: Turning to Wind for the Seventh Generation by Andrew D. Mills: ___________________________________________ Jane Stahlhut Date #12;Wind Energy in Indian Country A.D. Mills Abstract - ii - Abstract Utility-scale wind projects are increasingly being developed in rural areas of the United States. In the West

  8. Ordinary kriging for on-demand average wind interpolation of in-situ wind sensor data

    E-Print Network [OSTI]

    Middleton, Stuart E.

    1 Ordinary kriging for on-demand average wind interpolation of in-situ wind sensor data Zlatko comes from wind in-situ observation stations in an area approximately 200km by 125km. We provide on-demand average wind interpolation maps. These spatial estimates can then be compared with the results of other

  9. Wind/Hybrid Electricity Applications

    SciTech Connect (OSTI)

    McDaniel, Lori

    2001-03-31

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  10. NWTC Helps Chart the World's Wind Resource Potential

    SciTech Connect (OSTI)

    2015-09-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) provide the wind industry, policymakers, and other stakeholders with applied wind resource data, information, maps, and technical assistance. These tools, which emphasize wind resources at ever-increasing heights, help stakeholders evaluate the wind resource and development potential for a specific area.

  11. Applied wind energy research at the National Wind Technology Center

    SciTech Connect (OSTI)

    Robinson, M C; Tu, P

    1996-06-01

    Applied research activities at the National Wind Technology Center are divided into several technical disciplines. Not surprisingly, these engineering and science disciplines highlight the technology similarities between aircraft and wind turbine design requirements. More often than not, wind turbines are assumed to be a subset of the much larger and more comprehensive list of well understood aerospace engineering accomplishments and it is difficult for the general public to understand the poor performance history of wind turbines in sustained operation. Often overlooked are the severe environmental conditions and operational demands placed on turbine designs which define unique requirements beyond typical aerospace applications. It is the role of the National Wind Technology Center to investigate and quantify the underlying physical phenomena which make the wind turbine design problem unique and to provide the technology advancements necessary to overcome current operational limitations. This paper provides a brief overview of research areas involved with the design of wind turbines.

  12. Long-Term Wind Power Variability

    SciTech Connect (OSTI)

    Wan, Y. H.

    2012-01-01

    The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

  13. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  14. Lower Sioux Wind Feasibility & Development

    SciTech Connect (OSTI)

    Minkel, Darin

    2012-04-01

    This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

  15. X-ray Microtomography Determination of Air?Water Interfacial Area?Water Saturation Relationships in Sandy Porous Media

    SciTech Connect (OSTI)

    Costanza-Robinson, Molly S.; Harrold, Katherine H.; Lieb-Lappen, Ross M. (Middlebury)

    2008-08-06

    In this work, total smooth air-water interfacial areas were measured for a series of nine natural and model sandy porous media as a function of water saturation using synchrotron X-ray microtomography. Interfacial areas decreased linearly with water saturation, while the estimated maximum interfacial area compared favorably to the media geometric surface areas. Importantly, relative interfacial area (i.e., normalized by geometric surface area) versus water saturation plots for all media collapsed into a single linear cluster (r{sup 2} = 0.93), suggesting that geometric surface area is an important, and perhaps sufficient, descriptor of sandy media that governs total smooth interfacial area?water saturation relationships. Measured relationships were used to develop an empirical model for estimating interfacial area-water saturation relationships for sandy porous media. Model-based interfacial area estimates for independent media were generally slightly higher than interfacial areas measured using aqueous-phase interfacial tracer methods, which may indicate that microtomography captures regions of the air-water interface that are not accessible to aqueous-phase interfacial tracers. The empirical model presented here requires only average particle diameter and porosity as input parameters and can be used to readily estimate air-water interfacial area?water saturation relationships for sandy porous media.

  16. THE HUYGENS DOPPLER WIND EXPERIMENT Titan Winds Derived from Probe Radio Frequency Measurements

    E-Print Network [OSTI]

    THE HUYGENS DOPPLER WIND EXPERIMENT Titan Winds Derived from Probe Radio Frequency Measurements M 1998; Accepted in final form 20 December 2001 Abstract. A Doppler Wind Experiment (DWE of Titan's zonal winds will be determined with an accuracy better than 1 m s-1 from the start of mission

  17. Ris-R-1239(EN) Wind Energy Department

    E-Print Network [OSTI]

    Risø-R-1239(EN) Wind Energy Department: Scientific and Technical Progress 1999 - 2000 Birthe The activities of the Wind Energy Department fall within boundary layer meteorology, atmospheric turbulence of wind turbines; prediction of wind loads and wind resources as well as methods to determine

  18. Offshore Wind Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This 2-page fact sheet describes NREL's offshore wind research and development efforts and capabilities. The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: (1) Developing offshore design tools and methods; (2) Collaborating with international partners; (3) Testing offshore systems and developing standards; (4) Conducting economic analyses; (5) Characterizing offshore wind resources; and (6) Identifying and mitigating offshore wind grid integration challenges and barriers. NREL has developed and maintains a robust, open-source, modular computer-aided engineering (CAE) tool, known as FAST. FAST's state-of-the-art capabilities provide full dynamic system simulation for a range of offshore wind systems. It models the coupled aerodynamic, hydrodynamic, control system, and structural response of offshore wind systems to support the development of innovative wind technologies that are reliable and cost effective. FAST also provides dynamic models of wind turbines on offshore fixed-bottom systems for shallow and transitional depths and floating-platform systems in deep water, thus enabling design innovation and risk reduction and facilitating higher performance designs that will meet DOE's cost of energy, reliability, and deployment objectives.

  19. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  20. Idaho_Wind_Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Bryans Run Cell Tower Site Wilson Peak Eckert Site Loertscher Boise State's Wind Data Link Wind Power Idaho Wind Data See also: Idaho Energy Resources - Wind, American...

  1. Wind Farm Power System Model Development: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.

    2004-07-01

    In some areas, wind power has reached a level where it begins to impact grid operation and the stability of local utilities. In this paper, the model development for a large wind farm will be presented. Wind farm dynamic behavior and contribution to stability during transmission system faults will be examined.

  2. Wind and saltation driven particle resuspension in a wind tunnel

    SciTech Connect (OSTI)

    Fairchild, C.I.; Tillery, M.I.; Wheat, L.D.; Redmond, D.J.

    1985-01-01

    To determine parameters of primary importance in wind and saltation driven resuspension of fine particles from surfaces, wind tunnel experiments were conducted to study the resuspension of small polydisperse particles (diameter <10 ..mu..m) by monodisperse saltation particles (diameter >80 ..mu..m). The experiments were designed to simulate the atmospheric boundary layer resuspension of fine particles. 3 refs., 1 tab.

  3. WindSENSE Project Summary: FY2009-2011

    SciTech Connect (OSTI)

    Kamath, C

    2011-09-25

    Renewable resources, such as wind and solar, are providing an increasingly larger percentage of our energy needs. To successfully integrate these intermittent resources into the power grid while maintaining its reliability, we need to better understand the characteristics and predictability of the variability associated with these power generation resources. WindSENSE, a three year project at Lawrence Livermore National Laboratory, considered the problem of scheduling wind energy on the grid from the viewpoint of the control room operator. Our interviews with operators at Bonneville Power Administration (BPA), Southern California Edison (SCE), and California Independent System Operator (CaISO), indicated several challenges to integrating wind power generation into the grid. As the percentage of installed wind power has increased, the variable nature of the generation has become a problem. For example, in the Bonneville Power Administration (BPA) balancing area, the installed wind capacity has increased from 700 MW in 2006-2007 to over 1300 MW in 2008 and more than 2600 MW in 2009. To determine the amount of energy to schedule for the hours ahead, operators typically use 0-6 hour ahead forecasts, along with the actual generation in the previous hours and days. These forecasts are obtained from numerical weather prediction (NWP) simulations or based on recent trends in wind speed in the vicinity of the wind farms. However, as the wind speed can be difficult to predict, especially in a region with complex terrain, the forecasts can be inaccurate. Complicating matters are ramp events, where the generation suddenly increases or decreases by a large amount in a short time (Figure 1, right panel). These events are challenging to predict, and given their short duration, make it difficult to keep the load and the generation balanced. Our conversations with BPA, SCE, and CaISO indicated that control room operators would like (1) more accurate wind power generation forecasts for use in scheduling and (2) additional information that can be exploited when the forecasts do not match the actual generation. To achieve this, WindSENSE had two areas of focus: (1) analysis of historical data for better insights, and (2) observation targeting for improved forecasts. The goal was to provide control room operators with an awareness of wind conditions and energy forecasts so they can make well-informed scheduling decisions, especially in the case of extreme events such as ramps.

  4. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  5. Methods and apparatus for reducing peak wind turbine loads

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw

    2007-02-13

    A method for reducing peak loads of wind turbines in a changing wind environment includes measuring or estimating an instantaneous wind speed and direction at the wind turbine and determining a yaw error of the wind turbine relative to the measured instantaneous wind direction. The method further includes comparing the yaw error to a yaw error trigger that has different values at different wind speeds and shutting down the wind turbine when the yaw error exceeds the yaw error trigger corresponding to the measured or estimated instantaneous wind speed.

  6. Summary of Time Period-Based and Other Approximation Methods for Determining the Capacity Value of Wind and Solar in the United States: September 2010 - February 2012

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2012-03-01

    This paper updates previous work that describes time period-based and other approximation methods for estimating the capacity value of wind power and extends it to include solar power. The paper summarizes various methods presented in utility integrated resource plans, regional transmission organization methodologies, regional stakeholder initiatives, regulatory proceedings, and academic and industry studies. Time period-based approximation methods typically measure the contribution of a wind or solar plant at the time of system peak - sometimes over a period of months or the average of multiple years.

  7. Wind Tunnel 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building John Seryak Kelly Kissock Project Engineer Associate Professor Department of Mechanical and Aerospace Engineering University of Dayton... Dayton, Ohio ABSTRACT Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers, without mechanical...

  8. Optimum propeller wind turbines

    SciTech Connect (OSTI)

    Sanderson, R.J.; Archer, R.D.

    1983-11-01

    The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

  9. Measurement of the connectivity of runoff source areas as determined by vegetation pattern and topography: A tool

    E-Print Network [OSTI]

    Small, Eric

    and topography: A tool for assessing potential water and soil losses in drylands A´ ngeles G. Mayor,1 Susana source areas considering both vegetation pattern and topography. Flowlength is calculated as the average and topography: A tool for assessing potential water and soil losses in drylands, Water Resour. Res., 44, W10423

  10. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  11. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  12. Title: Ontario Wind Power Allocation Ontario Ministry of Natural Resources

    E-Print Network [OSTI]

    Title: Ontario Wind Power Allocation Data Creator / Copyright Owner: Ontario Ministry of Natural/A Updates: N/A Abstract: This data consists of a polygon shapefile, Wind Power Allocation Block. A Wind Power Allocation Block is an area that could be allocated for the exploration of wind power generation

  13. A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    SciTech Connect (OSTI)

    Slater, Lee; Day-Lewis, Frederick; Lane, John; Versteeg, Roelof; Ward, Anderson; Binley, Andrew; Johnson, Timothy; Ntarlagiannis, Dimitrios

    2011-08-31

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be used to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing {approx}60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along {approx}3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial variability in the depth to the Hanford-Ringold inland over a critical region where borehole information is absent, identifying evidence for a continuous depression in the H-R contact between the IFRC and the river corridor. Strong natural contrasts in temperature and specific conductance of river water compared to groundwater at this site, along with periodic river stage fluctuations driven by dam operations, were exploited to yield new insights into the dynamics of groundwater-surface water interaction. Whereas FO-DTS datasets have provided meter-scale measurements of focused groundwater discharge at the riverbed along the corridor, continuous resistivity monitoring has non-invasively imaged spatiotemporal variation in the resistivity inland driven by river stage fluctuations. Time series and time-frequency analysis of FO-DTS and 3D resistivity datasets has provided insights into the role of forcing variables, primarily daily dam operations, in regulating the occurrence of focused exchange at the riverbed and its extension inland. High amplitudes in the DTS and 3D resistivity signals for long periods that dominate the stage time series identify regions along the corridor where stage-driven exchange is preferentially focused. Our work has demonstrated how time-series analysis of both time-lapse resistivity and DTS datasets, in conjunction with resistivity/IP imaging of lithology, can improve understanding of groundwater-surface water exchange along river corridors, offering unique opportunities to connect stage-driven groundwater discharge observed with DTS on the riverbed to stage-driven groundwater and solute fluctuations captured with resistivity inland.

  14. Rotationally sampled wind characteristics and correlations with MOD-OA wind turbine response

    SciTech Connect (OSTI)

    George, R.L.; Connell, J.R.

    1984-09-01

    This report presents results of a comprehensive wind and wind turbine measurement program: the Clayton, New Mexico, vertical plane array/MOD-OA project. In this experiment, the turbulent wind was measured for a large array of fixed anemometers located two blade diameters upwind of a 200-kW horizontal-axis wind turbine (HAWT). Simultaneously, key wind turbine response parameters were also measured. The first of two major objectives of this experiment was to determine the turbulent wind, rotationally sampled to emulate the motion of the wind turbine blade, for the range of different wind speeds and stability classes actually experienced by the wind turbine. The second major objective was to correlate this rotationally sampled wind with the wind turbine blade stress and power, in order to assess the usefulness of the wind measurements for wind turbine loads testing a prediction. Time series of rotationally sampled winds and wind turbine blade bending moments and power were converted to frequency spectra using Fourier transform techniques. These spectra were used as the basis for both qualitative and quantitative comparisons among the various cases. A quantitative comparison between the rotationally sampled wind input and blade bending response was made, using the Fourier spectra to estimate the blade transfer function. These transfer functions were then used to calculate an approximate damping coefficient for the MOD-OA fiberglass blade.

  15. Low-Level Winds in Tornadoes and Potential

    E-Print Network [OSTI]

    Doswell III, Charles A.

    I Low-Level Winds in Tornadoes and Potential Catastrophic Tornado Impacts in Urban Areas --HAROLD E areas by making models of the wind field based on mobile Doppler radar observations. As part of that effort, they have estimated death tolls associated with those modeled wind fields, arriving at estimates

  16. Examination of Capacity and Ramping Impacts of Wind Energy on Power Systems

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2008-07-01

    When wind plants serve load within the balancing area, no additional capacity required to integrate wind power into the system. We present some thought experiments to illustrate some implications for wind integration studies.

  17. Title: Ontario Wind Resources Information Ontario Ministry of Natural Resources

    E-Print Network [OSTI]

    Title: Ontario Wind Resources Information Data Creator / Copyright Owner: Ontario Ministry as an input to the Wind Resource Atlas, a web mapping application for helping users determine the feasibility of developing in wind power. This package contains GIS data that is displayed in the Wind Resource Atlas

  18. Before the Hurricane Season Determine safe evacuation routes inland.

    E-Print Network [OSTI]

    Li, X. Rong

    Before the Hurricane Season Determine safe evacuation routes inland. Learn location of official. Live in a high-rise. Hurricane winds can knock out electricity to elevators, break windows and more bulletins. Hurricane Watch: Hurricane conditions are possible within the specified coastal area. Because

  19. Wind Vision: Impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Vision: Impacts Rich Tusing New West Technologies, LLC For EERE's Wind and Water Power Technologies Office July 15, 2015 2 | Wind and Water Power Technologies Office...

