Powered by Deep Web Technologies
Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

FCT Technology Validation: Integrated Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Projects to Integrated Projects to someone by E-mail Share FCT Technology Validation: Integrated Projects on Facebook Tweet about FCT Technology Validation: Integrated Projects on Twitter Bookmark FCT Technology Validation: Integrated Projects on Google Bookmark FCT Technology Validation: Integrated Projects on Delicious Rank FCT Technology Validation: Integrated Projects on Digg Find More places to share FCT Technology Validation: Integrated Projects on AddThis.com... Home Transportation Projects Stationary/Distributed Generation Projects Integrated Projects DOE Projects Non-DOE Projects Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Manufacturing Codes & Standards Education Systems Analysis Contacts Integrated Projects To maximize overall system efficiencies, reduce costs, and optimize

2

Challenges in Integrating Renewable Technologies  

E-Print Network (OSTI)

PV, solar thermal, and wave. Breakthroughs are also needed in large-scale energy storage technologies reliability and econ- omy. The challenges of integrating high penetrations of renewable energy technologies

3

Fuel Cell Technologies Office: Systems Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Integration to someone by E-mail Share Fuel Cell Technologies Office: Systems Integration on Facebook Tweet about Fuel Cell Technologies Office: Systems Integration on...

4

Integrated Agricultural Technologies Demonstrations  

Science Conference Proceedings (OSTI)

Major challenges currently face California's agricultural community. Increasingly stringent environmental and regulatory controls mandate changes in the use and disposal of agricultural chemicals, require the more aggressive management of farm wastes, and impose new responsibilities for water use. This program demonstrated a number of energy efficient and environmentally friendly technologies designed to address these issues.

2002-08-02T23:59:59.000Z

5

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2010 CX-000726: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: B3.6...

6

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 13, 2010 January 13, 2010 CX-000726: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: B3.6 Date: 01/13/2010 Location(s): Birmingham, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000727: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9 Date: 01/13/2010 Location(s): Bridgewater, New Jersey Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2010 CX-000728: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9

7

Building Technologies Office: Integrated Predictive Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Predictive Integrated Predictive Demand Response Controller Research Project to someone by E-mail Share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Facebook Tweet about Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Twitter Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Google Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Delicious Rank Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Digg Find More places to share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on AddThis.com...

8

Building Technologies Office: Integrated Building Management System  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Building Integrated Building Management System Research Project to someone by E-mail Share Building Technologies Office: Integrated Building Management System Research Project on Facebook Tweet about Building Technologies Office: Integrated Building Management System Research Project on Twitter Bookmark Building Technologies Office: Integrated Building Management System Research Project on Google Bookmark Building Technologies Office: Integrated Building Management System Research Project on Delicious Rank Building Technologies Office: Integrated Building Management System Research Project on Digg Find More places to share Building Technologies Office: Integrated Building Management System Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE

9

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 1, 2012 May 1, 2012 CX-008288: Categorical Exclusion Determination Decommissioning of the Appliance Testing and Evaluation Center in Morgantown CX(s) Applied: B3.6 Date: 05/01/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory May 1, 2012 CX-008287: Categorical Exclusion Determination Technology Integration Program CX(s) Applied: A9 Date: 05/01/2012 Location(s): CX: none Offices(s): National Energy Technology Laboratory May 1, 2012 CX-008286: Categorical Exclusion Determination Technology Integration Program CX(s) Applied: A9, A11, B3.6 Date: 05/01/2012 Location(s): Tennessee Offices(s): National Energy Technology Laboratory May 1, 2012 CX-008285: Categorical Exclusion Determination E85 (Ethanol) Retail Fueling Infrastructure Installation CX(s) Applied: B5.22

10

Building Technologies Office: Buildings to Grid Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings to Grid Buildings to Grid Integration to someone by E-mail Share Building Technologies Office: Buildings to Grid Integration on Facebook Tweet about Building Technologies Office: Buildings to Grid Integration on Twitter Bookmark Building Technologies Office: Buildings to Grid Integration on Google Bookmark Building Technologies Office: Buildings to Grid Integration on Delicious Rank Building Technologies Office: Buildings to Grid Integration on Digg Find More places to share Building Technologies Office: Buildings to Grid Integration on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research Windows, Skylights, & Doors Research Space Heating & Cooling Research Water Heating Research Lighting Research

11

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2013 30, 2013 CX-010824: Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010823: Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010822: Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010821: Categorical Exclusion Determination

12

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2011 16, 2011 CX-006772: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09/16/2011 Location(s): Fenton Township, Michigan Office(s): Fossil Energy, National Energy Technology Laboratory September 16, 2011 CX-006771: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09/16/2011 Location(s): Brighton, New York Office(s): Fossil Energy, National Energy Technology Laboratory September 16, 2011 CX-006770: Categorical Exclusion Determination Coal-Based Integrated Gasification Fuel Cell Project: Phase II CX(s) Applied: B3.6 Date: 09/16/2011 Location(s): South Windsor, Connecticut Office(s): Fossil Energy, National Energy Technology Laboratory

13

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21, 2013 21, 2013 CX-010780: Categorical Exclusion Determination Advanced Analytical Methods for Air and Stray Gas Emissions and Produced Brine Characterization CX(s) Applied: A9, A11, B3.6 Date: 08/21/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory August 21, 2013 CX-010782: Categorical Exclusion Determination A Geomechanical Model for Gas Shales Based on Integration of Stress CX(s) Applied: A9 Date: 08/21/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 20, 2013 CX-010783: Categorical Exclusion Determination Isothermal Compressed Air Energy Storage (ICAES) to Support Renewable Energy Integration - Phase Three CX(s) Applied: B3.6, B5.1 Date: 08/20/2013 Location(s): New Hampshire Offices(s): National Energy Technology Laboratory

14

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 27, 2012 April 27, 2012 CX-008292: Categorical Exclusion Determination Waste Heat Integration with Solvent Process for More Efficient Carbon Dioxide Removal from Coal-Fired Flue Gas CX(s) Applied: A11 Date: 04/27/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008309: Categorical Exclusion Determination Evaluation of Solid Sorbents as a Retrofit Technology for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 04/25/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008307: Categorical Exclusion Determination Deepwater Reverse-Circulation Primary Cementing CX(s) Applied: A9 Date: 04/25/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008306: Categorical Exclusion Determination

15

Advanced Integrated Systems Technology Development  

E-Print Network (OSTI)

Research Energy Systems Integration Environmentallyenergy use, combined with the capability of the BMS system, including alarms to identify anomalies. Integration

2013-01-01T23:59:59.000Z

16

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2012 0, 2012 CX-009271: Categorical Exclusion Determination National Governors Association Energy Project - Phase II CX(s) Applied: A9, A11 Date: 09/10/2012 Location(s): CX: none Offices(s): National Energy Technology Laboratory September 10, 2012 CX-009270: Categorical Exclusion Determination Basin-Scale Produced Water Management Tools and Options CX(s) Applied: A9 Date: 09/10/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory September 7, 2012 CX-009290: Categorical Exclusion Determination Interagency Study on the Implementation of Integrated Computational Materials Engineering... CX(s) Applied: A9, A11 Date: 09/07/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 7, 2012 CX-009289: Categorical Exclusion Determination

17

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2012 23, 2012 CX-008493: Categorical Exclusion Determination Liquid Carbon Dioxide Slurry for Feeding Low Rank Coal (LRC) Gasifiers CX(s) Applied: A9 Date: 07/23/2012 Location(s): Texas, Oklahoma Offices(s): National Energy Technology Laboratory July 23, 2012 CX-008492: Categorical Exclusion Determination Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process CX(s) Applied: A9 Date: 07/23/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory July 23, 2012 CX-008491: Categorical Exclusion Determination Carbon Dioxide Capture from Integrated Gasification Combined Cycle Gas Streams Using the Ammonium Carbonate-Ammonium Bicarbonate Process CX(s) Applied: B3.6 Date: 07/23/2012

18

Integrating Technology into Classroom Instruction.  

E-Print Network (OSTI)

??Technology has become increasingly saturated into the very fabric of students' daily lives. They are exposed to and use technology in every facet of their… (more)

Ritzenthaler, Mark D.

2009-01-01T23:59:59.000Z

19

Solar Integrated Technologies SIT | Open Energy Information  

Open Energy Info (EERE)

SIT SIT Jump to: navigation, search Name Solar Integrated Technologies (SIT) Place Los Angeles, California Zip 90058 Product California-based manufacturer and installer of PV power systems on flat roofs for relatively large-scale commercial and industrial applications and subsidiary of Energy Conversion Devices (ECD). References Solar Integrated Technologies (SIT)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solar Integrated Technologies (SIT) is a company located in Los Angeles, California . References ↑ "[pointer=1&cHash=a585cf0cd0 Solar Integrated Technologies (SIT)]" Retrieved from "http://en.openei.org/w/index.php?title=Solar_Integrated_Technologies_SIT&oldid=351294

20

NREL: Technology Deployment - Integrated Deployment Model  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Deployment Model Integrated Deployment Model NREL's integrated deployment model provides a framework to focus on the national goal of accelerating market adoption of clean energy technologies through local efforts. With support from the U.S. Department of Energy (DOE), NREL developed and applies the integrated deployment model to select projects including disaster recovery, statewide activities, federal agency support, island activities, and community renewable energy deployment. How the Model Works To address the complex challenges of multi-technology, multi-stakeholder, and multi-fuel deployment, NREL created the integrated deployment model to support each technology area separately but also consider the integration points between the technologies. NREL also identifies the cross-cutting

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

New and Underutilized Technology: Integrated Daylighting Systems |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Integrated Daylighting Systems Integrated Daylighting Systems New and Underutilized Technology: Integrated Daylighting Systems October 4, 2013 - 4:56pm Addthis The following information outlines key deployment considerations for integrated daylighting systems within the Federal sector. Benefits Integrated daylighting systems can be combined with electronic dimmable fluorescent ballasts, photo sensors, and occupancy sensors where appropriate. Network components, workstation controls, and building management options can also be integrated to provide significant savings on applied systems. Application Integrated daylighting systems are applicable in perimeter and interior spaces with daylight exposure via windows and skylights. Key Factors for Deployment Acceptable levels of daylight are required and must be factored into

22

Advanced Integrated Systems Technology Development  

E-Print Network (OSTI)

allows the use of alternative cooling sources, for example,system, and alternative radiant cooling technology, i.e.

2013-01-01T23:59:59.000Z

23

Program on Technology Innovation: Integrated Generation Technology Options  

Science Conference Proceedings (OSTI)

The EPRI Integrated Generation Technology Options is intended to provide a snapshot of current cost and performance and technology trends for central electricity generation stations (>50 MW). This document is designed to help with information on the current options in power generation infrastructure capital investments. This 2008 Integrated Generation Technology Options draws from the results of the 2007 TAG studies with relevant current updates. However, while the TAG addresses about 20 different Power ...

2008-11-30T23:59:59.000Z

24

Wireless technology for integrated manufacturing  

SciTech Connect

This paper describes the ground breaking work in Oak Ridge facilities that now leads us to the brink of the wireless revolution in manufacturing. The focus is on solving tough technological problems necessary for success and addressing the critical issues of throughput, security, reliability, and robustness in applying wireless technology to manufacturing processes. Innovative solutions to these problems are highlighted through detailed designs and testbed implementations that demonstrate key concepts. The DOE-Oak Ridge complex represented by the Oak Ridge Centers for Manufacturing Technologies (ORCMT) continues to develop these technologies and will continue to focus on solving tough manufacturing problems.

Manges, W.W.; Allgood, G.O.; Shourbaji, A.A.

1996-08-01T23:59:59.000Z

25

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 CX-003053: Categorical Exclusion Determination Irvine Smart Grid Demonstration Project (Only for University of Southern California's Portion of the Work) CX(s) Applied: A11, B3.6 Date: 07/19/2010 Location(s): Marina del Ray, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 19, 2010 CX-003054: Categorical Exclusion Determination Energy Efficient/Comfortable Buildings through Multivariate Integrated Controls (ECoMIC) CX(s) Applied: A9, B2.2, B5.1 Date: 07/19/2010 Location(s): Westchester, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 19, 2010 CX-003052: Categorical Exclusion Determination Irvine Smart Grid Demonstration Project (Only for General Electric Work in

26

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 8, 2011 CX-006042: Categorical Exclusion Determination Conversion of Low-Rank Wyoming Coals into Gasoline by Direct Liquefaction CX(s) Applied: B3.6 Date: 06/08/2011 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory June 7, 2011 CX-006050: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B3.6, B5.1 Date: 06/07/2011 Location(s): Kansas City, Missouri Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 7, 2011 CX-006054: Categorical Exclusion Determination San Diego Gas & Electric Borrego Springs Microgrid Demo (Utility Integration of Distributed Energy Storage Systems) CX(s) Applied: A1, A9, B3.11, B4.4 Date: 06/07/2011 Location(s): Borrego Springs, California

27

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Categorical Exclusion Determinations: National Energy Technology Laboratory Categorical Exclusion Determinations: National Energy...

28

Categorical Exclusion Determinations: Energy Technology Engineering...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Categorical Exclusion Determinations: Energy Technology Engineering Center Categorical Exclusion Determinations: Energy...

29

Technology integration project: Environmental Restoration Technologies Department Sandia National Laboratories  

SciTech Connect

Sandia National Laboratories Environmental Restoration Technologies Department is developing environmental restoration technologies through funding form the US Department of Energy`s (DOE`s) Office of Science and Technology. Initially, this technology development has been through the Mixed Waste Landfill Integrated Demonstration (MWLID). It is currently being developed through the Contaminant Plume containment and Remediation Focus Area, the Landfill Stabilization Focus Area, and the Characterization, Monitoring, and Sensor Cross-Cutting Program. This Technology Integration Project (TIP) was responsible for transferring MWLID-developed technologies for routine use by environmental restoration groups throughout the DOE complex and commercializing these technologies to the private sector. The MWLID`s technology transfer/commercialization successes were achieved by involving private industry in development, demonstration, and technology transfer/commercialization activities; gathering and disseminating information about MWLID activities and technologies; and promoting stakeholder and regulatory involvement. From FY91 through FY95, 30 Technical Task Plans (TTPs) were funded. From these TTPs, the MWLID can claim 15 technology transfer/commercialization successes. Another seven technology transfer/commercialization successes are expected. With the changeover to the focus areas, the TIP continued the technology transfer/commercialization efforts begun under the MWLID.

Williams, C.V.; Burford, T.D. [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies] [Sandia National Labs., Albuquerque, NM (United States). Environmental Restoration Technologies; Allen, C.A. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

1996-08-01T23:59:59.000Z

30

Integrating Human Performance and Technology  

Science Conference Proceedings (OSTI)

Human error is a significant factor in the cause and/or complication of events that occur in the commercial nuclear industry. In recent years, great gains have been made using Human Performance (HU) tools focused on targeting individual behaviors. However, the cost of improving HU is growing and resistance to add yet another HU tool certainly exists, particularly for those tools that increase the paperwork for operations. Improvements in HU that are the result of leveraging existing technology, such as hand-held mobile technologies, have the potential to reduce human error in controlling system configurations, safety tag-outs, and other verifications. Operator rounds, valve line-up verifications, containment closure verifications, safety & equipment protection, and system tagging can be supported by field-deployable wireless technologies. These devices can also support the availability of critical component data in the main control room and other locations. This research pilot project reviewing wireless hand-held technology is part of the Light Water Reactor Sustainability Program (LWRSP), a research and development (R&D) program sponsored by the U. S. Department of Energy (DOE). The project is being performed in close collaboration with industry R&D programs to provide the technical foundations for licensing, and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRSP vision is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current nuclear reactor fleet.

Ronald K. Farris; Heather Medema

2012-05-01T23:59:59.000Z

31

California Energy Commission Pipeline Integrity Technology  

E-Print Network (OSTI)

California Energy Commission Pipeline Integrity Technology Demonstration Grant California Energy Solicitation Scope · The purpose of this solicitation is to demonstrate natural gas pipeline inspection using low cost/low power sensors ­ Improvement of existing pipeline inspection technology to identify

32

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Smart Grid Regional Demonstration - Technology Solutions for Wind Integration - Phase I CX(s) Applied: A9 Date: 05112010 Location(s): Austin, Texas Office(s):...

33

Vehicle Technologies Office: Thermal Control and System Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Control and System Integration to someone by E-mail Share Vehicle Technologies Office: Thermal Control and System Integration on Facebook Tweet about Vehicle Technologies...

34

Miners turn to integrated technology  

Science Conference Proceedings (OSTI)

To offset turnover and share data in a more timely fashion, mining companies are looking at smarter ways of managing coal extraction. Runge has developed a mine management system called Mining Dynamics which transfers data from Xact, the firms short term planning system, and integrates it with information from SAP using a composite application. The system allows mine personnel to concentrate on their jobs without getting bogged down in data entry. Xact has about 60 licenses worldwide, five of which are in the Power River Basin.

Fiscor, S.

2007-10-15T23:59:59.000Z

35

Biogas Technologies and Integration with Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL BIOGAS WORKSHOP NREL BIOGAS WORKSHOP BIOGAS TECHNOLOGIES AND INTEGRATION WITH FUEL CELLS Ian Handley Ros Roca Envirotec USA American Biogas Council SUMMARY * Introduction and Background * Anaerobic Digestion * Biogas Utilization * Biogas Upgrading Technology * Biogas Specification * Biogas to Fuel Cell * Conclusions Promoting the use of Biogas and Anaerobic Digestion O 149 Members from the U.S., Germany, Italy, Canada and the UK O All Industry Sectors Represented Key Industry Goals: O Promote biogas markets, technologies and infrastructure O Achieve policy parity O Promote as a best practice for environmental stewardship and greenhouse gas reduction www.americanbiogascouncil.org Products and technologies for environmental protection Pneumatic waste

36

Vehicle Technologies Office: Thermal Control and System Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Control and System Integration The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the...

37

EA-1939: Reese Technology Center Wind and Battery Integration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to...

38

MHD Technology Transfer, Integration and Review Committee  

DOE Green Energy (OSTI)

This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

Not Available

1992-01-01T23:59:59.000Z

39

Building Technologies Office: Integrated Whole-Building Energy Diagnostics  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Integrated Whole-Building Energy Diagnostics Research Project to someone by E-mail Share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Facebook Tweet about Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Twitter Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Google Bookmark Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Delicious Rank Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on Digg Find More places to share Building Technologies Office: Integrated Whole-Building Energy Diagnostics Research Project on AddThis.com...

40

New Electric Grid Technologies for Renewable Integration  

E-Print Network (OSTI)

and changing electric loads that are becoming part of the "orchestra" · Dealing with economic and public policy & Intelligent Agent (temporal power flow control) · Solar and Wind Forecasting Tools · Generator and LoadNew Electric Grid Technologies for Renewable Integration - The Need for Being Smarter - Presented

Islam, M. Saif

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Building Technologies Office: About the Commercial Buildings Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Commercial About the Commercial Buildings Integration Program to someone by E-mail Share Building Technologies Office: About the Commercial Buildings Integration Program on Facebook Tweet about Building Technologies Office: About the Commercial Buildings Integration Program on Twitter Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Google Bookmark Building Technologies Office: About the Commercial Buildings Integration Program on Delicious Rank Building Technologies Office: About the Commercial Buildings Integration Program on Digg Find More places to share Building Technologies Office: About the Commercial Buildings Integration Program on AddThis.com... About Take Action to Save Energy Activities Partner with DOE Commercial Buildings Resource Database

42

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Manufacturing Process for Organic Light-Emitting Diode (OLED) Integrated Substrate CX(s) Applied: B3.6 Date: 07302013 Location(s):...

43

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Laboratory June 3, 2010 CX-002571: Categorical Exclusion Determination Street Lighting Fixture Energy Efficiency Retrofit Project CX(s) Applied: B5.1 Date: 0603...

44

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Development of Non-Contaminating Cryogenic Fracturing Technology CX(s) Applied: B3.6 Date: 12202011 Location(s): California Offices(s):...

45

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Development of Non-Contaminating Cryogenic Fracturing Technology CX(s) Applied: B3.6 Date: 12202011 Location(s): Colorado Offices(s):...

46

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A1, B3.6 Date: 11182009 Location(s): Detroit, Michigan Office(s): National Energy Technology Laboratory November 18, 2009 CX-000408: Categorical Exclusion Determination...

47

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 30, 2010 CX-004967: Categorical Exclusion Determination Catalytic...

48

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 31, 2010 CX-001446: Categorical Exclusion Determination The Winooski, Vermont...

49

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Location(s): Sweeney, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 12, 2009 CX-000378: Categorical Exclusion Determination Monitoring,...

50

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2010 CX-002350: Categorical Exclusion Determination Ohio Advanced...

51

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory June 19, 2012 CX-008450: Categorical Exclusion Determination Building 93 Heat Exchanger Removal at National Energy Technology Laboratory Pittsburgh CX(s) Applied:...

52

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Houston, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 16, 2011 CX-005457: Categorical Exclusion Determination New...

53

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Smart Grid Data Access Utilizing Science, Technology, Engineering, and Mathematics Education as a Catalyst - Phase 1 CX(s) Applied: A9,...

54

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory April 11, 2011 CX-005587: Categorical Exclusion Determination Puget Sound...

55

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applied: B3.6 Date: 10012012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 28, 2012 CX-009326: Categorical Exclusion Determination Midwest...

56

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A9, A11 Date: 09212012 Location(s): New Mexico Offices(s): National Energy Technology Laboratory September 21, 2012 CX-009338: Categorical Exclusion Determination...

57

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Laboratory December 7, 2009 CX-000459: Categorical Exclusion Determination Molecular Simulation of Dissolved Inorganic Carbons for Underground Brine Carbon Dioxide...

58

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 4, 2011 CX-005159: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Indiana Geological Survey CX(s) Applied: A9,...

59

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Laboratory December 10, 2009 CX-000368: Categorical Exclusion Determination New York State Alternative Fuel Vehicle & Infrastructure Deployment CX(s) Applied: A9, A11...

60

MHD Technology Transfer, Integration and Review Committee  

DOE Green Energy (OSTI)

As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee's activities to date have focused primarily on the technology transfer'' aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

Not Available

1989-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

KCP wins technology award for security integration | National...  

National Nuclear Security Administration (NNSA)

Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > KCP wins technology award for security integration KCP wins technology...

62

EA-1939: Reese Technology Center Wind and Battery Integration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX EA-1939: Reese Technology Center Wind and...

63

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Energy Technology National Energy Technology Laboratory Categorical Exclusion Determinations: National Energy Technology Laboratory Categorical Exclusion Determinations issued by National Energy Technology Laboratory. DOCUMENTS AVAILABLE FOR DOWNLOAD September 25, 2013 CX-010917: Categorical Exclusion Determination Fate of Methane Emitted from Dissociating Marine Hydrates: Modeling, Laboratory, and Field Constraints CX(s) Applied: A1, A9, B3.6 Date: 09/25/2013 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory September 25, 2013 CX-010916: Categorical Exclusion Determination Fate of Methane Emitted from Dissociating Marine Hydrates: Modeling, Laboratory, and Field Constraints CX(s) Applied: A1, A9, B3.6 Date: 09/25/2013 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory

64

Categorical Exclusion Determinations: Advanced Technology Vehicles  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Vehicles Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations: Advanced Technology Vehicles Manufacturing Loan Program Categorical Exclusion Determinations issued by Advanced Technology Vehicles Manufacturing Loan Program. DOCUMENTS AVAILABLE FOR DOWNLOAD May 29, 2012 CX-008810: Categorical Exclusion Determination One Nevada Optimization of Microwave Telecommunication System CX(s) Applied: B1.19, B4.6 Date: 05/29/2012 Location(s): Nevada, Nevada Offices(s): Advanced Technology Vehicles Manufacturing Loan Program January 24, 2012 CX-007677: Categorical Exclusion Determination Project Eagle Phase 1 Direct Wafer/Cell Solar Facility CX(s) Applied: B1.31 Date: 01/24/2012 Location(s): Massachusetts Offices(s): Advanced Technology Vehicles Manufacturing Loan Program

65

Managing the integration of technology into the product development pipeline  

E-Print Network (OSTI)

Managing the integration of technology is a complex task in any industry, but especially so in the highly competitive automotive industry. Automakers seek to develop plans to integrate technology into their products such ...

Barretto, Eduardo F., 1971-

2005-01-01T23:59:59.000Z

66

Mixed Waste Landfill Integrated Demonstration; Technology summary  

SciTech Connect

The mission of the Mixed Waste Landfill Integrated Demonstration (MWLID) is to demonstrate, in contaminated sites, new technologies for clean-up of chemical and mixed waste landfills that are representative of many sites throughout the DOE Complex and the nation. When implemented, these new technologies promise to characterize and remediate the contaminated landfill sites across the country that resulted from past waste disposal practices. Characterization and remediation technologies are aimed at making clean-up less expensive, safer, and more effective than current techniques. This will be done by emphasizing in-situ technologies. Most important, MWLID`s success will be shared with other Federal, state, and local governments, and private companies that face the important task of waste site remediation. MWLID will demonstrate technologies at two existing landfills. Sandia National Laboratories` Chemical Waste Landfill received hazardous (chemical) waste from the Laboratory from 1962 to 1985, and the Mixed-Waste Landfill received hazardous and radioactive wastes (mixed wastes) over a twenty-nine year period (1959-1988) from various Sandia nuclear research programs. Both landfills are now closed. Originally, however, the sites were selected because of Albuquerque`s and climate and the thick layer of alluvial deposits that overlay groundwater approximately 480 feet below the landfills. This thick layer of ``dry`` soils, gravel, and clays promised to be a natural barrier between the landfills and groundwater.

NONE

1994-02-01T23:59:59.000Z

67

Utility Scale Renewables: Renewable and Efficiency Technology Integration (Presentation)  

Science Conference Proceedings (OSTI)

PowerPoint presentation given by Dave Mooney at the NREL Industry Forum on renewable and efficiency technology integration.

Mooney, D.

2009-11-04T23:59:59.000Z

68

Systems Integration: Solar Energy Technologies Program (SETP) (Fact Sheet)  

DOE Green Energy (OSTI)

Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its systems integration subprogram.

Not Available

2009-10-01T23:59:59.000Z

69

Integral data analysis for resonance parameters determination  

SciTech Connect

Neutron time-of-flight experiments have long been used to determine resonance parameters. Those resonance parameters have then been used in calculations of integral quantities such as Maxwellian averages or resonance integrals, and results of those calculations in turn have been used as a criterion for acceptability of the resonance analysis. However, the calculations were inadequate because covariances on the parameter values were not included in the calculations. In this report an effort to correct for that deficiency is documented: (1) the R-matrix analysis code SAMMY has been modified to include integral quantities of importance, (2) directly within the resonance parameter analysis, and (3) to determine the best fit to both differential (microscopic) and integral (macroscopic) data simultaneously. This modification was implemented because it is expected to have an impact on the intermediate-energy range that is important for criticality safety applications.

Larson, N.M.; Leal, L.C.; Derrien, H.

1997-09-01T23:59:59.000Z

70

Mixed Waste Integrated Program -- Problem-oriented technology development  

SciTech Connect

The Mixed Waste Integrated Program (MWIP) is responding to the need for DOE mixed waste treatment technologies that meet these dual regulatory requirements. MWIP is developing emerging and innovative treatment technologies to determine process feasibility. Technology demonstrations will be used to determine whether processes are superior to existing technologies in reducing risk, minimizing life-cycle cost, and improving process performance. Technology development is ongoing in technical areas required to process mixed waste: materials handling, chemical/physical treatment, waste destruction, off-gas treatment, final forms, and process monitoring/control. MWIP is currently developing a suite of technologies to process heterogeneous waste. One robust process is the fixed-hearth plasma-arc process that is being developed to treat a wide variety of contaminated materials with minimal characterization. Additional processes encompass steam reforming, including treatment of waste under the debris rule. Advanced off-gas systems are also being developed. Vitrification technologies are being demonstrated for the treatment of homogeneous wastes such as incinerator ash and sludge. An alternative to conventional evaporation for liquid removal--freeze crystallization--is being investigated. Since mercury is present in numerous waste streams, mercury removal technologies are being developed.

Hart, P.W.; Wolf, S.W. [Dept. of Energy, Germantown, MD (United States); Berry, J.B. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.

1994-12-31T23:59:59.000Z

71

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Low-Cost Integrated Substrate for Organic Light-Emitting Diode (OLED) Lighting (Ewing) CX(s) Applied: B3.6 Date: 03192010 Location(s):...

72

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2011 13, 2011 CX-006752: Categorical Exclusion Determination Energy Efficiency Vehicles for Sustainable Mobility - Department of Energy Graduate Automotive Technology Education Center of Excellence CX(s) Applied: A9, A11, B3.6 Date: 09/13/2011 Location(s): Columbus, Ohio Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 13, 2011 CX-006751: Categorical Exclusion Determination University of Alabama at Birmingham Graduate Automotive Technology Education Center for Lightweight Materials and Manufacturing for Automotive Technologies CX(s) Applied: A9, A11, B3.6 Date: 09/13/2011 Location(s): Birmingham, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 13, 2011 CX-006748: Categorical Exclusion Determination

73

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 9, 2011 September 9, 2011 CX-006745: Categorical Exclusion Determination Clean Coal Conference CX(s) Applied: A9 Date: 09/09/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory September 8, 2011 CX-006742: Categorical Exclusion Determination National Energy Technology Laboratory Pittsburgh - Replace 25 Kilovolt Air Switch 920 Area CX(s) Applied: B4.6 Date: 09/08/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory September 8, 2011 CX-006741: Categorical Exclusion Determination Information Technology Hub Relocation CX(s) Applied: B1.31 Date: 09/08/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory September 8, 2011

74

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-003766: Categorical Exclusion Determination Development of High Rate Coating Technology for Low Cost Electrochemical Dynamic Windows CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Berkeley, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 3, 2010 CX-003761: Categorical Exclusion Determination Ramgen Supersonic Shock Wave Compression and Engine Technology CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Redmond, Washington Office(s): Fossil Energy, National Energy Technology Laboratory September 3, 2010 CX-003759: Categorical Exclusion Determination Geological Sequestration Fundamental Research Lab Move CX(s) Applied: B3.6 Date: 09/03/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory

75

Building Technologies Office: Air-Source Integrated Heat Pump Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Air-Source Integrated Air-Source Integrated Heat Pump Research Project to someone by E-mail Share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Facebook Tweet about Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Twitter Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Google Bookmark Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Delicious Rank Building Technologies Office: Air-Source Integrated Heat Pump Research Project on Digg Find More places to share Building Technologies Office: Air-Source Integrated Heat Pump Research Project on AddThis.com... About Take Action to Save Energy Partner with DOE Activities Appliances Research Building Envelope Research

76

Guide to Integrating Renewable Energy in Federal Construction: Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Resources to someone by E-mail Technology Resources to someone by E-mail Share Guide to Integrating Renewable Energy in Federal Construction: Technology Resources on Facebook Tweet about Guide to Integrating Renewable Energy in Federal Construction: Technology Resources on Twitter Bookmark Guide to Integrating Renewable Energy in Federal Construction: Technology Resources on Google Bookmark Guide to Integrating Renewable Energy in Federal Construction: Technology Resources on Delicious Rank Guide to Integrating Renewable Energy in Federal Construction: Technology Resources on Digg Find More places to share Guide to Integrating Renewable Energy in Federal Construction: Technology Resources on AddThis.com... Home Introduction Renewable Energy Benefits Federal Requirements Lead by Example Whole Building Design Approach

77

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2012 23, 2012 CX-008929: Categorical Exclusion Determination Fundamental Investigations and Rational Design of Durable, High-Performance Cathode Materials CX(s) Applied: B3.6 Date: 08/23/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory August 23, 2012 CX-008928: Categorical Exclusion Determination High Efficiency Molten-Bed Oxy-Coal Combustion with Low Flue Gas Recirculation CX(s) Applied: B3.6 Date: 08/23/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory August 22, 2012 CX-008930: Categorical Exclusion Determination Recovery Act: Clean Cities Transportation Petroleum Reduction Technologies Program CX(s) Applied: A1 Date: 08/22/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory August 21, 2012 CX-008931: Categorical Exclusion Determination

78

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Laboratory April 1, 2010 CX-001504: Categorical Exclusion Determination Ocean Wind Energy Analysis CX(s) Applied: B3.1, A9, A11 Date: 04012010 Location(s): Chapel...

79

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 14, 2013 August 14, 2013 CX-010787: Categorical Exclusion Determination Fire Loop Soil Excavation CX(s) Applied: B3.1, B6.1 Date: 08/14/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory August 14, 2013 CX-010786: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.23 Date: 08/14/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 14, 2013 CX-010791: Categorical Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega Transect CX(s) Applied: A9, A11 Date: 08/14/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 14, 2013 CX-010792: Categorical Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega

80

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Laboratory November 19, 2010 CX-004489: Categorical Exclusion Determination Thai Process for Heavy Oil CX(s) Applied: B3.6 Date: 11192010 Location(s): Laramie,...

