Powered by Deep Web Technologies
Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Vehicle Testing and Evaluation  

SciTech Connect (OSTI)

The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

Garetson, Thomas

2013-03-31T23:59:59.000Z

2

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The light-duty vehicle transportation sector in the United States depends heavily on imported petroleum as a transportation fuel. The Department of Energy’s Advanced Vehicle Testing Activity (AVTA) is testing advanced technology vehicles to help reduce this dependency, which would contribute to the economic stability and homeland security of the United States. These advanced technology test vehicles include internal combustion engine vehicles operating on 100% hydrogen (H2) and H2CNG (compressed natural gas) blended fuels, hybrid electric vehicles, neighborhood electric vehicles, urban electric vehicles, and electric ground support vehicles. The AVTA tests and evaluates these vehicles with closed track and dynamometer testing methods (baseline performance testing) and accelerated reliability testing methods (accumulating lifecycle vehicle miles and operational knowledge within 1 to 1.5 years), and in normal fleet environments. The Arizona Public Service Alternative Fuel Pilot Plant and H2-fueled vehicles are demonstrating the feasibility of using H2 as a transportation fuel. Hybrid, neighborhood, and urban electric test vehicles are demonstrating successful applications of electric drive vehicles in various fleet missions. The AVTA is also developing electric ground support equipment (GSE) test procedures, and GSE testing will start during the fall of 2003. All of these activities are intended to support U.S. energy independence. The Idaho National Engineering and Environmental Laboratory manages these activities for the AVTA.

James Francfort

2003-11-01T23:59:59.000Z

3

Advanced Technology Vehicle Testing  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) is to increase the body of knowledge as well as the awareness and acceptance of electric drive and other advanced technology vehicles (ATV). The AVTA accomplishes this goal by testing ATVs on test tracks and dynamometers (Baseline Performance testing), as well as in real-world applications (Fleet and Accelerated Reliability testing and public demonstrations). This enables the AVTA to provide Federal and private fleet managers, as well as other potential ATV users, with accurate and unbiased information on vehicle performance and infrastructure needs so they can make informed decisions about acquiring and operating ATVs. The ATVs currently in testing include vehicles that burn gaseous hydrogen (H2) fuel and hydrogen/CNG (H/CNG) blended fuels in internal combustion engines (ICE), and hybrid electric (HEV), urban electric, and neighborhood electric vehicles. The AVTA is part of DOE's FreedomCAR and Vehicle Technologies Program.

James Francfort

2004-06-01T23:59:59.000Z

4

Vehicle brake testing system  

DOE Patents [OSTI]

This invention relates to a force measuring system capable of measuring forces associated with vehicle braking and of evaluating braking performance. The disclosure concerns an invention which comprises a first row of linearly aligned plates, a force bearing surface extending beneath and beside the plates, vertically oriented links and horizontally oriented links connecting each plate to a force bearing surface, a force measuring device in each link, a transducer coupled to each force measuring device, and a computing device coupled to receive an output signal from the transducer indicative of measured force in each force measuring device. The present invention may be used for testing vehicle brake systems.

Stevens, Samuel S. (Harriman, TN); Hodgson, Jeffrey W. (Lenoir City, TN)

2002-11-19T23:59:59.000Z

5

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Provide benchmark data for advanced technology vehicles Develop lifecycle cost data for production vehicles utilizing advanced power trains Provide fleet...

6

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection AVTA HEV, NEV, BEV and HICEV Demonstrations and Testing Benchmarking of Advanced HEVs and...

7

Fact #591: October 5, 2009 Consumer Reports Tests Vehicle Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Seven vehicles were tested by Consumer Reports recently to determine the fuel economy of the vehicles at a given speed. For these vehicles, the decline in fuel economy from a speed...

8

Hydrogen ICE Vehicle Testing Activities  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity teamed with Electric Transportation Applications and Arizona Public Service to develop and monitor the operations of the APS Alternative Fuel (Hydrogen) Pilot Plant. The Pilot Plant provides 100% hydrogen, and hydrogen and compressed natural gas (H/CNG)-blended fuels for the evaluation of hydrogen and H/CNG internal combustion engine (ICE) vehicles in controlled and fleet testing environments. Since June 2002, twenty hydrogen and H/CNG vehicles have accumulated 300,000 test miles and 5,700 fueling events. The AVTA is part of the Department of Energy’s FreedomCAR and Vehicle Technologies Program. These testing activities are managed by the Idaho National Laboratory. This paper discusses the Pilot Plant design and monitoring, and hydrogen ICE vehicle testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

9

Advanced Vehicle Testing Activity (AVTA) ? PHEV Evaluations...  

Broader source: Energy.gov (indexed) [DOE]

1.pdf More Documents & Publications Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and Demonstration Activities AVTA PHEV Demonstrations and Testing Argonne...

10

Vehicle Technologies Office: Advanced Vehicle Testing Activity...  

Energy Savers [EERE]

initative. Together, these projects make up the largest ever deployment of all-electric vehicles, plug-in hybrid electric vehicles, and charging infrastructure in the...

11

Advanced Vehicle Testing - Beginning-of-Test Battery Testing...  

Broader source: Energy.gov (indexed) [DOE]

2.5 V Thermal Mgmt.: Passive, Vacuum-Sealed Unit Pack Weight: 294 kg BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 6,696 mi Date of...

12

Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov [DOE]

Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

13

Advanced Powertrain Research Facility Vehicle Test Cell Thermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

14

Categorical Exclusion Determinations: Advanced Technology Vehicles...  

Energy Savers [EERE]

20, 2011 CX-006218: Categorical Exclusion Determination Aptera All-Electric and Hybrid Electric Vehicles CX(s) Applied: B1.31, B5.1 Date: 06202011 Location(s): Grand Rapids,...

15

Advanced Vehicle Testing Activity (AVTA) Data and Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office (VTO) supports work to develop test procedures and carry out testing on a wide range of advanced vehicles and technologies through the Advanced Vehicle Testing...

16

Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B:...

17

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations H2-Assisted NOx Traps: Test Cell Results Vehicle Installations 2003 DEER Conference Presentation: ArvinMeritor...

18

HEV Fleet Testing Advanced Vehicle Testing Activities - 2010...  

Broader source: Energy.gov (indexed) [DOE]

Testing Advanced Vehicle Testing Activity Maintenance Sheet for 2010 Ford Fusion VIN 3FADP0L32AR194699 Date Mileage Description Cost 1012009 5915 Changed oil and filter 28.77...

19

Nissan Hypermini Urban Electric Vehicle Testing  

SciTech Connect (OSTI)

The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA), which is part of DOE’s FreedomCAR and Vehicle Technologies Program, in partnership with the California cities of Vacaville and Palm Springs, collected mileage and maintenance and repairs data for a fleet of eleven Nissan Hypermini urban electric vehicles (UEVs). The eleven Hyperminis were deployed for various periods between January 2001 and June 2005. During the combined total of 439 months of use, the eleven Hyperminis were driven a total of 41,220 miles by staff from both cities. This equates to an average use of about 22 miles per week per vehicle. There were some early problems with the vehicles, including a charging problem and a need to upgrade the electrical system. In addition, six vehicles required drive system repairs. However, the repairs were all made under warranty. The Hyperminis were generally well-liked and provided drivers with the ability to travel any of the local roads. Full charging of the Hypermini’s lithiumion battery pack required up to 4 hours, with about 8–10 miles of range available for each hour of battery charging. With its right-side steering wheel, some accommodation of the drivers’ customary driving methods was required to adapt for different blind spots and vehicle manipulation. For that reason, the drivers received orientation and training before using the vehicle. The Hypermini is instrumented in kilometers rather than in miles, which required an adjustment for the drivers to calculate speed and range. As the drivers gained familiarity with the vehicles, there was increased acceptance and a preference for using it over traditional city vehicles. In all cases, the Hyperminis attracted a great amount of attention and interest from the general public.

James Francfort; Robert Brayer

2006-01-01T23:59:59.000Z

20

Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov (indexed) [DOE]

* Development of a testbed vehicle capable of testing a range of energy storage systems (ESS) via onroad testing and vehicle-based dynamometer testing * Test ESS intended for EVs,...

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

AVTA: 2013 BRP Neighborhood Electric Vehicle Testing Results...  

Energy Savers [EERE]

describe testing results of the 2013 BRP neighborhood electric vehicle. Neighborhood electric vehicles reach speeds of no more than 35 miles per hour and are only allowed on...

22

AVTA: 2009 Vantage Neighborhood Electric Vehicle Testing Results...  

Energy Savers [EERE]

The following reports describe testing results of two 2009 Vantage neighborhood electric vehicles (a pickup truck style and a van style). Neighborhood electric vehicles...

23

Dynamometer tests of the Ford Ecostar Electric Vehicle No. 41  

SciTech Connect (OSTI)

A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over several standard driving regimes. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of several dynamometer driving cycle tests and a constant current discharge, and presents observations regarding the vehicle state-of-charge indicator and remaining range indicator.

Cole, G.H.; Richardson, R.A.; Yarger, E.J.

1995-09-01T23:59:59.000Z

24

2011 Hyundai Sonata Hybrid - vin 3539 Advanced Vehicle Testing...  

Broader source: Energy.gov (indexed) [DOE]

Pack Capacity: 5.3 Ah Cooling: ActiveCabin Air Pack Weight: 96 lb BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 5,730 mi Date of...

25

2013 Chevrolet Volt - VIN 3929 - Advanced Vehicle Testing - Beginning...  

Broader source: Energy.gov (indexed) [DOE]

Voltage 3 : 3.00 V Thermal Management: Active - Liquid cooled BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 4,007 mi Date of...

26

Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test and Vehicle Design  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Spring 2012 Space Vehicle Water Drop Test and Vehicle Design Overview The team was tasked with modelling the accelerations and pressures of an impact of the scaled landing vehicle to reduce the accelerations and pressures of the vehicle. Objectives Provide

Demirel, Melik C.

27

2011 Hyundai Sonata 3539 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing hybrid electric vehicle batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid (VIN KMHEC4A47BA003539). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Matthew Shirk; Tyler Gray; Jeffrey Wishart

2014-09-01T23:59:59.000Z

28

In-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries  

E-Print Network [OSTI]

-extending series hybrid electric vehicle (HEV) by the student members of the Society of Automotive Engineers (SAEIn-Vehicle Testing and Computer Modeling of Electric Vehicle Batteries B. Thomas, W.B. Gu, J driving conditions as opposed to purely experimental testing. The new approach is cost- effective, greatly

Wang, Chao-Yang

29

Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment  

Broader source: Energy.gov (indexed) [DOE]

pROGRAM Electric Vehicle Supply Equipment (EVSE) Test Report: AeroVironment EVSE Features LED status light EVSE Specifications Grid connection Hardwired Connector type J1772 Test...

30

Vehicle Technologies Office Merit Review 2014: INL Testing of...  

Broader source: Energy.gov (indexed) [DOE]

INL Testing of Wireless Charging Systems Vehicle Technologies Office Merit Review 2014: INL Testing of Wireless Charging Systems Presentation given by Idaho National Laboratory at...

31

AVTA: Ford Escape PHEV Advanced Research Vehicle 2010 Testing...  

Broader source: Energy.gov (indexed) [DOE]

results of testing done on a plug-in hybrid electric Ford Escape Advanced Research Vehicle, an experimental model not currently for sale. The baseline performance testing...

32

Toyota Gen III Prius Hybrid Electric Vehicle Accelerated Testing...  

Broader source: Energy.gov (indexed) [DOE]

HEV Accelerated Testing - September 2011 Two model year 2010 Toyota Generation III Prius hybrid electric vehicles (HEVs) entered Accelerated testing during July 2009 in a fleet in...

33

US Department of Energy Hybrid Vehicle Battery and Fuel Economy Testing  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity (AVTA), part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program, has conducted testing of advanced technology vehicles since August, 1995 in support of the AVTA goal to provide benchmark data for technology modeling, and research and development programs. The AVTA has tested over 200 advanced technology vehicles including full size electric vehicles, urban electric vehicles, neighborhood electric vehicles, and hydrogen internal combustion engine powered vehicles. Currently, the AVTA is conducting significant tests of hybrid electric vehicles (HEV). This testing has included all HEVs produced by major automotive manufacturers and spans over 1.3 million miles. The results of all testing are posted on the AVTA web page maintained by the Idaho National Laboratory. Through the course of this testing, the fuel economy of HEV fleets has been monitored and analyzed to determine the "real world" performance of their hybrid energy systems, particularly the battery. While the initial "real world" fuel economy of these vehicles has typically been less than that evaluated by the manufacturer and varies significantly with environmental conditions, the fuel economy and, therefore, battery performance, has remained stable over vehicle life (160,000 miles).

Donald Karner; J.E. Francfort

2005-09-01T23:59:59.000Z

34

Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains  

E-Print Network [OSTI]

Modelling, Simulation, Testing, and Optimization of Advanced Hybrid Vehicle Powertrains By Jeffrey of the author. #12;ii Modelling, Simulation, Testing and Optimization of Advanced Hybrid Vehicle Powertrains prototypes. A comprehensive survey of the state of the art of commercialized hybrid vehicle powertrains

Victoria, University of

35

AVTA: Nissan Leaf All-Electric Vehicle 2011 Testing Reports  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on an all-electric 2011 Nissan Leaf. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

36

Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec...  

Broader source: Energy.gov (indexed) [DOE]

VEhICLE TEChNOLOgIES pROgRAm Electric Vehicle Supply Equipment (EVSE) Test Report: Voltec 240V EVSE Features Integrated Flashlight 25ft of coiled cable Auto-reset EVSE...

37

Advanced Vehicle Testing Activity (AVTA) ? Non-PHEV Evaluations...  

Energy Savers [EERE]

Non-PHEV Evaluations and Data Collection Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection Presentation from the U.S. DOE Office of Vehicle...

38

Vehicle to Grid Communications Field Testing  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

39

Vehicle Mass and Fuel Efficiency Impact Testing  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

40

Automotive Component Measurements forAutomotive Component Measurements for Determining VehicleDetermining Vehicle--Level RadiatedLevel Radiated  

E-Print Network [OSTI]

1 Automotive Component Measurements forAutomotive Component Measurements for Determining VehicleDetermining Vehicle--Level RadiatedLevel Radiated Automotive Component Measurements forAutomotive Component automotiveWe need to characterize automotive components the way we characterize circuitcomponents the way we

Stuart, Steven J.

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Performance test results for the Eaton dc developmental power train in an electric test bed vehicle  

SciTech Connect (OSTI)

This report presents the results of the tests performed on a direct current (dc) power train in a test bed vehicle developed by the Eaton Corporation for the US Department of Energy (DOE). The tests were performed by EG and G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The purpose of the INEL testing was to provide test results from which an evaluation of the performance capabilities of the Eaton dc power train could be made and compared with other vehicle propulsion systems. The planned tests were primarily oriented toward road testing, chassis dynamometer testing, and associated dynamometer coastdown tests for road loss determination. Range tests of the Eaton dc test bed vehicle using an ALCO 2200 lead acid battery pack, produced ranges of 97 km at 56 km/h (60 miles at 35 mph), 79 km at 72 km/h (49 miles at 45 mph), and 47 km at 88 km/h (29 miles at 55 mph). The corresponding net dc energy consumptions are 135 Wh/km (217 Wh/mile), 145 Wh/km (233 Wh/mile), and 178 Wh/km (287 Wh/mile). The energy consumption for the D-cycle test was 241 Wh/km (387 Wh/mile). 8 refs., 11 figs., 16 tabs.

Crumley, R.L.; Donaldson, M.R.

1987-09-01T23:59:59.000Z

42

Advanced Vehicle Testing Activity (AVTA) ? Non-PHEV Evaluations...  

Broader source: Energy.gov (indexed) [DOE]

simulation and analysis technical team every other month * Testing results and life-cycle costs are used by vehicle modelers * Partnering with private sector testers provides...

43

2011 Hyundai Sonata 4932 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Hyundai Sonata Hybrid HEV (VIN KMHEC4A43BA004932). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

44

A Fuel-Cell Vehicle Test Station.  

E-Print Network [OSTI]

??Due to concerns about energy security, rising oil prices, and adverse effects of internal combustion engine vehicles on the environment, the automotive industry is quickly… (more)

Thorne, Michelle I

2008-01-01T23:59:59.000Z

45

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

SciTech Connect (OSTI)

Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

James E. Francfort

2003-11-01T23:59:59.000Z

46

Vehicle Technologies Office Merit Review 2014: Post-Test Analysis...  

Broader source: Energy.gov (indexed) [DOE]

Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery...

47

US advanced battery consortium in-vehicle battery testing procedure  

SciTech Connect (OSTI)

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

48

Testing hybrid electric vehicle emissions and fuel economy at the 1994 Hybrid Electric Vehicle Challenge  

SciTech Connect (OSTI)

From June 12--20, 1994, an engineering design competition called the 1994 Hybrid Electric Vehicle (HEV) Challenge was held in Southfield, Michigan. This collegiate-level competition, which involved 36 colleges and universities from across North America, challenged the teams to build a superior HEV. One component of this comprehensive competition was the emissions event. Special HEV testing procedures were developed for the competition to find vehicle emissions and correct for battery state-of-charge while fitting into event time constraints. Although there were some problems with a newly-developed data acquisition system, they were able to get a full profile of the best performing vehicles as well as other vehicles that represent typical levels of performance from the rest of the field. This paper will explain the novel test procedures, present the emissions and fuel economy results, and provide analysis of second-by-second data for several vehicles.

Duoba, M.; Quong, S.; LeBlanc, N.; Larsen, R.P.

1995-06-01T23:59:59.000Z

49

Vehicle Technologies Office Merit Review 2014: Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing of advanced...

50

AVTA: 2014 Mazda Mazda3 i-ELOOP Vehicle Testing Reports  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road....

51

Vehicle to Electric Vehicle Supply Equipment Smart Grid Communications Interface Research and Testing Report  

SciTech Connect (OSTI)

Plug-in electric vehicles (PEVs), including battery electric, plug-in hybrid electric, and extended range electric vehicles, are under evaluation by the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA) and other various stakeholders to better understand their capability and potential petroleum reduction benefits. PEVs could allow users to significantly improve fuel economy over a standard hybrid electric vehicles, and in some cases, depending on daily driving requirements and vehicle design, PEVs may have the ability to eliminate petroleum consumption entirely for daily vehicle trips. The AVTA is working jointly with the Society of Automotive Engineers (SAE) to assist in the further development of standards necessary for the advancement of PEVs. This report analyzes different methods and available hardware for advanced communications between the electric vehicle supply equipment (EVSE) and the PEV; particularly Power Line Devices and their physical layer. Results of this study are not conclusive, but add to the collective knowledge base in this area to help define further testing that will be necessary for the development of the final recommended SAE communications standard. The Idaho National Laboratory and the Electric Transportation Applications conduct the AVTA for the United States Department of Energy's Vehicle Technologies Program.

Kevin Morrow; Dimitri Hochard; Jeff Wishart

2011-09-01T23:59:59.000Z

52

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

1 2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy National...

53

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

2 2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results Tyler Gray Mathew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

54

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

5 2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

55

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

6 2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

56

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test...  

Broader source: Energy.gov (indexed) [DOE]

3 2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results Tyler Gray Matthew Shirk January 2013 The Idaho National Laboratory is a U.S. Department of Energy...

57

Putting electric vehicles to the test  

E-Print Network [OSTI]

the needs of the daily commuter? Can they match the performance we've come to expect from their fossil fuel sectors. Dr. Swan and his father have three electric vehicles ­ two 2000 Ford Ranger EV trucks and a 2002 uses a full charge in a day. He uses a Ranger to get to work and hauls any cargo or trailers he needs

58

Potential use of battery packs from NCAP tested vehicles.  

SciTech Connect (OSTI)

Several large electric vehicle batteries available to the National Highway Traffic Safety Administration are candidates for use in future safety testing programs. The batteries, from vehicles subjected to NCAP crashworthiness testing, are considered potentially damaged due to the nature of testing their associated vehicles have been subjected to. Criteria for safe shipping to Sandia is discussed, as well as condition the batteries must be in to perform testing work. Also discussed are potential tests that could be performed under a variety of conditions. The ultimate value of potential testing performed on these cells will rest on the level of access available to the battery pack, i.e. external access only, access to the on board monitoring system/CAN port or internal electrical access to the battery. Greater access to the battery than external visual and temperature monitoring would likely require input from the battery manufacturer.

Lamb, Joshua; Orendorff, Christopher J.

2013-10-01T23:59:59.000Z

59

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-09-01T23:59:59.000Z

60

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities  

SciTech Connect (OSTI)

The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

James E. Francfort; Donald Karner; John G. Smart

2009-05-01T23:59:59.000Z

62

Hybrid Electric Vehicle Fleet and Baseline Performance Testing  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

J. Francfort; D. Karner

2006-04-01T23:59:59.000Z

63

Summary of electric vehicle dc motor-controller tests  

SciTech Connect (OSTI)

Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.

McBrien, E F; Tryon, H B

1982-09-01T23:59:59.000Z

64

Fastest Path Determination at Lane Granularity using a Vehicle-to-Vehicle-to-Infrastructure (V2V2I) Intelligent Transportation System Architecture  

E-Print Network [OSTI]

-to- vehicle-to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2VFastest Path Determination at Lane Granularity using a Vehicle-to-Vehicle-to- Infrastructure (V2V2I University of Alaska, Anchorage jmiller@uaa.alaska.edu Abstract ­ In this paper, I describe the vehicle

Miller, Jeffrey A.

65

Legacy Vehicle Fuel System Testing with Intermediate Ethanol Blends  

SciTech Connect (OSTI)

The effects of E10 and E17 on legacy fuel system components from three common mid-1990s vintage vehicle models (Ford, GM, and Toyota) were studied. The fuel systems comprised a fuel sending unit with pump, a fuel rail and integrated pressure regulator, and the fuel injectors. The fuel system components were characterized and then installed and tested in sample aging test rigs to simulate the exposure and operation of the fuel system components in an operating vehicle. The fuel injectors were cycled with varying pulse widths during pump operation. Operational performance, such as fuel flow and pressure, was monitored during the aging tests. Both of the Toyota fuel pumps demonstrated some degradation in performance during testing. Six injectors were tested in each aging rig. The Ford and GM injectors showed little change over the aging tests. Overall, based on the results of both the fuel pump testing and the fuel injector testing, no major failures were observed that could be attributed to E17 exposure. The unknown fuel component histories add a large uncertainty to the aging tests. Acquiring fuel system components from operational legacy vehicles would reduce the uncertainty.

Davis, G. W.; Hoff, C. J.; Borton, Z.; Ratcliff, M. A.

2012-03-01T23:59:59.000Z

66

Dynamometer testing of the U.S. Electricar Geo Prizm conversion electric vehicle  

SciTech Connect (OSTI)

A Geo Prizm electric vehicle conversion by U.S. Electricar was tested in the INEL HEV Laboratory over several standard driving regimes. The vehicle, owned by the Los Angeles Department of Water and Power (LADWP), was loaned to the INEL for performance testing under a Cooperative Research and Development Agreement (CRADA) between the U.S. Department of Energy (DOE) and the California Air Resources Board (CARB). The Prizm conversion is the fourth vehicle in the planned test series. A summary of the test results is presented as Table ES-1. For the LA-92 and the Highway Fuel Economy Test cycles, the driving cycle ranges were 71 and 95 km, respectively. The net DC energy consumption during these cycles was measured at 199 and 154 W-h/km, respectively. During the constant-current-discharge test, the vehicle was driven 150 km at an average steady speed of 43 km/h. Energy consumption at various steady-state speeds, averaged over two tests, was approximately 108 W-h/km at 40 km/hr and 175 W-h/km at 96 km/h at 80T state-of-charge (SOC). Gradeability-at-speed tests indicated that the vehicle can be driven at 80 km/h up a simulated 5% grade for periods up to 15 minutes beginning at an initial 100% SOC, and 3 minutes beginning at 80% battery depth-of-discharge (DOD). Maximum-effort vehicle acceleration times were determined at five different battery DODs and speeds from 24 to 104 km/h. The acceleration is approximately linear up to 48 km/h, with no DOD effect; at higher speeds the curve becomes non-linear, and the effect of DOD becomes increasingly evident. Gradeability at each of these speeds was also determined, showing a decrease from the initial 26% at 24 km/h to 4% at 104 km/h.

Richardson, R.A.; Yarger, E.J.; Cole, G.H.

1996-04-01T23:59:59.000Z

67

Hydrogen Fuel Pilot Plant and Hydrogen ICE Vehicle Testing  

SciTech Connect (OSTI)

The U.S. Department Energy's Advanced Vehicle Testing Activity (AVTA) teamed with Electric Transportation Applications (ETA) and Arizona Public Service (APS) to develop the APS Alternative Fuel (Hydrogen) Pilot Plant that produces and compresses hydrogen on site through an electrolysis process by operating a PEM fuel cell in reverse; natural gas is also compressed onsite. The Pilot Plant dispenses 100% hydrogen, 15 to 50% blends of hydrogen and compressed natural gas (H/CNG), and 100% CNG via a credit card billing system at pressures up to 5,000 psi. Thirty internal combustion engine (ICE) vehicles (including Daimler Chrysler, Ford and General Motors vehicles) are operating on 100% hydrogen and 15 to 50% H/CNG blends. Since the Pilot Plant started operating in June 2002, they hydrogen and H/CNG ICE vehicels have accumulated 250,000 test miles.

J. Francfort (INEEL)

2005-03-01T23:59:59.000Z

68

Advanced Vehicle Testing Activity (AVTA) ? PHEV Evaluations...  

Broader source: Energy.gov (indexed) [DOE]

kWh MPG per FWHET Test Cumulative MPG Cumulative AC kWh 15 FY07 EnergyCS Prius - Fuel Costs EnergyCS PHEV Prius UDDS & HWFET Fuel Cost per Mile 0.000 0.005 0.010 0.015...

69

Test plan for performance testing of the Eaton AC-3 electric vehicle  

SciTech Connect (OSTI)

An alternating current (ac) propulsion system for an electric vehicle has been developed and tested by the Eaton Corporation. The test bed vehicle is a modified 1981 Mercury Lynx. The test plan has been prepared specifically for the third modification to this test bed and identified as the Eaton AC-3. The scope of the EG and G testing at INEL to be done on the Eaton AC-3 will include coastdown and dynamometer tests but will not include environmental, on-road, or track testing. Coastdown testing will be performed in accordance with SAE J-1263 (SAE Recommended Practice for Road Load Measurement and Dynamometer Simulation Using Coastdown Techniques).

Crumley, R.L.; Heiselmann, H.W.

1985-04-01T23:59:59.000Z

70

Fuzzy logic approach in determining the range of electric vehicle  

SciTech Connect (OSTI)

Some efforts are underway in the automobile industry to determine the distance which an electric car will be able to traverse based on some typical battery conditions. A software package DIANE for modelling battery performance in electric vehicles has recently been developed by Marr, Walsh and Symons (1990). The objective of this paper is to introduce fuzzy logic approach in applying correction factor to the range determined by DIANE. The overall algorithm has been implemented for 8 different cars and 5 different batteries. 5 refs.

Singh, H.; Bawa, H.S.; Barada, S.; Bryant, B.; Anneberg, L. [Wayne State Univ., Detroit, MI (United States). Dept. of Electrical and Computer Engineering

1994-12-31T23:59:59.000Z

71

P1.2 -- Hybrid Electric Vehicle and Lithium Polymer NEV Testing  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests hybrid electric, pure electric, and other advanced technology vehicles. As part of this testing, 28 hybrid electric vehicles (HEV) are being tested in fleet, dynamometer, and closed track environments. This paper discusses some of the HEV test results, with an emphasis on the battery performance of the HEVs. It also discusses the testing results for a small electric vehicle with a lithium polymer traction battery.

J. Francfort

2006-06-01T23:59:59.000Z

72

Additional dynamometer tests of the Ford Ecostar Electric Vehicle No. 41  

SciTech Connect (OSTI)

A Ford Ecostar vehicle was tested in the Idaho National Engineering Laboratory (INEL) Hybrid Electric Vehicle (HEV) Laboratory over two standard driving regimes, coastdown testing, and typical charge testing. The test vehicle was delivered to the INEL in February 19, 1995 under the DOE sponsored Modular Electric Vehicle Program. This report presents the results of dynamometer driving cycle tests, charge data, and coastdown testing for California Air Resources Board (CARB) under a CRADA with the Department Of Energy (DOE).

