Sample records for determination rocky reach-maple

  1. Rocky Great Mountains Southwest Plains

    E-Print Network [OSTI]

    Rocky Great Mountains Southwest Plains Research Note RM.502 January 1991 USDA Forest Service Rocky),Carbondale, IL.2 Propellant is now solely available through Winn- Star, Inc. (WSI),Marion, IL.,2which also

  2. A research study to determine the effect of Total Quality Management (TQM) on employee morale in Plant Procedures Division at EG&G, Rocky Flats, Inc.

    SciTech Connect (OSTI)

    Casey, E.F.

    1994-01-01T23:59:59.000Z

    EG&G at Rocky Flats, Golden, Colorado, experienced a high amount of low morale, due to the plant site having been designated to close, and the uneasiness of the working force was very visible. Some employees accepted early retirement in October 1992, however, all received letters of 120 days notice in March 1993, and were advised several cuts Would be made by October 1, 1993. This information alone caused many insecurities in employees, and caused morale to decrease even more. This is an in depth study of morale, which was upgraded in Plant Procedures Group (PPG), through the effect of TQM. The primary research included a survey of employees with results included. The study also increased additional questions in PPG, some of which were added to the agenda of the Process Improvement Team (PIT) to improve PPG in the eyes of customers. Statistics did show that morale improved, not necessarily because of TQM or the progress of the Process Improvement Team (PIT), but due to efforts of the staff implementing the principles of TQM the best they knew how.

  3. Rocky Mountain Power- Net Metering

    Broader source: Energy.gov [DOE]

    Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has a net-metering...

  4. Rocky Flats Environmental Technology Site Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky...

  5. Mapco's NGL Rocky Mountain pipeline

    SciTech Connect (OSTI)

    Isaacs, S.F.

    1980-01-01T23:59:59.000Z

    The Rocky Mountain natural gas liquids (NGL) pipeline was born as a result of major producible gas finds in the Rocky Mountain area after gas deregulation. Gas discoveries in the overthurst area indicated considerable volumes of NGL would be available for transportation out of the area within the next 5 to 7 years. Mapco studied the need for a pipeline to the overthrust, but the volumes were not substantial at the time because there was little market and, consequently, little production for ethane. Since that time crude-based products for ethylene manufacture have become less competitive as a feed product on the world plastics market, and ethane demand has increased substantially. This change in the market has caused a major modification in the plans of the NGL producers and, consequently, the ethane content of the NGL stream for the overthrust area is expected to be 30% by volume at startup and is anticipated to be at 45% by 1985. These ethane volumes enhance the feasibility of the pipeline. The 1196-mile Rocky Mountain pipeline will be installed from the existing facility in W. Texas, near Seminole, to Rock Springs, Wyoming. A gathering system will connect the trunk line station to various plant locations. The pipeline development program calls for a capacity of 65,000 bpd by the end of 1981.

  6. Independent Oversight Review, Rocky Flats Environmental Technology...

    Energy Savers [EERE]

    - March 2000 March 2000 Review of the Rocky Flats Environmental Technology Site Transportation Emergency Management Program This report provides the results of an independent...

  7. Rocky Mountain Power- FinAnswer Express

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power provides incentives for its commercial and industrial customers in Idaho to retrofit their existing facilities with more efficient equipment, or install energy efficient...

  8. Rocky Mountain Power- FinAnswer Express

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power's FinAnswer Express Program provides extensive incentives and for lighting, HVAC, food service, agricultural, and compressed air equipment. Retrofits of facilities and upgrades...

  9. LM Records Handling System (LMRHS01) - Rocky Flats Environmental...

    Office of Environmental Management (EM)

    LM Records Handling System (LMRHS01) - Rocky Flats Environmental Records Database, Office of Legacy Management LM Records Handling System (LMRHS01) - Rocky Flats Environmental...

  10. Preliminary Notice of Violation, Rocky Mountain Remediation Services...

    Broader source: Energy.gov (indexed) [DOE]

    June 6, 1997 Issued to Rocky Mountain Remediation Services related to a Radioactive Material Release during Trench Remediation at the Rocky Flats Environmental Technology Site,...

  11. Catastrophic Evaporation of Rocky Planets

    E-Print Network [OSTI]

    Perez-Becker, Daniel

    2013-01-01T23:59:59.000Z

    Short-period exoplanets can have dayside surface temperatures surpassing 2000 K, hot enough to vaporize rock and drive a thermal wind. Small enough planets evaporate completely. We construct a radiative-hydrodynamic model of atmospheric escape from strongly irradiated, low-mass rocky planets, accounting for dust-gas energy exchange in the wind. Rocky planets with masses 2000 K are found to disintegrate entirely in 0.1 M_Earth/Gyr --- our model yields a present-day planet mass of < 0.02 M_Earth or less than about twice the mass of the Moon. Mass loss rates depend so strongly on planet mass that bodies can reside on close-in orbits for Gyrs with initial masses comparable to or less than that of Mercury, before entering a final short-lived phase of catastrophic mass loss (which KIC 12557548b has entered). Because this catastrophic stage lasts only up to a few percent of the planet's life, we estimate that for every object like KIC 12557548b, there should be 10--100 close-in quiescent progenitors with sub-da...