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Technology Laboratory May 10, 2010 CX-002358: Categorical Exclusion Determination Fischer-Tropsch Fuels Development CX(s) Applied: B3.6 Date: 05102010 Location(s): Grand...

82

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Laboratory April 11, 2011 CX-005602: Categorical Exclusion Determination Jet Drilling With Energized Fluids CX(s) Applied: B3.6, B3.7 Date: 04112011 Location(s):...

83

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Laboratory August 8, 2013 CX-010806: Categorical Exclusion Determination 12-Volt Start Stop Battery Development CX(s) Applied: B3.6 Date: 08082013 Location(s):...

84

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Kentucky CX(s) Applied: A9, A11, B3.6 Date: 02042011 Location(s):...

85

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2012 20, 2012 CX-008446: Categorical Exclusion Determination Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels CX(s) Applied: B3.6 Date: 06/20/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory June 20, 2012 CX-008445: Categorical Exclusion Determination Solid Oxide Fuel Cells Operating on Alternative and Renewable Fuels CX(s) Applied: B3.6 Date: 06/20/2012 Location(s): New York Offices(s): National Energy Technology Laboratory June 19, 2012 CX-008450: Categorical Exclusion Determination Building 93 Heat Exchanger Removal at National Energy Technology Laboratory Pittsburgh CX(s) Applied: B1.23, B1.31 Date: 06/19/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory June 19, 2012 CX-008449: Categorical Exclusion Determination

86

Technology Evaluation and Integration Group: Center for Transportation Technologies and Systems  

DOE Green Energy (OSTI)

Fact sheet describes the specialized work done by NREL's Technology Evaluation and Integration Group in the Center for Transportation Technologies and Systems.

Not Available

2008-08-01T23:59:59.000Z

87

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 2, 2010 CX-002250: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.1 Date: 05/12/2010 Location(s): Southlake, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 12, 2010 CX-002249: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.1 Date: 05/12/2010 Location(s): Southlake, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 12, 2010 CX-002248: Categorical Exclusion Determination Competitive Renewable Grants Program - Claflin University Solar Thermal CX(s) Applied: A1, B1.5, B5.1 Date: 05/12/2010 Location(s): Orangeburg, South Carolina

88

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2011 24, 2011 CX-005319: Categorical Exclusion Determination Alternative Fuel/Advanced Vehicle Technology - City of Raleigh CX(s) Applied: A1, B5.1 Date: 02/24/2011 Location(s): Raleigh, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 24, 2011 CX-005318: Categorical Exclusion Determination Alternative Fuel/Advanced Vehicle Technology - North Carolina State University CX(s) Applied: A1, B5.1 Date: 02/24/2011 Location(s): North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 24, 2011 CX-005317: Categorical Exclusion Determination University of Arkansas for Medical Sciences (UAMS), District Energy Service Modifications CX(s) Applied: A1, B5.1 Date: 02/24/2011

89

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2012 7, 2012 CX-009374: Categorical Exclusion Determination Development of a Carbon Dioxide Chemical Sensor for Downhole Carbon Dioxide Monitoring in Carbon Sequestration CX(s) Applied: B3.6 Date: 09/17/2012 Location(s): New Mexico Offices(s): National Energy Technology Laboratory September 17, 2012 CX-009373: Categorical Exclusion Determination Testing of an Advanced Dry Cooling Technology for Power Plants CX(s) Applied: B3.6 Date: 09/17/2012 Location(s): North Dakota Offices(s): National Energy Technology Laboratory September 17, 2012 CX-009372: Categorical Exclusion Determination Small Scale Coal-Biomass to Liquids Using Highly Selective Fischer-Tropsch Synthesis CX(s) Applied: A9 Date: 09/17/2012 Location(s): California Offices(s): National Energy Technology Laboratory

90

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 5, 2011 December 5, 2011 CX-007500: Categorical Exclusion Determination Carbon Absorber Retrofit Equipment (CARE) CX(s) Applied: B3.6 Date: 12/05/2011 Location(s): Colorado Offices(s): National Energy Technology Laboratory October 19, 2011 CX-007063: Categorical Exclusion Determination Geothermal Incentive Program CX(s) Applied: A1, A9, B5.1 Date: 10/19/2011 Location(s): Windsor, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory October 18, 2011 CX-007065: Categorical Exclusion Determination Slipstream Pilot-Scale Demonstration of a Novel Amine-Based Post-Combustion Technology for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 10/18/2011 Location(s): Wilsonville, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory

91

MIxed Waste Integrated Program (MWIP): Technology summary  

Science Conference Proceedings (OSTI)

The mission of the Mixed Waste Integrated Program (MWIP) is to develop and demonstrate innovative and emerging technologies for the treatment and management of DOE`s mixed low-level wastes (MLLW) for use by its customers, the Office of Waste Operations (EM-30) and the Office of Environmental Restoration (EM-40). The primary goal of MWIP is to develop and demonstrate the treatment and disposal of actual mixed waste (MMLW and MTRU). The vitrification process and the plasma hearth process are scheduled for demonstration on actual radioactive waste in FY95 and FY96, respectively. This will be accomplished by sequential studies of lab-scale non-radioactive testing followed by bench-scale radioactive testing, followed by field-scale radioactive testing. Both processes create a highly durable final waste form that passes leachability requirements while destroying organics. Material handling technology, and off-gas requirements and capabilities for the plasma hearth process and the vitrification process will be established in parallel.

NONE

1994-02-01T23:59:59.000Z

92

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2009 7, 2009 CX-000411: Categorical Exclusion Determination Fiber Containing Sweep Fluids for Ultra Deepwater Drilling Applications CX(s) Applied: A1, A9, B3.6 Date: 12/17/2009 Location(s): Norman, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory December 17, 2009 CX-000410: Categorical Exclusion Determination Deepwater Riserless Intervention System CX(s) Applied: A1, A9 Date: 12/17/2009 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 16, 2009 CX-000375: Categorical Exclusion Determination Hydrogen Separation for Clean Coal CX(s) Applied: A9, B3.6 Date: 12/16/2009 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory December 15, 2009 CX-000464: Categorical Exclusion Determination

93

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 17, 2013 May 17, 2013 CX-010279: Categorical Exclusion Determination Clemson University's Synchrophasor Education Engineering Program CX(s) Applied: A9 Date: 05/17/2013 Location(s): South Carolina Offices(s): National Energy Technology Laboratory May 17, 2013 CX-010278: Categorical Exclusion Determination Collaborative Industry-Academic Synchrophasor Engineering Program CX(s) Applied: A9 Date: 05/17/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory May 14, 2013 CX-010282: Categorical Exclusion Determination Low Temperature Nitrous Oxide Storage and Reduction Using Engineered Materials CX(s) Applied: B3.6 Date: 05/14/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory May 14, 2013 CX-010281: Categorical Exclusion Determination

94

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2012 25, 2012 CX-008305: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: B5.22 Date: 04/25/2012 Location(s): North Carolina Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008304: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.22 Date: 04/25/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008303: Categorical Exclusion Determination Interstate Electrification Improvement CX(s) Applied: B5.1, B5.23 Date: 04/25/2012 Location(s): Ohio Offices(s): National Energy Technology Laboratory April 25, 2012 CX-008302: Categorical Exclusion Determination Interstate Electrification Improvement

95

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 3, 2013 June 3, 2013 CX-010470: Categorical Exclusion Determination Boulder Smart Grid City - Plug-In Electric Hybrid CX(s) Applied: B5.1, B5.16 Date: 06/03/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory June 3, 2013 CX-010468: Categorical Exclusion Determination Evaluation of High Capacity Cells for Electric Vehicle Applications CX(s) Applied: B3.6 Date: 06/03/2013 Location(s): California Offices(s): National Energy Technology Laboratory June 3, 2013 CX-010467: Categorical Exclusion Determination Metal Oxide/Nitride Heterostructured Nanowire Arrays for Ultra-Sensitive and Selective Sensors CX(s) Applied: B3.6 Date: 06/03/2013 Location(s): Connecticut Offices(s): National Energy Technology Laboratory May 31, 2013 CX-010478: Categorical Exclusion Determination

96

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2012 7, 2012 CX-008473: Categorical Exclusion Determination Effect of Climate Variability & Change in Hurricane Activity in the North Atlantic CX(s) Applied: A9 Date: 06/07/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory June 7, 2012 CX-008472: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.22 Date: 06/07/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory June 4, 2012 CX-008482: Categorical Exclusion Determination Composite Riser for Ultra-Deepwater High Pressure Wells CX(s) Applied: A9, A11 Date: 06/04/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory June 4, 2012 CX-008480: Categorical Exclusion Determination Composite Riser for Ultra-Deepwater High Pressure Wells

97

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 10, 2012 January 10, 2012 CX-007615: Categorical Exclusion Determination Henderson Family Young Mens Christian Association CX(s) Applied: B5.1, B5.2 Date: 01/10/2012 Location(s): North Carolina Offices(s): National Energy Technology Laboratory January 10, 2012 CX-007614: Categorical Exclusion Determination Next Generation Ultra Lean Burn Powertrain CX(s) Applied: B3.6 Date: 01/10/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory January 10, 2012 CX-007613: Categorical Exclusion Determination Next Generation Ultra Lean Burn Powertrain CX(s) Applied: A9 Date: 01/10/2012 Location(s): California Offices(s): National Energy Technology Laboratory January 10, 2012 CX-007612: Categorical Exclusion Determination Geological Characterization of the South Georgia Rift Basin for Source

98

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-004409: Categorical Exclusion Determination Petroleum Processing Efficiency Improvement CX(s) Applied: B3.6 Date: 11/08/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004408: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11/08/2010 Location(s): Haskell County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004407: Categorical Exclusion Determination ArmorBelt Single Point Gas Lift System for Stripper Wells CX(s) Applied: B3.7 Date: 11/08/2010 Location(s): Pittsburg County, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004406: Categorical Exclusion Determination

99

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2011 20, 2011 CX-007453: Categorical Exclusion Determination Paving the Way with Propane: The AutoGas Corridor Development Program CX(s) Applied: B5.1 Date: 12/20/2011 Location(s): Georgia Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007452: Categorical Exclusion Determination Utah Expansion of Alternative Fueling Infrastructure - Electric Charging Stations CX(s) Applied: B5.23 Date: 12/20/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007451: Categorical Exclusion Determination Commuter Services Compressed Natural Gas Station CX(s) Applied: B5.1, B5.22 Date: 12/20/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 20, 2011 CX-007450: Categorical Exclusion Determination

100

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

25, 2012 25, 2012 CX-008442: Categorical Exclusion Determination Arizona Power Partners - Smart Grid Data Access from an Advanced Meter Reading Network CX(s) Applied: A9, B5.1 Date: 06/25/2012 Location(s): Arizona Offices(s): National Energy Technology Laboratory June 21, 2012 CX-008448: Categorical Exclusion Determination Hurricane Natural Gas Fueling Station CX(s) Applied: B5.1, B5.22 Date: 06/21/2012 Location(s): Utah Offices(s): National Energy Technology Laboratory June 21, 2012 CX-008447: Categorical Exclusion Determination The Shift for Good Community Program (Switch 4 Good) CX(s) Applied: A1, A8, A9, A11 Date: 06/21/2012 Location(s): Multiple Offices(s): National Energy Technology Laboratory June 21, 2012 CX-008444: Categorical Exclusion Determination Smart Cementing Materials and Drilling Muds for Real Time Monitoring of

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26, 2013 26, 2013 CX-010900: Categorical Exclusion Determination Pittsburgh Building 84 Gas Line Project CX(s) Applied: B2.5 Date: 06/26/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory June 26, 2013 CX-010898: Categorical Exclusion Determination Minnesota ethanol-85 (E85) Fueling Network Expansion Project CX(s) Applied: B5.22 Date: 06/26/2013 Location(s): Minnesota Offices(s): National Energy Technology Laboratory June 25, 2013 CX-010906: Categorical Exclusion Determination Research and Development (R&D) to Prepare and Characterize Coal/Biomass Mixtures for Direct Co-Feeding into Gasification Systems CX(s) Applied: B3.6 Date: 09/25/2013 Location(s): Alabama Offices(s): National Energy Technology Laboratory June 20, 2013 CX-010441: Categorical Exclusion Determination

102

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2010 23, 2010 CX-003463: Categorical Exclusion Determination Carbon Dioxide Capture by Sub-Ambient Membrane Operation CX(s) Applied: A9, B3.6 Date: 08/23/2010 Location(s): Newark, Delaware Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003462: Categorical Exclusion Determination Visitor's Center Conference Room CX(s) Applied: B1.7, B1.15 Date: 08/23/2010 Location(s): Morgantown,West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003461: Categorical Exclusion Determination Low-Cost Wet Gas Compressor for Stripper Gas Wells CX(s) Applied: B3.6 Date: 08/23/2010 Location(s): Cambridge, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2010 CX-003460: Categorical Exclusion Determination

103

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2012 30, 2012 CX-009314: Categorical Exclusion Determination Roof Replacement and Fall Arrest System Installation CX(s) Applied: B1.15, B2.5 Date: 08/30/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009313: Categorical Exclusion Determination Advanced Methane Hydrate Reservoir Modeling Using Rock Physics Techniques CX(s) Applied: A1, A9 Date: 08/30/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009312: Categorical Exclusion Determination Pecan Street Smart Grid Extension Service CX(s) Applied: A9 Date: 08/30/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009311: Categorical Exclusion Determination Optimization of Reservoir Storage Capacity in Different Depositional

104

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 14, 2013 August 14, 2013 CX-010791: Categorical Exclusion Determination Gulf of Mexico Miocene Carbon Dioxide (CO2) Site Characterization Mega Transect CX(s) Applied: A9, A11 Date: 08/14/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory August 13, 2013 CX-010799: Categorical Exclusion Determination Building 4 Lead Paint Abatement & Repainting CX(s) Applied: B2.1, B2.5 Date: 08/13/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory August 13, 2013 CX-010800: Categorical Exclusion Determination Hybrid Membrane/Absorption Process for Post-Combustion Carbon Dioxide (CO2) Capture CX(s) Applied: A1, A9, A11, B3.6 Date: 08/13/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory August 12, 2013 CX-010802: Categorical Exclusion Determination

105

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-002242: Categorical Exclusion Determination Micro-X-Ray Diffraction Laboratory CX(s) Applied: B3.6 Date: 05/13/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory May 13, 2010 CX-002241: Categorical Exclusion Determination Maximizing Alternative Fuel Use and Distribution in Colorado CX(s) Applied: B5.1 Date: 05/13/2010 Location(s): Aurora, Colorado Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 13, 2010 CX-002240: Categorical Exclusion Determination Heavy Oil Viscous Pressure-Volume Temperature (PVT) - Houston CX(s) Applied: B3.6 Date: 05/13/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory May 13, 2010 CX-002238: Categorical Exclusion Determination

106

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2011 13, 2011 CX-007475: Categorical Exclusion Determination North Carolina Fuel Monitoring Initiative CX(s) Applied: B5.1 Date: 12/13/2011 Location(s): North Carolina Offices(s): National Energy Technology Laboratory December 13, 2011 CX-007474: Categorical Exclusion Determination A Geomechanical Analysis of Gas Shale Fracturing and Its Containment CX(s) Applied: B3.6 Date: 12/13/2011 Location(s): Utah Offices(s): National Energy Technology Laboratory December 12, 2011 CX-007476: Categorical Exclusion Determination CEDF - Renewable Energy Program CX(s) Applied: B5.18 Date: 12/12/2011 Location(s): Vermont Offices(s): National Energy Technology Laboratory December 9, 2011 CX-007487: Categorical Exclusion Determination City of Las Vegas Electric Vehicle Program CX(s) Applied: B5.23

107

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2012 6, 2012 CX-007948: Categorical Exclusion Determination Clean Start - Development of a National Liquid Propane Refueling Network CX(s) Applied: B5.22 Date: 02/06/2012 Location(s): California, Arizona Offices(s): National Energy Technology Laboratory February 1, 2012 CX-007952: Categorical Exclusion Determination Esperanza Roof Replacement CX(s) Applied: A1, B2.1, B5.1 Date: 02/01/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory February 1, 2012 CX-007951: Categorical Exclusion Determination Puget Sound Clean Cities Petroleum Reduction Project CX(s) Applied: B5.23 Date: 02/01/2012 Location(s): Washington Offices(s): National Energy Technology Laboratory February 1, 2012 CX-007950: Categorical Exclusion Determination Environmental Protection Agency - 5th International Environmentally

108

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28, 2011 28, 2011 CX-006119: Categorical Exclusion Determination Autonomous Inspection of Subsea Facilities (Phase II) CX(s) Applied: B3.6 Date: 06/28/2011 Location(s): Port Fourchon, Louisiana Office(s): Fossil Energy, National Energy Technology Laboratory June 28, 2011 CX-006117: Categorical Exclusion Determination Flooring Improvements CX(s) Applied: B2.1, B2.5 Date: 06/28/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 23, 2011 CX-006129: Categorical Exclusion Determination Optical Sensors Laboratory CX(s) Applied: B3.6 Date: 06/23/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 23, 2011 CX-006127: Categorical Exclusion Determination Wisconsin Biofuels Retail Availability Improvement Network (BRAIN) -

109

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 28, 2010 June 28, 2010 CX-002841: Categorical Exclusion Determination Texas Propane Fleet Pilot Program (Summary Categorical Exclusion) CX(s) Applied: A7, B5.1 Date: 06/28/2010 Location(s): Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 25, 2010 CX-002795: Categorical Exclusion Determination Market Transformation and Technology Deployment - Renewable Energy Projects CX(s) Applied: B5.1 Date: 06/25/2010 Location(s): Perkinston, Mississippi Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 25, 2010 CX-002794: Categorical Exclusion Determination Advanced Implementation of A123's Community Energy Storage (CES) System for Grid Support CX(s) Applied: B4.6, B5.1 Date: 06/25/2010 Location(s): Detroit, Michigan

110

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18, 2011 18, 2011 CX-005626: Categorical Exclusion Determination North Carolina Green Business Fund ? Kyma Technologies CX(s) Applied: A1, B1.4, B1.5, B5.1 Date: 04/18/2011 Location(s): North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 18, 2011 CX-005625: Categorical Exclusion Determination Grants for State-Sponsored Renewable Energy and Energy Efficiency Projects - New Jersey Transit Solar CX(s) Applied: A9, A11, B5.1 Date: 04/18/2011 Location(s): Kearny, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 15, 2011 CX-005629: Categorical Exclusion Determination North Carolina Green Business Fund ? Storms Farms CX(s) Applied: A1, B1.15, B4.11, B5.1 Date: 04/15/2011

111

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-002514: Categorical Exclusion Determination State Energy Program - Clean Energy Property Rebate Program CX(s) Applied: A9, B5.1 Date: 05/28/2010 Location(s): Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010 CX-002513: Categorical Exclusion Determination Ohio Advanced Transportation Partnership CX(s) Applied: B5.1 Date: 05/28/2010 Location(s): Ohio Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010 CX-002511: Categorical Exclusion Determination Rhode Island Green Public Buildings Initiative CX(s) Applied: A9, B5.1 Date: 05/28/2010 Location(s): Rhode Island Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010

112

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2010 10, 2010 CX-003879: Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Michigan Green Fleets CX(s) Applied: A7 Date: 09/10/2010 Location(s): Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 10, 2010 CX-003878: Categorical Exclusion Determination Recovery Act ? Clean Energy Coalition Michigan Green Fleets CX(s) Applied: B5.1 Date: 09/10/2010 Location(s): Melvindale, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 10, 2010 CX-003877: Categorical Exclusion Determination Hybrid Membrane/Absorption Process for Post-Combustion Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 09/10/2010 Location(s): Des Plaines, Illinois Office(s): Fossil Energy, National Energy Technology Laboratory

113

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2011 29, 2011 CX-005666: Categorical Exclusion Determination DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: A1, B5.1 Date: 04/29/2011 Location(s): Marrow, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 29, 2011 CX-005664: Categorical Exclusion Determination Development and Testing of Compact Heat Exchange Reactors (CHER) for Synthesis of Liquid Fuels CX(s) Applied: B3.6 Date: 04/29/2011 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory April 29, 2011 CX-005663: Categorical Exclusion Determination Vortex Tube Project Decommissioning Project CX(s) Applied: B3.6 Date: 04/29/2011 Location(s): Morgantown, West Virginia

114

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 25, 2013 April 25, 2013 CX-010181: Categorical Exclusion Determination Building 26 Air Handlers and In-Line Return Fans Replacement CX(s) Applied: B1.3, B1.22, B.1.31 Date: 04/25/2013 Location(s): West Virginia Offices(s): National Energy Technology Laboratory April 25, 2013 CX-010180: Categorical Exclusion Determination A Universal Combustion Model to Predict Premixed and Non-Premixed Turbulent Flames in Compression CX(s) Applied: A9 Date: 04/25/2013 Location(s): Other Location Offices(s): National Energy Technology Laboratory April 25, 2013 CX-010179: Categorical Exclusion Determination Modeling and Experimental Studies of Controllable Cavity Turbulent Jet Ignition CX(s) Applied: B3.6 Date: 04/25/2013 Location(s): Michigan Offices(s): National Energy Technology Laboratory

115

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11, 2011 11, 2011 CX-005223: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 02/11/2011 Location(s): Raleigh, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 11, 2011 CX-005222: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 02/11/2011 Location(s): Youngsville, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 11, 2011 CX-005229: Categorical Exclusion Determination Field Testing and Diagnostics of Radial-Jet Well-Stimulation for Enhanced Oil Reserve from Marginal Reserves CX(s) Applied: B3.6 Date: 02/11/2011 Location(s): Socorro, New Mexico Office(s): Fossil Energy, National Energy Technology Laboratory

116

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2011 7, 2011 CX-006051: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A1 Date: 06/07/2011 Location(s): Omaha, Nebraska Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 6, 2011 CX-006055: Categorical Exclusion Determination Installation and Abandonment of Monitoring Wells CX(s) Applied: B3.1, B6.1 Date: 06/06/2011 Location(s): Albany, Oregon Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2011 CX-005949: Categorical Exclusion Determination Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region- TerraTek CX(s) Applied: B3.6 Date: 06/04/2011 Location(s): Salt Lake City, Utah Office(s): Fossil Energy, National Energy Technology Laboratory

117

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2013 , 2013 CX-010816: Categorical Exclusion Determination Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion and Emissions in Advanced Gas... CX(s) Applied: A9, B3.6 Date: 08/01/2013 Location(s): New Jersey Offices(s): National Energy Technology Laboratory August 1, 2013 CX-010815: Categorical Exclusion Determination Effects of Exhaust Gas Recirculation (EGR) on Turbulent Combustion and Emissions in Advanced Gas... CX(s) Applied: A9, B3.6 Date: 08/01/2013 Location(s): Indiana Offices(s): National Energy Technology Laboratory July 30, 2013 CX-010826: Categorical Exclusion Determination Evaluation of Flow and Heat Transfer Inside Lean Pre-Mixed Combustor Systems under Reacting Flow Conditions CX(s) Applied: B3.6 Date: 07/30/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

118

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2011 , 2011 CX-005342: Categorical Exclusion Determination Installation of Impalement Protection Over Existing Pointed Air Terminals at National Energy Technology Laboratory CX(s) Applied: B2.5 Date: 03/01/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory March 1, 2011 CX-005341: Categorical Exclusion Determination Solid State Energy Conversion Alliance Coal-Based Systems - FuelCell Energy CX(s) Applied: A9, B3.6 Date: 03/01/2011 Location(s): Alberta, Canada Office(s): Fossil Energy, National Energy Technology Laboratory March 1, 2011 CX-005340: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7 Date: 03/01/2011 Location(s): Greene, Missouri Office(s): Energy Efficiency and Renewable Energy, National Energy

119

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 CX-006451: Categorical Exclusion Determination Research and Development of an Advanced Low Temperature Heat Recovery Absorption Chiller CX(s) Applied: B3.6 Date: 08/03/2011 Location(s): Park Forest, Illinois Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 3, 2011 CX-006448: Categorical Exclusion Determination Carolina Blue Skies Initiative CX(s) Applied: A1, B5.1 Date: 08/03/2011 Location(s): Knightdale, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 3, 2011 CX-006446: Categorical Exclusion Determination DeKalb County/Metropolitan Atlanta Alternative Fuel and Advanced Technology Vehicle Project CX(s) Applied: A1, B5.1 Date: 08/03/2011 Location(s): Morrow, Georgia

120

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

27, 2010 27, 2010 CX-002519: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: A7, B5.1 Date: 05/27/2010 Location(s): Dallas, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010 CX-002518: Categorical Exclusion Determination Gadsden State Community College Green Operations Plan CX(s) Applied: B5.1 Date: 05/27/2010 Location(s): Gadsen, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010 CX-002517: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: A7, B5.1 Date: 05/27/2010 Location(s): Dallas, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31, 2010 31, 2010 CX-001453: Categorical Exclusion Determination North Central Texas Alternative Fuel and Advanced Technology Investments CX(s) Applied: B5.1 Date: 03/31/2010 Location(s): Fort Worth, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 31, 2010 CX-001452: Categorical Exclusion Determination Development of Advanced Reservoir Characterization Techniques Date: 03/31/2010 Location(s): Grand Forks, North Dakota Office(s): Fossil Energy, National Energy Technology Laboratory March 30, 2010 CX-001462: Categorical Exclusion Determination High Performance Buildings - United Teen Equality Center CX(s) Applied: B1.15, B1.24, B2.5, A9, A11, B5.1 Date: 03/30/2010 Location(s): Lowell, Massachusetts Office(s): Energy Efficiency and Renewable Energy, National Energy

122

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2012 0, 2012 CX-009354: Categorical Exclusion Determination High Resolution 3D Laser Imaging for Inspection, Maintenance, Repair and Operations - Phase II CX(s) Applied: A9, A11, B3.6 Date: 09/20/2012 Location(s): Colorado Offices(s): National Energy Technology Laboratory September 20, 2012 CX-009353: Categorical Exclusion Determination The Sustainability Workshop (Energy Regional Innovation Cluster) CX(s) Applied: A9 Date: 09/20/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 20, 2012 CX-009352: Categorical Exclusion Determination Navy Yard Network Operations Center (Energy Regional Innovation Cluster) CX(s) Applied: A1, A9, B2.2 Date: 09/20/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory September 19, 2012

123

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5, 2010 5, 2010 CX-004434: Categorical Exclusion Determination Geothermal Incentive Program CX(s) Applied: B5.1 Date: 11/05/2010 Location(s): Stonington, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 5, 2010 CX-004400: Categorical Exclusion Determination Repair Brick Support Plates on Connecting Bridges - Building 58 CX(s) Applied: B2.3 Date: 11/05/2010 Location(s): Allegheny City, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory November 5, 2010 CX-004399: Categorical Exclusion Determination Mississippi Energy Efficiency Appliance Rebate Program CX(s) Applied: B5.1 Date: 11/05/2010 Location(s): Mississippi Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

124

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2012 0, 2012 CX-009310: Categorical Exclusion Determination Optimization of Reservoir Storage Capacity in Different Depositional Environments (Rock Sampling) CX(s) Applied: B3.1 Date: 08/30/2012 Location(s): Multiple Offices(s): National Energy Technology Laboratory August 30, 2012 CX-009309: Categorical Exclusion Determination Unraveling the Role of Transport, Electrocatalysis, and Surface Science in the SOFC Cathode ORR CX(s) Applied: B3.6 Date: 08/30/2012 Location(s): Multiple Offices(s): National Energy Technology Laboratory August 29, 2012 CX-008916: Categorical Exclusion Determination Development of a Scientific Plan for a Hydrate-Focused Marine Drilling, Logging and Coring Program CX(s) Applied: A1, A9 Date: 08/29/2012 Location(s): Washington, DC Offices(s): National Energy Technology Laboratory

125

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9, 2010 9, 2010 CX-003837: Categorical Exclusion Determination Simulation of Shale Gas Reservoirs Incorporating the Correct Physics for Capillarity CX(s) Applied: A9 Date: 09/09/2010 Location(s): Norman, Oklahoma Office(s): Fossil Energy, National Energy Technology Laboratory September 9, 2010 CX-003836: Categorical Exclusion Determination Large Project Impact Fund Competitive Grants - Colby College CX(s) Applied: B1.15, B1.24, B2.2, B5.1 Date: 09/09/2010 Location(s): Waterville, Maine Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 9, 2010 CX-003835: Categorical Exclusion Determination SmartRam Piston Pump CX(s) Applied: B3.6 Date: 09/09/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory

126

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2010 4, 2010 CX-003817: Categorical Exclusion Determination Appliance Technology Evaluation Center (ATEC)- Modification CX(s) Applied: B3.6 Date: 09/14/2010 Location(s): Morgantown, West Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 14, 2010 CX-003816: Categorical Exclusion Determination Recovery Act: San Bernardino Associated Government Natural Gas Truck Project CX(s) Applied: B5.1 Date: 09/14/2010 Location(s): Rancho Dominguez, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 14, 2010 CX-003815: Categorical Exclusion Determination Hardin County General Hospital Energy Efficiency Upgrades CX(s) Applied: B1.3, B2.2, B2.5, B5.1 Date: 09/14/2010 Location(s): Rosiclare, Illinois

127

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 10, 2013 May 10, 2013 CX-010285: Categorical Exclusion Determination Advancing Low Temperature Combustion and Lean Burning Engines for Light-and Heavy-Duty Vehicles CX(s) Applied: A9, B3.6 Date: 05/10/2013 Location(s): CX: none Offices(s): National Energy Technology Laboratory May 10, 2013 CX-010284: Categorical Exclusion Determination Construction of an Autogas Refueling Network CX(s) Applied: B5.22 Date: 05/10/2013 Location(s): West Virginia Offices(s): National Energy Technology Laboratory May 8, 2013 CX-010287: Categorical Exclusion Determination Understanding Nitrous Oxide Selective Catalytic Reduction Mechanism and Activity on Copper/Chabazite Structures throughout the Catalyst Life CX(s) Applied: A9, B3.6 Date: 05/08/2013 Location(s): CX: none Offices(s): National Energy Technology Laboratory

128

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2010 19, 2010 CX-004491: Categorical Exclusion Determination Site Characterization for Carbon Dioxide Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama CX(s) Applied: A9, B3.1 Date: 11/19/2010 Location(s): Alabama Office(s): Fossil Energy, National Energy Technology Laboratory November 19, 2010 CX-004490: Categorical Exclusion Determination Utah Expansion Compressed Natural Gas Refueling Sites CX(s) Applied: B5.1 Date: 11/19/2010 Location(s): Salt Lake City, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 19, 2010 CX-004489: Categorical Exclusion Determination Thai Process for Heavy Oil CX(s) Applied: B3.6 Date: 11/19/2010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory

129

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18, 2010 18, 2010 CX-004473: Categorical Exclusion Determination Deepwater Subsea Test Tree and Intervention Riser System CX(s) Applied: A9, A11 Date: 11/18/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 18, 2010 CX-004472: Categorical Exclusion Determination Creating Fractures Past Damage More Effectively With Less Environmental Damage CX(s) Applied: A9, B3.6 Date: 11/18/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 18, 2010 CX-004471: Categorical Exclusion Determination Creating Fractures Past Damage More Effectively With Less Environmental Damage CX(s) Applied: A9, B3.6 Date: 11/18/2010 Location(s): Bainbridge, Georgia Office(s): Fossil Energy, National Energy Technology Laboratory

130

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

28, 2013 28, 2013 CX-010899: Categorical Exclusion Determination Pittsburgh Building 65 and Building 74 Loading Dock Railing Project CX(s) Applied: B2.1, B2.3 Date: 06/28/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory June 27, 2013 CX-010897: Categorical Exclusion Determination Data Mining and Playback of Hybrid Synchrophasor Data for Research and Education CX(s) Applied: A9 Date: 06/27/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory June 27, 2013 CX-010896: Categorical Exclusion Determination California Low Carbon Fuels Infrastructure Investment Initiative (SUMMARY Categorical Exclusion) CX(s) Applied: B5.22 Date: 06/27/2013 Location(s): California Offices(s): National Energy Technology Laboratory June 27, 2013

131

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2010 4, 2010 CX-002648: Categorical Exclusion Determination Surface Force Measurements Between Hydrophobic Surfaces CX(s) Applied: B3.6 Date: 06/04/2010 Location(s): Blacksburg, Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2010 CX-002647: Categorical Exclusion Determination Development of Biochemical Techniques for the Extraction of Mercury from Waste Streams Containing Coal CX(s) Applied: B3.6 Date: 06/04/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory June 4, 2010 CX-002646: Categorical Exclusion Determination Polymer Nanocomposites for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 06/04/2010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory

132

Integrated Technology of Decoupling BST Thin Film Capacitors  

Science Conference Proceedings (OSTI)

Jun 16, 2007 ... The integration technology of decoupling capacitors, which contain multi-layered Cu wiring and Barium Strontium Titanate (BST) thin film ...

