Powered by Deep Web Technologies
Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Determination of Swimming Speeds and Energetic Demands of Upriver Migrating Fall Chinook Salmon (Oncorhynchus Tshawytscha) in the Klickitat River, Washington.  

SciTech Connect (OSTI)

This report describes a study conducted by Pacific Northwest National Laboratory for the Bonneville Power Administration's Columbia Basin Fish and Wildlife Program during the fall of 2001. The objective was to study the migration and energy use of adult fall chinook salmon (Oncorhynchus tshawytscha) traveling up the Klickitat River to spawn. The salmon were tagged with either surgically implanted electromyogram (EMG) transmitters or gastrically implanted coded transmitters and were monitored with mobile and stationary receivers. Swim speed and aerobic and anaerobic energy use were determined for the fish as they attempted passage of three waterfalls on the lower Klickitat River and as they traversed free-flowing stretches between, below, and above the falls. Of the 35 EMG-tagged fish released near the mouth of the Klickitat River, 40% passed the first falls, 24% passed the second falls, and 20% made it to Lyle Falls. None of the EMG-tagged fish were able to pass Lyle Falls, either over the falls or via a fishway at Lyle Falls. Mean swimming speeds ranged from as low as 52.6 centimeters per second (cm s{sup -1}) between falls to as high as 189 (cm s{sup -1}) at falls passage. Fish swam above critical swimming speeds while passing the falls more often than while swimming between the falls (58.9% versus 1.7% of the transmitter signals). However, fish expended more energy swimming the stretches between the falls than during actual falls passage (100.7 to 128.2 kilocalories [kcals] to traverse areas between or below falls versus 0.3 to 1.0 kcals to pass falls). Relationships between sex, length, and time of day on the success of falls passage were also examined. Average swimming speeds were highest during the day in all areas except at some waterfalls. There was no apparent relationship between either fish condition or length and successful passage of waterfalls in the lower Klickitat River. Female fall chinook salmon, however, had a much lower likelihood of passing waterfalls than males. The study also examined energy costs and swimming speeds for fish released above Lyle Falls as they migrated to upstream spawning areas. This journey averaged 15.93 days to travel a mean maximum of 37.6 km upstream at a total energy cost of approx 3,971 kcals (34% anaerobic and 66% aerobic) for a sample of five fish. A bioenergetics example was run, which estimated that fall chinook salmon would expend an estimated 1,208 kcal to pass from the mouth of the Columbia River to Bonneville Dam and 874 kcals to pass Bonneville Dam and pool and the three falls on the Lower Klickitat River, plus an additional 2,770 kcals above the falls to reach the spawning grounds, leaving them with approximately 18% (1,089 kcals) of their original energy reserves for spawning. Results of the bioenergetics example suggest that a delay of 9 to 11 days along the lower Klickitat River may deplete their remaining energy reserves (at a rate of about 105 kcal d{sup -1}) resulting in death before spawning would occur.

Brown, Richard S.; Geist, David R.; Confederated Tribes and Bands of the Yakama Nation, Washington

2002-08-30T23:59:59.000Z

2

Categorical Exclusion Determinations: Washington | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovemberWashington Categorical Exclusion Determinations:

3

Dispersion of Metals from Abandoned Mines and their Effects on Biota in the Methow River, Okanogan County, Washington : Annual Report 3/15/00-3/14/01.  

SciTech Connect (OSTI)

The University of Washington, College of Forest Resources and the Center for Streamside Studies in Seattle, Washington, is being funded by the Bonneville Power Administration to conduct a three-year research project to measure the watershed scale response of stream habitat to abandoned mine waste, the dispersion of metals, and their effects on biota in the Methow River basin. The purpose of this project is to determine if there are processes and pathways that result in the dispersion of metals from their source at abandoned mines to biological receptors in the Methow River. The objectives of this study are the following: (1) Assess ecological risk due to metal contamination from mines near the Methow; (2) Measure impact of metals from mines on groundwater and sediments in Methow River; (3) Measure response of organisms in the Methow River to excess metals in the sediments of the Methow River; (4) Recommend restoration guidelines and biological goals that target identified pathways and processes of metal pollution affecting salmon habitat in the Methow basin; and (5) Submit peer review journal publications. When concluded, this study will contribute to the advancement of current best management practices by describing the processes responsible for the release of metals from small abandoned mine sites in an arid environment, their dispersal pathways, and their chemical and biological impacts on the Methow River. Based on these processes and pathways, specific remediation recommendations will be proposed.

Peplow, Dan; Edmonds, Robert

2001-06-01T23:59:59.000Z

4

Bull Trout Population Assessment in the White Salmon and Klickitat Rivers, Columbia River Gorge, Washington, 2001 Annual Report.  

SciTech Connect (OSTI)

We utilized night snorkeling and single pass electroshocking to determine the presence or absence of bull trout Salvelinus confluentus in 26 stream reaches (3,415 m) in the White Salmon basin and in 71 stream reaches (9,005 m) in the Klickitat River basin during summer and fall 2001. We did not find any bull trout in the White Salmon River basin. In the Klickitat River basin, bull trout were found only in the West Fork Klickitat River drainage. We found bull trout in two streams not previously reported: Two Lakes Stream and an unnamed tributary to Fish Lake Stream (WRIA code number 30-0550). We attempted to capture downstream migrant bull trout in the West Fork Klickitat River by fishing a 1.5-m rotary screw trap at RM 4.3 from July 23 through October 17. Although we caught other salmonids, no bull trout were captured. The greatest limiting factor for bull trout in the West Fork Klickitat River is likely the small amount of available habitat resulting in a low total abundance, and the isolation of the population. Many of the streams are fragmented by natural falls, which are partial or complete barriers to upstream fish movement. To date, we have not been able to confirm that the occasional bull trout observed in the mainstem Klickitat River are migrating upstream into the West Fork Klickitat River.

Thiesfeld, Steven L.; McPeak, Ronald H.; McNamara, Brian S. (Washington Department of Fish and Wildlife); Honanie, Isadore (Confederated Tribes and Bands, Yakama Nation)

2002-01-01T23:59:59.000Z

5

Award Fee Determination Scorecard Contractor: Washington River Protection Solutions, LLC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience Program Cumulus Humilis,Technologies Available Site16.27W

6

Categorical Exclusion Determinations: Washington, D.C. | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovemberWashington Categorical Exclusion

7

CX-007777: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-007777: Categorical Exclusion Determination Disconnection of Utilities CX(s) Applied: B1.27 Date: 01132012 Location(s): Washington Offices(s): River...

8

Hydrogeology along the southern boundary of the Hanford Site between the Yakima and Columbia Rivers, Washington  

SciTech Connect (OSTI)

US Department of Energy (DOE) operations at the Hanford Site, located in southeastern Washington, have generated large volumes of hazardous and radioactive wastes since 1944. Some of the hazardous wastes were discharged to the ground in the 1100 and 3000 Areas, near the city of Richland. The specific waste types and quantities are unknown; however, they probably include battery acid, antifreeze, hydraulic fluids, waste oils, solvents, degreasers, paints, and paint thinners. Between the Yakima and Columbia rivers in support of future hazardous waste site investigations and ground-water and land-use management. The specific objectives were to collect and review existing hydrogeologic data for the study area and establish a water-level monitoring network; describe the regional and study area hydrogeology; develop a hydrogeologic conceptual model of the unconfined ground-water flow system beneath the study area, based on available data; describe the flow characteristics of the unconfined aquifer based on the spatial and temporal distribution of hydraulic head within the aquifer; use the results of this study to delineate additional data needs in support of future Remedial Investigation/Feasibility Studies (RI/FS), Fate and Transport modeling, Baseline Risk Assessments (BRA), and ground-water and land-use management.

Liikala, T.L.

1994-09-01T23:59:59.000Z

9

HYDROGEOMORPHIC CLASSIFICATION OF WASHINGTON STATE RIVERS TO SUPPORT EMERGING ENVIRONMENTAL FLOW MANAGEMENT STRATEGIES  

E-Print Network [OSTI]

, Seattle, Washington, USA b National Atmospheric and Oceanic Administration, Northwest Fishery Sciences C. P. KONRADe,f and H. IMAKIb a School of Aquatic and Fishery Sciences, University of Washington INTRODUCTION Societal dependence on freshwater ecosystems is increasing worldwide as growing human populations

Olden, Julian D.

10

northeastern Washington's Okanogan County. The  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7.31 acre habitat acquisition in Washington's Okanogan River Watershed for fish habitat mitigation (see map). The Okanogan River Watershed was selected as a focus for restoration...

11

The River Corridor Closure Contract How Washington Closure Hanford is Closing A Unique Department of Energy Project - 12425  

SciTech Connect (OSTI)

Cleanup of the Hanford River Corridor has been one of Hanford Site's top priorities since the early 1990's. This urgency is due to the proximity of hundreds of waste sites to the Columbia River and the groundwater that continues to threaten the Columbia River. In April 2005, the U.S. Department of Energy, Richland Operations Office (DOE-RL) awarded the Hanford River Corridor Closure Contract (RCCC), a cost-plus incentive-fee closure contract with a 2015 end date and first of its kind at Hanford Site, to Washington Closure Hanford (WCH), a limited-liability company owned by URS, Bechtel National, and CH2M HILL. WCH is a single-purpose company whose goal is to safely, compliantly, and efficiently accelerate cleanup in the Hanford River Corridor and reduce or eliminate future obligations to DOE-RL for maintaining long-term stewardship over the site. Accelerated performance of the work-scope while keeping a perspective on contract completion presents challenges that require proactive strategies to support the remaining work-scope through the end of the RCCC. This paper outlines the processes to address the challenges of completing work-scope while planning for contract termination. WCH is responsible for cleanup of the River Corridor 569.8 km{sup 2} (220 mi{sup 2}) of the 1,517.7 km{sup 2} (586 mi{sup 2}) Hanford Site's footprint reduction. At the end of calendar year 2011, WCH's closure implementation is well underway. Fieldwork is complete in three of the largest areas within the RCCC scope (Segments 1, 2, and 3), approximately 44.5% of the River Corridor (Figure 3). Working together, DOE-RL and WCH are in the process of completing the 'paper work' that will document the completion of the work-scope and allow DOE-RL to relieve WCH of contractual responsibilities and transition the completed areas to the Long-Term Stewardship Program, pending final action RODs. Within the next 4 years, WCH will continue to complete cleanup of the River Corridor following the completion goals. As field work-scope is completed, progressive reductions of business processes, physical facilities, and staff will occur. Organizations will collapse and flatten commensurate with workload. WCH employees will move on to new endeavors, proud of their accomplishments and the legacy they are leaving behind as being the first and largest environmental cleanup closure contract at Hanford. (authors)

Feist, E.T. [Washington Closure Hanford, 2620 Fermi Avenue, Richland, WA 99354 (United States)

2012-07-01T23:59:59.000Z

12

Assessment of Salmonids and their Habitat Conditions in the Walla Walla River Basin within Washington, 2001 Annual Report.  

SciTech Connect (OSTI)

Concerns about the decline of native salmon and trout populations have increased among natural resource managers and the public in recent years. As a result, a multitude of initiatives have been implemented at the local, state, and federal government levels. These initiatives include management plans and actions intended to protect and restore salmonid fishes and their habitats. In 1998 bull trout (Salvelinus confluentus) were listed under the Endangered Species Act (ESA), as ''Threatened'', for the Walla Walla River and its tributaries. Steelhead (Oncorhynchus mykiss) were listed as ''Threatened'' in 1999 for the mid-Columbia River and its tributaries. These ESA listings emphasize the need for information about these threatened salmonid populations and their habitats. The Washington Department of Fish and Wildlife (WDFW) is entrusted with ''the preservation, protection, and perpetuation of fish and wildlife....[and to] maximize public recreational or commercial opportunities without impairing the supply of fish and wildlife (WAC 77.12.010).'' In consideration of this mandate, the WDFW submitted a proposal in December 1997 to the Bonneville Power Administration (BPA) for a study to assess salmonid distribution, relative abundance, genetics, and the condition of salmonid habitats in the Walla Walla River basin. The primary purposes of this project are to collect baseline biological and habitat data, to identify major data gaps, and to draw conclusions whenever possible. The study reported herein details the findings of the 2001 field season (March to November, 2001).

Mendel, Glen Wesley; Trump, Jeremy; Karl, David

2002-12-01T23:59:59.000Z

13

Unsteady flow model of Priest Rapids Dam releases at Hanford Reach, Columbia River, Washington  

SciTech Connect (OSTI)

A model was developed to simulate water levels at three locations on the Columbia River between Priest Rapids Dam River Mile 396.1 (River Kilometer 639.0) and River Mile 361.50 (River Kilometer 581.7). The model was calibrated and verified over a range of flows. The results of calibration and verification indicate that the model, with reasonable accuracy, simulates stages to within +-0.08 m (+- 0.25 ft) and surface wave timing to within +-20 min. The model can be used by researchers, river system managers, planners, and decision makers as a tool to predict fluctuating water levels at locations downstream of dams. Data produced by the model can be used to evaluate and quantify possible impacts on aquatic organisms, water supply, navigation, irrigation, recreation, and additional hydropower enhancement. Although the results of this model calibrationand the model simulations presented are site-specific, the methodology is generic. Therefore, the model can be adapted to reflect dam discharges and resulting river flows at other river systems affected by water-level fluctuations.

Sneider, S.C.; Skaggs, R.L.

1983-02-01T23:59:59.000Z

14

Low-temperature geothermal assessment of the Santa Clara and Virgin River Valleys, Washington County, Utah  

SciTech Connect (OSTI)

Exploration techniques included the following: (1) a temperature survey of springs, (2) chemical analyses and calculated geothermometer temperatures of water samples collected from selected springs and wells, (3) chemical analyses and calculated geothermometer temperatures of spring and well water samples in the literature, (4) thermal gradients measured in accessible wells, and (5) geology. The highest water temperature recorded in the St. George basin is 42/sup 0/C at Pah Tempe Hot Springs. Additional spring temperatures higher than 20/sup 0/C are at Veyo Hot Spring, Washington hot pot, and Green Spring. The warmest well water in the study area is 40/sup 0/C in Middleton Wash. Additional warm well water (higher than 24.5/sup 0/C) is present north of St. George, north of Washington, southeast of St. George, and in Dameron Valley. The majority of the Na-K-Ca calculated reservoir temperatures range between 30/sup 0/ and 50/sup 0/C. Anomalous geothermometer temperatures were calculated for water from Pah Tempe and a number of locations in St. George and vicinity. In addition to the known thermal areas of Pah Tempe and Veyo Hot Spring, an area north of Washington and St. George is delineated in this study to have possible low-temperature geothermal potential.

Budding, K.E.; Sommer, S.N.

1986-01-01T23:59:59.000Z

15

Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington  

SciTech Connect (OSTI)

As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

Peterson, Robert E.; Patton, Gregory W.

2009-12-14T23:59:59.000Z

16

Biological Evaluation of the Behavioral Guidance Structure at Lower Granite Dam on the Snake River, Washington in 1998  

SciTech Connect (OSTI)

In 1998 a behavioral guidance structure (BGS; a steel wall 330m long and 17-24 m deep) was installed in the forebay of Lower Granite Dam on the Snake River, Washington. The purpose of the BGS was to change the horizontal distribution of downstream migrants approaching the south half of the powerhouse by guiding them toward the surface bypass and collector attached to the dam upstream of the north half of the powerhouses. The effectiveness of the BGS was evaluated with biotelemetry and hydroacoustics. The BGS was designed to be movable, thereby allowing a comparison between the horizontal distribution of the fish when the BGS was deployed as a diversion device and when the BGS was moved 800 m upstream of the dam and no longer influenced fish movements immediately upstream of the powerhouse. Radio telemetry and hydroacoustic techniques showed that about 80% of the fish migrating toward Turbines 1-3 were successfully diverted north. Radio telemetry data revealed that the mean residence times of chinook salmon, hatchery steelhead, and wild steelhead were 1.6, 1.7, and 2.4 times longer, respectively, when the BGS was out compared to when it was in. And overall fish passage efficiency was significantly higher when the BGS was in (93.7%) than out (91.2%).

Adams, Noah (U.S. Geological Survey, Biological Resource Division); Johnson, Gary E. (BATTELLE (PACIFIC NW LAB)); Rondorf, Dennis W. (VISITORS); Anglea, Steven M. (BATTELLE (PACIFIC NW LAB)); Wik, Timothy O. (U.S. Army Corps of Engineers - Walla Walla District)

2001-01-01T23:59:59.000Z

17

Evaluating greenhouse gas emissions from hydropower complexes on large rivers in Eastern Washington  

SciTech Connect (OSTI)

Water bodies, such as freshwater lakes, are known to be net emitters of carbon dioxide (CO2), and methane (CH4). In recent years, significant greenhouse gas (GHG) emissions from tropical, boreal, and mid-latitude reservoirs have been reported. At a time when hydropower is increasing worldwide, better understanding of seasonal and regional variation in GHG emissions is needed in order to develop a predictive understanding of such fluxes within man-made impoundments. We examined power-producing dam complexes within xeric temperate locations in the northwestern United States. Sampling environments on the Snake (Lower Monumental Dam Complex) and Columbia Rivers (Priest Rapids Dam Complex) included tributary, mainstem, embayment, forebay, and tailrace areas during winter and summer 2012. At each sampling location, GHG measurement pathways included surface gas flux, degassing as water passed through dams during power generation, ebullition within littoral embayments, and direct sampling of hyporheic pore-water. Measurements were also carried out in a free-flowing reach of the Columbia River to estimate unaltered conditions. Surface flux resulted in very low emissions, with reservoirs acting as a sink for CO2 (up to –262 mg m-2 d-1, which is within the range previously reported for similarly located reservoirs). Surface flux of methane remained below 1 mg CH4 m-2d-1, a value well below fluxes reported previously for temperate reservoirs. Water passing through hydroelectric projects acted as a sink for CO2 during winter and a small source during summer, with mean degassing fluxes of –117 and 4.5 t CO2 d-1, respectively. Degassing of CH4 was minimal, with mean fluxes of 3.1 × 10-6 and –5.6 × 10-4 t CH4 d-1 during winter and summer, respectively. Gas flux due to ebullition was greater in coves located within reservoirs than in coves within the free flowing Hanford Reach–and CH4 flux exceeded that of CO2. Methane emissions varied widely across sampling locations, ranging from 10.5 to 1039 mg CH4 m-2 d-1, with mean fluxes of 324 mg CH4 m-2 d-1in Lower Monumental Dam reservoir and 482 mg CH4 m-2d-1 in the Priest Rapids Dam reservoir. The magnitude of methane flux due to ebullition was unexpectedly high, and falls within the range recently reported for other temperate reservoirs around the world, further suggesting that this methane source should be considered in estimates of global greenhouse gas emissions. Methane flux from sediment pore-water within littoral embayments averaged 4.2 mg m-2 d-1 during winter and 8.1 mg m-2 d-1 during summer, with a peak flux of 19.8 mg m-2d-1 (at the same location where CH4 ebullition was also the greatest). Carbon dioxide flux from sediment pore-water averaged approximately 80 mg m-2d-1 with little difference between winter and summer. Similar to emissions from ebullition, flux from sediment pore-water was higher in reservoirs than in the free flowing reach.

Arntzen, Evan V.; Miller, Benjamin L.; O'Toole, Amanda C.; Niehus, Sara E.; Richmond, Marshall C.

2013-03-15T23:59:59.000Z

18

Washington River Protection Solutions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPP How to apply for

19

Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington, Collection of Surface Water, River Sediments, and Island Soils  

SciTech Connect (OSTI)

This report has been prepared in support of the remedial investigation of Hanford Site Releases to the Columbia River and describes the 2008/2009 data collection efforts. This report documents field activities associated with collection of sediment, river water, and soil in and adjacent to the Columbia River near the Hanford Site and in nearby tributaries.

L. C. Hulstrom

2009-09-28T23:59:59.000Z

20

A Study to Determine the Feasibility of Diverting a Portion of the Red River into the Trinity, Neches and Sabine River Basins  

E-Print Network [OSTI]

TR-1 1967 A Study to Determine the Feasibility of Diverting a Portion of the Red River into the Trinity, Neches and Sabine River Basins J.H. Cook Texas Water Resources Institute Texas A...

Cook, John Henry

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Data Summary Report for teh Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington  

SciTech Connect (OSTI)

This data summary report summarizes the investigation results to evaluate the nature and distribution of Hanford Site-related contaminants present in the Columbia River. As detailed in DOE/RL-2008-11, more than 2,000 environmental samples were collected from the Columbia River between 2008 and 2010. These samples consisted of island soil, sediment, surface water, groundwater upwelling (pore water, surface water, and sediment), and fish tissue.

Hulstrom, L.

2011-02-07T23:59:59.000Z

22

Dispersion of Metals from Abandoned Mines and their Effect on Biota in the Methow River, Okanogan County, Washington: Final Report 2002-2003.  

SciTech Connect (OSTI)

A study of mine-waste contamination effects on Methow River habitat on the eastern slopes of the north Cascade Mountains in Washington state, U.S.A., revealed impacts at ecosystem, community, population, individual, tissue, and cellular levels. Ore deposits in the area were mined for gold, silver, copper and zinc until the early 1950's, but the mines are now inactive. An above-and-below-mine approach was used to compare potentially impacted to control sites. The concentrations of eleven trace elements (i.e., Al, As, B, Ba, Cd, Cr, Cu, Mn, Pb, Se, and Zn) in Methow River sediments downstream from the abandoned mine sites were higher than background levels. Exposed trout and caddisfly larvae in the Methow River showed reduced growth compared to controls. Samples of liver from juvenile trout and small intestine from exposed caddisfly larvae were examined for evidence of metal accumulation, cytopathological change, and chemical toxicity. Morphological changes that are characteristic of nuclear apoptosis were observed in caddisfly small intestine columnar epithelial and trout liver nuclei where extensive chromatin condensation and margination was observed. Histopathological studies revealed glycogen bodies were present in the cytosol and nuclei, which are indicators of Type IV Glycogen Storage Disease (GSD IV). This suggests food is being converted into glycogen and stored in the liver but the glycogen is not being converted back normally into glucose for distribution to other tissues in the body resulting in poor growth. Examination of trout hepatocytes by transmission electron microscopy revealed the accumulation of electron dense granules in the mitochondrial matrix. Matrix granules contain mixtures of Cd, Cu, Au, Pb, Ni, and Ti. Contaminated sediments caused adverse biological effects at different levels of biological organization, from the cellular to ecosystem-level responses, even where dissolved metal concentrations in the corresponding surface water met water-quality criteria.

Peplow, Dan; Edmonds, Robert

2003-05-15T23:59:59.000Z

23

Field Summary Report for Remedial Investigation of Hanford Site Releases to the Coumbia River, Hanford Site, Washington  

SciTech Connect (OSTI)

This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

L.C. Hulstrom

2010-11-10T23:59:59.000Z

24

Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington  

SciTech Connect (OSTI)

This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

L.C. Hulstrom

2010-08-11T23:59:59.000Z

25

A study to determine the feasibility of diverting a portion of the Red River into the Trinity, Neches and Sabine River basins  

E-Print Network [OSTI]

A STUDY TO DETERMINE THE FEASIBILITY OF DIVERTING A PORTION OF THE RED RIVER INTO THE TRINITY, NECHES AND SABINE RIVER BASINS A Thesis by JOHN HENRY COOK Submitted to the Graduate College of the Texas A6, M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1967 Major Subject: Civil Engineering A STUDY TO DETERMINE THE FEASIBILITY OF DIVERTING A PORTION OF THE RED RIVER INTO THE TRINITY, NECHES AND SABINE RIVER BASINS A Thesis by JOHN HENRY COOK...

Cook, John Henry

1967-01-01T23:59:59.000Z

26

Seattle, Washington  

Broader source: Energy.gov [DOE]

Location: Seattle, WashingtonSeed Funding: $20 millionTarget Building Types: Residential, commercial, and institutionalWebsites: www.communitypowerworks.orgwww.seattle.gov/environment/CPWmain...

27

Washington DC Reliability Requirements and the Need to Operate...  

Broader source: Energy.gov (indexed) [DOE]

Washington DC Reliability Requirements and the Need to Operate Mirant's Potomac River Generation Station to Support Local Area Reliability (Oak Ridge National Laboratory 2005)...

28

DETERMINATION OF SOIL HYDRAULIC PROPERTIES IN A PART OF HINDON RIVER CATCHMENT USING SOILPROP SOFTWARE  

E-Print Network [OSTI]

DETERMINATION OF SOIL HYDRAULIC PROPERTIES IN A PART OF HINDON RIVER CATCHMENT USING SOILPROP) and unsaturated hydraulic conductivity (K). To model the retention and movement of water and chemicals and hydraulic conductivity. It is often convenient to represent these functions by means of relatively simple

Kumar, C.P.

29

CX-009695: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Washington River Protection Solutions LLC - Small-Scale Mercury Spill Cleanup CX(s) Applied: B6.1 Date: 12/05/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

30

CX-009686: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Washington River Protection Solutions LLC - Site Characterization and Environmental Monitoring CX(s) Applied: B3.1 Date: 12/14/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

31

Washington River Protection Solutions, LLC  

Energy Savers [EERE]

million gallons of radioactive and mixed waste stored in 177 large, aging, underground tanks. This nuclear waste is the result of more than four decades of reactor operations and...

32

Dissolved and particulate aluminum in the Columbia River and coastal waters of Oregon and Washington: behavior in near-field and far-field plumes  

E-Print Network [OSTI]

1 Dissolved and particulate aluminum in the Columbia River and coastal waters of Oregon) and particulate (leachable and total) aluminum was examined in the Columbia River and estuary, in near Influence on Shelf Ecosystems (RISE) cruise of May/June 2006. Dissolved and particulate aluminum (Al

Hickey, Barbara

33

Determining chemical cleaning requirements for Detroit Edison Belle River Unit No. 1  

SciTech Connect (OSTI)

Detroit Edison's Belle river Power Plant is a two unit coal-fired installation. The drum type boilers are Carolina type and burn pulverized low sulfur western coal. Both units have a normal boiler operating pressure of 2700 psi, are rated at 650 MW net, with a boiler operating volume of 125,000 gallons. The boilers were pre-operationally chemically cleaned during start up in 1984 (Unit 1) and 1985 (Unit 2), to remove millscale and the preservative coatings. Following the vendor recommendation to chemically clean when the tube deposit weight reaches 25 g/ft{sup 2} (as determined by the solvent removal method). However, a review of tube deposit test results form Belle River Unit 1 indicated that the type of deposit found was markedly different in appearance and physical nature than deposits typically found in other Company boilers. This paper reports that based on this difference, and the conservatism of the published limit, a comprehensive evaluation of the need to chemically clean the Belle River boilers was undertaken.

Sonntag, D.J.; Palmer, R.E. (Technical and Engineering Services, Detroit Edison Co. (US))

1992-01-01T23:59:59.000Z

34

The development of a technique for analyzing urban river settings to determine relative potential for park/business development  

E-Print Network [OSTI]

THE DEVELOPMENT OF A TECHNIQUE FOR ANALYZING URBAN RIVER SETTINGS TO DETElDKCNE RELATIVE POTENTIAL FOR PARK/BVSINESS DEVELOPMENT A Thesis Suhmitted to the Graduate College of Texas ASM University in Partial fulfillment of the requiraaents... for the degree of MASTER OF SCIENCE August 1973 Major Subject: Recreation and Resources DeveloPment THE DEVELOPMENT OF A TECHNIQUE FOR ANALYZINQ URBAN RIVER SETTINGS TO DETERMINE RELATIVE POTENTIAL FOR PARK/SUSINSSS DBVEfA)PMSNT A Thesis by APProved es...

Parenzin, Arthur Leon

1973-01-01T23:59:59.000Z

35

UNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON 98195  

E-Print Network [OSTI]

and recommendations. In reviewing the current status of fusion research and its place in the world energy picture, weUNIVERSITY OF WASHINGTON SEATTLE, WASHINGTON 98195 College of Engineering Department of Nuclear of Energy 1000 Independence Avenue Washington, D.C. 20585 Dear Dr. Hunter: The Magnetic Fusion Advisory

36

Fiscal Year 2006 Washington Closure Hanford Science & Technology Plan  

SciTech Connect (OSTI)

This Washington Closure Hanford science and technology (S&T) plan documents the activities associated with providing S&T support to the River Corridor Closure Project for fiscal year 2006.

K.J. Kroegler, M. Truex, D.J. McBride

2006-01-19T23:59:59.000Z

37

CX-008677: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Columbia and Willamette River Crossings Liquefaction Hazard Assessment CX(s) Applied: B3.1 Date: 07/23/2012 Location(s): Oregon, Oregon, Washington, Washington Offices(s): Bonneville Power Administration

38

CX-010540: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Small-Scale Research and Development Projects Using Nanoscale Materials, 300 Area, Richland, Washington CX(s) Applied: B3.15 Date: 06/24/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

39

Determination of the Distribution and Inventory of Radionuclides within a Savannah River Site Waterway - 13202  

SciTech Connect (OSTI)

An investigation was conducted to evaluate the radionuclide inventory within the Lower Three Runs (LTR) Integrator Operable Unit (IOU) at the U.S. Department of Energy's (DOE's) Savannah River Site (SRS). The scope of this effort included the analysis of previously existing sampling and analysis data as well as additional stream bed and flood plain sampling and analysis data acquired to delineate horizontal and vertical distributions of the radionuclide as part of the ongoing SRS environmental restoration program, and specifically for the LTR IOU program. While cesium-137 (Cs-137) is the most significant and abundant radionuclide associated with the LTR IOU it is not the only radionuclide, hence the scope included evaluating all radionuclides present and includes an evaluation of inventory uncertainty for use in sensitivity and uncertainty analyses. The scope involved evaluation of the radionuclide inventory in the P-Reactor and R-Reactor cooling water effluent canal systems, PAR Pond (including Pond C) and the flood plain and stream sediment sections of LTR between the PAR Pond Dam and the Savannah River. The approach taken was to examine all of the available Sediment and Sediment/Soil analysis data available along the P- and R-Reactor cooling water re-circulation canal system, the ponds situated along those canal reaches and along the length of LTR below Par Pond dam. By breaking the IOU into a series of sub-components and sub-sections, the mass of contaminated material was estimated and a representative central concentration of each radionuclide was computed for each compartment. The radionuclide inventory associated with each sub-compartment was then aggregated to determine the total radionuclide inventory that represented the full LTR IOU. Of special interest was the inventory of Cs-137 due to its role in contributing to the potential dose to an offsite member of the public. The overall LTR IOU inventory of Cs-137 was determined to be 2.87 E+02 GBq, which is similar to two earlier estimates. This investigation provides an independent, ground-up estimate of Cs-137 inventory in LTR IOU utilizing the most recent field data. (authors)

Hiergesell, R.A.; Phifer, M.A. [Savannah River National Laboratory, SRNS Bldg. 773-43A, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, SRNS Bldg. 773-43A, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

40

DETERMINATION OF THE DISTRIBUTION AND INVENTORY OF RADIONUCLIDES WITHIN A SAVANNAH RIVER SITE WATERWAY  

SciTech Connect (OSTI)

An investigation was conducted to evaluate the radionuclide inventory within the Lower Three Runs (LTR) Integrator Operable Unit (IOU) at the U.S. Department of Energy’s (DOE’s) Savannah River Site (SRS). The scope of this effort included the analysis of previously existing sampling and analysis data as well as additional streambed and floodplain sampling and analysis data acquired to delineate horizontal and vertical distributions of the radionuclide as part of the ongoing SRS environmental restoration program, and specifically for the LTR IOU program. While cesium-137 (Cs-137) is the most significant and abundant radionuclide associated with the LTR IOU it is not the only radionuclide, hence the scope included evaluating all radionuclides present and includes an evaluation of inventory uncertainty for use in sensitivity and uncertainty analyses. The scope involved evaluation of the radionuclide inventory in the P-Reactor and RReactor cooling water effluent canal systems, PAR Pond (including Pond C) and the floodplain and stream sediment sections of LTR between the PAR Pond Dam and the Savannah River. The approach taken was to examine all of the available Sediment and Sediment/Soil analysis data available along the P- and R-Reactor cooling water re-circulation canal system, the ponds situated along those canal reaches and along the length of LTR below Par Pond dam. By breaking the IOU into a series of sub-components and sub-sections, the mass of contaminated material was estimated and a representative central concentration of each radionuclide was computed for each compartment. The radionuclide inventory associated with each sub-compartment was then aggregated to determine the total radionuclide inventory that represented the full LTR IOU. Of special interest was the inventory of Cs-137 due to its role in contributing to the potential dose to an offsite member of the public. The overall LTR IOU inventory of Cs-137 was determined to be 75.5 Ci, which is similar to two earlier estimates. This investigation provides an independent, ground-up estimate of Cs-137 inventory in LTR IOU utilizing the most recent field data.