  20. Wind Program News

    SciTech Connect (OSTI)

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  1. Wind Power Link

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Links These other web sites may provide additional information of interest: American Wind Energy Association Idaho Department of Energy Wind Power Information Utah...

  2. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  3. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  4. Vandenberg_Wind_Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Force and other branches of the Department of Defense for several years doing wind data collection and assessment, wind power feasibility studies, and wind farm design....

  5. National Wind Distance Learning Collaborative

    SciTech Connect (OSTI)

    Dr. James B. Beddow

    2013-03-29

    Executive Summary The energy development assumptions identified in the Department of Energy's position paper, 20% Wind Energy by 2030, projected an exploding demand for wind energy-related workforce development. These primary assumptions drove a secondary set of assumptions that early stage wind industry workforce development and training paradigms would need to undergo significant change if the workforce needs were to be met. The current training practice and culture within the wind industry is driven by a relatively small number of experts with deep field experience and knowledge. The current training methodology is dominated by face-to-face, classroom based, instructor present training. Given these assumptions and learning paradigms, the purpose of the National Wind Distance Learning Collaborative was to determine the feasibility of developing online learning strategies and products focused on training wind technicians. The initial project scope centered on (1) identifying resources that would be needed for development of subject matter and course design/delivery strategies for industry-based (non-academic) training, and (2) development of an appropriate Learning Management System (LMS). As the project unfolded, the initial scope was expanded to include development of learning products and the addition of an academic-based training partner. The core partners included two training entities, industry-based Airstreams Renewables and academic-based Lake Area Technical Institute. A third partner, Vision Video Interactive, Inc. provided technology-based learning platforms (hardware and software). The revised scope yielded an expanded set of results beyond the initial expectation. Eight learning modules were developed for the industry-based Electrical Safety course. These modules were subsequently redesigned and repurposed for test application in an academic setting. Software and hardware developments during the project's timeframe enabled redesign providing for student access through the use of tablet devices such as iPads. Early prototype Learning Management Systems (LMS) featuring more student-centric access and interfaces with emerging social media were developed and utilized during the testing applications. The project also produced soft results involving cross learning between and among the partners regarding subject matter expertise, online learning pedagogy, and eLearning technology-based platforms. The partners believe that the most significant, overarching accomplishment of the project was the development and implementation of goals, activities, and outcomes that significantly exceeded those proposed in the initial grant application submitted in 2009. Key specific accomplishments include: (1) development of a set of 8 online learning modules addressing electrical safety as it relates to the work of wind technicians; (3) development of a flexible, open-ended Learning Management System (LMS): (3) creation of a robust body of learning (knowledge, experience, skills, and relationships). Project leaders have concluded that there is substantial resource equity that could be leverage and recommend that it be carried forward to pursue a Next Stage Opportunity relating to development of an online core curriculum for institute and community college energy workforce development programs.

  6. 2014 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2015-08-01

    According to the 2014 Wind Technologies Market Report, total installed wind power capacity in the United States grew at a rate of eight percent in 2014, bringing the United States total installed capacity to nearly 66 gigawatts (GW), which ranks second in the world and meets 4.9 percent of U.S. end-use electricity demand in an average year. In total, 4,854 MW of new wind energy capacity were installed in the United States in 2014. The 2014 Wind Technologies Market Report also finds that wind energy prices are at an all-time low and are competitive with wholesale power prices and traditional power sources across many areas of the United States. Additionally, a new trend identified by the 2014 Wind Technologies Market Report shows utility-scale turbines with larger rotors designed for lower wind speeds have been increasingly deployed across the country in 2014. The findings also suggest that the success of the U.S. wind industry has had a ripple effect on the American economy, supporting 73,000 jobs related to development, siting, manufacturing, transportation, and other industries.

  7. Wind Farm Recommendation Report

    SciTech Connect (OSTI)

    John Reisenauer

    2011-05-01

    On April 21, 2011, an Idaho National Laboratory (INL) Land Use Committee meeting was convened to develop a wind farm recommendation for the Executive Council and a list of proposed actions for proceeding with the recommendation. In terms of land use, the INL Land Use Committee unanimously agrees that Site 6 is the preferred location of the alternatives presented for an INL wind farm. However, further studies and resolution to questions raised (stated in this report) by the INL Land Use Committee are needed for the preferred location. Studies include, but are not limited to, wind viability (6 months), bats (2 years), and the visual impact of the wind farm. In addition, cultural resource surveys and consultation (1 month) and the National Environmental Policy Act process (9 to 12 months) need to be completed. Furthermore, there is no documented evidence of developers expressing interest in constructing a small wind farm on INL, nor a specific list of expectations or concessions for which a developer might expect INL to cover the cost. To date, INL assumes the National Environmental Policy Act activities will be paid for by the Department of Energy and INL (the environmental assessment has only received partial funding). However, other concessions also may be expected by developers such as roads, fencing, power line installation, tie-ins to substations, annual maintenance, snow removal, access control, down-time, and remediation. These types of concessions have not been documented, as a request, from a developer and INL has not identified the short and long-term cost liabilities for such concessions should a developer expect INL to cover these costs. INL has not identified a go-no-go funding level or the priority this Wind Farm Project might have with respect to other nuclear-related projects, should the wind farm remain an unfunded mandate. The Land Use Committee recommends Legal be consulted to determine what, if any, liabilities exist with the Wind Farm Project and INL’s rights and responsibilities in regards to access to the wind farm once constructed. An expression of interest is expected to go out soon to developers. However, with the potential of 2 years of study remaining for Site 6, the expectation of obtaining meaningful interest from developers should be questioned.

  8. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  9. Wind Program: Wind Vision | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind Vision: A New Era for Wind Power in the United States With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated...

  10. American Institute of Aeronautics and Astronautics An Experimental Study on the Performances of Wind

    E-Print Network [OSTI]

    Hu, Hui

    development of offshore wind farms, which will play more important role in the coming years, onshore wind farm. To realize this target, exploitation of areas with high wind potential such as deep offshore and mountainous must continue to contribute to the overall growth of wind energy. Before the wind farm is actually

  11. The Operational Use of QuikSCAT Ocean Surface Vector Winds at the National Hurricane Center

    E-Print Network [OSTI]

    Hennon, Christopher C.

    wind retrievals from the NASA Quick Scatterometer (QuikSCAT) in operational forecast and analysis (TC) analysis and forecasting for center location/identification, intensity (maximum sustained wind wind areas, and improved forecasts of high-wind events. The development of a climatology of gap wind

  12. Wind | Department of Energy

    Office of Environmental Management (EM)

    Science & Innovation Energy Sources Renewable Energy Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay...

  13. Wind Integration National Dataset (WIND) Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  14. Matter & Energy Wind Energy

    E-Print Network [OSTI]

    Shepelyansky, Dima

    intuitive experience of a small wind not creating a storm, and that wind needs to reach a certain threshold

  15. Using geologic conditions and multiattribute decision analysis to determine the relative favorability of selected areas for siting a high-level radioactive waste repository

    SciTech Connect (OSTI)

    Harrison, W.; Edgar, D.E.; Baker, C.H.; Buehring, W.A.; Whitfield, R.G.; Van Luik, A.E.J.; Sood, M.K.; Flower, M.F.J.; Warren, M.F.; Jusko, M.J.; Peerenboom, J.P.; Bogner, J.E.

    1988-05-01

    A method is presented for determining the relative favorability of geologically complex areas for isolating high-level radioactive wastes. In applying the method to the northeastern region of the United States, seismicity and tectonic activity were the screening criteria used to divide the region into three areas of increasing seismotectonic risk. Criteria were then used to subdivide the area of lowest seismotectonic risk into six geologically distinct subareas including characteristics, surface-water and groundwater hydrology, potential human intrusion, site geometry, surface characteristics, and tectonic environment. Decision analysis was then used to identify the subareas most favorable from a geologic standpoint for further investigation, with a view to selecting a site for a repository. Three subareas (parts of northeastern Vermont, northern New Hampshire, and western Maine) were found to be the most favorable, using this method and existing data. However, because this study assessed relative geologic favorability, no conclusions should be drawn concerning the absolute suitability of individual subareas for high-level radioactive waste isolation. 34 refs., 7 figs., 20 tabs.

  16. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect (OSTI)

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  17. The Impulsive Heating Rate in Shocked O Star Winds

    E-Print Network [OSTI]

    Cohen, David

    The Impulsive Heating Rate in Shocked O Star Winds: Determined Directly from High-Resolution X; no corona #12;Radiation-driven O star winds Pup (O4 supergiant): M ~ few 10-6 Msun/yr UV spectrum: C IV with the stellar wind #12;Radiation-driven O star winds kinetic power in the wind = 1/2 Mv 2 (~10-3 Lbol) typically

  18. Hi-Q Rotor - Low Wind Speed Technology

    SciTech Connect (OSTI)

    Todd E. Mills; Judy Tatum

    2010-01-11

    The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data collected, the results of our first full-scale prototype wind turbine proved that higher energy can be captured at lower wind speeds with the new Hi-Q Rotor. The Hi-Q Rotor is almost 15% more productive than the Bergey from 6 m/s to 8 m/s, making it ideal in Class 3, 4, and 5 wind sites and has application in the critical and heretofore untapped areas that are closer to cities, 'load centers,' and may even be used directly in urban areas. The additional advantage of the Hi-Q Rotor's non-conventional blade tips, which eliminates most air turbulence, is noise reduction which makes it doubly ideal for populated urban areas. Hi-Q Products recommends one final stage of development to take the Hi-Q Rotor through Technology Readiness Levels 8-9. During this stage of development, the rotor will be redesigned to further increase efficiency, match the rotor to a more suitable generator, and lower the cost of manufacturing by redesigning the structure to allow for production in larger quantities at lower cost. Before taking the rotor to market and commercialization, it is necessary to further optimize the performance by finding a better generator and autofurling system, ones more suitable for lower wind speeds and rpms should be used in all future testing. The potential impact of this fully developed technology will be the expansion and proliferation of energy renewal into the heretofore untapped Class 2, 3, 4, and 5 Wind Sites, or the large underutilized sites where the wind speed is broken by physical features such as mountains, buildings, and trees. Market estimates by 2011, if low wind speed technology can be developed are well above: 13 million homes, 675,000 commercial buildings, 250,000 public facilities. Estimated commercial exploitation of the Hi-Q Rotor show potential increase in U.S. energy gained through the clean, renewable wind energy found in low and very low wind speed sites. This new energy source would greatly impact greenhouse emissions as well as the public sector's growing energy demands.

  19. U.S. Wind Energy Manufacturing and Supply Chain: A Competitiveness Analysis

    SciTech Connect (OSTI)

    Fullenkamp, Patrick H; Holody, Diane S

    2014-06-15

    The goal of the project was to develop a greater understanding of the key factors determining wind energy component manufacturing costs and pricing on a global basis in order to enhance the competitiveness of U.S. manufacturers, and to reduce installed systems cost. Multiple stakeholders including DOE, turbine OEMs, and large component manufactures will all benefit by better understanding the factors determining domestic competitiveness in the emerging offshore and next generation land-based wind industries. Major objectives of this project were to: 1. Carry out global cost and process comparisons for 5MW jacket foundations, blades, towers, and permanent magnet generators; 2. Assess U.S. manufacturers’ competitiveness and potential for cost reduction; 3. Facilitate informed decision-making on investments in U.S. manufacturing; 4. Develop an industry scorecard representing the readiness of the U.S. manufacturers’ to produce components for the next generations of wind turbines, nominally 3MW land-based and 5MW offshore; 5. Disseminate results through the GLWN Wind Supply Chain GIS Map, a free website that is the most comprehensive public database of U.S. wind energy suppliers; 6. Identify areas and develop recommendations to DOE on potential R&D areas to target for increasing domestic manufacturing competitiveness, per DOE’s Clean Energy Manufacturing Initiative (CEMI). Lists of Deliverables 1. Cost Breakdown Competitive Analyses of four product categories: tower, jacket foundation, blade, and permanent magnet (PM) generator. The cost breakdown for each component includes a complete Bill of Materials with net weights; general process steps for labor; and burden adjusted by each manufacturer for their process categories of SGA (sales general and administrative), engineering, logistics cost to a common U.S. port, and profit. 2. Value Stream Map Competitiveness Analysis: A tool that illustrates both information and material flow from the point of getting a customer order at the manufacturing plant; to the orders being forwarded by the manufacturing plant to the material suppliers; to the material being received at the manufacturing plant and processed through the system; to the final product being shipped to the Customer. 3. Competitiveness Scorecard: GLWN developed a Wind Industry Supply Chain Scorecard that reflects U.S. component manufacturers’ readiness to supply the next generation wind turbines, 3MW and 5MW, for land-based and offshore applications. 4. Wind Supply Chain Database & Map: Expand the current GLWN GIS Wind Supply Chain Map to include offshore elements. This is an on-line, free access, wind supply chain map that provides a platform for identifying active and emerging suppliers for the land-based and offshore wind industry, including turbine component manufacturers and wind farm construction service suppliers.

  20. U.S. Offshore Wind Manufacturing and Supply Chain Development

    SciTech Connect (OSTI)

    Hamilton, Bruce Duncan

    2013-02-22

    The objective of the report is to provide an assessment of the domestic supply chain and manufacturing infrastructure supporting the U.S. offshore wind market. The report provides baseline information and develops a strategy for future development of the supply chain required to support projected offshore wind deployment levels. A brief description of each of the key chapters includes: » Chapter 1: Offshore Wind Plant Costs and Anticipated Technology Advancements. Determines the cost breakdown of offshore wind plants and identifies technical trends and anticipated advancements in offshore wind manufacturing and construction. » Chapter 2: Potential Supply Chain Requirements and Opportunities. Provides an organized, analytical approach to identifying and bounding the uncertainties associated with a future U.S. offshore wind market. It projects potential component-level supply chain needs under three demand scenarios and identifies key supply chain challenges and opportunities facing the future U.S. market as well as current suppliers of the nation’s land-based wind market. » Chapter 3: Strategy for Future Development. Evaluates the gap or competitive advantage of adding manufacturing capacity in the U.S. vs. overseas, and evaluates examples of policies that have been successful . » Chapter 4: Pathways for Market Entry. Identifies technical and business pathways for market entry by potential suppliers of large-scale offshore turbine components and technical services. The report is intended for use by the following industry stakeholder groups: (a) Industry participants who seek baseline cost and supplier information for key component segments and the overall U.S. offshore wind market (Chapters 1 and 2). The component-level requirements and opportunities presented in Section 2.3 will be particularly useful in identifying market sizes, competition, and risks for the various component segments. (b) Federal, state, and local policymakers and economic development agencies, to assist in identifying policies with low effort and high impact (Chapter 3). Section 3.3 provides specific policy examples that have been demonstrated to be effective in removing barriers to development. (c) Current and potential domestic suppliers in the offshore wind market, in evaluating areas of opportunity and understanding requirements for participation (Chapter 4). Section 4.4 provides a step-by-step description of the qualification process that suppliers looking to sell components into a future U.S. offshore wind market will need to follow.

  1. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  2. Sandia Energy - Grid System Planning for Wind: Wind Generator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid System Planning for Wind: Wind Generator Modeling Home Stationary Power Energy Conversion Efficiency Wind Energy Siting and Barrier Mitigation Grid System Planning for Wind:...