133

Teacher beliefs and technology integration practices: A critical relationship  

Science Conference Proceedings (OSTI)

Early studies indicated that teachers' enacted beliefs, particularly in terms of classroom technology practices, often did not align with their espoused beliefs. Researchers concluded this was due, at least in part, to a variety of external barriers ... Keywords: Inservice teacher, Teacher professional development, Teacher technology use, Technology integration, Technology use

Peggy A. Ertmer; Anne T. Ottenbreit-Leftwich; Olgun Sadik; Emine Sendurur; Polat Sendurur

2012-09-01T23:59:59.000Z

134

Integration of building envelope and services via control technologies  

Science Conference Proceedings (OSTI)

The last decade offered the foundation of several seminal concepts, which although natively composite and complex, amply demonstrate the potential of 21st century technology to affect important societal trends. Among notable candidates, the convergence ... Keywords: A/V ratio, EIB- KONNEX technology, bioclimatic architecture, bits, building envelope, building facades, bytes, communication protocols, control technologies, data telegram, integration, power line technology, services

Chris J. Koinakis; John K. Sakellaris

2009-07-01T23:59:59.000Z

135

Integrity, Reliability and Security: The Role of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

F. Lawson F. Lawson Director, Strategic Center for Natural Gas & Oil National Energy Technology Laboratory General session Natural Gas Technologies Conference 2005 Cosponsors: NETL/Gas Technology Institute Orlando, Florida January 31, 2005 Integrity, Reliability and Security: The Role of Technology Introduction Integrity, reliability, and security encompass all the attributes we want-indeed, need-from our natural gas industry. We need integrity in physical transportation and storage systems, reliability in operating systems, and security in supplies and delivery systems. This conference is the most comprehensive forum for addressing new and evolving technologies impacting all these needs. The conference scope runs the gamut: from finding and producing to storing,

136

Program on Technology Innovation: Integrated Generation Technology Options  

Science Conference Proceedings (OSTI)

This report provides a condensed, public-domain reference for current cost, performance, and technology status data for eight central-station power generation technologies. In this report, central station is defined as >100 MW with the exception of some renewable-resource-based technologies. In addition to fossil- and nuclear-based technologies, four renewable-resource-based technologies are included. This report addresses the principal technology options for utility-scale power generation.

2011-06-30T23:59:59.000Z

137

EA-1939: Reese Technology Center Wind and Battery Integration Project,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Reese Technology Center Wind and Battery Integration 9: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX SUMMARY This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply. Under the proposed action, DOE's Office of Electricity Delivery and Energy Reliability would provide cost shared funding for the project through American Reinvestment and Recovery Act

138

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

362: Categorical Exclusion Determination 362: Categorical Exclusion Determination Heavy-Duty Liquified Natural Gas Drayage Truck Project CX(s) Applied: A9 Date: 12/11/2009 Location(s): California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 11, 2009 CX-000363: Categorical Exclusion Determination United Parcel Service (UPS) Ontario-Las Vegas Liquified Natural Gas Corridor CX(s) Applied: A9 Date: 12/11/2009 Location(s): Diamond Bar, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 11, 2009 CX-000415: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s) Applied: A9, A11 Date: 12/11/2009 Location(s): Socorro, New Mexico

139

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 8, 2011 CX-006915: Categorical Exclusion Determination Compressed Natural Gas/Infrastructure Development CX(s) Applied: B5.1 Date: 09/28/2011 Location(s): Ogden, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 28, 2011 CX-006914: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: B5.1 Date: 09/28/2011 Location(s): Kansas City, Missouri Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 28, 2011 CX-006912: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 09/28/2011 Location(s): Kansas City, Kansas Office(s): Energy Efficiency and Renewable Energy September 28, 2011 CX-006967: Categorical Exclusion Determination

140

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

421: Categorical Exclusion Determination 421: Categorical Exclusion Determination Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon Dioxide CX(s) Applied: B3.1, A9 Date: 12/11/2009 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-000420: Categorical Exclusion Determination Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon Dioxide CX(s) Applied: B3.1, A9 Date: 12/11/2009 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-000419: Categorical Exclusion Determination Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon Dioxide

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Program on Technology Innovation: Integrated Generation Technology Options 2012  

Science Conference Proceedings (OSTI)

This report provides a condensed, public-domain reference for 2012 cost, performance, and technology status data for 10 central-station power-generation technologies, including fossil-, nuclear-, and renewable resource–based technologies. In this report, central station is defined as > 100 MW with the exception of some renewable resource–based technologies. This report addresses the principal technology options for utility-scale power ...

2013-02-19T23:59:59.000Z

142

Fuel Cell Technologies Office: Systems Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Systems Integration The breadth and complexity of the overall Hydrogen and Fuel Cells Program RD&D effort, as well as the interaction of program elements, requires an integrated...

143

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2009 10, 2009 CX-000336: Categorical Exclusion Determination Carolinas Blue Skies & Green Jobs Initiative CX(s) Applied: A1, A9 Date: 12/10/2009 Location(s): Durham, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000335: Categorical Exclusion Determination Carolinas Blue Skies & Green Jobs Initiative CX(s) Applied: A1, A9 Date: 12/10/2009 Location(s): Asheville, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000334: Categorical Exclusion Determination Carolinas Blue Skies & Green Jobs Initiative CX(s) Applied: A1, A9 Date: 12/10/2009 Location(s): Raleigh, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy

144

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 27, 2010 January 27, 2010 CX-000997: Categorical Exclusion Determination Biodiesel Infrastructure Project (PrairieFire) CX(s) Applied: A1, A9, B5.1 Date: 01/27/2010 Location(s): Monona, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 27, 2010 CX-000998: Categorical Exclusion Determination Biodiesel Infrastructure Project (Coulee) CX(s) Applied: A1, A9, B5.1 Date: 01/27/2010 Location(s): Blair, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 27, 2010 CX-000999: Categorical Exclusion Determination Biodiesel In-line Blending Project (Innovation) CX(s) Applied: A1, A9, B5.1 Date: 01/27/2010 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy

145

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 1, 2010 September 1, 2010 CX-003669: Categorical Exclusion Determination Green Energy Works! Targeted Grants - Ecogy Pennsylvania Systems LLC- Longwood Garden Solar CX(s) Applied: A9, A11, B5.1 Date: 09/01/2010 Location(s): Chester County, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 31, 2010 CX-003665: Categorical Exclusion Determination High Performance Buildings Program - Hawthorne Hotel CX(s) Applied: B5.1 Date: 08/31/2010 Location(s): Salem, Massachusetts Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 30, 2010 CX-003664: Categorical Exclusion Determination High Performance Sustainable Energy Research Laboratory CX(s) Applied: A11, B5.1 Date: 08/30/2010 Location(s): Lexington, Kentucky

146

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2010 16, 2010 CX-003449: Categorical Exclusion Determination Energy Efficiency through Clean Combined Heat and Power (CHP) CX(s) Applied: A9, A11, B1.24, B2.2, B5.1 Date: 08/16/2010 Location(s): New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 16, 2010 CX-003448: Categorical Exclusion Determination Curriculum for Commissioning Energy Efficient Buildings CX(s) Applied: A1, A11 Date: 08/16/2010 Location(s): Portland, Oregon Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 16, 2010 CX-003443: Categorical Exclusion Determination Post-Combustion Carbon Dioxide Capture for Existing Post-Combustion Boilers by Self-Concentrating Amine Absorbent CX(s) Applied: A9, A11, A14

147

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10, 2009 10, 2009 CX-000369: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: A9, A11 Date: 12/10/2009 Location(s): Rockaway, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000368: Categorical Exclusion Determination New York State Alternative Fuel Vehicle & Infrastructure Deployment CX(s) Applied: A9, A11 Date: 12/10/2009 Location(s): Albany, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 10, 2009 CX-000367: Categorical Exclusion Determination Long Island Regional Energy Collaborative CX(s) Applied: A9, A11 Date: 12/10/2009 Location(s): Bay Shore, New York

148

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2010 29, 2010 CX-003327: Categorical Exclusion Determination Geological and Geotechnical Site Investigations for the Design of a Carbon Dioxide Rich Flue Gas Direct Injection CX(s) Applied: A8, A9, B3.1, B3.6 Date: 07/29/2010 Location(s): Fairbanks, Alaska Office(s): Fossil Energy, National Energy Technology Laboratory July 29, 2010 CX-003326: Categorical Exclusion Determination Advanced Sequential Dual Evaporator Cycle for Refrigerators CX(s) Applied: B3.6 Date: 07/29/2010 Location(s): Evansville, Indiana Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 29, 2010 CX-003325: Categorical Exclusion Determination Advanced Sequential Dual Evaporator Cycle for Refrigerators CX(s) Applied: B3.6 Date: 07/29/2010 Location(s): Benton Harbor, Michigan

149

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 18, 2010 January 18, 2010 CX-000707: Categorical Exclusion Determination Florida - Clean Fuel LLC (Shovel Ready Grant project) State Energy Program CX(s) Applied: B1.24, B1.31, B2.2, B2.5, B5.1 Date: 01/18/2010 Location(s): Lakeland, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 18, 2010 CX-000731: Categorical Exclusion Determination Building 4 Equipment Decommissioning CX(s) Applied: B3.6 Date: 01/18/2010 Location(s): Albany, Oregon Office(s): Fossil Energy, National Energy Technology Laboratory January 15, 2010 CX-000704: Categorical Exclusion Determination Electric Drive Semiconductor Manufacturing Center - Advanced Battery Program CX(s) Applied: B1.24, B1.31 Date: 01/15/2010 Location(s): Youngwood, Pennsylvania

150

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 21, 2011 January 21, 2011 CX-005058: Categorical Exclusion Determination Improving Reservoir Contact for Increased Production and Recovery of Gas Shale Reservoirs CX(s) Applied: B3.6 Date: 01/21/2011 Location(s): Salt Lake City, Utah Office(s): Fossil Energy, National Energy Technology Laboratory January 20, 2011 CX-005057: Categorical Exclusion Determination Area of Interest 1, Carbon Dioxide at the Interface: Nature and Dynamics of the Reservoir/Caprock Contact and Implications for Carbon Storage Performance CX(s) Applied: A9, B3.1 Date: 01/20/2011 Location(s): Eau Claire, Wisconsin Office(s): Fossil Energy, National Energy Technology Laboratory January 20, 2011 CX-005056: Categorical Exclusion Determination Area of Interest 1, Carbon Dioxide at the Interface: Nature and Dynamics of

151

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2010 7, 2010 CX-003795: Categorical Exclusion Determination Recovery Act: San Bernardino Associated Government Natural Gas Truck Project CX(s) Applied: B5.1 Date: 09/17/2010 Location(s): Rancho Cucamonga, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 17, 2010 CX-003793: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: B5.1 Date: 09/17/2010 Location(s): Bastrop, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 17, 2010 CX-003790: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: B5.1 Date: 09/17/2010 Location(s): Taylor, Texas Office(s): Energy Efficiency and Renewable Energy, National Energy

152

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

12, 2010 12, 2010 CX-000782: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: B5.1 Date: 02/12/2010 Location(s): Camden, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 12, 2010 CX-000781: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: A7 Date: 02/12/2010 Location(s): New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 10, 2010 CX-000775: Categorical Exclusion Determination Site Characterization for Carbon Dioxide Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama (Drill)

153

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-003928: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets CX(s) Applied: A9, A11, B5.1 Date: 09/23/2010 Location(s): Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 23, 2010 CX-003927: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets in Target Area (Kitsap County) CX(s) Applied: A9, A11, B5.1 Date: 09/23/2010 Location(s): Washington Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 23, 2010 CX-003926: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action CX(s) Applied: A9, A11, B5.1

154

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2011 0, 2011 CX-007030: Categorical Exclusion Determination Chemistry of Cathode Surfaces: Fundamental Investigation and Tailoring of Electronic Behavior CX(s) Applied: B3.6 Date: 09/20/2011 Location(s): Cambridge, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory September 19, 2011 CX-007055: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Pawcatuck, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 19, 2011 CX-007052: Categorical Exclusion Determination Silicon-Nanowire-Based Lithium-Ion Batteries with Doubling Energy Density CX(s) Applied: B3.6 Date: 09/19/2011 Location(s): Menlo Park, California

155

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 18, 2013 September 18, 2013 CX-010933: Categorical Exclusion Determination High Energy Density Lithium (Li)-ion Cells for Electric Vehicles (EV) Based on Novel, High Voltage Cathode Material Systems CX(s) Applied: B3.6 Date: 09/18/2013 Location(s): California Offices(s): National Energy Technology Laboratory September 18, 2013 CX-010932: Categorical Exclusion Determination High Energy Density Lithium (Li)-ion Cells for Electric Vehicles (EV) Based on Novel, High Voltage Cathode Material Systems CX(s) Applied: B3.6 Date: 09/18/2013 Location(s): California Offices(s): National Energy Technology Laboratory August 23, 2013 CX-010779: Categorical Exclusion Determination Predictive Large Eddy Simulation (LES) Modeling and Validation for High-Pressure Turbulent Flames and Flashback in Hydrogen-Enriched Gas

156

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2011 22, 2011 CX-005287: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure Project: Essex Company Resource Recovery Facility CX(s) Applied: B5.1 Date: 02/22/2011 Location(s): Newark, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 18, 2011 CX-005283: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.1 Date: 02/18/2011 Location(s): Miami, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 18, 2011 CX-005282: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green

157

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 2, 2010 CX-001674: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Veolia) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1 Date: 04/22/2010 Location(s): Veolia, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 22, 2010 CX-001672: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Miami) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1 Date: 04/22/2010 Location(s): Miami, Florida Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 22, 2010 CX-001670: Categorical Exclusion Determination Compressed Natural Gas Fueling Infrastructure Program (Florida) CX(s) Applied: B1.24, B1.31, B2.5, A11, B5.1

158

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2010 20, 2010 CX-003720: Categorical Exclusion Determination Recovery Act - Los Angeles Department of Water and Power Smart Grid Regional Demonstration Project CX(s) Applied: A9, A11, B3.6, B4.4, B5.1 Date: 09/20/2010 Location(s): Los Angeles County, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory September 20, 2010 CX-003727: Categorical Exclusion Determination State Energy Program: Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action CX(s) Applied: A9, A11, B5.1 Date: 09/20/2010 Location(s): Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 20, 2010 CX-003726: Categorical Exclusion Determination Phipps Conservatory and Botanical Gardens Waste-to-Energy Project

159

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2009 20, 2009 CX-000438: Categorical Exclusion Determination A Modular Curriculum for Training University Students in Industry Standard Sequestration and Enhanced Oil Recovery Methods CX(s) Applied: A9, B3.8 Date: 11/20/2009 Location(s): Odessa, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 20, 2009 CX-000437: Categorical Exclusion Determination A Modular Curriculum for Training University Students in Industry Standard Sequestration and Enhanced Oil Recovery Methods CX(s) Applied: A9, B3.8 Date: 11/20/2009 Location(s): Odessa, Texas Office(s): Fossil Energy, National Energy Technology Laboratory November 20, 2009 CX-000373: Categorical Exclusion Determination Measurements of 222 Radon, 220 Radon, and Carbon Dioxide Emissions in Natural Carbon Dioxide Fields in Wyoming: Monitoring, Verification, and

160

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2010 6, 2010 CX-001813: Categorical Exclusion Determination Lean Gasoline System Development for Fuel Efficient Small Cars (Milford) CX(s) Applied: B3.6, A9 Date: 04/26/2010 Location(s): Milford, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 26, 2010 CX-001819: Categorical Exclusion Determination Lean Gasoline System Development for Fuel Efficient Small Cars (Pontiac) CX(s) Applied: B3.6, A9 Date: 04/26/2010 Location(s): Pontiac, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 26, 2010 CX-001817: Categorical Exclusion Determination Lean Gasoline System Development for Fuel Efficient Small Cars (Warren) CX(s) Applied: B3.6, A9 Date: 04/26/2010 Location(s): Warren, Michigan

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2010 1, 2010 CX-002341: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project - Bloomfield CX(s) Applied: B5.1 Date: 05/11/2010 Location(s): Bloomfield, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2010 CX-002340: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project - Bridgeport CX(s) Applied: B5.1 Date: 05/11/2010 Location(s): Bridgeport, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2010 CX-002338: Categorical Exclusion Determination Connecticut Clean Cities Future Fuels Project - Hartford CX(s) Applied: B5.1 Date: 05/11/2010 Location(s): Hartford, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy

162

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 31, 2011 March 31, 2011 CX-005483: Categorical Exclusion Determination National Biodiesel Foundation: Biodiesel Terminal Installation Project CX(s) Applied: B5.1 Date: 03/31/2011 Location(s): Port Chester, New York Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 31, 2011 CX-005482: Categorical Exclusion Determination Portable Raman Gas Composition Monitor CX(s) Applied: B3.6 Date: 03/31/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory March 29, 2011 CX-005481: Categorical Exclusion Determination Grant for State Sponsored Renewable Energy and Energy Efficiency Projects - Montclair State University Solar Farm CX(s) Applied: B5.1 Date: 03/29/2011 Location(s): Montclair, New Jersey

163

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14, 2011 14, 2011 CX-005037: Categorical Exclusion Determination Field Test of Carbon Dioxide-Methane Method for Production of Gas Hydrate CX(s) Applied: B3.7 Date: 01/14/2011 Location(s): North Slope Borough, Alaska Office(s): Fossil Energy, National Energy Technology Laboratory January 13, 2011 CX-004991: Categorical Exclusion Determination Ohio Advanced Transportation Partnership (OATP) - Electric Vehicle Charging Infrastructure Installation CX(s) Applied: B5.1 Date: 01/13/2011 Location(s): Hamilton, Ohio Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 13, 2011 CX-004990: Categorical Exclusion Determination City of Cerritos, Photovoltaic System at the Cerritos Corporate Yard CX(s) Applied: B5.1 Date: 01/13/2011 Location(s): Cerritos, California

164

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

24, 2010 24, 2010 CX-001214: Categorical Exclusion Determination Kilby Correctional Facility Boiler Replacement CX(s) Applied: B5.1 Date: 03/24/2010 Location(s): Mount Meigs, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 24, 2010 CX-001213: Categorical Exclusion Determination Decatur Work Release 10 Kilowatt Photovoltaic Array CX(s) Applied: B5.1 Date: 03/24/2010 Location(s): Decatur, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 24, 2010 CX-001206: Categorical Exclusion Determination Tehachapi Wind Energy Storage CX(s) Applied: A9, B1.13, B3.6, B4.4, B4.6, B5.1 Date: 03/24/2010 Location(s): Kern County, California Office(s): Electricity Delivery and Energy Reliability, National Energy

165

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1, 2010 1, 2010 CX-001158: Categorical Exclusion Determination An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins CX(s) Applied: A9 Date: 03/11/2010 Location(s): Bloomington, Indiana Office(s): Fossil Energy, National Energy Technology Laboratory March 11, 2010 CX-001153: Categorical Exclusion Determination Roll-to-Roll Solution-Processable Small-Molecule Organic Light-Emitting Diodes (Wilmington) Date: 03/11/2010 Location(s): Wilmington, Delaware Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 11, 2010 CX-001152: Categorical Exclusion Determination Roll-to-Roll Solution-Processable Small-Molecule Organic Light-Emitting Diodes (Niskayuna) CX(s) Applied: B3.6

166

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

, 2010 , 2010 CX-001506: Categorical Exclusion Determination State Energy Program - Renewable Energy Grants CX(s) Applied: A11, B5.1 Date: 04/01/2010 Location(s): Conley, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 1, 2010 CX-001510: Categorical Exclusion Determination State Energy Program - Clean Energy Property Rebate CX(s) Applied: A11, B5.1 Date: 04/01/2010 Location(s): Valdosta, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory April 1, 2010 CX-001504: Categorical Exclusion Determination Ocean Wind Energy Analysis CX(s) Applied: B3.1, A9, A11 Date: 04/01/2010 Location(s): Chapel Hill, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy

167

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2010 22, 2010 CX-000743: Categorical Exclusion Determination Site Characterization for Carbon Dioxide Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama CX(s) Applied: A9, B3.1 Date: 01/22/2010 Location(s): Tuscaloosa, Alabama Office(s): Fossil Energy, National Energy Technology Laboratory January 21, 2010 CX-000708: Categorical Exclusion Determination Utah All Inclusive Statewide Alternative Fuels Transportation and Education Outreach Project CX(s) Applied: B5.1 Date: 01/21/2010 Location(s): Murray, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory January 18, 2010 CX-000705: Categorical Exclusion Determination Florida - Sunshine State Buildings Parking Lot Canopies - State Energy Program CX(s) Applied: B1.15, B1.24, B2.1, B5.1

168

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 19, 2010 May 19, 2010 CX-002418: Categorical Exclusion Determination Energy Retrofits for State Correctional Facilities - Mobile Work Release/Work Center Facility Boiler CX(s) Applied: B1.24, B1.31, B2.2, A9, B5.1 Date: 05/19/2010 Location(s): Pritchard, Alabama Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 19, 2010 CX-002289: Categorical Exclusion Determination Cavitation Pretreatment of a Flotation Feedstock for Enhanced Coal Recovery CX(s) Applied: B3.6 Date: 05/19/2010 Location(s): Lexington, Kentucky Office(s): Fossil Energy, National Energy Technology Laboratory May 19, 2010 CX-002290: Categorical Exclusion Determination Recovery - Advanced Underground Compressed Air Energy Storage (CAES) CX(s) Applied: A1, A9 Date: 05/19/2010

169

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2011 13, 2011 CX-005817: Categorical Exclusion Determination Economic Development Program CX(s) Applied: A1, A9, A11, B2.2, B5.1 Date: 05/13/2011 Location(s): Virginia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2011 CX-005821: Categorical Exclusion Determination Clean Energy Economic Development Initiative - Maryland Environmental Service II CX(s) Applied: A9, A11, B3.1 Date: 05/11/2011 Location(s): Millersville, Maryland Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 11, 2011 CX-005820: Categorical Exclusion Determination Clean Energy Economic Development Initiative - Maryland Environmental Service I CX(s) Applied: A9 Date: 05/11/2011 Location(s): Millersville, Maryland

170

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 8, 2011 CX-006458: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.1 Date: 08/08/2011 Location(s): Detroit, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 8, 2011 CX-006456: Categorical Exclusion Determination Fuel Cell Program CX(s) Applied: A1, B2.2, B5.1 Date: 08/08/2011 Location(s): Weston, Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory August 4, 2011 CX-006455: Categorical Exclusion Determination Pennsylvania Energy Development Authority Sustainable Business Recovery - City of Pittsburgh Natural Gas Refuse Trucks CX(s) Applied: A1, B5.1 Date: 08/04/2011 Location(s): Pittsburgh, Pennsylvania

171

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 CX-006156: Categorical Exclusion Determination Utility Metering Installation: B3, B14, B36 CX(s) Applied: B1.15, B2.2 Date: 07/13/2011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory July 13, 2011 CX-006155: Categorical Exclusion Determination Wisconsin Clean Transportation Program/City of Milwaukee Compressed Natural Gas Infrastructure Project CX(s) Applied: B5.1 Date: 07/13/2011 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 13, 2011 CX-006154: Categorical Exclusion Determination Recovery State Energy Program - Renewable Energy Incentives - Spencer Residence Open Loop Heat Pump System CX(s) Applied: B5.1 Date: 07/13/2011

172

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 3, 2010 CX-002486: Categorical Exclusion Determination Flow Battery Solution for Smart Grid Renewable Energy Applications CX(s) Applied: B3.6, B4.6, A1, B4.11 Date: 06/03/2010 Location(s): Sunnyvale, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory June 2, 2010 CX-002945: Categorical Exclusion Determination Pennsylvania Green Energy Works Targeted Grant - Native Energy Biogas Project CX(s) Applied: B1.15, B1.24, B1.31, A9, B5.1 Date: 06/02/2010 Location(s): Franklin County, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 2, 2010 CX-002505: Categorical Exclusion Determination Energy Efficiency Program for Municipalities, Schools, Hospitals, Public Colleges

173

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 2, 2010 CX-001022: Categorical Exclusion Determination Development of an Autogas Network (Lithia Springs) CX(s) Applied: A9, B2.5, B3.6, B5.1 Date: 03/02/2010 Location(s): Lithia Springs, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 1, 2010 CX-000957: Categorical Exclusion Determination New Jersey Compressed Natural Gas Refuse Trucks, Shuttle Buses and Infrastructure CX(s) Applied: B5.1 Date: 03/01/2010 Location(s): Trenton, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 1, 2010 CX-001038: Categorical Exclusion Determination Idaho Petroleum Reduction Leadership Project CX(s) Applied: A1, A7, B5.1 Date: 03/01/2010 Location(s): Idaho Office(s): Energy Efficiency and Renewable Energy, National Energy

174

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-004665: Categorical Exclusion Determination On-Site Controlled Environment Agriculture Production of Biomass and Biofuels CX(s) Applied: A9, A11 Date: 12/08/2010 Location(s): Columbia, South Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 8, 2010 CX-004664: Categorical Exclusion Determination On-Site Controlled Environment Agriculture Production of Biomass and Biofuels CX(s) Applied: B3.6 Date: 12/08/2010 Location(s): Tucson, Arizona Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 7, 2010 CX-004687: Categorical Exclusion Determination Centralized Cryptographic Key Management (CKMS) CX(s) Applied: A1, A9, A11, B1.2 Date: 12/07/2010 Location(s): Oak Ridge, Tennessee

175

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2010 6, 2010 CX-002907: Categorical Exclusion Determination Clean Start Propane Refueling, Vehicle Incentive and Outreach (Summary Categorical Exclusion) CX(s) Applied: B5.1 Date: 07/06/2010 Location(s): Texas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 1, 2010 CX-002833: Categorical Exclusion Determination Pacific Northwest Smart Grid Demonstration CX(s) Applied: B3.6, B4.4, A1, A9, A11, B1.7, B5.1 Date: 07/01/2010 Location(s): Salem, Oregon Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory July 1, 2010 CX-002835: Categorical Exclusion Determination Pennsylvania Energy Harvest Mined Project Grants - Mains Dairy Farm Biogas Project CX(s) Applied: A9, A11, B5.1 Date: 07/01/2010

176

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2010 0, 2010 CX-002626: Categorical Exclusion Determination Midwest Region Alternative Fuels Project CX(s) Applied: A7, B5.1 Date: 06/10/2010 Location(s): Kansas City, Kansas Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 10, 2010 CX-002625: Categorical Exclusion Determination Pennsylvania E85 Corridor Project - Sheetz Gas Station/Store #191 CX(s) Applied: B5.1 Date: 06/10/2010 Location(s): Carlisle, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 10, 2010 CX-002622: Categorical Exclusion Determination Pennsylvania E85 Corridor Project - Sheetz Gas Station/Store #426 CX(s) Applied: B5.1 Date: 06/10/2010 Location(s): Carlisle, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy

177

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-002510: Categorical Exclusion Determination Rhode Island Non-Utility Scale Renewable Energy Loan, Grants Initiative CX(s) Applied: B5.1 Date: 05/28/2010 Location(s): Rhode Island Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 28, 2010 CX-002515: Categorical Exclusion Determination State Energy Program - Clean Energy Property Rebate Program CX(s) Applied: A9, B5.1 Date: 05/28/2010 Location(s): Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory May 27, 2010 CX-002522: Categorical Exclusion Determination Danada Solar Energy and Lighting Project CX(s) Applied: B5.1 Date: 05/27/2010 Location(s): Wheaton, Illinois Office(s): Energy Efficiency and Renewable Energy, National Energy

178

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2010 16, 2010 CX-004689: Categorical Exclusion Determination Single-Molecule Imaging System Combined with Nano-Fluidic Chip to Understand Fluid Flow in Shale Gas CX(s) Applied: B3.6 Date: 12/16/2010 Location(s): Golden, Colorado Office(s): Fossil Energy, National Energy Technology Laboratory December 16, 2010 CX-004688: Categorical Exclusion Determination Single-Molecule Imaging System Combined with Nano-Fluidic Chip to Understand Fluid Flow in Shale Gas CX(s) Applied: B3.6 Date: 12/16/2010 Location(s): Rolla, Missouri Office(s): Fossil Energy, National Energy Technology Laboratory December 16, 2010 CX-004755: Categorical Exclusion Determination State Energy Program: Program Support/Administration CX(s) Applied: A1, A9, A11, B5.1 Date: 12/16/2010 Location(s): Maine Office(s): Energy Efficiency and Renewable Energy, National Energy

179

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

December 27, 2010 December 27, 2010 CX-004778: Categorical Exclusion Determination Recovery Act: Innovative Carbon Dioxide Sequestration from Flue Gas using an In-Duct Scrubber CX(s) Applied: A9, A11, B3.6 Date: 12/27/2010 Location(s): Point Comfort, Texas Office(s): Fossil Energy, National Energy Technology Laboratory December 27, 2010 CX-004777: Categorical Exclusion Determination Recovery Act: Innovative Carbon Dioxide Sequestration from Flue Gas using an In-Duct Scrubber CX(s) Applied: A9, A11, B3.6 Date: 12/27/2010 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory December 27, 2010 CX-004776: Categorical Exclusion Determination Recovery Act: Innovative Carbon Dioxide Sequestration from Flue Gas using an In-Duct Scrubber CX(s) Applied: A9, A11, B3.6

180

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30, 2010 30, 2010 CX-004106: Categorical Exclusion Determination Green Oil: Carbon Dioxide Enhanced Oil Recovery for America?s Small Oil Producers CX(s) Applied: A9 Date: 09/30/2010 Location(s): Socorro, New Mexico Office(s): Fossil Energy, National Energy Technology Laboratory September 30, 2010 CX-004105: Categorical Exclusion Determination High Resolution Three-Dimensional Laser Imaging for Inspection, Maintenance, Repair and Operations CX(s) Applied: B3.6 Date: 09/30/2010 Location(s): Houston, Texas Office(s): Fossil Energy, National Energy Technology Laboratory September 30, 2010 CX-004100: Categorical Exclusion Determination High Resolution Three-Dimensional Laser Imaging for Inspection, Maintenance, Repair and Operations CX(s) Applied: B3.6 Date: 09/30/2010 Location(s): Boulder, Colorado

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18, 2010 18, 2010 CX-001313: Categorical Exclusion Determination Grants for State-Sponsored Renewable Energy and Energy Efficiency Projects - New Jersey Transit Solar CX(s) Applied: A9, A11, B5.1 Date: 03/18/2010 Location(s): Kearny, New Jersey Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 18, 2010 CX-001312: Categorical Exclusion Determination State Facilities Retrofit Program: Commissioning/Re-Commissioning and Metering Projects CX(s) Applied: A9, A11, B5.1 Date: 03/18/2010 Location(s): Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 18, 2010 CX-001315: Categorical Exclusion Determination Propane Truck Deployment CX(s) Applied: A1, A7, A9, B5.1 Date: 03/18/2010 Location(s): San Antonio, Texas

182

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2011 19, 2011 CX-005634: Categorical Exclusion Determination Characterization of Hydrocarbon Samples and/or Qualitative/Quantitative Analysis of Hydrocarbon Mixtures CX(s) Applied: B3.6 Date: 04/19/2011 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory April 19, 2011 CX-005633: Categorical Exclusion Determination Fast Responding Voltage Regulator and Dynamic VAR Compensator with Direct Medium Voltage Connection CX(s) Applied: A1, A11, B3.6, B4.4, B5.1 Date: 04/19/2011 Location(s): San Jose, California Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory April 19, 2011 CX-005632: Categorical Exclusion Determination Fast Responding Voltage Regulator and Dynamic VAR Compensator with Direct

183

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2011 3, 2011 CX-006170: Categorical Exclusion Determination United Way Energy Efficient Buildings Project for Non-Profit Facilities Date: 07/13/2011 Location(s): Huntington Woods, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 13, 2011 CX-006169: Categorical Exclusion Determination United Way Energy Efficient Buildings Project for Non-Profit Facilities CX(s) Applied: B2.5, B5.1 Date: 07/13/2011 Location(s): Pontiac, Michigan Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory July 13, 2011 CX-006168: Categorical Exclusion Determination United Way Energy Efficient Buildings Project for Non-Profit Facilities CX(s) Applied: B2.5, B5.1 Date: 07/13/2011 Location(s): Wayne, Michigan

184

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

22, 2010 22, 2010 CX-001294: Categorical Exclusion Determination Heavy-Duty Natural Gas Drainage Truck Replacement Program in the South Coast Air Basin CX(s) Applied: A7, A9, A11 Date: 03/22/2010 Location(s): Los Angeles, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 22, 2010 CX-001297: Categorical Exclusion Determination Clean Start Propane Refueling, Vehicle Incentive and Outreach CX(s) Applied: A7 Date: 03/22/2010 Location(s): Los Angeles, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 22, 2010 CX-001296: Categorical Exclusion Determination B2,3,5,17,19 and 36 Utility Meter Install CX(s) Applied: B1.15, B2.2 Date: 03/22/2010 Location(s): Morgantown, West Virginia

185

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 8, 2010 CX-000995: Categorical Exclusion Determination Craftmaster Manufacturing Inc. Combined Heat and Power Project CX(s) Applied: A9, B1.31, B5.1 Date: 02/08/2010 Location(s): Towanda, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 8, 2010 CX-000996: Categorical Exclusion Determination Divine Providence Hospital-Susquehanna Health Combined Heat and Power Project CX(s) Applied: A9, B1.31, B5.1 Date: 02/08/2010 Location(s): Pennsylvania Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 7, 2010 CX-000766: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment - New Vehicle Purchase CX(s) Applied: A7, A11

186

Hanford technology integration: A success story  

SciTech Connect

This paper describes recent activities of the Richland Northwest Laboratory in the area of technology transfer. A major thrust within major DOE laboratories has been the implementation of technology transfer activities which transfer scientific knowledge, transfer technologies developed to deal with the production or conservation of energy, and transfer spinoff technologies into the private sector. Several activities which are in process or have been implemented are described in this paper.