Cole, G.H.; Richardson, R.A.; Yarger, E.J.

1996-06-01T23:59:59.000Z

73

Heading Lock Maneuver Testing of Autonomous Underwater Vehicle  

E-Print Network [OSTI]

In recent years, Autonomous Underwater Vehicle (UAV) research and development at Bandung Institute of Technology in Indonesia has achieved the testing stage in the field. This testing was still being classified as the early testing, since some of the preliminary tests were carried out in the scale of the laboratory. The paper would discuss the laboratory test and several tests that were done in the field. Discussions were stressed in the procedure and the aim that will be achieved, along with several early results. The testing was carried out in the lake with the area around 8300 Ha and the maximum depth of 50 meters. The location of the testing was chosen with consideration of minimizing the effect of the current and the wave, as well as the location that was not too far from the Laboratory. The type of testing that will be discussed in paper was Heading Lock Maneuver Testing. The vehicle was tested to move with a certain cruising speed, afterwards it was commanded by an arbitrarily selected heading directio...

Muljowidodo, K

2008-01-01T23:59:59.000Z

74

An adaptable, low cost test-bed for unmanned vehicle systems research.  

E-Print Network [OSTI]

?? An unmanned vehicle systems test-bed has been developed. The test-bed has been designed to accommodate hardware changes and various vehicle types and algorithms. The… (more)

Goppert, James M.

2011-01-01T23:59:59.000Z

75

EcoCAR Vehicles Get Put to the Test at General Motors' Proving...  

Broader source: Energy.gov (indexed) [DOE]

EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground June 13, 2011 - 5:57pm Addthis Virginia...

76

Roadmap for Testing and Validation of Electric Vehicle Communication Standards  

SciTech Connect (OSTI)

Vehicle to grid communication standards are critical to the charge management and interoperability among plug-in electric vehicles (PEVs), charging stations and utility providers. The Society of Automobile Engineers (SAE), International Organization for Standardization (ISO), International Electrotechnical Commission (IEC) and the ZigBee Alliance are developing requirements for communication messages and protocols. While interoperability standards development has been in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers or utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI), in collaboration with SAE and automobile manufacturers, has identified performance requirements and developed a test plan based on possible communication pathways using power line communication (PLC). Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This paper presents a roadmap and results from testing power line communication modules developed to meet the requirements of SAE J2847/1 standard.

Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

2012-07-12T23:59:59.000Z

77

The Micro Craft iSTAR Micro Air Vehicle: Control System Design and Testing  

E-Print Network [OSTI]

-rotating propellers) benefits both reliability and cost. Figure 1: iSTAR Micro Air Vehicle The Micro Craft iSTAR VTOLThe Micro Craft iSTAR Micro Air Vehicle: Control System Design and Testing Larry Lipera i Abstract The iSTAR Micro Air Vehicle (MAV) is a unique 9-inch diameter ducted air vehicle weighing

Rotkowitz, Michael C.

78

Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energy’s (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

John G. Smart; Sera White; Michael Duoba

2009-05-01T23:59:59.000Z

79

Design, Development and Testing of Underwater Vehicles: ITB Experience  

E-Print Network [OSTI]

The last decade has witnessed increasing worldwide interest in the research of underwater robotics with particular focus on the area of autonomous underwater vehicles (AUVs). The underwater robotics technology has enabled human to access the depth of the ocean to conduct environmental surveys, resources mapping as well as scientific and military missions. This capability is especially valuable for countries with major water or oceanic resources. As an archipelagic nation with more than 13,000 islands, Indonesia has one of the most abundant living and non-organic oceanic resources. The needs for the mapping, exploration, and environmental preservation of the vast marine resources are therefore imperative. The challenge of the deep water exploration has been the complex issues associated with hazardous and unstructured undersea and sea-bed environments. The paper reports the design, development and testing efforts of underwater vehicle that have been conducted at Institut Teknologi Bandung. Key technology areas...

Muljowidodo, Said D; Budiyono, Agus; Nugroho, Sapto A

2008-01-01T23:59:59.000Z

80

Vehicle Technologies Office Merit Review 2014: Vehicle to Grid Communications and Field Testing  

Broader source: Energy.gov [DOE]

Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Autonomie Modeling Tool Improves Vehicle Design and Testing,...  

Energy Savers [EERE]

support, is helping U.S. auto manufacturers develop the next generation of hybrid and electric vehicles. Hybrid and electric vehicles require sophisticated electric drive and...

82

Testing and Validation of Vehicle to Grid Communication Standards...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Greenpower Trap Mufflerl System Idaho Operations AMWTP Fact Sheet Heating Ventilation and Air Conditioning Efficiency Vehicles Home About Vehicle Technologies Office Plug-in...

83

Idaho National Laboratory Testing of Advanced Technology Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss021francfort2011o.pdf More Documents & Publications Vehicle...

84

Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov (indexed) [DOE]

* Vehicle and infrastructure demonstration results are published to document - Vehicle fuel economy and electricity consumption as a result of driving and charging behavior -...

85

FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications.  

SciTech Connect (OSTI)

This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

Doughty, Daniel Harvey; Crafts, Chris C.

2006-08-01T23:59:59.000Z

86

Laboratory testing of high energy density capacitors for electric vehicles  

SciTech Connect (OSTI)

Laboratory tests of advanced, high energy density capacitors in the Battery Test Laboratory of the Idaho National Engineering Laboratory have been performed to investigate their suitability for load-leveling the battery in an electric vehicle. Two types of devices were tested -- 3 V, 70 Farad, spiral wound, carbon-based, single cell devices and 20 V, 3. 5 Farad, mixed-oxide, multi-cell bipolar devices. The energy density of the devices, based on energy stored during charge to the rated voltage, was found to be 1--2 Wh/kg, which agreed well with that claimed by the manufacturers. Constant power discharge tests were performed at power densities up to 1500 W/kg. Discharges at higher power densities could have been performed had equipment been available to maintain constant power during discharges of less than one second. It was found that the capacitance of the devices were rate dependent with the rate dependency of the carbon-based devices being higher than that of the mixed-oxide devices. The resistance of both types of devices were relatively low being 20--30 milliohms. Testing done in the study showed that the advanced high energy density capacitors can be charged and discharged over cycles (PSFUDS) which approximate the duty cycle that would be encountered if the devices are used to load-level the battery in an electric vehicle. Thermal tests of the advanced capacitors in an insulated environment using the PSFUDS cycle showed the devices do not overheat with their temperatures increasing only 4--5{degrees}C for tests that lasted 5--7 hours. 7 refs., 33 figs., 11 tabs.

Burke, A.F.

1991-10-01T23:59:59.000Z

87

An Ontology-based Model to Determine the Automation Level of an Automated Vehicle for  

E-Print Network [OSTI]

An Ontology-based Model to Determine the Automation Level of an Automated Vehicle for Co). In addition, an automated vehicle should also self-assess its own perception abilities, and not only perceive this idea, cybercars were designed as fully automated vehicles [3], thought since its inception as a new

Paris-Sud XI, Université de

88

Interim Test Procedures for Evaluating Electrical Performance and Grid Integration of Vehicle-to-Grid Applications  

SciTech Connect (OSTI)

The objective of this report is to provide a test plan for V2G testing. The test plan is designed to test and evaluate the vehicle's power electronics capability to provide power to the grid, and to evaluate the vehicle's ability to connect and disconnect from the utility according to a subset of the IEEE Std. 1547 tests.

Chakraborty, S.; Kramer, W.; Kroposki, B.; Martin, G.; McNutt, P.; Kuss, M.; Markel, T.; Hoke, A.

2011-06-01T23:59:59.000Z

89

AVTA: Testing Results on the USPS Long-life Vehicle Conversions...  

Energy Savers [EERE]

and development. The following reports describe results of testing conversions to all-electric vehicles of the U.S. Postal Service's standard Long-Life Vehicle used for postal...

90

2011 HONDA CR-Z 2982 - HYBRID ELECTRIC VEHICLE BATTERY TEST RESULTS  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C64BS002982). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

Gray, Tyler [Interek; Shirk, Matthew [Idaho National Laboratory; Wishart, Jeffrey [Interek

2014-09-01T23:59:59.000Z

91

2011 Honda CR-Z 4466 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy’s Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles, including testing traction batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Honda CR-Z (VIN JHMZF1C67BS004466). Battery testing was performed by Intertek Testing Services NA. The Idaho National Laboratory and Intertek collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Office of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2014-09-01T23:59:59.000Z

92

2010 Honda Insight VIN 0141 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H78AS010141). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray

2013-01-01T23:59:59.000Z

93

2010 Ford Fusion VIN 4757 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on-road fleet testing. This report documents battery testing performed for the 2010 Ford Fusion HEV (VIN: 3FADP0L34AR144757). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

94

2010 Toyota Prius VIN 6063 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN JTDKN3DU5A0006063). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

95

2010 Honda Insight VIN 1748 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Honda Insight HEV (VIN: JHMZE2H59AS011748). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

96

2010 Toyota Prius VIN 0462 Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of 160,000 miles of on road fleet testing. This report documents battery testing performed for the 2010 Toyota Prius HEV (VIN: JTDKN3DU2A5010462). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the Advanced Vehicle Testing Activity for the Vehicle Technologies Program of the U.S. Department of Energy.

Tyler Gray; Matthew Shirk

2013-01-01T23:59:59.000Z

97

AVTA: BWM Mini-E All-Electric Vehicle Testing Report  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on an all-electric 2009 BMW Mini-e, a demonstration vehicle not available on the market. The baseline performance testing provides a point of comparison for the other test results. This research was conducted by Idaho National Laboratory.

98

Monitoring System for Testing the Performance of an Electric Vehicle Using Ultracapacitors  

E-Print Network [OSTI]

Monitoring System for Testing the Performance of an Electric Vehicle Using Ultracapacitors Juan W. Dixon, Micah Ortúzar and Jorge Moreno Abstract A monitoring system for an Electric Vehicle, which uses of ultracapacitors in combination with batteries in electric vehicles. The efficiency gain is being monitored

Catholic University of Chile (Universidad Católica de Chile)

99

Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

100

Overview of Vehicle and Systems Simulation and Testing  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data  

SciTech Connect (OSTI)

UTC will led a top-tier team of industry and national laboratory participants to update and improve DOE’s Accelerated Stress Tests (AST’s) for hydrogen fuel cells. This in-depth investigation will focused on critical fuel cell components (e.g. membrane electrode assemblies - MEA) whose durability represented barriers for widespread commercialization of hydrogen fuel cell technology. UTC had access to MEA materials that had accrued significant load time under real-world conditions in PureMotion® 120 power plant used in transit buses. These materials are referred to as end-of-life (EOL) components in the rest of this document. Advanced characterization techniques were used to evaluate degradation mode progress using these critical cell components extracted from both bus power plants and corresponding materials tested using the DOE AST’s. These techniques were applied to samples at beginning-of-life (BOL) to serve as a baseline. These comparisons advised the progress of the various failure modes that these critical components were subjected to, such as membrane degradation, catalyst support corrosion, platinum group metal dissolution, and others. Gaps in the existing ASTs predicted the degradation observed in the field in terms of these modes were outlined. Using the gaps, new AST’s were recommended and tested to better reflect the degradation modes seen in field operation. Also, BOL components were degraded in a test vehicle at UTC designed to accelerate the bus field operation.

Patterson, Timothy [Research Engineer] [Research Engineer; Motupally, Sathya [Research Engineer] [Research Engineer

2012-06-01T23:59:59.000Z

102

Near-term electric test vehicle ETV-2. Phase II. Final report  

SciTech Connect (OSTI)

A unique battery-powered passenger vehicle has been developed that provides a significant improvement over conventional electric vehicle performance, particularly during stop-and-go driving. The vehicle is unique in two major respects: (1) the power system incorporates a flywheel that stores energy during regenerative braking and makes possible the acceleration capability needed to keep up with traffic without reducing range to unacceptable values; and (2) lightweight plastic materials are used for the vehicle unibody to minimize weight and increase range. These features were analyzed and demonstrated in an electric test vehicle, ETV-2. Characteristics of this vehicle are summarized. Information is presented on: vehicle design, fabrication, safety testing, and performance testing; power system design and operation; flywheel; battery pack performance; and controls and electronic equipment. (LCL)

Not Available

1981-04-01T23:59:59.000Z

103

2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

104

2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

105

Vehicle Technologies Office Merit Review 2014: Battery Safety Testing  

Broader source: Energy.gov [DOE]

Presentation given by Sandia National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

106

2011 Hyundai Sonata Hybrid - vin 4932 Advanced Vehicle Testing...  

Broader source: Energy.gov (indexed) [DOE]

Sheets (MSDS) for all unique hazardous materials the vehicle is equipped with, including Energy Storage System (ESS) batteries or capacitors, and auxiliary batteries. (3)...

107

Vehicle Technologies Office Merit Review 2014: Electrochemical Performance Testing  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

108

AVTA: EVSE Testing- NYSERDA Electric Vehicle Charging Infrastructure Reports  

Broader source: Energy.gov [DOE]

These reports describe the charging patterns of drivers participating in the New York State Energy Research and Development Authority's (NYSERDA) electric vehicle (EV) infrastructure project.

109

VEHICLE-BARRIER TRACKING OF ASCALED CRASH TEST FOR ROADSIDE BARRIER DESIGN  

E-Print Network [OSTI]

reality of the vehicle-barrier impact. Scaled testing may thus be a cost effective method to evaluateVEHICLE-BARRIER TRACKING OF ASCALED CRASH TEST FOR ROADSIDE BARRIER DESIGN Giuseppina Amato1 Engineering, David Keir Building, Stranmillis Road, Belfast, BT9 5AG, UK 2 Trinity College Dublin, Dept

Paris-Sud XI, Université de

110

U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles  

SciTech Connect (OSTI)

Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

Mindy Kirpatrick; J. E. Francfort

2003-11-01T23:59:59.000Z

111

AVTA: 2010 Electric Vehicles International Neighborhood Electric...  

Energy Savers [EERE]

10 Electric Vehicles International Neighborhood Electric Vehicle Testing Results AVTA: 2010 Electric Vehicles International Neighborhood Electric Vehicle Testing Results The...

112

Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities  

SciTech Connect (OSTI)

The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

Donald Karner

2007-12-01T23:59:59.000Z

113

Electric vehicle test and evaluation data: preliminary analysis  

SciTech Connect (OSTI)

The data in this paper summarizes the current experience of DOE private sector site operators and is based on information gathered from electric vehicle (EV) private sector site operators by Booz, Allen and Hamilton under contract to the U.S. Department of Energy. Since January 1980, Booz, Allen has collected and computerized on an IBM Personnel computer data from 16 private sector site operators covering nine vehicle types and over 1.3 million miles of vehicle travel. The paper summarizes key indicators of vehicle performance including energy consumption per mile and miles travelled per charge and reports on results of and plans for special analyses. More detailed information is available from the authors.

Friedman, K.; Magro, W.

1983-06-01T23:59:59.000Z

114

2013 Chevrolet Malibu ECO Advanced Vehicle Testing - Baseline...  

Broader source: Energy.gov (indexed) [DOE]

chassis does not exceed 5 mA at any time the vehicle is connected to an off-board power supply. (24) The automatic disconnect for the ESS batteries shall be capable of...

115

2011 Chevrolte Volt - VIN 0815 - Advanced Vehicle Testing - Baseline...  

Broader source: Energy.gov (indexed) [DOE]

chassis does not exceed 5 mA at any time the vehicle is connected to an off-board power supply. (24) The automatic disconnect for the ESS batteries shall be capable of...

116

2011 Nissan Leaf - VIN 0356 - Advanced Vehicle Testing - Baseline...  

Broader source: Energy.gov (indexed) [DOE]

chassis does not exceed 5 mA at any time the vehicle is connected to an off-board power supply. (24) The automatic disconnect for the ESS batteries shall be capable of...

117

2013 Chevrolte Volt - VIN 3929 - Advanced Vehicle Testing - Baseline...  

Broader source: Energy.gov (indexed) [DOE]

chassis does not exceed 5 mA at any time the vehicle is connected to an off-board power supply. (24) The automatic disconnect for the ESS batteries shall be capable of...

118

Idaho National Laboratory Testing of Advanced Technology Vehicles  

Broader source: Energy.gov (indexed) [DOE]

(FL) * Prepared for work at Marine Corps Base Camp Lejeune (NC) Hydrogen generation and fuel cell vehicle feasibility study in Hawaii * Study begun for GSA fleets in Honolulu, HI...

119

Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research  

E-Print Network [OSTI]

Developing a Test Data Set for Electric Vehicle Applications in Smart Grid Research Hossein Akhavan data set for PHEV-related research in the field of smart grid. Our developed data set is made available, publicly available data set, smart grid applications, experimental vehicle driving traces, state of charge

Mohsenian-Rad, Hamed

120

U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

Jon P. Christophersen

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vehicle Technologies Office Merit Review 2014: INL Testing of Wireless Charging Systems  

Broader source: Energy.gov [DOE]

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL testing of...

122

Cone Penetrometer N Factor Determination Testing Results  

SciTech Connect (OSTI)

This document contains the results of testing activities to determine the empirical 'N Factor' for the cone penetrometer in kaolin clay simulant. The N Factor is used to releate resistance measurements taken with the cone penetrometer to shear strength.

Follett, Jordan R.

2014-03-05T23:59:59.000Z

123

Determination of the recombination efficiency of thermal control coatings for hypersonic vehicles  

SciTech Connect (OSTI)

A method is presented for determining the recombination efficiency of coatings for hypersonic vehicle applications. The approach uses experimental results from arc-jet tests with an analysis to determine the efficiency for the recombination of atomic species present in the boundary layer. The analysis employs analytical solutions to the laminar boundary-layer heat-transfer equations with experimental heating-rate, temperature, and pressure measurements. The authors discuss experimental difficulties in achieving reliable materials-performance data. The utility of the method is that it provides a rapid and efficient tool for use in qualitative screening and development of materials. The effects of second-order heat-transfer terms may be as high as 50% for low-catalysis surfaces. With the second-order terms included, the maximum uncertainty in recombination-efficiency data for low-catalysis surfaces is 45%. The discussions are based on experimental data and calculations for arc-jet tests of the titanium alloy Ti-14Al-21Nb with a borosilicate-like glass coating that has a recombination efficiency of about 0.006 to 0.01. 20 refs.

Clark, R.K.; Cunnington, G.R. Jr.; Wiedemann, K.E. [National Aeronautics and Space Administration, Langley Research Center, Hampton, VA (United States)

1995-01-01T23:59:59.000Z

124

Vehicle and Systems Simulation and Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilitiesPowertrainReadiness10 DOE Vehicle

125

2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...  

Energy Savers [EERE]

- Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

126

Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use  

SciTech Connect (OSTI)

The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads. A vehicle thermal soak period is recommended, with solar lamps that meet the SCO3 requirements or an alternative heating method such as portable electric heaters. After soaking, the vehicle is operated over repeated drive cycles or at a constant speed until steady-state cabin air temperature is attained. With this method, the cooldown and steady-state A/C fuel use are measured. This method can be run at either different ambient temperatures to provide data for the GREEN-MAC-LCCP model temperature bins or at a single representative ambient temperature. Vehicles with automatic climate systems are allowed to control as designed, while vehicles with manual climate systems are adjusted to approximate expected climate control settings. An A/C off test is also run for all drive profiles. This procedure measures approximate real-world A/C fuel use and assess the impact of thermal load reduction strategies.

Rugh, J. P.

2010-04-01T23:59:59.000Z

127

NREL: Transportation Research - Alternative Fuel Fleet Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and ResourcesOtherForecastingAlternative Fuel Fleet Vehicle

128

Vehicle and Systems Simulation and Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilitiesPowertrainReadiness10 DOE Vehicle09 DOE

129

Grid Interconnection and Performance Testing Procedures for Vehicle-To-Grid (V2G) Power Electronics: Preprint  

SciTech Connect (OSTI)

Bidirectional power electronics can add vehicle-to-grid (V2G) capability in a plug-in vehicle, which then allows the vehicle to operate as a distributed resource (DR). The uniqueness of the battery-based V2G power electronics requires a test procedure that will not only maintain IEEE interconnection standards, but can also evaluate the electrical performance of the vehicle working as a DR. The objective of this paper is to discuss a recently published NREL technical report that provides interim test procedures for V2G vehicles for their integration into the electrical distribution systems and for their performance in terms of continuous output power, efficiency, and losses. Additionally, some other test procedures are discussed that are applicable to a V2G vehicle that desires to provide power reserve functions. A few sample test results are provided based on testing of prototype V2G vehicles at NREL.

Kramer, W.; Chakraborty, S.; Kroposki, B.; Hoke, A.; Martin, G.; Markel, T.

2012-03-01T23:59:59.000Z

130

Comparative Emissions Testing of Vehicles Aged on E0, E15 and E20 Fuels  

SciTech Connect (OSTI)

The Energy Independence and Security Act passed into law in December 2007 has mandated the use of 36 billion ethanol equivalent gallons per year of renewable fuel by 2022. A primary pathway to achieve this national goal is to increase the amount of ethanol blended into gasoline. This study is part of a multi-laboratory test program coordinated by DOE to evaluate the effect of higher ethanol blends on vehicle exhaust emissions over the lifetime of the vehicle.

Vertin, K.; Glinsky, G.; Reek, A.

2012-08-01T23:59:59.000Z

131

CX-001714: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-001714: Categorical Exclusion Determination Vehicle Test Location at Bone Yard; National Renewable Energy Laboratory (NREL) Tracking Number...

132

Issues in emissions testing of hybrid electric vehicles.  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) has tested more than 100 prototype HEVs built by colleges and universities since 1994 and has learned that using standardized dynamometer testing procedures can be problematic. This paper addresses the issues related to HEV dynamometer testing procedures and proposes a new testing approach. The proposed ANL testing procedure is based on careful hybrid operation mode characterization that can be applied to certification and R and D. HEVs also present new emissions measurement challenges because of their potential for ultra-low emission levels and frequent engine shutdown during the test cycles.

Duoba, M.; Anderson, J.; Ng, H.

2000-05-23T23:59:59.000Z

133

Richmond Electric Vehicle Initiative Electric Vehicle Readiness...  

Office of Environmental Management (EM)

MO) Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

134

Determine Vehicle Usage and Refueling Trends to Minimize Greenhouse Gas Emissions  

Broader source: Energy.gov [DOE]

Once a Federal agency has identified its most important mobile greenhouse gas (GHG) emission sources overall, it can work with individual sites to determine vehicle usage and refueling trends. Agencies can compare the results of this analysis to internal standards and requirements to identify GHG mitigation opportunities for assets that are underperforming or underutilized.

135

Department of Mechanical Engineering Fall 2012 Unmanned Underwater Vehicle Test Tank and Obstacle Course  

E-Print Network [OSTI]

PENNSTATE Department of Mechanical Engineering Fall 2012 Unmanned Underwater Vehicle Test Tank and Obstacle Course Overview The purpose of this project is to design and build a test tank to showcase multiple UUVs in a competition. The tank will be vital in demonstrating the abilities of the UUVs

Demirel, Melik C.

136

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network [OSTI]

In contrast to a hybrid vehicle whichcombines multipleor 180 mile hybrid electric vehicle. Natural gas vehicles (1994) "Demand Electric Vehicles in Hybrid for Households:

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

137

H2-Assisted NOx Traps: Test Cell Results Vehicle Installations  

Broader source: Energy.gov (indexed) [DOE]

* New Power Supply * Under 250W consumption * Minimal heat rejected * Compact transformer * High-temperature flange seals * Reduced leakage 4 H2-Assisted NOx Trap: Test...

138

Electric Vehicle Supply Equipment (EVSE) Test Report: Blink  

Broader source: Energy.gov (indexed) [DOE]

EVSE Specifications Grid connection Plug and cord NEMA 6-50 Connector type J1772 Test lab certifications UL listed Approximate size (H x W x D inches) 18 x 22 x 6 Charge...

139

Electric Vehicle Supply Equipment (EVSE) Test Report: Schneider...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Specifications Grid connection Plug and cord NEMA 6-50 Connector type J1772 Test lab certifications UL Listed Approximate size (H x W x D inches) 10 x 13 x 4 Charge...

140

Electric Vehicle Supply Equipment (EVSE) Test Report: Siemens...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Specifications Grid connection Plug and cord NEMA 6-50 Connector type J1772 Test lab certifications UL Listed Approximate size (H x W x D inches) 16.5 x 16.5 x 6.5...

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Electric Vehicle Supply Equipment (EVSE) Test Report: SPX  

Broader source: Energy.gov (indexed) [DOE]

EVSE Specifications Grid connection Plug and cord NEMA 6-30 Connector type J1772 Test lab certifications ETL listed Approximate size (H x W x D inches) 5 x 14 x 4 Charge...

142

Electric Vehicle Supply Equipment (EVSE) Test Report: Eaton  

Broader source: Energy.gov (indexed) [DOE]

EVSE Specifications Grid connection Plug and cord NEMA 14-30 Connector type J1772 Test lab certifications ETL listed Approximate size (H x W x D inches) 10 x 15 x 5 Charge...

143

Electric Vehicle Supply Equipment (EVSE) Test Report: GE Energy...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Specifications Grid connection Plug and cord NEMA 6-50 Connector type J1772 Test lab certifications ETL Listed Approximate size (H x W x D inches) 16 x 24 x 6 Charge...

144

HEVAmerica U.S. Department of Energy Advanced Vehicle Testing...  

Broader source: Energy.gov (indexed) [DOE]

42.3 % TEST NOTES: 1. Energy transfer display 2. Total battery discharge over SAE J1634 drive cycle 3. Value calculated based on fuel economy and fuel tank size 4. Air...

145

HEVAmerica U.S. Department of Energy Advanced Vehicle Testing...  

Broader source: Energy.gov (indexed) [DOE]

37.5 % TEST NOTES: 1. Energy transfer display 2. Total battery discharge over SAE J1634 drive cycle 3. Value calculated based on fuel economy and fuel tank size 4. Air...

146

HEVAmerica U.S. Department of Energy Advanced Vehicle Testing...  

Broader source: Energy.gov (indexed) [DOE]

44.4 % TEST NOTES: 1. Energy transfer display 2. Total battery discharge over SAE J1634 drive cycle 3. Value calculated based on fuel economy and fuel tank size 4. Air...

147

Vehicle to Grid Communication Standards Development, Testing and Validation - Status Report  

SciTech Connect (OSTI)

In the US, more than 10,000 electric vehicles (EV) have been delivered to consumers during the first three quarters of 2011. A large majority of these vehicles are battery electric, often requiring 220 volt charging. Though the vehicle manufacturers and charging station manufacturers have provided consumers options for charging preferences, there are no existing communications between consumers and the utilities to manage the charging demand. There is also wide variation between manufacturers in their approach to support vehicle charging. There are in-vehicle networks, charging station networks, utility networks each using either cellular, Wi-Fi, ZigBee or other proprietary communication technology with no standards currently available for interoperability. The current situation of ad-hoc solutions is a major barrier to the wide adoption of electric vehicles. SAE, the International Standards Organization/International Electrotechnical Commission (ISO/IEC), ANSI, National Institute of Standards and Technology (NIST) and several industrial organizations are working towards the development of interoperability standards. PNNL has participated in the development and testing of these standards in an effort to accelerate the adoption and development of communication modules.

Gowri, Krishnan; Pratt, Richard M.; Tuffner, Francis K.; Kintner-Meyer, Michael CW

2011-09-01T23:59:59.000Z

148

Method and system for determining the torque required to launch a vehicle having a hybrid drive-train  

DOE Patents [OSTI]

A method and system are provided for determining the torque required to launch a vehicle having a hybrid drive-train that includes at least two independently operable prime movers. The method includes the steps of determining the value of at least one control parameter indicative of a vehicle operating condition, determining the torque required to launch the vehicle from the at least one determined control parameter, comparing the torque available from the prime movers to the torque required to launch the vehicle, and controlling operation of the prime movers to launch the vehicle in response to the comparing step. The system of the present invention includes a control unit configured to perform the steps of the method outlined above.

Hughes, Douglas A.

2006-04-04T23:59:59.000Z

149

NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

Lustbader, J.; Andreas, A.