Hiergesell, R.; Phifer, M.

2012-11-09T23:59:59.000Z

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

CX-011534: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Grays River Confluence Property Funding CX(s) Applied: B1.25 Date: 11/08/2013 Location(s): Washington Offices(s): Bonneville Power Administration

42

CX-010424: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010424: Categorical Exclusion Determination Grand Coulee District Wood Replacement CX(s) Applied: B1.3 Date: 06072013 Location(s): Washington, Washington...

43

Evaluation of a Prototype Surface Flow Bypass for Juvenile Salmon and Steelhead at the Powerhouse of Lower Granite Dam, Snake River, Washington, 1996-2000  

SciTech Connect (OSTI)

A surface flow bypass provides a route in the upper water column for naturally, surface-oriented juvenile salmonids to safely migrate through a hydroelectric dam. Surface flow bypasses were recommended in several regional salmon recovery plans as a means to increase passage survival of juvenile salmonids at Columbia and Snake River dams. A prototype surface flow bypass, called the SBC, was retrofit on Lower Granite Dam and evaluated from 1996 to 2000 using biotelemetry and hydroacoustic techniques. In terms of passage efficiency, the best SBC configurations were a surface skimmer (99 m3/s [3,500 cfs], three entrances 5 m wide, 5 m deep and one entrance 5 m wide, 15 m deep) and a single chute (99 m3/s, one entrance 5 m wide, 8.5 m deep). They each passed 62 ? 3% (95% confidence interval) of the total juvenile fish population that entered the section of the dam with the SBC entrances (Turbine Units 4-5). Smooth entrance shape and concentrated surface flow characteristics of these configurations are worth pursuing in designs for future surface flow bypasses. In addition, a guidance wall in the Lower Granite Dam forebay diverted the following percentages of juvenile salmonids away from Turbine Units 1-3 toward other passage routes, including the SBC: run-at-large 79 ? 18%; hatchery steelhead 86%; wild steelhead 65%; and yearling chinook salmon 66%. When used in combination with spill or turbine intake screens, a surface flow bypass with a guidance wall can produce a high level (> 90% of total project passage) of non-turbine passage and provide operational flexibility to fisheries managers and dam operators responsible for enhancing juvenile salmonid survival.

Johnson, Gary E.; Anglea, Steven M.; Adams, Noah S.; Wik, Timothy O.

2005-02-28T23:59:59.000Z

44

MEMORANDUM FOR DAVID C. MOODY MANAGER SAVANNAH RIVER OPERATIONS...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Washington, DC 20585 February 25, 2011 MEMORANDUM FOR DAVID C. MOODY MANAGER SAVANNAH RIVER OPERATIONS OFFICE FROM: INES R. TRIAY ASSISTANT SECRETARY FOR (J SUBJECT:...

45

Salt River Electric- Residential Energy Efficiency Rebate Program  

Broader source: Energy.gov [DOE]

Salt River Electric serves as the rural electric provider in Kentucky's Bullitt, Nelson, Spencer, and Washington counties. Residential customers are eligible for a variety of cash incentives for...

46

Lower Columbia River Terminal Fisheries Research Project : Final Environmental Assessment.  

SciTech Connect (OSTI)

This notice announces BPA`S`s decision to fund the Oregon Department of Fish and Wildlife (ODFW), the Washington Department of Fish and Wildlife (WDFW), and the Clatsop Economic Development Committee for the Lower Columbia River Terminal Fisheries Research Project (Project). The Project will continue the testing of various species/stocks, rearing regimes, and harvest options for terminal fisheries, as a means to increase lower river sport and commercial harvest of hatchery fish, while providing both greater protection of weaker wild stocks and increasing the return of upriver salmon runs to potential Zone 6 Treaty fisheries. The Project involves relocating hatchery smolts to new, additional pen locations in three bays/sloughs in the lower Columbia River along both the Oregon and Washington sides. The sites are Blind Slough and Tongue Point in Clatsop County, Oregon, and Grays Bay/Deep River, Wahkiakum County, Washington. The smolts will be acclimated for various lengths of time in the net pens and released from these sites. The Project will expand upon an existing terminal fisheries project in Youngs Bay, Oregon. The Project may be expanded to other sites in the future, depending on the results of this initial expansion. BPA`S has determined the project is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and BPA`S is issuing this FONSI.

United States. Bonneville Power Administration.

1995-04-01T23:59:59.000Z

47

Determining Columbia and Snake River Project Tailrace and Forebay Zones of Hydraulic Influence using MASS2 Modeling  

SciTech Connect (OSTI)

Although fisheries biology studies are frequently performed at US Army Corps of Engineers (USACE) projects along the Columbia and Snake Rivers, there is currently no consistent definition of the ``forebay'' and ``tailrace'' regions for these studies. At this time, each study may use somewhat arbitrary lines (e.g., the Boat Restriction Zone) to define the upstream and downstream limits of the study, which may be significantly different at each project. Fisheries researchers are interested in establishing a consistent definition of project forebay and tailrace regions for the hydroelectric projects on the lower Columbia and Snake rivers. The Hydraulic Extent of a project was defined by USACE (Brad Eppard, USACE-CENWP) as follows: The river reach directly upstream (forebay) and downstream (tailrace) of a project that is influenced by the normal range of dam operations. Outside this reach, for a particular river discharge, changes in dam operations cannot be detected by hydraulic measurement. The purpose of this study was to, in consultation with USACE and regional representatives, develop and apply a consistent set of criteria for determining the hydraulic extent of each of the projects in the lower Columbia and Snake rivers. A 2D depth-averaged river model, MASS2, was applied to the Snake and Columbia Rivers. New computational meshes were developed most reaches and the underlying bathymetric data updated to the most current survey data. The computational meshes resolved each spillway bay and turbine unit at each project and extended from project to project. MASS2 was run for a range of total river flows and each flow for a range of project operations at each project. The modeled flow was analyzed to determine the range of velocity magnitude differences and the range of flow direction differences at each location in the computational mesh for each total river flow. Maps of the differences in flow direction and velocity magnitude were created. USACE fishery biologists requested data analysis to determine the project hydraulic extent based on the following criteria: 1) For areas where the mean velocities are less than 4 ft/s, the water velocity differences between operations are not greater than 0.5 ft/sec and /or the differences in water flow direction are not greater than 10 degrees, 2) If mean water velocity is 4.0 ft/second or greater the boundary is determined using the differences in water flow direction (i.e., not greater than 10 degrees). Based on these criteria, and excluding areas with a mean velocity of less than 0.1 ft/s (within the error of the model), a final set of graphics were developed that included data from all flows and all operations. Although each hydroelectric project has a different physical setting, there were some common results. The downstream hydraulic extent tended to be greater than the hydraulic extent in the forebay. The hydraulic extent of the projects tended to be larger at the mid-range flows. At higher flows, the channel geometry tends to reduce the impact of project operations.

Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Perkins, William A.

2010-12-01T23:59:59.000Z

48

CX-009685: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Washington River Protection Solutions & Advanced Technologies & Laboratories International- Proposed Actions - Small-Scale Research and Development, Laboratory Operations, and Pilot Projects CX(s) Applied: B3.6 Date: 12/14/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

49

Washington: Putting More Solar on More Rooftops in Washington...  

Energy Savers [EERE]

Putting More Solar on More Rooftops in Washington State Washington: Putting More Solar on More Rooftops in Washington State November 8, 2013 - 12:00am Addthis EERE SunShot...

50

CX-007776: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Washington River Protection Solutions LLC (WRPS) will place facilities in a cold, dark, and environmentally safe condition on and near the Hanford Site during Calendar Year...

51

2015 Washington Auto Show  

Broader source: Energy.gov [DOE]

Secretary of Energy Ernest Moniz attended the 2015 Washington Auto Show in Washington, DC on January 22, 2015. He delivered brief remarks on the Energy Department's role in electric and fuel cell vehicle technology, and visited several of the exhibits featuring recent additions to the vehicles market.

52

Voluntary Protection Program Onsite Review, Washington River...  

Energy Savers [EERE]

million gallons of radioactive and mixed waste stored in 177 large, aging, underground tanks. This nuclear waste is the result of more than four decades of reactor operations and...

53

Independent Activity Report, Washington River Protection Solutions...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solutions, LLC Industrial Hygiene Program Strategy and Implementation of the Hanford Concerns Council Recommendations HIAR-ORP-2011-10-26 This Independent Activity...

54

Washington River Protection Solutions - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version BookmarkHanford ContractorsHanford

55

EIS-0425: Mid-Columbia Coho Restoration, Washington  

Broader source: Energy.gov [DOE]

This EIS evaluates the environmental impacts of DOE’s Bonneville Power Administration’s proposal to fund the construction, operation, and maintenance of a coho salmon restoration program sponsored by the Confederated Tribes and Bands of the Yakama Nation to help mitigate impacts to fish affected by the Federal Columbia River Power System dams on the Columbia River. The Proposed Action would involve building a new, small, in-basin adult holding/spawning, incubation and rearing facility on the Wenatchee River at one of two potential sites; and constructing and improving several sites in both the Wenatchee and Methow river basins in north central Washington State.

56

George Washington Carver Recognition Day  

Broader source: Energy.gov [DOE]

In commemoration of George Washington Carver’s life and work, Congress declared January 5 as George Washington Carver Recognition Day.

57

Reviewer Institution Ahring, Birgitte Kiaer Washington State University Tri-Cities  

E-Print Network [OSTI]

Central Washington University Kaplan, Daniel I Savannah River National Laboratory Kayani, Asghar Nawaz National Laboratory Bennett, Brian NMN Medical College of Wisconsin Berhe, Asmeret Asefaw University National Laboratory Goodlett, David R University of Washington Gorman, Brian P Colorado School of Mines

58

Determining Lamprey Species Composition, Larval Distribution and Adult Abundance in the Deschutes River Subbasin, Oregon ; 2007 Annual Report.  

SciTech Connect (OSTI)

We will report results of an ongoing project in the Deschutes River Subbasin to describe Pacific lamprey (Lampetra tridentata) life history. Project objectives were to determine adult lamprey escapement from Sherars Falls located at Rkm 70.4 and determine lamprey focal spawning areas, spawn timing and habitat through radio telemetry. A mark-recapture study and tribal creel was conducted to determine adult escapement. Lamprey were radio tagged and are currently being mobile, aerial and fixed site tracked to describe spawning. Adult lamprey were collected at Sherars Falls using a long-handled dip net from June-September 2007. The fate of lamprey collected at Sherars Falls was determined based on girth measurements. Fish measuring less than 10.5 cm received two markings for the mark-recapture estimation while those measuring 10.5 cm or greater were implanted with radio transmitters. Two-hundred and nine lamprey were marked during first event sampling, 2,501 lamprey inspected for marks and 64 recaptured during second event sampling. We estimate lamprey abundance to be 8,083 (6,352-10,279) with a relative precision of 19.8. Tribal harvest was 2,303 +/- 88. Escapement was estimated at 5,780 adult lamprey. Thirty-six lamprey received radio transmitters. Lamprey were transported upstream 6.3 Rkm for surgery, held to recover from anesthesia and released. Mobile tracking efforts started mid-July 2007 and are on-going. To date 35 of the 36 lamprey have been detected. Upon release, extensive ground-based tracking was conducted until fish became dormant in mid-October. Since, fixed site downloading and tracking have occurred weekly on the mainstem Deschutes River. Majority of lamprey (88%) are holding in the mainstem Deschutes River. Three lamprey moved upstream more than 70 Rkms into westside tributaries from August-December. Three moved approximately 18 Rkms downstream of the release site. Tracking will continue through the spawning season when redd characteristics will be measured and reported in the 2008-2009 annual report.

Fox, Matt; Graham, Jennifer C. [Department of Natural Resources, Confederated Tribes of the Warm Springs Reservation, Oregon

2009-06-26T23:59:59.000Z

59

River Sediment Analysis by Slurry Sampling FAAS: Determination of Copper, Zinc and Lead Flvia L. Alves, Solange Cadore, Wilson F. Jardim and Marco A. Z. Arruda*  

E-Print Network [OSTI]

Article River Sediment Analysis by Slurry Sampling FAAS: Determination of Copper, Zinc and Lead sediment analysis was developed. Using this procedure, copper, zinc and lead were determined. The influence of the nitric acid concentration on the slurry preparation, as well as the sediment particle size

Jardim, Wilson de Figueiredo

60

Low temperature geothermal resource evaluation of the Moses Lake-Ritzville-Connell area, Washington  

SciTech Connect (OSTI)

The study area is located in portions of Adams, Grant, Lincoln, and Franklin counties of eastern Washington. The area is representative of a complex stratigraphic and geohydrologic system within the basalt flows of the Columbia River Basalt Group. Fluid temperature data were collected by three different agencies. The Geological Engineering Section (WSU) at Washington State University, runs a continuous fluid temperature (FT) log as part of a complete suite of geophysical logs. The US Geological Survey (USGS) runs a continuous fluid FT log in conjunction with caliper and natural-gamma logs. Southern Methodist University (SMU) and the Washington State Department of Natural Resources, Division of Geology and Earth Resources (DNR), have cooperated in gathering FT data. The DNR-SMU data were collected by taking temperature measurements at 5 m intervals. Bottom-hole temperatures (BHT) and bottom-hole depths (BHD) of selected wells in the study area are given. A technique developed by Biggane (1982) was used to determine the geothermal gradients within the area. A least squares linear regression analysis of the relationship between the BHT and BHD was used to determine the geothermal gradient of a given well data group (WDG).

Widness, S.

1983-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Calorimetric determination of the heat of combustion of spent Green River shale at 978 K  

SciTech Connect (OSTI)

A Calvet-type calorimeter was used to measure heats of combustion of spent Colorado oil shales. For Green River shale, the samples were members of a sink-float series spanning oil yields from 87 to 340 L . tonne/sup -1/. Shale samples (30-200 mg) are dropped into the calorimeter at high temperature, and a peak in the thermopile signal records the total enthalpy change of the sample between room temperature and the final temperature. Duplicate samples from the above sink-float series were first retorted at 773 K and then dropped separately into nitrogen and oxygen at 978 K. The resulting heats are subtracted to give the heat of combustion, and the results are compared to values from classical bomb calorimetry. The agreement shows that the heats of combustion of the organic component are well understood but that question remain on the reactions of the mineral components.

Mraw, S.C.; Keweshan, C.F.

1987-08-01T23:59:59.000Z

62

Energy Matters in Washington State  

E-Print Network [OSTI]

Energy Matters in Washington State Energy Matters in Washington State www.energy.wsu.edu/library/ November 2009 #12;905 Plum Street SE, Building 3 P.O. Box 43169 Olympia, Washington 98504-3169 Energy University Extension Energy Program. 905 Plum Street SE, Building 3, P.O. Box 43169, Olympia, Washington

Collins, Gary S.

63

Microsoft Word - 2011_NEPA-CX_Naches_River_21July2011.doc  

Broader source: Energy.gov (indexed) [DOE]

Acquisition of properties near the Naches River in Yakima County, Washington for fish and wildlife habitat mitigation. Budget Information: Work Order 00191727 Fish and...

64

Preliminary Notice of Violation, Washington Closure Hanford,...  

Broader source: Energy.gov (indexed) [DOE]

Washington Closure Hanford, LLC - WEA-2010-02 Preliminary Notice of Violation, Washington Closure Hanford, LLC - WEA-2010-02 August 19, 2010 Issued to Washington Closure Hanford,...

65

Rate of deformation in the Pasco Basin during the Miocene as determined by distribution of Columbia River basalt flows  

SciTech Connect (OSTI)

Detailed mapping of over 8000 square kilometers and logs from 20 core holes were used to determine the distribution and thickness of basalt flows and interbeds in the Pasco Basin. The data indicate the high-MgO Grande Ronde Basalt and Wanapum Basalt thicken from the northeast to the southwest. Deformation began in late Frenchman Springs time in the Saddle Mountains along a northwest-southeast trend and in Roza time along an east-west trend. By late Wanapum time, basalt flows were more restricted on the east side. Saddle Mountains Basalt flows spread out in the basin from narrow channels to the east. The Umatilla Member entered from the southeast and is confined to the south-central basin, while the Wilbur Creek, Asotin, Esquatzel, Pomona, and Elephant Mountain Members entered from the east and northeast. The distribution of these members is controlled by flow volume, boundaries of other flows, and developing ridges. The Wilbur Creek, Asotin, and Esquatzel flows exited from the basin in a channel along the northern margin of the Umatilla flow, while the Pomona and Elephant Mountain flows exited between Umtanum Ridge and Wallula Gap. The thickness of sedimentary interbeds and basalt flows indicated subsidence and/or uplift began in post-Grande Ronde time (14.5 million years before present) and continued through Saddle Mountains time (10.5 million years before present). Maximum subsidence occurred 40 kilometers (24 miles) north of Richland, Washington with an approximate rate of 25 meters (81 feet) per million years during the eruption of the basalt. Maximum uplift along the developing ridges was 70 meters (230 feet) per million years.

Reidel, S.P.; Ledgerwood, R.K.; Myers, C.W.; Jones, M.G.; Landon, R.D.

1980-03-01T23:59:59.000Z

66

Washington: Washington's Clean Energy Resources and Economy (Brochure)  

SciTech Connect (OSTI)

This document highlights the Office of Energy Efficiency and Renewable Energy's investments and impacts in the state of Washington.

Not Available

2013-03-01T23:59:59.000Z

67

Washington Residents, Agencies, NGOs Specialists  

E-Print Network [OSTI]

Washington Residents, Agencies, NGOs Specialists County Directors, County Faculty, Staff, and Volunteers Department Chairs District Directors County Government Issue Teams Research and Extension Centers WASHINGTON STATE UNIVERSITY CAMPUSES Pullman Spokane Tri-Cities Vancouver Agriculture Program Director R

Collins, Gary S.

68

Washington State Electric Vehicle  

E-Print Network [OSTI]

Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

California at Davis, University of

69

CX-010709: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

White Bluffs Bank Building Renovation CX(s) Applied: B3.14 Date: 07/22/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

70

CX-006092: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Routine Custodial ServicesCX(s) Applied: B1.3Date: 06/21/2011Location(s): Richland, WashingtonOffice(s): Office of River Protection-Richland Office

71

CX-011692: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Revenue Meter Installation at Wind River Biomass Facility CX(s) Applied: B1.7 Date: 12/30/2013 Location(s): Washington Offices(s): Bonneville Power Administration

72

CX-009223: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

CH2MHill Plateau Remediation Company - Asbestos Removal Actions CX(s) Applied: B1.16 Date: 08/03/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

73

CX-012209: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Small-Scale Research and Development Projects Using Nanoscale Materials, 300 Area CX(s) Applied: B3.15 Date: 05/21/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office

74

CX-012324: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

300-296 Waste Site Retrieval Pilot Project CX(s) Applied: B3.6 Date: 07/09/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office

75

CX-012323: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Radiological Survey 600 Area Supporting Land CX(s) Applied: B3.1 Date: 07/09/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office

76

CX-008182: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Project S-234, Patrol Training Academy Firing Range Realignment CX(s) Applied: B1.15 Date: 03/28/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

77

CX-012328: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

PNNL Projects Involving Routine Maintenance in the 300 Area CX(s) Applied: B1.3 Date: 07/03/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office

78

CX-012331: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Facility Safety and Environmental Improvements CX(s) Applied: B2.6 Date: 06/03/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office

79

CX-012326: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

PNNL Involving Facility, Safety, and Environmental Improvements in the 300 Area CX(s) Applied: B2.5 Date: 06/24/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office

80

CX-006065: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Siting, Construction, Operation and Decommissioning of Microbiological and Biomedical FacilitiesCX(s) Applied: B3.12Date: 06/21/2011Location(s): Richland, WashingtonOffice(s): Office of River Protection-Richland Office

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CX-009221: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Rerouting of Power Lines at 100-D Reactor in Support of Site Remediation CX(s) Applied: B4.13 Date: 09/24/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

82

CX-001650: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Safeguards and Security Enhanced Assessment SystemCX(s) Applied: B2.2Date: 04/19/2010Location(s): Richland, WashingtonOffice(s): Environmental Management, Office of River Protection-Richland Office

83

CX-006085: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Removal of Polychlorinated Biphenyl-Containing ItemsCX(s) Applied: B1.17Date: 06/20/2011Location(s): Richland, WashingtonOffice(s): Office of River Protection-Richland Office

84

CX-012103: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Capability Enhancement at the 325 Hazardous Waste Treatment Units CX(s) Applied: B6.6 Date: 04/16/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office

85

CX-008825: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Nesting Bird Deterrent Study at the 241-C Tank Farm CX(s) Applied: B3.8 Date: 07/26/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

86

CX-010539: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Microbiological & Biomedical Research in the 300 Area - 2013 CX(s) Applied: B3.12 Date: 06/13/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

87

CX-008861: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Biomedical Research 300 Area CX(s) Applied: B3.12 Date: 08/01/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

88

Low Temperature Geothermal Resource Evaluation of the Moses Lake-Ritzville-Connell Area, Washington  

SciTech Connect (OSTI)

The study area is located in portions of Adams, Grant, Lincoln, and Franklin counties of eastern Washington. The area is representative of a complex stratigraphic and geohydrologic system within the basalt flows of the Columbia River Basalt Group. The regional piezometric surface and stratigraphic units dip towards the southwest. Fluid temperature data were collected by three different agencies. The Geological Engineering Section (WSU) at Washington State University, runs a continuous fluid temperature (FT) log as part of a complete suite of geophysical logs. The US Geological Survey (USGS) runs a continuous fluid FT log in conjunction with caliper and natural-gamma logs. Southern Methodist University (SMU) and the Washington State Department of Natural Resources, Division of Geology and Earth Resources (DNR), have cooperated in gathering FT data. The DNR-SMU data were collected by taking temperature measurements at 5 m intervals. Bottom-hole temperatures (BHT) and bottom-hole depths (BHD) of selected wells in the study area are given in table 2. Some of the BHT data in table 2 may vary from those previously reported by WSU. These discrepancies are the result of changes in the calibration method of the FT tool. A technique developed by Giggane (1982) was used to determine the geothermal gradients within the area. A least squares linear regression analysis of the relationship between the BHT and BHD was used to determine the geothermal gradient of a given well data group (WDG). Well data groups were selected on the premises of geographic proximity, position within the regional groundwater flow system, land slope azimuth, and land slope dip. Some data points have been excluded from the linear regression analysis on the basis of factors such as duplicate logging of the same hole, down-hole flow, holes not logged to total depth, and questionable FT tool responses.

Widness, Scott

1983-11-01T23:59:59.000Z

89

Washington City Power- Net Metering  

Broader source: Energy.gov [DOE]

Washington City adopted a net-metering program, including interconnection procedures, in January 2008.* Net metering is available to residential and commercial customers that generate electricity...

90

Columbia River Hatchery Reform System-Wide Report.  

SciTech Connect (OSTI)

The US Congress funded the Puget Sound and Coastal Washington Hatchery Reform Project via annual appropriations to the US Fish and Wildlife Service (USFWS) beginning in fiscal year 2000. Congress established the project because it recognized that while hatcheries have a necessary role to play in meeting harvest and conservation goals for Pacific Northwest salmonids, the hatchery system was in need of comprehensive reform. Most hatcheries were producing fish for harvest primarily to mitigate for past habitat loss (rather than for conservation of at-risk populations) and were not taking into account the effects of their programs on naturally spawning populations. With numerous species listed as threatened or endangered under the Endangered Species Act (ESA), conservation of salmon in the Puget Sound area was a high priority. Genetic resources in the region were at risk and many hatchery programs as currently operated were contributing to those risks. Central to the project was the creation of a nine-member independent scientific review panel called the Hatchery Scientific Review Group (HSRG). The HSRG was charged by Congress with reviewing all state, tribal and federal hatchery programs in Puget Sound and Coastal Washington as part of a comprehensive hatchery reform effort to: conserve indigenous salmonid genetic resources; assist with the recovery of naturally spawning salmonid populations; provide sustainable fisheries; and improve the quality and cost-effectiveness of hatchery programs. The HSRG worked closely with the state, tribal and federal managers of the hatchery system, with facilitation provided by the non-profit organization Long Live the Kings and the law firm Gordon, Thomas, Honeywell, to successfully complete reviews of over 200 hatchery programs at more than 100 hatcheries across western Washington. That phase of the project culminated in 2004 with the publication of reports containing the HSRG's principles for hatchery reform and recommendations for Puget Sound/Coastal Washington hatchery programs, followed by the development in 2005 of a suite of analytical tools to support application of the principles (all reports and tools are available at www.hatcheryreform.us). In 2005, Congress directed the National Oceanic and Atmospheric Administration-Fisheries (NOAA Fisheries) to replicate the Puget Sound and Coastal Washington Hatchery Reform Project in the Columbia River Basin. The HSRG was expanded to 14 members to include individuals with specific knowledge about the Columbia River salmon and steelhead populations. This second phase was initially envisioned as a one-year review, with emphasis on the Lower Columbia River hatchery programs. It became clear however, that the Columbia River Basin needed to be viewed as an inter-connected ecosystem in order for the review to be useful. The project scope was subsequently expanded to include the entire Basin, with funding for a second year provided by the Bonneville Power Administration (BPA) under the auspices of the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. The objective of the HSRG's Columbia River Basin review was to change the focus of the Columbia River hatchery system. In the past, these hatchery programs have been aimed at supplying adequate numbers of fish for harvest as mitigation primarily for hydropower development in the Basin. A new, ecosystem-based approach is founded on the idea that harvest goals are sustainable only if they are compatible with conservation goals. The challenge before the HSRG was to determine whether or not conservation and harvest goals could be met by fishery managers and, if so, how. The HSRG determined that in order to address these twin goals, both hatchery and harvest reforms are necessary. The HSRG approach represents an important change of direction in managing hatcheries in the region. It provides a clear demonstration that current hatchery programs can indeed be redirected to better meet both conservation and harvest goals. For each Columbia River Basin Environmentally Significant Unit

Warren, Dan [Hatchery Scientific Review Group

2009-04-16T23:59:59.000Z

91

Preliminary geology of eastern Umtanum Ridge, South-Central Washington  

SciTech Connect (OSTI)

The basalt stratigraphy and geologic structures of eastern Umtanum Ridge have been mapped and studied in detail to help assess the feasibility of nuclear waste terminal storage on the Hanford Site in southeastern Washington State. Eastern Umtanum Ridge is an asymmetric east-west-trending anticline of Columbia River basalt that plunges 5 degrees eastward into the Pasco Basin. Geologic mapping and determination of natural remanent magnetic polarity and chemical composition reveal that flows of the Pomona and Umatilla Members (Saddle Mountains Basalt), Priest Rapids and Frenchman Springs Members (Wanapum Basalt), and Grande Ronde Basalt were erupted as fairly uniform sheets. The Wahluke and Huntzinger flows (Saddle Mountains Basalt) fill a paleovalley cut into Wanapum Basalt. No evidence was found to indicate Quaternary-age movement on any structures in the map area. The basalt strata on the south limb of the Umtanum anticline display relatively little tectonic deformation since Miocene-Pliocene time. Thus, the buried south flank of Umtanum Ridge may provide an excellent location for a nuclear waste repository beneath the Hanford Site.

Goff, F.E.

1981-01-01T23:59:59.000Z

92

Biofuels in Oregon and Washington  

E-Print Network [OSTI]

PNNL-17351 Biofuels in Oregon and Washington A Business Case Analysis of Opportunities and Challenges Prepared by Pacific Northwest National Laboratory #12;#12;Biofuels in Oregon and Washington, particularly in light of the recent growth experienced by the biofuels industry in the Midwest. Policymakers

93

Harold Washington Social Security Administration (SSA) Center...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Harold Washington Social Security Administration (SSA) Center Water Conservation and Green Energy Harold Washington Social Security Administration (SSA) Center Water Conservation...

94

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

95

Washington Energy Facility Site Evalutation Council - Generalized...  

Open Energy Info (EERE)

Washington Energy Facility Site Evalutation Council - Generalized Siting Process Jump to: navigation, search OpenEI Reference LibraryAdd to library Chart: Washington Energy...

96

Draft Basis for Section 3116 Determination for Closure of F-Tank Farm at the Savannah River Site.  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit ServicesMirant Potomac River Compliance

97

Reintroduction of Lower Columbia River Chum Salmon into Duncan Creek, 2007 Annual Report.  