  3. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  4. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind...

  5. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

  6. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its...

  7. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    AWEA). 2009b. AWEA Small Wind Turbine Global Market Study:will ultimately benefit wind. Small Wind ITC: EESA 2008

  8. EIS-0408: Upper Great Plains Wind Energy Programmatic EIS | Department...

    Office of Environmental Management (EM)

    Wind Energy Programmatic EIS Summary Western Area Power Administration and the U.S. Fish and Wildlife Service, as joint lead agencies, prepared a programmatic EIS that...

  9. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01

    Wind Power Development Parameter Criteria for Exclusion Terrain slope Greater than 20 percent Elevation Greater than 1,500 m Protected areas 100 percent Water

  10. Wind Concurrent Cooling Could Increase Power Transmission Potential...

    Broader source: Energy.gov (indexed) [DOE]

    couple transmission systems with concurrent cooling processes. In areas where wind farms are being developed, there is potential to take advantage of concurrent...

  11. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  12. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  13. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    land- based wind energy technology. 2009 Wind TechnologiesRenewable Energy 2009 WIND TECHNOLOGIES MARKET REPORT AUGUSTfor a variety of energy technologies, including wind energy.

  14. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    land-based wind energy technology. 2011 Wind Technologiesfor a variety of energy technologies, including wind energy.Renewable Energy Laboratory’s National Wind Technology

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    land-based wind energy technology. 2010 Wind Technologiesfor a variety of energy technologies, including wind energy.2010 Wind Technologies Market Report Federal Energy

  16. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    land-based wind energy technology. 2012 Wind Technologiesfor a variety of energy technologies, including wind energy.of Energy (DOE) Wind & Water Power Technology Office team

  17. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    wind power project costs, wind turbine transaction prices,increases in the cost of wind turbines over the last severaland components and wind turbine costs. Excluded from all

  18. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    A. 2010. Impact of Wind Energy Installations on DomesticJanuary 31, 2011. American Wind Energy Association (AWEA).D.C. : American Wind Energy Association. American Wind

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    A. 2010. Impact of Wind Energy Installations on DomesticUniversity. American Wind Energy Association (AWEA). 2012a.D.C. : American Wind Energy Association. American Wind

  20. Vortex Lattice Modelling of Winglets on Wind Turbine Blades

    E-Print Network [OSTI]

    Vortex Lattice Modelling of Winglets on Wind Turbine Blades Mads Døssing Risø-R-1621(EN) Risø Title: Vortex Lattice Modelling of Winglets on Wind Turbine Blades Departments: Wind Energy Department turbines can be increased by the use of winglets without increasing the swept area. This makes them

  1. Wind Power Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Analysis ms - 3.0MB Excel Excel Wind Analysis Presentation - 8.2MB PowerPoint Excel Wind Analysis With Power Curves Included - 3.7MB Excel WindR.exe - 44kB Weibull Excel Wind...

  2. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos andSeminarsDesign » DesignMay »helpWind

  3. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement Buoy AdvancesWind

  4. Hurricane Katrina Wind Investigation Report

    SciTech Connect (OSTI)

    Desjarlais, A. O.

    2007-08-15

    This investigation of roof damage caused by Hurricane Katrina is a joint effort of the Roofing Industry Committee on Weather Issues, Inc. (RICOWI) and the Oak Ridge National Laboratory/U.S. Department of Energy (ORNL/DOE). The Wind Investigation Program (WIP) was initiated in 1996. Hurricane damage that met the criteria of a major windstorm event did not materialize until Hurricanes Charley and Ivan occurred in August 2004. Hurricane Katrina presented a third opportunity for a wind damage investigation in August 29, 2005. The major objectives of the WIP are as follows: (1) to investigate the field performance of roofing assemblies after major wind events; (2) to factually describe roofing assembly performance and modes of failure; and (3) to formally report results of the investigations and damage modes for substantial wind speeds The goal of the WIP is to perform unbiased, detailed investigations by credible personnel from the roofing industry, the insurance industry, and academia. Data from these investigations will, it is hoped, lead to overall improvement in roofing products, systems, roofing application, and durability and a reduction in losses, which may lead to lower overall costs to the public. This report documents the results of an extensive and well-planned investigative effort. The following program changes were implemented as a result of the lessons learned during the Hurricane Charley and Ivan investigations: (1) A logistics team was deployed to damage areas immediately following landfall; (2) Aerial surveillance--imperative to target wind damage areas--was conducted; (3) Investigation teams were in place within 8 days; (4) Teams collected more detailed data; and (5) Teams took improved photographs and completed more detailed photo logs. Participating associations reviewed the results and lessons learned from the previous investigations and many have taken the following actions: (1) Moved forward with recommendations for new installation procedures; (2) Updated and improved application guidelines and manuals from associations and manufacturers; (3) Launched certified product installer programs; and (4) Submitted building code changes to improve product installation. Estimated wind speeds at the damage locations came from simulated hurricane models prepared by Applied Research Associates of Raleigh, North Carolina. A dynamic hurricane wind field model was calibrated to actual wind speeds measured at 12 inland and offshore stations. The maximum estimated peak gust wind speeds in Katrina were in the 120-130 mph range. Hurricane Katrina made landfall near Grand Isle, Louisiana, and traveled almost due north across the city of New Orleans. Hurricane winds hammered the coastline from Houma, Louisiana, to Pensacola, Florida. The severe flooding problems in New Orleans made it almost impossible for the investigating teams to function inside the city. Thus the WIP investigations were all conducted in areas east of the city. The six teams covered the coastal areas from Bay Saint Louis, Mississippi, on the west to Pascagoula, Mississippi, on the east. Six teams involving a total of 25 persons documented damage to both low slope and steep slope roofing systems. The teams collected specific information on each building examined, including type of structure (use or occupancy), wall construction, roof type, roof slope, building dimensions, roof deck, insulation, construction, and method of roof attachment. In addition, the teams noted terrain exposure and the estimated wind speeds at the building site from the Katrina wind speed map. With each team member assigned a specific duty, they described the damage in detail and illustrated important features with numerous color photos. Where possible, the points of damage initiation were identified and damage propagation described. Because the wind speeds in Katrina at landfall, where the investigations took place, were less than code-specified design speeds, one would expect roof damage to be minimal. One team speculated that damage to all roofs in the area they examined was les

  5. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

  6. Mid-Atlantic Regional Wind Energy Institute

    SciTech Connect (OSTI)

    Courtney Lane

    2011-12-20

    As the Department of Energy stated in its 20% Wind Energy by 2030 report, there will need to be enhanced outreach efforts on a national, state, regional, and local level to communicate wind development opportunities, benefits and challenges to a diverse set of stakeholders. To help address this need, PennFuture was awarded funding to create the Mid-Atlantic Regional Wind Energy Institute to provide general education and outreach on wind energy development across Maryland, Virginia, Delaware, Pennsylvania and West Virginia. Over the course of the two-year grant period, PennFuture used its expertise on wind energy policy and development in Pennsylvania and expanded it to other states in the Mid-Atlantic region. PennFuture accomplished this through reaching out and establishing connections with policy makers, local environmental groups, health and economic development organizations, and educational institutions and wind energy developers throughout the Mid-Atlantic region. PennFuture conducted two regional wind educational forums that brought together wind industry representatives and public interest organizations from across the region to discuss and address wind development in the Mid-Atlantic region. PennFuture developed the agenda and speakers in collaboration with experts on the ground in each state to help determine the critical issue to wind energy in each location. The sessions focused on topics ranging from the basics of wind development; model ordinance and tax issues; anti-wind arguments and counter points; wildlife issues and coalition building. In addition to in-person events, PennFuture held three webinars on (1) Generating Jobs with Wind Energy; (2) Reviving American Manufacturing with Wind Power; and (3) Wind and Transmission. PennFuture also created a web page for the institute (http://www.midatlanticwind.org) that contains an online database of fact sheets, research reports, sample advocacy letters, top anti-wind claims and information on how to address them, wind and wildlife materials and sample model ordinances. Video and presentations from each in-person meeting and webinar recordings are also available on the site. At the end of the two-year period, PennFuture has accomplished its goal of giving a unified voice and presence to wind energy advocates in the Mid-Atlantic region. We educated a broad range of stakeholders on the benefits of wind energy and gave them the tools to help make a difference in their states. We grew a database of over 500 contacts and hope to continue the discussion and work around the importance of wind energy in the region.

  7. CX-100294 Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Categorical Exclusion Determination CX-100294 Categorical Exclusion Determination Texturizing Wind Turbine Towers to Reduce Bat Mortality Award Number: DE-EE0007033 CX(s)...

  8. Simulating Turbulent Wind Fields for Offshore Turbines in Hurricane-Prone Regions (Poster)

    SciTech Connect (OSTI)

    Guo, Y.; Damiani, R.; Musial, W.

    2014-04-01

    Extreme wind load cases are one of the most important external conditions in the design of offshore wind turbines in hurricane prone regions. Furthermore, in these areas, the increase in load with storm return-period is higher than in extra-tropical regions. However, current standards have limited information on the appropriate models to simulate wind loads from hurricanes. This study investigates turbulent wind models for load analysis of offshore wind turbines subjected to hurricane conditions. Suggested extreme wind models in IEC 61400-3 and API/ABS (a widely-used standard in oil and gas industry) are investigated. The present study further examines the wind turbine response subjected to Hurricane wind loads. Three-dimensional wind simulator, TurbSim, is modified to include the API wind model. Wind fields simulated using IEC and API wind models are used for an offshore wind turbine model established in FAST to calculate turbine loads and response.

  9. Sault Tribe Wind Energy Feasibility Study

    SciTech Connect (OSTI)

    Toni Osterhout; Global Energy Concepts

    2005-07-31

    The Sault Tribe conducted a feasibility study on tribal lands in the Upper Peninsula of Michigan to determine the technical and economic feasibility of both small and large-scale wind power development on tribal lands. The study included a wind resource assessment, transmission system analysis, engineering and regulatory analyzes and assessments.

  10. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect (OSTI)

    Singh, M.; Santoso, S.

    2011-10-01

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  11. Metro Wind LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical Area TotalWind LLC Wind Farm Jump to:

  12. Michigan Wind I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical Area TotalWindMicheln Jump to:MichiganI Wind

  13. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  14. 66 IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. 1, NO. 2, JULY 2010 Optimization of Wind Turbine Performance With

    E-Print Network [OSTI]

    Kusiak, Andrew

    . Three different objectives, wind power output, vibration of drive train, and vibration of tower intensified in recent years. Areas with the most research progress include the design of wind turbines [1], [2], the design and reliability of wind farms [3]­[5], the control of wind turbines [6], [7], [22], [23], wind

  15. Distributed Wind Policy Comparison Tool

    SciTech Connect (OSTI)

    2011-12-01

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE’s '20% Wind Energy by 2030' report and helping to meet COE targets.

  16. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  17. Wind Power Outreach Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Outreach Programs A team of educators and scientists from the Idaho...

  18. Wind/Hydro Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

  19. Wind for Schools (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  20. Wind energy bibliography

    SciTech Connect (OSTI)

    1995-05-01

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  1. Small Wind Conference 2015

    Broader source: Energy.gov [DOE]

    The Small Wind Conference brings together small wind installers, site assessors, manufacturers, dealers and distributors, supply chain stakeholders, educators, public benefits program managers, and...

  2. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  3. For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine For Cape Wind, Summer Breeze Makes Offshore Wind Feel Fine July 1, 2014 - 8:44am Addthis For Cape Wind, Summer Breeze...

  4. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect (OSTI)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  5. the risk issue of wind measurement for wind turbine operation

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Sciences, National Taiwan University #12;outline · Wind measurement in meteorology and wind farm design-related issues on wind turbine operation 3/31/2011 2 #12;WIND MEASUREMENT IN METEOROLOGY & WIND FARM DESIGN 3://www.atm.ncu.edu.tw/93/wind/ MM5 simulation (1996~2000 database) Wind speed (m/s) at 50mWind power (100W/m2) at 50m http://wind.itri.org.tw/wind

  6. Sunyaev-Zeldovich Contributions from Early Supernova Winds

    E-Print Network [OSTI]

    California at Los Angles, University of

    Sunyaev-Zeldovich Contributions from Early Supernova Winds Sarah Benjamin Mentor: Steven Furlanetto was to determine the contributions to the Sunyaev-Zeldovich effect from supernova winds at high redshift. In order, especially at asymptotic bounds. Finally, the Compton y-parameter of the supernova winds can be found using

  7. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    of Energy’s (DOE) Wind & Water Power Program. For reviewingwere funded by the Wind & Water Power Program, Office ofWind Technologies Market Report Wind Energy Web Sites U.S. Department of Energy Wind and Water Power

  8. Response of Rocky Mountain Elk (Cervus elaphus) to Wind-power Development

    E-Print Network [OSTI]

    Response of Rocky Mountain Elk (Cervus elaphus) to Wind-power Development W. DAVID WALTER1 Oklahoma) to wind-power development in southwestern Oklahoma. Ten elk were radiocollared in an area of wind-power devel- opment on 31 March 2003 and were relocated bi-weekly through March 2005. Wind-power construction

  9. Offshore Coastal Wind Speed Gradients: issues for the design and development of large offshore windfarms

    E-Print Network [OSTI]

    Pryor, Sara C.

    -situ and remote sensing data from offshore wind farms in Denmark, are used to examine both horizontal and vertical the area of the wind farm appear to be small and negligible. 1. INTRODUCTION As large offshore wind farmsOffshore Coastal Wind Speed Gradients: issues for the design and development of large offshore

  10. WIND TURBINE STRUCTURAL HEALTH MONITORING: A SHORT INVESTIGATION BASED ON SCADA DATA

    E-Print Network [OSTI]

    Boyer, Edmond

    .papatheou@sheffield.ac.uk ABSTRACT The use of offshore wind farms has been growing in recent years, as steadier and higher wind to complicate the construction of land wind farms, offshore locations, which can be found more easily near densely populated areas, can be seen as an attrac- tive choice. However, the cost of an offshore wind farm

  11. Flow Simulations of a Rotating MidSized Rim Driven Wind Turbine

    E-Print Network [OSTI]

    Maccabe, Barney

    Flow Simulations of a Rotating MidSized Rim Driven Wind Turbine Bryan E. Kaiser1 , Andrew B: poroseva@unm.edu Introduction Conventional horizontal axis wind turbines (HAWTs) require relatively high free stream wind velocities that limit the geographic areas suitable for wind energy

  12. Identifying and Mapping Factors Used in Siting Offshore Wind Farms Kayleah Griffen

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Identifying and Mapping Factors Used in Siting Offshore Wind Farms Kayleah Griffen Professor Anita Milman; Graduate Student: Wind Goodale Offshore Wind Energy has great potential to be an energy source in the United States. In order for Offshore Wind Turbines to perform optimally, they must be sited in areas

  13. Dynamics of Wind Setdown at Suez and the Eastern Nile Carl Drews1,2

    E-Print Network [OSTI]

    Han, Weiqing

    /s easterly wind forcing in the reconstructed model basin, the ocean model produces an area of exposed mud be significantly curtailed by wind setdown when strong winds blow offshore. Citation: Drews C, Han W (2010-07-1-0413. Weiqing Han is also supported by NASA Ocean Vector Wind Science Team 1283568 and NSF CAREER OCE 0847605

  14. Web-based Tool for Preliminary Assessment of Wind Power Plant Design

    E-Print Network [OSTI]

    Mustakerov, Ivan

    of type, number and layout of wind turbines for given site area. Preliminary assessment of de- sign by real data for wind turbines and pa- rameters of the wind site. Keywords: wind power plant, design) is a complex and iterative process. It includes choice of turbines and definition of proper layout conforming

  15. Performance and safety of rooftop wind turbines: Use of CFD to gain insight into inflow conditions

    E-Print Network [OSTI]

    McCalley, James D.

    to overcome, including energy yield reduction due to lower mean wind speeds in urban areas, and environmental method to model wind flows in order to perform a resource assessment for the application of small wind presents the results of research using a CFD code to model wind flows over the roof of a building

  16. Generating Economic Development from a Wind Power Plant in Spanish...

    Wind Powering America (EERE)

    of the utility companies. In Utah, the Commission is responsible for determining avoided cost rates for qualifying facilities. As will be noted later, the Spanish Fork Wind...