Stenehjem, E.J.; Pond, D.J.; Widrig, J.E.; Deonigi, D.E.

1994-10-01T23:59:59.000Z

187

Building Technologies Office: Advanced, Integrated Control for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings News Building Technologies Office Announces 3 Million to Advance Building Automation Software Solutions in Small to Medium-Sized Commercial Buildings March 29,...

188

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7, 2011 7, 2011 CX-006971: Categorical Exclusion Determination Clean Energy Coalition - Michigan Green Fleets CX(s) Applied: A7, B5.1 Date: 09/27/2011 Location(s): Detroit, Michigan Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office September 27, 2011 CX-006969: Categorical Exclusion Determination Clean Energy Coalition - Michigan Green Fleets CX(s) Applied: B5.1 Date: 09/27/2011 Location(s): Plymouth, Michigan Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office September 26, 2011 CX-006974: Categorical Exclusion Determination Fully-Integrated Automotive Traction Inverter with Real-Time Switching Optimization CX(s) Applied: B3.6 Date: 09/26/2011 Location(s): Colorado, Massachusetts, Michigan, Pennsylvania, Vermont,

189

DEACTIVATION AND DECOMMISSIONING (D AND D) TECHNOLOGY INTEGRATION  

SciTech Connect

As part of the ongoing task of making Deactivation and Decommissioning (D&D) operations more efficient, this subtask has addressed the need to integrate existing characterization technologies with decontamination technologies in order to provide real-time data on the progress of contamination removal. Specifically, technologies associated with concrete decontamination and/or removal have been examined with the goal of integrating existing technologies and commercializing the resulting hybrid. The Department of Energy (DOE) has estimated that 23 million cubic meters of concrete will require disposition as 1200 buildings undergo the D&D process. All concrete removal to be performed will also necessitate extensive use of characterization techniques. The in-process characterization presents the most potential for improvement and cost-savings as compared to other types. Current methods for in-process characterization usually require cessation of work to allow for radiation surveys to assess the rate of decontamination. Combining together decontamination and characterization technologies would allow for in-process evaluation of decontamination efforts. Since the present methods do not use in-process evaluations for the progress of decontamination, they may allow for ''overremoval'' of materials (removal of contaminated along with non-contaminated materials). Overremoval increases the volume of waste and therefore the costs associated with disposal. Integrating technologies would facilitate the removal of only contaminated concrete and reduce the total volume of radioactive waste, which would be disposed of. This would eventually ensure better productivity and time savings. This project presents a general procedure to integrate the above-mentioned technologies in the form of the Technology Integration Module (TIM) along with combination lists of commercially available decontamination and characterization technologies. The scope of the project has also been expanded by FIU-HCET to evaluate a technology integration--shot blasting technology and an ultrasonic rangefinder, which are decontamination and sensor technology, respectively.

M.A. Ebadian, Ph.D.

1999-01-01T23:59:59.000Z

190

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 5, 2011 October 5, 2011 CX-007114: Categorical Exclusion Determination Compressed Natural Gas (CNG)/Infrastructure Development (Station Upgrade) CX(s) Applied: B5.1 Date: 10/05/2011 Location(s): West Jordan, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory October 5, 2011 CX-007112: Categorical Exclusion Determination Geologic Characterization of the South Georgia Rift Basin - 3-Dimension Seismic Survey CX(s) Applied: A9, A11, B3.1 Date: 10/05/2011 Location(s): Colleton County, South Carolina Office(s): Fossil Energy October 5, 2011 CX-007111: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project (Iatan Generating Station) CX(s) Applied: B3.1 Date: 10/05/2011 Location(s): Platte County, Missouri

191

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2011 8, 2011 CX-006926: Categorical Exclusion Determination Next Generation Inverter Design CX(s) Applied: B3.6 Date: 09/28/2011 Location(s): Golden, Colorado Office(s): Energy Efficiency and Renewable Energy, Savannah River Operations Office September 28, 2011 CX-006921: Categorical Exclusion Determination Development of High Energy Density Lithium-Sulfur Cells CX(s) Applied: B3.6 Date: 09/28/2011 Location(s): Milwaukee, Wisconsin Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory September 28, 2011 CX-006919: Categorical Exclusion Determination Development of High Energy Density Lithium-Sulfur Cells CX(s) Applied: B3.6 Date: 09/28/2011 Location(s): University Park, Pennsylvania Office(s): Energy Efficiency and Renewable Energy, Savannah River

192

Integrated demonstrations, integrated programs, and special programs within DOE`s Office of Technology Development  

SciTech Connect

This poster session presents information on integrated demonstrations, integrated programs, and special programs within the EM Office of Technology Development that will accelerate cleanup of sites within the Nuclear Weapons Complex. Presented topics include: Volatile organic compounds in soils and ground water, uranium in soils, underground storage tanks, mixed waste landfills, decontamination and decommissioning, in situ remediation, and separations technology.

Peterson, M.E.; Frank, C.; Stein, S.; Steele, J.

1994-08-01T23:59:59.000Z

193

Hybrid Silicon Photonic Integrated Circuit Technology  

E-Print Network (OSTI)

modulators for sili- con photonics,” in Proc. IEEE Photon.J.E. Bowers, “Hybrid silicon photonics for optical Intercon-The evolution of silicon photonics as an enabling technology

2013-01-01T23:59:59.000Z

194

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 16, 2009 November 16, 2009 CX-000409: Categorical Exclusion Determination Wireless Subsea Communications System CX(s) Applied: B3.6 Date: 11/16/2009 Location(s): Boston, Massachusetts Office(s): Fossil Energy, National Energy Technology Laboratory November 16, 2009 CX-000308: Categorical Exclusion Determination Connecticut Revision 2 - Retrofit 9 State Buildings CX(s) Applied: A9, A11, B1.3, B1.4, B1.5, B1.15, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/16/2009 Location(s): Connecticut Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 16, 2009 CX-000435: Categorical Exclusion Determination Novel Oxygen Carriers for Coal-fueled Chemical Looping Combustion CX(s) Applied: A9, A11 Date: 11/16/2009 Location(s): Bowling Green, Kentucky

195

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2009 4, 2009 CX-000332: Categorical Exclusion Determination Kentucky Revision 2 - Industrial Facility Retrofit Showcase CX(s) Applied: B1.4, B1.15, B1.22, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 12/04/2009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 3, 2009 CX-000331: Categorical Exclusion Determination Kentucky Revision 2 - Commercial Office Building Retrofit Showcase CX(s) Applied: B1.4, B1.5, B1.15, B1.23, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 12/03/2009 Location(s): Lexington, Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory December 2, 2009 CX-000330: Categorical Exclusion Determination West Virginia Revision 1 - Energy Efficiency in State Buildings:

196

Progress in Developing and Extending RM³ Heterogeneous Integration Technologies  

E-Print Network (OSTI)

This paper describes recent progress in a continuing program to develop and apply RM³ (recess mounting with monolithic metallization) technologies for heterogeneous integration. Particular emphasis is placed on the APB ...

Fonstad, Clifton G. Jr.

197

The Technology Integration Outreach Project: Developing "Best Practices" Curriculum Units  

Science Conference Proceedings (OSTI)

The Technology Integration Outreach Project (TIOP) is a joint project between the Southeast Interactive Long Distance Learning Consortium (SILDL), and University of South Dakota School of Education's Professional Development Center (PDC) and it's Learning ...

Mary Engstrom; Rosanne Yost; Ray Thompson; Don Versteeg

2002-12-01T23:59:59.000Z

198

Wind Power Integration Technology Assessment and Case Studies  

Science Conference Proceedings (OSTI)

Application of power electronics, energy storage, and other wind integration technologies can mitigate the impacts of adding large blocks of wind generation and raise the amount of wind capacity that can be connected to the grid without adversely affecting grid reliability, reserve and regulation requirements, and ancillary service costs. The engineering and economic data and case studies presented in this report can be used to address the available wind integration technology options.

2004-03-30T23:59:59.000Z

199

Benefits of Integrating PWR and RTI Advanced Gasification Technologies for  

NLE Websites -- All DOE Office Websites (Extended Search)

Syngas Processing Systems Syngas Processing Systems Benefits of Integrating PWR and RTI Advanced Gasification Technologies for Hydrogen-Rich Syngas Production Research Triangle Institute (RTI) Project Number: FE0012066 Project Description The project will assess the potential for integrated advanced technologies to substantially reduce capital and production costs for hydrogen-rich syngas with near-zero emissions from coal gasification for power production with carbon capture and for coal-to-liquids (specifically methanol) with carbon capture. These integrated technologies include those already tested successfully at pilot-scale with a new and innovative water-gas-shift technology, to show how multiple advanced technologies will leverage each other for significant cost and efficiency gains.

200

VOCs in Non-Arid Soils Integrated Demonstration: Technology summary  

Science Conference Proceedings (OSTI)

The Volatile Organic Compounds (VOCs) in Non-Arid Soils Integrated Demonstration (ID) was initiated in 1989. Objectives for the ID were to test the integrated demonstration concept, demonstrate and evaluate innovative technologies/systems for the remediation of VOC contamination in soils and groundwater, and to transfer technologies and systems to internal and external customers for use in fullscale remediation programs. The demonstration brought together technologies from DOE laboratories, other government agencies, and industry for demonstration at a single test bed. The Savannah River Site was chosen as the location for this ID as the result of having soil and groundwater contaminated with VOCS. The primary contaminants, trichlorethylene and tetrachloroethylene, originated from an underground process sewer line servicing a metal fabrication facility at the M-Area. Some of the major technical accomplishments for the ID include the successful demonstration of the following: In situ air stripping coupled with horizontal wells to remediate sites through air injection and vacuum extraction; Crosshole geophysical tomography for mapping moisture content and lithologic properties of the contaminated media; In situ radio frequency and ohmic heating to increase mobility, of the contaminants, thereby speeding recovery and the remedial process; High-energy corona destruction of VOCs in the off-gas of vapor recovery wells; Application of a Brayton cycle heat pump to regenerate carbon adsorption media used to trap VOCs from the offgas of recovery wells; In situ permeable flow sensors and the colloidal borescope to determine groundwater flow; Chemical sensors to rapidly quantify chlorinated solvent contamination in the subsurface; In situ bioremediation through methane/nutrient injection to enhance degradation of contaminants by methanotrophic bateria.

Not Available

1994-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Categorical Exclusion Determinations: National Energy Technology Laboratory  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2009 6, 2009 CX-000305: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act Kentucky Revision 1 - Green Bank Loan Program - School for Deaf CX(s) Applied: B1.4, B1.5, B1.15, B1.22, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/06/2009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory November 6, 2009 CX-000304: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act Kentucky Revision 1 - Green Bank Loan Program - School for Blind CX(s) Applied: B1.4, B1.5, B1.15, B1.22, B1.24, B1.31, B2.1, B2.2, B2.5, B5.1 Date: 11/06/2009 Location(s): Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

202

A Review of Nondestructive Evaluation Technologies for Cable System Integrity  

Science Conference Proceedings (OSTI)

This report provides an overview of common electrical cable types and designs, damage mechanisms, and existing test methods. It describes a technology review focused on assessing feasibility, performance, and limitations of nondestructive evaluation (NDE) technologies for cable integrity tests and inspection and summarizes future proposed work.BackgroundKnowing a cable system’s condition is essential to ensure the reliability of the connected ...

2013-11-21T23:59:59.000Z

203

An Integrated Modeling Framework for Carbon Capture and Storage Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Karen L. cohen Karen L. cohen Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-6667 karen.cohen@netl.doe.gov Edward s. Rubin Carnegie Mellon University 5000 Forbes Avenue 128A Baker Hall Pittsburgh, PA 15213 412-268-5897 rubin@cmu.edu An IntegrAted ModelIng FrAMework For CArbon CApture And StorAge teChnologIeS Background The U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) is developing safe, lower-cost methods of carbon dioxide (CO 2 ) capture and storage (CCS) as a potential option for climate change mitigation. In addition to technology development, there is a need for modeling and assessment tools to evaluate and compare the cost and effectiveness of CCS methods. Analytical

204

Factors relevant to utility integration of intermittent renewable technologies  

Science Conference Proceedings (OSTI)

This study assesses factors that utilities must address when they integrate intermittent renewable technologies into their power-supply systems; it also reviews the literature in this area and has a bibliography containing more than 350 listings. Three topics are covered: (1) interface (hardware and design-related interconnection), (2) operability/stability, and (3) planning. This study finds that several commonly held perceptions regarding integration of intermittent renewable energy technologies are not valid. Among findings of the study are the following: (1) hardware and system design advances have eliminated most concerns about interface; (2) cost penalties have not occurred at low to moderate penetration levels (and high levels are feasible); and (3) intermittent renewable energy technologies can have capacity values. Obstacles still interfering with intermittent renewable technologies are also identified.

Wan, Yih-huei; Parsons, B.K.

1993-08-01T23:59:59.000Z

205

Toward integrated PV panels and power electronics using printing technologies  

SciTech Connect

In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

Ababei, Cristinel; Yuvarajan, Subbaraya [Electrical and Computer Engineering Department, North Dakota State University, Fargo, ND 58108 (United States); Schulz, Douglas L. [Center for Nanoscale Science and Engineering, North Dakota State University, Fargo, ND 58102 (United States)

2010-07-15T23:59:59.000Z

206

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX(s) Applied: A9 Date: 12072009 Location(s): Bethlehem, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory December 7, 2009 CX-000459: Categorical...

207

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX(s) Applied: B5.23 Date: 08312012 Location(s): Georgia Offices(s): National Energy Technology Laboratory August 31, 2012 CX-009299: Categorical Exclusion...

208

Vehicle Technologies Office: Thermal Control and System Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Control and System Integration Thermal Control and System Integration The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies. Thermal control is a critical element to enable power density, cost, and reliability of Power Electronics and Electric Machines (PEEM). Current hybrid electric vehicle systems typically use a dedicated 65°C coolant loop to cool the electronics and electric machines. A primary research focus is to develop cooling technologies that will enable the use of coolant temperatures of up to 105°C. Enabling the higher-temperature coolant would reduce system cost by using a single loop to cool the PEEM, internal combustion engine or fuel cell. Several candidate cooling technologies are being investigated along with the potential to reduce material and component costs through the use of more aggressive cooling. Advanced component modeling, fabrication, and manufacturing techniques are also being investigated.

209

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(Waste Management Site) CX(s) Applied: B5.1 Date: 10072011 Location(s): West Jordan, Utah Office(s): Energy Efficiency and Renewable Energy, National Energy Technology...

210

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Experiments CX(s) Applied: A9, B3.1 Date: 09292010 Location(s): Hawaii Office(s): Fossil Energy, National Energy Technology Laboratory September 29, 2010 CX-004156:...

211

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX(s) Applied: B3.6 Date: 11182009 Location(s): Niskayuna, New York Office(s): Fossil Energy, National Energy Technology Laboratory November 17, 2009 CX-000312: Categorical...

212

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program CX(s) Applied: B3.6 Date: 03032011 Location(s): Bozeman, Montana Office(s): Fossil Energy, National Energy Technology Laboratory March 3, 2011 CX-005350: Categorical...

213

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX(s) Applied: B3.7 Date: 09132011 Location(s): Stairtown, Texas Office(s): Fossil Energy, National Energy Technology Laboratory September 13, 2011 CX-006755:...

214

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reservoirs CX(s) Applied: B3.6 Date: 09102010 Location(s): Austin, Texas Office(s): Fossil Energy, National Energy Technology Laboratory September 10, 2010 CX-003885:...

215

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Applied: A9, A11, B3.6 Date: 01282010 Location(s): Stamford, Connecticut Office(s): Fossil Energy, National Energy Technology Laboratory January 28, 2010 CX-000748: Categorical...

216

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX(s) Applied: B3.6 Date: 11082010 Location(s): Laramie, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory November 8, 2010 CX-004408: Categorical...

217

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX(s) Applied: B3.6 Date: 12112009 Location(s): Pittsburgh, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-002608: Categorical...

218

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX(s) Applied: B3.1 Date: 12112009 Location(s): Campbell County, Wyoming Office(s): Fossil Energy, National Energy Technology Laboratory December 11, 2009 CX-000429: Categorical...

219

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX(s) Applied: B3.6 Date: 06282011 Location(s): Port Fourchon, Louisiana Office(s): Fossil Energy, National Energy Technology Laboratory June 28, 2011 CX-006117: Categorical...

220

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX(s) Applied: B1.3 Date: 04132011 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory April 12, 2011 CX-005607: Categorical...

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX(s) Applied: B3.6 Date: 11182010 Location(s): Morgantown, West Virginia Office(s): Fossil Energy, National Energy Technology Laboratory November 18, 2010 CX-004476: Categorical...

222

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amine Absorbent CX(s) Applied: A9, A11, A14 Date: 08162010 Location(s): San Francisco, California Office(s): Fossil Energy, National Energy Technology Laboratory...

223

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B1.15, B3.6, A9, A11 Date: 05172010 Location(s): Marquette, Michigan Office(s): Electricity Delivery and Energy Reliability, National Energy Technology Laboratory May 17,...

224

Technology Integration Initiative In Support of Outage Management  

SciTech Connect

Plant outage management is a high priority concern for the nuclear industry from cost and safety perspectives. Often, command and control during outages is maintained in the outage control center where many of the underlying technologies supporting outage control are the same as those used in the 1980’s. This research reports on the use of advanced integrating software technologies and hand held mobile devices as a means by which to reduce cycle time, improve accuracy, and enhance transparency among outage team members. This paper reports on the first phase of research supported by the DOE Light Water Reactor Sustainability (LWRS) Program that is performed in close collaboration with industry to examine the introduction of newly available technology allowing for safe and efficient outage performance. It is thought that this research will result in: improved resource management among various plant stakeholder groups, reduced paper work, and enhanced overall situation awareness for the outage control center management team. A description of field data collection methods, including personnel interview data, success factors, end-user evaluation and integration of hand held devices in achieving an integrated design are also evaluated. Finally, the necessity of obtaining operations cooperation support in field studies and technology evaluation is acknowledged.

Gregory Weatherby; David Gertman

2012-07-01T23:59:59.000Z

225

Integrated gasification combined cycle -- A review of IGCC technology  

SciTech Connect

Over the past three decades, significant efforts have been made toward the development of cleaner and more efficient technology for power generation. Coal gasification technology received a big thrust with the concept of combined cycle power generation. The integration of coal gasification with combined cycle for power generation (IGCC) had the inherent characteristic of gas cleanup and waste minimization, which made this system environmentally preferable. Commercial-scale demonstration of a cool water plant and other studies have shown that the greenhouse gas and particulates emission from an IGCC plant is drastically lower than the recommended federal New Source Performance Standard levels. IGCC also offers a phased construction and repowering option, which allows multiple-fuel flexibility and the necessary economic viability. IGCC technology advances continue to improve efficiency and further reduce the emissions, making it the technology of the 21st century.

Joshi, M.M.; Lee, S. [Univ. of Akron, OH (United States)

1996-07-01T23:59:59.000Z

226

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Ohio Advanced Transportation Partnership: Zanesville Energy Biogas Compressed Natural Gas Fueling Infrastructure Date: 06092011 Location(s):...

227

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 17, 2010 CX-003745: Categorical Exclusion Determination Renewable Microgrid Scanning Transmission Electron Microscopy Education and Colonias Outreach Program...

228

Oak Ridge Integrated Center for Radiation Materials Science & Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

ORIC Home ORIC Home About ORIC Contacts Specialists Capabilities Irradiation Campaigns Nuclear Fuels Radiation Effects and Defect Modeling Structural Materials Dual Purpose Radiological Characterization Equipment Working with Us Related Links HFIR MSTD NSTD NNFD Comments Welcome to Oak Ridge Integrated Center for Radiation Materials Science & Technology The Oak Ridge National Laboratory ranks among the founding laboratories for the scientific field of radiation materials science. Since the creation of the laboratory, we have maintained strong ties to both the technology and scientific underpinning of nuclear materials research as evidenced by the experience and capabilities across our research divisions. The capabilities at ORNL enjoys include the highest neutron flux nuclear

229

The Determinants of Information Technology Wages  

Science Conference Proceedings (OSTI)

Anchoring this work to the classical human capital theory, the authors examine the effects of various human capital factors on IT professional compensation. Dividing IT salary into LOW Keywords: Human Capital Theory, Information Systems Personnel Management, Information Systems Staffing, Information Technology Wages, Logistic Regression

Stuart D. Galup; Ronald Dattero; Jing "Jim" Quan; Kewal Dhariwal

2011-01-01T23:59:59.000Z

230

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory November 6, 2009 CX-000305: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act Kentucky Revision 1 - Green Bank...

231

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23, 2009 CX-000322: Categorical Exclusion Determination Kentucky Revision 2 - Green Bank of Kentucky Date: 11232009 Location(s): Kentucky Office(s): Energy Efficiency and...

232

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Pennsylvania Green Energy Works Targeted Grant - Biogas - Anergy Dairy Farm Biodigesters CX(s) Applied: B1.15, B5.1 Date: 02162010...

233

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Computational Fluid Dynamics (CFD) Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Systems...

234

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Optimization of Regenerators for Active Magnetic Regenerative Refrigeration (AMRR) Systems CX(s) Applied: A9, A11 Date: 08262010...

235

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination New Mechanistic Models of Creep-Fatigue Interactions for Gas Turbine Components CX(s) Applied: B3.6 Date: 08072013 Location(s): Oregon...

236

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 29, 2010 CX-004151: Categorical Exclusion Determination Contributing to Net Zero Building: High Energy Efficient Exterior Insulation and Finishing System Wall Systems...

237

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Development of an Advanced, Lithium Ion, 12 Volt Start Stop Battery CX(s) Applied: B3.6 Date: 04302013 Location(s): California...

238

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 CX-003365: Categorical Exclusion Determination Advanced Combustion Controls - Enabling Systems and Solutions (ACCESS) for High Efficiency Vehicles CX(s) Applied: A9, A11...

239

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6, 2012 CX-008326: Categorical Exclusion Determination Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Consortium CX(s) Applied: A9 Date: 04...

240

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2012 CX-009310: Categorical Exclusion Determination Optimization of Reservoir Storage Capacity in Different Depositional Environments (Rock Sampling) CX(s) Applied: B3.1 Date:...

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Area of Interest 3 Deployment of Flex Combined Heat and Power System (Funding Opportunity Announcement 0000016) CX(s) Applied: A9 Date: 06...

242

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 30, 2012 CX-009317: Categorical Exclusion Determination Enhancement of SOFC Cathode Electrochemical Performance Using Multi-Phase Interfaces CX(s) Applied: B3.6...

243

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

16, 2012 CX-008944: Categorical Exclusion Determination Mechanistic Enhancement of SOFC Cathode Durability CX(s) Applied: B3.6 Date: 08162012 Location(s): Maryland...

244

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of 222 Radon, 220 Radon, and Carbon Dioxide Emissions in Natural Carbon Dioxide Fields in Wyoming: Monitoring, Verification, and Analysis Techniques for Determining Gas...

245

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

September 28, 2011 CX-006930: Categorical Exclusion Determination Next Generation Inverter Design CX(s) Applied: B3.6 Date: 09282011 Location(s): Torrance, Los Angeles...

246

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011 CX-006524: Categorical Exclusion Determination Fuel Properties to Enable Lifted-Flame Combustion CX(s) Applied: A9 Date: 08232011 Location(s): Madison, Wisconsin...

247

Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies  

DOE Green Energy (OSTI)

A critical element to the success of new propulsion technologies that enable reductions in fuel use is the integration of component thermal management technologies within a viable vehicle package. Vehicle operation requires vehicle thermal management systems capable of balancing the needs of multiple vehicle systems that may require heat for operation, require cooling to reject heat, or require operation within specified temperature ranges. As vehicle propulsion transitions away from a single form of vehicle propulsion based solely on conventional internal combustion engines (ICEs) toward a wider array of choices including more electrically dominant systems such as plug-in hybrid electric vehicles (PHEVs), new challenges arise associated with vehicle thermal management. As the number of components that require active thermal management increase, so do the costs in terms of dollars, weight, and size. Integrated vehicle thermal management is one pathway to address the cost, weight, and size challenges. The integration of the power electronics and electric machine (PEEM) thermal management with other existing vehicle systems is one path for reducing the cost of electric drive systems. This work demonstrates techniques for evaluating and quantifying the integrated transient and continuous heat loads of combined systems incorporating electric drive systems that operate primarily under transient duty cycles, but the approach can be extended to include additional steady-state duty cycles typical for designing vehicle thermal management systems of conventional vehicles. The work compares opportunities to create an integrated low temperature coolant loop combining the power electronics and electric machine with the air conditioning system in contrast to a high temperature system integrated with the ICE cooling system.

Bennion, K.; Thornton, M.

2010-04-01T23:59:59.000Z

248

Integrated Fuel Cell Technologies IFCT | Open Energy Information  

Open Energy Info (EERE)

Fuel Cell Technologies IFCT Fuel Cell Technologies IFCT Jump to: navigation, search Name Integrated Fuel Cell Technologies (IFCT) Place Burlington, Massachusetts Zip MA 01803 Product Developer of next generation fuel cell systems. Coordinates 44.446275°, -108.431704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.446275,"lon":-108.431704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8, 2010 CX-004402: Categorical Exclusion Determination The Use of Scrap Tires for Oil Well Stimulation CX(s) Applied: B3.6 Date: 11082010 Location(s): Monroeville,...

250

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2009 CX-000382: Categorical Exclusion Determination Cemex Commercial-Scale Carbon Dioxide Capture and Sequestration for the Cement Industry CX(s) Applied: A1, A9, B3.6 Date: 11...

251

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

91: Categorical Exclusion Determination Commercial Renewable Energy Systems - Davidson College Solar CX(s) Applied: A9, B5.1 Date: 04012010 Location(s): Davidson, North Carolina...

252

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination Improving Reservoir Contact for Increased Production and Recovery of Gas Shale Reservoirs CX(s) Applied: B3.6 Date: 01212011 Location(s): Salt Lake City, Utah...

253

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Pennsylvania Green Energy Works Targeted Grant - Native Energy Biogas Project CX(s) Applied: B1.15, B1.24, B1.31, A9, B5.1 Date: 06022010 Location(s):...

254

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Pennsylvania Green Energy Works Targeted Grant - Biogas - Furmano Foods Biogas Recovery and Utilization CX(s) Applied: B1.15, B5.1 Date: 02...

255

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-008972: Categorical Exclusion Determination Multi-Phase Fluid Flow Simulation Assisted Exploration and Production of Hydrocarbons from Niobrara... CX(s) Applied: B3.6 Date: 08...

256

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-008968: Categorical Exclusion Determination Multi-Phase Fluid Flow Simulation Assisted Exploration and Production of Hydrocarbons from Niobrara... CX(s) Applied: B3.1 Date: 08...

257

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 CX-003936: Categorical Exclusion Determination Hawaii Energy Sustainability Program (Subtask 2.3.1: Hydrogen Research and Development) CX(s) Applied: A9, A11, B1.24, B3.6...

258

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 CX-003688: Categorical Exclusion Determination Mid-Atlantic Regional Alternative Fuel Infrastructure Development Project CX(s) Applied: B5.1 Date: 09022010 Location(s):...

259

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination Pennsylvania Energy Harvest Mined Project Grants - Mains Dairy Farm Biogas Project CX(s) Applied: A9, A11, B5.1 Date: 07012010 Location(s): Cumberland County,...

260

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination Competitive Renewable Grants Program - Renewable Water Resources Biogas CX(s) Applied: B1.15, B1.31, A9, B5.1 Date: 05172010 Location(s): Greenville, South...

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Pennsylvania Green Energy Works Targeted Grant - Biogas - Ideal Family Farms CX(s) Applied: B1.15, B5.1 Date: 02182010 Location(s):...

262

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

18, 2010 CX-004241: Categorical Exclusion Determination Colonias for Microgrids (Texas) Office of Electricity Delivery and Energy Reliability 14.09 CX(s) Applied: A9, A11, B3.6...

263

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination Hawaii Energy Sustainability Program (Subtask 2.4.2: Laboratory Scale Pyrolysis) CX(s) Applied: A9, A11, B1.24, B3.6, B5.1 Date: 09222010 Location(s):...

264

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-007474: Categorical Exclusion Determination A Geomechanical Analysis of Gas Shale Fracturing and Its Containment CX(s) Applied: B3.6 Date: 12132011 Location(s): Utah...

265

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4, 2010 CX-001223: Categorical Exclusion Determination Philadelphia Housing Authority Rooftop Solar Systems CX(s) Applied: A9, A11, B5.1 Date: 03042010 Location(s):...

266

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Hawaii Energy Sustainability Program (Subtask 2.5.1: Forest City Military Communities) CX(s) Applied: A9, A11, B1.7, B3.6, B5.1 Date: 09222010...

267

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory June 21, 2010 CX-002725: Categorical Exclusion Determination Boulder Plug-In Hybrid Electric Vehicle Program CX(s) Applied: A1, A11, B2.2, B5.1 Date: 06212010...

268

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 CX-004332: Categorical Exclusion Determination Geothermal Incentive Program - Old Lyme High School Geothermal CX(s) Applied: A9, B5.1 Date: 10252010 Location(s): Old Lyme,...

269

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3, 2010 CX-003040: Categorical Exclusion Determination Propane Corridor Development Program CX(s) Applied: A1, A7, B5.1 Date: 07132010 Location(s): Pickens, South Carolina...

270

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Development and Commercialization of a Novel Low-Cost Carbon Fiber CX(s) Applied: B3.6 Date: 09282011 Location(s): Missouri, North Carolina,...

271

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 25, 2012 CX-008306: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.22 Date:...

272

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 18, 2012 CX-008315: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.22 Date:...

273

Categorical Exclusion Determinations: Advanced Technology Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2012 CX-007677: Categorical Exclusion Determination Project Eagle Phase 1 Direct WaferCell Solar Facility CX(s) Applied: B1.31 Date: 01242012 Location(s): Massachusetts...

274

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-002252: Categorical Exclusion Determination Clean and Secure Energy from Domestic Oil Shale & Oil Sands Resources CX(s) Applied: B3.7 Date: 05122010 Location(s): Uintah...

275

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Advanced Epi Tools for Gallium Nitride LED (Light Emitting Diode) Devices CX(s) Applied: B3.6 Date: 03052010 Location(s): Santa Clara,...

276

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Low Cost Lithography for High Brightness LED (Light-emitting diode) Manufacturing CX(s) Applied: B3.6 Date: 02122010 Location(s): San Jose,...

277

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19, 2010 CX-004504: Categorical Exclusion Determination Beacon Power 20 Megawatt Flywheel Frequency Regulation Plant CX(s) Applied: A1, A9, A11 Date: 11192010 Location(s):...

278

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 16, 2010 CX-001332: Categorical Exclusion Determination Boiler Plant Renovation for Biomass Utilization CX(s) Applied: B5.1 Date: 03162010 Location(s): Burkeville, Virginia...

279

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory July 11, 2011 CX-006187: Categorical Exclusion Determination Texas Propane Fleet Pilot Program CX(s) Applied: B5.1 Date: 07112011 Location(s): Alvin, Texas...

280

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2012 CX-008254: Categorical Exclusion Determination High Efficiency Colloidal Quantum Dot Phosphors CX(s) Applied: B3.6 Date: 03292012 Location(s): New York Offices(s):...

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 CX-004108: Categorical Exclusion Determination Green Oil: Carbon Dioxide Enhanced Oil Recovery for America?s Small Oil Producers CX(s) Applied: A9, B3.6 Date: 09302010...

282

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Carbon Dioxide-Water Emulsions For Enhanced Oil Recovery And Permanent Sequestration Of Carbon Dioxide CX(s) Applied: A9, A11, B3.6...