150

Testing and Validation of Vehicle to Grid Communication Standards |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice -TemplateDavid L.Testing2009Department

151

NREL: Transportation Research - Hybrid Electric Fleet Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo of

152

NREL: Transportation Research - Hydraulic Hybrid Fleet Vehicle Testing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and Evaluation Photo ofHydraulic Hybrid Fleet

153

Electric Vehicle Communications Standards Testing and Validation - Phase II: SAE J2931/1  

SciTech Connect (OSTI)

Vehicle to grid communication standards enable interoperability among vehicles, charging stations and utility providers and provide the capability to implement charge management. Several standards initiatives by the Society of Automobile Engineers (SAE), International Standards Organization and International Electrotechnical Commission (ISO/IEC), and ZigBee/HomePlug Alliance are developing requirements for communication messages and protocols. Recent work by the Electric Power Research Institute (EPRI) in collaboration with SAE and automobile manufacturers has identified vehicle to grid communication performance requirements and developed a test plan as part of SAE J2931/1 committee work. This laboratory test plan was approved by the SAE J2931/1 committee and included test configurations, test methods, and performance requirements to verify reliability, robustness, repeatability, maximum communication distance, and authentication features of power line carrier (PLC) communication modules at the internet protocol layer level. The goal of the testing effort was to select a communication technology that would enable automobile manufacturers to begin the development and implementation process. The EPRI/Argonne National Laboratory (ANL)/Pacific Northwest National Laboratory (PNNL) testing teams divided the testing so that results for each test could be presented by two teams, performing the tests independently. The PNNL team performed narrowband PLC testing including the Texas Instruments (TI) Concerto, Ariane Controls AC-CPM1, and the MAXIM Tahoe 2 evaluation boards. The scope of testing was limited to measuring the vendor systems communication performance between Electric Vehicle Support Equipment (EVSE) and plug-in electric vehicles (PEV). The testing scope did not address PEV’s CAN bus to PLC or PLC to EVSE (Wi-Fi, cellular, PLC Mains, etc.) communication integration. In particular, no evaluation was performed to delineate the effort needed to translate the IPv6/SEP2.0 messages to PEV’s CAN bus. The J2931/1 laboratory test results were presented to the SAE membership on March 20-22, 2012. The SAE committee decided to select HomePlug GreenPHY (HPGP) as the communication technology to use between the PEV and EVSE. No technology completely met all performance requirements. Both the MAXIM Tahoe 2 and TI Concerto met the 100Kbps throughput requirement, are estimated to meet the latency measurement performance, and met the control pilot impairment requirements. But HPGP demonstrated the potential to provide a data throughput rate of 10x of the requirement and either met or showed the potential to meet the other requirements with further development.

Pratt, Richard M.; Gowri, Krishnan

2013-01-15T23:59:59.000Z

154

Baseline and verification tests of the electric vehicle associates' current fare station wagon. Final test report, March 27, 1980-November 6, 1981  

SciTech Connect (OSTI)

The EVA Current Fare Wagon was manufactured by Electric Vehicle Associates, Incorporated (EVA) of Cleveland, Ohio. It is now available from Lectra Motors Corp. of Las Vegas, Nevada. The vehicle was tested under the direction of MERADCOM from 27 March 1980 to 6 November 1981. The tests are part of a Department of Energy project to assess advances in electric vehicle design. This report presents the performance test results on the EVA Current Fare Wagon. The EVA Current Fare Wagon is a 1980 Ford Fairmont station wagon which has been converted to an electric vehicle. The propulsion system is made up of a Cableform controller, a series-wound 30-hp Reliance Electric Motor, and 22 6-V lead-acid batteries. The Current Fare Wagon is also equipped with regenerative braking. Further details of the vehicle are given in the Vehicle Summary Data Sheet, Appendix A. The results of this testing are given in Table 1.

Dowgiallo, E.J. Jr.; Chapman, R.D.

1983-01-01T23:59:59.000Z

155

Electric Vehicle Communication Standards Testing and Validation Phase I: SAE J2847/1  

SciTech Connect (OSTI)

Executive Summary Vehicle to grid communication standards are critical to the charge management and interoperability among vehicles, charging stations and utility providers. Several standards initiatives by the Society of Automobile Engineers (SAE), International Standards Organization and International Electrotechnical Commission (ISO/IEC), and ZigBee / HomePlug Alliance are developing requirements for communication messages and protocols. While the standard development is in progress for more than two years, no definitive guidelines are available for the automobile manufacturers, charging station manufacturers and utility backhaul network systems. At present, there is a wide range of proprietary communication options developed and supported in the industry. Recent work by the Electric Power Research Institute (EPRI) in collaboration with SAE and automobile manufacturers has identified performance requirements and test plan based on possible communication pathways using power line communication over the control pilot and mains. Though the communication pathways and power line communication technology options are identified, much work needs to be done in developing application software and testing of communication modules before these can be deployed in production vehicles. This report presents a test plan and results from initial testing of two power line communication modules developed to meet the requirements of SAE J2847/1 standard.

Pratt, Richard M.; Tuffner, Francis K.; Gowri, Krishnan

2011-09-21T23:59:59.000Z

156

The effect of standard ambient conditions used for the determination of road load to predict vehicle fuel economy  

E-Print Network [OSTI]

THE EFFECT OF STANDARD AN1BIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE May 198Z Major Subject: Mechanical Engineering THE EFFECT OF STANDARD AMBIENT CONDITIONS USED FOR THE DETERMINATION OF ROAD LOAD TO PREDICT VEHICLE FUEL ECONOMY A Thesis by Michael Lee Love Approved...

Love, Michael Lee

1982-01-01T23:59:59.000Z

157

Hybrid Electric Vehicle End-Of-Life Testing On Honda Insights, Gen I Civics And Toyota Gen I Priuses  

SciTech Connect (OSTI)

This technical report details the end-of-life fuel efficiency and battery testing on two model year 2001 Honda Insight hybrid electric vehicles (HEVs), two model year 2003 Honda Civic HEVs, and two model year 2002 Toyota Prius HEVs. The end-of-life testing was conducted after each vehicle has been operated for approximately 160,000 miles. This testing was conducted by the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA). The AVTA is part of DOE’s FreedomCAR and Vehicle Technologies Program. SAE J1634 fuel efficiency testing was performed on the six HEVs with the air conditioning (AC) on and off. The AC on and off test results are compared to new vehicle AC on and off fuel efficiencies for each HEV model. The six HEVs were all end-of-life tested using new-vehicle coast down coefficients. In addition, one of each HEV model was also subjected to fuel efficiency testing using coast down coefficients obtained when the vehicles completed 160,000 miles of fleet testing. Traction battery pack capacity and power tests were also performed on all six HEVs during the end-of-life testing in accordance with the FreedomCAR Battery Test Manual For Power-Assist Hybrid Electric Vehicles procedures. When using the new-vehicle coast down coefficients (Phase I testing), 11 of 12 HEV tests (each HEV was tested once with the AC on and once with the AC off) had increases in fuel efficiencies compared to the new vehicle test results. The end-of-life fuel efficiency tests using the end-of-life coast down coefficients (Phase II testing) show decreases in fuel economies in five of six tests (three with the AC on and three with it off). All six HEVs experienced decreases in battery capacities, with the two Insights having the highest remaining capacities and the two Priuses having the lowest remaining capacities. The AVTA’s end-of-life testing activities discussed in this report were conducted by the Idaho National Laboratory; the AVTA testing partner Electric Transportation Applications, and by Exponent Failure Analysis Associates.

James Francfort; Donald Karner; Ryan Harkins; Joseph Tardiolo

2006-02-01T23:59:59.000Z

158

Hybrid Vehicle Comparison Testing Using Ultracapacitor vs. Battery Energy Storage (Presentation)  

SciTech Connect (OSTI)

With support from General Motors, NREL researchers converted and tested a hybrid electric vehicle (HEV) with three energy storage configurations: a nickel metal-hydride battery and two ultracapacitor (Ucap) modules. They found that the HEV equipped with one Ucap module performed as well as or better than the HEV with a stock NiMH battery configuration. Thus, Ucaps could increase the market penetration and fuel savings of HEVs.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2010-02-01T23:59:59.000Z

159

Heavy and Overweight Vehicle Brake Testing: Five-Axle Combination Tractor-Flatbed Final Report  

SciTech Connect (OSTI)

The Federal Motor Carrier Safety Administration, in coordination with the Federal Highway Administration, sponsored the Heavy and Overweight Vehicle Brake Testing (HOVBT) program in order to provide information about the effect of gross vehicle weight (GVW) on braking performance. Because the Federal Motor Carrier Safety Regulations limit the number of braking system defects that may exist for a vehicle to be allowed to operate on the roadways, the examination of the effect of brake defects on brake performance for increased loads is also relevant. The HOVBT program seeks to provide relevant information to policy makers responsible for establishing load limits, beginning with providing test data for a combination tractor/trailer. This testing was conducted on a five-axle combination vehicle with tractor brakes meeting the Reduced Stopping Distance requirement rulemaking. This report provides a summary of the testing activities, the results of various analyses of the data, and recommendations for future research. Following a complete brake rebuild, instrumentation, and brake burnish, stopping tests were performed from 20 and 40 mph with various brake application pressures (15 psi, 25 psi, 35 psi, 45 psi, 55 psi, and full system pressure). These tests were conducted for various brake conditions at the following GVWs: 60,000, 80,000, 91,000, 97,000, 106,000, and 116,000 lb. The 80,000-lb GVWs included both balanced and unbalanced loads. The condition of the braking system was also varied. To introduce these defects, brakes (none, forward drive axle, or rear trailer axle) were made inoperative. In addition to the stopping tests, performance-based brake tests were conducted for the various loading and brake conditions. Analysis of the stopping test data showed the stopping distance to increase with load (as expected) and also showed that more braking force was generated by the drive axle brakes than the trailer axle brakes. The constant-pressure stopping test data revealed a linear relationship between brake application pressure and was used to develop an algorithm to normalize stopping data for weight and initial speed.

Lascurain, Mary Beth [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL

2013-10-01T23:59:59.000Z

160

Results from the Operational Testing of the General Electric Smart Grid Capable Electric Vehicle Supply Equipment (EVSE)  

SciTech Connect (OSTI)

The Idaho National Laboratory conducted testing and analysis of the General Electric (GE) smart grid capable electric vehicle supply equipment (EVSE), which was a deliverable from GE for the U.S. Department of Energy FOA-554. The Idaho National Laboratory has extensive knowledge and experience in testing advanced conductive and wireless charging systems though INL’s support of the U.S. Department of Energy’s Advanced Vehicle Testing Activity. This document details the findings from the EVSE operational testing conducted at the Idaho National Laboratory on the GE smart grid capable EVSE. The testing conducted on the EVSE included energy efficiency testing, SAE J1772 functionality testing, abnormal conditions testing, and charging of a plug-in vehicle.

Richard Barney Carlson; Don Scoffield; Brion Bennett

2013-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Vehicle Technologies Office Merit Review 2014: Post-Test Analysis of Lithium-Ion Battery Materials at Argonne National Laboratory  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about post-test...

162

Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Battery Testing, Design and Analysis Activity  

Broader source: Energy.gov [DOE]

Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the battery testing, design, and analysis activity.

163

Evaluation of the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses  

E-Print Network [OSTI]

This study evaluated the adequacy of the 2000P test vehicle as a surrogate for light truck subclasses. The National Cooperative Highway Research Program (NCHRP) Report 350 recommended the use of a 3/4-ton (approximately 2000 kg) pickup...

Titus-Glover, Cyril James

1996-01-01T23:59:59.000Z

164

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network [OSTI]

travel by electric and hybrid vehicles. SAE Technical PapersIn contrast to a hybrid vehicle which combines multipleElectric, Hybrid and Other Alternative Vehicles. A r t h u r

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

165

Advanced Vehicle Testing Activity Benchmark Testing of the Chevrolet Volt Onboard Charger  

SciTech Connect (OSTI)

This is a report for public consumption, for the AVTA website, detailing the testing and analysis of the benchmark testing conducted on the Chevrolet Volt on-board charger.

Richard Carlson

2012-04-01T23:59:59.000Z

166

Argonne National Laboratory puts alternative-fuel vehicles to the test  

SciTech Connect (OSTI)

This paper describes the participation in the alternative-fueled vehicles (AFV) program at Argonne National Laboratory. Argonne maintains a fleet of 300 vehicles, including AFV`s.

NONE

1997-07-01T23:59:59.000Z

167

Project Information Form Project Title Structural Determinants of Electric Vehicle Market Growth  

E-Print Network [OSTI]

of Electric Vehicle Market Growth University UC Davis Principal Investigator---in electric vehicle (PEV) markets are facing and how they are likely to evolve--political, technological, economic, and societal--that drives the development, deployment and use

California at Davis, University of

168

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network [OSTI]

by electric and hybrid vehicles", SAETechmcal Papers No.$ not Q 4. If you chose the Hybrid Vehicle - can you specifymay response to hybrid vehicles Finally, we suggest that

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

169

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network [OSTI]

by electric and hybrid vehicles", SAE Technical Papers No.household response to hybrid vehicles. Finally, we suggestas electric or hybrid vehicles. Transitions in choices of

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

170

Identification of powered parafoil-vehicle dynamics from modelling and flight test data  

E-Print Network [OSTI]

S consisting of N particles P1,...,PN, suppose that n -m gen- eralized speeds have been introduced, and let vPir denote the rth partial velocity of Pi. Then, if Ri is the resultant of all contact and body forces acting on Pi, then the n -m quantities F1,...,Fn-m...IDENTIFICATION OF POWERED PARAFOIL-VEHICLE DYNAMICS FROM MODELLING AND FLIGHT TEST DATA A Dissertation by GI-BONG HUR Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree...

Hur, Gi-Bong

2006-08-16T23:59:59.000Z

171

U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review  

SciTech Connect (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

Kevin Morrow; Donald Darner; James Francfort

2008-11-01T23:59:59.000Z

172

NREL: Vehicles and Fuels Research - Hybrid Electric Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hybrid Electric Fleet Vehicle Testing How Hybrid Electric Vehicles Work Hybrid electric vehicles combine a primary power source, an energy storage system, and an electric motor to...

173

Testing Low-Energy, High-Power Energy Storage Alternatives in a Full-Hybrid Vehicle (Presentation)  

SciTech Connect (OSTI)

Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle gasoline use. However, the battery cost in HEVs contribute to higher incremental cost of HEVs (a few thousand dollars) than the cost of comparable conventional vehicles, which has limited HEV market penetration. Significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost vs. benefit relationship for HEVs. Such an improvement could lead to larger HEV market penetration and greater aggregate gasoline savings. After significant analysis by the National Renewable Energy Laboratory (NREL), the United States Advanced Battery Consortium (USABC) and Department of Energy (DOE) Energy Storage program suggested a new set of requirements for ESS for power-assist HEVs for cost reduction without impacting performance and fuel economy significantly. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This poster will describe development of the LEESS HEV test platform, and LEESS laboratory as well as in-vehicle evaluation results. The first LEESS technology tested was lithium-ion capacitors (LICs) - i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). We will discuss the performance and fuel saving results with LIC with comparison with original NiMH battery.

Cosgrove, J.; Gonger, J.

2014-01-01T23:59:59.000Z

174

The Case for Electric Vehicles  

E-Print Network [OSTI]

land Press, 1995 TESTING ELECTRIC VEHICLE DEMAND IN " HYBRIDThe Case for Electric Vehicles DanieI Sperlmg Reprint UCTCor The Case for Electric Vehicles Darnel Sperling Institute

Sperling, Daniel

2001-01-01T23:59:59.000Z

175

A Test of Vehicle-to-Grid (V2G) for Energy Storage and Frequency Regulation in the PJM  

E-Print Network [OSTI]

A Test of Vehicle-to-Grid (V2G) for Energy Storage and Frequency Regulation in the PJM System energy storage for intermittent but renewable resources such as wind and solar. The results of the study frequent dispatch. The primary revenue in both of these markets is for capacity rather than energy

Firestone, Jeremy

176

Determining coal permeabilities through constant pressure production interference testing  

E-Print Network [OSTI]

DETERMINING COAL PERMEABILITIES THROUGH CONSTANT PRESSURE PRODUCTION INTERFERENCE TESTING A Thesis by STEPHEN KURT SCHUBARTH Submitted to the Graduate College of Texas ASM University fn Partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1983 Major Subject: Petroleum Engineering DETERMINING COAL PERMEABILITIES THROUGH CONSTANT PRESSURE PRODUCTION INTERFERENCE TESTING A Thesis by STEPHEN KURT SCHUBARTH Approved as to style and content by: tephen A. Hold...

Schubarth, Stephen Kurt

2012-06-07T23:59:59.000Z

177

Overview of Vehicle Test and Analysis Results from NREL's A/C Fuel Use Reduction Research  

SciTech Connect (OSTI)

This paper summarizes results of air-conditioning fuel use reduction technologies and techniques for light-duty vehicles evaluated over the last 10 years.

Bharathan, D.; Chaney, L.; Farrington, R. B.; Lustbader, J.; Keyser, M.; Rugh, J. P.

2007-06-01T23:59:59.000Z

178

Testing Electric Vehicle Demand in `Hybrid Households' Using a Reflexive Survey  

E-Print Network [OSTI]

EV market studies In the absence of data on actual sales,EV, then we expect that 16-18%) of annual light-duty vehicle sales

Kurani, Kenneth; Turrentine, Thomas; Sperling, Daniel

1996-01-01T23:59:59.000Z

179

Overview of Advanced Technology Transportation, 2005 Update. Advanced Vehicle Testing Activity  

SciTech Connect (OSTI)

Document provides an overview of the transportation market in 2005. Areas covered include hybrid, fuel cell, hydrogen, and alternative fuel vehicles.

Barnitt, R.; Eudy, L.

2005-08-01T23:59:59.000Z

180

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network [OSTI]

EV market studies In the absenceof data on actual sales,EV, then we expect 16 to 18% annual of of light-duty vehicle salesEV experiments indicate there is still more than adequatepotential marketsfor electric vehicles to have , exceededthe former 1998CARB mandatefor sales

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Corrective Action Investigation Plan for Corrective Action Unit 240: Area 25 Vehicle Washdown Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 240, Area 25 Vehicle Washdown, which is located on the Nevada Test Site (NTS).

DOE/NV

1999-01-25T23:59:59.000Z

182

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

Simulation Basic Engine Test Vehicle Test Cost & Complexity Towards Final Product Lean Powertrain Development Viewing Trade-Offs and Finding Optima Realism Advanced Engine Test Vehicle Test Rolling Road Powertrain powertrain development tasks to reduce costs and time to market The vehicle powertrain is the system

Burton, Geoffrey R.

183

Automated Vehicle-to-Vehicle Collision Avoidance at Intersections  

E-Print Network [OSTI]

Automated Vehicle-to-Vehicle Collision Avoidance at Intersections M. R. Hafner1 , D. Cunningham2 on modified Lexus IS250 test vehicles. The system utilizes vehicle-to-vehicle (V2V) Dedicated Short the velocities of both vehicles with automatic brake and throttle commands. Automatic commands can never cause

Del Vecchio, Domitilla

184

Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use: Preprint  

SciTech Connect (OSTI)

A procedure is described to measure approximate real-world air conditioning fuel use and assess the impact of thermal load reduction strategies in plug-in hybrid electric vehicles.

Rugh, J.

2010-02-01T23:59:59.000Z

185

Fuel Economy and Performance of Mild Hybrids with Ultracapacitors: Simulations and Vehicle Test Results (Presentation)  

SciTech Connect (OSTI)

NREL worked with GM and demonstrated equivalent performance in the Saturn Vue Belt Alternator Starter (BAS) hybrid vehicle whether running with its stock batteries or a retrofit ultracapacitor system.

Gonder, J.; Pesaran, A.; Lustbader, J.; Tataria, H.

2009-06-01T23:59:59.000Z

186

Partial order techniques for vehicle collision avoidance: application to an autonomous roundabout test-bed  

E-Print Network [OSTI]

In this paper, we employ partial order techniques to develop linear complexity algorithms for guaranteed collision avoidance between vehicles at highway and roundabout mergings. These techniques can be employed by virtue ...

Desaraju, Vishnu Rajeswar

187

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis -- A Reflexively Designed Survey of New-Car-Buying Multi-Vehicle California Households  

E-Print Network [OSTI]

EV,then we expect 13.3 to 15.2% of all light-duty vehicle sales,EV marketpotential for smaller and shorter range velucles represented by our sampleis about 7%of annual, newhght duty vehicle sales.EV body styles" EVs ICEVs Total PAGE 66 THE HOUSEHOLD MA RKET FOR ELECTRIC VEHICLES percent mandatein the year 2003will dependon sales

Turrentine, Thomas; Kurani, Kenneth S.

2001-01-01T23:59:59.000Z

188

Powertrain & Vehicle Research Centre  

E-Print Network [OSTI]

complexity ·More efficient Vehicles, quicker to market, reduced cost to consumer The Optimisation Task and virtual environments Vehicle baseline testing on rolling road Calibration Control Engine VehiclePowertrain & Vehicle Research Centre Low Carbon Powertrain Development S. Akehurst, EPSRC Advanced

Burton, Geoffrey R.

189

A New Seismic Data System for Determining Nuclear Test Yields At the Nevada Test Site  

SciTech Connect (OSTI)

An important capability in conducting underground nuclear tests is to be able to determine the nuclear test yield accurately within hours after a test. Due to a nuclear test moratorium, the seismic method that has been used in the past has not been exercised since a non-proliferation high explosive test in 1993. Since that time, the seismic recording system and the computing environment have been replaced with modern equipment. This report describes the actions that have been taken to preserve the capability for determining seismic yield, in the event that nuclear testing should resume. Specifically, this report describes actions taken to preserve seismic data, actions taken to modernize software, and actions taken to document procedures. It concludes with a summary of the current state of the data system and makes recommendations for maintaining this system in the future.

LEE, JONATHAN W.

2001-11-01T23:59:59.000Z

190

NREL: Vehicles and Fuels Research - Hydraulic Hybrid Fleet Vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydraulic Hybrid Fleet Vehicle Testing How Hydraulic Hybrid Vehicles Work Hydraulic hybrid systems can capture up to 70% of the kinetic energy that would otherwise be lost during...

191

Expert system for testing industrial processes and determining sensor status  

DOE Patents [OSTI]

A method and system for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

Gross, Kenneth C. (Bolingbrook, IL); Singer, Ralph M. (Naperville, IL)

1998-01-01T23:59:59.000Z

192

The Household Market for Electric Vehicles: Testing the Hybrid Household Hypothesis--A Reflively Designed Survey of New-car-buying, Multi-vehicle California Households  

E-Print Network [OSTI]

duty vehicle sales. Additional EV sales to commercial andfor limited range, projected EV sales are very low. Marketinclude any potential EV sales to commercial or government

Turrentine, Thomas; Kurani, Kenneth

1995-01-01T23:59:59.000Z

193

Medium and Heavy Duty Vehicle and Engine Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies | Department ofMeasuringofHeavy Duty Vehicle

194

Some evidence on determinants of fuel economy as a function of driving cycle and test type  

SciTech Connect (OSTI)

Statistical methods are used with 107 vehicles whose fuel economy was presented and reported for five test types in a single publication by Consumers Union (CU) for 1986--1988 vehicles. Standard loglinear statistical formulations (i.e., multiplicative models of interactions) are used with data from this and supplementary sources to develop coefficients estimating the percent fuel economy gain per percent change in engine/vehicle design characteristic. The coefficients are developed for the five different test conditions evaluated by CU and are compared with each other on the basis of attributes of the tests. The insights of engineering models are used to develop expectations regarding the shift in size of coefficients as driving cycles change. In both the engineering models and the statistical model, the effect of weight is estimated to be higher in urban driving than in highway driving. For two test categories -- field tests and dynamometer tests -- the benefits of weight reduction are statistically estimated to be greatest in urban driving conditions. The effect on idle fuel flow rate of designing vehicles to hold performance roughly constant by maintaining power per kilogram and/or displacement per kilogram is examined, and its implication for the size of the weight effect is simply approximated from Sovran`s 1983 engineering model results. The fuel-economy-decreasing effect of the desire for performance is estimated to be somewhat larger in the statistical analysis than in the NAS study, when engine technology is held constant.

Santini, D.J.; Anderson, J.

1993-08-01T23:59:59.000Z

195

Determination of the Aerodynamic Characteristics of Low Reynolds Number Flows over Small Uninhabited Aerial Vehicles  

E-Print Network [OSTI]

Determination of the Aerodynamic Characteristics of Low Reynolds Number Flows over Small, in the 15000 - 500000 range. The high Re aerodynamics is well established, however the same cannot be said for the low Re regime. In this range the wing's aerodynamic performance can deteriorate rapidly as the Re

Olsen, Stephen L.

196

Development of a Test Technique to Determine the Thermal Conductivity of Large Refractory Ceramic Test Specimens  

SciTech Connect (OSTI)

A method has been developed to utilize the High Intensity Infrared lamp located at Oak Ridge National Laboratory for the measurement of thermal conductivity of bulk refractory materials at elevated temperatures. The applicability of standardized test methods to determine the thermal conductivity of refractory materials at elevated temperatures is limited to small sample sizes (laser flash) or older test methods (hot wire, guarded hot plate), which have their own inherent problems. A new method, based on the principle of the laser flash method, but capable of evaluating test specimens on the order of 200 x 250 x 50 mm has been developed. Tests have been performed to validate the method and preliminary results are presented in this paper.

Hemrick, James Gordon [ORNL; Dinwiddie, Ralph Barton [ORNL; Loveland, Erick R [ORNL; Prigmore, Andre L [ORNL

2012-01-01T23:59:59.000Z

197

Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range  

SciTech Connect (OSTI)

The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

2013-04-01T23:59:59.000Z

198

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation 2010 DOE Vehicle Technologies...

199

Well test imaging - a new method for determination of boundaries from well test data  

SciTech Connect (OSTI)

A new method has been developed for analysis of well test data, which allows the direct calculation of the location of arbitrary reservoir boundaries which are detected during a well test. The method is based on elements of ray tracing and information theory, and is centered on the calculation of an instantaneous {open_quote}angle of view{close_quote} of the reservoir boundaries. In the absence of other information, the relative reservoir shape and boundary distances are retrievable in the form of a Diagnostic Image. If other reservoir information, such as 3-D seismic, is available; the full shape and orientation of arbitrary (non-straight line or circular arc) boundaries can be determined in the form of a Reservoir Image. The well test imaging method can be used to greatly enhance the information available from well tests and other geological data, and provides a method to integrate data from multiple disciplines to improve reservoir characterization. This paper covers the derivation of the analytical technique of well test imaging and shows examples of application of the technique to a number of reservoirs.

Slevinsky, B.A.

1997-08-01T23:59:59.000Z

200

Assessment of the Greenhouse Gas Emission Reduction Potential of Ultra-Clean Hybrid-Electric Vehicles  

E-Print Network [OSTI]

Table ES-3: Summaryof Hybrid Vehicle Fuel Economy Results onmal ICE and Series Hybrid Vehicles (t) Vehicle Test Weight (I) Conventional and Series Hybrid Vehicles had same weight,

Burke, A.F.; Miller, M.

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Vehicle Technologies Office's Research Recognized by R&D 100...  

Office of Environmental Management (EM)

Vehicles Home About Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Alternative Fuels Modeling, Testing, Data & Results Education...

202

PASSIVE DETECTION OF VEHICLE LOADING  

SciTech Connect (OSTI)

The Digital Imaging and Remote Sensing Laboratory (DIRS) at the Rochester Institute of Technology, along with the Savannah River National Laboratory is investigating passive methods to quantify vehicle loading. The research described in this paper investigates multiple vehicle indicators including brake temperature, tire temperature, engine temperature, acceleration and deceleration rates, engine acoustics, suspension response, tire deformation and vibrational response. Our investigation into these variables includes building and implementing a sensing system for data collection as well as multiple full-scale vehicle tests. The sensing system includes; infrared video cameras, triaxial accelerometers, microphones, video cameras and thermocouples. The full scale testing includes both a medium size dump truck and a tractor-trailer truck on closed courses with loads spanning the full range of the vehicle's capacity. Statistical analysis of the collected data is used to determine the effectiveness of each of the indicators for characterizing the weight of a vehicle. The final sensing system will monitor multiple load indicators and combine the results to achieve a more accurate measurement than any of the indicators could provide alone.

Garrett, A.