  17. Small Wind Electric Systems: A U.S. Consumer's Guide

    SciTech Connect (OSTI)

    None

    2007-08-01

    The handbook provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy.

  18. Small Wind Electric Systems: A New Hampshire Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A New Hampshire Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a New Hampshire wind resource map and information about state incentives and contacts for more information.

  19. Small Wind Electric Systems: A Maine Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A Maine Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a wind resource map for the state of Maine and information about state incentives and contacts for more information.

  20. The National Wind Technology Center

    SciTech Connect (OSTI)

    Thresher, R.W.; Hock, S.M.; Loose, R.R.; Cadogon, J.B.

    1994-07-01

    Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

  1. Climate change projected fire weather sensitivity: CaliforniaSanta Ana wind occurrence

    SciTech Connect (OSTI)

    Miller, Norman L.; Schlegel, Nicole J.

    2006-01-01

    A new methodbased on global climate model pressuregradients was developed for identifying coastal high-wind fire weatherconditions, such as the Santa Ana Occurrence (SAO). Application of thismethod for determining southern California Santa Ana wind occurrenceresulted in a good correlation between derived large-scale SAOs andobserved offshore winds during periods of low humidity. The projectedchange in the number of SAOs was analyzed using two global climatemodels, one a low temperature sensitivity and the other amiddle-temperature sensitivity, both forced with low and high emissionscenarios, for three future time periods. This initial analysis showsconsistent shifts in SAO events from earlier (September-October) to later(November-December) in the season, suggesting that SAOs may significantlyincrease the extent of California coastal areas burned by wildfires, lossof life, and property.

  2. Determination of transport parameters of coincident inorganic and organic plumes in the Savannah River Plant M-Area, Aiken, South Carolina 

    E-Print Network [OSTI]

    Cauffman, Toya Lyn

    1987-01-01

    River Plant (SRP) M-Area house the facilities for fabricating fuel and target elements to be irradiated in SRP reactors. Waste effluents from M-Area operations contain metal degreasers, nitric acid, sodium hydroxide, phosphoric acid and metals...-Area are (1) the A-14 sewer outfall, which drains to a small tributary of the Time Branch, (2) the M-Area settling basin, (3) the seepage area and Lost Lake, which receive overflow from the basin, and (4) the two main sewer lines which transport waste water...

  3. Estimation of Wind Speed in Connection to a Wind Turbine

    E-Print Network [OSTI]

    Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

  4. Wind energy offers considerable promise; the wind itself is free,

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

  5. Mixer-Ejector Wind Turbine: Breakthrough High Efficiency Shrouded Wind Turbine

    SciTech Connect (OSTI)

    2010-02-22

    Broad Funding Opportunity Announcement Project: FloDesign Wind Turbine’s innovative wind turbine, inspired by the design of jet engines, could deliver 300% more power than existing wind turbines of the same rotor diameter by extracting more energy over a larger area. FloDesign Wind Turbine’s unique shrouded design expands the wind capture area, and the mixing vortex downstream allows more energy to flow through the rotor without stalling the turbine. The unique rotor and shrouded design also provide significant opportunity for mass production and simplified assembly, enabling mid-scale turbines (approximately 100 kW) to produce power at a cost that is comparable to larger-scale conventional turbines.

  6. 1 Energy Markets and Policy Group Energy Analysis Department The Impact of Wind Power Projects

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 Energy Markets and Policy Group · Energy Analysis Department The Impact of Wind Power Projects, Wind & Hydropower Technologies Program #12;2 Energy Markets and Policy Group · Energy Analysis Concerns for Wind Energy Fall Into Three Potential Categories 1. Area Stigma: Concern that rural areas

  7. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  8. Wind energy offers considerable promise

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise: the wind itself is free, wind power is clean: the wind itself is free, wind power is clean, and it is inexhaustible. In recent years, research on wind · Wind farm aerodynamics Rotor Design · Aerodynamics · Structure and design · Composite design, material

  9. Wind energy offers considerable promise

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise: the wind itself is free, wind power is clean, wind power is clean, and it is inexhaustible. In recent years, research on wind energy has accelerated that are offered are: Wind Physics · Atmospheric aerodynamics and turbulence · Wind farm aerodynamics Rotor Design

  10. Web-based Tool for Preliminary Assessment of Wind Power Plant Design

    E-Print Network [OSTI]

    Borissova, Daniela

    Web-based Tool for Preliminary Assessment of Wind Power Plant Design Daniela Borissova1 and Ivan. Designing of reliable and cost-effective industrial wind power plant is a prerequisite for the effective use of wind power as an alternative resource. The design of a wind power plant includes the determination

  11. Wind-driven Sediment Suspension Controls Light Availability in a Shallow Coastal Lagoon

    E-Print Network [OSTI]

    McGlathery, Karen

    Wind-driven Sediment Suspension Controls Light Availability in a Shallow Coastal Lagoon S. E, was determined for a summer and late fall time period with different wind conditions. We combined field and currents in Hog Island Bay responded strongly to wind forcing, with bottom stresses from wind driven waves

  12. WIND TOMOGRAPHY IN BINARY SYSTEMS O.Knill, R.Dgani and M.Vogel

    E-Print Network [OSTI]

    Knill, Oliver

    WIND TOMOGRAPHY IN BINARY SYSTEMS O.Knill, R.Dgani and M.Vogel ETH-Zurich, CH-8092, Switzerland method is particularly suitable for determining the velocity laws of stellar winds. 1. WIND TOMOGRAPHY AND ABEL'S INTEGRAL Binary systems in which a compact, point-like radiation source shines through the wind

  13. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  14. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  15. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  16. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  17. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  18. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  19. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  20. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  1. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  2. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  3. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  4. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    with the section on offshore wind; Donna Heimiller and Billyof 2012, global cumulative offshore wind capacity stood ats (DOE’s) investments in offshore wind energy research and

  5. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    11 “advanced-stage” offshore wind project proposals totalingcontinued in 2008 (see Offshore Wind Development Activities,Market Report Offshore Wind Development Activities In

  6. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    for deepwater offshore wind and tidal energy demonstrationand Minnesota (12%). Offshore Wind Power Project and Policythe emergence of an offshore wind power market still faces

  7. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    and Minnesota (12%). Offshore Wind Power Project and Policythe emergence of an offshore wind power market still facesexists in developing offshore wind energy in several parts

  8. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    of Energy?s (DOE) Wind & Water Power Program. For reviewingfor offshore wind power development in federal waters fromof Water and Power (LADWP). 2011. Completion of Wind Power

  9. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    Table 8 Figure 30. Wind Integration Costs at Various LevelsOperations and Maintenance Costs Wind project operations andPublic Service Wind Integration Cost Impact Study. Prepared

  10. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    charging wind power projects for balancing services. 81 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  11. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    charging wind power projects for balancing services. 88 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  12. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    Xcel Energy. 2011. Wind Induced Coal Plant Cyclingand the Implications of Wind Curtailment for Public Serviceof Colorado 2 GW and 3 GW Wind Integration Cost Study.

  13. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.Newark, DE. 16 pages. Global Wind Energy Council (GWEC) (

  14. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    be provided by wind power generators to provide frequencyof wind power capacity in that state) because generatorsgenerators to provide the needed flexibility to integrate wind power.

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    2010. Status of Centralized Wind Power Forecasting in NorthInterconnection Policies and Wind Power: A Discussion ofLADWP). 2011. Completion of Wind Power Project Brings More

  16. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    and K. Porter. 2011. Wind Power and Electricity Markets.The Effects of Integrating Wind Power on Transmission System41 6. Wind Power Price

  17. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    exists in developing offshore wind energy in several partsexclusively on offshore wind energy will be published laterexclusively on offshore wind energy will be published later

  18. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    assistance with the offshore wind energy discussion; Donnaactivity in the offshore wind energy sector. Data fromexpanded discussion of offshore wind energy development, and

  19. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    exists in developing offshore wind energy in several partsstrides relating to offshore wind energy have been madeactivity in the offshore wind energy sector. Data from

  20. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA March 1st 2006 to May 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribut

  1. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    2010. International Wind Energy Development: World MarketUniversity. American Wind Energy Association (AWEA). 2010a.Washington, DC: American Wind Energy Association. American

  2. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA). 2009b. AWEA SmallWashington, DC: American Wind Energy Association. Bolinger,

  3. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

  4. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

  5. AWEA Wind Energy Fall Symposium

    Broader source: Energy.gov [DOE]

    The AWEA Wind Energy Fall Symposium gathers wind energy professionals for informal yet productive interactions with industry peers. Jose Zayas, Director, Wind & Water Power Technologies Office,...

  6. FEASIBILITY OF WIND TO SERVE UPPER SKAGIT'S BOW HILL TRIBAL LANDS AND FEASIBILITY UPDATE FOR RESIDENTIAL RENEWABLE ENERGY.

    SciTech Connect (OSTI)

    RICH, LAUREN

    2013-09-30

    A two year wind resource assessment was conducted to determine the feasibility of developing a community scale wind generation system for the Upper Skagit Indian Tribe?s Bow Hill land base, and the project researched residential wind resource technologies to determine the feasibility of contributing renewable wind resource to the mix of energy options for our single and multi-family residential units.

  7. Wind energy information guide

    SciTech Connect (OSTI)

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  8. Small Wind Electric Systems: An Oregon Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01

    Small Wind Electric Systems: An Oregon Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  9. Small Wind Electric Systems: An Oregon Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2002-05-01

    Small Wind Electric Systems An Oregon Consumer's Guide provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the Oregon guide provides state specific information that includes and state wind resource map, state incentives, and state contacts for more information.

  10. Small Wind Electric Systems: A Maryland Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  11. Small Wind Electric Systems: A Vermont Consumer's Guide

    SciTech Connect (OSTI)

    O'Dell, K.

    2001-10-01

    The Vermont Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information.

  12. EIS-0437: Interconnection of the Buffalo Ridge III Wind Project, Brookings and Deuel Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of a proposal to interconnect the Heartland Wind, LLC, proposed Buffalo Ridge III Wind Project in Brookings and Deuel Counties, South Dakota, to DOE’s Western Area Power Administration transmission system.

  13. Potential of wind-powered renewable energy membrane systems for Ghana 

    E-Print Network [OSTI]

    Park, G.L.; Schäfer, Andrea; Richard, B.S.

    2009-01-01

    Areas of the world that lack fresh water often have an ample supply of wind or solar energy, making renewable energy an attractive option as a power source for desalination systems. Particularly, wind energy is attractive ...

  14. EERE 2014 Wind Technologies Market Report Finds Wind Power at...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices EERE 2014 Wind Technologies Market Report Finds Wind Power at Record Low Prices August 10, 2015 - 11:00am...

  15. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply...

  16. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  17. Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and Fracture/Heat Transfer Surface Area in Geothermal Reservoirs

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Project Summary. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate quantitative characterization of temperature distributions and surface area available for heat transfer in EGS.

  18. Distributed Wind 2015

    Broader source: Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  19. Wind Power FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Frequently Asked Questions QUESTION: Why was the time stamp on my first wind explorer data chip incorrect? ANSWER: You need to program the proper date and time in the wind...

  20. Airplane and the wind

    E-Print Network [OSTI]

    Airplane and the wind. An airplane starts from the point A and flies to B. The speed of the airplane with respect to the air is v (constant). There is also a wind of

  1. NREL: Wind Research - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Below are upcoming events related to wind energy technology. December 2015 Wind and Water Power Small Business Voucher Open House December 2, 2015, 9:00 - 1:00 MST Boulder,...

  2. WINDExchange: Learn About Wind

    Wind Powering America (EERE)

    wind turbines in a row at sunset. The sky is varying hues of orange and the sun is halfway past the horizon. Wind power comes in many sizes. Here, several...

  3. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  4. After the Wind Storm 

    E-Print Network [OSTI]

    Unknown

    2011-09-05

    Accidents and hazards continue to plague the construction industry. One often overlooked hazard to workers is the potential for flying debris and materials during high winds. This research was designed to evaluate the wind velocity required...

  5. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    AWEA). 2009b. AWEA Small Wind Turbine Global Market Study:will ultimately benefit wind. Small Wind ITC: EESA 2008to be relatively small, whereas the impacts of wind on load-

  6. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    AWEA). 2010. AWEA Small Wind Turbine Global Market Survey,levels. Small Wind Turbines Small wind turbines can providebelow summarizes sales of small wind turbines, 100 kW and

  7. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    wind project costs, wind turbine transaction prices, projectincreases in the cost of wind turbines over the last severalO&M costs given the dramatic changes in wind turbine

  8. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbines100 wind turbine installed at the National Renewable Energy

  9. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    Sites U.S. Department of Energy Wind Program wind.energy.govA. 2010. Impact of Wind Energy Installations on DomesticUniversity. American Wind Energy Association (AWEA). 2012a.

  10. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    AWEA). 2012b. 2011 U.S. Small Wind Turbine Market Report.a brief discussion on Small Wind This 100 kW thresholdAnnual Capacity (GW) Small Wind Turbines Small wind turbines

  11. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    a brief discussion on Small Wind Turbines is provided onO&M costs. 2012 Wind Technologies Market Report Small WindTurbines Small wind turbines can provide power directly to

  12. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    AWEA). 2010. AWEA Small Wind Turbine Global Market Survey,a brief discussion on Small Wind Turbines is provided onat 2008 and 2009 levels. Small Wind Turbines Small wind

  13. Wind Webinar Text Version

    Broader source: Energy.gov [DOE]

    Download the text version of the audio from the DOE Office of Indian Energy webinar on wind renewable energy.

  14. Wind Tunnel Building - 7 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    or gravitational energy to some extent. Moreover, wave energy provides “15-20 times more available energy per square meter than either wind or solar” [1]. Of these the most commercially viable resources studied so far are ocean currents and waves. Some... limited commercial development and is therefore of more interest. Ocean waves arise from the transfer of energy from the sun to wind then water. Solar energy creates wind, which then blows over the ocean, converting wind energy to wave energy. Once...