283

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

14, 2013 CX-009857: Categorical Exclusion Determination Seismic Stimulation for Enhanced Oil Recovery CX(s) Applied: A9, A11, B3.6, B3.7 Date: 01142013 Location(s): Texas...

284

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Creation of a United States Phosphorescent Organic Light Emitting Diode Lighting Panel Pilot Facility CX(s) Applied: B3.6, B5.1 Date: 04022010...

285

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-002243: Categorical Exclusion Determination Post Retort, Pre Hydro-Treat Upgrading of Shale Oil Project CX(s) Applied: B3.6, A9 Date: 05132010 Location(s): Salt Lake City,...

286

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

29, 2011 CX-006121: Categorical Exclusion Determination University Energy Education Curriculum Project (UEECP) CX(s) Applied: A1, A9, A11 Date: 06292011 Location(s): Richmond,...

287

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 17, 2011 CX-006557: Categorical Exclusion Determination Differential Absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide CX(s) Applied: B3.8, B3.11 Date: 0817...

288

Categorical Exclusion Determinations: National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-005661: Categorical Exclusion Determination Clean Energy Development Fund - Renewable Energy Program - Candelora Hydro Project CX(s) Applied: B1.15, B5.1 Date: 04282011...

289

Task 10 - Technology Development Integration. Semiannual report, November 1, 1996--March 31, 1997  

Science Conference Proceedings (OSTI)

The Energy and Environmental Research Center (EERC) in conjunction with the Waste Policy Institute (WPI) will identify and integrate new technologies to meet site-specific environmental management (EM) requirements at contaminated sites appropriate to U.S. Department of Energy (DOE) interests. EM technologies offered by developers will be evaluated to determine their complementary contribution to new cleanup systems focused on particular characterization and remediation problems at specific EM sites. The technology clusters identified will provide EM cleanup capabilities that are significantly faster, better, safer, and cheaper than systems that are currently available. Work will be performed under the DOE-EERC EM Cooperative Agreement (EMCA), which includes provisions to develop, demonstrate, and commercialize technologies that address environmental management needs of contaminated sites together with management activities which accelerate transfer of technologies. The effort began July 1, 1995.

Erickson, Thomas A.; Daly, Daniel J.

1997-12-31T23:59:59.000Z

290

Characterization, Monitoring, and Sensor Technology Integrated Program (CMST-IP). Technology summary  

Science Conference Proceedings (OSTI)

The Characterization, Monitoring, and Sensor Technology Integrated Program seeks to deliver needed technologies, timely and cost-effectively, to the Office of Waste Management (EM-30), the Office of Environmental Restoration (EM-40), and the Office of Facility Transition and Management (EM-60). The scope of characterizations monitoring, and sensor technology needs that are required by those organizations encompass: (1) initial location and characterization of wastes and waste environments - prior to treatment; (2) monitoring of waste retrieval, remediation and treatment processes; (3) characterization of the co-position of final waste treatment forms to evaluate the performance of waste treatments processes; and (4) site closure and compliance monitoring. Wherever possible, the CMST-IP fosters technology transfer and commercialization of technologies that it sponsors.

Not Available

1994-04-01T23:59:59.000Z

291

The use of software agents and distributed objects to integrate enterprises: Compatible or competing technologies?  

SciTech Connect

Distributed object and software agent technologies are two integration methods for connecting enterprises. The two technologies have overlapping goals--interoperability and architectural support for integrating software components--though to date little or no integration of the two technologies has been made at the enterprise level. The primary difference between these two technologies is that distributed object technologies focus on the problems inherent in connecting distributed heterogeneous systems whereas software agent technologies focus on the problems involved with coordination and knowledge exchange across domain boundaries. This paper addresses the integration of these technologies in support of enterprise integration across organizational and geographic boundaries. The authors discuss enterprise integration issues, review their experiences with both technologies, and make recommendations for future work. Neither technology is a panacea. Good software engineering techniques must be applied to integrate an enterprise because scalability and a distributed software development team are realities.

Pancerella, C.M.

1998-04-01T23:59:59.000Z

292

Uranium in Soils Integrated Demonstration: Technology summary, March 1994  

Science Conference Proceedings (OSTI)

A recent Pacific Northwest Laboratory (PNL) study identified 59 waste sites at 14 DOE facilities across the nation that exhibit radionuclide contamination in excess of established limits. The rapid and efficient characterization of these sites, and the potentially contaminated regions that surround them represents a technological challenge with no existing solution. In particular, the past operations of uranium production and support facilities at several DOE sites have occasionally resulted in the local contamination of surface and subsurface soils. Such contamination commonly occurs within waste burial sites, cribs, pond bottom sediments and soils surrounding waste tanks or uranium scrap, ore, tailings, and slag heaps. The objective of the Uranium In Soils Integrated Demonstration is to develop optimal remediation methods for soils contaminated with radionuclides, principally uranium (U), at DOE sites. It is examining all phases involved in an actual cleanup, including all regulatory and permitting requirements, to expedite selection and implementation of the best technologies that show immediate and long-term effectiveness specific to the Fernald Environmental Management Project (FEMP) and applicable to other radionuclide contaminated DOE sites. The demonstration provides for technical performance evaluations and comparisons of different developmental technologies at FEMP sites, based on cost-effectiveness, risk-reduction effectiveness, technology effectiveness, and regulatory and public acceptability. Technology groups being evaluated include physical and chemical contaminant separations, in situ remediation, real-time characterization and monitoring, precise excavation, site restoration, secondary waste treatment, and soil waste stabilization.

Not Available

1994-03-01T23:59:59.000Z

293

Methods and systems for integrating fluid dispensing technology with stereolithography  

DOE Patents (OSTI)

An integrated system and method of integrating fluid dispensing technologies (e.g., direct-write (DW)) with rapid prototyping (RP) technologies (e.g., stereolithography (SL)) without part registration comprising: an SL apparatus and a fluid dispensing apparatus further comprising a translation mechanism adapted to translate the fluid dispensing apparatus along the Z-, Y- and Z-axes. The fluid dispensing apparatus comprises: a pressurized fluid container; a valve mechanism adapted to control the flow of fluid from the pressurized fluid container; and a dispensing nozzle adapted to deposit the fluid in a desired location. To aid in calibration, the integrated system includes a laser sensor and a mechanical switch. The method further comprises building a second part layer on top of the fluid deposits and optionally accommodating multi-layered circuitry by incorporating a connector trace. Thus, the present invention is capable of efficiently building single and multi-material SL fabricated parts embedded with complex three-dimensional circuitry using DW.

Medina, Francisco (El Paso, TX); Wicker, Ryan (El Paso, TX); Palmer, Jeremy A. (Albuquerque, NM); Davis, Don W. (Albuquerque, NM); Chavez, Bart D. (Albuquerque, NM); Gallegos, Phillip L. (Albuquerque, NM)

2010-02-09T23:59:59.000Z

294

AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES  

Science Conference Proceedings (OSTI)

CO{sub 2} capture and storage (CCS) is gaining widespread interest as a potential method to control greenhouse gas emissions from fossil fuel sources, especially electric power plants. Commercial applications of CO{sub 2} separation and capture technologies are found in a number of industrial process operations worldwide. Many of these capture technologies also are applicable to fossil fuel power plants, although applications to large-scale power generation remain to be demonstrated. This report describes the development of a generalized modeling framework to assess alternative CO{sub 2} capture and storage options in the context of multi-pollutant control requirements for fossil fuel power plants. The focus of the report is on post-combustion CO{sub 2} capture using amine-based absorption systems at pulverized coal-fired plants, which are the most prevalent technology used for power generation today. The modeling framework builds on the previously developed Integrated Environmental Control Model (IECM). The expanded version with carbon sequestration is designated as IECM-cs. The expanded modeling capability also includes natural gas combined cycle (NGCC) power plants and integrated coal gasification combined cycle (IGCC) systems as well as pulverized coal (PC) plants. This report presents details of the performance and cost models developed for an amine-based CO{sub 2} capture system, representing the baseline of current commercial technology. The key uncertainties and variability in process design, performance and cost parameters which influence the overall cost of carbon mitigation also are characterized. The new performance and cost models for CO{sub 2} capture systems have been integrated into the IECM-cs, along with models to estimate CO{sub 2} transport and storage costs. The CO{sub 2} control system also interacts with other emission control technologies such as flue gas desulfurization (FGD) systems for SO{sub 2} control. The integrated model is applied to study the feasibility and cost of carbon capture and sequestration at both new and existing PC plants as well as new NGCC plants. The cost of CO{sub 2} avoidance using amine-based CO{sub 2} capture technology is found to be sensitive to assumptions about the reference plant design and operation, as well as assumptions about the CO{sub 2} capture system design. The case studies also reveal multi-pollutant interactions and potential tradeoffs in the capture of CO{sub 2}, SO{sub 2}, NO{sub 2} and NH{sub 3}. The potential for targeted R&D to reduce the cost of CO{sub 2} capture also is explored using the IECM-cs in conjunction with expert elicitations regarding potential improvements in key performance and cost parameters of amine-based systems. The results indicate that the performance of amine-based CO{sub 2} capture systems can be improved significantly, and the cost of CO{sub 2} capture reduced substantially over the next decade or two, via innovations such as new or improved sorbents with lower regeneration heat requirements, and improvements in power plant heat integration to reduce the (currently large) energy penalty of CO{sub 2} capture. Future work will explore in more detail a broader set of advanced technology options to lower the costs of CO{sub 2} capture and storage. Volume 2 of this report presents a detailed User's Manual for the IECM-cs computer model as a companion to the technical documentation in Volume 1.

Anand B. Rao; Edward S. Rubin; Michael B. Berkenpas

2004-03-01T23:59:59.000Z

295

Three-Dimensional Integration Technology for Advanced Focal Planes and Integrated Circuits  

Science Conference Proceedings (OSTI)

Over the last five years MIT Lincoln Laboratory (MIT-LL) has developed a three-dimensional (3D) circuit integration technology that exploits the advantages of silicon-on-insulator (SOI) technology to enable wafer-level stacking and micrometer-scale electrical interconnection of fully fabricated circuit wafers. Advanced focal plane arrays have been the first applications to exploit the benefits of this 3D integration technology because the massively parallel information flow present in 2D imaging arrays maps very nicely into a 3D computational structure as information flows from circuit-tier to circuit-tier in the z-direction. To date, the MIT-LL 3D integration technology has been used to fabricate four different focal planes including: a 2-tier 64 x 64 imager with fully parallel per-pixel A/D conversion; a 3-tier 640 x 480 imager consisting of an imaging tier, an A/D conversion tier, and a digital signal processing tier; a 2-tier 1024 x 1024 pixel, 4-side-abutable imaging modules for tiling large mosaic focal planes, and a 3-tier Geiger-mode avalanche photodiode (APD) 3-D LIDAR array, using a 30 volt APD tier, a 3.3 volt CMOS tier, and a 1.5 volt CMOS tier. Recently, the 3D integration technology has been made available to the circuit design research community through DARPA-sponsored Multiproject fabrication runs. The first Multiproject Run (3DL1) completed fabrication in early 2006 and included over 30 different circuit designs from 21 different research groups. 3D circuit concepts explored in this run included stacked memories, field programmable gate arrays (FPGAs), and mixed-signal circuits. The second Multiproject Run (3DM2) is currently in fabrication and includes particle detector readouts designed by Fermilab. This talk will provide a brief overview of MIT-LL's 3D-integration process, discuss some of the focal plane applications where the technology is being applied, and provide a summary of some of the Multiproject Run circuit results.

Keast, Craig (M.I.T. Lincoln Laboratory)

2007-02-28T23:59:59.000Z

296

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Thomas Lynch

2004-01-07T23:59:59.000Z

297

Tank waste remediation system integrated technology plan. Revision 2  

SciTech Connect

The Hanford Site, located in southeastern Washington State, is operated by the US Department of Energy (DOE) and its contractors. Starting in 1943, Hanford supported fabrication of reactor fuel elements, operation of production reactors, processing of irradiated fuel to separate and extract plutonium and uranium, and preparation of plutonium metal. Processes used to recover plutonium and uranium from irradiated fuel and to recover radionuclides from tank waste, plus miscellaneous sources resulted in the legacy of approximately 227,000 m{sup 3} (60 million gallons) of high-level radioactive waste, currently in storage. This waste is currently stored in 177 large underground storage tanks, 28 of which have two steel walls and are called double-shell tanks (DSTs) an 149 of which are called single-shell tanks (SSTs). Much of the high-heat-emitting nuclides (strontium-90 and cesium-137) has been extracted from the tank waste, converted to solid, and placed in capsules, most of which are stored onsite in water-filled basins. DOE established the Tank Waste Remediation System (TWRS) program in 1991. The TWRS program mission is to store, treat, immobilize and dispose, or prepare for disposal, the Hanford tank waste in an environmentally sound, safe, and cost-effective manner. Technology will need to be developed or improved to meet the TWRS program mission. The Integrated Technology Plan (ITP) is the high-level consensus plan that documents all TWRS technology activities for the life of the program.

Eaton, B.; Ignatov, A.; Johnson, S.; Mann, M.; Morasch, L.; Ortiz, S.; Novak, P. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

1995-02-28T23:59:59.000Z

298

Technology and Greenhouse Gas Emissions: An IntegratedScenario Analysis  

SciTech Connect

This report describes an analysis of possible technology-based scenarios for the U.S. energy system that would result in both carbon savings and net economic benefits. We use a modified version of the Energy Information Administration's National Energy Modeling System (LBNL-NEMS) to assess the potential energy, carbon, and bill savings from a portfolio of carbon saving options. This analysis is based on technology resource potentials estimated in previous bottom-up studies, but it uses the integrated LBNL-NEMS framework to assess interactions and synergies among these options. The analysis in this paper builds on previous estimates of possible "technology paths" to investigate four major components of an aggressive greenhouse gas reduction strategy: (1) the large scale implementation of demand-side efficiency, comparable in scale to that presented in two recent policy studies on this topic; (2) a variety of "alternative" electricity supply-side options, including biomass cofiring, extension of the renewable production tax credit for wind, increased industrial cogeneration, and hydropower refurbishment. (3) the economic retirement of older and less efficient existing fossil-find power plants; and (4) a permit charge of $23 per metric ton of carbon (1996 $/t),l assuming that carbon trading is implemented in the US, and that the carbon permit charge equilibrates at this level. This level of carbon permit charge, as discussed later in the report, is in the likely range for the Clinton Administration's position on this topic.

Koomey, J.G.; Latiner, S.; Markel, R.J.; Marnay, C.; Richey, R.C.

1998-09-01T23:59:59.000Z

299

Technologies  

Science & Technology. Weapons & Complex Integration. News Center. News Center. Around the Lab. Contacts. For Reporters. Livermore Lab Report. ...

300

Systems integration and analysis of advanced life support technologies  

E-Print Network (OSTI)

Extended missions to space have long been a goal of the National Aeronautics and Space Administration (NASA). Accomplishment of NASA's goal requires the development of systems and tools for sustaining human life for periods of several months to several years. This is the primary objective of NASA's Advanced Life Support (ALS) program. This work contributes directly to NASA efforts for ALS, particularly food production. The objective of this work is to develop a systematic methodology for analyzing and improving or modifying ALS technologies to increase their acceptability for implementation in long-duration space missions. By focusing primarily on the food production systems, it is an aim of this work to refine the procedure for developing and analyzing the ALS technologies. As a result of these efforts, researchers will have at their disposal, a powerful tool for establishing protocols for each technology as well as for modifying each technology to meet the standards for practical applications. To automate the developed methodology and associated calculations, a computer-aided tool has been developed. The following systematic procedures are interrelated and automatically integrated into the computer-aided tool: • Process configuration, with particular emphasis given to food production (e.g., syrup and flour from sweet potato, starch from sweet potato, breakfast cereal from sweet potato); • Modeling and analysis for mass and energy tracking and budgeting; • Mass and energy integration • Metrics evaluation (e.g., Equivalent System Mass (ESM)). Modeling and analysis is achieved by developing material- and energy-budgeting models. Various forms of mass and energy are tracked through fundamental as well as semiempirical models. Various system alternatives are synthesized and screened using ESM and other metrics. The results of mass, energy and ESM analyses collectively revealed the major consumers of time, equivalent mass, and energy, namely evaporation, condensation, dehydration, drying and extrusion. The targeted processes were subsequently targeted for modifications. In conclusion, this work provides a systematic methodology for transforming non-conventional problems into traditional engineering design problems, a significant contribution to ALS studies.

Nworie, Grace A.

2006-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

Conocophillips

2007-09-30T23:59:59.000Z

302

Method and apparatus for determining material structural integrity  

DOE Patents (OSTI)

Disclosed are a nondestructive method and apparatus for determining the structural integrity of materials by combining laser vibrometry with damping analysis to determine the damping loss factor. The method comprises the steps of vibrating the area being tested over a known frequency range and measuring vibrational force and velocity vs time over the known frequency range. Vibrational velocity is preferably measured by a laser vibrometer. Measurement of the vibrational force depends on the vibration method: if an electromagnetic coil is used to vibrate a magnet secured to the area being tested, then the vibrational force is determined by the coil current. If a reciprocating transducer is used, the vibrational force is determined by a force gauge in the transducer. Using vibrational analysis, a plot of the drive point mobility of the material over the preselected frequency range is generated from the vibrational force and velocity data. Damping loss factor is derived from a plot of the drive point mobility over the preselected frequency range using the resonance dwell method and compared with a reference damping loss factor for structural integrity evaluation.

Pechersky, M.J.

1994-01-01T23:59:59.000Z

303

Integrated thermal and nonthermal treatment technology and subsystem cost sensitivity analysis  

SciTech Connect

The U.S. Department of Energy`s (DOE) Environmental Management Office of Science and Technology (EM-50) authorized studies on alternative systems for treating contact-handled DOE mixed low-level radioactive waste (MLLW). The on-going Integrated Thermal Treatment Systems` (ITTS) and the Integrated Nonthermal Treatment Systems` (INTS) studies satisfy this request. EM-50 further authorized supporting studies including this technology and subsystem cost sensitivity analysis. This analysis identifies areas where technology development could have the greatest impact on total life cycle system costs. These areas are determined by evaluating the sensitivity of system life cycle costs relative to changes in life cycle component or phase costs, subsystem costs, contingency allowance, facility capacity, operating life, and disposal costs. For all treatment systems, the most cost sensitive life cycle phase is the operations and maintenance phase and the most cost sensitive subsystem is the receiving and inspection/preparation subsystem. These conclusions were unchanged when the sensitivity analysis was repeated on a present value basis. Opportunity exists for technology development to reduce waste receiving and inspection/preparation costs by effectively minimizing labor costs, the major cost driver, within the maintenance and operations phase of the life cycle.

Harvego, L.A.; Schafer, J.J.

1997-02-01T23:59:59.000Z

304

Low Wind Speed Technology Phase II: Integrated Wind Energy/Desalination System; General Electric Global Research  

SciTech Connect

This fact sheet describes a subcontract with General Electric Global Research to explore wind power as a desirable option for integration with desalination technologies.

Not Available

2006-03-01T23:59:59.000Z

305

Teacher's Attitudes towards Integrating Technology: Case Studies in Saudi Arabia and the United States.  

E-Print Network (OSTI)

??This study examines teachers' attitudes towards integrating technology in Saudi Arabia and the United States. A case study approach was used to identify several factors… (more)

Alharbi, Asma Mohammed

2013-01-01T23:59:59.000Z

306

Consortium for Electric Reliability Technology Solutions Integrated Assessment of  

E-Print Network (OSTI)

described in this paper coordinated by the Consortium of Electricity Reliability Technology Solutions

307

Incorporating Carbon Capture and Storage Technologies in Integrated Assessment Models  

E-Print Network (OSTI)

carbon capture and storage, 2) a natural gas combined cycle technology with carbon capture and storage 1 power generation technologies are: 1) a natural gas combined cycle technology (advanced gas) without eight of technologies in the electric power sector: conventional fossil fuel, natural gas combined cycle

308

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

Albert Tsang

2003-03-14T23:59:59.000Z

309

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

Albert Tsang

2003-03-14T23:59:59.000Z

310

Three dimensional integration technology using copper wafer bonding  

E-Print Network (OSTI)

With 3-D integration, the added vertical component could theoretically increase the device density per footprint ratio of a given chip by n-fold, provide a means of heterogeneous integration of devices fabricated from ...

Fan, Andy, 1976-

2006-01-01T23:59:59.000Z

311

Integrating and Piloting Lignocellulose Biomass Conversion Technology (Presentation)  

DOE Green Energy (OSTI)

Presentation on NREL's integrated biomass conversion capabilities. Presented at the 2009 Advanced Biofuels Workshop in Denver, CO, Cellulosic Ethanol session.

Schell, D. J.

2009-06-15T23:59:59.000Z

312

2012 SG Peer Review - Integrated, Automated DG Technologies Demonstrat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for boiler flue gas heat recovery - Advancing energy storage technologies - New Flywheel storage technology * Total Cost - 1,806K * 100 kW of Wind, 100 kW of waste heat...

313

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

NLE Websites -- All DOE Office Websites (Extended Search)

Integrated Warm Gas Multicontaminant Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas Description Integrated Gasification Combined Cycle (IGCC) technology offers a means to utilize coal -the most abundant fuel in the United States-to produce a host of products, ranging from electricity to value-added chemicals like transportation fuels and hydrogen, in an efficient, environmentally friendly manner. However, the overall cost (capital, operating,

314

A review of biomass integrated-gasifier/gas turbine combined cycle technology and its  

E-Print Network (OSTI)

A review of biomass integrated-gasifier/gas turbine combined cycle technology and its application Copersucar, CP 162, Piracicaba, SP ­ Brazil ­ 13400-970 Biomass integrated-gasifier/gas turbine combined-from-sugarcane program. 1. Introduction The biomass integrated-gasifier/gas turbine combined cy- cle (BIG

315

Information technology and business-level strategy: toward an integrated theoretical perspective  

Science Conference Proceedings (OSTI)

Information technology matters to business success because it directly affects the mechanisms through which they create and capture value to earn a profit: IT is thus integral to a firm's business-level strategy. Much of the extant research on the IT/strategy ... Keywords: IT capability, IT strategy, competitive advantage, information systems, information technology, management theory, performance, technology management

Paul L. Drnevich, David C. Croson

2013-06-01T23:59:59.000Z

316

NREL: Technology Transfer - DOE to Invest in Grid Integration ...  

DOE to Invest in Grid Integration Systems for Solar Energy ... designs and market analyses for such Solar Energy ... SEGIS information on the SAI ...

317

Integrated Vehicle Thermal Management for Advanced Vehicle Propulsion Technologies: Preprint  

DOE Green Energy (OSTI)

Techniques for evaluating and quantifying integrated transient and continuous heat loads of combined systems incorporating electric drive systems operating primarily under transient duty cycles.

Bennion, K.; Thornton, M.

2010-02-01T23:59:59.000Z

318

Available Technologies: Integrated Profiling of 3D Cell ...  

Integrated Profiling of 3D Cell Culture Models and 3D Microscopy. 2013-177. ABSTRACT: Researchers at Berkeley Lab have developed a screening platform ...

319

Integrated Biorefinery Research Facility: Advancing Biofuels Technology (Fact Sheet)  

DOE Green Energy (OSTI)

The Integrated Biorefinery Research Facility (IBRF) at the National Renewable Energy Laboratory (NREL) expands NREL's cellulosic ethanol research and development and collaboration capabilities.

Not Available

2009-03-01T23:59:59.000Z

320

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the GEC and an Industrial Consortia are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Doug Strickland; Albert Tsang

2002-10-14T23:59:59.000Z

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Two project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, DOE approved the RD&T Plan submitted in the previous quarter. The RD&T Plan forms the basis for the Continuation Application to initiate the transition of the project from Phase I to Phase II. Potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis will be tested in slipstream units at the WREL facility during Phase II. A supplemental information package consisting of a revised Work Breakdown Structure and Budget Plan for Phase II and other necessary forms was also submitted. Agreement is being reached with DOE's patent attorney on the scope of the limited rights data to be provided under the Cooperative Agreement. Preparation of a comprehensive Final Report for Phase I of the project, which will consolidate the remaining deliverables including the Initial Feasibility Report, Concept Report, Site Analysis Report, Economic Analysis, and Preliminary Project Financing Plan, continued during the reporting period. Significant progress was made in the Subsystem Design Specification section of the report.

Albert Tsang

2003-10-14T23:59:59.000Z

322

Implementation of Technology Integration in Higher Education: A Case Study of the University of Dar-es-Salaam in Tanzania.  

E-Print Network (OSTI)

??The use of technology in education is one of the major trends in educational reforms all over the world. Integrating technology into the learning and… (more)

Kajuna, Laxford W.

2009-01-01T23:59:59.000Z

323

Technology integration of a photonics system in China.  

E-Print Network (OSTI)

??Photonics or Optoelectronics is one of the most pervasive and key enabling technologies of the 21st century touching every aspect of our lives. Optoelectronics –… (more)

Lau, Daniel Kit (??)

2005-01-01T23:59:59.000Z

324

Characterization of the PHOCITM data integrated video sensor technology  

Science Conference Proceedings (OSTI)

In this article, we report the characterization results of two data integrated video sensors designed by Clifton Labs, Inc. A data integrated video sensor consists of an array of photodetectors that each provide both an analog (video) and digital (data) ... Keywords: CMOS imager, Data-communicating imager, Free-space communications, Photonic communications

Douglas R. Hickey; Chris J. Fearing; Fred R. Beyette, Jr.; Philip A. Wilsey

2008-08-01T23:59:59.000Z

325

Trends in Energy Management Technology: BCS Integration Technologies - Open Communications Networking  

E-Print Network (OSTI)

223. Trends in Energy Management Technology CBE/UC BerkeleyTrends in Energy Management Technology CBE/UC Berkeley FEMP/p. 6. Trends in Energy Management Technology CBE/UC Berkeley

Webster, Tom

2002-01-01T23:59:59.000Z

326

Sensor Technology Integration for Efficient and Cost-Effective D&D  

Science Conference Proceedings (OSTI)

The deactivation and decommissioning of radiologically contaminated facilities require the use of a multitude of technologies to perform characterization, decontamination, dismantlement, and waste management. Current baseline technologies do not provide adequate tools to perform this work in an efficient and cost-effective manner. Examples of such tasks that can be modified to enhance the D&D work include: floor and wall decontamination, pipe decontamination, and surveillance and monitoring. FIU-HCET's Technology Development, Integration and Deployment (TDID) group aims to enhance the D&D process by integrating sensor technology to existing decontamination and remote surveillance tools. These integrated systems have been demonstrated throughout the DOE Complex and commercial nuclear facilities undergoing decommissioning. Finding new ways of integrating technologies utilized in the decommissioning and surveillance & monitoring process has been a goal of this group during the past several years. Current and previous integration projects include: Mobile Integrated Piping Decontamination and Characterization System, On-Line Decontamination and Characterization System, In-Situ Pipe Decontamination and Unplugging System, Remote Hazardous Environment Surveyor (RHES), and the Online Handheld grit blasting decontamination system As a result of integrating sensors with D&D tools, the resulting technologies have removed the downtime currently found in baseline processes by allowing operators and project managers to have real-time contamination data during the specified D&D process. This added component allows project managers to verify that full decontamination and surveillance has been conducted. Through successful demonstration and deployments of the TDID-developed technologies, FIU-HCET has provided tools that can impact the cost, schedule and health and safety of D&D operations in a positive way, leading to shorter downtimes and significant cost-savings. This paper will discuss the development of technologies currently modified with sensor technology by the TDID group, from conceptual design to Deployment at a DOE or commercial nuclear facility. Cost information associated with the respective technology will also be discussed.

Varona, J. M.; Lagos, L. E.

2002-02-25T23:59:59.000Z

327

A pragmatic approach to integrated process/device/circuit simulation for IC technology development  

Science Conference Proceedings (OSTI)

A novel approach to integrated process/device/circuit simulation is proposed which allows pragmatic, computationally efficient IC technology CAD at the mixed-mode device/circuit level. The approach is demonstrated with a simulation system for advanced ...

K. R. Green; J. G. Fossum

2006-11-01T23:59:59.000Z

328

Platform for monolithic integration of III-V devices with Si CMOS technology  

E-Print Network (OSTI)

Monolithic integration of III-V compound semiconductors and Si complementary metal-oxide- semiconductor (CMOS) enables the creation of advanced circuits with new functionalities. In order to merge the two technologies, ...

Pacella, Nan Yang

2012-01-01T23:59:59.000Z

329

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

Albert Tsang

2003-03-14T23:59:59.000Z

330

Advanced CO2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

CO CO 2 Capture Technology for Low Rank Coal Integrated Gasification Combined Cycle (IGCC) Systems Background Gasification of coal or other solid feedstocks (wood waste, petroleum coke, etc.) is a clean way to produce electricity and produce or co-produce a variety of commercial products. The major challenge is cost reduction; current integrated gasification combined cycle (IGCC) technology is estimated to produce power at a cost higher than that of pulverized coal combustion. However, the Gasification

331

ENERY SMART SCHOOLS - APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION  

SciTech Connect

This multi-state collaborative project will coordinate federal, state, and private sector resources and high-priority school-related energy research under a comprehensive initiative that includes tasks that increase adoption of advanced energy efficiency high-performance technologies in both renovation of existing schools and building new ones; educate and inform school administrators, architects, engineers, and manufacturers nationwide as to the energy, economic, and environmental benefits of energy efficiency technologies; and improve the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in schools.

Kate Burke

2004-01-01T23:59:59.000Z

332

ENERGY SMART SCHOOLS - APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION  

SciTech Connect

This multi-state collaborative project will coordinate federal, state, and private sector resources and high-priority school-related energy research under a comprehensive initiative that includes tasks that increase adoption of advanced energy efficiency high-performance technologies in both renovation of existing schools and building new ones; educate and inform school administrators, architects, engineers, and manufacturers nationwide as to the energy, economic, and environmental benefits of energy efficiency technologies; and improve the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in schools.

Kate Burke

2004-01-01T23:59:59.000Z

333

Performance of digital integrated circuit technologies at very high temperatures  

Science Conference Proceedings (OSTI)

Results of investigations of the performance and reliability of digital bipolar and CMOS integrated circuits over the 25 to 340/sup 0/C range are reported. Included in these results are both parametric variation information and analysis of the functional failure mechanisms. Although most of the work was done using commercially available circuits (TTL and CMOS) and test chips from commercially compatible processes, some results of experimental simulations of dielectrically isolated CMOS are also discussed. It was found that commercial Schottky clamped TTL, and dielectrically isolated, low power Schottky-clamped TTL, functioned to junction temperatures in excess of 325/sup 0/C. Standard gold doped TTL functioned only to 250/sup 0/C, while commercial, isolated I/sup 2/L functioned to the range 250/sup 0/C to 275/sup 0/C. Commercial junction isolated CMOS, buffered and unbuffered, functioned to the range 280/sup 0/C to 310/sup 0/C/sup +/, depending on the manufacturer. Experimental simulations of simple dielectrically isolated CMOS integrated circuits, fabricated with heavier doping levels than normal, functioned to temperatures in excess of 340/sup 0/C. High temperature life testing of experimental, silicone-encapsulated simple TTL and CMOS integrated circuits have shown no obvious life limiting problems to date. No barrier to reliable functionality of TTL bipolar or CMOS integrated ciruits at temperatures in excess of 300/sup 0/C has been found.

Prince, J.L.; Draper, B.L.; Rapp, E.A.; Kromberg, J.N.; Fitch, L.T.

1980-01-01T23:59:59.000Z

334

Mixed Waste Integrated Program: A technology assessment for mercury-containing mixed wastes  

SciTech Connect

The treatment of mixed wastes must meet US Environmental Protection Agency (EPA) standards for chemically hazardous species and also must provide adequate control of the radioactive species. The US Department of Energy (DOE) Office of Technology Development established the Mixed Waste Integrated Program (MWIP) to develop mixed-waste treatment technology in support of the Mixed Low-Level Waste Program. Many DOE mixed-waste streams contain mercury. This report is an assessment of current state-of-the-art technologies for mercury separations from solids, liquids, and gases. A total of 19 technologies were assessed. This project is funded through the Chemical-Physical Technology Support Group of the MWIP.

Perona, J.J.; Brown, C.H.

1993-03-01T23:59:59.000Z

335

In Situ Remediation Integrated Program, Evaluation and assessment of containment technology  

SciTech Connect

The In Situ Remediation Integrated Program (ISRIP) was established by the US Department of Energy (DOE) to advance the state-of-the art of innovative in situ remediation technologies to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. This program complements similar ongoing integrated demonstration programs being conducted at several DOE sites. The ISRIP has been conducting baseline assessments on in situ technologies to support program planning. Pacific Northwest Laboratory conducted an assessment and evaluation of subsurface containment barrier technology in support of ISRIP`s Containment Technology Subprogram. This report summarizes the results of that activity and provides a recommendation for priortizing areas in which additional research and development is needed to advance the technology to the point of demonstration in support of DOE`s site restoration activities.