SciTech Connect (OSTI)

The National Marine Fisheries Service (NMFS) listed Lower Columbia River (LCR) chum salmon as threatened under the Endangered Species Act (ESA) in March, 1999 (64 FR 14508, March 25, 1999). The listing was in response to the reduction in abundance from historical levels of more than one-half million returning adults to fewer than 10,000 present-day spawners. Harvest, habitat degradation, changes in flow regimes, riverbed movement and heavy siltation have been largely responsible for this decline. The timing of seasonal changes in river flow and water temperatures is perhaps the most critical factor in structuring the freshwater life history of this species. This is especially true of the population located directly below Bonneville Dam, where hydropower operations can block access to spawning sites, dewater redds, strand fry, cause scour or fill of redds and increase sedimentation of spawning gravels. Prior to 1997, only two chum salmon populations were recognized as genetically distinct in the Columbia River, although spawning had been documented in many Lower Columbia River tributaries. The first population was in the Grays River (RKm 34), a tributary of the Columbia River, and the second was a group of spawners utilizing the mainstem Columbia River just below Bonneville Dam (RKm 235) adjacent to Ives Island and in Hardy and Hamilton creeks. Using additional DNA samples, Small et al. (2006) grouped chum salmon spawning in the mainstem Columbia River and the Washington State tributaries into three groups: the Coastal, the Cascade and the Gorge. The Coastal group comprises those spawning in the Grays River, Skamokawa Creek and the broodstock used at the Sea Resources facility on the Chinook River. The Cascade group comprises those spawning in the Cowlitz (both summer and fall stocks), Kalama, Lewis, and East Fork Lewis rivers, with most supporting unique populations. The Gorge group comprises those spawning in the mainstem Columbia River from the I-205 Bridge up to Bonneville Dam and those spawning in Hamilton and Hardy creeks. Response to the federal ESA listing has been primarily through direct-recovery actions: reducing harvest, hatchery supplementation using local broodstock for populations at catastrophic risk, habitat restoration (including construction of spawning channels) and flow agreements to protect spawning and rearing areas. Both state and federal agencies have built controlled spawning areas. In 1998, the Washington Department of Fish and Wildlife (WDFW) began a chum salmon supplementation program using native stock on the Grays River. This program was expanded during 1999 - 2001 to include reintroduction into the Chinook River using eggs from the Grays River Supplementation Program. These eggs are incubated at the Grays River Hatchery, reared to release size at the Sea Resources Hatchery on the Chinook River, and the fry are released at the mouth of the Chinook River. Native steelhead, chum, and coho salmon are present in Duncan Creek, and are recognized as subpopulations of the Lower Gorge population, and are focal species in the Lower Columbia Fish Recovery Board (LCFRB) plan. Steelhead, chum and coho salmon that spawn in Duncan Creek are listed as Threatened under the ESA. Duncan Creek is classified by the LCFRB plan as a watershed for intensive monitoring (LCFRB 2004). This project was identified in the 2004 Federal Columbia River Power System (FCRPS) revised Biological Opinion (revised BiOp) to increase survival of chum salmon, 'BPA will continue to fund the program to re-introduce Columbia River chum salmon into Duncan Creek as long as NOAA Fisheries determines it to be an essential and effective contribution to reducing the risk of extinction for this ESU'. (USACE et al. 2004, page 85-86). The Governors Forum on Monitoring and Salmon Recovery and Watershed Health recommends one major population from each ESU have adult and juvenile monitoring. Duncan Creek chum salmon are identified in this plan to be intensively monitored. Planners recommended that a combination of natural and hatchery production

Hillson, Todd D. [Washington Department of Fish and Wildlife

2009-06-12T23:59:59.000Z

98

CX-006311: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Acquisition of Properties near the Naches River in Yakima County, Washington for Fish and Wildlife Habitat Mitigation CX(s) Applied: B1.24, B1.25 Date: 07212011...

99

CX-008719: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

No. 1, Holcomb- Naselle No. 1, and Raymond-Willapa River No. 1, 115 Kilovolt Transmission Lines CX(s) Applied: B1.3 Date: 05162012 Location(s): Washington Offices(s):...

100

River Thames River Thames  

E-Print Network [OSTI]

West Kent House Penge East Lower Sydenham Forest Hill Honor Oak Park Crofton Park Nunhead New CrossC BD A River Thames River Thames Waterloo & City Southwark Northwood Northwood Hills North Harrow Harrow- on-the-Hill Northwick Park Harrow & Wealdstone Headstone Lane Pinner Kenton Stanmore Canons Park

Delmotte, Nausicaa

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

CX-010439: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Routine Maintenance on the Colville-Republic Number 1 Transmission Line CX(s) Applied: B1.3 Date: 05302013 Location(s): Washington, Washington...

102

CX-009209: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Provision of Funds to the Washington Department of Fish and Wildlife (WDFW) CX(s) Applied: B1.25 Date: 09042012 Location(s): Washington...

103

Columbia River Component Data Gap Analysis  

SciTech Connect (OSTI)

This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

L. C. Hulstrom

2007-10-23T23:59:59.000Z

104

Transformative Wave Technologies Kent, Washington  

E-Print Network [OSTI]

Transformative Wave Technologies Kent, Washington www.transformativewave.com #12;#12;North America are shifted to off peak times #12;#12;Transformative Wave Technologies www.transformativewave.com #12

California at Davis, University of

105

The State of the Columbia River Basin  

E-Print Network [OSTI]

, and Washington. The Act authorized the Council to serve as a comprehensive planning agency for energy policy and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish Overview 11 Sixth Northwest Power Plan boosts energy efficiency, renewable energy, Energy efficiency

106

CX-000016: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000016: Categorical Exclusion Determination Ross-Lexington 1 Meter Project CX(s) Applied: B3.1 Date: 12172009 Location(s): Vancouver, Washington...

107

CX-008011: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-008011: Categorical Exclusion Determination Install EMSL Super-Computer Power Infrastructure CX(s) Applied: B1.7 Date: 06302011 Location(s): Washington...

108

CX-010725: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-010725: Categorical Exclusion Determination 2013 Ross Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 08192013 Location(s): Washington,...

109

CX-010732: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010732: Categorical Exclusion Determination 2013 Spokane District Wood pole Replacement Projects CX(s) Applied: B1.3 Date: 07312013 Location(s): Washington,...

110

CX-010166: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010166: Categorical Exclusion Determination Wenatchee District Wood Pole Replacements CX(s) Applied: B1.3 Date: 03222013 Location(s): Washington,...

111

White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; Annual Progress Report, April 2007 - March 2008.  

SciTech Connect (OSTI)

We report on our progress from April 2007 through March 2008 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), Columbia River Inter-Tribal Fish Commission (CRITFC; Report C), and Montana State University (MSU; Report D). This is a multi-year study with many objectives requiring more than one year to complete; therefore, findings from a given year may be part of more significant findings yet to be reported.

Mallette, Christine [Oregon Department of Fish and Wildlife

2009-07-28T23:59:59.000Z

112

Type B Accident Investigation At Washington Closure Hanford,...  

Broader source: Energy.gov (indexed) [DOE]

Investigation At Washington Closure Hanford, LLC, Employee Fall Injury on July 1, 2009, At The 336 Building, Hanford Site, Washington Type B Accident Investigation At Washington...

113

HANFORD SITE RIVER CORRIDOR CLEANUP  

SciTech Connect (OSTI)

In 2005, the US Department of Energy (DOE) launched the third generation of closure contracts, including the River Corridor Closure (RCC) Contract at Hanford. Over the past decade, significant progress has been made on cleaning up the river shore that bordes Hanford. However, the most important cleanup challenges lie ahead. In March 2005, DOE awarded the Hanford River Corridor Closure Contract to Washington Closure Hanford (WCH), a limited liability company owned by Washington Group International, Bechtel National and CH2M HILL. It is a single-purpose company whose goal is to safely and efficiently accelerate cleanup in the 544 km{sup 2} Hanford river corridor and reduce or eliminate future obligations to DOE for maintaining long-term stewardship over the site. The RCC Contract is a cost-plus-incentive-fee closure contract, which incentivizes the contractor to reduce cost and accelerate the schedule. At $1.9 billion and seven years, WCH has accelerated cleaning up Hanford's river corridor significantly compared to the $3.2 billion and 10 years originally estimated by the US Army Corps of Engineers. Predictable funding is one of the key features of the new contract, with funding set by contract at $183 million in fiscal year (FY) 2006 and peaking at $387 million in FY2012. Another feature of the contract allows for Washington Closure to perform up to 40% of the value of the contract and subcontract the balance. One of the major challenges in the next few years will be to identify and qualify sufficient subcontractors to meet the goal.

BAZZELL, K.D.

2006-02-01T23:59:59.000Z

114

The distribution and history of nuclear weapons related contamination in sediments from the Ob River, Siberia as determined by isotopic ratios of Plutonium, Neptunium, and Cesium  

E-Print Network [OSTI]

This thesis addresses the sources and transport of nuclear weapons related contamination in the Ob River region, Siberia. In addition to being one of the largest rivers flowing into the Arctic Ocean, the bulk of the former ...

Kenna, Timothy C

2002-01-01T23:59:59.000Z

115

Groundwater and surface water supplies in the Williston and Powder River structural basins are necessary for future development in these regions. To help determine  

E-Print Network [OSTI]

#12;i Abstract Groundwater and surface water supplies in the Williston and Powder River structural of streams, and quantify reservoir interaction in the Williston and Powder River structural basins the loss to underlying aquifers was 7790 ft3 /s. Both the Powder River and Williston basins contain gaining

Torgersen, Christian

116

University of Washington DIRECTORY OF CLASSESlU  

E-Print Network [OSTI]

"'\\ University of Washington O' .... DIRECTORY OF CLASSESl .........................................................................................................5 Phone Directory

Kaminsky, Werner

117

EIS-0456: Cushman Hydroelectric Project, Tacoma, Washington  

Broader source: Energy.gov [DOE]

This EIS is for the design and construction of certain components of the Cushman Hydroelectric Project in Mason County, Washington.

118

Determination of dispersivities and reactionkinetics of selected basalts of columbia river plateau using an inverse analytical solution technique  

E-Print Network [OSTI]

on the determination of transport parameters by modeling sodium transport in the Priest Rapids and Roza flow tops of the Wanapum formation, and Rocky Coulee and Umtanum flow tops of the Grande Ronde formation, within the Cold Creek Syncline of the Hanford Nuclear Waste...

Fahlquist, Lisa Armstrong

2012-06-07T23:59:59.000Z

119

Denman Forestry Issues Series: Washington's Forest Regulations  

E-Print Network [OSTI]

Denman Forestry Issues Series: Washington's Forest Regulations and Their Impacts on The Private College of Forest Resources continued its Denman Forestry Issues Series on May 30, 2001. Alumni landowners. Policy analysts and speakers representing the Washington Farm Forestry Assn., Washington Forest

Borenstein, Elhanan

120

Washington, D.C. : essays on the city form of a capital  

E-Print Network [OSTI]

This thesis is an exploration of the city form of Washington. D.C. through four independent essays. Each essay examines a different aspect of the city: its monumentality as determined by its relationship with the nation ...

Kousoulas, George

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Determining erodibility, critical shear stress, and allowable discharge estimates for cohesive channels: case study in the Powder River Basin of Wyoming  

SciTech Connect (OSTI)

The continuous discharge of coalbed natural gas-produced (CBNG-produced) water within ephemeral, cohesive channels in the Powder River Basin (PRB) of Wyoming can result in significant erosion. A study was completed to investigate channel stability in an attempt to correlate cohesive soil properties to critical shear stress. An in situ jet device was used to determine critical shear stress (tau{sub c}) and erodibility (k{sub d}); cohesive soil properties were determined following ASTM procedures for 25 reaches. The study sites were comprised of erodible to moderately resistant clays with tau{sub c} ranging from 0.11 to 15.35 Pa and k{sub d} ranging from 0.27 to 2.38 cm{sup 3}/N s. A relationship between five cohesive soil characteristics and tau{sub c} was developed and presented for use in deriving tau{sub c} for similar sites. Allowable discharges for CBNG-produced water were also derived using tau{sub c} and the tractive force method. An increase in the allowable discharge was found for channels in which vegetation was maintained. The information from this case study is critical to the development of a conservative methodology to establish allowable discharges while minimizing flow-induced instability.

Thoman, R.W.; Niezgoda, S.L. [Lowham Engineering LLC, Lander, WY (United States)

2008-12-15T23:59:59.000Z

122

Effects of Mitigative Measures on Productivity of White Sturgeon Populations in the Columbia River Downstream from McNary Dam; Determine Status and Habitat Requirements of White Sturgeon Populations in the Columbia and Snake Rivers Upstream from McNary Dam, 1995-1996 Annual Report.  

SciTech Connect (OSTI)

This project began in July 1986 and is a cooperative effort of federal, state, and tribal fisheries entities to determine (1) the status and habitat requirements, and (2) effects of mitigative measures on productivity of white sturgeon populations in the lower Colombia and Snake rivers.

Rien, Thomas A.; Beiningen, Kirk T. (Oregon Department of Fish and Wildlife, Portland, OR)

1997-07-01T23:59:59.000Z

123

DOE Selects Washington River Protection Solutions, LLC for Tank Operations  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S. DepartmentContract at Hanford Site |

124

Department of Energy Awards Hanford River Corridor Contract To Washington  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S.Development Projects |Reserve

125

Materials System Inventory Management Practices at Washington River Protection Solutions  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopment AccidentEnergy Objective: DevelopMaterials System

126

Voluntary Protection Program Onsite Review, Washington River Protection  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012Nuclear GuideReportVictor KaneContract --Solutions, LLC,

127

DOE Selects Washington River Protection Solutions, LLC for Tank...  

Energy Savers [EERE]

Plateau. The scope of the tank operations contract includes base operations of the tanks, analytical laboratory support, single-shell tank retrieval and closure, Waste...

128

FY 2006 Washington Savannah River Company, LLC, PER Summary | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6 Performance and Accountability

129

FY 2007 Washington Savannah River Company, LLC, PER Summary | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6 Performance and7

130

FY 2008 Washington Savannah River Company, LLC, PER Summary | National  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6 Performance and7AnnualFiscalNuclear Security

131

Independent Activity Report, Washington River Protection Solutions, LLC -  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Improving Fan SystemInaJanuaryOctober 2011 | Department

132

Bull Trout Population Assessment in the Columbia River Gorge : Annual Report 2000.  

SciTech Connect (OSTI)

We summarized existing knowledge regarding the known distribution of bull trout (Salvelinus confluentus) across four sub-basins in the Columbia River Gorge in Washington. The Wind River, Little White Salmon River, White Salmon River, and the Klickitat River sub-basins were analyzed. Cold water is essential to the survival, spawning, and rearing of bull trout. We analyzed existing temperature data, installed Onset temperature loggers in the areas of the four sub-basins where data was not available, and determined that mean daily water temperatures were <15 C and appropriate for spawning and rearing of bull trout. We snorkel surveyed more than 74 km (46.25 mi.) of rivers and streams in the four sub-basins (13.8 km at night and 60.2 km during the day) and found that night snorkeling was superior to day snorkeling for locating bull trout. Surveys incorporated the Draft Interim Protocol for Determining Bull Trout Presence (Peterson et al. In Press). However, due to access and safety issues, we were unable to randomly select sample sites nor use block nets as recommended. Additionally, we also implemented the Bull Trout/Dolly Varden sampling methodology described in Bonar et al. (1997). No bull trout were found in the Wind River, Little White Salmon, or White Salmon River sub-basins. We found bull trout in the West Fork Klickitat drainage of the Klickitat River Sub-basin. Bull trout averaged 6.7 fish/100m{sup 2} in Trappers Creek, 2.6 fish/100m{sup 2} on Clearwater Creek, and 0.4 fish/100m{sup 2} in Little Muddy Creek. Bull trout was the only species of salmonid encountered in Trappers Creek and dominated in Clearwater Creek. Little Muddy Creek was the only creek where bull trout and introduced brook trout occurred together. We found bull trout only at night and typically in low flow regimes. A single fish, believed to be a bull trout x brook trout hybrid, was observed in the Little Muddy Creek. Additional surveys are needed in the West Fork Klickitat and mainstem Klickitat to determine the distribution of bull trout throughout the drainage and to determine the extent of hybridization with brook trout.

Byrne, Jim; McPeak, Ron

2001-02-01T23:59:59.000Z

133

CX-000209: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Snohomish County Public Utility District Geothermal Energy Study CX(s) Applied: A9 Date: 11232009 Location(s): Washington Office(s):...

134

CX-009702: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Columbia Rural Electric Association Walla Walla Hydroelectric Project CX(s) Applied: B4.1 Date: 12212012 Location(s): Washington Offices(s):...

135

CX-004745: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Acquisition of a Conservation Easement for Fish Habitat Mitigation in Okanogan County, Washington CX(s) Applied: A7 Date: 12082010...

136

Radiological Survey Results for Areas A1 North, A5A, A6, and B2 at the Molycorp Washington Remediation Project, Washington, Pennsylvania  

SciTech Connect (OSTI)

Perform radiological surveys of the Molycorp Washington Remediation Project (MWRP) facility in Washington, Pennsylvania

W.C. Adams

2007-03-13T23:59:59.000Z

137

CX-007749: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Provision of Funds to the Colville Confederated Tribes for the Purchase of Two Parcels of Land Along the Okanogan River CX(s) Applied: B1.25 Date: 01/04/2012 Location(s): Washington Offices(s): Bonneville Power Administration

138

CX-006070: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Safety and Environmental Improvements of a Facility, and Replacement/Upgrade of Facility ComponentsCX(s) Applied: B2.5Date: 06/21/2011Location(s): Richland, WashingtonOffice(s): Office of River Protection-Richland Office

139

CX-011608: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Mission Support Alliance Annual Categorical Exclusion for Routine Maintenance and Custodial Services under 10 CFR 1021, Subpart D, Appendix B, B1.3 for Calendar Year 2014 CX(s) Applied: B1.3 Date: 12/02/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

140

CX-011597: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Mission Support Alliance Annual Categorical Exclusion for Facility Safety and Environmental Improvements under 10 CFR 1021, Subpart D, Appendix B, B2.5 for Calendar Year 2014 CX(s) Applied: B2.5 Date: 12/02/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

CX-009413: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

CH2MHill Plateau Remediation Company - Small-scale Research and Development, Laboratory Operations, and Pilot Projects CX(s) Applied: B3.6 Date: 11/01/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

142

CX-012329: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

PNNL Projects Involving Small-Scale Research and Development, Laboratory Operations, and Pilot Projects in the 300 Area CX(s) Applied: B3.6 Date: 07/03/2014 Location(s): Washington Offices(s): River Protection-Richland Operations Office

143

CX-010538: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Small Scale Research and Development, Laboratory Operations, and Pilot Projects in the 300 Area - 2013 CX(s) Applied: B3.6 Date: 06/13/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

144

CX-009658: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Mission Support Alliance Annual Categorical Exclusion for Small-Scale Research and Development, Laboratory Operations, and Pilot Projects under 10 CFR 1021, Subpart D, Appendix B CX(s) Applied: B3.6 Date: 12/05/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

145

CX-011595: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Mission Support Alliance Annual Categorical Exclusion for Small-Scale Research and Development, Laboratory Operations, and Pilot Projects under 10 CFR 1021, Subpart D, Appendix B, B3.6 for Calendar Year 2014 CX(s) Applied: B3.6 Date: 12/02/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

146

CX-011591: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

CH2MHill Plateau Remediation Company - Small-scale Research and Development, Laboratory Operations, and Pilot Projects, November 2013 to November 2014 CX(s) Applied: B3.6 Date: 11/05/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

147

CX-010400: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Engineered Rubble Pile for Training Exercises at the Hazardous Materials Management and Emergency Response Training and Education Facility CX(s) Applied: B1.15 Date: 05/16/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

148

CX-009693: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

CH2MHill Plateau Remediation Company - Site Characterization and Environmental Monitoring, December 2012 to December 2013 CX(s) Applied: B3.1 Date: 12/14/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

149

CX-011606: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Mission Support Alliance Annual Categorical Exclusion for Support Buildings under 10 CFR 1021, Subpart D, Appendix B, B1.15 for Calendar Year 2014 CX(s) Applied: B1.15 Date: 12/02/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

150

CX-011601: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Mission Support Alliance Annual Categorical Exclusion for Installation or Relocation of Machinery and Equipment under 10 CFR 1021, Subpart D, Appendix B, B1.31 for Calendar Year 2014 CX(s) Applied: B1.31 Date: 12/02/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

151

CX-011611: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Mission Support Alliance Annual Categorical Exclusion for Electronic Equipment under 10 CFR 1021, Subpart D, Appendix B, B1.7 for Calendar Year 2014 CX(s) Applied: B1.7 Date: 12/02/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

152

CX-011603: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Mission Support Alliance Annual Categorical Exclusion for Relocation of Buildings under 10 CFR 1021, Subpart D, Appendix B, B1.22 for Calendar Year 2014 CX(s) Applied: B1.22 Date: 12/02/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

153

CX-011599: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Mission Support Alliance Annual Categorical Exclusion for Drop-Off, Collection, and Transfer Facilities for Recyclable Materials under 10 CFR 1021, Subpart D, Appendix B, B1.35 for Calendar Year 2014 CX(s) Applied: B1.35 Date: 12/02/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

154

CX-011594: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Mission Support Alliance Annual Categorical Exclusion for Actions to Conserve Energy or Water under 10 CFR 1021, Subpart D, Appendix B, B5.1 for Calendar Year 2014 CX(s) Applied: B5.1 Date: 12/02/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

155

CX-011609: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Mission Support Alliance Annual Categorical Exclusion for Transfer Actions under 10 CFR 1021, Subpart D, Appendix B, B1.30 for Calendar Year 2014 CX(s) Applied: B1.30 Date: 12/02/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

156

CX-011610: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Mission Support Alliance Annual Categorical Exclusion for Training Exercises and Simulations under 10 CFR 1021, Subpart D, Appendix B, B1.2 for Calendar Year 2014 CX(s) Applied: B1.2 Date: 12/02/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

157

CX-000472: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Modifications to the Maintenance and Storage Facility 400T AreaCX(s) Applied: B3.6Date: 11/19/2009Location(s): Benton County, WashingtonOffice(s): Environmental Management, Office of River Protection-Richland Office

158

CX-002237: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Assessment of Historic Pipeline Leaks Associated with UPR-200-E-116 and UPR-200-E-77CX(s) Applied: B3.1Date: 05/11/2010Location(s): Richland, WashingtonOffice(s): Environmental Management, Office of River Protection-Richland Office

159

CX-007780: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Routine Shipping and Transportation of Regulated and Non-Regulated Material, Equipment, or Waste On and Off the Hanford Site CX(s) Applied: B1.30 Date: 01/05/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

160

CX-009415: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

CH2MHill Plateau Remediation Company - Safety and Environmental Improvements of a Facility and Replacement/Upgrade of Facility Components CX(s) Applied: B2.5 Date: 11/06/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

CX-011596: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Mission Support Alliance Annual Categorical Exclusion for Site Characterization and Environmental Monitoring under 10 CFR 1021, Subpart D, Appendix B, B3.1 for Calendar Year 2014 CX(s) Applied: B3.1 Date: 12/02/2013 Location(s): Washington Offices(s): River Protection-Richland Operations Office

162

CX-009654: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Mission Support Alliance Annual Categorical Exclusion for Drop-Off, Collection, and Transfer Facilities for Recyclable Materials under 10 CFR 1021, Subpart D, Appendix B CX(s) Applied: B1.35 Date: 12/05/2012 Location(s): Washington Offices(s): River Protection-Richland Operations Office

163

CX-003457: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Sidewall Coring of Single-Shell Tank 241-A-106CX(s) Applied: A9, B3.1, B3.11Date: 08/16/2010Location(s): Richland, WashingtonOffice(s): Environmental Management, Office of River Protection-Richland Office

164

Energy Northwest, Washington Bonneville Power Administration...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

And Research WWW.STANDARDANDPOORS.COMRATINGSDIRECT APRIL 9, 2015 1 1393164 | 300019859 Energy Northwest, Washington Bonneville Power Administration, Oregon; Wholesale Electric...

165

Bonneville Power Administration, Oregon Energy Northwest, Washington...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Bonneville Power Administration, Oregon Energy Northwest, Washington; Wholesale Electric Primary Credit Analyst: David N Bodek, New York (1) 212-438-7969; david.bodek@standardandpo...

166

Washington: a guide to geothermal energy development  

SciTech Connect (OSTI)

Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

1980-06-01T23:59:59.000Z

167

EIS-0184: South Fork Tolt River Hydroelectric Project  

Broader source: Energy.gov [DOE]

This EIS analyzes the Seattle City Light, a Department of the City of Seattle proposal to construct a hydroelectric project with an installed capacity of 15 MW on the South Fork Tolt River near the town of Carnation located in King County in the State of Washington.

168

Washington  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDIT REPORTWas hingtonApril

169

Washington  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDIT REPORTWas hingtonApril

170

Washington,  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradley Nickell02-03 AUDITMotion | Department of DC

171

Industrial & Systems Engineering University of Washington  

E-Print Network [OSTI]

Industrial & Systems Engineering University of Washington Linda Ng Boyle, Ph.D. Associate Professor linda@u.washington.edu #12;Agenda · What is Industrial & Systems Engineering? · Where do Industrial Engineers get jobs? · What classes would you take in ISE? · Where do UW graduates with ISE degrees

Anderson, Richard

172

River Protection Project (RPP) Dangerous Waste Training Plan  

SciTech Connect (OSTI)

This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Title 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.

POHTO, R.E.

2000-03-09T23:59:59.000Z

173

Determination of transport parameters of coincident inorganic and organic plumes in the Savannah River Plant M-Area, Aiken, South Carolina  

E-Print Network [OSTI]

to chloride plumes in glacial outwash at Babylon, New York (Kelley, 1985) and in basalt flow-tops at the Hanford site in Washington state (LaVenue and Domenico, 1986). It has also been applied to chloride (Fryar, 1986) and sodium (Londergan, 1987) plumes... from the production buildings to the disposal sites. In addition, the solvent storage tank located behind production building 321-M is a source of contamination by metal degreasers. Sodium and l, l, l-trichloroethane plumes emanating from the M...

Cauffman, Toya Lyn

1987-01-01T23:59:59.000Z

174

Seattle, Washington: Solar in Action (Brochure), Solar America...  

Broader source: Energy.gov (indexed) [DOE]

Seattle, Washington: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) Seattle, Washington: Solar in Action (Brochure), Solar America...

175

Thanks, George Washington, for the Energy Efficient Washing Machine...  

Broader source: Energy.gov (indexed) [DOE]

Thanks, George Washington, for the Energy Efficient Washing Machine Thanks, George Washington, for the Energy Efficient Washing Machine February 20, 2012 - 5:00am Addthis Kristin...

176

Baer selected to join Washington Academy of Sciences | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

selected to join Washington Academy of Sciences Baer selected to join Washington Academy of Sciences Released: July 21, 2014 He is being honored for outstanding scientific...

177

Washington Success Story-A Performance Contracting Program |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Success Story-A Performance Contracting Program Washington Success Story-A Performance Contracting Program Provides an overview case study of Washington's Performance Contracting...

178

SEP Success Story: Washington State Becomes Largest Public Consumer...  

Energy Savers [EERE]

SEP Success Story: Washington State Becomes Largest Public Consumer of Biodiesel SEP Success Story: Washington State Becomes Largest Public Consumer of Biodiesel December 14, 2011...

179

Development of a high-resolution bathymetry dataset for the Columbia River through the Hanford Reach  

SciTech Connect (OSTI)

A bathymetric and topographic data collection and processing effort involving existing and newly collected data has been performed for the Columbia River through the Hanford Reach in central Washington State, extending 60-miles from the tailrace of Priest Rapids Dam (river mile 397) to near the vicinity of the Interstate 182 bridge just upstream of the Yakima River confluence (river mile 337). The contents of this report provide a description of the data collections, data inputs, processing methodology, and final data quality assessment used to develop a comprehensive and continuous merged 1m resolution bathymetric and topographic surface dataset for the Columbia River through the Hanford Reach.

Coleman, Andre M.; Ward, Duane L.; Larson, Kyle B.; Lettrick, Joseph W.

2010-10-08T23:59:59.000Z

180

Savannah River Site Robotics  

ScienceCinema (OSTI)

Meet Sandmantis and Frankie, two advanced robotic devices that are key to cleanup at Savannah River Site. Sandmantis cleans hard, residual waste off huge underground storage tanks. Frankie is equipped with unique satellite capabilities and sensing abilties that can determine what chemicals still reside in the tanks in a cost effective manner.

None

2012-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Washington State biomass data book  

SciTech Connect (OSTI)

This is the first edition of the Washington State Biomass Databook. It assess sources and approximate costs of biomass fuels, presents a view of current users, identifies potential users in the public and private sectors, and lists prices of competing energy resources. The summary describes key from data from the categories listed above. Part 1, Biomass Supply, presents data increasing levels of detail on agricultural residues, biogas, municipal solid waste, and wood waste. Part 2, Current Industrial and Commercial Use, demonstrates how biomass is successfully being used in existing facilities as an alternative fuel source. Part 3, Potential Demand, describes potential energy-intensive public and private sector facilities. Part 4, Prices of Competing Energy Resources, shows current suppliers of electricity and natural gas and compares utility company rates. 49 refs., 43 figs., 72 tabs.

Deshaye, J.A.; Kerstetter, J.D.

1991-07-01T23:59:59.000Z

182

Remedial Investigation of Hanford Site Releases to the Columbia River - 13603  

SciTech Connect (OSTI)

In south-central Washington State, the Columbia River flows through the U.S. Department of Energy Hanford Site. A primary objective of the Hanford Site cleanup mission is protection of the Columbia River, through remediation of contaminated soil and groundwater that resulted from its weapons production mission. Within the Columbia River system, surface water, sediment, and biota samples related to potential Hanford Site hazardous substance releases have been collected since the start of Hanford operations. The impacts from release of Hanford Site radioactive substances to the Columbia River in areas upstream, within, and downstream of the Hanford Site boundary have been previously investigated as mandated by the U.S. Department of Energy requirements under the Atomic Energy Act. The Remedial Investigation Work Plan for Hanford Site Releases to the Columbia River [1] was issued in 2008 to initiate assessment of the impacts under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [2]. The work plan established a phased approach to characterize contaminants, assess current risks, and determine whether or not there is a need for any cleanup actions. Field investigation activities over a 120-mile stretch of the Columbia River began in October 2008 and were completed in 2010. Sampled media included surface water, pore water, surface and core sediment, island soil, and fish (carp, walleye, whitefish, sucker, small-mouth bass, and sturgeon). Information and sample results from the field investigation were used to characterize current conditions within the Columbia River and assess whether current conditions posed a risk to ecological or human receptors that would merit additional study or response actions under CERCLA. The human health and ecological risk assessments are documented in reports that were published in 2012 [3, 4]. Conclusions from the risk assessment reports are being summarized and integrated with remedial investigation/feasibility study (RI/FS) reports developed for upland areas, riparian areas, and groundwater in the Hanford Site River Corridor. The RI/FS reports will evaluate the impacts to soil, groundwater, and river sediments and lead to proposed cleanup actions and records of decision to address releases from the Hanford Site reactor operations. (authors)

Lerch, J.A.; Hulstrom, L.C. [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States)] [Washington Closure Hanford, LLC, Richland, Washington 99354 (United States); Sands, J.P. [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)] [U.S Department of Energy, Richland Operations Office, Richland, Washington 99352 (United States)

2013-07-01T23:59:59.000Z

183

SCHOOL OF BUSINESS THE GEORGE WASHINGTON UNIVERSITY INVESTORS  

E-Print Network [OSTI]

SCHOOL OF BUSINESS THE GEORGE WASHINGTON UNIVERSITY INVESTORS REPORT2011 #12;#12;SCHOOL OF BUSINESS THE GEORGE WASHINGTON UNIVERSITY INVESTORS REPORT2011 #12;4 | THE GEORGE WASHINGTON UNIVERSITY SCHOOL OF BUSINESS |2011INVESTORSREPORT 4 THE GEORGE WASHINGTON UNIVERSITY SCHOOL OF BUSINESS | 2011 INVESTORS REPORT

Vertes, Akos

184

Energy Matters in Washington State Page 1 Energy Matters  

E-Print Network [OSTI]

Energy Matters in Washington State ­ Page 1 Energy Matters in Washington State June 2008 Updated November 2009 Updated and Revised October 2013 Grand Coulee Dam #12;Energy Matters in Washington State ­ Page 2 Copyright © 2013 Washington State University Energy Program. 905 Plum Street SE, P.O. Box 43169

Collins, Gary S.