2012-01-03T23:59:59.000Z

203

Test and evaluation of the Chloride Spegel S1P108/30 electric vehicle battery charger  

SciTech Connect (OSTI)

The Chloride Spegel Model S1P108/30 electric vehicle battery charger was tested by the Tennessee Valley Authority (TVA) as an account of work sponsored by the Electric Power Research Institute (EPRI). Charger input/output voltage, current, and power characteristics and input waveform distortion were measured; and induced electromagnetic interference was evaluated as the charger recharged a lead-acid battery pack. Electrical quantities were measured with precision volt-ampere-watt meters, frequency counters, a digital-storage oscilloscope, and a spectrum analyzer. THe Chloride charger required 8.5 hours to recharge a 216V tubular plate lead-acid battery from 100 percent depth of discharge (DOD). Energy efficiency was 83 percent, specific power was 37.4 W/kg (17.0 W/lb), input current distortion varied from 22.4 to 34.1 percent, and electromagnetic interference was observed on AM radio. Tests were conducted with the battery at initial DOD of 100, 75, 50, and 25 percent. Charge factor was 1.14 from 100-percent DOD, increasing to 1.39 from 25-percent DOD.

Driggans, R.L.; Keller, A.S.

1985-09-01T23:59:59.000Z

204

CX-005071: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005071: Categorical Exclusion Determination Vehicle Test Location at Bone Yard CX(s) Applied: A9, B3.6, B5.1 Date: 01212011 Location(s):...

205

Testing Synthetic Fuels for Use in U.S. Army Ground Vehicles | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of Energy StrainClientDesignOffice -TemplateDavid L.Testing Subgroupof

206

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

207

Dynamometer tests of the Ford/TDM Ranger electric pickup truck  

SciTech Connect (OSTI)

A Ford Ranger electric vehicle was performance tested in the Idaho National Engineering and Environmental Laboratory (INEEL) Hybrid Electric Vehicle (HEV) Laboratory. The vehicle was converted by TDM, Inc. The test vehicle was delivered to the INEEL and tested for the California Air Resources Board (CARB) under a CRADA with the Department of Energy (DOE). Coastdown tests were performed to determine the vehicle road load versus speed characteristics and the results used to calibrate the chassis dynamometer. Tests included driving the vehicle on the chassis dynamometer using standard driving regimes to determine driving range, acceleration tests to determine full power acceleration times and gradeability at speed, and constant speed driving to determine the vehicle energy consumption at various speeds. Data during battery recharges was also acquired. This report presents the results of these tests. 12 figs., 12 tabs.

Cole, G.H.; Yarger, E.J.

1997-06-01T23:59:59.000Z

208

Experimental determination of foundation properties without shaker tests  

E-Print Network [OSTI]

tests performed at the tilting pad bearing interface. The instrumentation used for this testing were ~ DYMAC M81- Velocity transducer. ~ PCB 086B20 ? Impedance hammer with the hard tip. ~ PCB 480D06 Power unit (power the hammer). 22 ~ HP Dual...

Sampathkumar, Varadharajan

2002-01-01T23:59:59.000Z

209

Determination of dispersivities from a natural-gradient dispersion test  

E-Print Network [OSTI]

, and radioactive wastes. Contaminant hydrogeology is presently a focal point in the realm of hydrologic modeling. Generally, models are designed to represent simplified versions of reality and The style and format of this document was taken from the Journal... dispersivities, v ia a graphical approach, from a natural-gradient dispersion test in which artificial pollution was injected into an aquifer. The dispersion test was conducted by Sud icky et al. (1983) in order to characterize the dispersive properties...

Hoover, Caroline Marie

1985-01-01T23:59:59.000Z

210

Test and evaluation of the Philips Model PE 1701 and Lester Model 9865 electric vehicle battery chargers  

SciTech Connect (OSTI)

The Philips Model PE 1701 and the Lester Model 9865 electric vehicle battery chargers have been tested by the Tennessee Valley Authority. Charger input/output voltage, current, power characteristics, and input waveform distortion were measured and induced electromagnetic interference was evaluated while the chargers recharged a fully discharged lead-acid battery pack. Electrical quantities were measured with precision volt-ampere-watt meters, frequency counters, a digital storage oscilloscope, and a spectrum analyzer. The Philips charger required 12.2 hours to recharge a 144-V battery; it had an energy efficiency of 86.0 percent and a specific power of 87.4 W/kg (39.7 W/lb). Input current distortion was between 6.9 and 23.0 percent, and electromagnetic interference was observed on AM radio. The Lester charger required 8.2 hours to recharge a 106-V battery; it had an energy efficiency of 83.0 percent and a specific power of 117.3 W/kg (53.3 W/lb). Current distortion was between 52.7 and 97.4 percent, and electromagnetic interference was observed on AM radio.

Reese, R.W.; Driggans, R.L.; Keller, A.S.

1984-04-01T23:59:59.000Z

211

DEVELOPMENT OF A RAPID TEST TO DETERMINE MOISTURE SENSTIVITY OF HMA (SUPERPAVE) MIXTURES  

E-Print Network [OSTI]

Exiting test methods to determine moisture sensitivity in hot mix asphalt are time consuming and inconsistent. This research focused on wheel tracking devices to develop a rapid test method to evaluate moisture sensitivity. The Asphalt Pavement...

Shiwakoti, Harihar

2007-12-14T23:59:59.000Z

212

Vehicle Technologies Office Merit Review 2014: DC Fast Charging Effects on Battery Life and EVSE Efficiency and Security Testing  

Broader source: Energy.gov [DOE]

Presentation given by Idaho National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DC fast charging...

213

Vehicle Technologies Office Merit Review 2014: CoolCab Test and Evaluation and CoolCalc HVAC Tool Development  

Broader source: Energy.gov [DOE]

Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about CoolCab...

214

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Volt PHEV (MY11) 2 Nissan Leaf BEV (MY11) 4 Honda Civic CNG 4 VW Jetta Turbo Diesel 4 Chevrolet Volt PHEV (MY13) 4 Chevrolet Malibu ECO 4 Honda Civic...

215

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Requirements Total Project; 33,088,218 EZ Messenger DOE Share; 26,400,000 Total Transit Cost Share; 6,688,218 Idaho National Laboratory Current Auth; 6,351,700 Argonne...

216

Advanced Vehicle Testing & Evaluation  

Broader source: Energy.gov (indexed) [DOE]

Total Project; 33,088,218 EZ Messenger DOE Share; 26,400,000 Idaho National Laboratory Cost Share; 6,688,218 Argonne National Laboratory BP1 Authorization; 3,000,000 Oak Ridge...

217

Unmanned airborne vehicle (UAV): Flight testing and evaluation of two-channel E-field very low frequency (VLF) instrument  

SciTech Connect (OSTI)

Using VLF frequencies, transmitted by the Navy`s network, for airborne remote sensing of the earth`s electrical, magnetic characteristics was first considered by the United States Geological Survey (USGS) around the mid 1970s. The first VLF system was designed and developed by the USGS for installation and operation on a single engine, fixed wing aircraft used by the Branch of Geophysics for geophysical surveying. The system consisted of five channels. Two E-field channels with sensors consisting of a fixed vertical loaded dipole antenna with pre-amp mounted on top of the fuselage and a gyro stabilized horizontal loaded dipole antenna with pre-amp mounted on a tail boom. The three channel magnetic sensor consisted of three orthogonal coils mounted on the same gyro stabilized platform as the horizontal E-field antenna. The main features of the VLF receiver were: narrow band-width frequency selection using crystal filters, phase shifters for zeroing out system phase variances, phase-lock loops for generating real and quadrature gates, and synchronous detectors for generating real and quadrature outputs. In the mid 1990s the Branch of Geophysics designed and developed a two-channel E-field ground portable VLF system. The system was built using state-of-the-art circuit components and new concepts in circuit architecture. Small size, light weight, low power, durability, and reliability were key considerations in the design of the instrument. The primary purpose of the instrument was for collecting VLF data during ground surveys over small grid areas. Later the system was modified for installation on a Unmanned Airborne Vehicle (UAV). A series of three field trips were made to Easton, Maryland for testing and evaluating the system performance.

NONE

1998-12-01T23:59:59.000Z

218

Tests of transfer reaction determinations of astrophysical S factors  

E-Print Network [OSTI]

conventional nuclear transfer re- actions @2?5# to determine S factors for direct capture reac- PRC 590556-2813/99/59~2!/1149~5!/$15.00 s of astrophysical S factors Lui, A. M. Mukhamedzhanov, A. Sattarov, and L. Trache , College Station, Texas 77843 , S...!. @8# L. Trache, A. Azhari, H. L. Clark, C. A. Gagliardi, Y.-W. Lui, A. M. Mukhamedzhanov, R. E. Tribble, and F. Carstoiu, Phys. Rev. C 58, 2715 ~1998!. @9# R. Morlock, R. Kunz, A. Mayer, M. Jaeger, A. Muller, J. W. Hammer, P. Mohr, H. Oberhummer, G...

Gagliardi, Carl A.; Tribble, Robert E.; Azhari, A.; Clark, HL; Lui, YW; Mukhamedzhanov, AM; Sattarov, A.; Trache, L.; Burjan, V.; Cejpek, J.; Kroha, V.; Piskor, S.; Vincour, J.

1999-01-01T23:59:59.000Z

219

ISO test method to determine sustained-load-cracking resistance of aluminium cylinders  

SciTech Connect (OSTI)

Leak as well as rupture types of failures related to sustained-load-cracking (SLC) have been observed in high-pressure gas cylinders fabricated from certain aluminium alloy. The stable crack growth mechanism observed primarily in the cylinder neck and shoulder area have been identified as the SLC mechanism occurring at room temperature without any environmental effect. The International Organization for standardization (ISO) Sub-Committee 3, Working Group 16 has developed a test method to measure the SLC resistance using fracture mechanics specimens along with an acceptance criterion for aluminium cylinders. The technical rationale for the proposed test method and the physical significance of the acceptance criterion to the cylinder performance in terms of critical stress-crack size relationship is presented. Application of the developed test method for characterizing new aluminium alloy for manufacturing cylinders is demonstrated. SLC characteristics of several aluminium cylinders as well as on-board cylinders for natural gas vehicles assessed by the authors are discussed.

Bhuyan, G.S. [Powertech Labs. Inc., Surrey, British Columbia (Canada); Rana, M.D. [Praxair, Inc., Tonawanda, NY (United States)

1999-08-01T23:59:59.000Z

220

Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...  

Energy Savers [EERE]

& Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle...  

Energy Savers [EERE]

Maximizing Alternative Fuel Vehicle Efficiency Vehicle Technologies Office: Maximizing Alternative Fuel Vehicle Efficiency Besides their energy security and environmental benefits,...

222

Standard test method for conducting drop-weight test to determine nil-ductility transition temperature of ferritic steels  

E-Print Network [OSTI]

1.1 This test method covers the determination of the nil-ductility transition (NDT) temperature of ferritic steels, 5/8 in. (15.9 mm) and thicker. 1.2 This test method may be used whenever the inquiry, contract, order, or specification states that the steels are subject to fracture toughness requirements as determined by the drop-weight test. 1.3 The values stated in inch-pound units are to be regarded as the standard. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

223

Vehicle Technologies Office: 2009 Advanced Vehicle Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle...

224

Vehicle Technologies Office: 2008 Advanced Vehicle Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

225

Electrochemical Capacitors as Energy Storage in Hybrid-Electric Vehicles: Present Status and Future Prospects  

E-Print Network [OSTI]

ultracapacitors, fuel cells and hybrid vehicle design. Dr.on electric and hybrid vehicle technology and applicationssupervises testing in the Hybrid Vehicle Propulsion Systems

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

226

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network [OSTI]

supervises testing in the Hybrid Vehicle Propulsion Systemsbattery for plug-in hybrid vehicle is complicated processstorage for Plug-in Hybrid vehicles EVS24 International

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

227

Vehicle System Dynamics Vol. 00, No. 00, April 2008, 129  

E-Print Network [OSTI]

Vehicle System Dynamics Vol. 00, No. 00, April 2008, 1­29 Fidelity of using scaled vehicles (April 2008) There are many situations where physical testing of a vehicle or vehicle controller is necessary, yet use of a full-size vehicle is not practical. Some situations include implementation testing

Brennan, Sean

228

Admission Test Preparation Admission test scores help professional and graduate programs determine who to admit (and, in some cases, to award merit-  

E-Print Network [OSTI]

Admission Test Preparation Admission test scores help professional and graduate programs determine-prepared for these tests. Some are tests of aptitude in quantitative skills, verbal and analytical reasoning and/or writing ability (e.g., GRE, LSAT, GMAT), while others are tests of content knowledge (e.g., GRE Subject Tests

Hampton, Randy

229

Power and Sample Size Determination for a Stepwise Test Procedure for Finding the Maximum Safe Dose  

E-Print Network [OSTI]

Power and Sample Size Determination for a Stepwise Test Procedure for Finding the Maximum Safe Dose This paper addresses the problem of power and sample size calculation for a stepwise multiple test procedure of a compound. A general expression for the power of this procedure is derived. It is used to find the minimum

Tamhane, Ajit C.

230

Electric Vehicle Charging as an Enabling Technology  

E-Print Network [OSTI]

Electric Vehicle Charging as an Enabling Technology Prepared for the U.S. Department of Energy technologies, electric vehicles and the appurtenant charging infrastructure, is explored in detail to determine regarding system load profiles, vehicle charging strategies, electric vehicle adoption rates, and storage

231

Miniature Autonomous Robotic Vehicle (MARV)  

SciTech Connect (OSTI)

Sandia National Laboratories (SNL) has recently developed a 16 cm{sup 3} (1 in{sup 3}) autonomous robotic vehicle which is capable of tracking a single conducting wire carrying a 96 kHz signal. This vehicle was developed to assess the limiting factors in using commercial technology to build miniature autonomous vehicles. Particular attention was paid to the design of the control system to search out the wire, track it, and recover if the wire was lost. This paper describes the test vehicle and the control analysis. Presented in the paper are the vehicle model, control laws, a stability analysis, simulation studies and experimental results.

Feddema, J.T.; Kwok, K.S.; Driessen, B.J.; Spletzer, B.L.; Weber, T.M.

1996-12-31T23:59:59.000Z

232

Electric vehicles  

SciTech Connect (OSTI)

Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

Not Available

1990-03-01T23:59:59.000Z

233

AVTA: Hybrid-Electric Tractor Vehicles  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from hybrid-electric tractor vehicles in the Coca-Cola fleet. This research was conducted by the National Renewable Energy Laboratory (NREL).

234

automated guided vehicle: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ioannou A, utomatic is todesign and test avehicle control system in order toachieve full vehicle automation in the longitudinal vehicle following isan important feature of a fully...

235

Hybrid Vehicle Program. Final report  

SciTech Connect (OSTI)

This report summarizes the activities on the Hybrid Vehicle Program. The program objectives and the vehicle specifications are reviewed. The Hybrid Vehicle has been designed so that maximum use can be made of existing production components with a minimum compromise to program goals. The program status as of the February 9-10 Hardware Test Review is presented, and discussions of the vehicle subsystem, the hybrid propulsion subsystem, the battery subsystem, and the test mule programs are included. Other program aspects included are quality assurance and support equipment. 16 references, 132 figures, 47 tables.

None

1984-06-01T23:59:59.000Z

236

Electric Vehicles  

ScienceCinema (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-07-23T23:59:59.000Z

237

Electric Vehicles  

SciTech Connect (OSTI)

Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

Ozpineci, Burak

2014-05-02T23:59:59.000Z

238

Development of spiral notch torsion test: A new Fracture mechanics approach to determination of KISCC  

SciTech Connect (OSTI)

SNTT utilizes an extremely innovative concept of testing round-rod specimens having a V-grooved spiral notch line with a 45 a-pitch angle. The paper discusses the validity of SNTT in determining the fracture toughness, KIC, as established at ORNL. The paper also presents preliminary results of a collaborative research program of Monash University, NRL, ORNL and DSTO, for development and use of the novel technique of Spiral Notch Torsion Test (SNTT) for determination of threshold stress intensity for stress corrosion cracking, i.e., KISCC. SNTT experiments have been carried out in chloride and air environments, using fatigue pre-cracked SNTT specimens of Al-alloy, 7075.

Wang, Jy-An John [ORNL; Singh, R. K. [Monash University, Australia; Bayles, Robert [Naval Research Laboratory, Washington, D.C.; Knight, S. P. [Monash University, Australia; Hinton, B. R.W. [Defence Science and Technology Organisation, Australia; Muddle, B. C. [Monash University, Australia

2007-11-01T23:59:59.000Z

239

Determination of the length and compass orientation of hydraulic fractures by pulse testing  

E-Print Network [OSTI]

S3HAIDVHi OIlflVHOAH i0 NOIlVIN3IHO SSVHWOO QNV HlBN31 3Wl iO NOIlVNIWH3l30 DETERMINATION OF THE LENGTH AND COMPASS ORIENTATION OF HYDRAULIC FRACTURES BY PULSE TESTING A Thesis by MADAN MOHAN MANOHAR Approved as to Style and Content by: Wi... liam J. Lee (Ch ai rman of Commi t tee ) Le a M. Je Member) Richard A. Morse (Member) D. Yon Gonten ( d of Department) December 1984 ABSTRACT Determination of the Length and Compass Drientat1on of Hydraulic Fractures by Pulse Testing...

Manohar, Madan Mohan

1984-01-01T23:59:59.000Z

240

Commercial Vehicle Classification using Vehicle Signature Data  

E-Print Network [OSTI]

Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Overview of the Capstone Depleted Uranium Study of Aerosols from Impact with Armored Vehicles: Test Setup and Aerosol Generation, Characterization, and Application in Assessing Dose and Risk  

SciTech Connect (OSTI)

The Capstone Depleted Uranium (DU) Aerosol Characterization and Risk Assessment Study was conducted to generate data about DU aerosols generated during the perforation of armored combat vehicles with large-caliber DU penetrators, and to apply the data in assessments of human health risks to personnel exposed to these aerosols, primarily through inhalation, during the 1991 Gulf War or in future military operations. The Capstone study consisted of two components: 1) generating, sampling and characterizing DU aerosols by firing at and perforating combat vehicles and 2) applying the source-term quantities and characteristics of the aerosols to the evaluation of doses and risks. This paper reviews the background of the study including the bases for the study, previous reviews of DU particles and health assessments from DU used by the U.S. military, the objectives of the study components, the participants and oversight teams, and the types of exposures it was intended to evaluate. It then discusses exposure scenarios used in the dose and risk assessment and provides an overview of how the field tests and dose and risk assessments were conducted.

Parkhurst, MaryAnn; Guilmette, Raymond A.

2009-03-01T23:59:59.000Z

242

Vehicle Technologies Office Merit Review 2014: CFD Simulations and Experiments to Determine the Feasibility of Various Alternate Fuels for Compression Ignition Engine Applications  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about CFD simulations...

243

Development of a Simple Field Test for Vehicle Exhaust to Detect Illicit Use of Dyed Diesel Fuel  

SciTech Connect (OSTI)

The use of tax-free dyed fuel on public highways in the United States provides a convenient way of evading taxes. Current enforcement involves visual inspection for the red azo dye added to the fuel to designate its tax-free status. This approach has shortcomings such as the invasive nature of the tests and/or various deceptive tactics applied by tax evaders. A test designed to detect dyed fuel use by analyzing the exhaust would circumvent these shortcomings. This paper describes the development of a simple color spot test designed to detect the use of tax-free (dyed) diesel fuel by analyzing the engine exhaust. Development first investigated the combustion products of C.I. Solvent Red 164 (the azo dye formulation used in the United States to tag tax-free fuel). A variety of aryl amines were identified as characteristic molecular remnants that appear to survive combustion. A number of microanalytical color tests specific for aryl amines were then investigated. One test based on the use of 4-(dimethylamino)benzaldehyde seemed particularly applicable and was used in a proof-of-principle experiment. The 4-(dimethylamino)benzaldehyde color spot test was able to clearly distinguish between engines burning regular and dyed diesel fuel. Further development will refine this color spot test to provide an easy-to-use field test for Internal Revenue Service Field Compliance specialists.

Harvey, Scott D.; Wright, Bob W.

2011-10-30T23:59:59.000Z

244

Method for determining liquid recovery during a closed-chamber drill stem test  

SciTech Connect (OSTI)

This patent describes a method for determining a rate of production of well fluid produced during a closed chamber drill stem test of a subterranean formation. It comprises generating an acoustic signal capable of propagating down a well containing a drill stem test tubing; measuring a travel time of an acoustic signal reflected from an identifiable reference point in the drill stem test tubing; flowing the subterranean formation a predetermined length of time; measuring a travel time of an acoustic signal reflected from a liquid level in the drill stem test tubing during the flow interval; shutting in the flow of the subterranean formation; determining a volume of liquid produced during the flow interval based on the travel time of the reflected acoustic signal; determining a total amount of well fluid produced during the flow interval based on the volume of fluid produced and the surface pressure measurements during the flow period; and determining the rate of production from the subterranean formation during the flow period.

Finley, D.B.; Bass, A.O.

1992-03-03T23:59:59.000Z

245

Determining Long-Term Performance of Cool Storage Systems from Short-Term Tests, Final Report  

E-Print Network [OSTI]

This is the final report for ASHRAE Research Project 1004-RP: Determining Long-Term Performance of Cool Storage Systems from Short-Term Tests. This report presents the results of the development and application of the methodology to Case Study #2...

Reddy, T. A.; Elleson, J.; Haberl, J. S.

2000-01-01T23:59:59.000Z

246

Integrated Testing, Simulation and Analysis of Electric Drive Options for Medium-Duty Parcel Delivery Vehicles: Preprint  

SciTech Connect (OSTI)

The National Renewable Energy Laboratory verified diesel-conventional and diesel-hybrid parcel delivery vehicle models to evaluate petroleum reduction and cost implications of plug-in hybrid gasoline and diesel variants. These variants are run on a field-data-derived design matrix to analyze the effects of drive cycle, distance, battery replacements, battery capacity, and motor power on fuel consumption and lifetime cost. Two cost scenarios using fuel prices corresponding to forecasted highs for 2011 and 2030 and battery costs per kilowatt-hour representing current and long-term targets compare plug-in hybrid lifetime costs with diesel conventional lifetime costs. Under a future cost scenario of $100/kWh battery energy and $5/gal fuel, plug-in hybrids are cost effective. Assuming a current cost of $700/kWh and $3/gal fuel, they rarely recoup the additional motor and battery cost. The results highlight the importance of understanding the application's drive cycle, daily driving distance, and kinetic intensity. For instances in the current-cost scenario where the additional plug-in hybrid cost is regained in fuel savings, the combination of kinetic intensity and daily distance travelled does not coincide with the usage patterns observed in the field data. If the usage patterns were adjusted, the hybrids could become cost effective.

Ramroth, L. A.; Gonder, J.; Brooker, A.

2012-09-01T23:59:59.000Z

247

Standard test method for quantitative determination of americium 241 in plutonium by Gamma-Ray spectrometry  

E-Print Network [OSTI]

1.1 This test method covers the quantitative determination of americium 241 by gamma-ray spectrometry in plutonium nitrate solution samples that do not contain significant amounts of radioactive fission products or other high specific activity gamma-ray emitters. 1.2 This test method can be used to determine the americium 241 in samples of plutonium metal, oxide and other solid forms, when the solid is appropriately sampled and dissolved. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

1994-01-01T23:59:59.000Z

248

2013 Chevrolet Malibu ECO Hybrid ? VIN 6605, Advanced Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

2 : 3.00 V Thermal Management: Active - Forced air Pack Weight: 65 lb BEGINNING-OF-TEST: BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle...

249

Onboard Hydrogen/Helium Sensors in Support of the Global Technical Regulation: An Assessment of Performance in Fuel Cell Electric Vehicle Crash Tests  

SciTech Connect (OSTI)

Automobile manufacturers in North America, Europe, and Asia project a 2015 release of commercial hydrogen fuel cell powered light-duty road vehicles. These vehicles will be for general consumer applications, albeit initially in select markets but with much broader market penetration expected by 2025. To assure international harmony, North American, European, and Asian regulatory representatives are striving to base respective national regulations on an international safety standard, the Global Technical Regulation (GTR), Hydrogen Fueled Vehicle, which is part of an international agreement pertaining to wheeled vehicles and equipment for wheeled vehicles.

Post, M. B.; Burgess, R.; Rivkin, C.; Buttner, W.; O'Malley, K.; Ruiz, A.

2012-09-01T23:59:59.000Z

250

Electric vehicle repairs and modifications  

SciTech Connect (OSTI)

This informal report describes the electric vehicle (EV) inspection and the necessary maintenance and repairs required to improve reliable operation of five Volkswagen (VW) Electrotransporter vans and five VW EV buses. The recommendations of TVA, EPRI, GES, Volkswagen, Siemens, and Hoppecke have been carried out in this effort. These modifications were necessary before entering the EPRI/TVA phase II and III continuing program. As new energy storage systems are explored using the VW test-bed vehicles in the battery field testing program, additional modifications may be required. All modifications will be submitted to the vehicle and component manufacturer for general assessment and recommendations. At present three different types of battery systems are being evaluated in six VW vehicles. The two Hoppecke and Exide utilize the modified Hoppecke charging systems. The other batteries being tested require off-board chargers specified by their manufacturer and are separate from the vehicle system.

Buffett, R.K.

1982-11-01T23:59:59.000Z

251

AVTA: Hybrid-Electric Delivery Vehicles  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing on FedEx Express and UPS hybrid-electric delivery trucks. This research was conducted by the National Renewable Energy Laboratory (NREL).

252

Test to Determine Margin-to-Failure for Hy-100 Steel with Undermatched Welds  

SciTech Connect (OSTI)

This test program was undertaken to determine the flaw tolerance and to quantify the strength margin-to-failure of high yield strength steel fillet welded specimens. The tests demonstrate adequate margin-to-failure for HY-100 specimens fabricated with matched welding systems. In the use of high yield (HY) steel materials in designs required to accommodate rapidly applied dynamic loads, the concern was raised where the possibility of decreased flaw tolerance and premature failure by unstable ductile tearing could limit their use. Tests were developed and conducted to demonstrate adequate margin-to-failure in HY-100 fillet and partial penetration welded structures. In addition, inelastic analytical predictions were performed to assess the accuracy of such predictive tools compared to actual test data. Results showed that adequate margin-to-failure exists when using matched welding systems.

K.R. Arpin; T.F. Trimble

2003-04-01T23:59:59.000Z

253

Robotic vehicle  

DOE Patents [OSTI]

A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

Box, W. Donald (Oak Ridge, TN)

1997-01-01T23:59:59.000Z

254

Robotic vehicle  

DOE Patents [OSTI]

A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

Box, W. Donald (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

255

Determination of Water Saturation in Relatively Dry Porous Media Using Gas-phase Tracer Tests  

SciTech Connect (OSTI)

Soil desiccation (drying), involving water evaporation induced by dry air injection and extraction, is a potentially robust remediation process to slow migration of inorganic or radionuclide contaminants through the vadose zone. The application of gas-phase partitioning tracer tests has been proposed as a means to estimate initial water volumes and to monitor the progress of the desiccation process at pilot-test and field sites. In this paper, tracer tests have been conducted in porous medium columns with various water saturations using sulfur hexafluoride as the conservative tracer and tricholorofluoromethane and difluoromethane as the water-partitioning tracers. For porous media with minimal silt and/or organic matter fractions, tracer tests provided reasonable saturation estimates for saturations close to zero. However, for sediments with significant silt and/or organic matter fractions, tracer tests only provided satisfactory results when the water saturation was at least 0.1 - 0.2. For dryer conditions, the apparent tracer retardation increases due to air – soil sorption, which is not included in traditional retardation coefficients derived from advection-dispersion equations accounting only for air – water partitioning and water – soil sorption. Based on these results, gas-phase partitioning tracer tests may be used to determine initial water volumes in sediments, provided the initial water saturations are sufficiently large. However, tracer tests are not suitable for quantifying moisture content in desiccated sediments.

Oostrom, Martinus; Tartakovsky, Guzel D.; Wietsma, Thomas W.; Truex, Michael J.; Dane, Jacob H.