Gerber, M.A.; Fayer, M.J.

1994-04-01T23:59:59.000Z

336

Incorporating carbon capture and storage technologies in integrated assessment models  

E-Print Network (OSTI)

and storage of CO2 from electric power plants. The electric power sector accounts for a substant of realistic technology adoption rates. The specification of input substitution, relative costs, and plant change has accounted for a significant portion of economic growth and is, in part, responsible

337

Integrated Building Energy Systems Design Considering Storage Technologies  

Science Conference Proceedings (OSTI)

The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic, as well as environmental attraction of micro-generation systems (e.g., PV or fuel cells with or without CHP) and contribute to enhanced demand response. The interactions among PV, solar thermal, and storage systems can be complex, depending on the tariff structure, load profile, etc. In order to examine the impact of storage technologies on demand response and CO2 emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that can pursue two strategies as its objective function. These two strategies are minimization of its annual energy costs or of its CO2 emissions. The problem is solved for a given test year at representative customer sites, e.g., nursing homes, to obtain not only the optimal investment portfolio, but also the optimal hourly operating schedules for the selected technologies. This paper focuses on analysis of storage technologies in micro-generation optimization on a building level, with example applications in New York State and California. It shows results from a two-year research projectperformed for the U.S. Department of Energy and ongoing work. Contrary to established expectations, our results indicate that PV and electric storage adoption compete rather than supplement each other considering the tariff structure and costs of electricity supply. The work shows that high electricity tariffs during on-peak hours are a significant driver for the adoption of electric storage technologies. To satisfy the site's objective of minimizing energy costs, the batteries have to be charged by grid power during off-peak hours instead of PV during on-peak hours. In contrast, we also show a CO2 minimization strategy where the common assumption that batteries can be charged by PV can be fulfilled at extraordinarily high energy costs for the site.

Stadler, Michael; Marnay, Chris; Siddiqui, Afzal; Lai, Judy; Aki, Hirohisa

2009-04-07T23:59:59.000Z

338

WABASH RIVER IMPPCCT, INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES  

DOE Green Energy (OSTI)

In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the Gasification Engineering Corporation and an Industrial Consortium are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an Early Entrance Coproduction Plant located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, financial, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility Study and conceptual design for an integrated demonstration facility and for fence-line commercial plants operated at The Dow Chemical Company or Dow Corning Corporation chemical plant locations (i.e. the Commercial Embodiment Plant or CEP) (2) Research, development, and testing to address any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Ltd., plant in West Terre Haute, Indiana. During the reporting period work was furthered to support the development of capital and operating cost estimates associated with the installation of liquid or gas phase methanol synthesis technology in a Commercial Embodiment Plant (CEP) utilizing the six cases previously defined. In addition, continued development of the plant economic model was accomplished by providing combined cycle performance data. Performance and emission estimates for gas turbine combined cycles was based on revised methanol purge gas information. The economic model was used to evaluate project returns with various market conditions and plant configurations and was refined to correct earlier flaws. Updated power price projections were obtained and incorporated in the model. Sensitivity studies show that break-even methanol prices which provide a 12% return are 47-54 cents/gallon for plant scenarios using $1.25/MM Btu coal, and about 40 cents/gallon for most of the scenarios with $0.50/MM Btu petroleum coke as the fuel source. One exception is a high power price and production case which could be economically attractive at 30 cents/gallon methanol. This case was explored in more detail, but includes power costs predicated on natural gas prices at the 95th percentile of expected price distributions. In this case, the breakeven methanol price is highly sensitive to the required project return rate, payback period, and plant on-line time. These sensitivities result mainly from the high capital investment required for the CEP facility ({approx}$500MM for a single train IGCC-methanol synthesis plant). Finally, during the reporting period the Defense Contractor Audit Agency successfully executed an accounting audit of Global Energy Inc. for data accumulated over the first year of the IMPPCCT project under the Cooperative Agreement.

Doug Strickland

2001-09-28T23:59:59.000Z

339

The Integrative Application Study on Solar Energy Technology Used In a Student Dormitory  

E-Print Network (OSTI)

It is more and more clear that the shortage of general energy sources has limited economic development. How to use renewable energy to replace general energy in construction becomes the new study in modern construction technology development. Shandong Jianzhu University has carried an integrative application study on solar energy technology used in student dorm and proof-tested the energy conservation efficiency after completing the study. This has provided new, significant data for construction technology development.

Xue, Y.; Wang, C.

2006-01-01T23:59:59.000Z

340

GIS-technologies for integrated assessment of the productive mining areas  

Science Conference Proceedings (OSTI)

The paper describes the bases of a new application of GIS-technologies for integrated assessment and comparison of the productive mining areas, involving a wide range of mining and technological factors, considering mineral properties, mineral occurrence conditions and geographical advantages of a mineral deposit location. The model capabilities are exemplified by a comparison of technological characteristics of coals, transportation and power supply infrastructure of the productive mining areas at the Kuznetsk Coal Basin.

Zamaraev, R.Y.; Oparin, V.N.; Popov, S.E.; Potapov, V.P.; Pyastunovich,O.L. [Russian Academy of Sciences, Kemerovo (Russian Federation)

2008-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Integration of Utility Energy Management Technologies into Building Automation Systems  

Science Conference Proceedings (OSTI)

The challenges with managing peak demand are expected to worsen as de-carbonization, plant retirement, renewable integration, and electric vehicle rollouts unfold. One solution to this problem is in better management of the demand side. This study is focused on commercial buildings, which account for approximately 27% of all electricity used in the United States and have a large impact on demand since much of the consumption falls during business hours, which tend to correspond with peak demand windows. ...

2010-12-23T23:59:59.000Z

342

Fuel Cell Technologies Office: DOE Electrolysis-Utility Integration  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis-Utility Integration Workshop Electrolysis-Utility Integration Workshop The U.S. Department of Energy sponsored an Electrolysis-Utility Integration Workshop in Broomfield, Colorado September 22-23, 2004. Attendees included representatives from utilities and energy companies, researchers, and government officials. Water electrolysis is a leading candidate for hydrogen production as the U.S. begins the transition to a hydrogen economy. Ideally, electrolysis will be able to provide hydrogen fuel for at least 20% of our light duty fleet; at prices competitive with traditional fuels and other hydrogen production pathways, using domestically available resources; and without adverse impacts to the environment. To be successful, the utility sector must play a vital role in identifying opportunities to diversify electricity generation and markets and begin to look at transportation fuel as a high priority business opportunity for the future. This workshop was held to identify the opportunities and challenges facing the widespread deployment of electrolysis based hydrogen production in the U.S.

343

Mobile integrated temporary utility system. Innovative technology summary report  

Science Conference Proceedings (OSTI)

The Mobile Integrated Temporary Utility System (MITUS) integrates portable electrical power along with communications and emergency alarm and lighting capabilities to provide safe, centralized power to work areas that need to be de-energized for decommissioning work. MITUS consists of a portable unit substation; up to twenty portable kiosks that house the power receptacles, communications, and emergency alarm and lighting systems; and a central communications unit. This system makes sequential decommissioning efforts efficient and cost-effective by allowing the integrated system to remain intact while being moved to subsequent work sites. Use of the MITUS also eliminates the need to conduct zero-energy tests and implement associated lock-out/tag-out procedures at partially de-energized facilities. Since the MITUS is a designed system, it can be customized to accommodate unique facility conditions simply by varying kiosks and transformer configurations. The MITUS is an attractive alternate to the use of portable generators with stand-alone communications and emergency system. It is more cost-effective than upgrading or reconfiguring existing power distribution systems.

NONE

1998-12-01T23:59:59.000Z

344

Task 10 - technology development integration. Semi-annual report, April 1--September 30, 1996  

Science Conference Proceedings (OSTI)

The Energy and Environmental Research Center (EERC), in conjunction with the Waste Policy Institute (WPI), will identify and integrate new technologies to meet site-specific environmental management (EM) requirements at contaminated sites appropriate to U.S. Department of Energy (DOE) interests. This paper briefly reports overall progress for three activities: technology management, project management, and technology integration. Work performed over the reporting period has focused on providing logistical and administrative support. In addition, six monthly WPI reports to the EERC are included as appendices. The WPI reports contained detailed information for progress in each activity.

Hendrikson, J.G.; Daly, D.J.

1997-05-01T23:59:59.000Z

345

Energy Smart Schools--Applied Research, Field Testing, and Technology Integration  

DOE Green Energy (OSTI)

The National Association of State Energy Officials (NASEO) in conjunction with the California Energy Commission, the Energy Center of Wisconsin, the Florida Solar Energy Center, the New York State Energy Research and Development Authority, and the Ohio Department of Development's Office of Energy Efficiency conducted a four-year, cost-share project with the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy to focus on energy efficiency and high-performance technologies in our nation's schools. NASEO was the program lead for the MOU-State Schools Working group, established in conjunction with the USDOE Memorandum of Understanding process for collaboration among state and federal energy research and demonstration offices and organizations. The MOU-State Schools Working Group included State Energy Offices and other state energy research organizations from all regions of the country. Through surveys and analyses, the Working Group determined the school-related energy priorities of the states and established a set of tasks to be accomplished, including the installation and evaluation of microturbines, advanced daylighting research, testing of schools and classrooms, and integrated school building technologies. The Energy Smart Schools project resulted in the adoption of advanced energy efficiency technologies in both the renovation of existing schools and building of new ones; the education of school administrators, architects, engineers, and manufacturers nationwide about the energy-saving, economic, and environmental benefits of energy efficiency technologies; and improved the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in classrooms. It also provided an opportunity for states to share and replicate successful projects to increase their energy efficiency while at the same time driving down their energy costs.

Nebiat Solomon; Robin Vieira; William L. Manz; Abby Vogen; Claudia Orlando; Kimberlie A. Schryer

2004-12-01T23:59:59.000Z

346

Integration of MEA Components-Status and Technology Gaps: A Stakeholders Perspective  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Fuel Cell Pre-Solicitation Workshop DOE Fuel Cell Pre-Solicitation Workshop March 16-17, 2010 Denver, CO 3M Fuel Cell Components Program Mark Debe, Steve Hamrock, Radoslav Atanasoski, Pinar Serim, Eric Funkenbusch, Mike Yandrasits, Stan Garnsworthy and Customers Integration of MEA Components - Status and Technology Gaps - A Stakeholder's Perspective 2 Outline: 1. What does MEA integration mean? 2. Where the technology may be going with regard to 2015 3. Status and relative gaps for 2015 at the individual component level 4. Status and relative gaps for 2015 at the MEA integration level 5. Suggestions where DOE should concentrate its efforts in the near future 6. Other general suggestions and recommendations Integration of MEA Components 3M perspectives on technology development needs and gaps. 3M U.S. DOE Fuel Cell Pre-Solicitation Workshop Denver, CO, March 16-17, 2010

347

ENERGY SMART SCHOOLS - APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION  

Science Conference Proceedings (OSTI)

This multi-state collaborative project brings together federal, state, and private sector resources in order to move the design and use of high-performance energy technologies in schools to the forefront. Projects within each task area have begun to show results. Recently, NETL representatives and NASEO met with all Task Project Managers to discuss the progress of each project. Each project began slowly due to several unforeseen obstacles, which have now been overcome. Some projects may require an extension to complete project to full extent. Most tasks are now running smoothly and have or will soon acquire results.

Frank Bishop

2003-01-01T23:59:59.000Z

348

Photovoltaic concentrator technology development project. Sixth project integration meeting  

DOE Green Energy (OSTI)

Thirty-three abstracts and short papers are presented which describe the current status of research, development, and demonstration of concentrator solar cell technology. Solar concentrators discussed include the parabolic trough, linear focus Fresnel lens, point focus Fresnel lens, and the parabolic dish. Solar cells studied include silicon, GaAs, and AlGaAs. Research on multiple junction cells, combined photovoltaic/thermal collectors, back contact solar cells, and beam splitter modules is described. Concentrator solar cell demonstration programs are reported. Contractor status summaries are given for 33 US DOE concentrator solar cell contracts; a description of the project, project status, and key results to date is included. (WHK)

None

1980-10-01T23:59:59.000Z

349

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL P) Lakeside Generating Station, while capturing 90% of the coal's sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E's technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

350

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project, Clean Coal Technology Program. Environmental Assessment  

Science Conference Proceedings (OSTI)

The DOE entered into a cooperative agreement with Combustion Engineering, Inc. (C-E) under which DOE proposes to provide cost-shared funding to design, construct, and operate an Integrated Coal Gasification Combined Cycle (IGCC) project to repower an existing steam turbine generator set at the Springfield (Illinois) City Water, Light and Power (CWL&P) Lakeside Generating Station, while capturing 90% of the coal`s sulfur and producing elemental sulfur as a salable by-product. The proposed demonstration would help determine the technical and economic feasibility of the proposed IGCC technology on a scale that would allow the utility industry to assess its applicability for repowering other coal-burning power plants. This Environmental Assessment (EA) has been prepared by DOE in compliance with the requirements of National Environmental Policy Act (NEPA). The sources of information for this EA include the following: C-E`s technical proposal for the project submitted to DOE in response to the Innovative Clean Coal Technology (ICCT) Program Opportunity Notice (PON); discussions with C-E and CWL&P staff; the volume of environmental information for the project and its supplements provided by C-E; and a site visit to the proposed project site.

Not Available

1992-03-01T23:59:59.000Z

351

Attitude determination by integration of MEMS inertial sensors and GPS for autonomous agriculture applications  

Science Conference Proceedings (OSTI)

Integration of Global Positioning System (GPS) and Inertial Navigation System (INS) technologies, which has widespread usage in industry, is also regarded as an ideal solution for automated agriculture because it fulfils the accuracy, reliability and ... Keywords: Automated guidance systems, GPS/INS, Kalman Filter, Loose-coupled integration

Yong Li; Mahmoud Efatmaneshnik; Andrew G. Dempster

2012-01-01T23:59:59.000Z

352

Definition and compositions of standard wastestreams for evaluation of Buried Waste Integrated Demonstration treatment technologies  

SciTech Connect

The Buried Waste Integrated Demonstration (BWID) Project was organized at the Idaho National Engineering Laboratory to support research, development, demonstration, testing, and evaluation of emerging technologies that offer promising solutions to remediation of buried waste. BWID will identify emerging technologies, screen them for applicability to the identified needs, select technologies for demonstration, and then evaluate the technologies based on prescribed performance objectives. The technical objective of the project is to establish solutions to Environmental Restoration and Waste Management`s technological deficiencies and improve baseline remediation systems. This report establishes a set of standard wastestream compositions that will be used by BWID to evaluate the emerging technologies. Five wastestreams are proposed that use four types of waste and a nominal case that is a homogenized combination of the four wastes. The five wastestreams will provide data on the compositional extremes and indicate the technologies` effectiveness over the complete range of expected wastestream compositions.

Bates, S.O.

1993-06-01T23:59:59.000Z

353

natural language technology for information integration in business intelligence  

E-Print Network (OSTI)

Abstract. Business intelligence requires the collecting and merging of information from many different sources, both structured and unstructured, in order to analyse for example financial risk, operational risk factors, follow trends and perform credit risk management. While traditional data mining tools make use of numerical data and cannot easily be applied to knowledge extracted from free text, traditional information extraction is either not adapted for the financial domain, or does not address the issue of information integration: the merging of information from different kinds of sources. We describe here the development of a system for content mining using domain ontologies, which enables the extraction of relevant information to be fed into models for analysis of financial and operational risk and other business intelligence applications such as company intelligence, by means of the XBRL standard. The results so far are of extremely high quality, due to the implementation of primarily high-precision rules.

Diana Maynard; Horacio Saggion; Milena Yankova; Wim Peters

2007-01-01T23:59:59.000Z

354

Performance-Based Technology Selection Filter description report. INEL Buried Waste Integrated Demonstration System Analysis project  

SciTech Connect

A formal methodology has been developed for identifying technology gaps and assessing innovative or postulated technologies for inclusion in proposed Buried Waste Integrated Demonstration (BWID) remediation systems. Called the Performance-Based Technology Selection Filter, the methodology provides a formalized selection process where technologies and systems are rated and assessments made based on performance measures, and regulatory and technical requirements. The results are auditable, and can be validated with field data. This analysis methodology will be applied to the remedial action of transuranic contaminated waste pits and trenches buried at the Idaho National Engineering Laboratory (INEL).

O`Brien, M.C.; Morrison, J.L.; Morneau, R.A.; Rudin, M.J.; Richardson, J.G.

1992-05-01T23:59:59.000Z

355

Virtual Welded - Joint Design Integrating Advanced Materials and Processing Technology  

Science Conference Proceedings (OSTI)

Virtual Welede-Joint Design, a systematic modeling approach, has been developed in this project to predict the relationship of welding process, microstructure, properties, residual stress, and the ultimate weld fatique strength. This systematic modeling approach was applied in the welding of high strength steel. A special welding wire was developed in this project to introduce compressive residual stress at weld toe. The results from both modeling and experiments demonstrated that more than 10x fatique life improvement can be acheived in high strength steel welds by the combination of compressive residual stress from the special welding wire and the desired weld bead shape from a unique welding process. The results indicate a technology breakthrough in the design of lightweight and high fatique performance welded structures using high strength steels.

Yang, Zhishang; Ludewig, Howard W.; Babu, S. Suresh

2005-06-30T23:59:59.000Z

356

The Effect of Government Actions on Environmental Technology Innovation: Applications to the Integrated Assessment of Carbon Sequestration Technologies  

SciTech Connect

This project seeks to improve the ability of integrated assessment models (IA) to incorporate changes in technology, especially environmental technologies, cost and performance over time. In this report, we present results of research that examines past experience in controlling other major power plant emissions that might serve as a reasonable guide to future rates of technological progress in carbon capture and sequestration (CCS) systems. In particular, we focus on U.S. and worldwide experience with sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) control technologies over the past 30 years, and derive empirical learning rates for these technologies. The patterns of technology innovation are captured by our analysis of patent activities and trends of cost reduction over time. Overall, we found learning rates of 11% for the capital costs of flue gas desulfurization (FGD) system for SO{sub 2} control, and 13% for selective catalytic reduction (SCR) systems for NO{sub x} control. We explore the key factors responsible for the observed trends, especially the development of regulatory policies for SO{sub 2} and NO{sub x} control, and their implications for environmental control technology innovation.

Rubin, E. S.; Hounshell, D. A.; Yeh, S.; Taylor, M.; Schrattenholzer, L.; Riahi, K.; Barreto, L.; Rao, S.

2004-01-15T23:59:59.000Z

357

Building Technologies Research and Integration Center Reducing the energy/carbon footprint of the nation's buildings is  

E-Print Network (OSTI)

3-20-09 Building Technologies Research and Integration Center Reducing the energy/carbon footprint some renewable energy technologies are most economical when using buildings as their deployment. Building Technologies Research and Integration Center (BTRIC), in the Energy and Transportation Science

358

ENERGY SMART SCHOOLS APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION  

SciTech Connect

This multi-state collaborative project brings together federal, state, and private sector resources in order to move the design and use of high-performance energy technologies in schools to the forefront. NASEO and its contractors continue to make progress on completion of the statement of work. The high watermark for this period is the installation and operation of the micro-turbine in the Canton School District. The school is pleased to begin the monitoring phase of the project and looks forward to a ribbon cutting this Spring. The other projects continue to move forward and NYSERDA has now begun work in earnest. We expect the NASEO/NYSERDA workshop sometime this Spring as well. By the time the next Annual Technical Progress Report is submitted, we plan to have finished all of the work. The next year should be filled with dissemination of information to interested parties on the success of the project in an effort to get others to duplicate the high performance, and energy smart schools initiatives. We expect all of the deliverables to be completed with the possible exception of the high-performance schools retrofits in California. We expect that 2 of the 3 campuses undergoing retrofits will be complete and the third will be nearly complete. All other activities are on schedule for 10/1/03 completion at this time.

Frank Bishop

2003-04-01T23:59:59.000Z

359

On the integration of technology readiness levels at Sandia National Laboratories.  

Science Conference Proceedings (OSTI)

Integrating technology readiness levels (TRL) into the management of engineering projects is critical to the mitigation of risk and improved customer/supplier communications. TRLs provide a common framework and language with which consistent comparisons of different technologies and approaches can be made. At Sandia National Laboratories, where technologies are developed, integrated and deployed into high consequence systems, the use of TRLs may be transformational. They are technology independent and span the full range of technology development including scientific and applied research, identification of customer requirements, modeling and simulation, identification of environments, testing and integration. With this report, we provide a reference set of definitions for TRLs and a brief history of TRLs at Sandia National Laboratories. We then propose and describe two approaches that may be used to integrate TRLs into the NW SMU business practices. In the first approach, we analyze how TRLs can be integrated within concurrent qualification as documented in TBP-100 [1]. In the second approach we take a look at the product realization process (PRP) as documented in TBP-PRP [2]. Both concurrent qualification and product realization are fundamental to the way weapons engineering work is conducted at this laboratory and the NWC (nuclear weapons complex) as a whole. Given the current structure and definitions laid out in the TBP-100 and TBP-PRP, we believe that integrating TRLs into concurrent qualification (TBP-100) rather than TBP-PRP is optimal. Finally, we note that our charter was to explore and develop ways of integrating TRLs into the NW SMU and therefore we do not significantly cover the development and history of TRLs. This work was executed under the auspices and direction of Sandia's Weapon Engineering Program. Please contact Gerry Sleefe, Deputy Program Director, for further information.

Bailey, Beatriz R.; Mitchell, John Anthony

2006-09-01T23:59:59.000Z

360

Hanford Integrated Planning Process: 1993 Hanford Site-specific science and technology plan  

Science Conference Proceedings (OSTI)

This document is the FY 1993 report on Hanford Site-specific science and technology (S&T) needs for cleanup of the Site as developed via the Hanford Integrated Planning Process (HIPP). It identifies cleanup problems that lack demonstrated technology solutions and technologies that require additional development. Recommendations are provided regarding allocation of funding to address Hanford`s highest-priority technology improvement needs, technology development needs, and scientific research needs, all compiled from a Sitewide perspective. In the past, the S&T agenda for Hanford Site cleanup was sometimes driven by scientists and technologists, with minimal input from the ``problem owners`` (i.e., Westinghouse Hanford Company [WHC] staff who are responsible for cleanup activities). At other times, the problem-owners made decisions to proceed with cleanup without adequate scientific and technological inputs. Under both of these scenarios, there was no significant stakeholder involvement in the decision-making process. One of the key objectives of HIPP is to develop an understanding of the integrated S&T requirements to support the cleanup mission, (a) as defined by the needs of the problem owners, the values of the stakeholders, and the technology development expertise that exists at Hanford and elsewhere. This requires a periodic, systematic assessment of these needs and values to appropriately define a comprehensive technology development program and a complementary scientific research program. Basic to our success is a methodology that is defensible from a technical perspective and acceptable to the stakeholders.

Not Available

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Integration of Ion Transport Membrane Technology with Integrated Gasification Combined Cycle Power Generation Systems  

Science Conference Proceedings (OSTI)

EPRI, in conjunction with Air Products and Chemicals, Inc. (AP), has reviewed the integrated gasification combined cycle (IGCC) process, whereby coal (or some other hydrocarbon such as petroleum coke or heavy oil) is broken down into its constituent volatile and nonvolatile components through the process of oxidative-pyrolysis. Combustible synthetic gas created in the process can be used in a traditional combined cycle. IGCC is particularly appealing for its potentially higher efficiencies compared ...

2013-10-30T23:59:59.000Z

362

Orbit Determination with the two-body Integrals  

E-Print Network (OSTI)

We investigate a method to compute a finite set of preliminary orbits for solar system bodies using the first integrals of the Kepler problem. This method is thought for the applications to the modern sets of astrometric observations, where often the information contained in the observations allows only to compute, by interpolation, two angular positions of the observed body and their time derivatives at a given epoch; we call this set of data attributable. Given two attributables of the same body at two different epochs we can use the energy and angular momentum integrals of the two-body problem to write a system of polynomial equations for the topocentric distance and the radial velocity at the two epochs. We define two different algorithms for the computation of the solutions, based on different ways to perform elimination of variables and obtain a univariate polynomial. Moreover we use the redundancy of the data to test the hypothesis that two attributables belong to the same body (linkage problem). It is also possible to compute a covariance matrix, describing the uncertainty of the preliminary orbits which results from the observation error statistics. The performance of this method has been investigated by using a large set of simulated observations of the Pan-STARRS project.

Giovanni Federico Gronchi; Linda Dimare; Andrea Milani

2009-11-18T23:59:59.000Z

363

Building Technologies Research and Integration Center Reducing the energy consumption of the nation's buildings is  

E-Print Network (OSTI)

2/21/2011 Building Technologies Research and Integration Center Reducing the energy consumption of the nation's buildings is essential for achieving a sustainable clean energy future and will be an enormous challenge. Buildings account for 40% of the nation's carbon emissions and the consumption of 40% of our

Oak Ridge National Laboratory

364

From green to sustainability: Information Technology and an integrated sustainability framework  

Science Conference Proceedings (OSTI)

Sustainability has increasingly become important to business research and practice over the past decades as a result of rapid depletion of natural resources and concerns over wealth disparity and corporate social responsibility. Within this realm, the ... Keywords: Human resources management, Information Technology, Integrated sustainable-value framework, Supply chain, Sustainability

Viet Dao; Ian Langella; Jerry Carbo

2011-03-01T23:59:59.000Z

365

Integrating New and Emerging Technologies into the California Smart Grid Infrastructure  

Science Conference Proceedings (OSTI)

Achieving a smart grid for California will require the merging of two primary infrastructures: the electrical power system and a communications infrastructure, including information systems that incorporate common information models and interoperability guidelines. The intelligent applications and technologies made possible by the communications infrastructure will improve the performance of the system, allow integration of distributed resources, enable electric service innovations, and support the relia...

2008-12-23T23:59:59.000Z

366

Integrated Multi-Well Reservoir and Decision Model to Determine Optimal Well Spacing in Unconventional Gas Reservoirs  

E-Print Network (OSTI)

Optimizing well spacing in unconventional gas reservoirs is difficult due to complex heterogeneity, large variability and uncertainty in reservoir properties, and lack of data that increase the production uncertainty. Previous methods are either suboptimal because they do not consider subsurface uncertainty (e.g., statistical moving-window methods) or they are too time-consuming and expensive for many operators (e.g., integrated reservoir characterization and simulation studies). This research has focused on developing and extending a new technology for determining optimal well spacing in tight gas reservoirs that maximize profitability. To achieve the research objectives, an integrated multi-well reservoir and decision model that fully incorporates uncertainty was developed. The reservoir model is based on reservoir simulation technology coupled with geostatistical and Monte Carlo methods to predict production performance in unconventional gas reservoirs as a function of well spacing and different development scenarios. The variability in discounted cumulative production was used for direct integration of the reservoir model with a Bayesian decision model (developed by other members of the research team) that determines the optimal well spacing and hence the optimal development strategy. The integrated model includes two development stages with a varying Stage-1 time span. The integrated tools were applied to an illustrative example in Deep Basin (Gething D) tight gas sands in Alberta, Canada, to determine optimal development strategies. The results showed that a Stage-1 length of 1 year starting at 160-acre spacing with no further downspacing is the optimal development policy. It also showed that extending the duration of Stage 1 beyond one year does not represent an economic benefit. These results are specific to the Berland River (Gething) area and should not be generalized to other unconventional gas reservoirs. However, the proposed technology provides insight into both the value of information and the ability to incorporate learning in a dynamic development strategy. The new technology is expected to help operators determine the combination of primary and secondary development policies early in the reservoir life that profitably maximize production and minimize the number of uneconomical wells. I anticipate that this methodology will be applicable to other tight and shale gas reservoirs.

Ortiz Prada, Rubiel Paul

2010-12-01T23:59:59.000Z

367

Environmental and Economical Evaluation of Integrating NGL Extraction and LNG Liquefaction Technology in Iran LNG Project  

E-Print Network (OSTI)

The combination of changing global markets for natural gas liquids (NGL) with the simultaneous increase in global demand for liquefied natural gas (LNG) has stimulated an interest in the integration of NGL recovery technology with LNG liquefaction technologies. Historically, the removal of “heavy” or high-freezing-point hydrocarbons from the feed to LNG plants has been characterized as “gas conditioning” and achieved using one or more distillation columns. While some attempts to provide reflux to the distillation columns marginally enhanced NGL recovery, little emphasis was placed on maximizing NGL recovery as a product from the LNG process. As such, the integration of the two processes was not a priority. Integrating state-of-the art NGL recovery technology within the CoP LNGSM Process1, formerly the Phillips Optimized Cascade LNG Process, results in a significant reduction in the specific power required to produce LNG, while maximizing NGL recovery. This corresponds to a production increase in both LNG and NGL for comparable compression schemes as compared to stand-alone LNG liquefaction and NGL extraction facilities. In addition, there are potential enhancements to the overall facility availability and project economics and environmental impacts using the integrated concept. This integrated concept has been applied to three ongoing international NGL/LNG projects using the CoP LNG Process in Iran LNG project. In this respect, simulation has been performed in THERMOFLEX software. Moreover, thermo economic analysis has been applied for economic and thermodynamic analysis of base and integrated cases through computer code has been provided here. Finally, the base and integrated case have been evaluated and comprised in view of thermodynamics, economics and environmental impacts.

Manesh, M. H. K.; Mazhari, V.

2009-05-01T23:59:59.000Z

368

Arid sites stakeholder participation in evaluating innovative technologies: VOC-Arid Site Integrated Demonstration  

Science Conference Proceedings (OSTI)

Developing and deploying innovative environmental cleanup technologies is an important goal for the U.S. Department of Energy (DOE), which faces challenging remediation problems at contaminated sites throughout the United States. Achieving meaningful, constructive stakeholder involvement in cleanup programs, with the aim of ultimate acceptance of remediation decisions, is critical to meeting those challenges. DOE`s Office of Technology Development sponsors research and demonstration of new technologies, including, in the past, the Volatile Organic Compounds Arid Site Integrated Demonstration (VOC-Arid ID), hosted at the Hanford Site in Washington State. The purpose of the VOC-Arid ID has been to develop and demonstrate new technologies for remediating carbon tetrachloride and other VOC contamination in soils and ground water. In October 1994 the VOC-Arid ID became a part of the Contaminant Plume Containment and Remediation Focus Area (Plume Focus Area). The VOC Arid ID`s purpose of involving stakeholders in evaluating innovative technologies will now be carried on in the Plume Focus Area in cooperation with Site Technology Coordination Groups and Site Specific Advisory Boards. DOE`s goal is to demonstrate promising technologies once and deploy those that are successful across the DOE complex. Achieving that goal requires that the technologies be acceptable to the groups and individuals with a stake in DOE facility cleanup. Such stakeholders include groups and individuals with an interest in cleanup, including regulatory agencies, Native American tribes, environmental and civic interest groups, public officials, environmental technology users, and private citizens. This report documents the results of the stakeholder involvement program, which is an integral part of the VOC-Arid ID.

Peterson, T.S.; McCabe, G.H.; Brockbank, B.R. [and others

1995-05-01T23:59:59.000Z

369

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

DOE Green Energy (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

Gary Harmond; Albert Tsang

2003-03-14T23:59:59.000Z

370

DOE Hydrogen, Fuel Cells and Infrastructure Technologies Program Integrated Hydrogen Production, Purification and Compression System  

SciTech Connect

The project was started in April 2005 with the objective to meet the DOE target of delivered hydrogen of <$1.50/gge, which was later revised by DOE to $2-$3/gge range for hydrogen to be competitive with gasoline as a fuel for vehicles. For small, on-site hydrogen plants being evaluated at the time for refueling stations (the 'forecourt'), it was determined that capital cost is the main contributor to the high cost of delivered hydrogen. The concept of this project was to reduce the cost by combining unit operations for the entire generation, purification, and compression system (refer to Figure 1). To accomplish this, the Fluid Bed Membrane Reactor (FBMR) developed by MRT was used. The FBMR has hydrogen selective, palladium-alloy membrane modules immersed in the reformer vessel, thereby directly producing high purity hydrogen in a single step. The continuous removal of pure hydrogen from the reformer pushes the equilibrium 'forward', thereby maximizing the productivity with an associated reduction in the cost of product hydrogen. Additional gains were envisaged by the integration of the novel Metal Hydride Hydrogen Compressor (MHC) developed by Ergenics, which compresses hydrogen from 0.5 bar (7 psia) to 350 bar (5,076 psia) or higher in a single unit using thermal energy. Excess energy from the reformer provides up to 25% of the power used for driving the hydride compressor so that system integration improved efficiency. Hydrogen from the membrane reformer is of very high, fuel cell vehicle (FCV) quality (purity over 99.99%), eliminating the need for a separate purification step. The hydride compressor maintains hydrogen purity because it does not have dynamic seals or lubricating oil. The project team set out to integrate the membrane reformer developed by MRT and the hydride compression system developed by Ergenics in a single package. This was expected to result in lower cost and higher efficiency compared to conventional hydrogen production technologies. The overall objective was to develop an integrated system to directly produce high pressure, high-purity hydrogen from a single unit, which can meet the DOE cost H2 cost target of $2 - $3/gge when mass produced. The project was divided into two phases with the following tasks and corresponding milestones, targets and decision points. Phase 1 - Task 1 - Verify feasibility of the concept, perform a detailed techno-economic analysis, and develop a test plan; and Task 2: Build and experimentally test a Proof of Concept (POC) integrated membrane reformer/metal hydride compressor system. Phase 2 - Task 3: Build an Advanced Prototype (AP) system with modifications based on POC learning and demonstrate at a commercial site; and Task 4: Complete final product design for mass manufacturing units capable of achieving DOE 2010 H2 cost and performance targets.