185

Federal Utility Partnership Working Group Seminar: Washington Update  

Broader source: Energy.gov [DOE]

Presentation covers the Federal Utility Partnership Working Group Seminar: Washington Update on May 22, 2013.

186

Pennsylvania Scenic Rivers Program  

Broader source: Energy.gov [DOE]

Rivers included in the Scenic Rivers System will be classified, designated and administered as Wild, Scenic, Pastoral, Recreational and Modified Recreational Rivers (Sections 4; (a) (1) of the...

187

Columbia River pathway report: phase I of the Hanford Environmental Dose Reconstruction Project  

SciTech Connect (OSTI)

This report summarizes the river-pathway portion of the first phase of the Hanford Environmental Dose Reconstruction (HEDR) Project. The HEDR Project is estimating radiation doses that could have been received by the public from the Department of Energy's Hanford Site, in southeastern Washington State. Phase 1 of the river-pathway dose reconstruction effort sought to determine whether dose estimates could be calculated for populations in the area from above the Hanford Site at Priest Rapids Dam to below the site at McNary Dam from January 1964 to December 1966. Of the potential sources of radionuclides from the river, fish consumption was the most important. Doses from drinking water were lower at Pasco than at Richland and lower at Kennewick than at Pasco. The median values of preliminary dose estimates calculated by HEDR are similar to independent, previously published estimates of average doses to Richland residents. Later phases of the HEDR Project will address dose estimates for periods other than 1964--1966 and for populations downstream of McNary Dam. 17 refs., 19 figs., 1 tab.

Not Available

1991-07-01T23:59:59.000Z

188

Washington Wildlife Mitigation Projects : Final Programmatic Environmental Assessment and Finding of No Significant Impact.  

SciTech Connect (OSTI)

Bonneville Power Administration (BPA) proposes to fund the portion of the Washington Wildlife Mitigation Agreement (Agreement) pertaining to wildlife habitat mitigation projects to be undertaken in a cooperative effort with the Washington Department of Fish and Wildlife (WDFW). This Agreement serves to establish a monetary budget funded by BPA for projects proposed by Washington Wildlife Coalition members and approved by BPA to protect, mitigate, and improve wildlife and/or wildlife habitat within the State of Washington that has been affected by the construction of Federal dams along the Columbia River. This Environmental Assessment examines the potential environmental effects of acquiring and/or improving wildlife habitat within five different project areas. These project areas are located throughout Grant County and in parts of Okanogan, Douglas, Adams, Franklin, Kittias, Yakima, and Benton Counties. The multiple projects would involve varying combinations of five proposed site-specific activities (habitat improvement, operation and maintenance, monitoring and evaluation, access and recreation management, and cultural resource management). All required Federal, State, and tribal coordination, permits and/or approvals would be obtained prior to ground-disturbing activities.

United States. Bonneville Power Administration; Washington (State). Dept. of Fish and Wildlife.

1996-08-01T23:59:59.000Z

189

Asotin Creek Model Watershed Plan: Asotin County, Washington, 1995.  

SciTech Connect (OSTI)

The Northwest Power Planning Council completed its ``Strategy for Salmon'' in 1992. This is a plan, composed of four specific elements,designed to double the present production of 2.5 million salmon in the Columbia River watershed. These elements have been called the ``four H's'': (1) improve harvest management; (2) improve hatcheries and their production practices; (3) improve survival at hydroelectric dams; and (4) improve and protect fish habitat. The Asotin Creek Model Watershed Plan is the first to be developed in Washington State which is specifically concerned with habitat protection and restoration for salmon and trout. The plan is consistent with the habitat element of the ``Strategy for Salmon''. Asotin Creek is similar in many ways to other salmon-bearing streams in the Snake River system. Its watershed has been significantly impacted by human activities and catastrophic natural events, such as floods and droughts. It supports only remnant salmon and trout populations compared to earlier years. It will require protection and restoration of its fish habitat and riparian corridor in order to increase its salmonid productivity.

Browne, Dave

1995-04-01T23:59:59.000Z

190

Charging Up in King County, Washington  

Broader source: Energy.gov [DOE]

King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a...

191

Charging Up in King County, Washington  

ScienceCinema (OSTI)

King County, Washington is spearheading a regional effort to develop a network of electric vehicle charging stations. It is also improving its vehicle fleet and made significant improvements to a low-income senior housing development.

Constantine, Dow; Oliver, LeAnn; Inslee, Jay; Sahandy, Sheida; Posthuma, Ron; Morrison, David;

2013-05-29T23:59:59.000Z

192

Robert Wood, University of Washington many contributors  

E-Print Network [OSTI]

Robert Wood, University of Washington many contributors VOCALS Education and Outreach Snider (Wyoming) · Dave Spencer (NCSU) · Cindy Twohy (OSU) · Rob Wood/Chris Bretherton/Rhea George

Wood, Robert

193

National Aeronautics and Space Administration Washington, DC  

E-Print Network [OSTI]

National Aeronautics and Space Administration Washington, DC NASA ADVISORY COUNCIL PLANETARY, including Discovery @15 and Satellites of the Outer Solar System. The next workshop, Planetary Atmospheres (GRAIL)--a lunar mission, Origins Spectral Interpretation, Resource Identification, and Security (OSIRIS

Rathbun, Julie A.

194

University of Washington School of Forest Resources  

E-Print Network [OSTI]

limited staff and financial resources Opportunities: Where are opportunities facing you; i1 University of Washington School of Forest Resources Communications Plan 2010-2011 6 resource programs in the country, the School of Forest Resources (SFR) provides world class

Borenstein, Elhanan

195

The Office of River Protection (ORP) and Washington River Protection Solutions (  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layered NbS2 andThe Molecular Bond:EnvironmentalThe Take aTheOffice

196

Quantitative 3-D Elemental Mapping by LA-ICP-MS of a Basaltic Clast from the Hanford 300 Area, Washington, USA  

E-Print Network [OSTI]

Quantitative 3-D Elemental Mapping by LA-ICP-MS of a Basaltic Clast from the Hanford 300 Area collected from the Hanford 300 Area in south-central Washington State, United States. A calibration method and riparian quality in many locations, most notably at the Hanford, Savannah River, Oak Ridge, and Nevada Test

Hu, Qinhong "Max"

197

White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 1998-1999 Annual Report.  

SciTech Connect (OSTI)

The authors report on their progress from April 1998 through March 1999 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam. The study is a cooperative effort by the Oregon Department of Fish and Wildlife (ODFW; Report A), Washington Department of Fish and Wildlife (WDFW; Report B), U.S. Geological Survey Biological Resources Division (USGS; Report C), U.S. Fish and Wildlife Service (USFWS; Report D), Columbia River Inter-Tribal Fish Commission (CRITFC; Report E), and the University of Idaho (UI; Report F). This is a multi-year study with many objectives requiring more than one year to complete. Therefore, findings from a given year may be part of more significant findings yet to be reported. Highlights of results of our work from April 1998 through March 1999 are given.

Ward, David L.

2000-12-01T23:59:59.000Z

198

Early Adopter PDC AtEarly Adopter PDC At Washington and LeeWashington and Lee  

E-Print Network [OSTI]

Early Adopter ­ PDC AtEarly Adopter ­ PDC At Washington and LeeWashington and Lee Four-year Liberal with and manipulation of collections of stuff.manipulation of collections of stuff. · PDC applications: sorting, recursive treePDC applications: sorting, recursive tree structures, image processing,...structures, image

Stough, Joshua

199

Toward a Unique UnderstandingToward a Unique Understanding Washington SquareWashington Square  

E-Print Network [OSTI]

;LagniappeLagniappe 1837 Map of Nacogdoches1837 Map of Nacogdoches 1846 Map of Nacogdoches1846 Map #12;The Sanborn MapsThe Sanborn Maps #12;Georeferenced RepresentationGeoreferenced Representation #12 excavations atbelow from the 1979 excavations at Washington Square.Washington Square. #12;The GridThe Grid #12

Hung, I-Kuai

200

Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook and Juvenile-to-Adult PIT-tag Retention; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2001 Annual Report.  

SciTech Connect (OSTI)

This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning, and (2) summarize results of research that have broader scientific relevance. This is the first in an anticipated series of reports that address reproductive ecological research and monitoring of spring chinook in the Yakima River basin. In addition to within-year comparisons, between-year comparisons will be made to determine if traits of the wild Naches basin control population, the naturally spawning population in the upper Yakima River and the hatchery control population are diverging over time. This annual report summarizes data collected between April 1, 2001 and March 31, 2002. In the future, these data will be compared to previous years to identify general trends and make preliminary comparisons.

Knudsen, Curtis M. (Washington Department of Fish and Wildlife, Olympia, WA)

2002-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Federal Government Congressional Budget Office, Budget Analysis Division Washington, DC  

E-Print Network [OSTI]

Administration, Center for Drug Evaluation and Research Washington, DC Federal Energy Regulatory CommissionFederal Government Congressional Budget Office, Budget Analysis Division Washington, DC Department Environmental Protection Agency, Office of Transportation & Air Quality Ann Arbor, MI Federal Drug

Shyy, Wei

202

Incentive Fee Determination Summary Contractor: Washington Closure Hanford LLC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching.348 270 300Aptamersstability andIncandescent

203

Late Quaternary history of Washington Land, North Greenland OLE BENNIKE  

E-Print Network [OSTI]

Late Quaternary history of Washington Land, North Greenland OLE BENNIKE Bennike, O. 2002 (September): Late Quaternary history of Washington Land, North Greenland. Boreas, Vol. 31, 260­272. Oslo. ISSN 0300-9483. During the last glacial stage, Washington Land in western North Greenland was probably completely inun

Ingólfsson, Ólafur

204

1979-1980 Geothermal Resource Assessment Program in Washington  

SciTech Connect (OSTI)

Separate abstracts were prepared for seven papers. Also included are a bibliography of geothermal resource information for the State of Washington, well temperature information and locations in the State of Washington, and a map of the geology of the White Pass-Tumac Mountain Area, Washington. (MHR)

Korosec, M.A.; Schuster, J.E.

1980-01-01T23:59:59.000Z

205

Columbia River Treaty History and 2014/2024 Review  

SciTech Connect (OSTI)

The Columbia River, the fourth largest river on the continent as measured by average annual ?ow, generates more power than any other river in North America. While its headwaters originate in British Columbia, only about 15 percent of the 259,500 square miles of the Columbia River Basin is actually located in Canada. Yet the Canadian waters account for about 38 percent of the average annual volume, and up to 50 percent of the peak ?ood waters, that ?ow by The Dalles Dam on the Columbia River between Oregon and Washington. In the 1940s, of?cials from the United States and Canada began a long process to seek a joint solution to the ?ooding caused by the unregulated Columbia River and to the postwar demand for greater energy resources. That effort culminated in the Columbia River Treaty, an international agreement between Canada and the United States for the cooperative development of water resources regulation in the upper Columbia River Basin. It was signed in 1961 and implemented in 1964.

None

2009-02-01T23:59:59.000Z

206

SAN JOSE STATE UNIVERSITY ONE WASHINGTON SQUARE  

E-Print Network [OSTI]

Public Safety Funding). RESOLVED That the San José State University (SJSU) commend the CSU BoardSAN JOSE STATE UNIVERSITY ONE WASHINGTON SQUARE SAN JOSE, CA 95192 SS-F12-2, Sense of the Senate Resolution, Urging that California Voters Become Well Informed About the Current State of Funding

Gleixner, Stacy

207

George Washington University The Department of Philosophy  

E-Print Network [OSTI]

George Washington University The Department of Philosophy Announces The Thacher-Reynolds Memorial Fellowship The Department of Philosophy invites applications for the Thacher-Reynolds Memorial Fellowship for a philosophy major in the senior year who has strong interests in graduate or professional studies. At the end

Vertes, Akos

208

FEDERAL ENERGY WASHINGTON, D.C. 20426  

E-Print Network [OSTI]

FEDERAL ENERGY REGULATORY COMMISSION WASHINGTON, D.C. 20426 NEWS RELEASE NEWS MEDIA CONTACT judge, the Federal Energy Regulatory Commission today ordered an expedited fact-finding hearing of the discussions. #12;Chairman Curt L. Hébert, Jr. stated as follows: "At some point, regulatory and R-01-33 (more

Laughlin, Robert B.

209

WWU Sustainability Academy Western Washington University  

E-Print Network [OSTI]

WWU Sustainability Academy Western Washington University Dear colleagues, We cordially extend to you this invitation to join the WWU Sustainability Academy! Following several years of discussion, a group of faculty has started the (tentatively named) "WWU Sustainability Academy." Our goal is to build

Zaferatos, Nicholas C.

210

Natural phenomena hazards, Hanford Site, Washington  

SciTech Connect (OSTI)

This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity.

Conrads, T.J.

1998-09-29T23:59:59.000Z

211

EIS-0205: Joint NEPA/SEPA Final Environmental Impact Statement Washington Windplant No. 1, Goldendale, Washington  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy’s Bonneville Power Administration prepared this statement in order to fulfill its National Environmental Policy Act obligations ahead of signing an agreement with the utilities that would purchase the Windplant’s power from KENETECH. KENETECH Windpower, Inc., proposes to construct and operate Washington Windplant No. 1 in the Columbia Hills area, southeast of Goldendale, in Klickitat County, Washington.

212

Small Wind Electric Systems: A Washington Consumer's Guide  

SciTech Connect (OSTI)

Small Wind Electric Systems: A Washington Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

Not Available

2007-08-01T23:59:59.000Z

213

Red River Compact (Texas)  

Broader source: Energy.gov [DOE]

The Red River Compact Commission administers the Red River Compact to ensure that Texas receives its equitable share of quality water from the Red River and its tributaries as apportioned by the...

214

CX-012401: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Equipment Installations at Multiple Substations and Radio Facilities CX(s) Applied: B1.7 Date: 07/14/2014 Location(s): Washington, Washington, Washington, Washington, Washington Offices(s): Bonneville Power Administration

215

EIS-0384: Chief Joseph Hatchery Program, Washington  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's approach and associated impacts of a comprehensive management program for summer/fall Chinook salmon in the Okanogan subbasin and the Columbia River between the confluence of the Okanogan River and Chief Joseph Dam including construction, operation, and maintenance of a hatchery and acclimation ponds.

216

CX-010347: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Franklin-Badger Canyon 2 & Walla Walla-Pendleton 1 Wood Poles CX(s) Applied: B1.3 Date: 04302013 Location(s): Washington, Oregon Offices(s):...

217

CX-011400: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Categorical Exclusion Determination Marine Mammal Behavioral Response to Tidal Turbine Sound CX(s) Applied: A9, B3.3 Date: 12052013 Location(s): Washington Offices(s):...

218

CX-005028: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Variable-Speed Drive Centrifugal Pump Efficiency Improvement at Five Wastewater Lift Stations Middletown, Washington CX(s) Applied: B2.5, B5.1 Date: 01102011...

219

CX-005350: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

350: Categorical Exclusion Determination CX-005350: Categorical Exclusion Determination Grants to Promote Mid-size Renewables at Private and Government Buildings - Savage River...

220

CX-005892: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005892: Categorical Exclusion Determination Columbia River Inter-Tidal Fish Commission Use of White Bluffs Boat Launch and Hanford Town Boat Ramp for Salmon...

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CX-002773: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-002773: Categorical Exclusion Determination Idaho Department of Fish and Game Purchase of Crystal Springs Trout Farm - Snake River Sockeye Captive...

222

CX-009516: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009516: Categorical Exclusion Determination Tualatin River Pipeline Crossing Site- Monitoring Well Redevelopment CX(s) Applied: B4.9 Date: 11082012...

223

CX-004173: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-004173: Categorical Exclusion Determination Steam Reforming Treatability Study with Savannah River Site Low Activity Waste (LAW) (Module...

224

The 1983 Temperature Gradient and Heat Flow Drilling Project for the State of Washington  

SciTech Connect (OSTI)

During the Summer of 1983, the Washington Division of Geology and Earth Resources carried out a three-hole drilling program to collect temperature gradient and heat flow information near potential geothermal resource target areas. The project was part of the state-coupled US Department of Energy Geothermal Program. Richardson Well Drilling of Tacoma, Washington was subcontracted through the State to perform the work. The general locations of the project areas are shown in figure 1. The first hole, DNR 83-1, was located within the Green River valley northwest of Mount St. Helens. This site is near the Green River Soda Springs and along the projection of the Mount St. Helens--Elk Lake seismic zone. The other two holes were drilled near Mount Baker. Hole DNR 83-3 was sited about 1/4 km west of the Baker Hot Springs, 10.5 km east of Mount Baker, while hole DNR 83-5 was located along Rocky Creek in the Sulphur Creek Valley. The Rocky Creek hole is about 10 km south-southwest of the peak. Two other holes, DNR 83-2 and DNR 83-4, were located on the north side of the Sulphur Creek Valley. Both holes were abandoned at early stages of drilling because of deep overburden and severe caving problems. The sites were apparently located atop old landslide deposits.

Korosec, Michael A.

1983-11-01T23:59:59.000Z

225

Platte River Cooperative Agreement  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Platte River Cooperative Agreement Skip Navigation Links Transmission Functions Infrastructure projects Interconnection OASIS OATT Platte River Cooperative Agreement PEIS, NE, WY,...

226

Maine Rivers Policy (Maine)  

Broader source: Energy.gov [DOE]

The Maine Rivers Policy accompanies the Maine Waterway Development and Conservation Act and provides additional protection for some river and stream segments, which are designated as “outstanding...

227

River Basin Commissions (Indiana)  

Broader source: Energy.gov [DOE]

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

228

Wabash River Heritage Corridor (Indiana)  

Broader source: Energy.gov [DOE]

The Wabash River Heritage Corridor, consisting of the Wabash River, the Little River, and the portage between the Little River and the Maumee River, is considered a protected area, where...

229

RIVER CORRIDOR BUILDINGS 324 & 327 CLEANUP  

SciTech Connect (OSTI)

A major challenge in the recently awarded River Corridor Closure (RCC) Contract at the U.S. Department of Energy's (DOE) Hanford Site is decontaminating and demolishing (D&D) facilities in the 300 Area. Located along the banks of the Columbia River about one mile north of Richland, Washington, the 2.5 km{sup 2} (1 mi{sup 2})300 Area comprises only a small part of the 1517 km{sup 2} (586 mi{sup 2}) Hanford Site. However, with more than 300 facilities ranging from clean to highly contaminated, D&D of those facilities represents a major challenge for Washington Closure Hanford (WCH), which manages the new RCC Project for DOE's Richland Operations Office (RL). A complicating factor for this work is the continued use of nearly a dozen facilities by the DOE's Pacific Northwest National Laboratory (PNNL). Most of the buildings will not be released to WCH until at least 2009--four years into the seven-year, $1.9 billion RCC Contract. The challenge will be to deactivate, decommission, decontaminate and demolish (D4) highly contaminated buildings, such as 324 and 327, without interrupting PNNL's operations in adjacent facilities. This paper focuses on the challenges associated with the D4 of the 324 Building and the 327 Building.

BAZZELL, K.D.; SMITH, B.A.

2006-02-09T23:59:59.000Z

230

Ecology of Juvenile Salmon in Shallow Tidal Freshwater Habitats in the Vicinity of the Sandy River Delta, Lower Columbia River, 2008 Annual Report.  

SciTech Connect (OSTI)

The tidal freshwater monitoring (TFM) project reported herein is part of the research, monitoring, and evaluation effort developed by the Action Agencies (Bonneville Power Administration, the U.S. Army Corps of Engineers [USACE], and the U.S. Bureau of Reclamation) in response to obligations arising from the Endangered Species Act (ESA) as a result of operation of the Federal Columbia River Power System. The project is being performed under the auspices of the Northwest Power and Conservation Council's Columbia Basin Fish and Wildlife Program (Project No. 2005-001-00). The research is a collaborative effort among the Pacific Northwest National Laboratory, the Oregon Department of Fish and Wildlife, the National Marine Fisheries Service, and the University of Washington. The overarching goal of the TFM project is to bridge the gap in knowledge between tidal freshwater habitats and the early life history attributes of migrating salmon. The research questions include: In what types of habitats within the tidal freshwater area of the Columbia River are juvenile salmon found, when are they present, and under what environmental conditions? What is the ecological contribution of shallow (0-5 m) tidal freshwater habitats to the recovery of ESA-listed salmon in the Columbia River basin? Field data collection for the TFM project commenced in June 2007 and since then has continued monthly at six to nine sites in the vicinity of the Sandy River delta (river kilometer 192-208). While this report includes summary data spanning the 19-month period of study from June 2007 through December 2008, it highlights sampling conducted during calendar year 2008. Detailed data for calendar year 2007 were reported previously. The 2008 research objectives were as follows: (1) Characterize the vegetation composition and percent cover, conventional water quality, water surface elevation, substrate composition, bathymetry, and beach slope at the study sites within the vicinity of the Sandy River delta. (2) Characterize the fish community and juvenile salmon migration, including species composition, length-frequency distribution, density (number/m{sup 2}), and temporal and spatial distributions in the vicinity of the Sandy River delta in the lower Columbia River and estuary (LCRE). (3) Determine the stock of origin for juvenile Chinook salmon (Oncorhynchus tshawytscha) captured at sampling sites through genetic identification. (4) Characterize the diets of juvenile Chinook and coho (O. kisutch) salmon captured within the study area. (5) Estimate run timing, residence times, and migration pathways for acoustic-tagged fish in the study area. (6) Conduct a baseline evaluation of the potential restoration to reconnect the old Sandy River channel with the delta. (7) Apply fish density data to initiate a design for a juvenile salmon monitoring program for beach habitats within the tidal freshwater segment of the LCRE (river kilometer 56-234).

Sather, NK; Johnson, GE; Storch, AJ [Pacific Northwest National Laboratory

2009-07-06T23:59:59.000Z

231

Assessing the Thermal Environmental Impacts of an Groundwater Heat Pump in Southeastern Washington State  

SciTech Connect (OSTI)

A thermal analysis of a large-scale (e.g., 1900 gpm), open-loop ground source heat pump (GSHP) installed on the Pacific Northwest National Laboratory (PNNL) campus in southeastern Washington State has been performed using a numerical modeling approach. Water temperature increases at the upgradient extraction wells in the system and at the downgradient Columbia River are potential concerns, especially since heat rejection to the subsurface will occur year-round. Hence, thermal impacts of the open-loop GSHP were investigated to identify operational scenarios that minimized downgradient environmental impacts at the river, and upgradient temperature drift at the production wells. Simulations examined the sensitivity of the system to variations in pumping rates and injected water temperatures, as well as to hydraulic conductivity estimates of the aquifer. Results demonstrated that both downgradient and upgradient thermal impacts were more sensitive to injection flow rates than estimates of hydraulic conductivity. Higher injection rates at lower temperatures resulted in higher temperature increases at the extraction wells but lower increases at the river. Conversely, lower pumping rates and higher injected water temperatures resulted in a smaller temperature increase at the extraction wells, but higher increases at the river. The scenario with lower pumping rates is operationally more efficient, but does increase the likelihood of a thermal plume discharging into the Columbia River. However, this impact would be mitigated by mixing within the hyporheic zone and the Columbia River. The impact under current operational conditions is negligible, but future increases in heat rejection could require a compromise between maximizing operational efficiency and minimizing temperature increases at the shoreline.

Freedman, Vicky L.; Waichler, Scott R.; Mackley, Rob D.; Horner, Jacob A.

2012-04-01T23:59:59.000Z

232

Voluntary Protection Program Onsite Review, Savannah River Site- May 2010  

Broader source: Energy.gov [DOE]

Evaluation to determine whether the Savannah River Site is continuing to perform at a level deserving DOE-VPP Star recognition.

233

Othello, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty,Orleans County, Vermont: EnergyThisOthello, Washington: Energy

234

Kirkland, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,George County isKingstonKirkland, Washington:

235

Lacey, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: Energy Resources Jump to: navigation, search Equivalent URI

236

Vashon, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UCOpen Energy InformationVashon, Washington: Energy

237

Good Energies (Washington DC) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy Resources Jump to:GloriaGoldenGolden,CookWashington DC) Jump

238

Redmond, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosourceRausWyoming: EnergyElec AssnRedmond, Washington:

239

Kent, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 ClimateKamas,KelseyMichigan:Kent, Washington: Energy

240

Snake River Sockeye Salmon Captive Broodstock Program Hatchery Element : Project Progress Report 2007 Annual Report.  

SciTech Connect (OSTI)

Numbers of Snake River sockeye salmon Oncorhynchus nerka have declined dramatically in recent years. In Idaho, only the lakes of the upper Salmon River (Sawtooth Valley) remain as potential sources of production (Figure 1). Historically, five Sawtooth Valley lakes (Redfish, Alturas, Pettit, Stanley, and Yellowbelly) supported sockeye salmon (Bjornn et al. 1968; Chapman et al. 1990). Currently, only Redfish Lake receives a remnant anadromous run. On April 2, 1990, the National Oceanic and Atmospheric Administration Fisheries Service (NOAA - formerly National Marine Fisheries Service) received a petition from the Shoshone-Bannock Tribes (SBT) to list Snake River sockeye salmon as endangered under the United States Endangered Species Act (ESA) of 1973. On November 20, 1991, NOAA declared Snake River sockeye salmon endangered. In 1991, the SBT, along with the Idaho Department of Fish & Game (IDFG), initiated the Snake River Sockeye Salmon Sawtooth Valley Project (Sawtooth Valley Project) with funding from the Bonneville Power Administration (BPA). The goal of this program is to conserve genetic resources and to rebuild Snake River sockeye salmon populations in Idaho. Coordination of this effort is carried out under the guidance of the Stanley Basin Sockeye Technical Oversight Committee (SBSTOC), a team of biologists representing the agencies involved in the recovery and management of Snake River sockeye salmon. National Oceanic and Atmospheric Administration Fisheries Service ESA Permit Nos. 1120, 1124, and 1481 authorize IDFG to conduct scientific research on listed Snake River sockeye salmon. Initial steps to recover the species involved the establishment of captive broodstocks at the Eagle Fish Hatchery in Idaho and at NOAA facilities in Washington State (for a review, see Flagg 1993; Johnson 1993; Flagg and McAuley 1994; Kline 1994; Johnson and Pravecek 1995; Kline and Younk 1995; Flagg et al. 1996; Johnson and Pravecek 1996; Kline and Lamansky 1997; Pravecek and Johnson 1997; Pravecek and Kline 1998; Kline and Heindel 1999; Hebdon et al. 2000; Flagg et al. 2001; Kline and Willard 2001; Frost et al. 2002; Hebdon et al. 2002; Hebdon et al. 2003; Kline et al. 2003a; Kline et al. 2003b; Willard et al. 2003a; Willard et al. 2003b; Baker et al. 2004; Baker et al. 2005; Willard et al. 2005; Baker et al. 2006; Plaster et al. 2006; Baker et al. 2007). The immediate goal of the program is to utilize captive broodstock technology to conserve the population's unique genetics. Long-term goals include increasing the number of individuals in the population to address delisting criteria and to provide sport and treaty harvest opportunity. (1) Develop captive broodstocks from Redfish Lake sockeye salmon, culture broodstocks and produce progeny for reintroduction. (2) Determine the contribution hatchery-produced sockeye salmon make toward avoiding population extinction and increasing population abundance. (3) Describe O. nerka population characteristics for Sawtooth Valley lakes in relation to carrying capacity and broodstock program reintroduction efforts. (4) Utilize genetic analysis to discern the origin of wild and broodstock sockeye salmon to provide maximum effectiveness in their utilization within the broodstock program. (5) Transfer technology through participation in the technical oversight committee process, provide written activity reports, and participate in essential program management and planning activities. Idaho Department of Fish and Game's participation in the Snake River Sockeye Salmon Captive Broodstock Program includes two areas of effort: (1) sockeye salmon captive broodstock culture, and (2) sockeye salmon research and evaluations. Although objectives and tasks from both components overlap and contribute to achieving the same goals, work directly related to sockeye salmon captive broodstock research and enhancement will appear under a separate cover. Research and enhancement activities associated with Snake River sockeye salmon are permitted under NOAA permit numbers 1120, 1124, and 1481. This report details fish

Baker, Dan J.; Heindel, Jeff A.; Green, Daniel G.; Kline, Paul A.

2008-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Potential Federal On-Site Solar Aggregation in Washington, D...  

Broader source: Energy.gov (indexed) [DOE]

Requirements * On-site Renewable Energy Purchase Overview * Washington DCMaryland Solar Options * Case Studies * Federal Interest * Q&A * Resources 2 3 Federal Renewable...

242

University ofWashington DIRECTORY*OF CLASSES,u  

E-Print Network [OSTI]

University ofWashington DIRECTORY*OF CLASSES,u 8060- PUBLISHED IN BACK-TO-SCHOOL SERIES 1995 ©1995 Phone Directory.~........:....................................................................3 Address

Kaminsky, Werner

243

BOBBI M. JOHNSON Washington State University PO Box 644236  

E-Print Network [OSTI]

, Washington-BC, Idaho/Palouse - Sections: Genetics, Education GRANTS AWARDED Northwest Scientific Association / 2011 - 2012 Palouse Audubon Society Research Grant Genetic Characterization of Historic Upper

Kemp, Brian M.

244

Washington: Community Power Works is Building a More Efficient...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Seattle and several community organizations are working to improve energy efficiency and reduce carbon emissions. Locations Seattle, Washington Partners Community Power Works...

245

Evaluate Status of Pacific Lamprey in the Clearwater River and Salmon River Drainages, Idaho, 2009 Technical Report.  

SciTech Connect (OSTI)

Pacific lamprey Lampetra tridentata have received little attention in fishery science until recently, even though abundance has declined significantly along with other anadromous fish species in Idaho. Pacific lamprey in Idaho have to navigate over eight lower Snake River and Columbia River hydroelectric facilities for migration downstream as juveniles to the Pacific Ocean and again as adults migrating upstream to their freshwater spawning grounds in Idaho. The number of adult Pacific lamprey annually entering the Snake River basin at Ice Harbor Dam has declined from an average of over 18,000 during 1962-1969 to fewer than 600 during 1998-2006. Based on potential accessible streams and adult escapement over Lower Granite Dam on the lower Snake River, we estimate that no more than 200 Pacific lamprey adult spawners annually utilize the Clearwater River drainage in Idaho for spawning. We utilized electrofishing in 2000-2006 to capture, enumerate, and obtain biological information regarding rearing Pacific lamprey ammocoetes and macropthalmia to determine the distribution and status of the species in the Clearwater River drainage, Idaho. Present distribution in the Clearwater River drainage is limited to the lower sections of the Lochsa and Selway rivers, the Middle Fork Clearwater River, the mainstem Clearwater River, the South Fork Clearwater River, and the lower 7.5 km of the Red River. In 2006, younger age classes were absent from the Red River.