2011-04-15T23:59:59.000Z

256

NREL Determines Better Testing Methods for Photovoltaic Module Durability (Fact Sheet), NREL Highlights, Research & Development  

SciTech Connect (OSTI)

NREL discoveries will enable manufacturers to produce more robust photovoltaic modules. Over the past decade, some photovoltaic (PV) modules have experienced power losses because of the system voltage stress that modules experience in fielded arrays. This is partly because qualification tests and standards do not adequately evaluate the durability of modules that undergo the long-term effects of high voltage. Scientists at the National Renewable Energy Laboratory (NREL) tried various testing methods and stress levels to demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. The results of these accelerated tests, along with outdoor testing, were used to estimate the acceleration factors needed to more accurately evaluate the durability of modules to system voltage stress. NREL was able to determine stress factors, levels, and methods for testing based on the stresses experienced by modules in the field. These results, in combination with those in the literature, suggest that constant stress with humidity and system voltage is more damaging than stress applied intermittently or with periods of recovery comprising hot and dry conditions or alternating bias in between. NREL has determined some module constructions to be extremely durable to PID. These findings will help the manufacturers of PV materials and components produce more durable products that better satisfy their customers. NREL determined that there is rapid degradation of some PV modules under system voltage stress and evaluated degradation rates in the field to develop more accurate accelerated testing methods. PV module manufacturers will be better able to choose robust materials and durable designs and guarantee sturdier, longer-lasting products. As PV modules become more durable, and thus more efficient over the long term, the risks and the cost of PV power will be reduced.

Not Available

2011-11-01T23:59:59.000Z

257

Effects of Mid-Level Ethanol Blends on Conventional Vehicle Emissions  

SciTech Connect (OSTI)

Tests were conducted in 2008 on 16 late-model conventional vehicles (1999-2007) to determine short-term effects of mid-level ethanol blends on performance and emissions. Vehicle odometer readings ranged from 10,000 to 100,000 miles, and all vehicles conformed to federal emissions requirements for their federal certification level. The LA92 drive cycle, also known as the Unified Cycle, was used for testing because it more accurately represents real-world acceleration rates and speeds than the Federal Test Procedure. Test fuels were splash-blends of up to 20 volume percent ethanol with federal certification gasoline. Both regulated and unregulated air-toxic emissions were measured. For the 16-vehicle fleet, increasing ethanol content resulted in reductions in average composite emissions of both nonmethane hydrocarbons and carbon monoxide and increases in average emissions of ethanol and aldehydes.

Knoll, K.; West, B.; Huff, S.; Thomas, J.; Orban, J.; Cooper, C.

2010-06-01T23:59:59.000Z

258

Alternative Fuel Evaluation Program: Alternative Fuel Light Duty Vehicle Project - Data collection responsibilities, techniques, and test procedures  

SciTech Connect (OSTI)

This report describes the data gathering and analysis procedures that support the US Department of Energy`s implementation of the Alternative Motor Fuels Act (AMFA) of 1988. Specifically, test procedures, analytical methods, and data protocols are covered. The aim of these collection and analysis efforts, as mandated by AMFA, is to demonstrate the environmental, economic, and performance characteristics of alternative transportation fuels.

none,

1992-07-01T23:59:59.000Z

259

Experiment-Based Computational Investigation of Thermomechanical Stresses in Flip Chip BGA Using the ATC4.2 Test Vehicle  

SciTech Connect (OSTI)

Stress measurement test chips were flip chip assembled to organic BGA substrates containing micro-vias and epoxy build-up interconnect layers. Mechanical degradation observed during temperature cycling was correlated to a damage theory developed based on 3D finite element method analysis. Degradation included die cracking, edge delamination and radial fillet cracking.

Burchett, Steven N.; Nguyen, Luu; Peterson, David W.; Sweet, James N.

1999-08-02T23:59:59.000Z

260

Standard test method for determination of technetium-99 in uranium hexafluoride by liquid scintillation counting  

E-Print Network [OSTI]

1.1 This test method is a quantitative method used to determine technetium-99 (99Tc) in uranium hexafluoride (UF6) by liquid scintillation counting. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Standard Test Method for Determination of the Susceptibility of Metallic Materials to Hydrogen Gas Embrittlement (HGE)  

E-Print Network [OSTI]

1.1 This test method covers the quantitative determination of the susceptibility of metallic materials to hydrogen embrittlement, when exposed to high pressure gaseous hydrogen. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

American Society for Testing and Materials. Philadelphia

2006-01-01T23:59:59.000Z

262

Autonomous vehicles  

SciTech Connect (OSTI)

There are various kinds of autonomous vehicles (AV`s) which can operate with varying levels of autonomy. This paper is concerned with underwater, ground, and aerial vehicles operating in a fully autonomous (nonteleoperated) mode. Further, this paper deals with AV`s as a special kind of device, rather than full-scale manned vehicles operating unmanned. The distinction is one in which the AV is likely to be designed for autonomous operation rather than being adapted for it as would be the case for manned vehicles. The authors provide a survey of the technological progress that has been made in AV`s, the current research issues and approaches that are continuing that progress, and the applications which motivate this work. It should be noted that issues of control are pervasive regardless of the kind of AV being considered, but that there are special considerations in the design and operation of AV`s depending on whether the focus is on vehicles underwater, on the ground, or in the air. The authors have separated the discussion into sections treating each of these categories.

Meyrowitz, A.L. [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States)] [Navy Center for Applied Research in Artificial Intelligence, Washington, DC (United States); Blidberg, D.R. [Autonomous Undersea Systems Inst., Lee, NH (United States)] [Autonomous Undersea Systems Inst., Lee, NH (United States); Michelson, R.C. [Georgia Tech Research Inst., Smyrna, GA (United States)] [Georgia Tech Research Inst., Smyrna, GA (United States); [International Association for Unmanned Vehicle Systems, Smyrna, GA (United States)

1996-08-01T23:59:59.000Z

263

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

of Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidof Vehicle Image in Gasoline-Hybrid Electric Vehicles Reidhigh demand for gasoline-hybrid electric vehicles (HEVs)?

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

264

Vehicle Technologies Office: Hybrid and Vehicle Systems | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hybrid and Vehicle Systems Vehicle Technologies Office: Hybrid and Vehicle Systems Hybrid and vehicle systems research provides an overarching vehicle systems perspective to the...

265

Battery control system for hybrid vehicle and method for controlling a hybrid vehicle battery  

DOE Patents [OSTI]

A battery control system for controlling a state of charge of a hybrid vehicle battery includes a detecting arrangement for determining a vehicle operating state or an intended vehicle operating state and a controller for setting a target state of charge level of the battery based on the vehicle operating state or the intended vehicle operating state. The controller is operable to set a target state of charge level at a first level during a mobile vehicle operating state and at a second level during a stationary vehicle operating state or in anticipation of the vehicle operating in the stationary vehicle operating state. The invention further includes a method for controlling a state of charge of a hybrid vehicle battery.

Bockelmann, Thomas R. (Battle Creek, MI); Beaty, Kevin D. (Kalamazoo, MI); Zou, Zhanijang (Battle Creek, MI); Kang, Xiaosong (Battle Creek, MI)

2009-07-21T23:59:59.000Z

266

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Chevrolet Volt Vehicle Demonstration Fleet Summary Report Reporting period: October 2011 through December 2011 Number of vehicles: 135 Number of vehicle days driven: 4,746 All...

267

Methylotroph cloning vehicle  

DOE Patents [OSTI]

A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C.sub.1 -utilizing host and in a C.sub.1 -utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C.sub.1 -utilizing host to the C.sub.1 -utilizing host; DNA providing resistance to two antibiotics to which the wild-type C.sub.1 -utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C.sub.1 -utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C.sub.1 -utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C.sub.1 -utilizing (e.g., E. coli) host, and then conjugated with a selected C.sub.1 -utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C.sub.1 gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields.

Hanson, Richard S. (Deephaven, MN); Allen, Larry N. (Excelsior, MN)

1989-04-25T23:59:59.000Z

268

Vehicle Technologies Office: Workforce Development and Professional...  

Energy Savers [EERE]

drive vehicles. These documents describe the results of the full-scale testing of lithium-ion batteries and best practices. Hydrogen Education: DOE's Hydrogen Fuel Cell and...

269

Codes and Standards Support Vehicle Electrification  

Broader source: Energy.gov (indexed) [DOE]

chair) Scope: Test method and conditions for rating performance of electric propulsion motors as used in hybrid electric and battery electric vehicles. Rationale: Promote...

270

Advanced Technology Vehicle Lab Benchmarking - Level 1  

Broader source: Energy.gov (indexed) [DOE]

HEV (PHEV) * Battery Electric (BEV or EV) * Fuel Cell Vehicle Alternative fuels * Hydrogen, Natural Gas * Ethanol, Butanol * Diesel (Bio, Fisher-Tropsch) APRF Test Process:...

271

GASOLINE VEHICLE EXHAUST PARTICLE SAMPLING STUDY  

SciTech Connect (OSTI)

The University of Minnesota collaborated with the Paul Scherrer Institute, the University of Wisconsin (UWI) and Ricardo, Inc to physically and chemically characterize the exhaust plume from recruited gasoline spark ignition (SI) vehicles. The project objectives were: (1) Measure representative particle size distributions from a set of on-road SI vehicles and compare these data to similar data collected on a small subset of light-duty gasoline vehicles tested on a chassis dynamometer with a dilution tunnel using the Unified Drive Cycle, at both room temperature (cold start) and 0 C (cold-cold start). (2) Compare data collected from SI vehicles to similar data collected from Diesel engines during the Coordinating Research Council E-43 project. (3) Characterize on-road aerosol during mixed midweek traffic and Sunday midday periods and determine fleet-specific emission rates. (4) Characterize bulk- and size-segregated chemical composition of the particulate matter (PM) emitted in the exhaust from the gasoline vehicles. Particle number concentrations and size distributions are strongly influenced by dilution and sampling conditions. Laboratory methods were evaluated to dilute SI exhaust in a way that would produce size distributions that were similar to those measured during laboratory experiments. Size fractionated samples were collected for chemical analysis using a nano-microorifice uniform deposit impactor (nano-MOUDI). In addition, bulk samples were collected and analyzed. A mixture of low, mid and high mileage vehicles were recruited for testing during the study. Under steady highway cruise conditions a significant particle signature above background was not measured, but during hard accelerations number size distributions for the test fleet were similar to modern heavy-duty Diesel vehicles. Number emissions were much higher at high speed and during cold-cold starts. Fuel specific number emissions range from 1012 to 3 x 1016 particles/kg fuel. A simple relationship between number and mass emissions was not observed. Data were collected on-road to compare weekday with weekend air quality around the Twin Cities area. This portion of the study resulted in the development of a method to apportion the Diesel and SI contribution to on-road aerosol.

Kittelson, D; Watts, W; Johnson, J; Zarling, D Schauer,J Kasper, K; Baltensperger, U; Burtscher, H

2003-08-24T23:59:59.000Z

272

2011 DOE Hydrogen Program and Vehicle Technologies Office Annual...  

Broader source: Energy.gov (indexed) [DOE]

Office Plenary Session Program Analysis Ward Analyst Technology Integration Smith and Bezanson Vehicle & Systems Simulation & Testing Slezak Materials Schutte Materials...

273

Final report for measurement of primary particulate matter emissions from light-duty motor vehicles  

SciTech Connect (OSTI)

This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

1998-12-31T23:59:59.000Z

274

Vehicle Technologies Office: AVTA - Electric Vehicle Community...  

Broader source: Energy.gov (indexed) [DOE]

Making plug-in electric vehicles (PEVs, also known as electric cars) as affordable and convenient as conventional vehicles, as described in the EV Everywhere Grand Challenge,...

275

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and...  

Broader source: Energy.gov (indexed) [DOE]

- cont'd * University of California Davis, with 13 Hymotion Prius being used by 70 public drives * Oregon State Government fleets, 3 Hymotion PHEVs * National Rural Electric...

276

Advanced Vehicle Testing Activity (AVTA) - Vehicle Testing and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergy 2Waste|0 DOE2

277

Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint  

SciTech Connect (OSTI)

Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

Farrington, R.; Rugh, J.

2000-09-22T23:59:59.000Z

278

AVTA: ARRA EV Project Vehicle Placement Maps  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following maps describe where the EV Project deployed 5,700 all-electric Nissan Leafs and 2,600 plug-in hybrid electric Chevrolet Volts.

279

10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

Boyd D. Christensen; Michael A. Lehto; Noel R. Duckwitz

2012-05-01T23:59:59.000Z

280

Comparison of the Fire Consequences of an Electric Vehicle and an Internal Combustion Engine Vehicle.  

E-Print Network [OSTI]

Comparison of the Fire Consequences of an Electric Vehicle and an Internal Combustion Engine key new technologies in the development of electric vehicles (EV), risks pertaining to them have at presenting the main results of these fire tests. KEYWORDS: electric vehicles, battery, fire, safety

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fuel Property, Emission Test, and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters  

SciTech Connect (OSTI)

A fleet of six 2001 International Class 6 trucks operating in southern California was selected for an operability and emissions study using gas-to-liquid (GTL) fuel and catalyzed diesel particle filters (CDPF). Three vehicles were fueled with CARB specification diesel fuel and no emission control devices (current technology), and three vehicles were fueled with GTL fuel and retrofit with Johnson Matthey's CCRT diesel particulate filter. No engine modifications were made.

Alleman, T. L.; Eudy, L.; Miyasato, M.; Oshinuga, A.; Allison, S.; Corcoran, T.; Chatterjee, S.; Jacobs, T.; Cherrillo, R. A.; Clark, R.; Virrels, I.; Nine, R.; Wayne, S.; Lansing, R.

2005-11-01T23:59:59.000Z

282

Modular Energy Storage System for Alternative Energy Vehicles  

SciTech Connect (OSTI)

An electrical vehicle environment was established to promote research and technology development in the area of high power energy management. The project incorporates a topology that permits parallel development of an alternative energy delivery system and an energy storage system. The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plugin electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. In order to meet the project objectives, the Vehicle Energy Management System (VEMS) was defined and subsystem requirements were obtained. Afterwards, power electronics, energy storage electronics and controls were designed. Finally, these subsystems were built, tested individually, and integrated into an electric vehicle system to evaluate and optimize the subsystemsâ?? performance. Phase 1 of the program established the fundamental test bed to support development of an electrical environment ideal for fuel cell application and the mitigation of many shortcomings of current fuel cell technology. Phase 2, continued development from Phase 1, focusing on implementing subsystem requirements, design and construction of the energy management subsystem, and the integration of this subsystem into the surrogate electric vehicle. Phase 2 also required the development of an Alternative Energy System (AES) capable of emulating electrical characteristics of fuel cells, battery, gen set, etc. Under the scope of the project, a boost converter that couples the alternate energy delivery system to the energy storage system was developed, constructed and tested. Modeling tools were utilized during the design process to optimize both component and system design. This model driven design process enabled an iterative process to track and evaluate the impact of design alternatives and the impact of changes. Refinement of models was accomplished through correlation studies to measured data obtained from functioning hardware. Specifically, correlation and characterization of the boost converter resulted in a model that was effectively used to determine overall VEMS performance. The successful development of the boost converter can be attributed to utilization of previously proven technologies and adapting to meet the VEMS requirements. This program provided significant improvement in development time of various generations of boost converters. The software strategies and testing results support the development of current energy management systems and directly contribute to the future of similar, commercial products at Magna E-Car Systems. Because of this development project, Magna E-Car Systems is able to offer automotive customers a boost converter system with reduced time to market and decreased product cost, thus transferring the cost and timing benefits to the end use consumer.

Janice Thomas; Frank Ervin

2012-02-28T23:59:59.000Z

283

AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Volkswagon Golf Diesel Start-Stop Testing Results AVTA: 2010 Volkswagon Golf Diesel Start-Stop Testing Results The Vehicle Technologies Office's Advanced Vehicle Testing Activity...

284

Explosives screening on a vehicle surface  

DOE Patents [OSTI]

A system for detecting particles on the outer surface of a vehicle has a housing capable of being placed in a test position adjacent to, but not in contact with, a portion of the outer surface of the vehicle. An elongate sealing member is fastened to the housing along a perimeter surrounding the wall, and the elongate sealing member has a contact surface facing away from the wall to contact the outer surface of the vehicle to define a test volume when the wall is in the test position. A gas flow system has at least one gas inlet extending through the wall for providing a gas stream against the surface of the vehicle within the test volume. This gas stream, which preferably is air, dislodges particles from the surface of the vehicle covered by the housing. The gas stream exits the test volume through a gas outlet and particles in the stream are detected.

Parmeter, John E.; Brusseau, Charles A.; Davis, Jerry D.; Linker, Kevin L.; Hannum, David W.

2005-02-01T23:59:59.000Z

285

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

286

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP) Describes...

287

Methylotroph cloning vehicle  

DOE Patents [OSTI]

A cloning vehicle comprising: a replication determinant effective for replicating the vehicle in a non-C[sub 1]-utilizing host and in a C[sub 1]-utilizing host; DNA effective to allow the vehicle to be mobilized from the non-C[sub 1]-utilizing host to the C[sub 1]-utilizing host; DNA providing resistance to two antibiotics to which the wild-type C[sub 1]-utilizing host is susceptible, each of the antibiotic resistance markers having a recognition site for a restriction endonuclease; a cos site; and a means for preventing replication in the C[sub 1]-utilizing host. The vehicle is used for complementation mapping as follows. DNA comprising a gene from the C[sub 1]-utilizing organism is inserted at the restriction nuclease recognition site, inactivating the antibiotic resistance marker at that site. The vehicle can then be used to form a cosmid structure to infect the non-C[sub 1]-utilizing (e.g., E. coli) host, and then conjugated with a selected C[sub 1]-utilizing mutant. Resistance to the other antibiotic by the mutant is a marker of the conjugation. Other phenotypical changes in the mutant, e.g., loss of an auxotrophic trait, is attributed to the C[sub 1] gene. The vector is also used to inactivate genes whose protein products catalyze side reactions that divert compounds from a biosynthetic pathway to a desired product, thereby producing an organism that makes the desired product in higher yields. 3 figs.

Hanson, R.S.; Allen, L.N.

1989-04-25T23:59:59.000Z

288

Determination of stress state in deep subsea formation by combination of hydraulic fracturing in situ test and core  

E-Print Network [OSTI]

are determined from (i) the cross-sectional shape of a core sample and (ii) Ps obtained by the HF test performed., 2010; Moe et al., 2012]. A new borehole, Hole C0009A, was drilled to 1603.7 mbsf (meters below seafloor stress magnitudes directly. In this test, a section of a borehole is isolated, and the borehole wall

289

Multivariate accelerated shelf-life testing: a novel approach for determining the shelf-life of foods  

E-Print Network [OSTI]

Multivariate accelerated shelf-life testing: a novel approach for determining the shelf-lives, accelerated studies have to be conducted and a third parameter has to be estimated: the acceleration factor approach for determining the shelf-life of industrialised food products, the Multivariate Accelerated Shelf

Ferreira, Márcia M. C.

290

Determination of Interfacial Mechanical Properties of Ceramic Composites by the Compression of Micro-pillar Test Specimens  

SciTech Connect (OSTI)

A novel method to determine the fiber-matrix interfacial properties of ceramic matrix composites is proposed and evaluated; where micro- pillar samples containing inclined fiber/matrix interfaces were prepared from a SiC fiber reinforced SiC matrix composites then compression-tested using the nano-indentation technique. This new test method employs a simple geometry and mitigates the uncertainties associated with complex stress state in the conventional single filament push-out method for the determination of interfacial properties. Based on the test results using samples with different interface orientations , the interfacial debond shear strength and the internal friction coefficient are explicitly determined and compared with values obtained by other test methods.

Shih, Chunghao [ORNL; Katoh, Yutai [ORNL; Leonard, Keith J [ORNL; Bei, Hongbin [ORNL; Lara-Curzio, Edgar [ORNL

2013-01-01T23:59:59.000Z

291

Control of Multiple Robotic Sentry Vehicles  

SciTech Connect (OSTI)

As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

Feddema, J.; Klarer, P.; Lewis, C.

1999-04-01T23:59:59.000Z

292

Particulate Measurements and Emissions Characterization of Alternative Fuel Vehicle Exhaust  

SciTech Connect (OSTI)

The objective of this project was to measure and characterize particulate emissions from light-duty alternative fuel vehicles (AFVs) and equivalent gasoline-fueled vehicles. The project included emission testing of a fleet of 129 gasoline-fueled vehicles and 19 diesel vehicles. Particulate measurements were obtained over Federal Test Procedure and US06 cycles. Chemical characterization of the exhaust particulate was also performed. Overall, the particulate emissions from modern technology compressed natural gas and methanol vehicles were low, but were still comparable to those of similar technology gasoline vehicles.

Durbin, T. D.; Truex, T. J.; Norbeck, J. M. (Center for Environmental Research and Technology College of Engineering, University of California - Riverside, California)

1998-11-19T23:59:59.000Z

293

Infrastructure, Components and System Level Testing and Analysis of Electric Vehicles: Cooperative Research and Development Final Report, CRADA Number CRD-09-353  

SciTech Connect (OSTI)

Battery technology is critical for the development of innovative electric vehicle networks, which can enhance transportation sustainability and reduce dependence on petroleum. This cooperative research proposed by Better Place and NREL will focus on predicting the life-cycle economics of batteries, characterizing battery technologies under various operating and usage conditions, and designing optimal usage profiles for battery recharging and use.

Neubauer, J.

2013-05-01T23:59:59.000Z

294

192 Int. J. Vehicle Systems Modelling and Testing, Vol. 1, Nos. 1/2/3, 2005 Copyright 2005 Inderscience Enterprises Ltd.  

E-Print Network [OSTI]

Development Research Lab, General Motors Research and Development Center, Warren, MI USA E-mail: joe in the Vehicle Development Research Laboratory at the General Motors Research and Development Center in Warren, Michigan. His ten years of experience with General Motors and the Ford Motor Company have broadly spanned

Lewis, Kemper E.

295

Chevrolet Volt Vehicle Demonstration  

Broader source: Energy.gov (indexed) [DOE]

Volt Vehicle Demonstration Fleet Summary Report Reporting period: January 2013 through March 2013 Number of vehicles: 146 Number of vehicle days driven: 6,680 4292013 2:38:13 PM...

296

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September bycost than both. Solar-hydrogen fuel- cell vehicles would becost than both. Solar-hydrogen fuel- cell vehicles would be

Delucchi, Mark

1992-01-01T23:59:59.000Z

297

In-Use and Vehicle Dynamometer Evaluation and Comparison of Class 7 Hybrid Electric and Conventional Diesel Delivery Trucks  

SciTech Connect (OSTI)

This study compared fuel economy and emissions between heavy-duty hybrid electric vehicles (HEVs) and equivalent conventional diesel vehicles. In-use field data were collected from daily fleet operations carried out at a FedEx facility in California on six HEV and six conventional 2010 Freightliner M2-106 straight box trucks. Field data collection primarily focused on route assessment and vehicle fuel consumption over a six-month period. Chassis dynamometer testing was also carried out on one conventional vehicle and one HEV to determine differences in fuel consumption and emissions. Route data from the field study was analyzed to determine the selection of dynamometer test cycles. From this analysis, the New York Composite (NYComp), Hybrid Truck Users Forum Class 6 (HTUF 6), and California Air Resource Board (CARB) Heavy Heavy-Duty Diesel Truck (HHDDT) drive cycles were chosen. The HEV showed 31% better fuel economy on the NYComp cycle, 25% better on the HTUF 6 cycle and 4% worse on the CARB HHDDT cycle when compared to the conventional vehicle. The in-use field data indicates that the HEVs had around 16% better fuel economy than the conventional vehicles. Dynamometer testing also showed that the HEV generally emitted higher levels of nitric oxides than the conventional vehicle over the drive cycles, up to 77% higher on the NYComp cycle (though this may at least in part be attributed to the different engine certification levels in the vehicles tested). The conventional vehicle was found to accelerate up to freeway speeds over ten seconds faster than the HEV.

Burton, J.; Walkowicz, K.; Sindler, P.; Duran, A.

2013-10-01T23:59:59.000Z

298

Author manuscript, published in "International Conference on Information Fusion (2013)" An Ontology-based Model to Determine the Automation Level of an Automated Vehicle for Co-Driving  

E-Print Network [OSTI]

Abstract—Full autonomy of ground vehicles is a major goal of the ITS (Intelligent Transportation Systems) community. However, reaching such highest autonomy level in all situations (weather, traffic,...) may seem difficult in practice, despite recent results regarding driverless cars (e.g., Google Cars). In addition, an automated vehicle should also self-assess its own perception abilities, and not only perceive its environment. In this paper, we propose an intermediate approach towards full automation, by defining a spectrum of automation layers, from fully manual (the car is driven by a driver) to fully automated (the car is driven by a computer), based on an ontological model for representing knowledge. We also propose a second ontology for situation assessment (what does the automated car perceive?), including the sensors/actuators state, environmental conditions and driver’s state. Finally, we also define inference rules to link the situation assessment ontology to the automation level one. Both ontological models have been built and first results are presented. I.

Evangeline Pollard; Fawzi Nashashibi

2013-01-01T23:59:59.000Z

299

Mack LNG vehicle development  

SciTech Connect (OSTI)

The goal of this project was to install a production-ready, state-of-the-art engine control system on the Mack E7G natural gas engine to improve efficiency and lower exhaust emissions. In addition, the power rating was increased from 300 brake horsepower (bhp) to 325 bhp. The emissions targets were oxides of nitrogen plus nonmethane hydrocarbons of less than 2.5 g/bhp-hr and particulate matter of less than 0.05 g/bhp-hr on 99% methane. Vehicle durability and field testing were also conducted. Further development of this engine should include efficiency improvements and oxides of nitrogen reductions.

Southwest Research Institute

2000-01-05T23:59:59.000Z

300

Massachusetts Electric Vehicle Efforts  

E-Print Network [OSTI]

Massachusetts Electric Vehicle Efforts Christine Kirby, MassDEP ZE-MAP Meeting October 24, 2014 #12 · Provide Clean Air · Grow the Clean Energy Economy · Electric vehicles are a key part of the solution #12 is promoting EVs 4 #12;TCI and Electric Vehicles · Established the Northeast Electric Vehicle Network through

California at Davis, University of

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternative Fuel Vehicle Data  

Reports and Publications (EIA)

Annual data released on the number of on-road alternative fuel vehicles and hybrid vehicles made available by both the original equipment manufacturers and aftermarket vehicle conversion facilities. Data on the use of alternative fueled vehicles and the amount of fuel they consume is also available.

2013-01-01T23:59:59.000Z

302

Advanced Vehicle Technology Analysis and Evaluation Team  

E-Print Network [OSTI]

Set ­ Models · Conventional, hybrid and electric vehicles · Fuel consumption and performance Testing · Advanced Powertrain Research Facility · ReFuel Facility Fleet Testing · Industry/Government LabFuelReFuel FacilityFacility Fleet TestingFleet Testing ·· Industry/GovernmentIndustry/Government ModelModel Validation

303

Hybrid options for light-duty vehicles.  

SciTech Connect (OSTI)

Hybrid electric vehicles (HEVs) offer great promise in improving fuel economy. In this paper, we analyze why, how, and by how much vehicle hybridization can reduce energy consumption and improve fuel economy. Our analysis focuses on efficiency gains associated solely with vehicle hybridization. We do not consider such other measures as vehicle weight reduction or air- and tire-resistance reduction, because such measures would also benefit conventional technology vehicles. The analysis starts with understanding the energy inefficiencies of light-duty vehicles associated with different operation modes in US and Japanese urban and highway driving cycles, with the corresponding energy-saving potentials. The potential for fuel economy gains due to vehicle hybridization can be estimated almost exclusively on the basis of three elements: the reducibility of engine idling operation, the recoverability of braking energy losses, and the capability of improving engine load profiles to gain efficiency associated with specific HEV configurations and control strategies. Specifically, we evaluate the energy efficiencies and fuel economies of a baseline MY97 Corolla-like conventional vehicle (CV), a hypothetical Corolla-based minimal hybrid vehicle (MHV), and a MY98 Prius-like full hybrid vehicle (FHV). We then estimate energy benefits of both MHVs and FHVs over CVs on a performance-equivalent basis. We conclude that the energy benefits of hybridization vary not only with test cycles, but also with performance requirements. The hybrid benefits are greater for ''Corolla (high) performance-equivalent'' vehicles than for ''Prius (low) performance-equivalent'' vehicles. An increasing acceleration requirement would result in larger fuel economy benefits from vehicle hybridization.

An, F., Stodolsky, F.; Santini, D.