  15. Wind powering America: Vermont

    SciTech Connect (OSTI)

    NREL

    2000-04-11

    Wind resources in the state of Vermont show great potential for wind energy development according to the wind resource assessment conducted by the state, its utilities, and NREL. This fact sheet provides a brief description of the resource assessment and a link to the resulting wind resource map produced by NREL. The fact sheet also provides a description of the state's net metering program, its financial incentives, and green power programs as well as a list of contacts for more information.

  16. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Prospects for Offshore Wind Farms. ” Wind Engineering, 28:Techniques for Offshore Wind Farms. ” Journal of Solar

  17. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.

  18. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    by Canada (76%) and Mexico (17%). Wind turbine component30%), Mexico (21%), and China (21%)). Total wind turbine

  19. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Public Opinion About Large Offshore Wind Power: UnderlyingA. (2007) Delaware Opinion on Offshore Wind Power - Interim

  20. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Renewable Energy (Wind and Water Technologies Program) ofWind Farms in North America 1 Ben Hoen Environmental Energy Technologies

  1. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    regulation and frequency response services charge to wind energyRegulation and Frequency Response Service rate for wind energy

  2. Wind for Schools Curriculum Brief

    SciTech Connect (OSTI)

    None

    2010-08-01

    This fact sheet provides an overview of wind energy curricula as it relates to the Wind for Schools project.

  3. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  4. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  5. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  6. Offshore Wind Geoff Sharples

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make States Cape Wind PPA at 18 c/kWh #12;The cycle of non-innova?on Offshore

  7. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  8. Wind to Hydrogen in California: Case Study

    SciTech Connect (OSTI)

    Antonia, O.; Saur, G.

    2012-08-01

    This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

  9. EA-1978: Sand Creek Winds, McCone County, Montana

    Broader source: Energy.gov [DOE]

    Western Area Power Administration (Western) is preparing an EA to analyze the potential environmental impacts of the proposed Sand Creek Winds Project, a 75-MW wind farm between the towns of Circle and Wolf Point in McCone County, Montana. The proposed wind farm would interconnect to Western’s existing Wolf Point to Circle 115-kV transmission line approximately 18 miles north of Wolf Point.

  10. Short communication Study of pollution dispersion in urban areas using

    E-Print Network [OSTI]

    Yu, Peter K.N.

    wind directions and wind speeds. 2. Model validation The developed models have to be verified before they can be applied to real life simulations. To test the performance of the present wind field modelShort communication Study of pollution dispersion in urban areas using Computational Fluid Dynamics

  11. CX-007901: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-007901: Categorical Exclusion Determination Improving Atmospheric Models for Offshore Wind Resource Mapping and Prediction Using LIDAR, Aircraft, and In-Ocean...

  12. CX-003226: Categorical Exclusion Determination | Department of...

    Energy Savers [EERE]

    Exclusion Determination Parris Island Wind Resource Assessment; National Renewable Energy Laboratory Tracking Number 10-032 CX(s) Applied: A9, B3.1 Date: 08042010...

  13. CX-002194: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-002194: Categorical Exclusion Determination Install Demonstration Wind Turbine at Weldon Spring, Missouri, Site CX(s) Applied: B5.1 Date: 04282010 Location(s):...

  14. Built-Environment Wind Turbine Roadmap

    SciTech Connect (OSTI)

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    Although only a small contributor to total electricity production needs, built-environment wind turbines (BWTs) nonetheless have the potential to influence the public's consideration of renewable energy, and wind energy in particular. Higher population concentrations in urban environments offer greater opportunities for project visibility and an opportunity to acquaint large numbers of people to the advantages of wind projects on a larger scale. However, turbine failures will be equally visible and could have a negative effect on public perception of wind technology. This roadmap provides a framework for achieving the vision set forth by the attendees of the Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the U.S. Department of Energy's National Renewable Energy Laboratory. The BWT roadmap outlines the stakeholder actions that could be taken to overcome the barriers identified. The actions are categorized as near-term (0 - 3 years), medium-term (4 - 7 years), and both near- and medium-term (requiring immediate to medium-term effort). To accomplish these actions, a strategic approach was developed that identifies two focus areas: understanding the built-environment wind resource and developing testing and design standards. The authors summarize the expertise and resources required in these areas.

  15. Wind anisotropy and stellar evolution

    E-Print Network [OSTI]

    Cyril Georgy; Georges Meynet; André Maeder

    2008-07-31

    Mass loss is a determinant factor which strongly affects the evolution and the fate of massive stars. At low metallicity, stars are supposed to rotate faster than at the solar one. This favors the existence of stars near the critical velocity. In this rotation regime, the deformation of the stellar surface becomes important, and wind anisotropy develops. Polar winds are expected to be dominant for fast rotating hot stars. These polar winds allow the star to lose large quantities of mass and still retain a high angular momentum, and they modifie the evolution of the surface velocity and the final angular momentum kept in the star's core. We show here how these winds affect the final stages of massive stars, according to our knowledge about Gamma Ray Bursts. Computation of theoretical Gamma Ray Bursts rate indicates that our models have too fast rotating cores, and that we need to include an additional effect to spin them down. Magnetic fields in stars act in this direction, and we show how they modify the evolution of massive star up to the final stages.

  16. 2010 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Exeter Associates; National Renewable Energy Laboratory; Energetics Incorporated; Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Seel, Joachim; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Raymond, Russell

    2011-06-27

    The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the 'inertia' in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.

  17. On the Steady Nature of Line-Driven Disk Winds

    E-Print Network [OSTI]

    Nicolas A. Pereyra; Stanley P. Owocki; D. John Hillier; David A. Turnshek

    2003-11-11

    We perform an analytic investigation of the stability of line-driven disk winds, independent of hydrodynamic simulations. Our motive is to determine whether or not line-driven disk winds can account for the wide/broad UV resonance absorption lines seen in cataclysmic variables (CVs) and quasi-stellar objects (QSOs). In both CVs and QSOs observations generally indicate that the absorption arising in the outflowing winds has a steady velocity structure on time scales exceeding years (for CVs) and decades (for QSOs). However, published results from hydrodynamic simulations of line-driven disk winds are mixed, with some researchers claiming that the models are inherently unsteady, while other models produce steady winds. The analytic investigation presented here shows that if the accretion disk is steady, then the line-driven disk wind emanating from it can also be steady. In particular, we show that a gravitational force initially increasing along the wind streamline, which is characteristic of disk winds, does not imply an unsteady wind. The steady nature of line-driven disk winds is consistent with the 1D streamline disk-wind models of Murray and collaborators and the 2.5D time-dependent models of Pereyra and collaborators. This paper emphasizes the underlying physics behind the steady nature of line-driven disk winds using mathematically simple models that mimic the disk environment

  18. Thermal Wind The thermal wind is defined as the vector difference between the geostrophic winds at

    E-Print Network [OSTI]

    Hennon, Christopher C.

    ATMS 310 Thermal Wind The thermal wind is defined as the vector difference between the geostrophic winds at two levels. It is not really a wind at all, just a measure of the shear of the geostrophic wind. But there are good reasons for considering the geostrophic wind; mainly, it provides a convenient way of connecting

  19. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  20. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  1. A sensitivity analysis of the treatment of wind energy in the AEO99 version of NEMS

    SciTech Connect (OSTI)

    Osborn, Julie G; Wood, Frances; Richey, Cooper; Sanders, Sandy; Short, Walter; Koomey, Jonathan

    2001-01-01

    Each year, the U.S. Department of Energy's Energy Information Administration (EIA) publishes a forecast of the domestic energy economy in the Annual Energy Outlook (AEO). During the forecast period of the AEO (currently through 2020), renewable energy technologies have typically not achieved significant growth. The contribution of renewable technologies as electric generators becomes more important, however, in scenarios analyzing greenhouse gas emissions reductions or significant technological advancements. We examined the economic assumptions about wind power used for producing forecasts with the National Energy Modeling System (NEMS) to determine their influence on the projected capacity expansion of this technology. This analysis should help illustrate to policymakers what types of issues may affect wind development, and improve the general understanding of the NEMS model itself. Figure 1 illustrates the model structure and factors relevant to wind deployment. We found that NEMS uses various cost multipliers and constraints to represent potential physical and economic limitations to growth in wind capacity, such as resource depletion, costs associated with rapid manufacturing expansion, and grid stability with high levels of capacity from intermittent resources. The model's flexibility allows the user to make alternative assumptions about the magnitude of these factors. While these assumptions have little effect on the Reference Case forecast for the 1999 edition of the AEO, they can make a dramatic difference when wind is more attractive, such as under a carbon permit trading system. With $100/ton carbon permits, the wind capacity projection for 2020 ranges from 15 GW in the unaltered model (AEO99 Reference Case) to 168 GW in the extreme case when all the multipliers and constraints examined in this study are removed. Furthermore, if modifications are made to the model allowing inter-regional transmission of electricity, wind capacity is forecast to reach 214 GW when all limitations are removed. The figures in the upper end of these ranges are not intended to be viewed as reasonable projections, but their magnitude illustrates the importance of the parameters governing the growth of wind capacity and resource availability in forecasts using NEMS. In addition, many uncertainties exist regarding these assumptions that potentially affect the growth of wind power. We suggest several areas in which to focus future research in order to better model the potential development of this resource. Because many of the assumptions related to wind in the model are also used for other renewable technologies, these suggestions could be applied to other renewable resources as well.

  2. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    SciTech Connect (OSTI)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  3. Coupled dynamic analysis of floating offshore wind farms 

    E-Print Network [OSTI]

    Shim, Sangyun

    2009-05-15

    it is economically feasible and technologically manageable. So far, most of the offshore wind farm research has been limited to fixed platforms in shallow-water areas. In the water depth deeper than 30m, however, floating-type wind farms tend to be more feasible...

  4. Virginia Offshore Wind Cost Reduction Through Innovation Study (VOWCRIS) (Poster)

    SciTech Connect (OSTI)

    Maples, B.; Campbell, J.; Arora, D.

    2014-10-01

    The VOWCRIS project is an integrated systems approach to the feasibility-level design, performance, and cost-of-energy estimate for a notional 600-megawatt offshore wind project using site characteristics that apply to the Wind Energy Areas of Virginia, Maryland and North Carolina.

  5. EA-1902: Northern Wind Project, Roberts County, South Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing an EA that evaluates the potential environmental impacts of the proposed Northern Wind Project in Summit, Roberts County, South Dakota. Additional information is available on the project webpage, http://www.wapa.gov/ugp/Environment/NorthernWindFarm.htm.

  6. Wind Energy Guide for County Commissioners

    SciTech Connect (OSTI)

    Costanti, M.

    2006-10-01

    One of the key stakeholders associated with economic development are local government officials, who are often required to evaluate and vote on commercial wind energy project permits, as well as to determine and articulate what wind energy benefits accrue to their counties. Often these local officials lack experience with large-scale wind energy and need to make important decisions concerning what may be a complicated and controversial issue. These decisions can be confounded with diverse perspectives from various stakeholders. This project is designed to provide county commissioners, planners, and other local county government officials with a practical overview of information required to successfully implement commercial wind energy projects in their county. The guidebook provides readers with information on the following 13 topics: Brief Wind Energy Overview; Environmental Benefits; Wind Energy Myths and Facts; Economic Development Benefits; Wind Economics; The Development Process; Public Outreach; Siting Issues; Property Tax Incentives; Power System Impacts; Permitting, Zoning, and Siting Processes; Case Studies; and Further Information. For each of the above topics, the guidebook provides an introduction that identifies the topic, why local government should care, a topic snapshot, how the topic will arise, and a list of resources that define and assess the topic.

  7. New National Wind Potential Estimates for Modern and Near-Future Turbine Technologies (Poster)

    SciTech Connect (OSTI)

    Roberts, J. O.

    2014-01-01

    Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

  8. Land-Based Wind Potential Changes in the Southeastern United States (Presentation)

    SciTech Connect (OSTI)

    Roberts, J. O.

    2013-09-01

    Recent advancements in utility-scale wind turbine technology and pricing have vastly increased the potential land area where turbines can be deployed in the United States. This presentation quantifies the new developable land potential (e.g., capacity curves), visually identifies new areas for possible development (e.g., new wind resource maps), and begins to address deployment barriers to wind in new areas for modern and future turbine technology.

  9. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  10. Small Wind Electric Systems: A U.S. Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  11. Small Wind Electric Systems: A Montana Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2006-04-01

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  12. Small Wind Electric Systems: A Colorado Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2006-12-01

    Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  13. Small Wind Electric Systems: A Maryland Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-01-01

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  14. Small Wind Electric Systems: A Michigan Consumer's Guide (revised)

    SciTech Connect (OSTI)

    Not Available

    2007-01-01

    Small Wind Electric Systems: A Michigan Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  15. Small Wind Electric Systems: A South Dakota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A South Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  16. Small Wind Electric Systems: An Alaska Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: An Alaska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  17. Small Wind Electric Systems: An Oregon Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Oregon Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  18. Small Wind Electric Systems: A Vermont Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A Vermont Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  19. Small Wind Electric Systems: An Illinois Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: An Illinois Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  20. Small Wind Electric Systems: A Minnesota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A Minnesota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  1. Small Wind Electric Systems: A Washington Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Washington Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  2. Small Wind Electric Systems: A North Carolina Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01

    Small Wind Electric Systems: A North Carolina Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  3. Small Wind Electric Systems: A North Dakota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A North Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  4. Small Wind Electric Systems: An Oklahoma Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Oklahoma Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  5. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Utah Consumer's Guide provides Utah consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  6. Small Wind Electric Systems: A Maine Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Maine Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  7. Small Wind Electric Systems: A Pennsylvania Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Pennsylvania Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  8. Small Wind Electric Systems: A Montana Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  9. Small Wind Electric Systems: An Ohio Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Ohio Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  10. Small Wind Electric Systems: A Kansas Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Kansas Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  11. Michigan Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical Area TotalWindMicheln Jump to:MichiganI

  12. Accretion-Powered Stellar Winds II: Numerical Solutions for Stellar Wind Torques

    E-Print Network [OSTI]

    Sean Matt; Ralph E. Pudritz

    2008-01-18

    [Abridged] In order to explain the slow rotation observed in a large fraction of accreting pre-main-sequence stars (CTTSs), we explore the role of stellar winds in torquing down the stars. For this mechanism to be effective, the stellar winds need to have relatively high outflow rates, and thus would likely be powered by the accretion process itself. Here, we use numerical magnetohydrodynamical simulations to compute detailed 2-dimensional (axisymmetric) stellar wind solutions, in order to determine the spin down torque on the star. We explore a range of parameters relevant for CTTSs, including variations in the stellar mass, radius, spin rate, surface magnetic field strength, the mass loss rate, and wind acceleration rate. We also consider both dipole and quadrupole magnetic field geometries. Our simulations indicate that the stellar wind torque is of sufficient magnitude to be important for spinning down a ``typical'' CTTS, for a mass loss rate of $\\sim 10^{-9} M_\\odot$ yr$^{-1}$. The winds are wide-angle, self-collimated flows, as expected of magnetic rotator winds with moderately fast rotation. The cases with quadrupolar field produce a much weaker torque than for a dipole with the same surface field strength, demonstrating that magnetic geometry plays a fundamental role in determining the torque. Cases with varying wind acceleration rate show much smaller variations in the torque suggesting that the details of the wind driving are less important. We use our computed results to fit a semi-analytic formula for the effective Alfv\\'en radius in the wind, as well as the torque. This allows for considerable predictive power, and is an improvement over existing approximations.