Cochnauer, Tim; Claire, Christopher [Idaho Department of Fish and Game

2009-05-07T23:59:59.000Z

246

Lind, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(Monaster And Coolbaugh, 2007)is 109. It087103°,LincolnLind, Washington:

247

University of Washington | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 etWisconsin: EnergyTown-EnergyMichiganWashington

248

Washington, Maine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:Coop IncInformation Washington.

249

Energy Incentive Programs, Washington | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica,Idaho EnergyMontanaOregonTexasWashington

250

Department.,of Energy Washington; DC'  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntownRocky FlatsOhio~. Washington,FILE&,of

251

Recovery Act State Memos Washington, DC  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09Jersey ForDakota ForVirginWashington,

252

Alternative Fuels Data Center: Washington Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAbout theOFFICE OFFuelsPropane TankWashington Information to someone by

253

Carnation, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacility | OpenCarboPur84.3202194°Carnation, Washington: Energy

254

Tanner, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to: navigation,OpenFlorida:Tangier,Tanner, Washington: Energy

255

The efficacy of salmon carcass analogs for enhancing stream and fish production in the Wind River watershed  

E-Print Network [OSTI]

The efficacy of salmon carcass analogs for enhancing stream and fish production in the Wind River watershed, Washington, to evaluate the effects of nutrient enhancement on measures of stream and fish production. We compared low level water chemistry, water quality, and periphyton, insect, and fish production

256

Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Washington Facilities (Intrastate) Final Report.  

SciTech Connect (OSTI)

This report was prepared for BPA in fulfillment of section 1004 (b)(1) of the Pacific Northwest Electric Power Planning and Conservation Act of 1980, to review the status of past, present, and proposed future wildlife planning and mitigation program at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Projects addressed are: Merwin Dam; Swift Project; Yale Project; Cowlitz River; Boundary Dam; Box Canyon Dam; Lake Chelan; Condit Project; Enloe Project; Spokane River; Tumwater and Dryden Dam; Yakima; and Naches Project.

Howerton, Jack

1984-11-01T23:59:59.000Z

257

Canadian River Compact (Texas)  

Broader source: Energy.gov [DOE]

The Canadian River Commission administers the Canadian River Compact which includes the states of New Mexico, Oklahoma, and Texas. Signed in 1950 by the member states, the Compact was subsequently...

258

Pecos River Compact (Texas)  

Broader source: Energy.gov [DOE]

This legislation authorizes the state's entrance into the Pecos River Compact, a joint agreement between the states of New Mexico and Texas. The compact is administered by the Pecos River Compact...

259

MILKEN INSTITUTE SCHOOL OF PUBLIC HEALTH AT GEORGE WASHINGTON UNIVERISTY  

E-Print Network [OSTI]

HANDBOOK ACADEMIC YEAR 2014-2015 950 New Hampshire Avenue, NW Washington, DC 20037 The Graduate Student1 MILKEN INSTITUTE SCHOOL OF PUBLIC HEALTH AT GEORGE WASHINGTON UNIVERISTY GRADUATE STUDENT can be found on the SPPHS website: http://publichealth.gwu.edu/services/students Note regarding

Vertes, Akos

260

CX-008676: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Four AT&T Wireless Communication Site Upgrades CX(s) Applied: B1.7, B1.19 Date: 07/27/2012 Location(s): Washington, Washington, Washington, Washington Offices(s): Bonneville Power Administration

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Health assessment for ALCOA (Vancouver Smelter), Vancouver, Clark County, Washington, Region 10. CERCLIS No. WAD009045279. Final report  

SciTech Connect (OSTI)

The ALCOA (also known as Vancouver Smelter) site, located on the northern bank of the Columbia River about 4 miles west of Interstate 5 in Vancouver, Clark County, Washington, has been proposed for the National Priorities List. The site consists of three waste piles containing about 66,000 tons of waste (spent potlinings and alumina insulation) that were deposited on the north bank of the Columbia River by ALCOA between 1973 and 1981. ALCOA has since sold the aluminum smelter to another company, VANALCO. The contaminants detected in the groundwater in the area surrounding the piles include cyanide, fluoride, and trichloroethene (TCE). The ALCOA site is of potential public health concern because humans may be exposed to hazardous substances at concentrations that may result in adverse health effects.

Not Available

1990-05-09T23:59:59.000Z

262

Home energy rating system business plan feasibility study in Washington state  

SciTech Connect (OSTI)

In the Fall of 1993, the Washington State Energy Office funded the Washington Home Energy Rating System project to investigate the benefits of a Washington state HERS. WSEO established a HERS and EEM Advisory Group. Composed of mortgage lenders/brokers, realtors, builders, utility staff, remodelers, and other state agency representatives, the Advisory Group met for the first time on November 17, 1993. The Advisory Group established several subcommittees to identify issues and options. During its March 1994 meeting, the Advisory Group formed a consensus directing WSEO to develop a HERS business plan for consideration. The Advisory Group also established a business plan subcommittee to help draft the plan. Under the guidance of the business plan subcommittee, WSEO conducted research on how customers value energy efficiency in the housing market. This plan represents WSEO`s effort to comply with the Advisory Group`s request. Why is a HERS Business Plan necessary? Strictly speaking this plan is more of a feasibility plan than a business plan since it is designed to help determine the feasibility of a new business venture: a statewide home energy rating system. To make this determination decision makers or possible investors require strategic information about the proposed enterprise. Ideally, the plan should anticipate the significant questions parties may want to know. Among other things, this document should establish decision points for action.

Lineham, T.

1995-03-01T23:59:59.000Z

263

Categorical Exclusion Determinations: Savannah River Operations Office |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovember 26,EnergyOregonRMOTC CategoricalDepartment of

264

Geothermal energy development in Washington State. A guide to the federal, state and local regulatory process  

SciTech Connect (OSTI)

Washington State's geothermal potential is wide spread. Hot springs and five strato volcanoes existing throughout the Cascade Range, limited hot spring activity on the Olympic Peninsula, and broad reaching, low temperature geothermal resources found in the Columbia Basin comprise the extent of Washington's known geothermal resources. Determination of resource ownership is the first step in proceeding with geothermal exploration and development activities. The federal and state processes are examined from pre-lease activity through leasing and post-lease development concerns. Plans, permits, licenses, and other requirements are addressed for the federal, state, and local level. Lease, permit, and other forms for a number of geothermal exploration and development activities are included. A map of public lands and another displaying the measured geothermal resources throughout the state are provided.

Bloomquist, R.G.; Simpson, S.J.

1986-03-01T23:59:59.000Z

265

MANHATTAN PROJECT B REACTOR HANFORD WASHINGTON [HANFORD'S HISTORIC B REACTOR (12-PAGE BOOKLET)  

SciTech Connect (OSTI)

The Hanford Site began as part of the United States Manhattan Project to research, test and build atomic weapons during World War II. The original 670-square mile Hanford Site, then known as the Hanford Engineer Works, was the last of three top-secret sites constructed in order to produce enriched uranium and plutonium for the world's first nuclear weapons. B Reactor, located about 45 miles northwest of Richland, Washington, is the world's first full-scale nuclear reactor. Not only was B Reactor a first-of-a-kind engineering structure, it was built and fully functional in just 11 months. Eventually, the shoreline of the Columbia River in southeastern Washington State held nine nuclear reactors at the height of Hanford's nuclear defense production during the Cold War era. The B Reactor was shut down in 1968. During the 1980's, the U.S. Department of Energy began removing B Reactor's support facilities. The reactor building, the river pumphouse and the reactor stack are the only facilities that remain. Today, the U.S. Department of Energy (DOE) Richland Operations Office offers escorted public access to B Reactor along a designated tour route. The National Park Service (NPS) is studying preservation and interpretation options for sites associated with the Manhattan Project. A draft is expected in summer 2009. A final report will recommend whether the B Reactor, along with other Manhattan Project facilities, should be preserved, and if so, what roles the DOE, the NPS and community partners will play in preservation and public education. In August 2008, the DOE announced plans to open B Reactor for additional public tours. Potential hazards still exist within the building. However, the approved tour route is safe for visitors and workers. DOE may open additional areas once it can assure public safety by mitigating hazards.

GERBER MS

2009-04-28T23:59:59.000Z

266

NAME: Port Susan Bay Estuary Restoration LOCATION: Snohomish County, Washington  

E-Print Network [OSTI]

farmland in the Stillaguamish River estuary in Puget Sound. In doing this, self sustaining native tidal

US Army Corps of Engineers

267

CX-003966: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Irradiation of Materials in Containers in Savannah River National Laboratory Cobalt-60 Facility CX(s) Applied: B3.6 Date: 09032010...

268

CX-010316: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-010316: Categorical Exclusion Determination "Various Getter Testing for Savannah River National LaboratoryDefense Programs Technology CX(s) Applied: B3.6 Date: 04222013...

269

CX-009042: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Relocate and Install Restroom Trailer to Savannah River National Laboratory Technical Area CX(s) Applied: B1.22 Date: 08082012...

270

CX-004182: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Wackenhut Services, Incorporated-Savannah River Site Range 3 Modifications and Live Fire Shoot House Expansion at the Bobby Davis...

271

CX-004180: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Three Wackenhut Services, Incorporated-Savannah River Site Infrastructure Improvement Projects in B-Area CX(s) Applied: B1.15 Date: 0923...

272

CX-003403: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-003403: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: A9, B3.7...

273

CX-002745: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-002745: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: B3.1, A9...

274

CX-004824: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Aiken, South Carolina Office(s): Savannah River Operations Office Remove sufficient piping in the tank 6 annulus to primary transfer line to support waste determination (WD)...

275

CX-008658: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Construct Administrative Support Building at Three Rivers Solid Waste Authority CX(s) Applied: B1.15 Date: 05162012 Location(s): South Carolina...

276

CX-004803: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Install Savannah River National Laboratory Performance-Optimized Datacenter (POD) - Design Requirements CX(s) Applied: B3.6 Date: 11122010 Location(s): Aiken,...

277

US hydropower resource assessment for Washington  

SciTech Connect (OSTI)

The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Washington.

Conner, A.M.; Francfort, J.E.

1997-07-01T23:59:59.000Z

278

HAZARD CATEGORIZATION OF ENVIRONMENTAL RESTORATION SITES AT HANFORD WASHINGTON  

SciTech Connect (OSTI)

Environmental restoration activities, defined here as work to identify and characterize contaminated sites and then contain, treat, remove or dispose of the contamination, now comprises a significant fraction of work in the DOE complex. As with any other DOE activity, a safety analysis must be in place prior to commencing restoration. The rigor and depth of this safety analysis is in part determined by the site's hazard category. This category in turn is determined by the facility's hazardous material inventory and the consequences of its release. Progressively more complicated safety analyses are needed as a facility's hazard category increases from radiological to hazard category three (significant local releases) to hazard category two (significant on-site releases). Thus, a facility's hazard category plays a crucial early role in helping to determine the level of effort devoted to analysis of the facility's individual hazards. Improper determination of the category can result in either an inadequate safety analysis in the case of underestimation of the hazard category, or an unnecessarily cumbersome analysis in the case of overestimation. Contaminated sites have been successfully categorized and safely restored or remediated at the former DOE production site at Hanford, Washington. This paper discusses various means used to categorize former plutonium production or support sites at Hanford. Both preliminary and final hazard categorization is discussed. The importance of the preliminary (initial) hazard categorization in guiding further DOE involvement and approval of the safety analyses is discussed. Compliance to DOE direction provided in ''Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports'', DOE-STD-1027-92, is discussed. DOE recently issued 10 CFR 830, Subpart B which codifies previous DOE safety analysis guidance and orders. The impact of 10 CFR 830, Subpart B on hazard categorization is also discussed.

BISHOP, G.E.

2001-05-01T23:59:59.000Z

279

Rainier, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River SectorRainbow,

280

Heat flow and geothermal studies in the state of Washington  

SciTech Connect (OSTI)

Existing geothermal gradient and heat flow data for the state of Washington are summarized. In addition, information on mean-annual ground surface temperatures is included. The data consist of accurate, detailed temperature-depth measurements in selected available holes throughout the state of Washington made between 1979 and 1982. Measurements of thermal conductivity on selected rock samples from these drill holes and ancillary information required to assess the significance of the data and calculate heat flow values were obtained as well. Information is presented on the mean-annual ground-surface temperatures throughout the state of Washington. 32 refs., 15 figs., 4 tabs.

Blackwell, D.D.; Steele, J.L.; Kelley, S.A.

1985-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)  

SciTech Connect (OSTI)

Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985. The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.

Paller, M.

1990-11-01T23:59:59.000Z

282

International Electric Propulsion Conference, The George Washington University, USA October 6 10, 2013  

E-Print Network [OSTI]

1 The 33rd International Electric Propulsion Conference, The George Washington University, USA Electric Propulsion Conference, The George Washington University · Washington, D.C. · USA October 6 ­ 10.t.yim@nasa.gov. #12;2 The 33rd International Electric Propulsion Conference, The George Washington University, USA

Walker, Mitchell

283

Multi-Scale Action Effectiveness Research in the Lower Columbia River and Estuary, 2012  

SciTech Connect (OSTI)

The study reported herein was conducted for the U.S. Army Corps of Engineers, Portland District (USACE) by researchers at the Pacific Northwest National Laboratory (PNNL), Oregon Department of Fish and Wildlife (ODFW), National Marine Fisheries Service (NMFS), University of Washington (UW), and U.S. Fish and Wildlife Service (USFWS). The goal of the study was to evaluate the ecological benefits of restoration actions for juvenile salmon in the lower Columbia River and estuary (LCRE; rkm 0–234).

Johnson, Gary E.; Sather, Nichole K.; Storch, Adam; Johnson, Jeff; Skalski, J. R.; Teel, D. J.; Brewer, Taylor; Bryson, Amanda J.; Dawley, Earl M.; Kuligowski, D. R.; Whitesel, T.; Mallette, Christine

2013-11-30T23:59:59.000Z

284

Environmental monitoring at Hanford for 1987: Surface and Columbia River data  

SciTech Connect (OSTI)

Environmental monitoring at the Hanford Site, located in southeastern Washington State is conducted for the US Department of Energy. The data collected provide a historical record of radionuclide and radiation levels attributable to natural causes, worldwide fallout, and Hanford operations. Data are also collected to monitor the status of chemicals on the site and in the Columbia River. This volume contains the actual raw data used to create the summaries in PNL--6464.

Jaquish, R.E.

1988-08-01T23:59:59.000Z

285

Secretary Chu Speaks at the 2010 Washington Auto Show  

Broader source: Energy.gov [DOE]

at the 2010 Washington Auto Show, Secretary Chu lays out a roadmap for how the U.S. can lead the world in making the clean vehicles we need. He also announced that the Department of Energy had...

286

ESPC Sucess Story- Harold Washington Social Security Administration Center  

Broader source: Energy.gov [DOE]

Fact sheet describes the Federal Energy Management Program (FEMP) Energy Savings Performance Contract (ESPC) success story on environmental stewardship and cost savings at the Harold Washington Social Security Administration Center in Chicago, Illinois.

287

Final Report: Feasibility Study of Biomass in Snohomish County, Washington  

SciTech Connect (OSTI)

This report and its attachments summarizes the results of a unique tribal-farmer cooperative study to evaluate the feasibility of building one or more regional anaerobic digestion systems in Snohomish County, Washington.

Daryl Williams (Tulalip Tribes); Ray Clark (Clark Group)

2005-01-31T23:59:59.000Z

288

ELECTRICITY ADVISORY COMMITTEE MEETING Washington, D.C.  

Broader source: Energy.gov (indexed) [DOE]

Bose -- I'm not seeing -- Anjan Bose, if I may, is also joining DoE to help with electricity issues from Washington State University. So I think one message Pat would say is...

289

MEDICAL FORM Washington and Lee University Outing Club  

E-Print Network [OSTI]

Washington and Lee Outing Club trips are multi-day wilderness expeditions, operating in remote areas where No _____________________________________________________ 21. History of heat stroke or other heat related illness? 21. Yes No FITNESS 22. Do you exercise

Marsh, David

290

Washington State Department of Ecology: Replacement Wells Requiring...  

Open Energy Info (EERE)

Ecology: Replacement Wells Requiring a Water Right Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Washington State Department of...

291

Washington State Department of Ecology - Water Right Pre-Application...  

Open Energy Info (EERE)

LibraryAdd to library Legal Document- OtherOther: Washington State Department of Ecology - Water Right Pre-Application Consultation FormLegal Published NA Year Signed or...

292

Washington State Department of Ecology - Changing or Transferring...  

Open Energy Info (EERE)

LibraryAdd to library Legal Document- OtherOther: Washington State Department of Ecology - Changing or Transferring an Existing Water RightLegal Published NA Year Signed or...

293

Washington, D.C. and Indiana: Allison Hybrid Technology Achieves...  

Broader source: Energy.gov (indexed) [DOE]

D.C. region, and demand continues to grow worldwide. The Washington Metropolitan Area Transit Authority (WMATA), with a total fleet of 1,480 buses, has more than 600 of them...

294

Washington State Ergonomics Tool: predictive validity in the waste industry  

E-Print Network [OSTI]

This study applies the Washington State Ergonomics Tool to waste industry jobs in Texas. Exposure data were collected by on-site observation of fourteen different multi-task jobs in a major national solid waste management company employing more...

Eppes, Susan Elise

2004-09-30T23:59:59.000Z

295

EA-0915: Waste Tank Safety Program Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to resolve waste tank safety issues at the Hanford Site near the City of Richland, Washington, and to reduce the risks associated with...

296

Chinook Salmon Adult Abundance Monitoring; Hydroacoustic Assessment of Chinook Salmon Escapement to the Secesh River, Idaho, 2002-2004 Final Report.  

SciTech Connect (OSTI)

Accurate determination of adult salmon spawner abundance is key to the assessment of recovery actions for wild Snake River spring/summer Chinook salmon (Onchorynchus tshawytscha), a species listed as 'threatened' under the Endangered Species Act (ESA). As part of the Bonneville Power Administration Fish and Wildlife Program, the Nez Perce Tribe operates an experimental project in the South Fork of the Salmon River subbasin. The project has involved noninvasive monitoring of Chinook salmon escapement on the Secesh River between 1997 and 2000 and on Lake Creek since 1998. The overall goal of this project is to accurately estimate adult Chinook salmon spawning escapement numbers to the Secesh River and Lake Creek. Using time-lapse underwater video technology in conjunction with their fish counting stations, Nez Perce researchers have successfully collected information on adult Chinook salmon spawner abundance, run timing, and fish-per-redd numbers on Lake Creek since 1998. However, the larger stream environment in the Secesh River prevented successful implementation of the underwater video technique to enumerate adult Chinook salmon abundance. High stream discharge and debris loads in the Secesh caused failure of the temporary fish counting station, preventing coverage of the early migrating portion of the spawning run. Accurate adult abundance information could not be obtained on the Secesh with the underwater video method. Consequently, the Nez Perce Tribe now is evaluating advanced technologies and methodologies for measuring adult Chinook salmon abundance in the Secesh River. In 2003, the use of an acoustic camera for assessing spawner escapement was examined. Pacific Northwest National Laboratory, in a collaborative arrangement with the Nez Perce Tribe, provided the technical expertise to implement the acoustic camera component of the counting station on the Secesh River. This report documents the first year of a proposed three-year study to determine the efficacy of using an acoustic camera to count adult migrant Chinook salmon as they make their way to the spawning grounds on the Secesh River and Lake Creek. A phased approach to applying the acoustic camera was proposed, starting with testing and evaluation in spring 2003, followed by a full implementation in 2004 and 2005. The goal of this effort is to better assess the early run components when water clarity and night visibility preclude the use of optical techniques. A single acoustic camera was used to test the technology for enumerating adult salmon passage at the Secesh River. The acoustic camera was deployed on the Secesh at a site engineered with an artificial substrate to control the river bottom morphometry and the passage channel. The primary goal of the analysis for this first year of deployment was to validate counts of migrant salmon. The validation plan involved covering the area with optical video cameras so that both optical and acoustic camera images of the same viewing region could be acquired simultaneously. A secondary test was contrived after the fish passage was complete using a controlled setting at the Pacific Northwest National Laboratory in Richland, Washington, in which we tested the detectability as a function of turbidity levels. Optical and acoustic camera multiplexed video recordings of adult Chinook salmon were made at the Secesh River fish counting station from August 20 through August 29, 2003. The acoustic camera performed as well as or better than the optical camera at detecting adult Chinook salmon over the 10-day test period. However, the acoustic camera was not perfect; the data reflected adult Chinook salmon detections made by the optical camera that were missed by the acoustic camera. The conditions for counting using the optical camera were near ideal, with shallow clear water and good light penetration. The relative performance of the acoustic camera is expected to be even better than the optical camera in early spring when water clarity and light penetration are limited. Results of the laboratory tests at the Pacific North

Johnson, R.; McKinstry, C.; Mueller, R.

2004-01-01T23:59:59.000Z

297

PATTERNS OF PRIMARYAND HETEROTROPHIC PRODUCTIVITY IN AN ARID LOWLAND RIVER  

E-Print Network [OSTI]

production variability. This study also highlights the importance of the microbial loop and macrophytes in the ecology of the Murray R. Copyright # 2007 John Wiley & Sons, Ltd. key words: lowland rivers; carbon; River of organic carbon supplied to a riverine system will be one of the major determinants of biotic community

Canberra, University of

298

Commercial Energy Code Enforcement in Oregon and Washington  

E-Print Network [OSTI]

COMUERCIAL ENERGY CODE ENFORCEMENT IN OREGON AND WASHINGTON WILL MILLER )(AURA O'NEILL UARK JOHNSON TECHNICAL DIRECTOR PRESIDENT PUBLIC UTILITIES SPECIALIST PORTLAND ENERGY CONSERVATION, IWC . , O'NEILL 6 CO., INC., BONNEVILLE POWER... ADHINISTBATION PORTLAND, OREGON SEATTLE, WASHINGTON PORTLAND. OREGON In recent years. many states and local jurisdictions have passed mandatory building codes to achieve energy efficiency in new construction. All too often the political bodies that pass...

Johnson, M.; Miller, W.; O'Neill, M.

1988-01-01T23:59:59.000Z

299

Lakeland North, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: EnergyPocotopaug,Wazeecha, Wisconsin:Washington: Energy

300

Lakeland South, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: EnergyPocotopaug,Wazeecha, Wisconsin:Washington:

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Lea Hill, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN)Lauderhill,5. ItLea Hill, Washington: Energy

302

Lester Meadow, Washington- A Geothermal Anomaly | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville,LeightonLeola,Meadow, Washington- A Geothermal

303

Columbia River Treaty  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

an understanding of the implications for post-2024 Treaty planning and Columbia River operations. The joint effort by the Entities to conduct initial post-2024 modeling and...

304

Saving a Dwindling River  

E-Print Network [OSTI]

information on this research is available by downloading TWRI Technical Report 291, ?Reconnaissance Survey of Salt Sources and Loading into the Pecos River,? at http://twri.tamu.edu/reports.php. The research team has also compared flow and salinity data from... Water Act, Section 319 from the U.S. Environmental Protection Agency. ?The river?s importance?historically, biologically, hydrologically and economically?to the future of the entire Pecos River Basin and the Rio Grande is huge,? said Will Hatler, project...

Wythe, Kathy

2007-01-01T23:59:59.000Z

305

River Protection Project (RPP) Project Management Plan  

SciTech Connect (OSTI)

The Office of River Protection (ORP) Project Management Plan (PMP) for the River Protection Project (RPP) describes the process for developing and operating a Waste Treatment Complex (WTC) to clean up Hanford Site tank waste. The Plan describes the scope of the project, the institutional setting within which the project must be completed, and the management processes and structure planned for implementation. The Plan is written from the perspective of the ORP as the taxpayers' representative. The Hanford Site, in southeastern Washington State, has one of the largest concentrations of radioactive waste in the world, as a result of producing plutonium for national defense for more than 40 years. Approximately 53 million gallons of waste stored in 177 aging underground tanks represent major environmental, social, and political challenges for the U.S. Department of Energy (DOE). These challenges require numerous interfaces with state and federal environmental officials, Tribal Nations, stakeholders, Congress, and the US Department of Energy-Headquarters (DOE-HQ). The cleanup of the Site's tank waste is a national issue with the potential for environmental and economic impacts to the region and the nation.

NAVARRO, J.E.

2001-03-07T23:59:59.000Z

306

Kingsgate, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6Kentwood,George County is aKings RiverKingsbury,

307

Schlumberger soundings in the Upper Raft River and Raft River...  

Open Energy Info (EERE)

Schlumberger soundings in the Upper Raft River and Raft River Valleys, Idaho and Utah Abstract In 1975, the U.S. Geological Survey made seventy Schlumberger resistivity...

308

Sabine River Compact (Multiple States)  

Broader source: Energy.gov [DOE]

The Sabine River Compact Commission administers the Sabine River Compact to ensure that Texas receives its equitable share of quality water from the Sabine River and its tributaries as apportioned...

309

Genetic and Phenotypic Catalog of Native Resident Trout of the interior Columbia River Basin : FY-2001 Report : Populations in the Wenatchee, Entiat, Lake Chelan and Methow River Drainages.  

SciTech Connect (OSTI)

The 1994 Fish and Wildlife Program of the Northwest Power Planning Council specifies the recovery and preservation of population health of native resident fishes of the Columbia River Basin. Among the native resident species of concern are interior rainbow trout of the Columbia River redband subspecies Oncorhynchus mykiss gairdneri 1 and westslope cutthroat trout O. clarki lewisi. The westslope cutthroat trout has been petitioned for listing under the U. S. Endangered Species Act (American Wildlands et al. 1997). Before at-risk populations can be protected, their presence and status must be established. Where introgression from introduced species is a concern, as in the case of both westslope cutthroat trout and redband rainbow trout, genetic issues must be addressed as well. As is true with native trout elsewhere in the western United States (Behnke 1992), most of the remaining pure populations of these species in the Columbia River Basin are in relatively remote headwater reaches. The objective of this project was to photo-document upper Columbia Basin native resident trout populations in Washington, and to ascertain their species or subspecies identity and relative genetic purity using a nonlethal DNA technique. FY-2001 was year three (and final year) of a project in which we conducted field visits to remote locations to seek out and catalog these populations. In FY-2001 we worked in collaboration with the Wenatchee National Forest to catalog populations in the Wenatchee, Entiat, Lake Chelan, and Methow River drainages of Washington State.

Trotter, Patrick C.

2001-10-01T23:59:59.000Z

310

1999 GWU, RPI, VCU All Rights Reserved Washington State Ferries Risk Assessment Final Report The Washington State  

E-Print Network [OSTI]

's Transportation Policy Advisor Representative Mike Cooper House Transportation Committee House of Representatives, the Washington State Office of Marine Safety, the Port of Houston, and The Government of Argentina. The tasks

van Dorp, Johan René

311

Spatial Distribution of Juvenile Salmonids in the Hanford Reach, Columbia River  

E-Print Network [OSTI]

Spatial Distribution of Juvenile Salmonids in the Hanford Reach, Columbia River Dennis D. Dauble salmon, sockeye salmon. and steelhead was determined in the Hanford Reach of the Columbia River from July field studies conducted in the Hanford Reach ofthe mid-Columbia River in 1983 and 1984. The Hanford

312

Communication accepte: Healthy Buildings/IAQ'97 Washington DC, septembre 1997Communication accepte: Healthy Buildings/IAQ'97 Washington DC, septembre 1997 DISCRIMINATION OF VOLATILE ORGANIC COMPOUNDS  

E-Print Network [OSTI]

Communication acceptée: Healthy Buildings/IAQ'97 Washington DC, septembre 1997Communication acceptée: Healthy Buildings/IAQ'97 Washington DC, septembre 1997 DISCRIMINATION OF VOLATILE ORGANIC manuscript, published in "4th International Conference on Healthy Buildings'97, Washington : United States

Paris-Sud XI, Université de

313

River Edge Redevelopment Zone (Illinois)  

Broader source: Energy.gov [DOE]

The purpose of the River Edge Redevelopment Program is to revive and redevelop environmentally challenged properties adjacent to rivers in Illinois.

314

E-Print Network 3.0 - anacostia river washington Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water Resources Research Institute Collection: Environmental Sciences and Ecology ; Environmental Management and Restoration Technologies 2 AIR-DEPOSITED POLLUTION IN THE ANACOSTIA...

315

Spatial factors affecting primary succession on the Muddy River Lahar, Mount St. Helens, Washington  

E-Print Network [OSTI]

in different CTs mingled spatially and in multivariate space. Species patterns were weakly related analysis (RDA), and Mantel tests to compare the vegetation relationships with explanatory factors. Plots cannot be predicted well from the data available, suggesting that there were no prominent deterministic

del Moral, Roger

316

Research, Monitoring and Evaluation Lower Snake River tributaries Prepared by: Washington Department of Fish and Wildlife  

E-Print Network [OSTI]

is inadequate. This plan will therefore, serve as an interim set of guidelines that will assure a systematic of known quality (accuracy and precision) #12;- Validate EDT model as a reliable measure of habitat

317

Consent Order, Washington River Protection Solutions, LLC - NCO-2011-01 |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart Grid RFI:FresnoM-WG Idaho, LLC -WCO-2010-01ofDepartment

318

RICHLAND, Wash.-The Department of Energy's River Corridor contractor, Washington  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a February

319

Reproductive Ecology of Yakima River Hatchery and Wild Spring Chinook; Yakima/Klickitat Fisheries Project Monitoring and Evaluation, 2004-2005 Annual Report.  