1999-07-19T23:59:59.000Z

304

AGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO-  

E-Print Network [OSTI]

-to-infrastructure (V2V2I) architecture, which is a hybrid of the vehicle-to-vehicle (V2V) and vehicle proposing is a hybrid of the V2I and V2V architectures, which is the vehicle-to-vehicle-to-infrastructure (VAGGREGATION ALGORITHMS IN A VEHICLE-TO-VEHICLE-TO- INFRASTRUCTURE (V2V2I) INTELLIGENT

Miller, Jeffrey A.

305

Electric vehicle fleet operations in the United States  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is actively supporting the development and commercialization of advanced electric vehicles, batteries, and propulsion systems. As part of this effort, the DOE Field Operations Program is performing commercial validation testing of electric vehicles and supporting the development of an electric vehicle infrastructure. These efforts include the evaluation of electric vehicles in baseline performance, accelerated reliability, and fleet operations testing. The baseline performance testing focuses on parameters such as range, acceleration, and battery charging. This testing, performed in conjunction with EV America, has included the baseline performance testing of 16 electric vehicle models from 1994 through 1997. During 1997, the Chevrolet S10 and Ford Ranger electric vehicles were tested. During 1998, several additional electric vehicles from original equipment manufacturers will also be baseline performance tested. This and additional information is made available to the public via the Program`s web page (http://ev.inel.gov/sop). In conjunction with industry and other groups, the Program also supports the Infrastructure Working Council in its development of electric vehicle communications, charging, health and safety, and power quality standards. The Field Operations Program continues to support the development of electric vehicles and infrastructure in conjunction with its qualified vehicle test partners: Electric Transportation Applications, and Southern California Edison. The Field Operations Program is managed by the Lockheed Martin Idaho Technologies Company at the Idaho National Engineering and Environmental Laboratory.

Francfort, J.E. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; O`Hara, D. [Dept. of Energy, Washington, DC (United States)

1998-03-01T23:59:59.000Z

306

Vehicle Following Control Design for Automated Highway Systems  

E-Print Network [OSTI]

Vehicle Following Control Design for Automated Highway Systems H. Raza and P. Ioannou A, utomatic vehicle following isan important feature of a fully rpartially automated highwaysystem (AHS is todesign and test avehicle control system in order toachieve full vehicle automation in the longitudinal

Ioannou, Petros

307

IDENTIFICATION OF UNDERWATER VEHICLE HYDRODYNAMIC COEFFICIENTS USING FREE  

E-Print Network [OSTI]

been an ever increasing num- ber of applications for unmanned underwater vehicles (UUV) in variousIDENTIFICATION OF UNDERWATER VEHICLE HYDRODYNAMIC COEFFICIENTS USING FREE DECAY TESTS Andrew Ross the potential accuracy of these new methods. Copyright c 2004 IFAC. Keywords: Low-speed underwater vehicles

Johansen, Tor Arne

308

Electric Vehicle Site Operator Program  

SciTech Connect (OSTI)

Kansas State University, with funding support from federal, state, public, and private companies, is participating in the Department of Energy's Electric Vehicle Site Operator Program. Through participation is this program, Kansas State is demonstrating, testing, and evaluating electric or hybrid vehicle technology. This participation will provide organizations the opportunity to examine the latest EHV prototypes under actual operating conditions. KSU proposes to purchase one (1) electric or hybrid van and four (4) electric cars during the first two years of this five year program. KSU has purchased one G-Van built by Conceptor Industries, Toronto, Canada and has initiated a procurement order to purchase two (2) Soleq 1992 Ford EVcort stationwagons.

Not Available

1992-01-01T23:59:59.000Z

309

Development and testing of a standard procedure for determining the viscous properties of crosslinked fracture fluids  

E-Print Network [OSTI]

of the shear rate at the bob by use of the Kr ieger correction. During the develop- ment of the testing pr ocedur e, it was discover ed that the gel experienced shear degradation when subjected to an incr easing shear rate. Therefore, the shear rate should... always be decreased when measuring these fluids. The applicability of the testing procedure was verified by test- ing gel systems supplied by four service companies with gel concentrations of 0. 48$ and 0. 72$ HPG (40 and 60 Ib/1000 gal, respectively...

Worlow, David Wayne

1987-01-01T23:59:59.000Z

310

XAUV : modular high maneuverability autonomous underwater vehicle  

E-Print Network [OSTI]

The design and construction of a modular test bed autonomous underwater vehicle (AUV) is analyzed. Although a relatively common stacked-hull design is used, the state of the art is advanced through an aggressive power ...

Walker, Daniel G. (Daniel George)

2009-01-01T23:59:59.000Z

311

Determination of accuracy of measurements by NREL`s Scanning Hartmann Optical Test instrument  

SciTech Connect (OSTI)

NREL`s Scanning Hartmann Optical Test (SHOT) instrument is routinely used to characterize the surface of candidate dish concentration elements for solar thermal applications. An approach was devised to quantify the accuracy of these measurements. Excellent reproducibility was exhibited and high confidence established. The SHOT instrument was designed to allow the surface figure of large optical test articles to be accurately specified. Such test articles are nominally parabolic with an f/D ratio (in which f=focal length and D=aperture diameter) in the range of 0.5--1.0. Recent modifications of SHOT have extended the characterization range out to about f/D=3.0. A series of experiments was designed to investigate and quantify the uncertainties associated with optical characterization performed by SHOT. This approach involved making a series of measurements with an arbitrary test article positioned at a number of locations transverse to the optical axis of SHOT. 3 refs.

Jorgensen, G.; Wendelin, T.; Carasso, M.

1991-04-01T23:59:59.000Z

312

Determination of accuracy of measurements by NREL's Scanning Hartmann Optical Test instrument  

SciTech Connect (OSTI)

NREL's Scanning Hartmann Optical Test (SHOT) instrument is routinely used to characterize the surface of candidate dish concentration elements for solar thermal applications. An approach was devised to quantify the accuracy of these measurements. Excellent reproducibility was exhibited and high confidence established. The SHOT instrument was designed to allow the surface figure of large optical test articles to be accurately specified. Such test articles are nominally parabolic with an f/D ratio (in which f=focal length and D=aperture diameter) in the range of 0.5--1.0. Recent modifications of SHOT have extended the characterization range out to about f/D=3.0. A series of experiments was designed to investigate and quantify the uncertainties associated with optical characterization performed by SHOT. This approach involved making a series of measurements with an arbitrary test article positioned at a number of locations transverse to the optical axis of SHOT. 3 refs.

Jorgensen, G.; Wendelin, T.; Carasso, M.

1991-04-01T23:59:59.000Z

313

A Loop Material Flow System Design for Automated Guided Vehicles  

E-Print Network [OSTI]

A Loop Material Flow System Design for Automated Guided Vehicles Ardavan Asef-Vaziri 1 Maged load automated guided vehicles. The model simultaneously determines both the design are attributed to material handling (Tompkins et al., 1996). Automated guided vehicles (AGVs) are among

Dessouky, Maged

314

Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

315

Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...  

Energy Savers [EERE]

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2011vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

316

DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

1.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle...

317

Effects of Vehicle Image in Gasoline-Hybrid Electric Vehicles  

E-Print Network [OSTI]

The Images of Hybrid Vehicles Each of the householdsbetween hybrid and non-hybrid vehicles was observed in smallowned Honda Civic Hybrids, vehicles that are virtually

Heffner, Reid R.; Kurani, Kenneth S; Turrentine, Tom

2005-01-01T23:59:59.000Z

318

MELT WIRE SENSORS AVAILABLE TO DETERMINE PEAK TEMPERATURES IN ATR IRRADIATION TESTING  

SciTech Connect (OSTI)

In April 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) a National Scientific User Facility (NSUF) to advance US leadership in nuclear science and technology. By attracting new users from universities, laboratories, and industry, the ATR will support basic and applied nuclear research and development and help address the nation's energy security needs. In support of this new program, the Idaho National Laboratory (INL) has developed in-house capabilities to fabricate, test, and qualify new and enhanced temperature sensors for irradiation testing. Although most efforts emphasize sensors capable of providing real-time data, selected tasks have been completed to enhance sensors provided in irradiation locations where instrumentation leads cannot be included, such as drop-in capsule and Hydraulic Shuttle Irradiation System (HSIS) or 'rabbit' locations. To meet the need for these locations, the INL has developed melt wire temperature sensors for use in ATR irradiation testing. Differential scanning calorimetry and environmental testing of prototypical sensors was used to develop a library of 28 melt wire materials, capable of detecting peak irradiation temperatures ranging from 85 to 1500°C. This paper will discuss the development work and present test results.

K. L. Davis; D. Knudson; J. Daw; J. Palmer; J. L. Rempe

2012-07-01T23:59:59.000Z

319

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt066vsskarner2012...

320

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt066vsskarner2011...

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

322

Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...  

Energy Savers [EERE]

2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

323

Electric Drive Vehicle Demonstration and Vehicle Infrastructure...  

Broader source: Energy.gov (indexed) [DOE]

EVSE Designed And Manufactured To Allow Power And Energy Data Collection And Demand Response Control Residential EVSE Installed For All Vehicles 1,300...

324

Vehicle to Grid Demonstration Project  

SciTech Connect (OSTI)

This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

2010-12-31T23:59:59.000Z

325

Consumer Vehicle Choice Model Documentation  

SciTech Connect (OSTI)

In response to the Fuel Economy and Greenhouse Gas (GHG) emissions standards, automobile manufacturers will need to adopt new technologies to improve the fuel economy of their vehicles and to reduce the overall GHG emissions of their fleets. The U.S. Environmental Protection Agency (EPA) has developed the Optimization Model for reducing GHGs from Automobiles (OMEGA) to estimate the costs and benefits of meeting GHG emission standards through different technology packages. However, the model does not simulate the impact that increased technology costs will have on vehicle sales or on consumer surplus. As the model documentation states, “While OMEGA incorporates functions which generally minimize the cost of meeting a specified carbon dioxide (CO2) target, it is not an economic simulation model which adjusts vehicle sales in response to the cost of the technology added to each vehicle.” Changes in the mix of vehicles sold, caused by the costs and benefits of added fuel economy technologies, could make it easier or more difficult for manufacturers to meet fuel economy and emissions standards, and impacts on consumer surplus could raise the costs or augment the benefits of the standards. Because the OMEGA model does not presently estimate such impacts, the EPA is investigating the feasibility of developing an adjunct to the OMEGA model to make such estimates. This project is an effort to develop and test a candidate model. The project statement of work spells out the key functional requirements for the new model.

Liu, Changzheng [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

2012-08-01T23:59:59.000Z

326

Alternative fuels for vehicles fleet demonstration program final report. Volume 1: Summary  

SciTech Connect (OSTI)

The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles in typical applications in New York State. During 3 years of collecting data, 7.3 million miles of driving were accumulated, 1,003 chassis-dynamometer emissions tests were performed, 862,000 gallons of conventional fuel were saved, and unique information was developed about garage safety recommendations, vehicle performance, and other topics. Findings are organized by vehicle and fuel type. For light-duty compressed natural gas (CNG) vehicles, technology has evolved rapidly and closed-loop, electronically-controlled fuel systems provide performance and emissions advantages over open-loop, mechanical systems. The best CNG technology produces consistently low tailpipe emissions versus gasoline, and can eliminate evaporative emissions. Reduced driving range remains the largest physical drawback. Fuel cost is low ($/Btu) but capital costs are high, indicating that economics are best with vehicles that are used intensively. Propane produces impacts similar to CNG and is less expensive to implement, but fuel cost is higher than gasoline and safety codes limit use in urban areas. Light-duty methanol/ethanol vehicles provide performance and emissions benefits over gasoline with little impact on capital costs, but fuel costs are high. Heavy-duty CNG engines are evolving rapidly and provide large reductions in emissions versus diesel. Capital costs are high for CNG buses and fuel efficiency is reduced, but the fuel is less expensive and overall operating costs are about equal to those of diesel buses. Methanol buses provide performance and emissions benefits versus diesel, but fuel costs are high. Other emerging technologies were also evaluated, including electric vehicles, hybrid-electric vehicles, and fuel cells.

NONE

1997-03-01T23:59:59.000Z

327

Electric Vehicle Smart Charging Infrastructure  

E-Print Network [OSTI]

for Multiplexed Electric Vehicle Charging”, US20130154561A1,Chynoweth, ”Intelligent Electric Vehicle Charging System”,of RFID Mesh Network for Electric Vehicle Smart Charging

Chung, Ching-Yen

2014-01-01T23:59:59.000Z

328

Coordinating Automated Vehicles via Communication  

E-Print Network [OSTI]

1.1 Vehicle Automation . . . . . . . . . . . 1.1.1 Controlareas of technology in vehicle automation and communicationChapter 1 Introduction Vehicle Automation Automation is an

Bana, Soheila Vahdati

2001-01-01T23:59:59.000Z

329

Vehicle security apparatus and method  

DOE Patents [OSTI]

A vehicle security apparatus for use in a motor vehicle, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle.

Veligdan, James T. (Manorville, NY)

1996-02-13T23:59:59.000Z

330

Vehicle security apparatus and method  

DOE Patents [OSTI]

A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

Veligdan, J.T.

1996-02-13T23:59:59.000Z

331

Safety analysis of in-use vehicle wrapping cylinder  

Broader source: Energy.gov [DOE]

The focus of this presentation is on the security analysis for wrapped cylinders used in vehicles and analyzing safety conditions and environmental effects through testing.

332

Electric Vehicle Charging Stations, Coming Soon to a City Near...  

Broader source: Energy.gov (indexed) [DOE]

to be available throughout the Orlando area next year. File photo Orlando Plugs into Electric Vehicle Charging Stations Assistant Secretary Patricia Hoffman test drives the...

333

Vehicle Technologies Office: Alternative Fuels Research and Deployment...  

Office of Environmental Management (EM)

(mainly state and utility fleets) under the Energy Policy Act of 1992, while the Federal Energy Management Program works with federal fleets. Test alternative fuel vehicles: VTO...

334

Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells...  

Broader source: Energy.gov (indexed) [DOE]

Session VTO Analysis Activities: AMR Plenary Overview Ward Technology Integration Smith and Bezanson Vehicle & Systems Simulation & Testing Slezak Materials Schutte Materials...

335

Ultracapacitor Applications and Evaluation for Hybrid Electric Vehicles (Presentation)  

SciTech Connect (OSTI)

Describes the use of ultracapacitors in advanced hybrid and electric vehicles and discusses thermal and electrical testing of lithium ion capacitors for HEV applications.

Pesaran, A.; Gonder, J.; Keyser, M.

2009-04-01T23:59:59.000Z

336

Trip Prediction and Route-Based Vehicle Energy Management  

Broader source: Energy.gov (indexed) [DOE]

Barriers * Start: September 2012 * End: September 2014 * Status: 70% complete * Cost of testing advanced technologies through multiple vehicle builds * Risk aversion of OEM...

337

Retrofiting survivability of military vehicles  

SciTech Connect (OSTI)

In Iraq the terrain was such that vehicles could be distributed horizontally, which reduced the effectiveness of mines. In the mountainous terrain of Pakistan and Afghanistan vehicles are forced to use the few, passable roads, which are dirt and easily seeded with plentiful, cheap, intelligent mines. It is desirable to reduce the losses to such mines, preferably by retrofit means that do not greatly increase weight or cost or reduce maneuverability. V-bottom vehicles - A known approach to reducing vulnerability is the Buffalo, a large vehicle developed by South Africa to address mine warfare. It has large tires, high axles, and a reinforced, v-shaped bottom that deflects the blast from explosions below. It is developed and tested in combat, but is expensive and has reduced off-road mobility. The domestic MRAP has similar cost and mobility issue. The addition of v-shaped blast deflectors to vehicles such as Humvees could act much as the deflector on a Buffalo, but a Humvee is closer to the ground, so the explosive's expansion would be reduced. The deflector would also reduce a Humvee's clearance for rough terrain, and a deflector of adequate thickness to address the blast by itself could further increase cost and reduce mobility. Reactive armor is developed and has proven effective against shaped and explosive charges from side or top attack. It detects their approach, detonates, and defeats them by interfering with jet formation. If the threat was a shaped charge from below, they would be a logical choice. But the bulk of the damage to Humvees appears to be from the blast from high explosive mines for which the colliding shock from reactive armor could increase that from the explosive. Porous materials such as sand can strongly attenuate the kinetic energy and pressure of a strong shock. Figure 1 shows the kinetic energy (KE), momentum (Mu), velocity (u), and mass (M) of a spherically expanding shock as functions of radius for a material with a porosity of 0.5. Over the range from 0.5 to 4.5 cm the shock KE is attenuated by a factor of {approx}70, while its momentum is changed little. The shock and particle velocity falls by a factor of 200 while the mass increases by a factor of 730. In the limit of very porous media u {approx} 1/M, so KE {approx} 1/M, which falls by a factor of {approx}600, while momentum Mu does not change at all. Figure 2 shows the KE, Mu, u, and M for a material with a porosity of 1.05, for which the KE changes little. In the limit of media of very low porosity, u {approx} 1/{radical}M, so KE is constant while Mu {approx} {radical}M, which increases by a factor of 15. Thus, if the goal is to reduce the peak pressure from strong explosions below, very porous materials, which strongly reduce pressure but do not increase momentum, are preferred to non-porous materials, which amplify momentum but do not decrease pressure. These predictions are in qualitative accord with the results of experiments at Los Alamos in which projectiles from high velocity, large caliber cannons were stopped by one to two sandbags. The studies were performed primarily to determine the effectiveness of sand in stopping fragments of various sizes, but could be extended to study sand's effectiveness in attenuating blast pressure. It would also be useful to test the above predictions on the effectiveness of media with higher porosity. Water barriers have been discussed but not deployed in previous retrofit survivability studies for overseas embassies. They would detect the flash from the mine detonation below, trigger a thin layer of explosive above a layer of water, and drive water droplets into the approaching blast wave. The blast loses energy in evaporating the droplets and loses momentum in slowing them. Under favorable conditions that could attenuate the pressure in the blast enough to prevent the penetration or disruption of the vehicle. However, such barriers would depend on prompt and reliable detonation detection and water droplet dispersal, which have not been tested. There is a large literature on the theoretical effec

Canavan, Gregory H [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

338

Vehicle Technologies Office: AVTA - Diesel Internal Combusion...  

Energy Savers [EERE]

Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles Vehicle Technologies Office: AVTA - Diesel Internal Combusion Engine Vehicles The Advanced Vehicle...

339

Comparison of various battery technologies for electric vehicles  

E-Print Network [OSTI]

four technologies; Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual...

Dickinson, Blake Edward

1993-01-01T23:59:59.000Z

340

Standard test method for the radiochemical determination of americium-241 in soil by alpha spectrometry  

E-Print Network [OSTI]

1.1 This method covers the determination of americium–241 in soil by means of chemical separations and alpha spectrometry. It is designed to analyze up to ten grams of soil or other sample matrices that contain up to 30 mg of combined rare earths. This method allows the determination of americium–241 concentrations from ambient levels to applicable standards. The values stated in SI units are to be regarded as standard. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precaution statements, see Section 10.

American Society for Testing and Materials. Philadelphia

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hematological and hemorheological Determinants of the Six-Minute Walk Test Performance in Children with Sickle  

E-Print Network [OSTI]

with Sickle Cell Anemia Xavier Waltz1,2,3 , Marc Romana1,3 , Marie-Dominique Hardy-Dessources1,3 , Yann-established submaximal exercise reflecting the functional status and the clinical severity of sickle cell patients-minute walk test performance in children with sickle cell anemia. Hematological and hemorheological parameters

Boyer, Edmond

342

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________  

E-Print Network [OSTI]

VEHICLE USAGE LOG Department ________________________________________ Vehicle Homebase ____________________________ Week Ended (Sunday) _________________ Door #____________ License Plate ____________________ Vehicle/Supplies (Enter Description such as grade sheets, artifacts, money, etc.) 6. Taking vehicle to Automotive Shop

Yang, Zong-Liang

343

Intelligent pothole repair vehicle  

E-Print Network [OSTI]

This thesis presents an endeavor to design and construct a prototype of an automated road repair vehicle called the Intelligent Pothole Repair Vehicle (IPRV). The IPRV is capable of automatically detecting and filling potholes on road surfaces...

Minocher Homji, Ruzbeh Adi

2006-10-30T23:59:59.000Z

344

Social networking in vehicles  

E-Print Network [OSTI]

In-vehicle, location-aware, socially aware telematic systems, known as Flossers, stand to revolutionize vehicles, and how their drivers interact with their physical and social worlds. With Flossers, users can broadcast and ...

Liang, Philip Angus

2006-01-01T23:59:59.000Z

345

Electric Vehicle Research Group  

E-Print Network [OSTI]

.................................................................................9 From diesel to electric: a new era in personnel transport for underground coal minesElectric Vehicle Research Group Annual Report 2012 #12;Table of Contents Executive Summary................................................................................8 C2-25 Electric Vehicle Drivetrain

Liley, David

346

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

347

Determination of soil properties for sandy soils and road base at Riverside Campus using laboratory testing and numerical simulation  

E-Print Network [OSTI]

: Chair of Committee, Jean-Louis Briaud Committee Members, Charles Aubeny Julian Kang Head of Department, John Niedzwecki Major Subject: Civil Engineering iii ABSTRACT Determination of Soil Properties of Sandy... Soils and Road Base at Riverside Campus Using Laboratory Testing and Numerical Simulation. (May 2010) Deeyvid Oscar Saez Barrios, B.En., Technological University of Panama Chair of Advisory Committee: Jean-Louis Briaud This study evaluated...

Saez Barrios, Deeyvid O.

2010-07-14T23:59:59.000Z

348

A FEASIBILITY AND OPTIMIZATION STUDY TO DETERMINE COOLING TIME AND BURNUP OF ADVANCED TEST REACTOR FUELS USING A NONDESTRUCTIVE TECHNIQUE  

SciTech Connect (OSTI)

The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method for ATR applications the technique was tested using one-isotope, multi-isotope and fuel simulated sources. Burnup calibrations were perfomed using convoluted and deconvoluted data. The calibrations results showed burnup prediction by this method improves using deconvolution. The final stage of the deconvolution method development was to perform an irradiation experiment in order to create a surrogate fuel source to test the deconvolution method using experimental data. A conceptual design of the fuel scan system is path forward using the rugged LaBr3 detector in an above the water configuration and deconvolution algorithms.

Jorge Navarro

2013-12-01T23:59:59.000Z

349

User`s guide to EAGLES Version 1.1: An electric- and gasoline-vehicle fuel-efficiency software package  

SciTech Connect (OSTI)

EAGLES is an interactive microcomputer software package for the analysis of fuel efficiency in electric-vehicle (EV) applications or the estimation of fuel economy for a gasoline vehicle. The principal objective of the EV analysis is to enable the prediction of EV performance on the basis of laboratory test data for batteries. The EV model included in the software package provides a second-by-second simulation of battery voltage and current for any specified vehicle velocity/time or power/time profile. The capability of the battery is modeled by an algorithm that relates the battery voltage to the withdrawn (or charged) current, taking into account the effect of battery depth-of-discharge. Alternatively, the software package can be used to determine the size of the battery needed to satisfy given vehicle mission requirements. For gasoline vehicles, a generic fuel-economy model based on data from EPA Test Car List 1991 is included in the software package. For both types of vehicles, effects of heating/cooling loads on vehicle performance, including range penalty for EVs, can be studied. Also available is an option to estimate the time needed by a specified vehicle to reach a certain speed with the application of a constant power and an option to compute the fraction of time and/or distance in a driving cycle at speeds exceeding a specified value. Certain parameters can be changed interactively prior to a run.

Marr, W.W.

1995-01-01T23:59:59.000Z

350

Consumer Vehicle Technology Data  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

351

Standard test method for determination of susceptibility of metals to embrittlement in hydrogen containing environments at high pressure, high temperature, or both  

E-Print Network [OSTI]

Standard test method for determination of susceptibility of metals to embrittlement in hydrogen containing environments at high pressure, high temperature, or both

American Society for Testing and Materials. Philadelphia

1998-01-01T23:59:59.000Z

352

Standard test method for determination of uranium or gadolinium (or both) in gadolinium oxide-uranium oxide pellets or by X-ray fluorescence (XRF)  

E-Print Network [OSTI]

Standard test method for determination of uranium or gadolinium (or both) in gadolinium oxide-uranium oxide pellets or by X-ray fluorescence (XRF)

American Society for Testing and Materials. Philadelphia

2008-01-01T23:59:59.000Z

353

Standard test method for determining plane-strain crack-arrest fracture toughness, kIa, of ferritic steels  

E-Print Network [OSTI]

1.1 This test method employs a side-grooved, crack-line-wedge-loaded specimen to obtain a rapid run-arrest segment of flat-tensile separation with a nearly straight crack front. This test method provides a static analysis determination of the stress intensity factor at a short time after crack arrest. The estimate is denoted Ka. When certain size requirements are met, the test result provides an estimate, termed KIa, of the plane-strain crack-arrest toughness of the material. 1.2 The specimen size requirements, discussed later, provide for in-plane dimensions large enough to allow the specimen to be modeled by linear elastic analysis. For conditions of plane-strain, a minimum specimen thickness is also required. Both requirements depend upon the crack arrest toughness and the yield strength of the material. A range of specimen sizes may therefore be needed, as specified in this test method. 1.3 If the specimen does not exhibit rapid crack propagation and arrest, Ka cannot be determined. 1.4 The values stat...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

354

Motor Vehicle Record Procedure Objective  

E-Print Network [OSTI]

Motor Vehicle Record Procedure Objective Outline the procedure for obtaining motor vehicle record (MVR) through Fleet Services. Vehicle Operator Policy 3. Operators with 7 or more points on their motor vehicle record

Kirschner, Denise

355

Washington State Electric Vehicle  

E-Print Network [OSTI]

Washington State Electric Vehicle Implementation Bryan Bazard Maintenance and Alternate Fuel Technology Manager #12;Executive Order 14-04 Requires the procurement of electric vehicles where and equipment with electricity or biofuel to the "extent practicable" by June 2015 1. The vehicle is due

California at Davis, University of

356

Energy 101: Electric Vehicles  

ScienceCinema (OSTI)

This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

None

2013-05-29T23:59:59.000Z

357

Automotive vehicle sensors  

SciTech Connect (OSTI)

This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

1995-09-01T23:59:59.000Z

358

Standard test method for determination of impurities in nuclear grade uranium compounds by inductively coupled plasma mass spectrometry  

E-Print Network [OSTI]

1.1 This test method covers the determination of 67 elements in uranium dioxide samples and nuclear grade uranium compounds and solutions without matrix separation by inductively coupled plasma mass spectrometry (ICP-MS). The elements are listed in Table 1. These elements can also be determined in uranyl nitrate hexahydrate (UNH), uranium hexafluoride (UF6), triuranium octoxide (U3O8) and uranium trioxide (UO3) if these compounds are treated and converted to the same uranium concentration solution. 1.2 The elements boron, sodium, silicon, phosphorus, potassium, calcium and iron can be determined using different techniques. The analyst's instrumentation will determine which procedure is chosen for the analysis. 1.3 The test method for technetium-99 is given in Annex A1. 1.4 The values stated in SI units are to be regarded as standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish ...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

359

Method to determine the position-dependant metal correction factor for dose-rate equivalent laser testing of semiconductor devices  

DOE Patents [OSTI]

A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.

Horn, Kevin M.

2013-07-09T23:59:59.000Z

360

Summary of Tests to Determine Effectiveness of Gelatin Strike on SS{ampersand}C Dissolver Solutions  

SciTech Connect (OSTI)

The solutions from the dissolution of sand, slag, and crucible (SS&C) material are sufficiently different from previous solutions processed via the F-Canyon Purex process that the effectiveness of individual process steps needed to be ascertained. In this study, the effectiveness of gelatin strike was tested under a variety of conditions. Specifically, several concentrations of silica, fluoride, nitric acid (HNO{sub 3}), boric acid (H{sub 3}BO{sub 3}), and aluminium nitrate nonahydrate (ANN) were studied. The disengagement times of surrogate and plant SS&C dissolver solutions from plant solvent also were measured. The results of the tests indicate that gelatin strike does not coagulate the silica at the low concentration of silica ({tilde 30} ppm) expected in the SS&C dissolver solutions because the silicon is complexed with fluoride ions (e.g., SiF{sub 6}{sup -2}). The silicon fluoride complex is expected to remain with the aqueous phase during solvent extraction. The disengagement times of the dissolver solutions from the plant solvent were not affected by the presence of low concentrations of silica and no third phase formation was observed in the disengagement phase with the low silica concentrations. Tests of surrogate SS&C dissolver solutions with higher concentration of silica (less than 150 ppm) did show that gelatin strike followed by centrifugation resulted in good phase disengagement of the surrogate SS{ampersand}C dissolver solution from the plant dissolver solution. At the higher silica concentrations, there is not sufficient fluoride to complex with the silica, and the silica must be entrained by the gelatin and removed from the dissolver solution prior to solvent extraction.