  13. Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north polar region of Mars

    E-Print Network [OSTI]

    Bourke, Mary C.

    Dune field pattern formation and recent transporting winds in the Olympia Undae Dune Field, north dune crestlines, with apparent slipfaces on the primary crests, ubiquitous wind ripples, areas of coarsegrained wind ripples, and deflated interdune areas. Geomorphic evidence and dune field pattern analysis

  14. FINAL PROJECT REPORT: A Geophysical Characterization & Monitoring Strategy for Determining Hydrologic Processes in the Hyporheic Corridor at the Hanford 300-Area

    SciTech Connect (OSTI)

    Lee Slater

    2011-08-15

    The primary objective of this research was to advance the prediction of solute transport between the Uranium contaminated Hanford aquifer and the Columbia River at the Hanford 300 Area by improving understanding of how fluctuations in river stage, combined with subsurface heterogeneity, impart spatiotemporal complexity to solute exchange along the Columbia River corridor. Our work explored the use of continuous waterborne electrical imaging (CWEI), in conjunction with fiber-optic distributed temperature sensor (FO-DTS) and time-lapse resistivity monitoring, to improve the conceptual model for how groundwater/surface water exchange regulates uranium transport. We also investigated how resistivity and induced polarization can be used to generate spatially rich estimates of the variation in depth to the Hanford-Ringold (H-R) contact between the river and the 300 Area Integrated Field Research Challenge (IFRC) site. Inversion of the CWEI datasets (a data rich survey containing ~60,000 measurements) provided predictions of the distributions of electrical resistivity and polarizability, from which the spatial complexity of the primary hydrogeologic units along the river corridor was reconstructed. Variation in the depth to the interface between the overlying coarse-grained, high permeability Hanford Formation and the underlying finer-grained, less permeable Ringold Formation, an important contact that limits vertical migration of contaminants, has been resolved along ~3 km of the river corridor centered on the IFRC site in the Hanford 300 Area. Spatial variability in the thickness of the Hanford Formation captured in the CWEI datasets indicates that previous studies based on borehole projections and drive-point and multi-level sampling likely overestimate the contributing area for uranium exchange within the Columbia River at the Hanford 300 Area. Resistivity and induced polarization imaging between the river and the 300 Area IFRC further imaged spatial variability in the depth to the Hanford-Ringold inland over a critical region where borehole information is absent, identifying evidence for a continuous depression in the H-R contact between the IFRC and the river corridor. Strong natural contrasts in temperature and specific conductance of river water compared to groundwater at this site, along with periodic river stage fluctuations driven by dam operations, were exploited to yield new insights into the dynamics of groundwater-surface water interaction. Whereas FO-DTS datasets have provided meter-scale measurements of focused groundwater discharge at the riverbed along the corridor, continuous resistivity monitoring has non-invasively imaged spatiotemporal variation in the resistivity inland driven by river stage fluctuations. Time series and time-frequency analysis of FO-DTS and 3D resistivity datasets has provided insights into the role of forcing variables, primarily daily dam operations, in regulating the occurrence of focused exchange at the riverbed and its extension inland. High amplitudes in the DTS and 3D resistivity signals for long periods that dominate the stage time series identify regions along the corridor where stage-driven exchange is preferentially focused. Our work has demonstrated how time-series analysis of both time-lapse resistivity and DTS datasets, in conjunction with resistivity/IP imaging of lithology, can improve understanding of groundwater-surface water exchange along river corridors, offering unique opportunities to connect stage-driven groundwater discharge observed with DTS on the riverbed to stage-driven groundwater and solute fluctuations captured with resistivity inland.

  15. An introduction to the small wind turbine project

    SciTech Connect (OSTI)

    Forsyth, T.L.

    1997-07-01

    Small wind turbines are typically used for the remote or rural areas of the world including: a village in Chile; a cabin dweller in the U.S.; a farmer who wants to water his crop; or a utility company that wants to use distributed generation to help defer building new transmission lines and distribution facilities. Small wind turbines can be used for powering communities, businesses, homes, and miscellaneous equipment to support unattended operation. This paper covers the U.S. Department of Energy/National Renewable Energy Laboratory Small Wind Turbine project, its specifications, its applications, the subcontractors and their small wind turbines concepts. 4 refs., 4 figs.

  16. A selective survey to determine the frequency of naturally occurring Hepatozoon canis infections in the Coastal Bend area of South Texas 

    E-Print Network [OSTI]

    Espitia, Noberto Francisco

    1985-01-01

    data applicable to the determination of prevalence rates of the disease and to construct patient profiles of the affected population. The investigation centered on the results of blood sample evaluations of seventy-five dogs collected among five... veterinary clinics during a sixty day period. Only client-owned animals visiting one of the five veterinary clinics on a scheduled working day were sampled. Clinical evaluations of blood samples included complete blood counts, differential white cell...

  17. Gansu Xinhui Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Xinhui Wind Power Jump to: navigation, search Name: Gansu Xinhui Wind Power Place: China Sector: Wind energy Product: China-based joint venture engaged in developing wind projects....

  18. NWTC Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity

    SciTech Connect (OSTI)

    2015-08-01

    Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have expanded wind turbine aerodynamic research from blade and rotor aerodynamics to wind plant and atmospheric inflow effects. The energy capture from wind plants is dependent on all of these aerodynamic interactions. Research at the NWTC is crucial to understanding how wind turbines function in large, multiple-row wind plants. These conditions impact the cumulative fatigue damage of turbine structural components that ultimately effect the useful lifetime of wind turbines. This work also is essential for understanding and maximizing turbine and wind plant energy production. Both turbine lifetime and wind plant energy production are key determinants of the cost of wind-generated electricity.

  19. Experimental and theoretical study of horizontal-axis wind turbines

    E-Print Network [OSTI]

    Anderson, Michael Broughton

    1981-10-20

    An experimental and theoretical study of horizontal-axis wind turbines is undertaken. The theoretical analyses cover the four major areas of aerodynamics, turbulence. aeroelasticity and blade optimisation. EXisting aerodynamic theories based...

  20. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Project (CIP). The CIP aims to help U.S. manufacturers of small and mid-sized wind turbines with rotor swept areas up to 1,000 square meters improve their turbine designs...

  1. Statistical Methods for Quantifying the Effect of the El NioSouthern Oscillation on Wind Power in the

    E-Print Network [OSTI]

    Katz, Richard

    Statistical Methods for Quantifying the Effect of the El Niño­Southern Oscillation on Wind Power­Southern Oscillation on Wind Power in the Northern Great Plains of the United States Bret R. Harper1, Richard W. Katz2 of the United States. In order to determine if ENSO has similar impacts on wind speed and wind power, we applied

  2. On the Patterns of Wind-Power Input to the Ocean Circulation FABIEN ROQUET AND CARL WUNSCH

    E-Print Network [OSTI]

    Wunsch, Carl

    On the Patterns of Wind-Power Input to the Ocean Circulation FABIEN ROQUET AND CARL WUNSCH received 1 February 2011, in final form 12 July 2011) ABSTRACT Pathways of wind-power input into the ocean pumping, with a pattern determined by the wind curl rather than the wind itself. Regions of power

  3. EA-1920: Border Winds 2, North Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of a proposed wind turbine generation facility in Rolette and Towner Counties in North Dakota. If the proposal is implemented, power generated by this facility would interconnect at an existing substation and would be distributed via an existing transmission line owned and operated by Western.

  4. The Mystery of Foehn Winds Alexander Gohm

    E-Print Network [OSTI]

    Gohm, Alexander

    the Mesoscale Alpine Programme (MAP): (1) The target area (Wipp valley). (2) Surface observations along the Wipp), Wipp valley cross-section (b), Patscherkofel cross-section (c). (4) NOAA/ETL Doppler lidar: wind speed along the Wipp valley (5) Airborne aerosol lidar SABL on NCAR/Electra: backscatter intensity and AML

  5. Wind Tunnel Building - 3 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    1 Energy Systems Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles... on Sweetwater I Wind Farm Capacity Factor Analysis Application to All Wind Farms Uncertainty Analysis Emissions Reduction Summary Energy Systems Laboratory 3 SUMMARYEMISSIONS REDUCTION UNCERTAINTY ANALYSIS APPLICATIONMETHODOLOGYINTRODUCTION Background...

  6. A FETCH DEPENDENT MODEL OF SEA SURFACE ROUGHNESS FOR OFFSHORE WIND POWER UTILISATION

    E-Print Network [OSTI]

    Heinemann, Detlev

    A FETCH DEPENDENT MODEL OF SEA SURFACE ROUGHNESS FOR OFFSHORE WIND POWER UTILISATION Bernhard Lange, Resources, Roughness, Coastal Sea Areas, Waves, Rødsand 1 INTRODUCTION Large offshore wind farms are being wind conditions of offshore sites, since the higher energy yield has to compensate the additional

  7. Ris-R-Report Urban Wind Energy-State of the Art 2009

    E-Print Network [OSTI]

    -shore, the erection of wind turbines in urban areas is carried out and also shows perspectives regarding e. g. direct set the application of wind turbines in the urban environment in a relevant perspective. Information.risoe.dtu.dk #12;Risø-R-1668(EN) 3 1 INTRODUCTION 4 2 URBAN WIND TURBINES 5 2.1 Turbines Integrated in Buildings 5

  8. Final Map Draft Comparison Report WIND ENERGY RESOURCE MODELING AND MEASUREMENT PROJECT

    E-Print Network [OSTI]

    II Final Map Draft Comparison Report #12;WIND ENERGY RESOURCE MODELING AND MEASUREMENT PROJECT Tel: 978-749-9591 Fax: 978-749-9713 mbrower@awstruewind.com August 10, 2004 #12;2 WIND ENERGY RESOURCE issues. 1 Background In Task 2 of the project, five promising areas of the state for wind energy

  9. Evaluation of Global Onshore Wind Energy Potential and Generation Costs

    SciTech Connect (OSTI)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

    2012-06-20

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  10. Proceedings Nordic Wind Power Conference

    E-Print Network [OSTI]

    Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

  11. Wind Energy and Spatial Technology

    E-Print Network [OSTI]

    Schweik, Charles M.

    2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

  12. Module Handbook Specialisation Wind Energy

    E-Print Network [OSTI]

    Habel, Annegret

    Module Handbook Specialisation Wind Energy 2nd Semester for the Master Programme REMA/EUREC Course 2008/2009 NTU Athens Specialisation Provider: Wind Energy #12;Specialisation Wind Energy, NTU Athens, 2nd Semester Module 1/Wind Energy: Wind potential, Aerodynamics & Loading

  13. Wind Engineering & Natural Disaster Mitigation

    E-Print Network [OSTI]

    Lennard, William N.

    Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

  14. Accelerating Offshore Wind Development

    Broader source: Energy.gov [DOE]

    Today the Energy Department announced investments in seven offshore wind demonstration projects. Check out our map to see where these projects will be located.

  15. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  16. Talkin’ Bout Wind Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  17. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    step toward issuing a 150 million loan guarantee to support the construction of the Cape Wind offshore wind project with a conditional commitment to Cape Wind Associates, LLC. The...

  18. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  19. Wind Powering America's Wind for Schools Team Honored with Wirth...

    Office of Environmental Management (EM)

    Powering America's Wind for Schools Team Honored with Wirth Chair Award Wind Powering America's Wind for Schools Team Honored with Wirth Chair Award May 1, 2012 - 2:46pm Addthis...

  20. Wind power manufacturing and supply chain summit USA.

    SciTech Connect (OSTI)

    Hill, Roger Ray

    2010-12-01

    The area of wind turbine component manufacturing represents a business opportunity in the wind energy industry. Modern wind turbines can provide large amounts of electricity, cleanly and reliably, at prices competitive with any other new electricity source. Over the next twenty years, the US market for wind power is expected to continue to grow, as is the domestic content of installed turbines, driving demand for American-made components. Between 2005 and 2009, components manufactured domestically grew eight-fold to reach 50 percent of the value of new wind turbines installed in the U.S. in 2009. While that growth is impressive, the industry expects domestic content to continue to grow, creating new opportunities for suppliers. In addition, ever-growing wind power markets around the world provide opportunities for new export markets.

  1. Description of the Columbia Basin Wind Energy Study (CBWES)

    SciTech Connect (OSTI)

    Berg, Larry K.; Pekour, Mikhail S.; Nelson, Danny A.

    2012-10-01

    The purpose of this Technical Report is to provide background information about the Columbia Basin Wind Energy Study (CBWES). This study, which was supported by the U.S. Department of Energy’s Wind and Water Power Program, was conducted from 16 November 2010 through 21 March 2012 at a field site in northeastern Oregon. The primary goal of the study was to provide profiles of wind speed and wind direction over the depth of the boundary layer in an operating wind farm located in an area of complex terrain. Measurements from propeller and vane anemometers mounted on a 62 m tall tower, Doppler Sodar, and Radar Wind Profiler were combined into a single data product to provide the best estimate of the winds above the site during the first part of CBWES. An additional goal of the study was to provide measurements of Turbulence Kinetic Energy (TKE) near the surface. To address this specific goal, sonic anemometers were mounted at two heights on the 62 m tower on 23 April 2011. Prior to the deployment of the sonic anemometers on the tall tower, a single sonic anemometer was deployed on a short tower 3.1 m tall that was located just to the south of the radar wind profiler. Data from the radar wind profiler, as well as the wind profile data product are available from the Atmospheric Radiation Measurements (ARM) Data Archive (http://www.arm.gov/data/campaigns). Data from the sonic anemometers are available from the authors.

  2. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  3. Small Wind Electric Systems: A Nevada Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  4. Small Wind Electric Systems: A Michigan Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  5. Small Wind Electric Systems: A U.S. Consumer's Guide

    Broader source: Energy.gov [DOE]

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  6. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  7. Small Wind Electric Systems: A Nebraska Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  8. Small Wind Electric Systems: An Indiana Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  9. Small Wind Electric Systems: A Missouri Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  10. Small Wind Electric Systems: An Oklahoma Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  11. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit History Community Wind HandbookUnderstand Your Wind Resource and Conduct a Preliminary Estimate < Community...

  12. American Wind Energy Association Wind Energy Finance and Investment Seminar

    Office of Energy Efficiency and Renewable Energy (EERE)

    The American Wind Energy Association Wind Energy Finance and Investment Seminar will be attended by representatives in the financial sector, businesses, bankers, government and other nonprofit...

  13. Public Acceptance of Wind: Foundational Study Near US Wind Facilities

    Wind Powering America (EERE)

    Group * Energy Analysis and Environmental Impacts Department Public Acceptance of Wind Power Ben Hoen Lawrence Berkeley National Laboratory WindExchange Webinar June 17, 2015...

  14. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supply (Executive Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) Executive summary of a report on the...