SciTech Connect (OSTI)

This report is intended to satisfy two concurrent needs: (1) provide a contract deliverable from Oncorh Consulting to the Washington Department of Fish and Wildlife (WDFW), with emphasis on identification of salient results of value to ongoing Yakima/Klickitat Fisheries Project (YKFP) planning and (2) summarize results of research that have broader scientific relevance. This is the fourth in a series of reports that address reproductive ecological research and monitoring of spring chinook populations in the Yakima River basin. This annual report summarizes data collected between April 1, 2004 and March 31, 2005 and includes analyses of historical baseline data, as well. Supplementation success in the Yakima Klickitat Fishery Project's (YKFP) spring chinook (Oncorhynchus tshawytscha) program is defined as increasing natural production and harvest opportunities, while keeping adverse ecological interactions and genetic impacts within acceptable bounds (Busack et al. 1997). Within this context demographics, phenotypic traits, and reproductive ecology have significance because they directly affect natural productivity. In addition, significant changes in locally adapted traits due to hatchery influence, i.e. domestication, would likely be maladaptive resulting in reduced population productivity and fitness (Taylor 1991; Hard 1995). Thus, there is a need to study demographic and phenotypic traits in the YKFP in order to understand hatchery and wild population productivity, reproductive ecology, and the effects of domestication (Busack et al. 1997). Tracking trends in these traits over time is also a critical aspect of domestication monitoring (Busack et al. 2004) to determine whether trait changes have a genetic component and, if so, are they within acceptable limits. The first chapter of this report compares first generation hatchery and wild upper Yakima River spring chinook returns over a suite of life-history, phenotypic and demographic traits. The second chapter deals specifically with identification of putative populations of wild spring chinook in the Yakima River basin based on differences in quantitative and genetic traits. The third chapter is a progress report on gametic traits and progeny produced by upper Yakima River wild and hatchery origin fish spawned in 2004 including some comparisons with Little Naches River fish. In the fourth chapter, we present a progress report on comparisons naturally spawning wild and hatchery fish in the upper Yakima River and in an experimental spawning channel at CESRF in 2004. The chapters in this report are in various stages of development. Chapters One and Two will be submitted for peer reviewed publication. Chapters Three and Four should be considered preliminary and additional fieldwork and/or analysis are in progress related to these topics. Readers are cautioned that any preliminary conclusions are subject to future revision as more data and analytical results become available.

Knudsen, Curtis M. (Oncorh Consulting, Olympia, WA); Schroder, Steven L. (Washington Department of Fish and Wildlife, Olympia, WA); Johnston, Mark V. (yakama Nation, Toppenish, WA)

2005-05-01T23:59:59.000Z

320

Subsurface characterization of the San Jacinto River Research site  

E-Print Network [OSTI]

In order to develop an effective petroleum repudiation ics. strategy, the interaction between surface and shallow subsurface water was determined for the San Jacinto River Oi1 Spill Remediation Research site. The ten-acre wetland is located...

Leik, Jason Allan

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Voluntary Protection Program Onsite, Liquid Waste Contract Savannah River Site- February 2011  

Broader source: Energy.gov [DOE]

Evaluation to determine whether the Liquid Waste Contract Savannah River Site is continuing to perform at a level deserving DOE-VPP Star recognition.

322

Species for the screening assessment. Columbia River Comprehensive Impact Assessment  

SciTech Connect (OSTI)

Because of past nuclear production operations along the Columbia River, there is intense public and tribal interest in assessing any residual Hanford Site related contamination along the river from the Hanford Reach to the Pacific Ocean. The Columbia River Comprehensive Impact Assessment was proposed to address these concerns. The assessment of the Columbia River is being conducted in phases. The initial phase is a screening assessment of the risk, which addresses current environmental conditions for a range of potential uses. One component of the screening assessment estimates the risk from contaminants in the Columbia River to the environment. The objective of the ecological risk assessment is to determine whether contaminants from the Columbia River pose a significant threat to selected receptor species that exist in the river and riparian communities of the study area. This report (1) identifies the receptor species selected for the screening assessment of ecological risk and (2) describes the selection process. The species selection process consisted of two tiers. In Tier 1, a master species list was developed that included many plant and animal species known to occur in the aquatic and riparian systems of the Columbia River between Priest Rapids Dam and the Columbia River estuary. This master list was reduced to 368 species that occur in the study area (Priest Rapids Dam to McNary Dam). In Tier 2, the 181 Tier 1 species were qualitatively ranked based on a scoring of their potential exposure and sensitivity to contaminants using a conceptual exposure model for the study area.

Becker, J.M.; Brandt, C.A.; Dauble, D.D.; Maughan, A.D.; O`Neil, T.K.

1996-03-01T23:59:59.000Z

323

Regional Climate Model Projections for the State of Washington  

SciTech Connect (OSTI)

Global climate models do not have sufficient spatial resolution to represent the atmospheric and land surface processes that determine the unique regional heterogeneity of the climate of the State of Washington. If future large-scale weather patterns interact differently with the local terrain and coastlines than current weather patterns, local changes in temperature and precipitation could be quite different from the coarse-scale changes projected by global models. Regional climate models explicitly simulate the interactions between the large-scale weather patterns simulated by a global model and the local terrain. We have performed two 100-year climate simulations using the Weather and Research Forecasting (WRF) model developed at the National Center for Atmospheric Research (NCAR). One simulation is forced by the NCAR Community Climate System Model version 3 (CCSM3) and the second is forced by a simulation of the Max Plank Institute, Hamburg, global model (ECHAM5). The mesoscale simulations produce regional changes in snow cover, cloudiness, and circulation patterns associated with interactions between the large-scale climate change and the regional topography and land-water contrasts. These changes substantially alter the temperature and precipitation trends over the region relative to the global model result or statistical downscaling. To illustrate this effect, we analyze the changes from the current climate (1970-1999) to the mid 21st century (2030-2059). Changes in seasonal-mean temperature, precipitation, and snowpack are presented. Several climatological indices of extreme daily weather are also presented: precipitation intensity, fraction of precipitation occurring in extreme daily events, heat wave frequency, growing season length, and frequency of warm nights. Despite somewhat different changes in seasonal precipitation and temperature from the two regional simulations, consistent results for changes in snowpack and extreme precipitation are found in both simulations.

Salathe, E.; Leung, Lai-Yung R.; Qian, Yun; Zhang, Yongxin

2010-05-05T23:59:59.000Z

324

Biological surveys on the Savannah River in the vicinity of the Savannah River Plant (1951-1976)  

SciTech Connect (OSTI)

In 1951, the Academy of Natural Sciences of Philadelphia was contracted by the Savannah River Plant to initiate a long-term monitoring program in the Savannah River. The purpose of this program was to determine the effect of the Savannah River Plant on the Savannah River aquatic ecosystem. The data from this monitoring program have been computerized by the Savannah River Laboratory, and are summarized in this report. During the period from 1951-1976, 16 major surveys were conducted by the Academy in the Savannah River. Water chemistry analyses were made, and all major biological communities were sampled qualitatively during the spring and fall of each survey year. In addition, quantitative diatom data have been collected quarterly since 1953. Major changes in the Savannah River basin, in the Savannah River Plant's activities, and in the Academy sampling patterns are discussed to provide a historical overview of the biomonitoring program. Appendices include a complete taxonomic listing of species collected from the Savannah River, and summaries of the entire biological and physicochemical data base.

Matthews, R. A.

1982-04-01T23:59:59.000Z

325

Innovate Washington Group Looks to Create State Business  

SciTech Connect (OSTI)

Monthly column for TCH - April 2012. Excerpt here: Change is inevitable. In fact, many say it’s the only constant. One can either wait for the waves to hit and try not to drown, or get ahead of them and maximize the ride. I believe being proactive is the harder, but more powerful option. Over the past couple years numerous people have proactively worked to effect a particular change across the state of Washington: create a thriving ecosystem to accelerate technology-based economic development and achieve sustainable job growth. The result is an organization called Innovate Washington.

Madison, Alison L.

2012-04-11T23:59:59.000Z

326

Multi-Scale Action Effectiveness Research in the Lower Columbia River and Estuary, 2011 - FINAL ANNUAL REPORT  

SciTech Connect (OSTI)

The study reported here was conducted by researchers at Pacific Northwest National Laboratory (PNNL), the Oregon Department of Fish and Wildlife (ODFW), the University of Washington (UW), and the National Marine Fisheries Service (NMFS) for the U.S. Army Corps of Engineers, Portland District (USACE). This research project was initiated in 2007 by the Bonneville Power Administration to investigate critical uncertainties regarding juvenile salmon ecology in shallow tidal freshwater habitats of the lower Columbia River. However, as part of the Washington Memorandum of Agreement, the project was transferred to the USACE in 2010. In transferring from BPA to the USACE, the focus of the tidal freshwater research project shifted from fundamental ecology toward the effectiveness of restoration in the Lower Columbia River and estuary (LCRE). The research is conducted within the Action Agencies Columbia Estuary Ecosystem Restoration Program (CEERP). Data reported herein spans the time period May 2010 to September 2011.

Sather, Nichole K.; Storch, Adam; Johnson, Gary E.; Teel, D. J.; Skalski, J. R.; Bryson, Amanda J.; Kaufmann, Ronald M.; Woodruff, Dana L.; Blaine, Jennifer; Kuligowski, D. R.; Kropp, Roy K.; Dawley, Earl M.

2012-05-31T23:59:59.000Z

327

PACIFIC NORTHWEST: CLIMATE IMPACTS GROUP http://www.cses.washington.edu/cig/  

E-Print Network [OSTI]

of Tualatin, Oregon · King County, Washington (County Council, Office of the Executive, Department of Natural · Tacoma Power and Light · Thurston County, Washington State Level · Alaska Department of Fish and Game

Colorado at Boulder, University of

328

Energy Secretary Moniz's Remarks at CSIS in Washington D.C. on...  

Office of Environmental Management (EM)

Energy Secretary Moniz's Remarks at CSIS in Washington D.C. on Energy Security 40 Years after the Embargo - As Delivered Energy Secretary Moniz's Remarks at CSIS in Washington D.C....

329

CX-010738: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

2013 Spacer and Insulator Replacement Program; Third and Fourth Quarter Projects CX(s) Applied: B1.3 Date: 07/15/2013 Location(s): Washington, Washington, Washington Offices(s): Bonneville Power Administration

330

CX-011836: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Franklin to Hatwai Fiber Project CX(s) Applied: B4.7 Date: 01/17/2014 Location(s): Washington, Washington, Washington, Idaho Offices(s): Bonneville Power Administration

331

Influence of calcite on uranium(VI) reactive transport in the groundwater–river mixing zone  

SciTech Connect (OSTI)

Calcite is an important mineral that can affect uranyl reactive transport in subsurface sediments. This study investigated the distribution of calcite and its influence on uranyl adsorption and reactive transport in the groundwater-river mixing zone at US Hanford 300A, Washington State. Simulations using a 2D reactive transport model under field-relevant hydrogeochemical conditions revealed a complex distribution of calcite concentration as a result of dynamic groundwater-river interactions. The calcite concentration distribution in turn affected the spatial and temporal changes in aqueous carbonate, calcium, and pH, which subsequently influenced U(VI) mobility and discharge rates into the river. The results implied that calcite distribution and its concentration dynamics is an important consideration for field characterization, monitoring, and reactive transport prediction.

Ma, Rui; Liu, Chongxuan; Greskowiak, Janek; Prommer, Henning; Zachara, John M.; Zheng, Chunmiao

2014-01-23T23:59:59.000Z

332

Response of winter birds to soil remediation along the Columbia River at the Hanford Site  

SciTech Connect (OSTI)

The Columbia River at the Hanford Site, located in south-central Washington State, USA, is a regionally important refugium for overwintering birds. Some of the river shoreline has been designated by the U.S. Department of Energy for environmental clean-up following past production of materials for nuclear weapons. We evaluated the effects of soil remediation on winter birds at six inactive nuclear reactor areas. Remediation activities consisted of daily excavation and removal of approximately 1,035 t of contaminated soil from previously herbicided and denuded areas located between 30 m and 400 m and mostly in line-of-sight of the river shoreline. Remediation activities had no apparent effect on numbers of riverine or terrestrial birds using adjacent undisturbed shoreline and riparian habitat.

Becker, James M.; McKinstry, Craig A.

2004-04-01T23:59:59.000Z

333

Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses  

SciTech Connect (OSTI)

An evaluation of emissions of natural gas and diesel buses operated by the Washington Metro Area Transit Authority.

Melendez, M.; Taylor, J.; Wayne, W. S.; Smith, D.; Zuboy, J.

2005-12-01T23:59:59.000Z

334

Washington State Department of Transportation Bridge Maintenance and Inspection Guidance for Protected Terrestrial Species  

E-Print Network [OSTI]

and addressing Migratory Bird Treaty Act issues. Chapter 5the federal Migratory Bird Treaty Act (MBTA) and Washington

Carey, Marion

2007-01-01T23:59:59.000Z

335

Potential for Natural Gas Storage in Deep Basalt Formations at Canoe Ridge, Washington State: A Hydrogeologic Assessment  

SciTech Connect (OSTI)

Between 1999 and 2002, Pacific Gas Transmission Company (PGT) (now TransCanada Pipeline Company) and AVISTA Corporation, together with technical support provided by the Pacific Northwest National Laboratory and the U.S. Department of Energy (DOE) examined the feasibility of developing a subsurface, natural gas-storage facility in deep, underlying Columbia River basalt in south-central Washington state. As part of this project, the 100 Circles #1 well was drilled and characterized in addition to surface studies. This report provides data and interpretations of the geology and hydrology collected specific to the Canoe Ridge site as part of the U.S. DOE funding to the Pacific Northwest National Laboratory in support of this project.

Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

2005-09-24T23:59:59.000Z

336

Ecological Modelling 187 (2005) 140178 Eutrophication model for Lake Washington (USA)  

E-Print Network [OSTI]

Ecological Modelling 187 (2005) 140­178 Eutrophication model for Lake Washington (USA) Part I eutrophication model that has been developed to simulate plankton dynamics in Lake Washington, USA. Because loading scenarios. © 2005 Elsevier B.V. All rights reserved. Keywords: Eutrophication; Lake Washington

Arhonditsis, George B.

337

November 2002 15th TOFE, Washington, D.C. 1 Thermal Behavior and Operating  

E-Print Network [OSTI]

November 2002 15th TOFE, Washington, D.C. 1 Thermal Behavior and Operating Requirements of IFE Washington, D.C. November 2002 #12;November 2002 15th TOFE, Washington, D.C. 2 Abstract During injection the thermal behavior of the target under such conditions and explores possible ways of extending the target

Raffray, A. René

338

COMPLEXITY AND ADAPTIVE MANAGEMENT IN WASHINGTON STATE FOREST POLICY, 1987-2001  

E-Print Network [OSTI]

COMPLEXITY AND ADAPTIVE MANAGEMENT IN WASHINGTON STATE FOREST POLICY, 1987-2001 by Mark Kepkay BA and Adaptive Management in Washington State Forest Policy, 1987-2001 PROJECT NUMBER: 345 SUPERVISORY COMMITTEE programs within Washington State forest policy. I focus on the Watershed Analysis program, 1992 to 1997

339

Prioritization and accelerated remediation of groundwater contamination in the 200 Areas of the Hanford Site, Washington  

SciTech Connect (OSTI)

The Hanford Site, operated by the US Department of Energy (DOE), occupies about 1,450 km{sup 2} (560 mi{sup 2}) of the southeastern part of Washington State north of the confluence of the Yakima and Columbia Rivers. The Hanford Site is organized into numerically designated operational areas. The 200 Areas, located near the center of the Hanford Site, encompasses the 200 West, East and North Areas and cover an area of over 40 km{sup 2}. The Hanford Site was originally designed, built, and operated to produce plutonium for nuclear weapons using production reactors and chemical reprocessing plants. Operations in the 200 Areas were mainly related to separation of special nuclear materials from spent nuclear fuel and contain related chemical and fuel processing and waste management facilities. Large quantities of chemical and radioactive waste associated with these processes were often disposed to the environment via infiltration structures such as cribs, ponds, ditches. This has resulted in over 25 chemical and radionuclide groundwater plumes, some of which have reached the Columbia River. An Aggregate Area Management Study program was implemented under the Hanford Federal Facility Agreement and Consent Order to assess source and groundwater contamination and develop a prioritized approach for managing groundwater remediation in the 200 Areas. This included a comprehensive evaluation of existing waste disposal and environmental monitoring data and the conduct of limited field investigations (DOE-RL 1992, 1993). This paper summarizes the results of groundwater portion of AAMS program focusing on high priority contaminant plume distributions and the groundwater plume prioritization process. The objectives of the study were to identify groundwater contaminants of concern, develop a conceptual model, refine groundwater contaminant plume maps, and develop a strategy to expedite the remediation of high priority contaminants through the implementation of interim actions.

Wittreich, C.D.; Ford, B.H.

1993-04-01T23:59:59.000Z

340

WASHINGTON STATE UNIVERSITY GRADUATE SCHOOL GRADUATE MENTOR ACADEMY OVERVIEW  

E-Print Network [OSTI]

WASHINGTON STATE UNIVERSITY GRADUATE SCHOOL GRADUATE MENTOR ACADEMY OVERVIEW 1 Graduate Mentor Academy Overview High quality graduate programs are those with notable faculty and systems for advising Academy 3. Representation on Graduate Exams and Examination Failure 4. Graduate and Professional Student

Collins, Gary S.

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

University of Washington-Seattle College of Engineering Mathematics Academy  

E-Print Network [OSTI]

#12;University of Washington-Seattle College of Engineering Mathematics Academy 2010 July 11 - August 6 2010 UW Mathematics Academy #12;About the College of Engineering MATHEMATICS ACADEMY The COLLEGE OF ENGINEERING MATHEMATICS ACADEMY is a mathematics intensive, four- week residential session , first held

Anderson, Richard

342

Washington University Can the Sound Generated by Modern Wind Turbines  

E-Print Network [OSTI]

Washington University Can the Sound Generated by Modern Wind Turbines Affect the Health of Those turbines haveWind turbines have been getting biggerbeen getting bigger and bigger....and bigger.... Lars Needs Wind turbines are "green" and areWind turbines are "green" and are contributing to our energy

Salt, Alec N.

343

Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,,  

E-Print Network [OSTI]

Natural Gas Pipeline Leaks Across Washington, DC Robert B. Jackson,,, * Adrian Down, Nathan G increased in recent decades, but incidents involving natural gas pipelines still cause an average of 17 fatalities and $133 M in property damage annually. Natural gas leaks are also the largest anthropogenic

Jackson, Robert B.

344

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network [OSTI]

project having the potential to impact lead-containing building materials, including lead paint. ResultsUNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Lead Basis, lead-containing materials have the potential to negatively impact the health of construction workers

Wilcock, William

345

The Washington Post, April 16, 2006 Going Nuclear  

E-Print Network [OSTI]

The Washington Post, April 16, 2006 Going Nuclear A Green Makes the Case By Patrick Moore: pmoore@greenspirit.com In the early 1970s when I helped found Greenpeace, I believed that nuclear energy was synonymous with nuclear the spectacular rocky northwest coast to protest the testing of U.S. hydrogen bombs in Alaska's Aleutian Islands

Bilbao Arrese, Jesús Mario

346

STATE OF WASHINGTON DEPARTMENT OF COMMUNITY, TRADE AND ECONOMIC DEVELOPMENT  

E-Print Network [OSTI]

an addition $5 billion per year on energy costs an increase of nearly one and onehalf percent in our state GDP devoted to energy. Although we have little or no control over our petroleum and natural gasSTATE OF WASHINGTON DEPARTMENT OF COMMUNITY, TRADE AND ECONOMIC DEVELOPMENT Energy Policy Division

347

Understanding African Poverty: Beyond the Washington Consensus to the  

E-Print Network [OSTI]

23 2 Understanding African Poverty: Beyond the Washington Consensus to the Millennium Development Poverty he era of structural adjustment, which can be dated approximately to the last two decades-based development lending of structural adjustment, it remains mired in poverty and debt. What went wrong

348

The Environmental Studies MAJOR The George Washington University  

E-Print Network [OSTI]

Geol 3193 Environmental Law 3 Amst 2520-1 American Architecture 3 Anth 3502 Cultural Ecology 3 AnthThe Environmental Studies MAJOR The George Washington University To declare as an Environmental-8523 Program Advisor Prof. Melissa Keeley, keeley@gwu.edu, (202) 994-7156 Environmental Studies majors must

Vertes, Akos

349

GeoffBrumfiel,Washington Nuclear watchdogs and former weapons  

E-Print Network [OSTI]

is supposed to help scientists assess the nation's ageing nuclear stockpile without testing the weaponsGeoffBrumfiel,Washington Nuclear watchdogs and former weapons scientists are taking issue existing bombs detonate, so that the stockpile can be maintained without testing the weapons it contains

350

Evaluation of the Washington State Weatherization Assistance Program  

SciTech Connect (OSTI)

Since 1976, the national Weatherization Assistance Program has been working to improve the energy efficiency of dwelling units occupied by low-income residents. Sponsored by the U.S. Department of Energy and implemented by state and local agencies, the program is active in all 50 states and the District of Columbia. This report focuses on the recent outcomes of Washington State's weatherization efforts. The performance of the Washington Weatherization Program is of interest because few evaluations have been performed in this part of the country and because Washington contains a high proportion of electrically-heated houses, which have received relatively little examination in the past. This study, which calculates the magnitude of energy savings for both electrically-heated and gas-heated houses and compares program benefits and costs, was initiated by Oak Ridge National Laboratory (ORNL) in the summer of 1998. In conclusion, we find that the Washington State Weatherization Assistance Program has achieved substantial energy savings in both electrically-heated and gas-heated houses. A comparison of the findings from this study with those from many other evaluations of state weatherization efforts conducted over the past 10 years indicates that Washington is in the top one-third nationwide in terms of program-induced energy savings. In addition, the relationships between energy savings and both pre-weatherization consumption and weatherization expenditures reported in this document are consistent with the findings from earlier studies. These findings suggest that households with high energy consumption make effective targets for state weatherization efforts and that increasing the amount spent per household yields tangible returns in terms of energy savings.

Schweitzer, M.

2001-02-23T23:59:59.000Z

351

Determining the Nature of Neutrinos and Using Them to Study the...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determining the Nature of Neutrinos and Using Them to Study the Sun January 5, 2015 3:30PM to 4:30PM Presenter Nikolai Tolich, University of Washington Location Building 203 Type...

352

University of Washington Environmental Health and Safety  

E-Print Network [OSTI]

. Responsibility 4. Safety Coordinator B. Fundamentals For All Work-Sites: 8 Keys 1. New Employee Health and Safety work-sites, the Department of Environmental Health & Safety (EH&S) has written this guide to help you the process of determining which health and safety risks are unique to your work setting. Ultimately, you

Wilcock, William

353

10 of 11 DOCUMENTS The Washington Post  

E-Print Network [OSTI]

, to reduce the risk of nuclear war. Yet the administration seems committed to measures in the fast also apparently decided to test 12, rather than eight, warheads on the new Trident II submarine will be reserved for bombers and their weapons; negotiations will determine the size of each side's ballistic

Deutch, John

354

Final Site Specific Decommissioning Inspection Report #2 for the University of Washington Research and Test Reactor, Seattle, Washington  

SciTech Connect (OSTI)

During the period of August through November 2006, ORISE performed a comprehensive IV at the University of Washington Research and Test Reactor Facility. The objective of the ORISE IV was to validate the licensee’s final status survey processes and data, and to assure the requirements of the DP and FSSP were met.

S.J. Roberts

2007-03-20T23:59:59.000Z

355

Self-revegetation of disturbed ground in the deserts of Nevada and Washington  

SciTech Connect (OSTI)

Plant cover established without purposeful soil preparation or seeding was measured on ground disturbed by plowing in Washington and by aboveground nuclear explosions in Nevada. After a time lapse of three decades in Washington and two decades in Nevada, fewer species were self-established on the disturbed ground than the nearby undisturbed ground. Alien annual plants were the dominants on the disturbed ground. Cheatgrass (Bromus tectorum) dominated abandoned fields in Washington, and filaree (Erodium cicutarium) dominated disturbed ground in Nevada. Perennial grasses and shrubs appeared to be more successful as invaders in Nevada than in Washington. This distinction is attributed to the superior competitive ability of cheatgrass in Washington.

Rickard, W.H.; Sauer, R.H.

1982-01-01T23:59:59.000Z

356

Rivanna River Basin Commission (Virginia)  

Broader source: Energy.gov [DOE]

The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

357

Yellowstone River Compact (North Dakota)  

Broader source: Energy.gov [DOE]

The Yellowstone River Compact, agreed to by the States of Montana, North Dakota, and Wyoming, provides for an equitable division and apportionment of the waters of the Yellowstone River, as well as...

358

Status and Habitat Requirements of the White Sturgeon Populations in the Columbia River Downstream from McNary Dam Volume II; Supplemental Papers and Data Documentation, 1986-1992 Final Report.  

SciTech Connect (OSTI)

This is the final report for research on white sturgeon Acipenser transmontanus from 1986--92 and conducted by the National Marine Fisheries Service (NMFS), Oregon Department of Fish and Wildlife (ODFW), US Fish and Wildlife Service (USFWS), and Washington Department of Fisheries (WDF). Findings are presented as a series of papers, each detailing objectives, methods, results, and conclusions for a portion of this research. This volume includes supplemental papers which provide background information needed to support results of the primary investigations addressed in Volume 1. This study addresses measure 903(e)(1) of the Northwest Power Planning Council's 1987 Fish and Wildlife Program that calls for ''research to determine the impact of development and operation of the hydropower system on sturgeon in the Columbia River Basin.'' Study objectives correspond to those of the ''White Sturgeon Research Program Implementation Plan'' developed by BPA and approved by the Northwest Power Planning Council in 1985. Work was conducted on the Columbia River from McNary Dam to the estuary.

Beamesderfer, Raymond C.; Nigro, Anthony A. [Oregon Dept. of Fish and Wildlife, Clackamas, OR (US)

1995-01-01T23:59:59.000Z

359

P. Julien S. Ikeda River Engineering and  

E-Print Network [OSTI]

1 P. Julien S. Ikeda River Engineering and Stream Restoration Pierre Y. Julien Hong Kong - December 2004 River Engineering and Stream Restoration I - Stream Restoration Objectives Brief overview of River Engineering and Stream Restoration with focus on : 1. River Equilibrium; 2. River Dynamics; 3. River

Julien, Pierre Y.

360

Pecos River Ecosystem Monitoring Project  

E-Print Network [OSTI]

TR- 272 2004 Pecos River Ecosystem Monitoring Project C. Hart A. McDonald Texas Water Resources Institute Texas A&M University - 146 - 2003 Pecos River Ecosystem Monitoring Project... Charles R. Hart, Extension Range Specialist, Fort Stockton Alyson McDonald, Extension Assistant – Hydrology, Fort Stockton SUMMARY The Pecos River Ecosystem Project is attempting to minimize the negative impacts of saltcedar on the river ecosystem...

McDonald, A.; Hart, C.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Muddy River Restoration Project Begins  

E-Print Network [OSTI]

Muddy River Restoration Project Begins Page 5 #12;2 YANKEE ENGINEER February 2013 Yankee Voices of the Muddy River Restoration project. Inset photo: Flooding at the Muddy River. Materials provided by Mike Project Manager, on the passing of his father in law, Francis James (Jim) Murray, Jan. 9. ... to Laura

US Army Corps of Engineers

362

Water Conservation Study for Manastash Creek Water Users, Kittias County, Washington, Final Report 2002.  

SciTech Connect (OSTI)

Manastash Creek is tributary of the Yakima River and is located southwest and across the Yakima River from the City of Ellensburg. The creek drains mountainous terrain that ranges in elevation from 2,000 feet to over 5,500 feet and is primarily snowmelt fed, with largest flows occurring in spring and early summer. The creek flows through a narrow canyon until reaching a large, open plain that slopes gently toward the Yakima River and enters the main stem of the Yakima River at river mile 154.5. This area, formed by the alluvial fan of the Creek as it leaves the canyon, is the subject of this study. The area is presently dominated by irrigated agriculture, but development pressures are evident as Ellensburg grows and develops as an urban center. Since the mid to late nineteenth century when irrigated agriculture was established in a significant manner in the Yakima River Basin, Manastash Creek has been used to supply irrigation water for farming in the area. Adjudicated water rights dating back to 1871 for 4,465 acres adjacent to Manastash Creek allow appropriation of up to 26,273 acre-feet of creek water for agricultural irrigation and stock water. The diversion of water from Manastash Creek for irrigation has created two main problems for fisheries. They are low flows or dewatered reaches of Manastash Creek and fish passage barriers at the irrigation diversion dams. The primary goal of this study, as expressed by Yakama Nation and BPA, is to reestablish safe access in tributaries of the Yakima River by removing physical barriers and unscreened diversions and by adding instream flow where needed for fisheries. The goal expressed by irrigators who would be affected by these projects is to support sustainable and profitable agricultural use of land that currently uses Manastash Creek water for irrigation. This study provides preliminary costs and recommendations for a range of alternative projects that will partially or fully meet the goal of establishing safe access for fisheries in Manastash Creek by reducing or eliminating diversions and eliminating fish passage barriers. Further study and design will be necessary to more fully develop the alternatives, evaluate their environmental benefits and impacts and determine the effect on Manastash Creek water users. Those studies will be needed to determine which alternative has the best combination of benefits and costs, and meets the goal of the Manastash Creek water users.

Montgomery Watson Harza (Firm)

2002-12-31T23:59:59.000Z

363

University of Washington`s radioecological studies in the Marshall Islands, 1946-1977  

SciTech Connect (OSTI)

Since 1946, personnel from the School of Fisheries, University of Washington, have studied the effects of nuclear detonations and the ensuing radioactivity on the marine and terrestrial environments throughout the Central Pacific. A collection of reports and publications about these activities plus a collection of several thousand samples from these periods are kept at the School of Fisheries. General findings from the surveys show that (1) fission products were prevalent in organisms of the terrestrial environment whereas activation products were prevalent in marine organisms; (2) the best biological indicators of fallout radionuclides by environments were (a) terrestrial-coconuts, land crabs; (b) reef-algae, invertebrates; and (c) marine-plankton, fish. Studies of plutonium and americium in Bikini Atoll showed that during 1971-1977 the highest concentrations of {sup 241}Am, 2.85 Bq g-{close_quote} (77 pCi g{sup -1}) and {sup 239,240}Pu, 4.44 Bq g{sup -1} (120 pCi g{sup -1}), in surface sediments were found in the northwest part of the lagoon. The concentrations in the bomb craters were substantially lower than these values. Concentrations of soluble and particulate plutonium and americium in surface and deep water samples showed distributions similar to the sediment samples. That is, the highest concentration of these radionuclides in the water column were at locations with highest sediment concentration. Continuous circulation of water in the lagoon and exchange of water with open ocean resulted in removal of 111 G Bq y{sup -1} (3 Ci y{sup -1}) {sup 241}Am and 222 G Bq y{sup -1} (6 Ci y{sup -1}) {sup 239,240}Pu into the North Equatorial Current. A summary of the surveys, findings, and the historical role of the Laboratory in radioecological studies of the Marshall Islands are presented. 23 refs., 1 fig., 1 tab.

Donaldson, L.R.; Seymour, A.H.; Nevissi, A.E. [Univ. of Washington, Seattle, WA (United States)

1997-07-01T23:59:59.000Z

364

Rainfall-River Forecasting  

E-Print Network [OSTI]

;2Rainfall-River Forecasting Joint Summit II NOAA Integrated Water Forecasting Program · Minimize losses due management and enhance America's coastal assets · Expand information for managing America's Water Resources, Precipitation and Water Quality Observations · USACE Reservoir Operation Information, Streamflow, Snowpack

US Army Corps of Engineers

365

CX-010017: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination L-Area River Water Valve V-022 Bypass and Piping CX(s) Applied: B1.3 Date: 01292013 Location(s): South Carolina Offices(s): Savannah...