Tamhankar, Satish; Gulamhusein, Ali; Boyd, Tony; DaCosta, David; Golben, Mark

2011-06-30T23:59:59.000Z

371

An evolving infrastructure for scientific computing and the integration of new graphics technology  

SciTech Connect

The National Energy Research Supercomputer Center (NERSC) at the Lawrence Livermore National Laboratory is currently pursuing several projects to implement and integrate new hardware and software technologies. While each of these projects ought to be and is in fact individually justifiable, there is an appealing metaphor for viewing them collectively which provides a simple and memorable way to understand the future direction not only of supercomputing services but of computer centers in general. Once this general direction is understood, it becomes clearer what future computer graphics technologies would be possible and desirable, at least within the context of large scale scientific computing.

Fong, K.W.

1993-02-01T23:59:59.000Z

372

An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale  

SciTech Connect

This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

Matthew Bruff; Ned Godshall; Karen Evans

2011-04-30T23:59:59.000Z

373

Program on Technology Innovation: Development of an Integrated Gasification Combined Cycle Performance and Cost Modeling Tool  

Science Conference Proceedings (OSTI)

This report describes the development of an integrated performance and cost model for advanced coal power plant undertaken to enable users to screen technologies prior to engaging in more extensive studies of their preferred choice. Such screening activities generally require utilities to contract with outside engineering firms with access to sophisticated engineering modeling software and experienced staff to perform the studies, thus costing significant time and investment.

2010-12-31T23:59:59.000Z

374

Conceptual design and techno-economic assessment of integrated solar combined cycle system with DSG technology  

SciTech Connect

Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF). This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O and M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO{sub 2} emissions, but it will operate during daytime only. (author)

Nezammahalleh, H.; Farhadi, F.; Tanhaemami, M. [Chemical and Petroleum Engineering Department, Sharif University of Technology, No 593 Azadi Ave., Tehran (Iran)

2010-09-15T23:59:59.000Z

375

MHD Technology Transfer, Integration and Review Committee. Second semiannual status report, July 1988--March 1989  

DOE Green Energy (OSTI)

As part of the MHD Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The Charter of the TTIRC, which was approved by the DOE in June 1988 and distributed to the committee members, is included as part of this Summary. As stated in the Charter, the purpose of this committee is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the US MHD Program. The DOE fiscal year 1989 MHD Program Plan Schedule is included at the end of this Summary. The MHD Technology Transfer, Integration and Review Committee`s activities to date have focused primarily on the ``technology transfer`` aspects of its charter. It has provided a forum for the dissemination of technical and programmatic information among workers in the field of MHD and to the potential end users, the utilities, by holding semi-annual meetings. The committee publishes this semi-annual report, which presents in Sections 2 through 11 capsule summaries of technical progress for all DOE Proof-of-Concept MHD contracts and major test facilities.

Not Available

1989-10-01T23:59:59.000Z

376

In Situ Remediation Integrated Program: Evaluation and assessment of containment technology  

SciTech Connect

Containment technology refers to a broad range of methods that are used to contain waste or contaminated groundwater and to keep uncontaminated water from entering a waste site. The U.S. Department of Energy`s (DOE) Office of Technology Development has instituted the In Situ Remediation Integrated Program (ISRIP) to advance the state-of-the-art of innovative technologies that contain or treat, in situ, contaminated media such as soil and groundwater, to the point of demonstration and to broaden the applicability of these technologies to the widely varying site remediation requirements throughout the DOE complex. The information provided here is an overview of the state-of-the-art of containment technology and includes a discussion of ongoing development projects; identifies the technical gaps; discusses the priorities for resolution of the technical gaps; and identifies the site parameters affecting the application of a specific containment method. The containment technology described in this document cover surface caps; vertical barriers such as slurry walls, grout curtains, sheet pilings, frozen soil barriers, and vitrified barriers; horizontal barriers; sorbent barriers; and gravel layers/curtains. Within DOE, containment technology could be used to prevent water infiltration into buried waste; to provide for long-term containment of pits, trenches, and buried waste sites; for the interim containment of leaking underground storage tanks and piping; for the removal of contaminants from groundwater to prevent contamination from migrating off-site; and as an interim measure to prevent the further migration of contamination during the application of an in situ treatment technology such as soil flushing. The ultimate goal is the implementation of containment technology at DOE sites as a cost-effective, efficient, and safe choice for environmental remediation and restoration activities.

Gerber, M.A.; Fayer, M.J.

1994-06-01T23:59:59.000Z

377

Science and Technology Development to Integrate Energy Production and Greenhouse Gas Management  

SciTech Connect

This paper reviews the carbon cycle from the point of view of past and present human influence. Potential future human input to the cycle through science and technology to manage atmospheric greenhouse gas are considered. The review suggests that humans will need to ingeniously exploit even more energy to integrate its use with control of atmospheric greenhouse gases. Continuing development and application of energy is essential if the development of human society is to be sustained through the coming centuries. The continuing development of nuclear energy seems an essential energy supply component.

Pendergast, D.

2004-10-03T23:59:59.000Z

378

The Role of Integration Time in Determining a Steady State through Data Assimilation  

Science Conference Proceedings (OSTI)

The length of time an ocean model and its adjoint should be integrated in determining a steady state compatible with observed data is investigated. The starting point is based upon a suggestion that only one time step is required. This method ...

Jochem Marotzke

1992-12-01T23:59:59.000Z

379

An Integrated Method for Accurate Determination of Melting in High-Pressure Laser Heating Experiments  

SciTech Connect

We present an integrated approach for melting determination by monitoring several criteria simultaneously. In particular we combine x-ray diffraction observations with the detection of discontinuities in the optical properties by spectroradiometric measurements. This approach significantly increases the confidence of melt identification, especially with low-Z samples. We demonstrate the method with observations of melt in oxygen at 47 and 55 gigapascals.

Benedetti, L R; Antonangeli, D; Farber, D L; Mezouar, M

2007-11-19T23:59:59.000Z

380

CX-002396: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination CX-002396: Categorical Exclusion Determination Montana Integrated Carbon to Liquids Technology (ICTL) Demonstration Program CX(s) Applied: B3.6 Date:...

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CX-003916: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-003916: Categorical Exclusion Determination Integrated Automated Distributed Generation Technologies Demonstration Task 1 CX(s) Applied: A9, B3.6, B5.1...

382

CX-000725: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-000725: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9,...

383

CX-000728: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-000728: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9...

384

CX-000727: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-000727: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9...

385

CX-000729: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-000729: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: A9...

386

MHD Technology Transfer, Integration and Review Committee. Seventh semi-annual status report, April 1991--September 1991  

DOE Green Energy (OSTI)

This seventh semi-annual status report of the MHD Technology Transfer, Integration and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1991 through September 1991. It includes a summary and minutes of the General Committee meeting, progress summaries of ongoing POC contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months. The meeting included test plan with Western coal, seed regeneration economics, power management for the integrated topping cycle and status of the Clean Coal Technology Proposal activities. Appendices cover CDIF operations HRSR development, CFFF operations etc.

Not Available

1993-02-01T23:59:59.000Z

387

Basis for Section 3116 Determination for the Idaho Nuclear Technology and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basis for Section 3116 Determination for the Idaho Nuclear Basis for Section 3116 Determination for the Idaho Nuclear Technology and Engineering Center Tank Farm Facility at the Idaho National Laboratory Basis for Section 3116 Determination for the Idaho Nuclear Technology and Engineering Center Tank Farm Facility at the Idaho National Laboratory This 3116 Basis Document addresses the disposal of stabilized residuals in the TFF, and the TFF tank system, and disposal of the tanks, vaults, and associated piping and ancillary equipment at INTEC. The TFF tank system comprises the eleven 300,000-gal tanks, four 30,000-gal tanks, and the vaults, piping, structures, and ancillary equipment associated with these tanks. Basis for Section 3116 Determination for the Idaho Nuclear Technology and Engineering Center Tank Farm Facility at the Idaho National Laboratory

388

Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system  

SciTech Connect

This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

1989-04-01T23:59:59.000Z

389

Integrating Safety with Science,Technology and Innovation at Los Alamos National Laboratory  

SciTech Connect

The mission of Los Alamos National Laboratory (LANL) is to develop and apply science, technology and engineering solutions to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve emerging national security challenges. The most important responsibility is to direct and conduct efforts to meet the mission with an emphasis on safety, security, and quality. In this article, LANL Environmental, Safety, and Health (ESH) trainers discuss how their application and use of a kinetic learning module (learn by doing) with a unique fall arrest system is helping to address one the most common industrial safety challenges: slips and falls. A unique integration of Human Performance Improvement (HPI), Behavior Based Safety (BBS) and elements of the Voluntary Protection Program (VPP) combined with an interactive simulator experience is being used to address slip and fall events at Los Alamos.

Rich, Bethany M [Los Alamos National Laboratory

2012-04-02T23:59:59.000Z

390

Empirical support for global integrated assessment modeling: Productivity trends and technological change in developing countries' agriculture and electric power sectors  

Science Conference Proceedings (OSTI)

Integrated assessment (IA) modeling of climate policy is increasingly global in nature, with models incorporating regional disaggregation. The existing empirical basis for IA modeling, however, largely arises from research on industrialized economies. Given the growing importance of developing countries in determining long-term global energy and carbon emissions trends, filling this gap with improved statistical information on developing countries' energy and carbon-emissions characteristics is an important priority for enhancing IA modeling. Earlier research at LBNL on this topic has focused on assembling and analyzing statistical data on productivity trends and technological change in the energy-intensive manufacturing sectors of five developing countries, India, Brazil, Mexico, Indonesia, and South Korea. The proposed work will extend this analysis to the agriculture and electric power sectors in India, South Korea, and two other developing countries. They will also examine the impact of alternative model specifications on estimates of productivity growth and technological change for each of the three sectors, and estimate the contribution of various capital inputs--imported vs. indigenous, rigid vs. malleable-- in contributing to productivity growth and technological change. The project has already produced a data resource on the manufacturing sector which is being shared with IA modelers. This will be extended to the agriculture and electric power sectors, which would also be made accessible to IA modeling groups seeking to enhance the empirical descriptions of developing country characteristics. The project will entail basic statistical and econometric analysis of productivity and energy trends in these developing country sectors, with parameter estimates also made available to modeling groups. The parameter estimates will be developed using alternative model specifications that could be directly utilized by the existing IAMs for the manufacturing, agriculture, and electric power sectors.

Sathaye, Jayant A.

2000-04-01T23:59:59.000Z

391

Combustion Engineering Integrated Coal Gasification Combined Cycle Repowering Project: Clean Coal Technology Program  

SciTech Connect

On February 22, 1988, DOE issued Program Opportunity Notice (PON) Number-DE-PS01-88FE61530 for Round II of the CCT Program. The purpose of the PON was to solicit proposals to conduct cost-shared ICCT projects to demonstrate technologies that are capable of being commercialized in the 1990s, that are more cost-effective than current technologies, and that are capable of achieving significant reduction of SO[sub 2] and/or NO[sub x] emissions from existing coal burning facilities, particularly those that contribute to transboundary and interstate pollution. The Combustion Engineering (C-E) Integrated Coal Gasification Combined Cycle (IGCC) Repowering Project was one of 16 proposals selected by DOE for negotiation of cost-shared federal funding support from among the 55 proposals that were received in response to the PON. The ICCT Program has developed a three-level strategy for complying with the National Environmental Policy Act (NEPA) that is consistent with the President's Council on Environmental Quality regulations implementing NEPA (40 CFR 1500-1508) and the DOE guidelines for compliance with NEPA (10 CFR 1021). The strategy includes the consideration of programmatic and project-specific environmental impacts during and subsequent to the reject selection process.

1992-03-01T23:59:59.000Z

392

MHD Technology Transfer, Integration and Review Committee. Fifth semi-annual status report, April 1990--September 1990  

DOE Green Energy (OSTI)

This fifth semi-annual status report of the MHD Technology Transfer, Integration, and Review Committee (TTIRC) summarizes activities of the TTIRC during the period April 1990 through September 1990. It includes summaries and minutes of committee meetings, progress summaries of ongoing Proof-of-Concept (POC) contracts, discussions pertaining to technical integration issues in the POC program, and planned activities for the next six months.

Not Available

1992-01-01T23:59:59.000Z

393

A procedure to determine the planar integral spot dose values of proton pencil beam spots  

Science Conference Proceedings (OSTI)

Purpose: Planar integral spot dose (PISD) of proton pencil beam spots (PPBSs) is a required input parameter for beam modeling in some treatment planning systems used in proton therapy clinics. The measurement of PISD by using commercially available large area ionization chambers, like the PTW Bragg peak chamber (BPC), can have large uncertainties due to the size limitation of these chambers. This paper reports the results of our study of a novel method to determine PISD values from the measured lateral dose profiles and peak dose of the PPBS. Methods: The PISDs of 72.5, 89.6, 146.9, 181.1, and 221.8 MeV energy PPBSs were determined by area integration of their planar dose distributions at different depths in water. The lateral relative dose profiles of the PPBSs at selected depths were measured by using small volume ion chambers and were investigated for their angular anisotropies using Kodak XV films. The peak spot dose along the beam's central axis (D{sub 0}) was determined by placing a small volume ion chamber at the center of a broad field created by the superposition of spots at different locations. This method allows eliminating positioning uncertainties and the detector size effect that could occur when measuring it in single PPBS. The PISD was then calculated by integrating the measured lateral relative dose profiles for two different upper limits of integration and then multiplying it with corresponding D{sub 0}. The first limit of integration was set to radius of the BPC, namely 4.08 cm, giving PISD{sub RBPC}. The second limit was set to a value of the radial distance where the profile dose falls below 0.1% of the peak giving the PISD{sub full}. The calculated values of PISD{sub RBPC} obtained from area integration method were compared with the BPC measured values. Long tail dose correction factors (LTDCFs) were determined from the ratio of PISD{sub full}/PISD{sub RBPC} at different depths for PPBSs of different energies. Results: The spot profiles were found to have angular anisotropy. This anisotropy in PPBS dose distribution could be accounted in a reasonable approximate manner by taking the average of PISD values obtained using the in-line and cross-line profiles. The PISD{sub RBPC} values fall within 3.5% of those measured by BPC. Due to inherent dosimetry challenges associated with PPBS dosimetry, which can lead to large experimental uncertainties, such an agreement is considered to be satisfactory for validation purposes. The PISD{sub full} values show differences ranging from 1 to 11% from BPC measured values, which are mainly due to the size limitation of the BPC to account for the dose in the long tail regions of the spots extending beyond its 4.08 cm radius. The dose in long tail regions occur both for high energy beams such as 221.8 MeV PPBS due to the contributions of nuclear interactions products in the medium, and for low energy PPBS because of their larger spot sizes. The calculated LTDCF values agree within 1% with those determined by the Monte Carlo (MC) simulations. Conclusions: The area integration method to compute the PISD from PPBS lateral dose profiles is found to be useful both to determine the correction factors for the values measured by the BPC and to validate the results from MC simulations.

Anand, Aman; Sahoo, Narayan; Zhu, X. Ronald; Sawakuchi, Gabriel O.; Poenisch, Falk; Amos, Richard A.; Ciangaru, George; Titt, Uwe; Suzuki, Kazumichi; Mohan, Radhe; Gillin, Michael T. [Department of Radiation Physics, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 1150, Houston, Texas 77030 (United States)

2012-02-15T23:59:59.000Z

394

Program on Technology Innovation: Tampa Electric Company Polk Integrated Gasification Combined Cycle Plant Carbon Capture Retrofit Study  

Science Conference Proceedings (OSTI)

In support of the Industry Technology Demonstration Program on Integrated Gasification Combined Cycle (IGCC) with carbon capture and storage (CCS), an engineering study was conducted to evaluate the cost and performance impacts of various CCS schemes at the Tampa Electric Polk Power Station. The portion of the work presented here was funded by the Electric Power Research Institute (EPRI) Technology Innovation Program and focuses on a comparison of chemical and physical solvent-based CO2 capture systems i...

2010-03-30T23:59:59.000Z

395

Applying technology strategy with enterprise architecting : a case study in transformation planning for integrating Unmanned Aircraft Systems into the National Airspace  

E-Print Network (OSTI)

The research presented in this thesis combines Enterprise Architecture and Technology Strategy for analyzing, evaluating, and recommending appropriate solutions for integrating Unmanned Aircraft Systems (UAS) into the ...

Richardson, Kristina L. (Kristina Lynn)

2009-01-01T23:59:59.000Z

396

Ground-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report  

DOE Green Energy (OSTI)

The energy service needs of a net-zero-energy house (ZEH) include space heating and cooling, water heating, ventilation, dehumidification, and humidification, depending on the requirements of the specific location. These requirements differ in significant ways from those of current housing. For instance, the most recent DOE buildings energy data (DOE/BED 2007) indicate that on average {approx}43% of residential buildings primary energy use is for space heating and cooling, vs. {approx}12% for water heating (about a 3.6:1 ratio). In contrast, for the particular prototype ZEH structures used in the analyses in this report, that ratio ranges from about 0.3:1 to 1.6:1 depending on location. The high-performance envelope of a ZEH results in much lower space heating and cooling loads relative to current housing and also makes the house sufficiently air-tight to require mechanical ventilation for indoor air quality. These envelope characteristics mean that the space conditioning load will be closer in size to the water heating load, which depends on occupant behavior and thus is not expected to drop by any significant amount because of an improved envelope. In some locations such as the Gulf Coast area, additional dehumidification will almost certainly be required during the shoulder and cooling seasons. In locales with heavy space heating needs, supplemental humidification may be needed because of health concerns or may be desired for improved occupant comfort. The U.S. Department of Energy (DOE) has determined that achieving their ZEH goal will require energy service equipment that can meet these needs while using 50% less energy than current equipment. One promising approach to meeting this requirement is through an integrated heat pump (IHP) - a single system based on heat pumping technology. The energy benefits of an IHP stem from the ability to utilize otherwise wasted energy; for example, heat rejected by the space cooling operation can be used for water heating. With the greater energy savings the cost of the more energy efficient components required for the IHP can be recovered more quickly than if they were applied to individual pieces of equipment to meet each individual energy service need. An IHP can be designed to use either outdoor air or geothermal resources (e.g., ground, ground water, surface water) as the environmental energy source/sink. Based on a scoping study of a wide variety of possible approaches to meeting the energy service needs for a ZEH, DOE selected the IHP concept as the most promising and has supported research directed toward the development of both air- and ground-source versions. This report describes the ground-source IHP (GS-IHP) design and includes the lessons learned and best practices revealed by the research and development (R&D) effort throughout. Salient features of the GS-IHP include a variable-speed rotary compressor incorporating a brushless direct current permanent magnet motor which provides all refrigerant compression, a variable-speed fan for the indoor section, a multiple-speed ground coil circuit pump, and a single-speed pump for water heating operation. Laboratory IHP testing has thus far used R-22 because of the availability of the needed components that use this refrigerant. It is expected that HFC R-410A will be used for any products arising from the IHP concept. Data for a variable-speed compressor that uses R-410A has been incorporated into the DOE/ORNL Mark VI Heat Pump Design Model (HPDM). HPDM was then linked to TRNSYS, a time-series-dependent simulation model capable of determining the energy use of building cooling and heating equipment as applied to a defined house on a sub-hourly basis. This provided a highly flexible design analysis capability for advanced heat pump equipment; however, the program also took a relatively long time to run. This approach was used with the initial prototype design reported in Murphy et al. (2007a) and in the business case analysis of Baxter (2007).

Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL; Craddick, William G [ORNL

2007-09-01T23:59:59.000Z

397

Development and Evaluation of Passive Integrated Transponder Tag Technology, 2000-2002.  

DOE Green Energy (OSTI)

Since 1984, the National Marine Fisheries Service (NMFS) in cooperation with the Bonneville Power Administration (BPA) has conducted a research project to develop and evaluate technology for passive-integrated-transponder tags (PIT tags) throughout the Columbia River Basin (CRB). Work conducted as part of this project between October 2000 and September 2002 (FY01 and FY02) was divided into seven individual elements, which are covered separately in this report. The efforts by personnel associated with this project have produced and will continue to produce products that aid resource stakeholders in assessing the effectiveness of actions taken to enhance the survival of juvenile and adult salmonids. These products and their uses include: (1) Survival and migration timing information on stocks to evaluate water management strategies and fish passage/collection facilities; (2) Data needed for the management and restoration of salmonids and other fish stocks listed under the Endangered Species Act (ESA); (3) Information required for the management of multiple species in a variety of habitats; and (4) Tools that enable fisheries researchers and managers to address previously unanswerable questions and critical uncertainties These products are also used in genetic, physiology, behavior, and captive broodstock research on endangered species. The continued development of PIT-tag technology will enable researchers and fisheries managers to address issues expressed in both of NMFS biological opinions for operation of the Federal Columbia River Power System (FCRPS)(NMFS 1995a, 2000) and the proposed Snake River Recovery Plan (NMFS 1995b; tasks 2.1.d, 2.3.b.4, 2.4.a, 2.6.c.2, and 2.9.d).

Downing, Sandra L.; Prentice, Earl F.; Nunnallee, Edmund P. [National Marine Fisheries Service

2009-04-03T23:59:59.000Z

398

Factors Impacting University-Level Language Teachers' Technology Use and Integration.  

E-Print Network (OSTI)

??Despite the documented affordances of technology to enhance language teaching and learning, technology use does not seem to be normalized just yet. This dissertation investigates… (more)

Karabulut, Aliye

2013-01-01T23:59:59.000Z

399

1.264J / ESD.264J Database, Internet, and Systems Integration Technologies, Fall 2004  

E-Print Network (OSTI)

Survey of information technology covering database modeling, design, and implementation with an emphasis on relational databases and SQL. Internet technologies: http, html, XML, SOAP, security. Brief introduction to ...

Kocur, George

400

1.264J / ESD.264J Database, Internet, and Systems Integration Technologies, Fall 2002  

E-Print Network (OSTI)

Survey of information technology covering database modeling, design, and implementation with an emphasis on relational databases and SQL. Internet technologies: http, html, XML, SOAP, security. Brief introduction to ...

Kocur, George

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Determinants of Sourcing During Technology Growth and Maturity: An Empirical Study of e-Commerce Sourcing  

Science Conference Proceedings (OSTI)

This paper conducts a two-period dynamic analysis of sourcing mode choices for e-commerce projects implemented by large firms during 1999-2002. We differentiate e-commerce assets that are the focus of a sourcing decision in terms of whether they are ... Keywords: Asset Life Cycle, Content Analysis, E-Commerce Projects, E-Commerce Sourcing, Governance Forms, Project Strategic Intent, Project Task Complexity, Sourcing Determinants, Sourcing Modes, Technology Growth Phase

Rajiv Kishore; Manish Agrawal; H. Raghav Rao

2004-11-01T23:59:59.000Z

402

Feasibility of integrating other federal information systems into the Global Network of Environment and Technology, GNET{reg_sign}  

SciTech Connect

The Global Environment and Technology Enterprise (GETE) of the Global Environment and Technology Foundation (GETF) has been tasked by the US Department of Energy`s (DOE), Federal Energy Technology Center (FETC) to assist in reducing DOE`s cost for the Global Network of Environment and Technology (GNET{reg_sign}). As part of this task, GETE is seeking federal partners to invest in GNET{reg_sign}. The authors are also seeking FETC`s commitment to serve as GNET`s federal agency champion promoting the system to potential agency partners. This report assesses the benefits of partnering with GNET{reg_sign} and provides recommendations for identifying and integrating other federally funded (non-DOE) environmental information management systems into GNET{reg_sign}.

NONE

1998-05-01T23:59:59.000Z

403

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

Science Conference Proceedings (OSTI)

Adoption of efficient end-use technologies is one of the key measures for reducing greenhouse gas (GHG) emissions. How to effectively analyze and manage the costs associated with GHG reductions becomes extremely important for the industry and policy makers around the world. Energy-climate (EC) models are often used for analyzing the costs of reducing GHG emissions for various emission-reduction measures, because an accurate estimation of these costs is critical for identifying and choosing optimal emission reduction measures, and for developing related policy options to accelerate market adoption and technology implementation. However, accuracies of assessing of GHG-emission reduction costs by taking into account the adoption of energy efficiency technologies will depend on how well these end-use technologies are represented in integrated assessment models (IAM) and other energy-climate models.

Sathaye, J.; Xu, T.; Galitsky, C.

2010-08-15T23:59:59.000Z

404

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

Science Conference Proceedings (OSTI)

One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this report describes the development efforts which expand this sorbent development effort to include Se, Cd, and P as well as Hg and As. Additional research has focused on improving removal performance with the goal of achieving effluent concentrations that are suitable for chemical production applications. By contrast, sorbent development for CO{sub 2} capture has focused on regenerable sorbents that capture the CO{sub 2} byproduct at higher CO{sub 2} pressures. Previous research on CO{sub 2} sorbents has demonstrated that the most challenging aspect of developing CO{sub 2} sorbents is regeneration. The research documented in this report investigates options to improve regeneration of the CO{sub 2} capture sorbents. This research includes effort on addressing existing regeneration limitations for sorbents previously developed and new approaches that focus initially on the regeneration performance of the sorbent.

Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

2010-09-30T23:59:59.000Z

405

CX-001448: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-001448: Categorical Exclusion Determination Systems Level Technology Development, Integration and Demonstration for Efficient Class 8 Trucks CX(s) Applied: B5.1 Date: 04012010...

406

CX-002333: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exclusion Determination Smart Grid Regional Demonstration - Technology Solutions for Wind Integration - Phase I CX(s) Applied: A9 Date: 05112010 Location(s): Austin, Texas...

407

Integrated Warm Gas Multicontaminant Cleanup Technologies for Coal-Derived Syngas  

SciTech Connect

One of the key obstacles for the introduction of commercial gasification technology for the production of power with Integrated Gasification Combined Cycle (IGCC) plants or the production of value added chemicals, transportation fuels, and hydrogen has been the cost of these systems. This situation is particularly challenging because the United States has ample coal resources available as raw materials and effective use of these raw materials could help us meet our energy and transportation fuel needs while significantly reducing our need to import oil. One component of the cost of these systems that faces strong challenges for continuous improvement is removing the undesirable components present in the syngas. The need to limit the increase in cost of electricity to < 35% for new coal-based power plants which include CO{sub 2} capture and sequestration addresses both the growing social concern for global climate change resulting from the emission of greenhouse gas and in particular CO{sub 2} and the need to control cost increases to power production necessary to meet this social objective. Similar improvements to technologies for trace contaminants are getting similar pressure to reduce environmental emissions and reduce production costs for the syngas to enable production of chemicals from coal that is cost competitive with oil and natural gas. RTI, with DOE/NETL support, has been developing sorbent technologies that enable capture of trace contaminants and CO{sub 2} at temperatures above 400 °F that achieve better capture performance, lower costs and higher thermal efficiency. This report describes the specific work of sorbent development for mercury (Hg), arsenic (As), selenium (Se), cadmium (Cd), and phosphorous (P) and CO{sub 2} removal. Because the typical concentrations of Hg, As, Se, Cd, and P are less than 10 ppmv, the focus has been on single-use sorbents with sufficient capacity to ensure replacement costs are cost effective. The research in this report describes the development efforts which expand this sorbent development effort to include Se, Cd, and P as well as Hg and As. Additional research has focused on improving removal performance with the goal of achieving effluent concentrations that are suitable for chemical production applications. By contrast, sorbent development for CO{sub 2} capture has focused on regenerable sorbents that capture the CO{sub 2} byproduct at higher CO{sub 2} pressures. Previous research on CO{sub 2} sorbents has demonstrated that the most challenging aspect of developing CO{sub 2} sorbents is regeneration. The research documented in this report investigates options to improve regeneration of the CO{sub 2} capture sorbents. This research includes effort on addressing existing regeneration limitations for sorbents previously developed and new approaches that focus initially on the regeneration performance of the sorbent.

Turk, Brian; Gupta, Raghubir; Sharma, Pradeepkumar; Albritton, Johnny; Jamal, Aqil

2010-09-30T23:59:59.000Z

408

Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Bryant, J.W.; Nenni, J.A.

2003-05-22T23:59:59.000Z

409

Grid Integration  

SciTech Connect

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

Not Available

2008-09-01T23:59:59.000Z

410

Preface to ISIF 2009 special issue of Journal of Applied Physics : science and technology of integrated functionalities.  

SciTech Connect

The science and technology of ferroelectric thin films and their applications have attracted many researchers and experienced tremendous progress in the past 20 years. The recent worldwide increase in commercial applications of ferroelectric devices such as smart cards based on nonvolatile ferroelectric random access memories is a symbol of both the maturity and the acceptance of the technology. The 21st International Symposium on Integrated Ferroelectrics (ISIF 2009), held on September 22 to October 2, 2009 in Colorado Springs, CO, provided a forum for the academic and national laboratories research community and industry to present and share their new findings, achievements, and opinions on integrated ferroelectrics and their applications. The International Symposium on Integrated Ferroelectrics hosted the ISIF 2009. This was the first year where the ISIF held the conference in its new format under the name of International Symposium on Integrated Functionalities. The General Chairs of the ISIF in consultation with the Advisory Board and the ISIF community decided to revise the focus of the conference in order to broaden the scope to the science and technology of multifunctional materials and devices. This decision was taken in view that a new paradigm in materials, materials integration, and devices is emerging with a view to the development of a new generation of micro- and nanoscale multifunctional devices. The program included three plenary presentations on diverse topics such as 'The Role of Nonvolatile Memory in Ubiquitous Computing,' 'Ferroelectrics and High Density Memory Technology,' 'Nanoscale Ferroelectrics and Interfaces: Size Effects,' four tutorial lectures on diverse topics, such as 'Magnetic Memory Applications,' 'Ferroelectrics and Ferroelectric Devices,' 'Challenges for High-K Dielectrics on High Mobility Channels,' 'Solar Cell Materials,' one poster session, and eight oral sessions. Thanks to the great efforts made by the ISIF organization committee and the session chairs, the conference successfully achieved its objectives and the work presented reflected very well the most recent advances of integrated ferroelectrics and their applications, as well as advances in other areas related to the new theme of Integrated Functionalities. Many aspects of ferroelectric, piezoelectric, high-K dielectric, magnetic, and phase change materials, including the science and technology of these materials in thin film form, integration with other thin film materials (metals or oxide electrodes), and fabrication of micro- and nanostructures based on these heterostructure layers, and device architecture and physics, were addressed from the experimental point of view. Work on theory and computer simulations of the mentioned materials and devices were discussed also with a view to the promising applications to multifunctional devices. In addition, the ISIF 2009 featured discussions of alternative nonvolatile memory concepts and materials, such as phase change memories, research on multiferroics and magnetoelectric materials, ferroelectric photovoltaics, and new directions on the science of perovskites such as biomolecular/polarizable interfaces, and bio-ferroelectric and other oxide interfaces. Following the standard submission and peer review process of Journal of Applied Physics, the selected papers presented in ISIF 2009 in Colorado Springs are published in this special issue. We believe that the papers in this special issue represent the forefront contributions to ISIF 2009 in the various areas of fundamental and applied science of integrated ferroelectrics and functionalities and their applications. We would like to take this opportunity to thank the following organizations and companies for their support and sponsorship for ISIF 2009, namely: Aixact Systems GMBH, Radiant Technologies, Symetrix Corporation, and Taylor and Francis Publishers. We would also like to thank the conference and session chairs, advisory and organizing committee members for their hard work that resulted in a very successful ISIF 2009, now in

Auciello, O.; Dey, S.; Paz de Araujo, C. (Center for Nanoscale Materials); ( MSD); (Arizona State Univ.); (Symetrix Corp.)