Murray, A.M. [Westinghouse Savannah River Company, AIKEN, SC (United States); Karraker, D.G.

1998-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

urrent practice in the vehicle dynamics and control community is to validate detailed  

E-Print Network [OSTI]

the cost and inherent danger in testing aggressive vehicle controllers using full-sized vehicles, a scaleC urrent practice in the vehicle dynamics and control community is to validate detailed simulation results using a full-sized vehicle. For university-based research, this ap- proach is often prohibitively

Brennan, Sean

362

DSP Based Ultracapacitor System for Hybrid-Electric Vehicles Juan W. Dixon  

E-Print Network [OSTI]

DSP Based Ultracapacitor System for Hybrid-Electric Vehicles Juan W. Dixon Department of Electrical vehicles has been implemented and tested successfully. The system can work with different primary power the vehicle with minimum help of the primary power source. The vehicle uses a brushless dc motor

Catholic University of Chile (Universidad Católica de Chile)

363

AVTA: Chevrolet Volt ARRA Vehicle Demonstration Project Data  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from a project General Motors conducted to deploy 150 2011 Chevrolet Volts around the country. This research was conducted by Idaho National Laboratory.

364

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

1992-01-01T23:59:59.000Z

365

The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology  

SciTech Connect (OSTI)

An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

1992-02-01T23:59:59.000Z

366

Coordination of Multiple Vehicles for Area Coverage Tasks Garrett Winward Nicholas S. Flann  

E-Print Network [OSTI]

vehicles is path planning. Path planning involves determining the shortest or most fuel efficient routeCoordination of Multiple Vehicles for Area Coverage Tasks Garrett Winward Nicholas S. Flann if multiple vehicles are involved. To use a team of automated vehicles safely and effectively they must

Flann, Nicholas

367

William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies  

E-Print Network [OSTI]

William and Mary Athletics State Vehicle / Rental Vehicle / Personal Vehicle Policies Last Update: 2/14/14 W&M's vehicle use policy requires that a driver authorization form be completed and approved before driving any vehicle (including a personal vehicle) for university business or a university

Swaddle, John

368

Cooperative sentry vehicles and differential GPS leapfrog  

SciTech Connect (OSTI)

As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories Intelligent Systems and Robotics Center is developing and testing the feasibility of using a cooperative team of robotic sentry vehicles to guard a perimeter, perform a surround task, and travel extended distances. This paper describes the authors most recent activities. In particular, this paper highlights the development of a Differential Global Positioning System (DGPS) leapfrog capability that allows two or more vehicles to alternate sending DGPS corrections. Using this leapfrog technique, this paper shows that a group of autonomous vehicles can travel 22.68 kilometers with a root mean square positioning error of only 5 meters.

FEDDEMA,JOHN T.; LEWIS,CHRISTOPHER L.; LAFARGE,ROBERT A.

2000-06-07T23:59:59.000Z

369

Vehicle Technologies Office: AVTA - Electric Vehicle Charging...  

Energy Savers [EERE]

the Alternative Fuel Data Center's page on plug-in electric vehicle infrastructure. For a map of the public EVSE available in the U.S., see the Alternative Fuels Station Locator....

370

AVTA ? PHEV Demonstrations and Testing  

Broader source: Energy.gov (indexed) [DOE]

using dedicated drivers and other methods to accumulate miles and cycles - Fleet testing, uses unstructured vehicle utilization - Different testing methods are used to balance...

371

Determining the dissolution rates of actinide glasses: A time and temperature Product Consistency Test study  

SciTech Connect (OSTI)

Vitrification has been identified as one potential option for the e materials such as Americium (Am), Curium (Cm), Neptunium (Np), and Plutonium (Pu). A process is being developed at the Savannah River Site to safely vitrify all of the highly radioactive Am/Cm material and a portion of the fissile (Pu) actinide materials stored on site. Vitrification of the Am/Cm will allow the material to be transported and easily stored at the Oak Ridge National Laboratory. The Am/Cm glass has been specifically designed to be (1) highly durable in aqueous environments and (2) selectively attacked by nitric acid to allow recovery of the valuable Am and Cm isotopes. A similar glass composition will allow for safe storage of surplus plutonium. This paper will address the composition, relative durability, and dissolution rate characteristics of the actinide glass, Loeffler Target, that will be used in the Americium/Curium Vitrification Project at Westinghouse Savannah River Company near Aiken, South Carolina. The first part discusses the tests performed on the Loeffler Target Glass concerning instantaneous dissolution rates. The second part presents information concerning pseudo-activation energy for the one week glass dissolution process.

Daniel, W.E.; Best, D.R.

1995-12-01T23:59:59.000Z

372

Detecting persons concealed in a vehicle  

DOE Patents [OSTI]

An improved method for detecting the presence of humans or animals concealed within in a vehicle uses a combination of the continuous wavelet transform and a ratio-based energy calculation to determine whether the motion detected using seismic sensors placed on the vehicle is due to the presence of a heartbeat within the vehicle or is the result of motion caused by external factors such as the wind. The method performs well in the presence of light to moderate ambient wind levels, producing far fewer false alarm indications. The new method significantly improves the range of ambient environmental conditions under which human presence detection systems can reliably operate.

Tucker Jr., Raymond W.

2005-03-29T23:59:59.000Z

373

10 CFR 830 Major Modification Determination for Advanced Test Reactor RDAS and LPCIS Replacement  

SciTech Connect (OSTI)

The replacement of the ATR Control Complex's obsolete computer based Reactor Data Acquisition System (RDAS) and its safety-related Lobe Power Calculation and Indication System (LPCIS) software application is vitally important to ensure the ATR remains available to support this national mission. The RDAS supports safe operation of the reactor by providing 'real-time' plant status information (indications and alarms) for use by the reactor operators via the Console Display System (CDS). The RDAS is a computer support system that acquires analog and digital information from various reactor and reactor support systems. The RDAS information is used to display quadrant and lobe powers via a display interface more user friendly than that provided by the recorders and the Control Room upright panels. RDAS provides input to the Nuclear Engineering ATR Surveillance Data System (ASUDAS) for fuel burn-up analysis and the production of cycle data for experiment sponsors and the generation of the Core Safety Assurance Package (CSAP). RDAS also archives and provides for retrieval of historical plant data which may be used for event reconstruction, data analysis, training and safety analysis. The RDAS, LPCIS and ASUDAS need to be replaced with state-of-the-art technology in order to eliminate problems of aged computer systems, and difficulty in obtaining software upgrades, spare parts, and technical support. The major modification criteria evaluation of the project design did not lead to the conclusion that the project is a major modification. The negative major modification determination is driven by the fact that the project requires a one-for-one equivalent replacement of existing systems that protects and maintains functional and operational requirements as credited in the safety basis.

David E. Korns

2012-05-01T23:59:59.000Z

374

Determinants of multiple measures of acceleration  

SciTech Connect (OSTI)

Statistical analyses of the acceleration capability of gasoline vehicles have focused on zero to 97 km/h acceleration rates and have concluded that peak power per kilogram is an appropriate single surrogate for acceleration capability. In this paper, statistical methods are used with data for 107 vehicles tested and reported by Consumers Union for 1986--1988 model years to estimate the determinants of contemporary gasoline vehicle acceleration capability under various conditions, adding new variables to the statistical tests reported by others. Like previous studies, this analysis determined that power and weight provide the most information about acceleration capability. Using a model formulation unlike other studies, this study found that engine displacement also provides statistically significant improvements in explanation of 0-48, 0-97, and 48-97 km/h acceleration times. The coefficients of the equations imply that the use of smaller displacement engines, holding peak power constant, diminishes start-up and 0-97 km/h acceleration capability. A separate equation is estimated to illustrate the effects of advanced engine technologies on displacement, controlling for power. This equation is used in conjunction with the acceleration equations to illustrate a method of estimating performance-equivalent engine substitutions when engine technologies change. Transmission type was important for start-up acceleration, with automatic-transmission-equipped vehicles being significantly slower than stick-shift-equipped vehicles. Fuel injection was found to significantly improve start-up acceleration. Variables proxying aerodynamic-drag effects tended to be significant determinants of acceleration in the higher-speed equations, but not for start-up acceleration. Estimated aerodynamic drag effects indicated that drag slows down 0-97, 48-97, and 72-105 km/h acceleration of pickup trucks and sport utility vehicles more than passenger cars and vans.

Santini, D.J.; Anderson, J.

1993-08-01T23:59:59.000Z

375

Clean Cities 2012 Vehicle Buyer's Guide (Brochure)  

SciTech Connect (OSTI)

The expanding availability of alternative fuels and advanced vehicles makes it easier than ever to reduce petroleum use, cut emissions, and save on fuel costs. The Clean Cities 2012 Vehicle Buyer's Guide features a comprehensive list of model year 2012 vehicles that can run on ethanol, biodiesel, electricity, propane or natural gas. Drivers and fleet managers across the country are looking for ways to reduce petroleum use, fuel costs, and vehicle emissions. As you'll find in this guide, these goals are easier to achieve than ever before, with an expanding selection of vehicles that use gasoline or diesel more efficiently, or forego them altogether. Plug-in electric vehicles made a grand entrance onto U.S. roadways in model year (MY) 2011, and their momentum in the market is poised for continued growth in 2012. Sales of the all-electric Nissan Leaf surpassed 8,000 in the fall of 2011, and the plug-in hybrid Chevy Volt is now available nationwide. Several new models from major automakers will become available throughout MY 2012, and drivers are benefiting from a rapidly growing network of charging stations, thanks to infrastructure development initiatives in many states. Hybrid electric vehicles, which first entered the market just a decade ago, are ubiquitous today. Hybrid technology now allows drivers of all vehicle classes, from SUVs to luxury sedans to subcompacts, to slash fuel use and emissions. Alternative fueling infrastructure is expanding in many regions, making natural gas, propane, ethanol, and biodiesel attractive and convenient choices for many consumers and fleets. And because fuel availability is the most important factor in choosing an alternative fuel vehicle, this growth opens up new possibilities for vehicle ownership. This guide features model-specific information about vehicle specs, manufacturer suggested retail price (MSRP), fuel economy, and emissions. You can use this information to compare vehicles and help inform your buying decisions. This guide includes city and highway fuel economy estimates from the U.S. Environmental Protection Agency (EPA). The estimates are based on laboratory tests conducted by manufacturers in accordance with federal regulations. EPA retests about 10% of vehicle models to confirm manufacturer results. Fuel economy estimates are also available on FuelEconomy.gov. For some newer vehicle models, EPA data was not available at the time of this guide's publication; in these cases, manufacturer estimates are provided, if available.

Not Available

2012-03-01T23:59:59.000Z

376

Vehicle Technologies Office: Advanced Vehicle Testing Activity (AVTA) Data  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudha Patri Mechanical Engineer Telephoneo 250and Results

377

Vehicle underbody fairing  

DOE Patents [OSTI]

A vehicle underbody fairing apparatus for reducing aerodynamic drag caused by a vehicle wheel assembly, by reducing the size of a recirculation zone formed under the vehicle body immediately downstream of the vehicle wheel assembly. The fairing body has a tapered aerodynamic surface that extends from a front end to a rear end of the fairing body with a substantially U-shaped cross-section that tapers in both height and width. Fasteners or other mounting devices secure the fairing body to an underside surface of the vehicle body, so that the front end is immediately downstream of the vehicle wheel assembly and a bottom section of the tapered aerodynamic surface rises towards the underside surface as it extends in a downstream direction.

Ortega, Jason M. (Pacifica, CA); Salari, Kambiz (Livermore, CA); McCallen, Rose (Livermore, CA)

2010-11-09T23:59:59.000Z

378

Aerodynamic optimization of a solar powered race vehicle  

E-Print Network [OSTI]

Aerodynamic optimization was performed on Tesseract, the MIT Solar Electric Vehicle Team's 2003-2005 solar car using Wind Tunnel 8 at Jacobs/Sverdrup Drivability Test Facility in Allen Park, MI. These tests include angle ...

Augenbergs, Peteris K

2006-01-01T23:59:59.000Z

379

General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications  

E-Print Network [OSTI]

General Vehicle Performance Specifications for the UPRM AUV Vehicle Specifications Vehicle Characteristics Specification Maximum Depth 700m with 1.5 safety factor Vehicle power 2kWHr Li Ion Rechargeable Transducer 700m rated Paroscientific Depth Sensor will be integrated into the vehicle navigation stream

Gilbes, Fernando

380

VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION  

E-Print Network [OSTI]

VEHICLE USE RECORD M/Y DEPARTMENT VEHICLE LOCATION Date Origin/Destination Purpose Time Out Time) Accuracy of Information (b) Valid Driver's License VEHICLE # TAG # VEHICLE MAKE, MODEL, AND YEAR NOTE: Vehicle logs must be maintained for audit purposes. It is important that all of the required information

Watson, Craig A.

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Accomodating Electric Vehicles  

E-Print Network [OSTI]

Accommodating Electric Vehicles Dave Aasheim 214-551-4014 daasheim@ecotality.com A leader in clean electric transportation and storage technologies ECOtality North America Overview Today ? Involved in vehicle electrification... ECOtality North America Overview Today ?Warehouse Material Handling ? Lift trucks ? Pallet Jacks ? Over 200 Customers ? Over 5,000 Installations ECOtality North America Overview Today ? 1990?s involved in EV1 ? EV Chargers ? Vehicle & battery...

Aasheim, D.

2011-01-01T23:59:59.000Z

382

Quadrennial Technology Review Vehicle Efficiency and Electrification...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review Vehicle Efficiency and Electrification Workshop Documents Quadrennial Technology Review Vehicle Efficiency and Electrification Workshop Documents QTR Vehicle Efficiency and...

383

Alternative Fuel Vehicle Resources  

Broader source: Energy.gov [DOE]

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

384

Vehicle Emissions Review - 2012  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Emissions Review - 2012 Tim Johnson October 16, 2012 2 Environmental Technologies Summary * Regulations - LEVIII finalized, Tier 3? RDE in Europe developing and very...

385

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Research Institute 1990 Fuel Cell Status," Proceedings ofMiller, "Introduction: Fuel-Cell-Powered Vehicle DevelopmentPrograms," presented at Fuel Cells for Transportation,

Delucchi, Mark

1992-01-01T23:59:59.000Z

386

Modular Energy Storage System for Hydrogen Fuel Cell Vehicles  

SciTech Connect (OSTI)

The objective of the project is to develop technologies, specifically power electronics, energy storage electronics and controls that provide efficient and effective energy management between electrically powered devices in alternative energy vehicles â?? plug-in electric vehicles, hybrid vehicles, range extended vehicles, and hydrogen-based fuel cell vehicles. The in-depth research into the complex interactions between the lower and higher voltage systems from data obtained via modeling, bench testing and instrumented vehicle data will allow an optimum system to be developed from a performance, cost, weight and size perspective. The subsystems are designed for modularity so that they may be used with different propulsion and energy delivery systems. This approach will allow expansion into new alternative energy vehicle markets.

Janice Thomas

2010-05-31T23:59:59.000Z

387

Georgia Tech Vehicle Acquisition and  

E-Print Network [OSTI]

1 2012 Georgia Tech 10/10/2012 Vehicle Acquisition and Disposition Manual #12;2 Vehicle Procedures Regardless of value, all vehicles should be included in this process. Acquisition of a Vehicle 1. Contact Fleet Coordinator to guide the departments in the purchasing process for all vehicles. 2. Fill out

388

Electric-Drive Vehicle Basics (Brochure)  

SciTech Connect (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-04-01T23:59:59.000Z

389

Vehicle Technologies Office: AVTA - Evaluating Military Bases...  

Energy Savers [EERE]

Military Bases and Fleet Readiness for Electric Vehicles Vehicle Technologies Office: AVTA - Evaluating Military Bases and Fleet Readiness for Electric Vehicles The Vehicle...

390

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

Electric Vehicles …………………………………………………………. Dieselperformance of electric vehicles Diesel Vehicle From Tableelectric vehicles ……………………… 3.15: Emission and fuel efficiency performance of diesel

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z

391

GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge  

E-Print Network [OSTI]

GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Mitigation of Vehicle Fast Charge Grid Impacts-55080 #12;GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG Electric Vehicle Grid Integration 2 Cross Cutting & TESTING DEPLOYMENT & PARTNERSHIPS Tx Tx Tx #12;GREAT MINDSTHINK ELECTRIC / WWW.EVS26.ORG3 Vehicle Test

392

Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation...  

Broader source: Energy.gov (indexed) [DOE]

In-Vehicle Evaluation of Lower-Energy Energy Storage System (LEESS) Devices Vehicle Technologies Office Merit Review 2014: In-Vehicle Evaluation of Lower-Energy Energy Storage...

393

Laboratory to change vehicle traffic-screening regimen at vehicle...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Changes to vehicle traffic-screening Laboratory to change vehicle traffic-screening regimen at vehicle inspection station Lanes two through five will be open 24 hours a day and...

394

Categorical Exclusion Determinations: Advanced Technology Vehicles  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovember 26, 2014 CX-100126A5 CategoricalManufacturing Loan

395

AVTA: Honda Civic HEV 2013 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2013 Honda Civic hybrid electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing.

396

AVTA: Honda CRZ HEV 2011 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2011 Honda CRZ hybrid electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

397

AVTA: Mercedes Benz HEV 2010 Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a 2010 Mercedes Benz hybrid-electric vehicle. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

398

AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

399

AVTA: Vehicle to Grid Power Flow Regulations and Building Codes Review  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is a review of Vehicle-to-Grid power flow regulations and building codes, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

400

Brake blending strategy for a hybrid vehicle  

DOE Patents [OSTI]

A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

Boberg, Evan S. (Hazel Park, MI)

2000-12-05T23:59:59.000Z

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

> 070131-073Vehicle  

E-Print Network [OSTI]

-how developed with the design ofthe ROAZ ASV [3] [4]. Power is provided by electric batteries. The computer> 070131-073Vehicle for Network Centric Operations H. Ferreira-The design and development of the Swordfish Autonomous Surface Vehicle (ASV) system is discussed. Swordfish

Marques, Eduardo R. B.

402

Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

nation's vehicle fleet. VTO invested 400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10...

403

Challenges in Electric Vehicle Adoption and Vehicle-Grid Integration.  

E-Print Network [OSTI]

??With rapid innovation in vehicle and battery technology and strong support from governmental bodies and regulators, electric vehicles (EV) sales are poised to rise. While… (more)

Xi, Xiaomin

2013-01-01T23:59:59.000Z

404

Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...  

Broader source: Energy.gov (indexed) [DOE]

vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010vsstreport.pdf More Documents & Publications AVTA PHEV Demonstrations and...

405

Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013vsstreport.pdf More Documents & Publications Vehicle Technologies Office:...

406

Energy Star Concepts for Highway Vehicles  

SciTech Connect (OSTI)

The authors of this report, under the sponsorship of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Weatherization and Intergovernmental Program, have investigated the possible application of Energy Star ratings to passenger cars and light trucks. This study establishes a framework for formulating and evaluating Energy Star rating methods that is comprised of energy- and environmental-based metrics, potential vehicle classification systems, vehicle technology factors, and vehicle selection criteria. The study tests several concepts and Energy Star rating methods using model-year 2000 vehicle data--a spreadsheet model has been developed to facilitate these analyses. This study tests two primary types of rating systems: (1) an outcome-based system that rates vehicles based on fuel economy, GHG emissions, and oil use and (2) a technology-based system that rates vehicles based on the energy-saving technologies they use. Rating methods were evaluated based on their ability to select vehicles with high fuel economy, low GHG emissions, and low oil use while preserving a full range of service (size and acceleration) and body style choice. This study concludes that an Energy Star rating for passenger cars and light trucks is feasible and that several methods could be used to achieve reasonable tradeoffs between low energy use and emissions and diversity in size, performance, and body type. It also shows that methods that consider only fuel economy, GHG emissions, or oil use will not select a diverse mix of vehicles. Finally, analyses suggest that methods that encourage the use of technology only, may result in increases in acceleration power and weight rather than reductions in oil use and GHG emissions and improvements in fuel economy.

Greene, D.L.

2003-06-24T23:59:59.000Z

407

Electric vehicle regenerative antiskid braking and traction control system  

DOE Patents [OSTI]

An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

Cikanek, Susan R. (Wixom, MI)

1995-01-01T23:59:59.000Z

408

Electric vehicle regenerative antiskid braking and traction control system  

DOE Patents [OSTI]

An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

Cikanek, S.R.

1995-09-12T23:59:59.000Z

409

The Vehicle Technologies Market Report  

E-Print Network [OSTI]

The Vehicle Technologies Market Report Center for Transportation Analysis 2360 Cherahala Boulevard Efficiency Transportation: Energy Environment Safety Security Vehicle Technologies T he Oak Ridge National Laboratory's Center for Transportation Analysis developed and published the first Vehicle Technologies Market

410

Investigation of Tractor Base Bleeding for Heavy Vehicle Aerodynamic Drag Reduction  

SciTech Connect (OSTI)

One of the main contributors to the aerodynamic drag of a heavy vehicle is tractor-trailer gap drag, which arises when the vehicle operates within a crosswind. Under this operating condition, freestream flow is entrained into the tractor-trailer gap, imparting a momentum exchange to the vehicle and subsequently increasing the aerodynamic drag. While a number of add-on devices, including side extenders, splitter plates, vortex stabilizers, and gap sealers, have been previously tested to alleviate this source of drag, side extenders remain the primary add-on device of choice for reducing tractor-trailer gap drag. However, side extenders are not without maintenance and operational issues. When a heavy vehicle pivots sharply with respect to the trailer, as can occur during loading or unloading operations, the side extenders can become crushed against the trailer. Consequently, fleet operators are forced to incur additional costs to cover the repair or replacement of the damaged side extenders. This issue can be overcome by either shortening the side extenders or by devising an alternative drag reduction concept that can perform just as effectively as side extenders. To explore such a concept, we investigate tractor base bleeding as a means of reducing gap drag. Wind tunnel measurements are made on a 1:20 scale heavy vehicle model at a vehicle width-based Reynolds number of 420,000. The tractor bleeding flow, which is delivered through a porous material embedded within the tractor base, is introduced into the tractor-trailer gap at bleeding coefficients ranging from 0.0-0.018. To determine the performance of tractor base bleeding under more realistic operating conditions, computational fluid dynamics simulations are performed on a full-scale heavy vehicle within a crosswind for bleeding coefficients ranging from 0.0-0.13.

Ortega, J; Salari, K; Storms, B

2007-10-25T23:59:59.000Z

411

Transportation Center Seminar... Life-Cycle Analysis of Transportation Fuels and Vehicle  

E-Print Network [OSTI]

to evaluation of hydrogen production pathways, biofuel production pathways, and advanced vehicle technologies more than 22,000 registered users worldwide. LCA results of vehicle/fuel systems are determined

Bustamante, Fabián E.

412

Determining Long-Term Performance of Cool Storage Systems from Short-Term Tests; Literature Review and Site Selection, Nov. 1997 (Revised Feb. 1998)  

E-Print Network [OSTI]

This is the preliminary report contains the literature review and site selection recommendations for ASHRAE Research Project RP 1004 — "Determining Long-term Performance of Cool Storage Systems From Short-term Tests"....

Haberl, J. S.; Claridge, D. E.; Reddy, T. A.; Elleson, J.

1997-01-01T23:59:59.000Z

413

A prototype with a 5-meter span, built in January 2013. Afterwards, the mechanical strength of the construction was determined by destructive testing.  

E-Print Network [OSTI]

of the construction was determined by destructive testing. With this smart and simple solution for connecting, connects the indoors to the outdoors and adds a modern, luxurious feel. Moreover, good double glazing has

Langendoen, Koen

414

Round-robin testing of Soleq EV cort according to the SAE J1634 test procedure dated May 1993  

SciTech Connect (OSTI)

The Society of Automotive Engineers Recommended Practice, SAE J1634, {open_quotes}Electric Vehicle Energy Consumption and Range Test Procedure{close_quotes}, May 1993, describes a standard method of determining the range and energy consumption for electric vehicles. Consequent to the U.S. Department of Energy`s (DOE) rulemaking released on February 4, 1994, the EPA is currently considering factoring electric vehicles into the Corporate Average Fuel Economy (CAFE) calculations using the SAE J1634 procedure. The purpose of this project is to provide information regarding the suitability of this recommended practice for determining the energy economy value to be factored into the CAFE. Issues leading to possible inconsistent results (such as the repeatability of the procedure, thoroughness of the procedure`s methods, and variance between different laboratories using different dynamometers) need to be resolved prior to passing legislation which will mandate use of this test in determining the electric vehicle CAFE credit. To this end, separate tests were performed on a Soleq EVcort vehicle by the INEL, the EPA, Ford Motor Company, Southwest Research Institute, and the California Air Resources Board using their own facilities and personnel. Acceptable departures from the driving profile prescribed by SAEJ1634 are not well defined. This deficiency in the procedure is even more noticeable due to the EVcort`s marginal acceleration performance.

Cole, G.H.

1993-05-01T23:59:59.000Z

415

CX-002167: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-002167: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

416

CX-002168: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-002168: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

417

CX-006748: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006748: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

418

CX-007020: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-007020: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

419

CX-000622: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

2: Categorical Exclusion Determination CX-000622: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Electric Vehicle Solar...

420

CX-007501: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-007501: Categorical Exclusion Determination Solar-assisted, Electrical Vehicle Charging Stations in Nashville, Tennessee CX(s) Applied: B5.23 Date: 1201...

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

CX-002663: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-002663: Categorical Exclusion Determination Solar-Assisted Electrical Vehicle Charging Stations CX(s) Applied: B5.1 Date: 05112010 Location(s): Oak...

422

CX-004834: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-004834: Categorical Exclusion Determination Scott Jenkins Parking Lot Light Emitting Diode Lighting with Solar Arrays and On?site Electric Vehicle Charging...

423

CX-003757: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-003757: Categorical Exclusion Determination Propane Vehicle Conversion CX(s) Applied: A1, A9, B5.1 Date: 09082010 Location(s):...

424

CX-001297: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-001297: Categorical Exclusion Determination Clean Start Propane Refueling, Vehicle Incentive and Outreach CX(s) Applied: A7 Date: 03222010...

425

CX-003024: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003024: Categorical Exclusion Determination Clean Start Propane Refueling, Vehicle Incentive and Outreach CX(s) Applied: B5.1 Date: 07132010...

426

Vehicle Technologies Office: Propulsion Systems  

Broader source: Energy.gov [DOE]

Vehicle Technologies Office research focuses much of its effort on improving vehicle fuel economy while meeting increasingly stringent emissions standards. Achieving these goals requires a...

427

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov (indexed) [DOE]

Principal Investigator 13MY11 2011 DOE Vehicle Technologies Review Gasoline Ultra Fuel Efficient Vehicle ACE064 "This presentation does not contain any proprietary,...

428

European Lean Gasoline Direct Injection Vehicle Benchmark  

SciTech Connect (OSTI)

Lean Gasoline Direct Injection (LGDI) combustion is a promising technical path for achieving significant improvements in fuel efficiency while meeting future emissions requirements. Though Stoichiometric Gasoline Direct Injection (SGDI) technology is commercially available in a few vehicles on the American market, LGDI vehicles are not, but can be found in Europe. Oak Ridge National Laboratory (ORNL) obtained a European BMW 1-series fitted with a 2.0l LGDI engine. The vehicle was instrumented and commissioned on a chassis dynamometer. The engine and after-treatment performance and emissions were characterized over US drive cycles (Federal Test Procedure (FTP), the Highway Fuel Economy Test (HFET), and US06 Supplemental Federal Test Procedure (US06)) and steady state mappings. The vehicle micro hybrid features (engine stop-start and intelligent alternator) were benchmarked as well during the course of that study. The data was analyzed to quantify the benefits and drawbacks of the lean gasoline direct injection and micro hybrid technologies from a fuel economy and emissions perspectives with respect to the US market. Additionally that data will be formatted to develop, substantiate, and exercise vehicle simulations with conventional and advanced powertrains.