366

Wind Powering America State Outreach. Final Technical Report: Washington State  

SciTech Connect (OSTI)

The Washington Department of Commerce, via a U.S. Department of Energy grant, supported research into siting and permitting processes for wind projects by Skagit County, Washington. The goal was to help a local government understand key issues, consider how other areas have addressed wind siting, and establish a basis for enacting permitting and zoning ordinances that provided a more predictable permitting path and process for landowners, citizens, government and developers of small and community wind projects. The County?s contractor developed a report that looked at various approaches to wind siting, interviewed stakeholders, and examined technology options. The contractor outlined key issues and recommended the adoption of a siting process. The Skagit County Commission considered the report and directed the Skagit County Planning & Development Services Department to add development of wind guidelines to its work plan for potential changes to development codes.

Stearns, Tim

2013-09-30T23:59:59.000Z

367

Routine environmental audit of the Hanford Site, Richland, Washington  

SciTech Connect (OSTI)

This report documents the results of the routine environmental audit of the Hanford Site (Hanford), Richland, Washington. During this audit, the activities conducted by the audit team included reviews of internal documents an reports from previous audits and assessments; interviews with US Department of Energy (DOE), State of Washington regulatory, and contractor personnel; and inspections and observations of selected facilities and operations. The onsite portion of the audit was conducted May 2--13, 1994, by the DOE Office of Environmental Audit (EH-24), located within the Office of Environment, Safety and Health (EH). The audit evaluated the status of programs to ensure compliance with Federal, State, and local environmental laws and regulations; compliance with DOE orders, guidance, and directives; and conformance with accepted industry practices and standards of performance. The audit also evaluated the status and adequacy of the management systems developed to address environmental requirements.

Not Available

1994-05-01T23:59:59.000Z

368

Common Data Set 2005-06 Washington and Lee University  

E-Print Network [OSTI]

Common Data Set 2005-06 Washington and Lee University 2005 Common Data Set Information Previous W:///Y|/ir/public_html/cds/cds2005.htm (1 of 28)12/1/2005 2:34:13 PM #12;Common Data Set 2005-06 Coeducational college Carnegie.htm (2 of 28)12/1/2005 2:34:13 PM #12;Common Data Set 2005-06 All other first- professionals 149 104

Marsh, David

369

Secretary Chu Speaks at the 2010 Washington Auto Show  

ScienceCinema (OSTI)

Secretary Chu lays out a roadmap for how the U.S. can lead the world in making the clean vehicles we need at the 2010 Washington Auto Show. He also announced that the Department of Energy had closed on a $1.4 billion loan to Nissan to build the all-electric LEAF in Tennessee and create up to 1,300 American jobs.

Secretary Chu

2010-09-01T23:59:59.000Z

370

Secretary Chu Speaks at the 2010 Washington Auto Show  

SciTech Connect (OSTI)

Secretary Chu lays out a roadmap for how the U.S. can lead the world in making the clean vehicles we need at the 2010 Washington Auto Show. He also announced that the Department of Energy had closed on a $1.4 billion loan to Nissan to build the all-electric LEAF in Tennessee and create up to 1,300 American jobs.

Secretary Chu

2010-02-03T23:59:59.000Z

371

Lake Marcel-Stillwater, Washington: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: Energy ResourcesGas Location CookHart,Information

372

Lake Morton-Berrydale, Washington: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: Energy ResourcesGasInformation Morton-Berrydale,

373

Lewis County, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville,LeightonLeola,Meadow,Levy County,41. It is

374

City of Richland, Washington (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby, Illinois (UtilityPortland Place:Radium,Washington (Utility

375

City of Washington, Kansas (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan, Missouri (UtilityUnionWahoo,Washington City of Place:

376

City of Washington, North Carolina (Utility Company) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan, Missouri (UtilityUnionWahoo,Washington City of

377

City of Washington, Utah (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDITOhioOglesby,Sullivan, Missouri (UtilityUnionWahoo,Washington City

378

Meeting Summary Advanced Light Water Reactor Fuels Industry Meeting Washington DC October 27 - 28, 2011  

SciTech Connect (OSTI)

The Advanced LWR Fuel Working Group first met in November of 2010 with the objective of looking 20 years ahead to the role that advanced fuels could play in improving light water reactor technology, such as waste reduction and economics. When the group met again in March 2011, the Fukushima incident was still unfolding. After the March meeting, the focus of the program changed to determining what we could do in the near term to improve fuel accident tolerance. Any discussion of fuels with enhanced accident tolerance will likely need to consider an advanced light water reactor with enhanced accident tolerance, along with the fuel. The Advanced LWR Fuel Working Group met in Washington D.C. on October 72-18, 2011 to continue discussions on this important topic.

Not Listed

2011-11-01T23:59:59.000Z

379

Proposed Tenaska Washington II Generation Project : Final Environmental Impact Statement. Volume 2: Public Involvement.  

SciTech Connect (OSTI)

In regard to the proposed Tenaska Washington II Generation Project, the goal of the Bonneville Power Administration`s (BPA) Environmental Impact Statement (EIS) public involvement process is to determine the issues to be examined and pertinent analyses to be conducted and to solicit comments on the content and quality of information presented in the Draft Environmental Impact Statement (DEIS). Comments and questions are solicited from the public and government agencies during the scoping process and during the comment period and public hearing on the DEIS, to find out what is of most concern to them. The end product of the public involvement process is the Comment Report which follows in part of this volume on Public Involvement.

United States. Bonneville Power Administration.

1994-01-01T23:59:59.000Z

380

Missoula flood dynamics and magnitudes inferred from sedimentology of slack-water deposits on the Columbia Plateau, Washington  

SciTech Connect (OSTI)

Sedimentological study of late Wisconsin, Missoula-flood slack-water sediments deposited along the Columbia and Tucannon Rivers in southern Washington reveals important aspects of flood dynamics. Most flood facies were deposited by energetic flood surges (velocities>6 m/sec) entering protected areas along the flood tract, or flowing up and then directly out of tributary valleys. True still-water facies are less voluminous and restricted to elevations below 230 m. High flood stages attended the initial arrival of the flood wave and were not associated with subsequent hydraulic ponding upslope from channel constrictions. Among 186 flood beds studied in 12 sections, 57% have bioturbated tops, and about half of these bioturbated beds are separated from overlying flood beds by nonflood sediments. A single graded flood bed was deposited at most sites during most floods. Sequences in which 2-9 graded beds were deposited during a single flood are restricted to low elevations. These sequences imply complex, multi-peaked hydrographs in which the first flood surge was generally the largest, and subsequent surges were attenuated by water already present in slack-water areas. Slack-water - sediment stratigraphy suggests a wide range of flood discharges and volumes. Of >40 documented late Wisconsin floods that inundated the Pasco Basin, only about 20 crossed the Palouse-Snake divide. Floods younger than the set-S tephras from Mount St.Helens were generally smaller than earlier floods of late Wisconsin age, although most still crossed the Palouse-Snake divide. These late floods primarily traversed the Cheney-Palouse scabland because stratigraphy of slack-water sediment along the Columbia River implies that the largest flood volumes did not enter the Pasco Basin by way of the Columbia River. 47 refs., 17 figs., 2 tabs.

Smith, G.A. (Univ. of New Mexico, Albuquerque (United States))

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Grays River Watershed and Biological Assessment Final Report 2006.  

SciTech Connect (OSTI)

The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

May, Christopher W.; McGrath, Kathleen E.; Geist, David R. [Pacific Northwest National Laboratory; Abbe, Timothy; Barton, Chase [Herrera Environmental Consultants, Inc.

2008-02-04T23:59:59.000Z

382

Grays River Watershed and Biological Assessment, 2006 Final Report.  

SciTech Connect (OSTI)

The Grays River Watershed and Biological Assessment was funded to address degradation and loss of spawning habitat for chum salmon (Onchorhynchus keta) and fall Chinook salmon (Onchoryhnchus tshawytscha). In 1999, the National Marine Fisheries Service listed lower Columbia River chum salmon as a threatened Evolutionarily Significant Unit (ESU) under the Endangered Species Act of 1973 (ESA). The Grays River watershed is one of two remaining significant chum salmon spawning locations in this ESU. Runs of Grays River chum and Chinook salmon have declined significantly during the past century, largely because of damage to spawning habitat associated with timber harvest and agriculture in the watershed. In addition, approximately 20-25% of the then-remaining chum salmon spawning habitat was lost during a 1999 channel avulsion that destroyed an important artificial spawning channel operated by the Washington Department of Fish and Wildlife (WDFW). Although the lack of stable, high-quality spawning habitat is considered the primary physical limitation on Grays River chum salmon production today, few data are available to guide watershed management and channel restoration activities. The objectives of the Grays River Watershed and Biological Assessment project were to (1) perform a comprehensive watershed and biological analysis, including hydrologic, geomorphic, and ecological assessments; (2) develop a prioritized list of actions that protect and restore critical chum and Chinook salmon spawning habitat in the Grays River based on comprehensive geomorphic, hydrologic, and stream channel assessments; and (3) gain a better understanding of chum and Chinook salmon habitat requirements and survival within the lower Columbia River and the Grays River. The watershed-based approach to river ecosystem restoration relies on a conceptual framework that describes general relationships between natural landscape characteristics, watershed-scale habitat-forming processes, aquatic habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area was also evaluated on the riparian scale, with appropriate landscape variables analyzed within

May, Christopher; Geist, David [Pacific Northwest National Laboratory

2007-04-01T23:59:59.000Z

383

Evaluation of a Fish Passage Site in the Walla Walla River Basin, 2009 Annual Report : September 2008 - August 2009.  

SciTech Connect (OSTI)

In 2009, Pacific Northwest National Laboratory (PNNL) evaluated the Touchet Consolidated Facility to determine if it is designed, constructed, operated, and maintained to effectively provide juvenile salmonids with safe passage past the diversion and back to the Touchet River. Completed in 2008, the Touchet Consolidated Facility combined two irrigation diversions with an existing intake for the Touchet Acclimation Facility. The consolidated facility includes a separate fish screen and intake for each user, a pool and chute fishway, and an adult fish trap. The fish screens portions of the facility were evaluated on April 20, 2009, using underwater videography, acoustic Doppler velocimeter measurements, and visual observations while water was diverted to the acclimation facility alone and again as water was diverted to the irrigation system and pond together. The facility is in good condition and is well maintained, although water velocities within the site do not meet the criteria set by the National Marine Fisheries Service (NMFS). Approach velocities above 0.4 ft/s at the upstream end of the facility and decreases in sweep velocity toward the bypass are likely caused by the proximity of the upstream screen to the spill over stoplogs that control flow at the upstream end of the forebay. We recommend working with Touchet Acclimation Facility staff to try different configurations and heights of forebay stoplogs while PNNL staff measure water velocities, allowing real-time monitoring of changes in approach and sweep velocities resulting from the configuration changes. It may be possible to bring approach and sweep velocities more in line with the NMFS criteria for juvenile fish screens. We also recommend evaluating the facility later in the year when river levels are low and the irrigation district is the only water user. During the site visit, it was noted that the upstream end of the fishway has relatively closely spaced louvers that point downstream. During higher river levels such as on April 20, the orientation of the louvers causes a headloss of up to 1 ft or more. Fish must maneuver through this hydraulic jump and between the louvers. The Washington Department of Fish and Wildlife is considering alternatives to this configuration; if needed, we would be available to offer technical assistance.

Chamness, Mickie A. [Pacific Northwest National Laboratory

2009-08-20T23:59:59.000Z

384

Hood River Production Program Review, Final Report 1991-2001.  

SciTech Connect (OSTI)

This document provides a comprehensive review of Bonneville Power Administration (BPA) funded activities within the Hood River Basin from 1991 to 2001. These activities, known as the Hood River Production Program (HRPP), are intended to mitigate for fish losses related to operation of federal dams in the Columbia River Basin, and to contribute to recovery of endangered and/or threatened salmon and steelhead, as directed by Nation Oceanic and Atmospheric Administration - Fisheries (NOAA Fisheries). The Environmental Impact Statement (EIS) for the HRPP, which authorized BPA to fund salmon and steelhead enhancement activities in the Hood River Basin, was completed in 1996 (BPA 1996). The EIS specified seven years of monitoring and evaluation (1996-2002) after program implementation to determine if program actions needed modification to meet program objectives. The EIS also called for a program review after 2002, that review is reported here.

Underwood, Keith; Chapman, Colin; Ackerman, Nicklaus

2003-12-01T23:59:59.000Z

385

Hood River Passive House  

SciTech Connect (OSTI)

The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project.

Hales, D.

2013-03-01T23:59:59.000Z

386

South Fork Tolt River Hydroelectric Project : Adopted Portions of a 1987 Federal Energy Regulatory Commission`s Final Environmental Impact Statement.  

SciTech Connect (OSTI)

The South Fork Tolt River Hydroelectric Project that world produce 6.55 average megawatts of firm energy per year and would be sited in the Snohomish River Basin, Washington, was evaluated by the Federal Energy Regulatory commission (FERC) along with six other proposed projects for environmental effects and economic feasibility Based on its economic analysis and environmental evaluation of the project, the FERC staff found that the South Fork Tolt River Project would be economically feasible and would result in insignificant Impacts if sedimentation issues could be resolved. Upon review, the BPA is adopting portions of the 1987 FERC FEIS that concern the South Fork Tolt River Hydroelectric Project and updating specific sections in an Attachment.

United States. Bonneville Power Administration.

1992-07-01T23:59:59.000Z

387

E-Print Network 3.0 - annual meeting washington Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Medicine 11 KYLE CLARK BEARDSLEY Curriculum Vitae Summary: of the American Political Science Association, Washington, DC, 2005; and Annual Meeting of the Peace...

388

E-Print Network 3.0 - area washington volume Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

search results for: area washington volume Page: << < 1 2 3 4 5 > >> 1 WRRC Report No. 153 Water Resources Publications Summary: of Water Resources in Metropolitan Environments...

389

EIS-0119: Decommissioning of Eight Surplus Production Reactors at the Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EIS presents analyses of potential environmental impacts of decommissioning the eight surplus production reactors at the Hanford Site near Richland, Washington.

390

Microsoft Word - DOE-ID-13-068 Washington State EC B3-6.doc  

Broader source: Energy.gov (indexed) [DOE]

8 SECTION A. Project Title: Managing Zirconium Chemistry and Phase Compatibility in Combined Process Separations for Minor Actinide Partitioning- Washington State University...

391

Final Site-Specific Decommissioning Inspection Report for the University of Washington Research and Test Reactor  

SciTech Connect (OSTI)

Report of site-specific decommissioning in-process inspection activities at the University of Washington Research and Test Reactor Facility.

Sarah Roberts

2006-10-18T23:59:59.000Z

392

2005 Inventory of Greenhouse Gas Emissions Ascribable to the University of Washington  

E-Print Network [OSTI]

2005 Inventory of Greenhouse Gas Emissions Ascribable to the University of Washington October 2007....................................................................................................................4 Corporate vs. Geographic Inventories...........................................................................4 Inventory Protocol

Kaminsky, Werner

393

Raymond A. Silverman, ed. Ethiopia: Traditions of Creativity. Seattle: University of Washington Press, 1999  

E-Print Network [OSTI]

Raymond A. , ed. , Ethiopia Traditions of Creativity (Washington Press, 1999). Ethiopia: Traditions of Creativity,on artists and artisans in Ethiopia. This research venture

Lemma, Azeb

1998-01-01T23:59:59.000Z

394

Microsoft Word - DOE-ID-12-020 Washington State.doc  

Broader source: Energy.gov (indexed) [DOE]

0 SECTION A. Project Title: Upgrading Lanthanide & Actinide Spectroscopy Capabilities at Washington State University SECTION B. Project Description The principle objective of this...

395

Lead isotopes in sediments of the Loire River (France): natural versus anthropogenic origin  

E-Print Network [OSTI]

Lead isotopes in sediments of the Loire River (France): natural versus anthropogenic origin Philippe Négrel Emmanuelle Petelet-Giraud BRGM, Orléans, France Sediments along the Loire River (central France) were investigated by means of lead isotopes determined on the labile sediment fraction, or acid

Paris-Sud XI, Université de

396

Louisiana Nuclear Profile - River Bend  

U.S. Energy Information Administration (EIA) Indexed Site

River Bend" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

397

Florida Nuclear Profile - Crystal River  

U.S. Energy Information Administration (EIA) Indexed Site

Crystal River1" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

398

Aquatic Supplement Hood River Subbasin  

E-Print Network [OSTI]

.7 (10 cfs) 50 powerhouse discharge river mile 4.51 (20 cfs) Upper Lenz or Odell cr no info Davis water

399

Susquehanna River Basin Compact (Maryland)  

Broader source: Energy.gov [DOE]

This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

400

Rappahannock River Basin Commission (Virginia)  

Broader source: Energy.gov [DOE]

The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

GROUDWATER REMEDIATION AT THE 100-HR-3 OPERABLE UNIT HANFORD SITE WASHINGTON USA - 11507  

SciTech Connect (OSTI)

The 100-HR-3 Groundwater Operable Unit (OU) at the Hanford Site underlies three former plutonium production reactors and the associated infrastructure at the 100-D and 100-H Areas. The primary contaminant of concern at the site is hexavalent chromium; the secondary contaminants are strontium-90, technetium-99, tritium, uranium, and nitrate. The hexavalent chromium plume is the largest plume of its type in the state of Washington, covering an area of approximately 7 km{sup 2} (2.7 mi{sup 2}) with concentrations greater than 20 {micro}g/L. Concentrations range from 60,000 {micro}g/L near the former dichromate transfer station in the 100-D Area to large areas of 20 to 100 {micro}g/L across much of the plume area. Pump-and-treat operations began in 1997 and continued into 2010 at a limited scale of approximately 200 gal/min. Remediation of groundwater has been fairly successful in reaching remedial action objectives (RAOs) of 20 {micro}g/L over a limited region at the 100-H, but less effective at 100-D. In 2000, an in situ, permeable reactive barrier was installed downgradient of the hotspot in 100-D as a second remedy. The RAOs are still being exceeded over a large portion of the area. The CH2M HILL Plateau Remediation Company was awarded the remediation contract for groundwater in 2008 and initiated a remedial process optimization study consisting of modeling and technical studies intended to enhance the remediation. As a result of the study, 1,400 gal/min of expanded treatment capacity are being implemented. These new systems are designed to meet 2012 and 2020 target milestones for protection of the Columbia River and cleanup of the groundwater plumes.

SMOOT JL; BIEBESHEIMER FH; ELUSKIE JA; SPILIOTOPOULOS A; TONKIN MJ; SIMPKIN T

2011-01-12T23:59:59.000Z

402

Organics Verification Study for Sinclair and Dyes Inlets, Washington  

SciTech Connect (OSTI)

Sinclair and Dyes Inlets near Bremerton, Washington, are on the State of Washington 1998 303(d) list of impaired waters because of fecal coliform contamination in marine water, metals in sediment and fish tissue, and organics in sediment and fish tissue. Because significant cleanup and source control activities have been conducted in the inlets since the data supporting the 1998 303(d) listings were collected, two verification studies were performed to address the 303(d) segments that were listed for metal and organic contaminants in marine sediment. The Metals Verification Study (MVS) was conducted in 2003; the final report, Metals Verification Study for Sinclair and Dyes Inlets, Washington, was published in March 2004 (Kohn et al. 2004). This report describes the Organics Verification Study that was conducted in 2005. The study approach was similar to the MVS in that many surface sediment samples were screened for the major classes of organic contaminants, and then the screening results and other available data were used to select a subset of samples for quantitative chemical analysis. Because the MVS was designed to obtain representative data on concentrations of contaminants in surface sediment throughout Sinclair Inlet, Dyes Inlet, Port Orchard Passage, and Rich Passage, aliquots of the 160 MVS sediment samples were used in the analysis for the Organics Verification Study. However, unlike metals screening methods, organics screening methods are not specific to individual organic compounds, and are not available for some target organics. Therefore, only the quantitative analytical results were used in the organics verification evaluation. The results of the Organics Verification Study showed that sediment quality outside of Sinclair Inlet is unlikely to be impaired because of organic contaminants. Similar to the results for metals, in Sinclair Inlet, the distribution of residual organic contaminants is generally limited to nearshore areas already within the actively managed Puget Sound Naval Shipyard and Intermediate Maintenance Facility Superfund Site, where further source-control actions and monitoring are under way.

Kohn, Nancy P.; Brandenberger, Jill M.; Niewolny, Laurie A.; Johnston, Robert K.

2006-09-28T23:59:59.000Z

403

Lake Forest Park, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington: Energy Resources JumpFlorida:8461392°, -83.7077293°Park,

404

Leasing State Trust Lands in Washington | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey, Washington:Lakeville, MN)Lauderhill,5. ItLeaIncentives 2 ReferencesTrust

405

Clyde Hill, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy ResourcesInformationWindpowerHill, Washington:

406

Washington Lease Purchase Case Study | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington's Centralia School District pulled

407

Washington State Becomes Largest Public Consumer of Biodiesel | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy While dryWashington's Centralia School District pulledof

408

Washington County, Colorado: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County,Washington County, Colorado:

409

Washington County, Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County,Washington County,

410

Washington County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County,Washington County,Georgia:

411

Washington County, Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County,Washington

412

Washington County, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County,WashingtonIllinois: Energy

413

Washington County, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County,WashingtonIllinois:

414

Washington County, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana: EnergyWasco County,WashingtonIllinois:Iowa:

415

Washington State Department of Transportation | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:Coop Inc Place:Existing Water RightWashington

416

Washington's 7th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:Coop IncInformation Washington. Contents 1

417

Washington, District of Columbia: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformationSEDS dataIndiana:Coop IncInformation Washington. Contents

418

Energy Incentive Programs, Washington DC | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica,Idaho EnergyMontanaOregonTexasWashington DC

419

Washington - Rankings - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ <Information Administration (EIA) 10 MECS Survey Data9c :0.17.1Year3 Meeting ofBOEWashingtonWashington

420

Mercer Island, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonald isMelletteEnclosed and StripMercerWashington:

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Washington's 3rd congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,DivisionInformation Washington. Registered

422

Washington's 4th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: Salt Lake City,DivisionInformation Washington.

423

Washington Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign UpWashington DC Regions

424

Washington Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign UpWashington DC RegionsRegions

425

Washington International Renewable Energy Conference | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is onModeling andReportandVDepartmentWarmWashPotomacWashington

426

Clean Cities: Greater Washington Region Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western New YorkGreater New Haven CleanWashington

427

Clean Cities: Western Washington Clean Cities (Seattle) coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth ShoreWashington Clean Cities

428

Town of Steilacoom, Washington (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd JumpOperationsInformationRowley Town ofSteilacoom, Washington

429

Fall City, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources Jump4748456°, -122.822032°City, Washington:

430

Federal Way, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources44795°,FauquierGrantWashington: Energy

431

Federal Way, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37.California: Energy Resources44795°,FauquierGrantWashington: EnergyWay, WA)

432

South Carolina Scenic Rivers Act (South Carolina)  

Broader source: Energy.gov [DOE]

The goal of the Scenic Rivers Act is to protect selected rivers or river segments of the State with outstanding scenic, recreational, geologic, botanical, fish, wildlife, historic, or cultural...

433

Ohio River Greenway Development Commission (Indiana)  

Broader source: Energy.gov [DOE]

The Ohio River Greenway Development Commission administers the Ohio River Greenway Project, which is a park along a 7-mile stretch of the Ohio River. The Commission developed a master plan for the...

434

Natural, Scenic, and Recreational River System (Indiana)  

Broader source: Energy.gov [DOE]

Rivers may fall under the categories of natural, scenic, or recreational. These rivers are designated, acquired, and preserved by the state, and development on or adjacent to these rivers is...

435

White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2002-2003 Annual Report.  

SciTech Connect (OSTI)

We report on our progress from April 2002 through March 2003 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

Ward, David L.; Kern, J. Chris; Hughes, Michele L. (Oregon Department of Fish and Wildlife)

2004-02-01T23:59:59.000Z

436

White Sturgeon Mitigation and Restoration in the Columbia and Snake Rivers Upstream from Bonneville Dam; 2001-2002 Annual Report.  

SciTech Connect (OSTI)

We report on our progress from April 2001 through March 2002 on determining the effects of mitigative measures on productivity of white sturgeon populations in the Columbia River downstream from McNary Dam, and on determining the status and habitat requirements of white sturgeon populations in the Columbia and Snake rivers upstream from McNary Dam.

Ward, David L.; Kern, J. Chris; Hughes, Michele L.

2003-12-01T23:59:59.000Z

437

HANFORD SITE RIVER PROTECTION PROJECT (RPP) TANK FARM CLOSURE  

SciTech Connect (OSTI)

The U. S. Department of Energy, Office of River Protection and the CH2M HILL Hanford Group, Inc. are responsible for the operations, cleanup, and closure activities at the Hanford Tank Farms. There are 177 tanks overall in the tank farms, 149 single-shell tanks (see Figure 1), and 28 double-shell tanks (see Figure 2). The single-shell tanks were constructed 40 to 60 years ago and all have exceeded their design life. The single-shell tanks do not meet Resource Conservation and Recovery Act of 1976 [1] requirements. Accordingly, radioactive waste is being retrieved from the single-shell tanks and transferred to double-shell tanks for storage prior to treatment through vitrification and disposal. Following retrieval of as much waste as is technically possible from the single-shell tanks, the Office of River Protection plans to close the single-shell tanks in accordance with the Hanford Federal Facility Agreement and Consent Order [2] and the Atomic Energy Act of 1954 [3] requirements. The double-shell tanks will remain in operation through much of the cleanup mission until sufficient waste has been treated such that the Office of River Protection can commence closing the double-shell tanks. At the current time, however, the focus is on retrieving waste and closing the single-shell tanks. The single-shell tanks are being managed and will be closed in accordance with the pertinent requirements in: Resource Conservation and Recovery Act of 1976 and its Washington State-authorized Dangerous Waste Regulations [4], US DOE Order 435.1 Radioactive Waste Management [5], the National Environmental Policy Act of 1969 [6], and the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 [7]. The Hanford Federal Facility Agreement and Consent Order, which is commonly referred to as the Tri-Party Agreement or TPA, was originally signed by Department of Energy, the State of Washington, and the U. S. Environmental Protection Agency in 1989. Meanwhile, the retrieval of the waste is under way and is being conducted to achieve the completion criteria established in the Hanford Federal Facility Agreement and Consent Order.

JARAYSI, M.N.; SMITH, Z.; QUINTERO, R.; BURANDT, M.B.; HEWITT, W.

2006-01-30T23:59:59.000Z

438

RIVER RESEARCH AND APPLICATIONS River Res. Applic. 21: 849864 (2005)  

E-Print Network [OSTI]

to assimilate wastewater treatment plant effluent. Our study illustrates the types of changes that river of future climate scenarios on flow regimes and how predicted changes might affect river ecosystems. We under future climate scenarios to describe the extent and type of changes predicted to occur. Daily

Poff, N. LeRoy

439

The Hanford Story: River Corridor  

Broader source: Energy.gov [DOE]

This is the seventh chapter of The Hanford Story, a multimedia presentation that provides an overview of the Hanford Site—its history, today's cleanup activities, and a glimpse into the possibilities of future uses of the 586-square-mile government site in southeast Washington State.

440

Yakima River Spring Chinook Enhancement Study, 1985 Annual Report.  

SciTech Connect (OSTI)

The purpose was to evaluate enhancement methodologies that can be used to rebuild runs of spring chinook salmon in the Yakima River basin. The objectives were to: (1) determine the abundance, distribution and survival of naturally produced fry and smolts in the Yakima River; (2) evaluate different methods of fry and smolt supplementation into the natural rearing environment while maintaining as much as possible the gentic integrity of naturally produced stocks; (3) locate and define areas in the watershed which may be used for the rearing of spring chinook; (4) define strategies for enhancing natural production of spring chinook in the Yakima River; and (5) determine physical and biological limitations for production within the system.

Fast, David E.

1986-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Enforcement Letter, Westinghouse Savannah River Company - November...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site On November 14, 2003, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to Westinghouse Savannah River Company related to...

442

Independent Oversight Review, Savannah River Operations Office...  

Energy Savers [EERE]

Savannah River Operations Office - July 2013 Independent Oversight Review, Savannah River Operations Office - July 2013 July 2013 Review of the Employee Concerns Program at the...

443

Independent Activity Report, Savannah River Operation - June...  

Broader source: Energy.gov (indexed) [DOE]

Operation - June 2010 Independent Activity Report, Savannah River Operation - June 2010 June 2010 Savannah River Operations Office Self-Assessment of the Technical Qualification...

444

Independent Activity Report, Savannah River Site - September...  

Office of Environmental Management (EM)

September 2010 Independent Activity Report, Savannah River Site - September 2010 Savannah River Site Salt Waste Processing Facility Effectiveness Review The U.S. Department of...

445

New Savannah River Site Deputy Manager Named  

Broader source: Energy.gov [DOE]

AIKEN, S.C. – DOE’s Savannah River Operations Office selected Terrel “Terry” J. Spears as the deputy manager of the Savannah River Site (SRS) this month.

446

Independent Oversight Activity Report, Savannah River Site -...  

Office of Environmental Management (EM)

Activity Report, Savannah River Site - February 2014 February 2014 Operational Awareness Visit of the Savannah River Site HIAR-SRS-2014-02-25 This Independent Activity...

447

PIA - Savannah River Nuclear Solutions Electronic Safeguards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solutions Electronic Safeguards Security System (E3S) PIA - Savannah River Nuclear Solutions Electronic Safeguards Security System (E3S) PIA - Savannah River Nuclear Solutions...

448

Energy Conservation Study on Darigold Fluid Milk Plant, Issaquah, Washington.  

SciTech Connect (OSTI)

This report presents the findings of an energy study done at Darigold dairy products plant in Issaquah, Washington. The study includes all electrical energy using systems at the plant, but does not address specific modifications to process equipment or the gas boilers. The Issaquah Darigold plant receives milk and cream, which are stored in large, insulated silos. These raw products are then processed into butter, cottage cheese, buttermilk, yogurt, sour cream, and powdered milk. This plant produces the majority of the butter used in the state of Washington. The Issaquah plant purchases electricity from Puget Sound Power and Light Company. The plant is on Schedule 31, primary metering. The plant provides transformers to step down the voltage to 480, 240, and 120 volts as needed. Based on utility bills for the period from July 1983 through July 1984, the Issaquah Darigold plant consumed 7,134,300 kWh at a total cost of $218,703.78 and 1,600,633 therms at a total cost of $889,687.48. Energy use for this period is shown in Figures 1.1 to 1.5. Demand charges account for approximately 23% of the total electrical bill for this period, while reactive charges account for less than 0.5%. The electrical usage for the plant was divided into process energy uses, as summarized in Figure 1.2. This breakdown is based on a 311-day processing schedule, with Sunday clean-up and holidays composing the 54 days of downtime.

Seton, Johnson & Odell, Inc.