  15. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    al. 2010. Large-scale Offshore Wind for the United States:examined land-based and offshore wind energy in the Easternassistance with the offshore wind energy discussion; Donna

  16. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    with the section on offshore wind; Donna Heimiller and Billythe end of 2011, global offshore wind power capacity stoodEnergy's investments in offshore wind R&D. Interest exists

  17. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    al. 2010. Large-scale Offshore Wind for the United States:assistance with the offshore wind energy discussion; DonnaTechnologies Market Report Offshore Wind Power Project and

  18. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01

    Economic Analysis of a Wind Farm in Nantucket Sound. BeaconP. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    Public Service Wind Integration Cost Impact Study. Preparedused to estimate wind integration costs and the ability toColorado 2 GW and 3 GW Wind Integration Cost Study. Denver,

  20. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    from Canada and Mexico; unlike for wind-powered generatingHonduras (16%), Mexico (8%), and Canada (8%). Wind turbineWind belt states include Colorado, Iowa, Kansas, Minnesota, Missouri, Montana, Nebraska, New Mexico,

  1. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    of wind power capacity in that state) because generatorsgenerators to provide the needed flexibility to integrate wind power.wind power forecasts by system operators can significantly reduce integration challenges and costs. Intra-hour transmission scheduling and generator

  2. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

  3. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    AWEA’s Wind Energy Weekly, DOE/EPRI’s Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

  4. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  5. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,a brief discussion on Small Wind Turbines is provided on2010a) sometimes also includes small wind turbines. Other

  6. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

  7. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportAssociates. 2010. SPP WITF Wind Integration Study. Little10, 2010. David, A. 2009. Wind Turbines: Industry and Trade

  8. Low Wind Speed Turbine Developments in Convoloid Gearing: Final Technical Report, June 2005 - October 2008

    SciTech Connect (OSTI)

    Genesis Partners LP

    2010-08-01

    This report presents the results of a study conducted by Genesis Partners LP as part of the United States Department of Energy Wind Energy Research Program to develop wind technology that will enable wind systems to compete in regions having low wind speeds. The purpose of the program is to reduce the cost of electricity from large wind systems in areas having Class 4 winds to 3 cents per kWh for onshore systems or 5 cents per kWh for offshore systems. This work builds upon previous activities under the WindPACT project, the Next Generation Turbine project, and Phase I of the Low Wind Speed Turbine (LWST) project. This project is concerned with the development of more cost-effective gearing for speed increasers for wind turbines.

  9. Remapping of the Wind Energy Resource in the Midwestern United States: Preprint

    SciTech Connect (OSTI)

    Schwartz, M.; Elliot, D.

    2001-12-19

    A recent increase in interest and development of wind energy in the Midwestern United States has focused the need for updating wind resource maps of this area. The wind resource assessment group at the National Renewable Energy Lab., a U.S. Department of Energy (DOE) laboratory, has produced updated high-resolution (1-km) wind resource maps for several states in this region. This abstract describes the computerized tools and methodology used by NREL to create the higher resolution maps.

  10. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of Marine andDrivetrainsNew WindDesign ToolsWind

  11. Diablo Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queries TypeDeveloper|Winds Wind Farm Jump

  12. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications The NREL wind research programWebmaster PleaseWind

  13. Order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind turbine arrays

    E-Print Network [OSTI]

    Dabiri, John O

    2010-01-01

    Modern wind farms require significant land resources to separate each wind turbine from the adjacent turbine wakes. These aerodynamic constraints limit the amount of power that can be extracted from a given wind farm footprint. We conducted full-scale field tests of vertical-axis wind turbines in counter-rotating configurations under natural wind conditions. Whereas wind farms consisting of propeller-style turbines produce 2 to 3 watts of power per square meter of land area, these field tests indicate that power densities approaching 100 W m^-2 can be achieved by arranging vertical-axis wind turbines in layouts that enable them to extract energy from adjacent wakes. In addition, we calculated that the global wind resource available to 10-m tall turbines based on the present approach is approximately 225 trillion watts (TW), which significantly exceeds the global wind resource available to 80-m tall, propeller-style wind turbines, approximately 75 TW. This improvement is due to the closer spacing that can be a...

  14. Wind Program Accomplishments

    SciTech Connect (OSTI)

    Wind Program

    2012-05-24

    This fact sheet describes some of the accomplishments of DOE's Wind Program through its investments in technology development and market barrier reduction, and how those accomplishments are supporting the advancement of renewable energy generated using the United States' abundant wind resources.

  15. Small Wind Information (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

  16. Carbon smackdown: wind warriors

    ScienceCinema (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  17. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  18. CX-010240: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination CX-010240: Categorical Exclusion Determination Gulf Offshore Wind Project CX(s) Applied: A9, B3.1, B3.2, B3.3, B3.6, B3.16 Date: 02062013...

  19. Distributed Wind Policy Comparison Tool Guidebook

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE's '20% Wind Energy by 2030' report and helping to meet COE targets.

  20. Day County Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGrid Project)AreaDay County Wind Project

  1. NREL SBV Pilot Wind Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities to develop everything at one location-from small residential wind turbines and components to utility-scale offshore wind technologies. With the NWTC, partners...

  2. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    wind power curtailment and the evolution in turbine design,power and wind resource quality confirms this offsetting effect and shows that turbine design

  3. Maryland Offshore Wind Annual Meeting

    Broader source: Energy.gov [DOE]

    This event will provide updates on regional offshore wind projects and will help attendees understand Maryland's offshore wind project and the team members required. Participants will also learn...

  4. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Policy Landscape Is Now More Favorable to Wind Energy thanPolicy Landscape Is Now More Favorable to Wind Energy than

  5. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    regulation and frequency response services charge for wind energyRegulation and Frequency Response Service that charges a higher rate for wind energy

  6. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    electricity demand growth; existing state policies that are insufficient to support future wind power capacity additions at the levels 2011 Wind Technologies Market

  7. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    Lab staff. Wind Project Operations and Maintenance CostsWind project operations and maintenance costs come primarilyEnergy Laboratory operations and maintenance publicly owned

  8. Wind Farm Power Maximization Based On A Cooperative Static Game Approach

    E-Print Network [OSTI]

    Stanford University

    Wind Farm Power Maximization Based On A Cooperative Static Game Approach Jinkyoo Parka, Soonduck efficiency of wind farms using cooperative control. The key factors in determining the power production and the loading for a wind turbine are the nacelle yaw and blade pitch angles. However, the nacelle and blade

  9. Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding

    E-Print Network [OSTI]

    Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding C. R. Sullivan Found Choice for Number of Strands in a Litz-Wire Transformer Winding Charles R. Sullivan Thayer School/inductor Abstract -- The number of strands to minimize loss in a litz-wire transformer winding is determined

  10. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01

    As a result wind turbines can produce energy in winds as lowelectric energy to generate wind, a wind turbine utilizesWind Turbine Projects to Encourage Utilization of Wind Energy

  11. Wind loads on flat plate photovoltaic array fields. Phase III, final report

    SciTech Connect (OSTI)

    Miller, R.D.; Zimmerman, D.K.

    1981-04-01

    The results of an experimental analysis (boundary layer wind tunnel test) of the aerodynamic forces resulting from winds acting on flat plate photovoltaic arrays are presented. Local pressure coefficient distributions and normal force coefficients on the arrays are shown and compared to theoretical results. Parameters that were varied when determining the aerodynamic forces included tilt angle, array separation, ground clearance, protective wind barriers, and the effect of the wind velocity profile. Recommended design wind forces and pressures are presented, which envelop the test results for winds perpendicular to the array's longitudinal axis. This wind direction produces the maximum wind loads on the arrays except at the array edge where oblique winds produce larger edge pressure loads.

  12. ASME/AIAA Wind Energy Symposium, Jan. 2004, pp. AIAA-2004-0172 EFFECT OF MEAN STRESS ON THE DAMAGE

    E-Print Network [OSTI]

    ASME/AIAA Wind Energy Symposium, Jan. 2004, pp. AIAA-2004-0172 1 EFFECT OF MEAN STRESS@coe.montana.edu ABSTRACT In many analyses of composite wind turbine blades, the effects of mean stress on the determination completely ignore the effects of mean stress on the determination of damage in composite wind turbine blades

  13. Reference wind farm selection for regional wind power prediction models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

  14. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  15. Wind Energy at NREL's National Wind Technology Center

    SciTech Connect (OSTI)

    None

    2010-01-01

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  16. Small Wind Electric Systems Small Wind Electric Systems

    E-Print Network [OSTI]

    Branoff, Theodore J.

    An Illinois Consumer's Guide Small Wind Electric Systems #12;Small Wind Electric Systems Cover photo: Small wind turbines, like this grid-connected 10-kilowatt Bergey, can provide supplemental power -- Warren Gretz, NREL/PIX09630 #12;Small Wind Electric Systems Contents Introduction

  17. PREDICTION OF REGIONAL WIND POWER T.S. Nielsen1, H. Madsen1, H. Aa. Nielsen1, L. Landberg2, G. Giebel2

    E-Print Network [OSTI]

    PREDICTION OF REGIONAL WIND POWER T.S. Nielsen1, H. Madsen1, H. Aa. Nielsen1, L. Landberg2, G the total wind power production in a larger region based on a combination of on-line measurements of power production from selected wind farms, power measure- ments for all wind turbines in the area and numerical

  18. Am. MidI. Nat. l:i9:29-3R Bird Flight Characteristics Near Wind Turbines in Minnesota

    E-Print Network [OSTI]

    ·... Am. MidI. Nat. l:i9:29-3R Bird Flight Characteristics Near Wind Turbines in Minnesota ROBERT C the height range of ,,;nd turbine blades (22-55 m). The Buffalo Ridge Wind ReS()lIrCl' Area poses little in wind turbine technologies have reduced the cost'! associated with wind power production. and have

  19. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration of NREL'sWind Wind Wind The United States

  20. Observation Targeting for the Tehachapi Pass and Mid-Columbia Basin: WindSENSE Phase III Project Summary Report

    SciTech Connect (OSTI)

    Hanley, D

    2011-10-22

    The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In Phase III of the project, the focus was on the Mid-Columbia Basin region which encompasses the Bonneville Power Administration (BPA) wind generation area shown in Figure 1 that includes Klondike, Stateline, and Hopkins Ridge wind plants. The typical hub height of a wind turbine is approximately 80-m above ground level (AGL). So it would seem that building meteorological towers in the region upwind of a wind generation facility would provide data necessary to improve the short-term forecasts for the 80-m AGL wind speed. However, this additional meteorological information typically does not significantly improve the accuracy of the 0- to 6-hour ahead wind power forecasts because processes controlling wind variability change from day-to-day and, at times, from hour-to-hour. It is also important to note that some processes causing significant changes in wind power production function principally in the vertical direction. These processes will not be detected by meteorological towers at off-site locations. For these reasons, it is quite challenging to determine the best type of sensors and deployment locations. To address the measurement deployment problem, Ensemble Sensitivity Analysis (ESA) was applied in the Phase I portion of the WindSENSE project. The ESA approach was initially designed to produce spatial fields that depict the sensitivity of a forecast metric to a set of prior state variables selected by the user. The best combination of variables and locations to improve the forecast was determined using the Multiple Observation Optimization Algorithm (MOOA) developed in Phase I. In Zack et al. (2010a), the ESA-MOOA approach was applied and evaluated for the wind plants in the Tehachapi Pass region for a period during the warm season. That research demonstrated that forecast sensitivity derived from the dataset was characterized by well-defined, localized patterns for a number of state variables such as the 80-m wind and the 25-m to 1-km temperature difference prior to the forecast time. The sensitivity patterns produced as part of the Tehachapi Pass study were coherent and consistent with the basic physical processes that drive wind patterns in the Tehachapi area. In Phase II of the WindSENSE project, the ESA-MOOA approach was extended and applied to the wind plants located in the Mid-Columbia Basin wind generation area of Washington-Oregon during the summer and to the Tehachapi Pass region during the winter. The objective of this study was to identify measurement locations and variables that have the greatest positive impact on the accuracy of wind forecasts in the 0- to 6-hour look-ahead periods for the two regions and to establish a higher level of confidence in ESA-MOOA for mesoscale applications. The detailed methodology and results are provided in separate technical reports listed in the publications section below. Ideally, the data assimilation scheme used in the Phase III experiments would have been based upon an ensemble Kalman filter (EnKF) that was similar to the ESA method used to diagnose the Mid-Columbia Basin sensitivity patterns in the previous studies. However, running an EnKF system at high resolution is impractical because of the very high computational cost. Thus, it was decided to use a three-dimensional variational (3DVAR) analysis scheme that is less computationally intensive. The objective of this task is to develop an observation system deployment strategy for the mid Columbia Basin (i.e. the BPA wind generation region) that is designed to produce the maximum benefit for 1- to 6-hour ahead forecasts of hub-height ({approx}80 m) wind speed with a focus on periods of large changes in wind speed. There are two tasks in the current project effort designed to validate

  1. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Carbon Trust. (2008). Offshore Wind Power: Big Challenge,Financial Support for Offshore Wind. The UK Department ofCost Reduction Prospects for Offshore Wind Farms. ” Wind

  2. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Looking forward, offshore wind costs are generally expectedachieving the U.S. 20% wind cost and performance trajectoryDissecting Wind Turbine Costs. ” WindStats Newsletter (21:

  3. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Carbon Trust. (2008). Offshore Wind Power: Big Challenge,and Financial Support for Offshore Wind. The UK DepartmentCost Reduction Prospects for Offshore Wind Farms. ” Wind

  4. Wind Program Announces $2 Million to Develop and Field Test Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Program Announces 2 Million to Develop and Field Test Wind Energy Bat Impact Minimization Technologies Wind Program Announces 2 Million to Develop and Field Test Wind Energy...

  5. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Opportunities in Wind Energy Technology. ” 50th AIAA/ASME/in its European Wind Energy Technology Platform (TP Wind) tothe Chapter on Wind Power in Energy Technology Perspectives

  6. Kentish Flats Offshore Wind Farm

    E-Print Network [OSTI]

    Firestone, Jeremy

    Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30 of the wind farm could be up to 90 MW. For the benefit of the environment The British Government has set

  7. wind engineering & natural disaster mitigation

    E-Print Network [OSTI]

    Denham, Graham

    wind engineering & natural disaster mitigation #12;wind engineering & natural disaster mitigation Investment WindEEE Dome at Advanced Manufacturing Park $31million Insurance Research Lab for Better Homes $8million Advanced Facility for Avian Research $9million #12;wind engineering & natural disaster mitigation

  8. Kentish Flats Offshore Wind Farm

    E-Print Network [OSTI]

    Firestone, Jeremy

    Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats and offshore wind energy will contribute sig- nificantly to achieving this target. The Kentish Flats alone plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30

  9. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect (OSTI)

    Saur, G.; Ramsden, T.

    2011-05-01

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  10. 2010 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark

    2011-06-01

    This report provides a comprehensive overview of trends in the U.S. wind power market in 2010. The report analyzes trends in wind power capacity, industry, manufacturing, turbines, installed project costs, project performance, and wind power prices. It also describes trends among wind power developers, project owners, and power purchasers, and discusses financing issues.

  11. Optimization of Wind Turbine Operation

    E-Print Network [OSTI]

    Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

  12. Community Wind Benefits (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    This fact sheet explores the benefits of community wind projects, including citations to published research.

  13. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    wind energy generation within the Electric Reliabilitywind energy generation within the Electric Reliability

  14. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01

    wind manufacturers to produce offshore wind turbines withturbines, including those suitable for offshore wind farms.

  15. Solar Wind Forecasting with Coronal Holes

    E-Print Network [OSTI]

    S. Robbins; C. J. Henney; J. W. Harvey

    2007-01-09

    An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang-Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best one-month periods, and it has a linear correlation coefficient of ~0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.