Chambon, Paul H [ORNL] [ORNL; Huff, Shean P [ORNL] [ORNL; Edwards, Kevin Dean [ORNL] [ORNL; Norman, Kevin M [ORNL] [ORNL; Prikhodko, Vitaly Y [ORNL] [ORNL; Thomas, John F [ORNL] [ORNL

2011-01-01T23:59:59.000Z

429

Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: The product consistency test (PCT)  

E-Print Network [OSTI]

1.1 These product consistency test methods A and B evaluate the chemical durability of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, and/or multiphase glass ceramic waste forms hereafter collectively referred to as “glass waste forms” by measuring the concentrations of the chemical species released to a test solution. 1.1.1 Test Method A is a seven-day chemical durability test performed at 90 ± 2°C in a leachant of ASTM-Type I water. The test method is static and conducted in stainless steel vessels. Test Method A can specifically be used to evaluate whether the chemical durability and elemental release characteristics of nuclear, hazardous, and mixed glass waste forms have been consistently controlled during production. This test method is applicable to radioactive and simulated glass waste forms as defined above. 1.1.2 Test Method B is a durability test that allows testing at various test durations, test temperatures, mesh size, mass of sample, leachant volume, a...

American Society for Testing and Materials. Philadelphia

2002-01-01T23:59:59.000Z

430

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector...

431

A Verified Hybrid Controller For Automated Vehicles  

E-Print Network [OSTI]

con- trollers for vehicle automation," in American ControlTomizuka, Vehicle lateral control for highway automation,"

Lygeros, J.; Godbole, D. N.; Sastry, S.

1997-01-01T23:59:59.000Z

432

Blast resistant vehicle seat  

DOE Patents [OSTI]

Disclosed are various seats for vehicles particularly military vehicles that are susceptible to attack by road-bed explosive devices such as land mines or improvised explosive devices. The seats often have rigid seat shells and may include rigid bracing for rigidly securing the seat to the chassis of the vehicle. Typically embodiments include channels and particulate media such as sand disposed in the channels. A gas distribution system is generally employed to pump a gas through the channels and in some embodiments the gas is provided at a pressure sufficient to fluidize the particulate media when an occupant is sitting on the seat.

Ripley, Edward B

2013-02-12T23:59:59.000Z

433

Rapid road repair vehicle  

DOE Patents [OSTI]

Disclosed are improvments to a rapid road repair vehicle comprising an improved cleaning device arrangement, two dispensing arrays for filling defects more rapidly and efficiently, an array of pre-heaters to heat the road way surface in order to help the repair material better bond to the repaired surface, a means for detecting, measuring, and computing the number, location and volume of each of the detected surface imperfection, and a computer means schema for controlling the operation of the plurality of vehicle subsystems. The improved vehicle is, therefore, better able to perform its intended function of filling surface imperfections while moving over those surfaces at near normal traffic speeds.

Mara, Leo M. (Livermore, CA)

1999-01-01T23:59:59.000Z

434

ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS  

E-Print Network [OSTI]

- 1 - ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne and spatial re-parameterization of the linear vehicle Bicycle Model is presented utilizing non-dimensional ratios of vehicle parameters called -groups. Investigation of the -groups using compiled data from 44

Brennan, Sean

435

ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS  

E-Print Network [OSTI]

ROBUST SCALABLE VEHICLE CONTROL VIA NON-DIMENSIONAL VEHICLE DYNAMICS S. Brennan & A. Alleyne Dept, IL 61801 ABSTRACT A temporal and spatial re-parameterization of the well- known linear vehicle Bicycle Model is presented. This parameterization utilizes non-dimensional ratios of vehicle parameters

Brennan, Sean

436

VEHICLE TRACKING USING MOBILE WIRELESS SENSOR NETWORKS DURING DYNAMIC LOAD  

E-Print Network [OSTI]

and put into service, engineers lack cost-effective methods for measuring the actual loads imposedVEHICLE TRACKING USING MOBILE WIRELESS SENSOR NETWORKS DURING DYNAMIC LOAD TESTING OF HIGHWAY in the understanding of vehicle-bridge interactions. Direct measurement of the complex coupling that naturally exists

Lynch, Jerome P.

437

Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles  

E-Print Network [OSTI]

Energy Flow: A Multimodal `Ready' Indication For Electric Vehicles Abstract The lack of sound and vibration while starting the drive system of an electric vehicle (EV) is one of the major differences the energy level to the driver. With Energy Flow (see Figure 1), we test if there will be a benefit in terms

438

Functional ground testing - Evaluating the Tomahawk Cruise Missile  

SciTech Connect (OSTI)

Flight testing evaluates vehicle performance in a flight environment and, in the case of a weapon system, clearly indicates mission readiness. However, there is a cost-effective alternative method of testing which is capable of indicating weapon system functionality and subsystem success. Functional ground testing of the all-up round Tomahawk Cruise Missile is described. The Tomahawk functional ground test (FGT) cannot make the same conclusive determinations that an operational test launch can. This paper describes the Tomahawk FGT and what makes it unique. It describes the developments and status of this testing methodology, the data acquisition and control, and the engineering challenges encountered. 3 refs.

Parise, K.W. (U.S. Navy, Test and Evaluation Dept., Indian Head, MD (United States))

1992-01-01T23:59:59.000Z

439

Hydrogen Fuel Cell Vehicles  

E-Print Network [OSTI]

Rechargeable Zinc-Air Battery System for Electric Vehicles,"hthium/polymer* Zinc-air battery (Electric Fuel)* NickelThe discharge rate for the zinc/air battery was 5 hours at a

Delucchi, Mark

1992-01-01T23:59:59.000Z

440

HH22 Reformer, Fuel Cell Power Plant,Reformer, Fuel Cell Power Plant, & Vehicle Refueling System& Vehicle Refueling System  

E-Print Network [OSTI]

sufficient hydrogen demand develops. #12;4 Relevant DOE Program Objectives Reduce dependence on foreign oil Promote use of diverse, domestic energy resources ­ Natural gas reformation Develop and demonstrate on test fill tank, CNG/H2 ICE vehicles and H2 Fuel Cell vehicles. Fuel dispensing integrated with City

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

In situ testing to determination field-saturated hydraulic conductivity of UMTRA Project disposal cell covers, liners, and foundation areas. Special study  

SciTech Connect (OSTI)

This special study was conducted to prepare a guidance document for selecting in situ hydraulic conductivity (K) tests, comparing in situ testing methods, and evaluating the results of such tests. This report may be used as a practical decision-making tool by the Uranium Mill Tailings Remedial Action (UMTRA) Project staff to determine which testing method will most efficiently achieve the field-saturated K results needed for long-term planning. A detailed section on near-surface test methods discusses each method which may be applicable to characterization of UMTRA disposal cell covers, liners and foundation materials. These potentially applicable test methods include the sealed double-ring infiltrometer (SDRI), the air-entry permeameter (AEP), the guelph permeameter, the two-stage borehole technique (TSB), the pressure infiltrometer, and the disk permeameter. Analytical solutions for these methods are provided, and limitations of these solutions are discussed, and a description of testing equipment design and installation are provided.

Not Available

1994-02-01T23:59:59.000Z

442

Automated Vehicle Policy Work Automated vehicles are a subject of great interest, both in transportation and society in general.  

E-Print Network [OSTI]

Automated Vehicle Policy Work Automated vehicles are a subject of great interest, both researchers are currently exploring automation's effects on the transportation system, determining preparation in the estimations of how automation will affect both congestion and safety. Both of these issues are critical

443

Alternative Fuel Vehicles: The Case of Compressed Natural Gas (CNG) Vehicles in California Households  

E-Print Network [OSTI]

VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLESyou first learn about compressed natural gas (CNG) vehicles?VEHICLES: THE CASE OF COMPRESSED NATURAL GAS (CNG) VEHICLES

Abbanat, Brian A.

2001-01-01T23:59:59.000Z

444

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Broader source: Energy.gov [DOE]

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

445

Vehicle Technologies Office Merit Review 2014: Smith Electric...  

Broader source: Energy.gov (indexed) [DOE]

Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Vehicle Technologies Office Merit Review 2014: Smith Electric Vehicles: Advanced...

446

Hyundai Sonata HEV Accelerated Testing - March 2013  

Broader source: Energy.gov (indexed) [DOE]

Hyundai Sonata HEV Accelerated Testing - March 2013 Two model year 2011 Hyundai Sonata hybrid electric vehicles (HEVs) entered Accelerated testing during June 2011 in a fleet in...

447

Chevrolet Malibu HEV Accelerated Testing - June 2013  

Broader source: Energy.gov (indexed) [DOE]

Malibu HEV Accelerated Testing - June 2013 Four model year 2013 Chevrolet Malibu hybrid electric vehicles (HEVs) entered Accelerated testing during November 2012 in a fleet in...

448

Vehicle & Systems Simulation & Testing  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilities | DepartmentReactive Barrier |Sustainable

449

Vehicle Repair Policy Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles.  

E-Print Network [OSTI]

Vehicle Repair Policy Objective Outline the policy regarding vehicle repair on University of Michigan (U-M) vehicles. Policy 1. All vehicle repairs performed on U-M vehicles must be coordinated facility to repair their fleet vehicles. 2. U-M vehicles leased through Fleet Services include routine

Kirschner, Denise

450

Lateral Stability Analysis of Hypersonic Vehicle under Pressure Fluctuation by Solving Mathieu Differential Equation  

E-Print Network [OSTI]

Lateral Stability Analysis of Hypersonic Vehicle under Pressure Fluctuation by Solving Mathieu's Republic of China Two recent test failures of Hypersonic Technology Vehicle 2 impose a strike in dynamic analysis of hypersonic vehicles. To demonstrate the idea, a hypersonic model is imagined

Huang, Xun

451

ReseaRch at the University of Maryland Unmanned Aerial Vehicle Technology  

E-Print Network [OSTI]

-wing vehicles that can monitor atmospheric data without using fossil fuels. J. Sean Humbert tests autonomous varieties of autonomous aerial vehicles, and new ways of utilizing them, offer the potential for making for autonomous bio-inspired micro-vehicles capable of penetrating caves and tunnels, and of reducing the human

Hill, Wendell T.

452

Implementation and Evaluation of an Ultracapacitor-Based Auxiliary Energy System for Electric Vehicles  

E-Print Network [OSTI]

of an ultracapacitor bank and a buck- boost converter, was installed in an electric vehicle, which is powered by a lead Vehicles Micah Ortúzar, Jorge Moreno and Juan Dixon (SM IEEE) Department of Electrical Engineering system for electric vehicles was designed, implemented and tested. The system, composed

Catholic University of Chile (Universidad Católica de Chile)

453

Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks  

E-Print Network [OSTI]

Energy Management System for an Hybrid Electric Vehicle, Using Ultracapacitors and Neural Networks management system for hybrid electric vehicles (HEV), using neural networks (NN), was developed and tested. The system minimizes the energy requirement of the vehicle and can work with different primary power sources

Catholic University of Chile (Universidad Católica de Chile)

454

Experiments for Online Estimation of Heavy Vehicle's Mass and Time-Varying Road Grade  

E-Print Network [OSTI]

's vehicle, and also marketing strategies in industry, has fuelled extensive research for automation of partExperiments for Online Estimation of Heavy Vehicle's Mass and Time-Varying Road Grade Ardalan for online estimation of Heavy Duty Vehicle mass and road grade. The test data is obtained from high- way

Stefanopoulou, Anna

455

S/EV 91: Solar and electric vehicle symposium, car and trade show. Proceedings  

SciTech Connect (OSTI)

These proceedings cover the fundamentals of electric vehicles. Papers on the design, testing and performance of the power supplies, drive trains, and bodies of solar and non-solar powered electric vehicles are presented. Results from demonstrations and races are described. Public policy on the economics and environmental impacts of using electric powered vehicles is also presented.

Not Available

1991-12-31T23:59:59.000Z

456

Architecture and Applications of Language-Centered Intelligence for Unmanned Underwater Vehicles  

E-Print Network [OSTI]

Architecture and Applications of Language-Centered Intelligence for Unmanned Underwater Vehicles and hypothetical reasoning, and expand the behavioral repertoire of unmanned underwater vehicles (UUVs). We begin and tested for teams of unmanned underwater vehicles capable of performing different cooperative missions

Idaho, University of

457

Penn State Hybrid and Hydrogen Vehicle Research Laboratory The Larson Transportation Institute (LTI)  

E-Print Network [OSTI]

on the internal combustion engine and fossil fuels to "greener" fuel cell and hybrid electric technology: · Vehicle integration and control expertise; · Alternative fuel infrastructure including hydrogen, LNG; · Vehicle test track and dynamometer facilities; · Vehicle fabrication facilities; and · Fuel cell

Lee, Dongwon

458

Smith Newton Vehicle Performance Evaluation - Cumulative (Brochure)  

SciTech Connect (OSTI)

The Fleet Test and Evaluation Team at the U.S. Department of Energy's National Renewable Energy Laboratory is evaluating and documenting the performance of electric and plug-in hybrid electric drive systems in medium-duty trucks across the nation. U.S. companies participating in this evaluation project received funding from the American Recovery and Reinvestment Act to cover part of the cost of purchasing these vehicles. Through this project, Smith Electric Vehicles is building and deploying 500 all-electric medium-duty trucks that will be deployed by a variety of companies in diverse climates across the country.

Not Available

2014-08-01T23:59:59.000Z

459

Electric vehicle fleet operations in the United States  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) is actively supporting the development and commercialization of advanced electric vehicles, and advanced batteries and propulsion systems. As part of this effort, the DOE Field Operations Program is performing commercial validation of electric vehicles. These efforts have included on-board data acquisition of electric vehicle operations and baseline performance testing. The baseline performance tests focus on parameters such as range, acceleration, and battery charging. This testing, performed in conjunction with EV America, has included the baseline performance testing of 14 electric vehicles will also be baseline performance tested. The baseline performance testing has documented annual improvements in performance. This and additional information is made available to the public via the internet homepage (http://ev.inel.gov). The Field Operations Program continues to support the development of electric vehicles and infrastructure in conjunction with its new qualified vehicle test partners: Electric Transportation Application of Phoenix, and Southern California Edison. The Field Operations Program is managed by the Lockheed Martin Idaho Technologies Company, at the Idaho National Engineering Laboratory. 4 refs., 5 figs., 2 tabs.

Francfort, J.E. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States); O`Hara, D. [Dept. of Energy, Washington, DC (United States)

1997-10-01T23:59:59.000Z

460

Vehicle Technologies Office: Improving Biodiesel and Other Fuels' Quality  

Broader source: Energy.gov [DOE]

For biofuels to succeed in the marketplace, they must be easy to use with a minimum of problems. The Vehicle Technologies Office has collaborated with industry to test biofuel samples and improve...

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Control and waypoint navigation of an autonomous ground vehicle  

E-Print Network [OSTI]

This thesis describes the initial development of the Texas A&M Autonomous Ground Vehicle test platform and waypoint following software, including the associated controller design. The original goal of the team responsible for the development...

Massey, James Patrick

2006-08-16T23:59:59.000Z

462

Method and system for reducing errors in vehicle weighing systems  

DOE Patents [OSTI]

A method and system (10, 23) for determining vehicle weight to a precision of <0.1%, uses a plurality of weight sensing elements (23), a computer (10) for reading in weighing data for a vehicle (25) and produces a dataset representing the total weight of a vehicle via programming (40-53) that is executable by the computer (10) for (a) providing a plurality of mode parameters that characterize each oscillatory mode in the data due to movement of the vehicle during weighing, (b) by determining the oscillatory mode at which there is a minimum error in the weighing data; (c) processing the weighing data to remove that dynamical oscillation from the weighing data; and (d) repeating steps (a)-(c) until the error in the set of weighing data is <0.1% in the vehicle weight.

Hively, Lee M. (Philadelphia, TN); Abercrombie, Robert K. (Knoxville, TN)

2010-08-24T23:59:59.000Z

463

Vehicle Speed Estimation using Acoustic Wave Patterns Volkan Cevher, Member, IEEE, Rama Chellappa, Fellow, IEEE  

E-Print Network [OSTI]

1 Vehicle Speed Estimation using Acoustic Wave Patterns Volkan Cevher, Member, IEEE, Rama Chellappa, Fellow, IEEE James H. McClellan, Fellow, IEEE Abstract-- We estimate a vehicle's speed, its wheelbase acoustic sensor that records the vehicle's drive-by noise. The acoustic wave pattern is determined using

Cevher, Volkan

464

A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles  

E-Print Network [OSTI]

A Techno-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles-Economic Analysis of Decentralized Electrolytic Hydrogen Production for Fuel Cell Vehicles by Sébastien Prince options considered for future fuel cell vehicles. In this thesis, a model is developed to determine

Victoria, University of

465

Standard test method for the determination of uranium by ignition and the oxygen to uranium (O/U) atomic ratio of nuclear grade uranium dioxide powders and pellets  

E-Print Network [OSTI]

1.1 This test method covers the determination of uranium and the oxygen to uranium atomic ratio in nuclear grade uranium dioxide powder and pellets. 1.2 This test method does not include provisions for preventing criticality accidents or requirements for health and safety. Observance of this test method does not relieve the user of the obligation to be aware of and conform to all international, national, or federal, state and local regulations pertaining to possessing, shipping, processing, or using source or special nuclear material. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. 1.4 This test method also is applicable to UO3 and U3O8 powder.

American Society for Testing and Materials. Philadelphia

2000-01-01T23:59:59.000Z

466

Apparatus for stopping a vehicle  

DOE Patents [OSTI]

An apparatus for externally controlling one or more brakes on a vehicle having a pressurized fluid braking system. The apparatus can include a pressurizable vessel that is adapted for fluid-tight coupling to the braking system. Impact to the rear of the vehicle by a pursuit vehicle, shooting a target mounted on the vehicle or sending a signal from a remote control can all result in the fluid pressures in the braking system of the vehicle being modified so that the vehicle is stopped and rendered temporarily inoperable. A control device can also be provided in the driver's compartment of the vehicle for similarly rendering the vehicle inoperable. A driver or hijacker of the vehicle preferably cannot overcome the stopping action from the driver's compartment.

Wattenburg, Willard H. (Walnut Creek, CA); McCallen, David B. (Livermore, CA)

2007-03-20T23:59:59.000Z

467

The individual contribution of automotive components to vehicle fuel consumption  

E-Print Network [OSTI]

Fuel consumption has grown to become a major point of interest as oil reserves are depleted. The purpose of this study is to determine the key components that cause variation in the instantaneous fuel consumption of vehicles ...

Napier, Parhys L

2011-01-01T23:59:59.000Z

468

The Evolution of Sustainable Personal Vehicles  

E-Print Network [OSTI]

energy resource conversion (NREL, 2004). Sustainable Vehicle Energy StorageEnergy, Fuel, & Vehicle Technologies.41 Introduction41 Sustainable Energy Resources..42 Sustainable Vehicle Energy Storage..43 Sustainable

Jungers, Bryan D

2009-01-01T23:59:59.000Z

469

Achieving and Demonstrating Vehicle Technologies Engine Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2010 DOE Vehicle Technologies and Hydrogen...

470

Demonstration of Automated Heavy-Duty Vehicles  

E-Print Network [OSTI]

a future in which vehicle automation technologies are ableto support the heavy vehicle automation including PrecisionCommittee on Vehicle-Highway Automation, and the attendees

2006-01-01T23:59:59.000Z

471

Vehicle Technologies Office: Annual Progress Reports | Department...  

Energy Savers [EERE]

Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research...

472

Vehicle Technologies Office Merit Review 2014: Thermoelectric...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

473

The Evolution of Sustainable Personal Vehicles  

E-Print Network [OSTI]

Propulsion Systems for Hybrid Vehicles. The Institution ofA.B. (1996). Ultralight-Hybrid Vehicle Design: OvercomingLightweight Electric/Hybrid Vehicle Design. Reel Educational

Jungers, Bryan D

2009-01-01T23:59:59.000Z

474

Hydrogen Vehicle and Infrastructure Demonstration and Validation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

475

AVTA: Quantum Escape PHEV Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a Quantum Escape PHEV 2010, an experimental model not currently for sale. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

476

AVTA: 2011 Chevrolet Volt Testing Results  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports describe results of testing done on a Chevrolet Volt 2011. The baseline performance testing provides a point of comparison for the other test results. Taken together, these reports give an overall view of how this vehicle functions under extensive testing. This research was conducted by Idaho National Laboratory.

477

E-Print Network 3.0 - air vehicle systems Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

vehicle database (Motochek, ... Source: Denver, University of - Fuel Efficiency Automobile Test Data Center Collection: Energy Storage, Conversion and Utilization 11 Liu, Z.,...

478

BEEST: Electric Vehicle Batteries  

SciTech Connect (OSTI)

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

479

Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

480

Vehicle Mass Impact on Vehicle Losses and Fuel Economy  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Note: This page contains sample records for the topic "determination vehicle test" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Control device for vehicle speed  

SciTech Connect (OSTI)

This patent describes a control device for vehicle speed comprising: a throttle driving means operatively coupled to a throttle valve of a vehicle; a set switch means for commanding memorization of the vehicle speed; a resume switch means for commanding read of the vehicle speed; a vehicle speed detecting means for generating a signal in accordance with the vehicle speed; a vehicle speed memory; an electronical control means for memorizing in the vehicle speed memory vehicle speed information corresponding to the signal obtained from the vehicle speed detecting means in response to actuation of the set switch means. The control means is also for reading out the content of the vehicle speed memory in response to actuation of the resume switch means to control the throttle driving means in accordance with the read-out content; a power supply means for supplying power to the electronical control means; and a power supply control switch means for controlling supply of power to the electronical control means in response to the state of at least one of the set switch means and the resume switch means and the state of the electronical control means. The improvement described here comprises the electronical control means sets the power supply control switch means into such a state that supply of power to the electronical control means is turned OFF, when vehicle speed information is not memorized in the vehicle speed memory.

Kawata, S.; Hyodo, H.

1987-03-03T23:59:59.000Z

482

Determining Long-Term Performance of Cool Storage Systems from Short-Term Tests, Progress Report, 6-99, Revised 12-99  

E-Print Network [OSTI]

This is the Spring 1999 progress report on ASHRAE Research Project RP 1004: Determining Long-Term Performance of Cool Storage Systems from Short-Term Tests. This report presents an update concerning the work that has been accomplished since the June...

Reddy, T. A.; Elleson, J.; Haberl, J. S.

1999-01-01T23:59:59.000Z

483

Smart Infrared Inspection System Field Operational Test Final Report  

SciTech Connect (OSTI)

The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to the enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.

Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Franzese, Oscar [ORNL; Lascurain, Mary Beth [ORNL

2011-06-01T23:59:59.000Z

484

Parametrized maneuvers for autonomous vehicles  

E-Print Network [OSTI]

This thesis presents a method for creating continuously parametrized maneuver classes for autonomous vehicles. These classes provide useful tools for motion planners, bundling sets of related vehicle motions based on a ...

Dever, Christopher W. (Christopher Walden), 1972-

2004-01-01T23:59:59.000Z

485

Final report on electric vehicle activities, September 1991--October 1994  

SciTech Connect (OSTI)

The data and information collected for the Public Service Electric and Gas Company`s (PSE&G) electric vehicle demonstration program were intended to support and enhance DOE`s Electric and Hybrid Vehicle Site Operator Program. The DOE Site Operator Program is focused on the life cycle and reliability of Electric Vehicles (EVs). Of particular interest are vehicles currently available with features that are likely to be put into production or demonstrate new technology. PSE&G acquired eight GMC Electric G-Vans in 1991, and three TEVans in 1993, and conducted a program plan to test and assess the overall performance of these electric vehicles. To accomplish the objectives of DOE`s Site Operator`s test program, a manual data collection system was implemented. The manual data collection system has provided energy use and mileage data. From September 1991 to October 1994 PSE&G logged 69,368 miles on eleven test vehicles. PSE&G also demonstrated the EVs to diverse groups and associations at fifty seven various events. Included in the report are lessons learned concerning maintenance, operation, public reactions, and driver`s acceptance of the electric vehicles.

Del Monaco, J.L.; Pandya, D.A.

1995-02-01T23:59:59.000Z

486

Commercial Vehicles Collaboration for  

E-Print Network [OSTI]

events (level derived from integrated design and safety analysis) · Protection against fire, depress Vehicle Transition Concepts Astronaut Office letter (June, 2010) describes position on crew suit as a resource to expedite this transition to the commercial market The current astronaut corps can be used

Waliser, Duane E.

487

Gasoline Ultra Fuel Efficient Vehicle  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

488

Utility vehicle safety Operator training program  

E-Print Network [OSTI]

Utility vehicle safety Operator training program #12;Permissible use Utility Vehicles may only Utility Vehicle operator · When equipped with the "Required Equipment" · On public roadways within Drivers" · Obey all traffic regulations · Trained; update training every two years · Operate vehicles

Minnesota, University of

489

VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE  

E-Print Network [OSTI]

VEHICLE OPERATING PROCEDURES DEPARTMENT OF BIOLOGICAL SCIENCE GENERAL INFORMATION Vehicles resposniblity and disciplinary action. Vehicles may be used by faculty or staff from other departments complete the vehicle usage agreement form certifying that they have a valid driver's license

Ronquist, Fredrik

490

Electric-Drive Vehicle engineering  

E-Print Network [OSTI]

Electric-Drive Vehicle engineering COLLEGE of ENGINEERING Electric-drive engineers for 80 years t Home to nation's first electric-drive vehicle engineering program and alternative-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to an electric-drive vehicle

Berdichevsky, Victor

491

Vehicle Operation and Parking Policy  

E-Print Network [OSTI]

Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration in this policy. 2.0 POLICY STATEMENT This policy is intended to promote safe driving by operators of all vehicles are in effect at all times and apply to all persons and vehicles physically present on the CSM campus

492

UWO Vehicle ACCIDENT REPORTING FORM  

E-Print Network [OSTI]

UWO Vehicle ­ ACCIDENT REPORTING FORM To be completed at the scene. (Important: Do not admit liability or discuss any settlement.) If there are personal injuries or severe damage to the vehicle, call 911. If vehicle is drivable and if it's safe to do so, pull to the side of road away from traffic. Put

Sinnamon, Gordon J.

493

VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION  

E-Print Network [OSTI]

VEHICLE NETWORKS: ACHIEVING REGULAR FORMATION MADALENA CHAVES, ROBERT DAY, LUCIA GOMEZ a network of vehicles exchanging information among themselves with the intention of achieving a specified the performance of the vehicle network. A stochastic model for information flow is also considered, allowing

494

Vehicle Operation and Parking Policy  

E-Print Network [OSTI]

Vehicle Operation and Parking Policy Responsible Administrative Unit: Finance & Administration STATEMENT This policy is intended to promote safe driving by operators of all vehicles utilizing streets and apply to all persons and vehicles physically present on the CSM campus. For the purpose of this policy

495

Vehicle Management Driver Safety Program  

E-Print Network [OSTI]

Vehicle Management and Driver Safety Program Manual Facilities & Operations / Finance & Administration Version 2 April 2012 #12;© 2012 University of Alberta. #12;The Vehicle Management and Driver of employment. Driver Acknowledgement I have received the University of Alberta, Vehicle Management and Driver

Machel, Hans

496

A flight test system for the determination of the stability and control derivatives of a general aviation aircraft  

E-Print Network [OSTI]

the ensuing motion of the aircraft diminishes after an initial disturbance. If an aircraft does not posses static stability, a disturbance from the equilibrium, or trim condition will grow exponentially. Dynamic instability implies either an aperiodic... in order to de termine the performance capabilities of an aircraft. Control authority refers to the de sired output as compared to the required input. The purpose of this research was to design, fabricate, test, and integrate a flight test system which...

Oehl, David Christopher

1995-01-01T23:59:59.000Z

497

Advanced Vehicle Electrification and Transportation Sector Electrifica...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and...

498

Advanced Vehicle Electrification & Transportation Sector Electrificati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

499

Achieving and Demonstrating Vehicle Technologies Engine Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

500

2012 U.S. Vehicle Analysis  

E-Print Network [OSTI]

Vehicles …………………………………………………………….. Ethanol Fuel Mixturesperformance of ethanol fuel mixtures vehicles ……….. Summaryon diesel, electricity, and ethanol fuel mixtures (ethanol/

Lam, Ho Yeung Michael

2012-01-01T23:59:59.000Z