1985-01-15T23:59:59.000Z

449

Report of the Ad Hoc Committee on Washington Natural Resource Agency Reform  

E-Print Network [OSTI]

Report of the Ad Hoc Committee on Washington Natural Resource Agency Reform February 16, 2010 recommended formation of an ad hoc committee to evaluate opportunities for SFR and others in College. As a result, the Washington Natural Resource Agency Reform ad hoc Committee was established and given

Borenstein, Elhanan

450

The 33st International Electric Propulsion Conference, The George Washington University, USA October 6 10, 2013  

E-Print Network [OSTI]

The 33st International Electric Propulsion Conference, The George Washington University, USA, 30332, USA Abstract: Accurate measurement of ion charge flux in the plume of spacecraft electric.walker@ae.gatech.edu #12;The 33st International Electric Propulsion Conference, The George Washington University, USA

Walker, Mitchell

451

Electrical impedance tomography and Calderon's Department of Mathematics, University of Washington, Seattle, WA 98195, USA  

E-Print Network [OSTI]

Electrical impedance tomography and Calder´on's problem G Uhlmann Department of Mathematics, University of Washington, Seattle, WA 98195, USA E-mail: gunther@math.washington.edu Abstract. We survey mathematical developments in the inverse method of Electrical Impedance Tomography which consists

Uhlmann, Gunther

452

FPA 30 year Anniversary Meeting, Washington, 2 December 2009 Slide 1 Status of ITER  

E-Print Network [OSTI]

FPA 30 year Anniversary Meeting, Washington, 2 December 2009 Slide 1 Status of ITER Fusion Power, 2 December 2009 Slide 2 Machine mass: 23350 t (cryostat + VV + magnets) - shielding, divertor Anniversary Meeting, Washington, 2 December 2009 Slide 3 TheThe Final ITER SiteFinal ITER Site Tokamak Hall

453

Federal Government Congressional Budget Office, Health & Human Services, Long Term Modeling Washington, DC  

E-Print Network [OSTI]

Manila, Philippines BRAC Dhaka, Bangladesh California Forward San Francisco, CA CARE (WDI) Atlanta, GA and Dhaka, Bangladesh CARE USA Washington, DC SUMMER 2009 INTERNSHIPS #12;Center for Women Policy Studies Educational Resources Africa Kumasi, Ghana Pew Center on Global Climate Change Washington, DC Rick Snyder

Shyy, Wei

454

Hood River Passive House  

SciTech Connect (OSTI)

The Hood River Passive Project was developed by Root Design Build of Hood River Oregon using the Passive House Planning Package (PHPP) to meet all of the requirements for certification under the European Passive House standards. The Passive House design approach has been gaining momentum among residential designers for custom homes and BEopt modeling indicates that these designs may actually exceed the goal of the U.S. Department of Energy's (DOE) Building America program to reduce home energy use by 30%-50% (compared to 2009 energy codes for new homes). This report documents the short term test results of the Shift House and compares the results of PHPP and BEopt modeling of the project. The design includes high R-Value assemblies, extremely tight construction, high performance doors and windows, solar thermal DHW, heat recovery ventilation, moveable external shutters and a high performance ductless mini-split heat pump. Cost analysis indicates that many of the measures implemented in this project did not meet the BA standard for cost neutrality. The ductless mini-split heat pump, lighting and advanced air leakage control were the most cost effective measures. The future challenge will be to value engineer the performance levels indicated here in modeling using production based practices at a significantly lower cost.

Hales, D.

2014-01-01T23:59:59.000Z

455

Malheur River Wildlife Mitigation Project, Annual Report 2003.  

SciTech Connect (OSTI)

Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project proposals are subjected to a rigorous review process prior to receiving final approval. An eleven-member panel of scientists referred to as the Independent Scientific Review Panel (ISRP) examines project proposals. The ISRP recommends project approval based on scientific merit. The Bonneville Power Administration (BPA), the Columbia Basin Fish and Wildlife Authority (CBFWA), Council staff, the U.S. Fish and Wildlife Service (USFWS), the National Oceanic and Atmospheric Administration (NOAA), and subbasin groups also review project proposals to ensure each project meets regional and subbasin goals and objectives. The Program also includes a public involvement component that gives the public an opportunity to provide meaningful input on management proposals. After a thorough review, the Burns Paiute Tribe (BPT) acquired the Malheur River Mitigation Project (Project) with BPA funds to compensate, in part, for the loss of fish and wildlife resources in the Columbia and Snake River Basins and to address a portion of the mitigation goals identified in the Council's Program (NPPC 2000).

Ashley, Paul

2004-01-01T23:59:59.000Z

456

Evaluate Status of Pacific Lamprey in the Clearwater River Drainage, Idaho: Annual Report 2001.  

SciTech Connect (OSTI)

Recent decline of Pacific lamprey Lampetra tridentata adult migrants to the Snake River drainage has focused attention on the species. Adult Pacific lamprey counted passing Ice Harbor Dam fishway averaged 18,158 during 1962-69 and 361 during 1993-2000. Human resource manipulations in the Snake River and Clearwater River drainages have altered ecosystem habitat in the last 120 years, likely impacting the productive potential of Pacific lamprey habitat. Timber harvest, stream impoundment, road construction, grazing, mining, and community development have dominated habitat alteration in the Clearwater River system and Snake River corridor. Hydroelectric projects in the Snake River corridor impact juvenile/larval Pacific lamprey outmigrants and returning adults. Juvenile and larval lamprey outmigrants potentially pass through turbines, turbine bypass/collection systems, and over spillway structures at the four lower Snake River hydroelectric dams. Clearwater River drainage hydroelectric facilities have impacted Pacific lamprey populations to an unknown degree. The Pacific Power and Light Dam on the Clearwater River in Lewiston, Idaho, restricted chinook salmon Oncorhynchus tshawytscha passage in the 1927-1940 period, altering the migration route of outmigrating Pacific lamprey juveniles/larvae and upstream adult migrants (1927-1972). Dworshak Dam, completed in 1972, eliminated Pacific lamprey spawning and rearing in the North Fork Clearwater River drainage. Construction of the Harpster hydroelectric dam on the South Fork of the Clearwater River resulted in obstructed fish passage 1949-1963. Through Bonneville Power Administration support, the Idaho Department of Fish and Game continued investigation into the status of Pacific lamprey populations in Idaho's Clearwater River drainage in 2001. Trapping, electrofishing, and spawning ground redd surveys were used to determine Pacific lamprey distribution, life history strategies, and habitat requirements in the South Fork Clearwater River drainage. Forty-three sites in Red River, South Fork Clearwater River, and their tributaries were electrofished in 2001. Sampling yielded a total of 442 juvenile/larval Pacific lamprey. Findings indicate Pacific lamprey juveniles/larvae are not numerous or widely distributed. Pacific lamprey distribution in the South Fork of the Clearwater River drainage was confined to lower reaches of Red River and the South Fork Clearwater River.

Cochnauer, Tim; Claire, Christopher

2002-12-01T23:59:59.000Z

457

Screening assessment and requirements for a comprehensive assessment: Volume 1, Draft. Columbia River comprehensive impact assessment  

SciTech Connect (OSTI)

To evaluate the impact to the Columbia River from the Hanford Site-derived contaminants, the U.S. Department of Energy, U.S. Environmental Protection Agency, and Washington State Department of Ecology initiated a study referred to as the Columbia River Comprehensive Impact Assessment (CRCIA). To address concerns about the scope and direction of CRCIA as well as enhance regulator, tribal, stockholder, and public involvement, the CRCIA Management Team was formed in August 1995. The Team agreed to conduct CRCIA using a phased approach. The initial phase, includes two components: 1) a screening assessment to evaluate the potential impact to the river, resulting from current levels of Hanford-derived contaminants in order to support decisions on Interim Remedial Measures, and 2) a definition of the essential work remaining to provide an acceptable comprehensive river impact assessment. The screening assessment is described in Part I of this report. The essential work remaining is Part II of this report. The objective of the screening assessment is to identify areas where the greatest potential exists for adverse effects on humans or the environment. Part I of this report discusses the scope, technical approach, and results of the screening assessment. Part II defines a new paradigm for predecisional participation by those affected by Hanford cleanup decisions.

NONE

1997-04-01T23:59:59.000Z

458

Geologic map of the Richland 1:100,000 quadrangle, Washington  

SciTech Connect (OSTI)

This map of the Richland 1:100,000-scale quadrangle, Washington, shows the geology of one of fifteen complete or partial 1:100,000-scale quadrangles that cover the southeast quadrant of Washington. Geologic maps of these quadrangles have been compiled by geologists with the Washington Division of Geology and Earth Resources (DGER) and Washington State University and are the principal data sources for a 1:250,000-scale geologic map of the southeast quadrant of Washington, which is in preparation. Eleven of these quadrangles are being released as DGER open-file reports. The map of the Wenatchee quadrangle has been published by the US Geological Survey, and the Moses Lake, Ritzville quadrangles have already been released.

Reidel, S.P.; Fecht, K.R. [comps.

1993-09-01T23:59:59.000Z

459

The transient response of bedrock river networks to sudden base level fall  

E-Print Network [OSTI]

Following a change in the factors that determine landscape form, a transient signal of adjustment propagates through the river network, progressively adjusting channels and hillslopes to the new conditions. When conditions ...

Crosby, Benjamin T. (Benjamin Thomas)

2006-01-01T23:59:59.000Z

460

CX-004619: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Suquamish Indian Tribe of the Port Madison Reservation, Washington - Traffic Signals and Street LightingCX(s) Applied: B5.1Date: 09/30/2009Location(s): WashingtonOffice(s): Energy Efficiency and Renewable Energy

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CX-012227: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Alcoa Digital Upgrade in Oregon and Washington CX(s) Applied: B4.7 Date: 06/19/2014 Location(s): Oregon, Washington Offices(s): Bonneville Power Administration

462

CX-011690: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Equipment and Property Transfers with Three Public Utilities in Oregon, Idaho and Washington CX(s) Applied: B1.124 Date: 12/26/2013 Location(s): Oregon, Idaho, Washington Offices(s): Bonneville Power Administration

463

CX-009789: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Coulee-Westside Transfer Trip Replacement CX(s) Applied: B1.7 Date: 02/06/2013 Location(s): Washington, Washington Offices(s): Bonneville Power Administration

464

CX-010429: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Harbour Pointe Small Generator Integration CX(s) Applied: B1.7 Date: 06/25/2013 Location(s): Washington, Washington Offices(s): Bonneville Power Administration

465

CX-011764: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Regents of the University of Michigan - Anaerobic Bioconversion of Methane to Methanol CX(s) Applied: B3.6 Date: 12/06/2013 Location(s): Michigan, Washington, Washington Offices(s): Advanced Research Projects Agency-Energy

466

CX-010735: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Grand Coulee-Bell No.5 Dead End Insulator Replacement Project CX(s) Applied: B1.3 Date: 07/19/2013 Location(s): Washington, Washington Offices(s): Bonneville Power Administration

467

CX-011999: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Burial of Overhead Fiber Optic Cable at Grand Coulee Radio Station CX(s) Applied: B4.7 Date: 04/21/2014 Location(s): Washington, Washington Offices(s): Bonneville Power Administration

468

CX-005295: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Washington-Tribe-Colville Confederated TribesCX(s) Applied: A9, B2.5, B5.1Date: 02/09/2011Location(s): Colville, WashingtonOffice(s): Energy Efficiency and Renewable Energy

469

CX-010421: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Bell-Boundary Fiber Project CX(s) Applied: B4.7 Date: 06/11/2013 Location(s): Washington, Washington Offices(s): Bonneville Power Administration

470

CX-011533: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Upgrade Six Wireless Communication Sites (Clear Creek, Evergreen, Fruit Valley, KSLM, Minnehaha, Popcorn) CX(s) Applied: B1.19 Date: 11/06/2013 Location(s): Oregon, Washington, Washington Offices(s): Bonneville Power Administration

471

Yakima River Spring Chinook Enhancement Study, 1984 Annual Report.  

SciTech Connect (OSTI)

This study develops data to present management alternatives for Yakima River spring chinook. The first objective is to determine the distribution, abundance and survival of wild Yakima River spring chinook. Naturally produced populations will be studied to determine if these runs can be sustained in the face of present harvest and environmental conditions. This information will be gathered through spawning ground surveys, counting of adults at Prosser and Roza fish ladders, and through monitoring the tribal dipnet fishery. Concurrent studies will examine potential habitat limitations within the basin. Presently, survival to emergence studies, in conjunction with substrate quality analysis is being undertaken. Water temperature is monitored throughout the basin, and seining takes place monthly to evaluate distribution and abundance. The outcome of this phase of the investigation is to determine an effective manner for introducing hatchery stocks that minimize the impacts on the wild population. The second objective of this study is to determine relative effectiveness of different methods of hatchery supplementation.

Wasserman, Larry

1985-01-01T23:59:59.000Z

472

RIVER PROTECTION PROJECT SYSTEM PLAN  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) in New Mexico. (6) Deploying interim storage capacity for the immobilized high-level waste (IHLW) pending determination of the final disposal pathway. (7) Closing the SST and DST tank farms, ancillary facilities, and all associated waste management and treatment facilities. (8) Optimizing the overall mission by resolution of technical and programmatic uncertainties, configuring the tank farms to provide a steady, well-balanced feed to the WTP, and performing trade-offs of the required amount and type of supplemental treatment and of the amount of HLW glass versus LAW glass. ORP has made and continues to make modifications to the WTP contract as needed to improve projected plant performance and address known or emerging risks. Key elements needed to implement the strategy described above are included within the scope of the Tank Operations Contract (TOC). Interim stabilization of the SSTs was completed in March 2004. As of April 2009, retrieval of seven SSTs has been completed and retrieval of four additional SSTs has been completed to the limits of technology. Demonstration of supplemental LAW treatment technologies has stopped temporarily pending revision of mission need requirements. Award of a new contract for tank operations (TOC), the ongoing tank waste retrieval experience, HLW disposal issues, and uncertainties in waste feed delivery and waste treatment led to the revision of the Performance Measurement Baseline (PM B), which is currently under review prior to approval. 6 This System Plan is aligned with the current WTP schedule, with hot commissioning beginning in 2018, and full operations beginning in late 2019. Major decisions regarding the use of supplemental treatment and the associated technology, the ultimate needed capacity, and its relationship to the WTP have not yet been finalized. This System Plan assumes that the outcome of these decisions will be to provide a second LAW vitrification facility. No final implementation decisions regarding supplemental technology can be made until the Tank Closure and

CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

2009-09-15T23:59:59.000Z

473

Wood River Levee Reconstruction, Madison County, IL  

E-Print Network [OSTI]

Wood River Levee Reconstruction, Madison County, IL 25 October 2006 Abstract: The recommended plan provides for flood damage reduction and restores the original degree of protection of the Wood River Levee-federal sponsor is the Wood River Drainage and Levee District. The Wood River Levee System was authorized

US Army Corps of Engineers

474

RiverFalls,Wisconsin SolarinSmall  

E-Print Network [OSTI]

, the local government, and the citizens of River Falls have made energy conservation and renewable energy. Inspiring Interest in Renewables River Falls' energy conservation efforts benefit from RFMU's membership energy within the community.v Bringing Solar to River Falls The success of the River Falls Renewable

475

SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY  

E-Print Network [OSTI]

OF THE SAVANNAH RIVER SITE A PUIIUCATION OF THE SAVANNAII RIVER ECOI"OGY LAIIORATORY NATIONAL of the Savannah River Site National Environmental Research Park Program Publication number: SRO-NERP-2S Printed OF THE SAVANNAH RIVER SITE BY CHARLES E. DAVIS AND LAURA L. JANECEK A PUBLICATION OF THE SAVANNAH RIVER SITE

Georgia, University of

476

The Columbia River Estuary the Columbia River Basin  

E-Print Network [OSTI]

" fish and wildlife in the Columbia River as affected by development and operation of the hydroelectric modified in terms of physical and biological processes. The development and operation of the hydroelectric

477

Cascade Apartments - Deep Energy Multifamily Retrofit , Kent, Washington (Fact Sheet)  

SciTech Connect (OSTI)

In December of 2009-10, King County Housing Authority (KCHA) implemented energy retrofit improvements in the Cascade multifamily community, located in Kent, Washington (marine climate.)This research effort involved significant coordination from stakeholders KCHA, WA State Department of Commerce, utility Puget Sound Energy, and Cascade tenants. This report focuses on the following three primary BA research questions : 1. What are the modeled energy savings using DOE low income weatherization approved TREAT software? 2. How did the modeled energy savings compare with measured energy savings from aggregate utility billing analysis? 3. What is the Savings to Investment Ratio (SIR) of the retrofit package after considering utility window incentives and KCHA capitol improvement funding.

Not Available

2014-02-01T23:59:59.000Z

478

University of Washington, Nuclear Physics Laboratory annual report, 1995  

SciTech Connect (OSTI)

The Nuclear Physics Laboratory of the University of Washington supports a broad program of experimental physics research. The current program includes in-house research using the local tandem Van de Graff and superconducting linac accelerators and non-accelerator research in double beta decay and gravitation as well as user-mode research at large accelerator and reactor facilities around the world. This book is divided into the following areas: nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; fundamental symmetries and weak interactions; accelerator mass spectrometry; atomic and molecular clusters; ultra-relativistic heavy ion collisions; external users; electronics, computing, and detector infrastructure; Van de Graff, superconducting booster and ion sources; nuclear physics laboratory personnel; degrees granted for 1994--1995; and list of publications from 1994--1995.

NONE

1995-04-01T23:59:59.000Z

479

Washington State energy use profile 1960 to 1980  

SciTech Connect (OSTI)

A comprehensive energy data base for the state of Washington is presented to provide energy suppliers, consumers, and policy makers with the most current energy data and information possible so that energy planning and policy decisions may be made on an informed basis. The first section provides an overview of demographic and economic factors, energy use, energy resources, and prices. The second section provides greater detail on the uses, supplies, and prices of the principal energy resources used in the state. The third section focuses on electricity and describes uses, supplies, and prices for this intermediate energy form. The fourth section disaggregates energy consumption by users and provides additional detail on use in the residential, commercial, industrial, agricultural, and transportation sectors. The fifth section shows some comparisons of actual figures with those appearing in some recent forecasts. (MCW)

Hinman G.; Alguire, F.; Devlin, T.; Hanson, J.; Horton, D.; Olsen, D.

1980-12-01T23:59:59.000Z

480

The 1980-1982 Geothermal Resource Assessment Program in Washington  

SciTech Connect (OSTI)

Since 1978, the Division of Geology and Earth Resources of the Washington Department of Natural Resources has participated in the U.S. Department of Energy's (USDOE) State-Coupled Geothermal Resource Program. Federal and state funds have been used to investigate and evaluate the potential for geothermal resources, on both a reconnaissance and area-specific level. Preliminary results and progress reports for the period up through mid-1980 have already been released as a Division Open File Report (Korosec, Schuster, and others, 1981). Preliminary results and progress summaries of work carried out from mid-1980 through the end of 1982 are presented in this report. Only one other summary report dealing with geothermal resource investigations in the state has been published. An Information Circular released by the Division (Schuster and others, 1978) compiled the geology, geochemistry, and heat flow drilling results from a project in the Indian Heaven area in the south Cascades. The previous progress report for the geothermal program (Korosec, Schuster, and others, 1981) included information on temperature gradients measured throughout the state, heat flow drilling in the southern Cascades, gravity surveys for the southern Cascades, thermal and mineral spring investigations, geologic mapping for the White Pass-Tumac Mountain area, and area specific studies for the Camas area of Clark County and Mount St. Helens. This work, along with some additional studies, led to the compilation of the Geothermal Resources of Washington map (Korosec, Kaler, and others, 1981). The map is principally a nontechnical presentation based on all available geothermal information, presented as data points, tables, and text on a map with a scale of 1:500,000.

Korosec, Michael A.; Phillips, William M.; Schuster, J.Eric

1983-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination washington river" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Maple Valley, Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellis a town inRiver Energy LLC Jump to: navigation,

482

EFFECTIVE ENVIRONMENTAL COMPLIANCE STRATEGY FOR THE CLEANUP OF K BASINS AT HANFORD SITE WASHINGTON  

SciTech Connect (OSTI)

K Basins, consisting of two water-filled storage basins (KW and KE) for spent nuclear fuel (SNF), are part of the 100-K Area of the Hanford Site, along the shoreline of the Columbia River, situated approximately 40 km (25 miles) northwest of the City of Richland, Washington. The KW contained 964 metric tons of SNF in sealed canisters and the KE contained 1152 metric tons of SNF under water in open canisters. The cladding on much of the fuel was damaged allowing the fuel to corrode and degrade during storage underwater. An estimated 1,700 cubic feet of sludge, containing radionuclides and sediments, have accumulated in the KE basin. Various alternatives for removing and processing the SNF, sludge, debris and water were originally evaluated, by USDOE (DOE), in the Environmental Impact Statement (EIS) with a preferred alternative identified in the Record of Decision. The SNF, sludge, debris and water are ''hazardous substances'' under the Comprehensive, Environmental, Response, Compensation and Liability Act of 1980 (CERCLA). Leakage of radiologically contaminated water from one of the basins and subsequent detection of increased contamination in a down-gradient monitoring well helped to form the regulatory bases for cleanup action under CERCLA. The realization that actual or threatened release of hazardous substances from the waste sites and K Basins, if not addressed in a timely manner, may present an imminent and substantial endangerment to public health, welfare and environment led to action under CERCLA, with EPA as the lead regulatory agency. Clean-up of the K Basins as a CERCLA site required SNF retrieval, processing, packaging, vacuum drying and transport to a vaulted storage facility for storage, in conformance with a quality assurance program approved by the Office of Civilian Radioactive Waste Management (OCRWM). Excluding the facilities built for SNF drying and vaulted storage, the scope of CERCLA interim remedial action was limited to the removal of fuel, sludge, debris and water. At present, almost all of the spent fuel has been removed from the basins and other activities to remove sludge, debris and water are scheduled to be completed in 2007. Developing environmental documentation and obtaining regulatory approvals for a project which was initiated outside CERCLA and came under CERCLA during execution, was a significant priority to the successful completion of the SNF retrieval, transfer, drying, transport and storage of fuel, within the purview of strong conduct-of-operations culture associated with nuclear facilities. Environmental requirements promulgated in the state regulations by Washington Department of Public Health for radiation were recognized as ''applicable or relevant and appropriate.'' Effective implementation of the environmental compliance strategy in a project that transitioned to CERCLA became a significant challenge involving multiple contractors. This paper provides an overview of the development and implementation of an environmental permitting and surveillance strategy that enabled us to achieve full compliance in a challenging environment, with milestones and cost constraints, while meeting the high safety standards. The details of the strategy as to how continuous rapport with the regulators, facility operators and surveillance groups helped to avoid impacts on the clean-up schedule are discussed. Highlighted are the role of engineered controls, surveillance protocols and triggers for monitoring and reporting, and active administrative controls that were established for the control of emissions, water loss and transport of waste shipments, during the different phases of the project.

AMBALAM, T.

2004-12-01T23:59:59.000Z

483

Massachusetts Rivers Protection Act (Massachusetts)  

Broader source: Energy.gov [DOE]

The law creates a 200-foot riverfront area that extends on both sides of rivers and streams. The riverfront area is 25 feet in the following municipalities: Boston, Brockton, Cambridge, Chelsea,...

484

Case Studies in River Management  

E-Print Network [OSTI]

of the Middle Rio Grande --Discharge Analysis --Reservoir Level Analysis Site Description and Background --History of the Middle Rio Grande --Discharge Analysis --Reservoir Level Analysis Aggradation of Abandoned Channels Cheongmi Stream and Mangyeong River Cheongmi Stream South Korea In Collaboration

Julien, Pierre Y.

485

Star Lakes and Rivers (Minnesota)  

Broader source: Energy.gov [DOE]

An association organized for the purpose of addressing issues on a specific lake or river, a lake improvement district, or a lake conservation district may apply to the Star Lake Board for...

486

Savannah River | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromCommentsRevolving STATEMENTSavannah River Site Savannah RiverSite

487

Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington  

SciTech Connect (OSTI)

This report documents field activity associated with the collection, preparation, and shipment of fish samples. The purpose of the report is to describe the sampling locations, identify samples collected, and describe any modifications and additions made to the sampling and analysis plan.

L.C. Hulstrom

2010-09-28T23:59:59.000Z

488

Data Quality Assessment Report for the Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington  

SciTech Connect (OSTI)

This report summarizes the results of the data quality assessment that was performed on the analytical data generated in connection with the 2008/2009 surface water, sediment, and soil data collection; groundwater upwelling investigation sample collection; and fish tissue sample collection.

L.C. Hulstrom

2010-08-10T23:59:59.000Z

489

Data Quality Assessment Report for the Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington  

SciTech Connect (OSTI)

This report summarizes the results of the data quality assessment that was performed on the analytical data generated in connection with the 2008/2009 surface water, sediment, and soil data collection; groundwater upwelling investigation sample collection; and fish tissue sample collection.

L.C. Hulstrom

2010-09-21T23:59:59.000Z

490

Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary, Annual Report 2009  

SciTech Connect (OSTI)

This report describes the 2009 research conducted under the U.S. Army Corps of Engineers (USACE or Corps) project EST-09-P-01, titled “Evaluation of Life History Diversity, Habitat Connectivity, and Survival Benefits Associated with Habitat Restoration Actions in the Lower Columbia River and Estuary.” The research was conducted by the Pacific Northwest National Laboratory, Marine Science Laboratory and Hydrology Group, in partnership with the University of Washington, School of Aquatic and Fishery Sciences, Columbia Basin Research, and Earl Dawley (NOAA Fisheries, retired). This Columbia River Fish Mitigation Program project, referred to as “Salmonid Benefits,” was started in FY 2009 to evaluate the state-of-the science regarding the ability to quantify the benefits to listed salmonids1 of habitat restoration actions in the lower Columbia River and estuary.

Diefenderfer, Heida L.; Johnson, Gary E.; Sather, Nichole K.; Skalski, John R.; Dawley, Earl M.; Coleman, Andre M.

2010-08-01T23:59:59.000Z

491

Application of the ELOHA Framework to Regulated Rivers in the Upper Tennessee River Basin: A Case Study  

SciTech Connect (OSTI)

In order for habitat restoration in regulated rivers to be effective at large scales, broadly applicable frameworks are needed that provide measurable objectives and contexts for management. The Ecological Limits of Hydrologic Alteration (ELOHA) framework was created as a template to assess hydrologic alterations, develop relationships between altered streamflow and ecology, and establish environmental flow standards. We tested the utility of ELOHA in informing flow restoration applications for fish and riparian communities in regulated rivers in the Upper Tennessee River Basin (UTRB). We followed the steps of ELOHA to generate flow alteration-ecological response relationships and then determined whether those relationships could predict fish and riparian responses to flow restoration in the Cheoah River, a regulated system within the UTRB. Although ELOHA provided a robust template to construct hydrologic information and predict hydrology for ungaged locations, our results do not support the assertion that over-generalized univariate relationships between flow and ecology can produce results sufficient to guide management in regulated rivers. After constructing multivariate models, we successfully developed predictive relationships between flow alterations and fish/riparian responses. In accordance with model predictions, riparian encroachment displayed consistent decreases with increases in flow magnitude in the Cheoah River; however, fish richness did not increase as predicted four years post- restoration. Our results suggest that altered temperature and substrate and the current disturbance regime may have reduced opportunities for fish species colonization. Our case study highlights the need for interdisciplinary science in defining environmental flows for regulated rivers and the need for adaptive management approaches once flows are restored.

McManamay, Ryan A [ORNL; Orth, Dr. Donald J [Virginia Polytechnic Institute and State University (Virginia Tech); Dolloff, Dr. Charles A [USDA Forest Service, Department of Fisheries and Wildlife Sciences, Virginia Tech; Mathews, David C [Tennessee Valley Authority (TVA)

2013-01-01T23:59:59.000Z

492

Provenance study and environments of deposition of the Pennslyvanian-Permian Wood River Formation, south-central Idaho, and the paleotectonic character of the Wood River basin  

E-Print Network [OSTI]

and provenance of the conglomerates in the Big Wood River and Fish Creek Reservoir regions of south-central Idaho is needed. Distinguishing between marine and non-marine strata and determining source terranes will aid in reconstructing Wood River basin... paleogeography and paleo- tectonics. Three source areas have been postulated in recent years: 1, The Antler highland to the west, containing volcanics and low grade metamorphic rocks (Bissell, 1960; Churkin, 1962; Roberts and Thomasson, 1964). 2. The stable...

Dean, Christopher William

1982-01-01T23:59:59.000Z

493

EA-1692: Red River Environmental Products, LLC Activated Carbon...  

Broader source: Energy.gov (indexed) [DOE]

2: Red River Environmental Products, LLC Activated Carbon Manufacturing Facility, Red River Parish, LA EA-1692: Red River Environmental Products, LLC Activated Carbon Manufacturing...

494

Enforcement Documents - Savannah River Site | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the Savannah River Site (EA-2000-08) June 7, 2000 Enforcement Letter, Savannah River Ecology Laboratory - June 7, 2000 Issued to Savannah River Ecology Laboratory related to...

495

Raft River Rural Electric Coop. Vigilante Electric Coop. Northern  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Farmers Electric Riverside Electric Minidoka Soda Springs Idaho Falls Lower Valley Energy Lost River Electric Coop. Fall River Rural Electric Coop. Salmon River Electric...

496

Continued Evaluation of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 12518  

SciTech Connect (OSTI)

The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. In 2010 Washington River Protection Solutions and the Pacific Northwest National Laboratory began evaluating the ultrasonic PulseEcho instrument to accurately identify critical velocities in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of >50 micrometers. In 2011 the PulseEcho instrument was further evaluated to identify critical velocities for slurries containing fast-settling, high-density particles with a mean particle diameter of <15 micrometers. This two-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Burns, Carolyn A.; Schonewill, Philip P.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)

2012-07-01T23:59:59.000Z

497

WATER QUALITY STUDY OF WENATCHEE AND MIDDLE COLUMBIA RIVERS  

E-Print Network [OSTI]

. Sylvester Project Supervisor University of Washington Seattle, Washington U. S. Fish and Wildlife Service Contract No. 14-19-008-2506 United States Fish and Wildlife Service Special Scientific Report --Fisheries

498

Deep drilling data, Raft River geothermal area, Idaho-Raft River...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Deep drilling data, Raft River geothermal area, Idaho-Raft River geothermal exploration well...

499

System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584  

SciTech Connect (OSTI)

The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (?m). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F. [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States)] [Pacific Northwest National Laboratory, Richland, Washington 99354 (United States); Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A. [Washington River Protection Solutions, Richland, Washington 99354 (United States)] [Washington River Protection Solutions, Richland, Washington 99354 (United States)

2013-07-01T23:59:59.000Z

500

System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584  

SciTech Connect (OSTI)

The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of ?14 micrometers (?m). In 2012 the PulseEcho instrument was further evaluated under WRPS’ System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP.

Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.; Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A.

2013-06-01T23:59:59.000Z