2011-05-01T23:59:59.000Z

411

Idaho Nuclear Technology and Engineering Center (INTEC) Sodium Bearing Waste - Waste Incidental to Reprocessing Determination  

SciTech Connect

U.S. Department of Energy Manual 435.1-1, Radioactive Waste Management, Section I.1.C, requires that all radioactive waste subject to Department of Energy Order 435.1 be managed as high-level radioactive waste, transuranic waste, or low-level radioactive waste. Determining the radiological classification of the sodium-bearing waste currently in the Idaho Nuclear Technology and Engineering Center Tank Farm Facility inventory is important to its proper treatment and disposition. This report presents the technical basis for making the determination that the sodium-bearing waste is waste incidental to spent fuel reprocessing and should be managed as mixed transuranic waste. This report focuses on the radiological characteristics of the sodiumbearing waste. The report does not address characterization of the nonradiological, hazardous constituents of the waste in accordance with Resource Conservation and Recovery Act requirements.

Jacobson, Victor Levon

2002-08-01T23:59:59.000Z

412

Smart Grid Technologies for Efficiency Improvement of Integrated Industrial Electric System.  

E-Print Network (OSTI)

?? The purpose of this research is to identify the need of Smart Grid Technologies in communication between industrial plants with co-generation capability and the… (more)

Balani, Spandana

2011-01-01T23:59:59.000Z

413

Practical Integration Approach and Whole Building Energy Simulation of Three Energy Efficient Building Technologies: Preprint  

SciTech Connect

Three technologies that have potential to save energy and improve sustainability of buildings are dedicated outdoor air systems, radiant heating and cooling systems and tighter building envelopes. To investigate the energy savings potential of these three technologies, whole building energy simulations were performed for a barracks facility and an administration facility in 15 U.S. climate zones and 16 international locations.

Miller, J. P.; Zhivov, A.; Heron, D.; Deru, M.; Benne, K.

2010-08-01T23:59:59.000Z

414

Facilitating the Development and Integration of Low-Carbon Energy Technologies.  

E-Print Network (OSTI)

??Climate change mitigation will require extensive decarbonization of the electricity sector. This thesis addresses both large-scale wind integration (Papers 1-3) and development of new energy… (more)

Fertig, Emily

2013-01-01T23:59:59.000Z

415

The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies  

E-Print Network (OSTI)

The story so far. J Semantic Web Inf Syst 2009, 5:1–22. 9.Splendiani A: RDFScape: Semantic Web meets systems biology.Discovery and Integration (SADI) Web service Design-Pattern,

2013-01-01T23:59:59.000Z

416

Memory technology for extended large-scale integration in future electronics applications  

Science Conference Proceedings (OSTI)

Extending 2-D planar topologies in integrated circuits (ICs) to a 3-D implementation has the obvious benefits of reducing the overall footprint and average interconnection length, with associated improvements in cost, and delay and energy consumption, ...

Dinesh Pamunuwa

2008-03-01T23:59:59.000Z

417

Substrate engineering for monolithic integration of III-V semiconductors with Si CMOS technology  

E-Print Network (OSTI)

Ge virtual substrates, fabricated using Si1-xGex-.Ge, compositionally graded buffers, enable the epitaxial growth of device-quality GaAs on Si substrates, but monolithic integration of III-V semiconductors with Si CMOS ...

Dohrman, Carl Lawrence

2008-01-01T23:59:59.000Z

418

A bioclimatic approach to integrated design : form, technology, and architectural knowledge  

E-Print Network (OSTI)

This thesis explores a holistic design process through which architectural elements can engage the dynamic forces of natural phenomena and integrate the spatial and temporal experience of building form with its physical ...

O'Connell, Matthew J. (Mathew Jere)

1996-01-01T23:59:59.000Z

419

Program on Technology Innovation: Modeling of SMES and Its Integration to the Power Grid  

Science Conference Proceedings (OSTI)

EPRI has long followed the development of superconducting magnet energy storage (SMES) and its application in electric power systems. Previous studies have primarily investigated both the benefits of using SMES and the power-system-level control issues that arise when SMES is integrated with the power system. More specific details of modeling for system integration, particularly with larger SMES units, have not been addressed in detail in the past. Because the Center for Advanced Power Systems (CAPS) at ...

2005-10-31T23:59:59.000Z

420

Program on Technology Innovation: Information Integration for Equipment Reliability at Nuclear Plants  

Science Conference Proceedings (OSTI)

This report investigates the status of information integration for equipment reliability (ER) at nuclear power plants. ER consists of a comprehensive set of processes that span the organization and require extensive data gathering, retrieval, and information integration. To assist nuclear operators, the Institute of Nuclear Power Operations (INPO) issued AP-913, Equipment Reliability Process Description, as a standard approach to implement effective ER processes among its members. Despite the success tha...

2009-04-30T23:59:59.000Z

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Technologies  

Technologies Materials. Aggregate Spray for Air Particulate; Actuators Made From Nanoporous Materials; Ceramic Filters; Energy Absorbing Material; Diode Arrays for ...

422

Technologies  

Technologies Energy. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor; Modular Electromechanical ...

423

Technologies  

Technologies Energy, Utilities, & Power Systems. Advanced Carbon Aerogels for Energy Applications; Distributed Automated Demand Response; Electrostatic Generator/Motor

424

Technologies  

Technologies Research Tools. Cell-Free Assembly of NanoLipoprotein Particles; Chemical Prism; Lawrence Livermore Microbial Detection Array (LLMDA) ...

425

Integrated Graduate Education & Research Traineeships: Transportation Technology & Policy Final Grant Report  

E-Print Network (OSTI)

Studies SESSION 1 – New Mobility Part I Alpha Gamma Rho Roomand Dan Sturges (1999) New Mobility: Using Technology andThe conference focused on new mobility, social aspects of

Mokhtarian, Patricia L; Tolentino, Joan

2005-01-01T23:59:59.000Z

426

Integrated Graduate Education & Research Traineeships (IGERT): Transportation Technology & Policy Final Grant Report  

E-Print Network (OSTI)

Studies SESSION 1 – New Mobility Part I Alpha Gamma Rho Roomand Dan Sturges (1999) New Mobility: Using Technology andThe conference focused on new mobility, social aspects of

Mokhtarian, Patricia L; Tolentino, Joan S.

2005-01-01T23:59:59.000Z

427

Integrated method to create optimal dynamic strategic plans for corporate technology start-ups  

E-Print Network (OSTI)

This thesis presents an innovative method for evaluating and dynamically planning the development of uncertain technology investments. Its crux centers on a paradigm shift in the way managers assess investments, toward an ...

Mikati, Samir Omar

2009-01-01T23:59:59.000Z

428

Conceptual design of an integrated technology model for carbon policy assessment.  

SciTech Connect

This report describes the conceptual design of a technology choice model for understanding strategies to reduce carbon intensity in the electricity sector. The report considers the major modeling issues affecting technology policy assessment and defines an implementable model construct. Further, the report delineates the basis causal structure of such a model and attempts to establish the technical/algorithmic viability of pursuing model development along with the associated analyses.

Backus, George A.; Dimotakes, Paul E. (NASA Jet Propulsion Laboratory, Pasadena, CA)

2011-01-01T23:59:59.000Z

429

Categorical Exclusion Determination Form Proposed Action Title: (0471-1606) United Technologies Research Center -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

rg rg Categorical Exclusion Determination Form Proposed Action Title: (0471-1606) United Technologies Research Center - Thermal Storage Using Hybrid Vapor Compression Adsorption System Program or Field Office: Advanced Research Projects Agency - Energy Location{s) (City/County/State): Connecticut, Michigan Proposed Action Description: Funding will support development of an advanced climate control system for plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) utilizing a hybrid thermal battery that employs a unique approach of adsorbing refrigerant on a metal salt. Proposed work consists of indoor laboratory-based research and development and office-based engineering analysis, including (1) synthesis, characterization, and testing of metal salts and refrigerant fluids for use in the thermal battery system, (2) computer-based design and

430

Indicator strip and portable instrument technologies for determining nitroesters or moisture in combustible cartridge cases  

Science Conference Proceedings (OSTI)

The sometimes large round-to-round variability observed in accelerated environmental testing, plus difficulties in quantifying the environmental histories of a given round suggest the need for nondestructive rapid tests of munitions to supplement lifetime prediction models in quality assurance of munitions. Technologies are being developed for reagent strips which can be affixed to rounds and which will visually indicate the presence and extent of nitroester migration by a visible color change. A solid state adaptation of a modified Griess reagent develops a red-purple color in the presence of nitroesters. Performance of current designs tested in the laboratory suggest a short-term (ca. one month) single usage. Dielectric capacitance is a promising means for rapid, nondestructive moisture determinations using a portable battery-powered instrument. Laboratory studies with a modified, inexpensive, commercial device have demonstrated fast (a few seconds) detection of case wall moisture content.

Griest, W.H.; Ho, C.H.; Moneyhun, J.H.; Agouridis, D.C.; Gayle, T.M.; Bates, B.E.

1993-10-01T23:59:59.000Z

431

Dry Integrated Emissions Control Technology Options: EMO, DryFining, NeuStream-DR and DSI State-of-the-Art  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute (EPRI) technical update provides a series of enhanced Level 1 analyses of multiple dry integrated emissions reduction technology options for use at coal-fired, utility-scale generating plants. The report also contains a section covering the current state-of-the-art for Duct Sorbent Injection systems (DSI). This document also includes an updated listing of the Integrated Emissions Control (IEC) technologies that have been proposed in the past for use at ...

2013-12-21T23:59:59.000Z

432

Structural Integrity Program for the Calcined Solids Storage Facilities at the Idaho Nuclear Technology and Engineering Center  

SciTech Connect

This report documents the activities of the structural integrity program at the Idaho Nuclear Technology and Engineering Center relevant to the high-level waste Calcined Solids Storage Facilities and associated equipment, as required by DOE M 435.1-1, ''Radioactive Waste Management Manual.'' Based on the evaluation documented in this report, the Calcined Solids Storage Facilities are not leaking and are structurally sound for continued service. Recommendations are provided for continued monitoring of the Calcined Solids Storage Facilities.

Bryant, J.W.; Nenni, J.A.

2003-05-22T23:59:59.000Z

433

Technologies  

Weapons & Complex Integration. News Center. News Center. Around the Lab. ... Gamma-Ray Systems; ... for the Department of Energy's National Nuclear Security ...

434

NREL: Geothermal Technologies - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Projects The NREL...

435

NREL: Geothermal Technologies - Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Capabilities The...

436

NREL: Geothermal Technologies - News  

NLE Websites -- All DOE Office Websites (Extended Search)

and Technology Technology Transfer Technology Deployment Energy Systems Integration Geothermal Technologies Search More Search Options Site Map Printable Version Geothermal News...

437

Homeostatic control: economic integration of solar technologies into electric power operations and planning  

DOE Green Energy (OSTI)

The economic and technical interfaces between the electrical utility and the distributed, nondispatchable electric generation systems are only minimally understood at the present time. The economic issues associated with the interface of new energy technologies and the electric utility grid are discussed. Then the concept of Homeostatic Control is introduced and the use of such an economic concept applied to the introduction of nondispatchable technologies into the existing utility system is discussed. The transition and potential impact of a Homoeostatic Control system working with the existing electric utility system is discussed.

Tabors, R.D.

1981-07-01T23:59:59.000Z

438

Work integrated learning rationale and practices in Australian information and communications technology degrees  

Science Conference Proceedings (OSTI)

To obtain a better understanding of WIL rationale and practices in Australian ICT degrees, a survey of managers and educational leaders of ICT was undertaken. These survey results were analysed and informed by discussions at a forum of ICT educational ... Keywords: academia, industry, professional practice, student experience, work integrated learning

Chris J Pilgrim, Tony Koppi

2012-01-01T23:59:59.000Z

439

THEME 7: TRANSPORT INCLUDING AERONAUTICS Based on technological advances, develop integrated, "greener", "smarter" and safer  

E-Print Network (OSTI)

alternatives to conventional engines3 . 1 ERTRAC Research Framework of April 2006 2 European Directive 2003 and their optimisation; 2) intelligent engine controls (which are model based and closed loop controlled) and flexible power-trains; 3) new generation of after-treatment systems which are integrated, durable and compact; 4

Meju, Max

440

Nuclear Technology & Canadian Oil Sands: Integration of Nuclear Power with In-Situ Oil Extraction  

E-Print Network (OSTI)

the feasibility of integrating a nuclear power plant with Steam- Assisted Gravity Drainage (SAGD), an oil region enhance the feasibility of using nuclear power plants to meet the energy needs [5]. Both mining Electricity A second production scenario is the cogeneration of thermal power and electricity to meet the #12

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

AN OUTCOME-BASED FRAMEWORK FOR TECHNOLOGY INTEGRATION IN HIGHER EDUCATION STATISTICS CURRICULA FOR NON-MAJORS  

E-Print Network (OSTI)

data and free software. Technology Innovations in Statisticsstatistics education. Technology Innovations in StatisticsEmerging issues in a technology-rich environment. Technology

Reston, Enriqueta

2013-01-01T23:59:59.000Z

442

Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials  

Science Conference Proceedings (OSTI)

Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water rea

Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

2008-08-01T23:59:59.000Z

443

Technologies  

High Performance Computing (HPC) Technologies; Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) ...

444

Embedded devices for supply chain applications: Towards hardware integration of disparate technologies  

Science Conference Proceedings (OSTI)

The emergence of the RFID technology and its application to supply chain processes has in particular led to the creation of such standards as the EPCglobal's model of supply networks as a tool for materializing intra- and inter-enterprise visibility ... Keywords: Intelligent objects, Logistics, Microsystems, Multi-agents, Positioning, RFID

Ahmed Musa, Angappa Gunasekaran, Yahaya Yusuf, Abdelrahman Abdelazim

2014-01-01T23:59:59.000Z

445

seari.mit.edu 2009 Massachusetts Institute of Technology 1 Economics of Human Systems Integration  

E-Print Network (OSTI)

Assistant Research Advisors: R. Valerdi and D. H. Rhodes 12th Annual NDIA Systems Engineering Conference and Guided Weapons Programs" ­ RAND Corp. #12;seari.mit.edu © 2009 Massachusetts Institute of Technology 3 of the system of interest 5. Assess complexity of requirements #12;seari.mit.edu © 2009 Massachusetts Institute

de Weck, Olivier L.

446

ORNL Building Technologies Research & Integration Center (BTRIC) New Laboratory Facilities per  

E-Print Network (OSTI)

/or distributed energy or CHP systems, customer-side-of-meter plug-in hybrid electric vehicle (PHEV) or EV docking,000 ft2 high bay laboratory building will include four major sections: The Advanced Construction, and evaluation of advanced construction technologies. The facility addresses both em

Oak Ridge National Laboratory

447

CLASS DEVIATION FINDINGS AND DETERMINATION Federal Awardee Performance and Integrity Information Systems (FAPIIS) Requirement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Federal Awardee Performance and Integrity Information Systems (FAPIIS) Requirement Federal Awardee Performance and Integrity Information Systems (FAPIIS) Requirement at Federal Acquisition Regulation (FAR) 9.406-3(f)(1) and 9.407-3(e)(1) Findings 1. On March 23,2010, the FAR Council published a final rule in the Federal Register (75FR 14058), which amended FAR 9.4 to implement section 872 of the Duncan Hunter National Defense Authorization Act for FISCAL Year 2009. Section 872 requires the establishment of a data system containing specific information on the integrity and performance of covered Federal agency contractors and grantees. The data system created for this purpose is entitled Federal Awardee Performance and Integrity Information Systems (FAPIIS), and it can be located at www.ppirs.gov and www.cpars.csd.disa.mil.

448

Air-Source Integrated Heat Pump for Near-Zero Energy Houses: Technology Status Report  

Science Conference Proceedings (OSTI)

This report documents the development of an air-source integrated heat pump (AS-IHP) through the third quarter of FY2007. It describes the design, analyses and testing of the AS-IHP, and provides performance specifications for a field test prototype and proposed control strategy. The results obtained so far continue to support the AS-IHP being a promising candidate to meet the energy service needs for DOE's development of a Zero Energy Home (ZEH) by the year 2020.

Murphy, Richard W [ORNL; Rice, C Keith [ORNL; Baxter, Van D [ORNL; Craddick, William G [ORNL

2007-07-01T23:59:59.000Z

449

Considering the customer : determinants and impact of using technology on industry evolution  

E-Print Network (OSTI)

This dissertation raises two questions: How do customers come to understand and use a technology? What is the influence of customers using a technology on industry evolution and competition? I use two historical cases to ...

Kahl, Steven J. (Steven John)

2007-01-01T23:59:59.000Z

450

Integration of Ion Transport Membrane Technology with Oxy-Combustion Power Generation Systems  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) in conjunction with Air Products and Chemicals, Inc., (AP) has reviewed oxy-combustion, a methodology to burn coal using oxygen rather than air to aid in removing carbon by producing a more concentrated stream of carbon dioxide (CO2) for remediation, which reduces the cost and energy required to do so. This report discusses the ion transport membrane (ITM), a technology developed by AP under a Cooperative Agreement with the United States ...

2013-09-17T23:59:59.000Z

451

Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2  

SciTech Connect

The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

2005-12-01T23:59:59.000Z

452

Self-scrubbing coal{sup TM}: An integrated approach to clean air. A proposed Clean Coal Technology Demonstration Project  

Science Conference Proceedings (OSTI)

This environmental assessment (EA) was prepared by the U.S.Department of Energy (DOE), with compliance with the National Environmental Policy Act (NEPA) of 1969, Council on Environmental Quality (CE) regulations for implementating NEPA (40 CFR 1500-1508) and DOE regulations for compliance with NEPA (10 CFR 1021), to evaluate the potential environmental impacts associated with a proposed demonstration project to be cost-shared by DOE and Custom Coals International (CCI) under the Clean Coal Technology (CCT) Demonstration Program of DOE`s Office of Fossil Energy. CCI is a Pennsylvania general partnership located in Pittsburgh, PA engaged in the commercialization of advanced coal cleaning technologies. The proposed federal action is for DOE to provide, through a cooperative agreement with CCI, cost-shared funding support for the land acquisition, design, construction and demonstration of an advanced coal cleaning technology project, {open_quotes}Self-Scrubbing Coal: An Integrated Approach to Clean Air.{close_quotes} The proposed demonstration project would take place on the site of the presently inactive Laurel Coal Preparation Plant in Shade Township, Somerset County, PA. A newly constructed, advanced design, coal preparation plant would replace the existing facility. The cleaned coal produced from this new facility would be fired in full-scale test burns at coal-fired electric utilities in Indiana, Ohio and PA as part of this project.

Not Available

1994-01-01T23:59:59.000Z

453

Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques  

Science Conference Proceedings (OSTI)

There are a variety of motivations for quantifying Pu in spent (used) fuel assemblies by means of nondestructive assay (NDA) including the following: strengthen the capabilities of the International Atomic Energy Agencies to safeguards nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at reprocessing facilities and providing quantitative input to burnup credit determination for repositories. For the purpose of determining the Pu mass in spent fuel assemblies, twelve NDA techniques were identified that provide information about the composition of an assembly. A key point motivating the present research path is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the elemental Pu mass of an assembly and (2) detecting the diversion of a significant number of pins. As such, the focus of this work is determining how to best integrate 2 or 3 techniques into a system that can quantify elemental Pu and to assess how well this system can detect material diversion. Furthermore, it is important economically to down-select among the various techniques before advancing to the experimental phase. In order to achieve this dual goal of integration and down-selection, a Monte Carlo library of PWR assemblies was created and is described in another paper at Global 2009 (Fensin et al.). The research presented here emphasizes integration among techniques. An overview of a five year research plan starting in 2009 is given. Preliminary modeling results for the Monte Carlo assembly library are presented for 3 NDA techniques: Delayed Neutrons, Differential Die-Away, and Nuclear Resonance Fluorescence. As part of the focus on integration, the concept of"Pu isotopic correlation" is discussed and the role of cooling time determination.

Tobin, S. J.; Fensin, M. L.; Ludewigt, B. A.; Menlove, H. O.; Quiter, B. J.; Sandoval, N. P.; Swinhoe, M. T.; Thompson, S. J.

2009-08-03T23:59:59.000Z

454

Technolog  

NLE Websites -- All DOE Office Websites (Extended Search)

Research in Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from maintaining the safety, security and effectiveness of the nation's nuclear weapons and preventing domestic and interna- tional terrorism to finding innovative clean energy solutions, develop- ing cutting-edge nanotechnology and moving the latest advances to the marketplace. Sandia's expertise includes:

455

Program on Technology Innovation: Adiabatic Compressed Air Energy Storage Systems for Renewable Energy Integration  

Science Conference Proceedings (OSTI)

This report summarizes the status and progress of the research, development, and demonstration (RD&D) work at the Electric Power Research Institute (EPRI) on adiabatic no-fuel compressed air energy storage (CAES) for wind integration. Bulk energy storage (BES) is necessary to provide grid damping in order to mitigate wind power variability. The objective of adiabatic no-fuel CAES RD&D is to combine the lowest-cost BES option (which is CAES) with carbon-free operation. The research focuses on system desig...

2010-11-08T23:59:59.000Z

456

Site-controlled Ag nanocrystals grown by molecular beam epitaxy-Towards plasmonic integration technology  

Science Conference Proceedings (OSTI)

We demonstrate site-controlled growth of epitaxial Ag nanocrystals on patterned GaAs substrates by molecular beam epitaxy with high degree of long-range uniformity. The alignment is based on lithographically defined holes in which position controlled InAs quantum dots are grown. The Ag nanocrystals self-align preferentially on top of the InAs quantum dots. No such ordering is observed in the absence of InAs quantum dots, proving that the ordering is strain-driven. The presented technique facilitates the placement of active plasmonic nanostructures at arbitrarily defined positions enabling their integration into complex devices and plasmonic circuits.

Urbanczyk, Adam [COBRA Research Institute on Communication Technology, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Noetzel, Richard [Institute for Systems based on Optoelectronics and Microtechnology (ISOM), ETSI Telecommunication, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)

2012-12-15T23:59:59.000Z

457

The 3rd DBCLS BioHackathon: improving life science data integration with Semantic Web technologies  

E-Print Network (OSTI)

Intelligence community further specified this definition for their own field, as “the models that capture and describe specific domains” [47]. At the intersection of the life sciences and the com- puter sciences, we find ontologies being used for a wide variety... data integrity and correct out- put formatting, the output was successfully visualized in Cytoscape 2.7.0 beta 3 (Figure 2). Systems biology In systems biology, most curated models are developed by a graphical tool (e.g., CellDesigner [78...

Katayama, Toshiaki; Wilkinson, Mark D; Micklem, Gos; Kawashima, Shuichi; Yamaguchi, Atsuko; Nakao, Mitsuteru; Yamamoto, Yasunori; Okamoto, Shinobu; Oouchida, Kenta; Chun, Hong-Woo; Aerts, Jan; Afzal, Hammad; Antezana, Erick; Arakawa, Kazuharu; Aranda, Bruno; Belleau, Francois; Bolleman, Jerven; Bonnal, Raoul JP; Chapman, Brad; Cock, Peter JA; Eriksson, Tore; Gordon, Paul MK; Goto, Naohisa; Hayashi, Kazuhiro; Horn, Heiko; Ishiwata, Ryosuke; Kaminuma, Eli; Kasprzyk, Arek; Kawaji, Hideya; Kido, Nobuhiro; Kim, Young Joo; Kinjo, Akira R; Konishi, Fumikazu; Kwon, Kyung-Hoon; Labarga, Alberto; Lamprecht, Anna-Lena; Lin, Yu; Lindenbaum, Pierre; McCarthy, Luke; Morita, Hideyuki; Murakami, Katsuhiko; Nagao, Koji; Nishida, Kozo; Nishimura, Kunihiro; Nishizawa, Tatsuya; Ogishima, Soichi; Ono, Keiichiro; Oshita, Kazuki; Park, Keun-Joon; Prins, Pjotr; Saito, Taro L; Samwald, Matthias; Satagopam, Venkata P; Shigemoto, Yasumasa; Smith, Richard; Splendiani, Andrea; Sugawara, Hideaki; Taylor, James; Vos, Rutger A; Withers, David; Yamasaki, Chisato; Zmasek, Christian M; Kawamoto, Shoko; Okubo, Kosaku; Asai, Kiyoshi; Takagi, Toshihisa

2013-02-11T23:59:59.000Z

458

Determination of technology transfer requirements for enhanced oil recovery. Final report  

Science Conference Proceedings (OSTI)

A detailed field study was conducted to determine the technical information needs of current and potential users of enhanced oil recovery data. Under the direction of the Bartlesville Energy Technology Center (BETC), the study (1) identifies groups which have a need for EOR-related information, (2) delineate the specific information needs of each user-group, and (3) outlines methods for improved transfer of appropriate information to the end users. This study also assesses attitudes toward the EOR-related efforts of the US Department of Energy (DOE) and the BETC, and the role each should play in facilitating the commercialization of EOR processes. More than 300 users and potential users of EOR information were surveyed. Included in the survey sample were representatives of major oil companies, independent oil companies, engineering consulting firms, university and private research organizations, financial institutions and federal, state, and local policy-making bodies. In-depth questionnaires were specifically designed for each group. This study analyzes each group's position pertaining to (1) current level of EOR activity or interest, (2) current and projected EOR information needs, (3) assessments of the BETC's current information services and suggestions for improvement, (4) delineation of technical and economic constraints to increased EOR activity, and (5) steps the DOE might take to enhance the attractiveness of commercial EOR operations.

Wilson, T.D.; Scott, J.P.

1980-09-01T23:59:59.000Z

459

CX-000726: Categorical Exclusion Determination | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Determination CX-000726: Categorical Exclusion Determination A Novel Integrated Oxy-Combustion Flue Gas Purification Technology: A Near-Zero Emissions Pathway CX(s) Applied: B3.6...

460

Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Computers and the internet play an increasingly larger role in the lives of students. In this activity, students must use various web sites to locate specific pieces of...

Note: This page contains sample records for the topic "determination technology integration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Integration of Low Energy Technologies for Optimal Building and Space Conditioning Design  

DOE Green Energy (OSTI)

EnergyPlus is the DOE's newest building energy simulation engine. It was developed specifically to support the design of low energy building systems. This project focused on developing new low energy building simulation models for EnergyPlus, verifying and validating new and existing EnergyPlus models and transferring the new technology to the private sector. The project focused primarily on geothermal and radiant technologies, which are related by the fact that both are based on hydronic system design. As a result of this project eight peer reviewed journal and conference papers were added to the archival literature and five technical reports were published as M.S. theses and are available in the archival literature. In addition, several reports, including a trombe wall validation report were written for web publication. Thirteen new or significantly enhanced modules were added to the EnergyPlus source code and forty-two new or significantly enhanced sections were added to the EnergyPlus documentation as a result of this work. A low energy design guide was also developed as a pedagogical tool and is available for web publication. Finally several tools including a hybrid ground source heat pump optimization program and a geothermal heat pump parameter estimation tool were developed for research and design and are available for web publication.

D.E. Fisher

2006-01-07T23:59:59.000Z

462

A roadmap for the development ATW technology: Systems scenarios and integration  

SciTech Connect

As requested by the US Congress, a roadmap has been established for development of ATW Technology. The roadmap defines a reference system along with preferred technologies which require further development to reduce technical risk, associated deployment scenarios, and a detailed plan of necessary R and D to support implementation of this technology. Also, the potential for international collaboration is discussed which has the potential to reduce the cost of the program. In addition, institutional issues are described that must be addressed in order to successfully pursue this technology, and the benefits resulting from full implementation are discussed. This report uses as its reference a fast spectrum liquid metal cooled system. Although Lead-Bismuth Eutectic is the preferred option, sodium coolant is chosen as the reference (backup) technology because it represents the lowest technical risk and an excellent basis for estimating the life cycle cost of the systems exists in the work carried out under DOE's ALMR (PRISM) program. Metal fuel and associated pyrochemical treatment is assumed. Similarly a linear accelerator has been adopted as the reference. A reference ATW plant was established to ensure consistent discussion of technical and life cycle cost issues. Over 60 years of operation, the reference ATW plant would process about 10,000 tn of spent nuclear reactor fuel. This is in comparison to the current inventory of about 40,000 tn of spent fuel and the projected inventory of about 86,000 tn of spent fuel if all currently licensed nuclear power plants run until their license expire. The reference ATW plant was used together with an assumed scenario of no new nuclear plant orders in the US to generate the deployment scenario for ATW. In the R and D roadmap, key technical issues are identified and timescales proposed for the resolution of these issues. For the accelerator the main issue is the achievement of the necessary reliability in operation. To avoid frequent thermal transients and maintain grid stability the accelerator must reach levels of performance never previously required. For the target material the main technical choice is between solid or liquid targets. This issue is interlocked with the choice of coolant. Lead-Bismuth eutectic is potentially a superior choice for both these missions but represents a path with greater technical risk. For the blanket metal fuel has been selected. The reference method of processing of spent fuel from LWRs to provide the input material for ATW is chosen to be aqueous because of the large quantity of uranium that needs to be brought to a state that it can be treated as Class C waste. Again this is the path of least technical risk although the pyrometallurgical option will be pursued as an alternative. Processing of the fuel after irradiation in ATW will be undertaken using pyrometallurgical methods. The transmutation of Tc and I represents a special research issue and various options will be pursued to achieve these goals. Finally the system as a whole will need optimization from a reactivity and power control perspective. Varying accelerator power is feasible but can lead to overdesign of the accelerator; other options are movable control rods, burnable poison rods, and adaptations of the fuel management strategy.

Hill, D.; Van Tuyle, G.; Beller, D. [and others

1999-10-06T23:59:59.000Z

463

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network (OSTI)

St. Louis, Missouri. Energy Technology Support Unit (ETSU),de Beer, 1997. "Energy Efficient Technologies in Industry -and MAIN, 1993. “Energy Technology in the Cement Industrial

Sathaye, J.

2011-01-01T23:59:59.000Z

464

Advanced Power Electronics for LED Drivers: Advanced Technologies for integrated Power Electronics  

SciTech Connect

ADEPT Project: MIT is teaming with Georgia Institute of Technology, Dartmouth College, and the University of Pennsylvania (UPenn) to create more efficient power circuits for energy-efficient light-emitting diodes (LEDs) through advances in 3 related areas. First, the team is using semiconductors made of high-performing gallium nitride grown on a low-cost silicon base (GaN-on-Si). These GaN-on-Si semiconductors conduct electricity more efficiently than traditional silicon semiconductors. Second, the team is developing new magnetic materials and structures to reduce the size and increase the efficiency of an important LED power component, the inductor. This advancement is important because magnetics are the largest and most expensive part of a circuit. Finally, the team is creating an entirely new circuit design to optimize the performance of the new semiconductors and magnetic devices it is using.

2010-09-01T23:59:59.000Z

465

The IT productivity paradox revisited: technological determinism masked by management method?  

Science Conference Proceedings (OSTI)

The productivity paradox in information technology is that investment in IT does not seem to be reflected in increased productivity. There is a host of possible explanations, but little consensus on which are responsible, or even on whether the paradox ... Keywords: information technology, management method, productivity paradox

Stuart Macdonald

2002-07-01T23:59:59.000Z

466

Integrating semantic web technologies and geospatial catalog services for geospatial information discovery and processing in cyberinfrastructure  

Science Conference Proceedings (OSTI)

Abstract A geospatial catalogue service provides a network-based meta-information repository and interface for advertising and discovering shared geospatial data and services. Descriptive information (i.e., metadata) for geospatial data and services is structured and organized in catalogue services. The approaches currently available for searching and using that information are often inadequate. Semantic Web technologies show promise for better discovery methods by exploiting the underlying semantics. Such development needs special attention from the Cyberinfrastructure perspective, so that the traditional focus on discovery of and access to geospatial data can be expanded to support the increased demand for processing of geospatial information and discovery of knowledge. Semantic descriptions for geospatial data, services, and geoprocessing service chains are structured, organized, and registered through extending elements in the ebXML Registry Information Model (ebRIM) of a geospatial catalogue service, which follows the interface specifications of the Open Geospatial Consortium (OGC) Catalogue Services for the Web (CSW). The process models for geoprocessing service chains, as a type of geospatial knowledge, are captured, registered, and discoverable. Semantics-enhanced discovery for geospatial data, services/service chains, and process models is described. Semantic search middleware that can support virtual data product materialization is developed for the geospatial catalogue service. The creation of such a semantics-enhanced geospatial catalogue service is important in meeting the demands for geospatial information discovery and analysis in Cyberinfrastructure.

Yue, Peng [Wuhan University; Gong, Jianya [Wuhan University; Di, Liping [George Mason University; He, Lianlian [Hubei University; Wei, Yaxing [ORNL

2011-04-01T23:59:59.000Z

467

Virtual Welded-Joint Design Integrating Advanced Materials and Processing Technologies  

Science Conference Proceedings (OSTI)

The primary goal of this project is to increase the fatigue life of a welded-joint by 10 times and to reduce energy use by 25% through product performance and productivity improvements using an integrated modeling approach. The fatigue strength of a welded-joint is currently the bottleneck to design high performance and lightweight welded structures using advanced materials such as high strength steels. In order to achieve high fatigue strength in a welded-joint it is necessary to manage the weld bead shape for lower stress concentration, produce preferable residual stress distribution, and obtain the desired microstruc