  16. DOE Collegiate Wind Competition

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Collegiate Wind Competition will take place concurrently with the 2014 AWEA WINDPOWER Conference and Exhibition in Las Vegas. Spectators are encouraged to attend...

  17. GSA Wind Supply Opportunity

    Energy Savers [EERE]

    values at the source and sink are added (or subtracted) to the base price. Walnut Ridge Wind Farm Production PJM Grid Energy PJM RECs Transaction Manager National RECs To GSA...

  18. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  19. Wind Turbines Benefit Crops

    SciTech Connect (OSTI)

    Takle, Gene

    2010-01-01

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  20. Airborne Wind Turbine

    SciTech Connect (OSTI)

    2010-09-01

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  1. Wind Plant Ramping Behavior

    SciTech Connect (OSTI)

    Ela, E.; Kemper, J.

    2009-12-01

    With the increasing wind penetrations, utilities and operators (ISOs) are quickly trying to understand the impacts on system operations and planning. This report focuses on ramping imapcts within the Xcel service region.

  2. FTL Small Wind Tunnel 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    This research study developed basic dynamic models that can be used to accurately predict the response behavior of a near-shore wind turbine structure with monopile, suction caisson, or gravity-based foundation systems. The marine soil conditions...

  3. NREL: Wind Research - Wind Career Map Shows Wind Industry Career

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of MarineOpportunities, Paths Wind Career

  4. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting (Ames, IA)

    1984-01-01

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  5. Winding for linear pump

    DOE Patents [OSTI]

    Kliman, G.B.; Brynsvold, G.V.; Jahns, T.M.

    1989-08-22

    A winding and method of winding for a submersible linear pump for pumping liquid sodium are disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet. 4 figs.

  6. Small Wind Site Assessment Guidelines

    SciTech Connect (OSTI)

    Olsen, Tim; Preus, Robert

    2015-09-01

    Site assessment for small wind energy systems is one of the key factors in the successful installation, operation, and performance of a small wind turbine. A proper site assessment is a difficult process that includes wind resource assessment and the evaluation of site characteristics. These guidelines address many of the relevant parts of a site assessment with an emphasis on wind resource assessment, using methods other than on-site data collection and creating a small wind site assessment report.

  7. Limits to the power density of very large wind farms

    E-Print Network [OSTI]

    Nishino, Takafumi

    2013-01-01

    A simple analysis is presented concerning an upper limit of the power density (power per unit land area) of a very large wind farm located at the bottom of a fully developed boundary layer. The analysis suggests that the limit of the power density is about 0.38 times $\\tau_{w0}U_{F0}$, where $\\tau_{w0}$ is the natural shear stress on the ground (that is observed before constructing the wind farm) and $U_{F0}$ is the natural or undisturbed wind speed averaged across the height of the farm to be constructed. Importantly, this implies that the maximum extractable power from such a very large wind farm will not be proportional to the cubic of the wind speed at the farm height, or even the farm height itself, but be proportional to $U_{F0}$.

  8. Wind Powering America State Outreach. Final Technical Report: Washington State

    SciTech Connect (OSTI)

    Stearns, Tim

    2013-09-30

    The Washington Department of Commerce, via a U.S. Department of Energy grant, supported research into siting and permitting processes for wind projects by Skagit County, Washington. The goal was to help a local government understand key issues, consider how other areas have addressed wind siting, and establish a basis for enacting permitting and zoning ordinances that provided a more predictable permitting path and process for landowners, citizens, government and developers of small and community wind projects. The County?s contractor developed a report that looked at various approaches to wind siting, interviewed stakeholders, and examined technology options. The contractor outlined key issues and recommended the adoption of a siting process. The Skagit County Commission considered the report and directed the Skagit County Planning & Development Services Department to add development of wind guidelines to its work plan for potential changes to development codes.

  9. Feasibility Study for a Hopi Utility-Scale Wind Project

    SciTech Connect (OSTI)

    Kendrick Lomayestewa

    2011-05-31

    The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. The goal of this project was to investigate the feasibility for the generation of energy from wind and to parallel this work with the development of a tribal utility organization capable of undertaking potential joint ventures in utility businesses and projects on the Hopi reservation. Wind resource assessments were conducted at two study sites on Hopi fee simple lands located south of the city of Winslow. Reports from the study were recently completed and have not been compared to any existing historical wind data nor have they been processed under any wind assessment models to determine the output performance and the project economics of turbines at the wind study sites. Ongoing analysis of the wind data and project modeling will determine the feasibility of a tribal utility-scale wind energy generation.

  10. Wind energy: Program overview, FY 1992

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  11. Categorical Exclusion Determinations: Western Area Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouth Dakota. DOCUMENTSEnergy

  12. Categorical Exclusion Determinations: Western Area Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouth Dakota. DOCUMENTSEnergyAdministration-Desert

  13. Categorical Exclusion Determinations: Western Area Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouth Dakota.

  14. Categorical Exclusion Determinations: Western Area Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouth Dakota.Administration-Sierra Nevada Region |

  15. Categorical Exclusion Determinations: Western Area Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouth Dakota.Administration-Sierra Nevada Region

  16. Categorical Exclusion Determinations: Western Area Power Administration |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectricSouth Dakota.Administration-Sierra Nevada

  17. Wind Powering America Podcasts, Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

  18. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    SciTech Connect (OSTI)

    Caroline Draxl: NREL

    2014-01-01

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  19. A WIND TUNNEL INVESTIGATION OF THE INFLUENCE OF SOLAR-INDUCED WALL-HEATING ON THE FLOW REGIME

    E-Print Network [OSTI]

    Savory, Eric

    -section canyon model in a wind tunnel. For reference purposes, the neutral case (no wall heating), has also been viscosity of air (m2 s-1 ) 1. Introduction The wind flow field within urban areas has been studiedA WIND TUNNEL INVESTIGATION OF THE INFLUENCE OF SOLAR-INDUCED WALL-HEATING ON THE FLOW REGIME

  20. EA-1581: Sand Hills Wind Project, Wyoming

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with DOE’s Western Area Power Administration as a cooperating agency, was preparing this EA to evaluate the environmental impacts of a proposal to construct, operate, and maintain the Sand Hills Wind Energy Facility on private and federal lands in Albany County, Wyoming. If the proposed action had been implemented, Western would have interconnected the proposed facility to an existing transmission line. This project has been canceled.

  1. Quadrennial Technology Review 2015: Technology Assessments--Wind Power

    SciTech Connect (OSTI)

    none,

    2015-10-07

    Wind power has become a mainstream power source in the U.S. electricity portfolio, supplying 4.9% of the nation’s electricity demand in 2014. With more than 65 GW installed across 39 states at the end of 2014, utility-scale wind power is a cost-effective source of low-emissions power generation throughout much of the nation. The United States has significant sustainable land-based and offshore wind resource potential, greater than 10 times current total U.S. electricity consumption. A technical wind resource assessment conducted by the Department of Energy (DOE) in 2009 estimated that the land-based wind energy potential for the contiguous United States is equivalent to 10,500 GW capacity at 80 meters (m) hub and 12,000 GW capacity at 100 meters (m) hub heights, assuming a capacity factor of at least 30%. A subsequent 2010 DOE report estimated the technical offshore wind energy potential to be 4,150 GW. The estimate was calculated from the total offshore area within 50 nautical miles of shore in areas where average annual wind speeds are at least 7 m per second at a hub height of 90 m.

  2. Atmospheric Stability Impacts on Power Curves of Tall Wind Turbines - An Analysis of a West Coast North American Wind Farm

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K

    2010-02-22

    Tall wind turbines, with hub heights at 80 m or above, can extract large amounts of energy from the atmosphere because they are likely to encounter higher wind speeds, but they face challenges given the complex nature of wind flow and turbulence at these heights in the boundary layer. Depending on whether the boundary layer is stable, neutral, or convective, the mean wind speed, direction, and turbulence properties may vary greatly across the tall turbine swept area (40 to 120 m AGL). This variability can cause tall turbines to produce difference amounts of power during time periods with identical hub height wind speeds. Using meteorological and power generation data from a West Coast North American wind farm over a one-year period, our study synthesizes standard wind park observations, such as wind speed from turbine nacelles and sparse meteorological tower observations, with high-resolution profiles of wind speed and turbulence from a remote sensing platform, to quantify the impact of atmospheric stability on power output. We first compare approaches to defining atmospheric stability. The standard, limited, wind farm operations enable the calculation only of a wind shear exponent ({alpha}) or turbulence intensity (I{sub U}) from cup anemometers, while the presence at this wind farm of a SODAR enables the direct observation of turbulent kinetic energy (TKE) throughout the turbine rotor disk. Additionally, a nearby research meteorological station provided observations of the Obukhov length, L, a direct measure of atmospheric stability. In general, the stability parameters {alpha}, I{sub U}, and TKE are in high agreement with the more physically-robust L, with TKE exhibiting the best agreement with L. Using these metrics, data periods are segregated by stability class to investigate power performance dependencies. Power output at this wind farm is highly correlated with atmospheric stability during the spring and summer months, while atmospheric stability exerts little impact on power output during the winter and autumn periods. During the spring and summer seasons, power output for a given wind speed was significantly higher during stable conditions and significantly lower during strongly convective conditions: power output differences approached 20% between stable and convective regimes. The dependency of stability on power output was apparent only when both turbulence and the shape of the wind speed profile were considered. Turbulence is one of the mechanisms by which atmospheric stability affects a turbine's power curve at this particular site, and measurements of turbulence can yield actionable insights into wind turbine behavior.

  3. ANNUAL WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    ANNUAL WIND DATA REPORT Thompson Island March 1, 2002 ­ February 28, 2003 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  4. Wind Turbine Acoustic Noise A white paper

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

  5. WIND DATA REPORT January -December, 2003

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Vinalhaven January - December, 2003 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  6. WIND DATA REPORT January -March, 2004

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Vinalhaven January - March, 2004 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  7. WIND DATA REPORT Deer Island Outfall

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Outfall August 18, 2003 ­ December 4, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  8. WIND DATA REPORT Deer Island Parking Lot

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Parking Lot May 1, 2003 ­ July 15, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  9. Helping Policymakers Evaluate Distributed Wind Options | Department...

    Office of Environmental Management (EM)

    consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to...

  10. Wavelet Analysis for Wind Fields Estimation

    E-Print Network [OSTI]

    Leite, Gladeston C.

    2013-01-01

    resource assessment and wind farm development in the UK. Inevaluation of oil spills and wind farms. Keywords: SAR; Winddata to characterize wind farms and their potential energy

  11. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    Wind Integration Costs ..adequacy costs. Wind generation costs are also significantlyvalue. 3. We add wind integration cost to the levelized cost

  12. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic21 Figure 6. Comparison of ACWH and CCGT-Wind

  13. Correlations in thermal comfort and natural wind

    E-Print Network [OSTI]

    Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

    2013-01-01

    the average wind velocity and power spectrum exponent (?-of natural wind more accurately, power spectral analysisdata of natural wind versus the power spectral analysis

  14. 2012 Wind Technologies Market Report Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WIND AND WATER POWER PROGRAM 1 2012 Wind Technologies Market Report Ryan Wiser and Mark Bolinger Lawrence Berkeley National Laboratory Report Summary July 2013 WIND AND WATER POWER...

  15. Correlations in thermal comfort and natural wind

    E-Print Network [OSTI]

    Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

    2013-01-01

    Chaotic ?uctuation in natural wind and its application toof natural and mechanical wind in built environment usingcharacteristics of natural wind. Refrigeration 71 (821),

  16. Strong wind forcing of the ocean

    E-Print Network [OSTI]

    Zedler, Sarah E.

    2007-01-01

    of mesoscale and steady wind driven 1. Introduction 2. Modelparameterization at high wind speeds 1. Introduction 2. DataSupplementary Formulae 1. Wind Stress 2. Rankine Vortex A .

  17. Gradients of meteorological parameters in convective and nonconvective areas 

    E-Print Network [OSTI]

    McCown, Milton Samuel

    1976-01-01

    involve horizontal gradients. For example, the equations of motion relate wind speed to pressure gradient, and the thermal wind equation relates vertical wind shear to the horizontal temperature gradient. The study of gradients may help... GRADIENTS OF METEOROLOGICAL PARAMETERS IN CONVECTIVE AND NONCONVECTIVE AREAS A Thesis by Milton Samuel McCown Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER...

  18. Fault Detection and Load Distribution for the Wind Farm Challenge

    SciTech Connect (OSTI)

    Borchehrsen, Anders B.; Larsen, Jesper A.; Stoustrup, Jakob

    2014-08-24

    In this paper a fault detection system and a fault tolerant controller for a wind farm model. The wind farm model used is the one proposed as a public challenge. In the model three types of faults are introduced to a wind farm consisting of nine turbines. A fault detection system designed, by taking advantage of the fact that within a wind farm several wind turbines will be operating under all most identical conditions. The turbines are then grouped, and then turbines within each group are used to generate residuals for turbines in the group. The generated residuals are then evaluated using dynamical cumulative sum. The designed fault detection system is cable of detecting all three fault types occurring in the model. But there is room for improving the fault detection in some areas. To take advantage of the fault detection system a fault tolerant controller for the wind farm has been designed. The fault tolerant controller is a dispatch controller which is estimating the possible power at each individual turbine and then setting the reference accordingly. The fault tolerant controller has been compared to a reference controller. And the comparison shows that the fault tolerant controller performance better in all measures. The fault detection and a fault tolerant controller has been designed, and based on the simulated results the overall performance of the wind farm is improved on all measures. Thereby this is a step towards improving the overall performance of current and future wind farms.

  19. The r-Process in Supersonic Neutrino-Driven Winds: The Roll of Wind Termination Shock

    E-Print Network [OSTI]

    Takami Kuroda; Shinya Wanajo; Ken'ichi Nomoto

    2007-09-17

    Recent hydrodynamic studies of core-collapse supernovae imply that the neutrino-heated ejecta from a nascent neutron star develops to supersonic outflows. These supersonic winds are influenced by the reverse shock from the preceding supernova ejecta, forming the wind termination shock. We investigate the effects of the termination shock in neutrino-driven winds and its roll on the r-process. Supersonic outflows are calculated with a semi-analytic neutrino-driven wind model. Subsequent termination-shocked, subsonic outflows are obtained by applying the Rankine-Hugoniot relations. We find a couple of effects that can be relevant for the r-process. First is the sudden slowdown of the temperature decrease by the wind termination. Second is the entropy jump by termination-shock heating, up to several 100NAk. Nucleosynthesis calculations in the obtained winds are performed to examine these effects on the r-process. We find that 1) the slowdown of the temperature decrease plays a decisive roll to determine the r-process abundance curves. This is due to the strong dependences of the nucleosynthetic path on the temperature during the r-process freezeout phase. Our results suggest that only the termination-shocked winds with relatively small shock radii (~500km) are relevant for the bulk of the solar r-process abundances (A~100-180). The heaviest part in the solar r-process curve (A~180-200), however, can be reproduced both in shocked and unshocked winds. These results may help to constrain the mass range of supernova progenitors relevant for the r-process. We find, on the other hand, 2) negligible roles of the entropy jump on the r-process. This is a consequence that the sizable entropy increase takes place only at a large shock radius (~10,000km) where the r-process has already ceased.

  20. NREL: Wind Research - Offshore Wind Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of Marine andDrivetrainsNew WindDesign Tools