  12. Idaho National Engineering Laboratory code assessment of the Rocky Flats transuranic waste

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report is an assessment of the content codes associated with transuranic waste shipped from the Rocky Flats Plant in Golden, Colorado, to INEL. The primary objective of this document is to characterize and describe the transuranic wastes shipped to INEL from Rocky Flats by item description code (IDC). This information will aid INEL in determining if the waste meets the waste acceptance criteria (WAC) of the Waste Isolation Pilot Plant (WIPP). The waste covered by this content code assessment was shipped from Rocky Flats between 1985 and 1989. These years coincide with the dates for information available in the Rocky Flats Solid Waste Information Management System (SWIMS). The majority of waste shipped during this time was certified to the existing WIPP WAC. This waste is referred to as precertified waste. Reassessment of these precertified waste containers is necessary because of changes in the WIPP WAC. To accomplish this assessment, the analytical and process knowledge available on the various IDCs used at Rocky Flats were evaluated. Rocky Flats sources for this information include employee interviews, SWIMS, Transuranic Waste Certification Program, Transuranic Waste Inspection Procedure, Backlog Waste Baseline Books, WIPP Experimental Waste Characterization Program (headspace analysis), and other related documents, procedures, and programs. Summaries are provided of: (a) certification information, (b) waste description, (c) generation source, (d) recovery method, (e) waste packaging and handling information, (f) container preparation information, (g) assay information, (h) inspection information, (i) analytical data, and (j) RCRA characterization.

  13. Map of mixed prairie grassland vegetation, Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Clark, S J.V.; Webber, P J; Komarkova, V; Weber, W A

    1980-01-01T23:59:59.000Z

    A color vegetation map at the scale of 1:12,000 of the area surrounding the Rocky Flats, Rockwell International Plant near Boulder, Colorado, provides a permanent record of baseline data which can be used to monitor changes in both vegetation and environment and thus to contribute to future land management and land-use policies. Sixteen mapping units based on species composition were identified, and characterized by two 10-m/sup 2/ vegetation stands each. These were grouped into prairie, pasture, and valley side on the basis of their species composition. Both the mapping units and these major groups were later confirmed by agglomerative clustering analysis of the 32 vegetation stands on the basis of species composition. A modified Bray and Curtis ordination was used to determine the environmental factor complexes controlling the distribution of vegetation at Rocky flats. Recommendations are made for future policies of environmental management and predictions of the response to environmental change of the present vegetation at the Rocky Flats site.

  14. History of Uranium-233(sup233U)Processing at the Rocky Flats Plant. In support of the RFETS Acceptable Knowledge Program

    SciTech Connect (OSTI)

    Moment, R.L.; Gibbs, F.E.; Freiboth, C.J.

    1999-04-01T23:59:59.000Z

    This report documents the processing of Uranium-233 at the Rocky Flats Plant (Rocky Flats Environmental Technology Site). The information may be used to meet Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC)and for determining potential Uranium-233 content in applicable residue waste streams.

  15. Chemical tracking at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Costain, D.B.

    1994-04-01T23:59:59.000Z

    EG&G Rocky Flats, Inc., has developed a chemical tracking system to support compliance with the Emergency Planning and community Right-to-Know Act (EPCRA) at the Rocky Flats Plant. This system, referred to as the EPCRA Chemical Control system (ECCS), uses bar code technology to uniquely identify and track the receipt, distribution, and use of chemicals. Chemical inventories are conducted using hand-held electronic scanners to update a site wide chemical database on a VAX 6000 computer. Information from the ECCS supports preparation of the EPCRA Tier II and Form R reports on chemical storage and use.

  16. ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    excluded waste storage, disposal, recovery, or treatment actions or facilities; ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION Rocky Mountain Region, Western Area...

  17. ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sites outside of rights-of-way in nearby previously disturbed or developed areas. 1 ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION Rocky Mountain Region, Western Area...

  18. ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with its foundation well above a sole-source aquifer or upland surface soil 1 ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION Rocky Mountain Region, Western Area...

  19. ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION

    Broader source: Energy.gov (indexed) [DOE]

    with DOE Order 435.1, "Radioactive Waste Management," or its successor; 2 ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION Rocky Mountain Region, Western Area...

  20. ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION

    Broader source: Energy.gov (indexed) [DOE]

    DETERMINATION Rocky Mountain Region, Western Area Power Administration Danger Tne Management on North Gunnison to Skito 115-kV Transmission Line Gunnison County, Colorado (d)...

  1. ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION

    Broader source: Energy.gov (indexed) [DOE]

    DETERMINATION Rocky Mountain Region, Western Area Power Administration Danger Tree Management on Curecanti to Blue Mesa 115-kV Transmission Line Gunnison County, Colorado (e)...

  2. ENVIRONMENT AL REVIEW for CATEGORICAL EXCLUSION DETERMINATION

    Broader source: Energy.gov (indexed) [DOE]

    ENVIRONMENT AL REVIEW for CATEGORICAL EXCLUSION DETERMINATION Rocky Mountain Region, Western Area Power Administration Upper Molina-Lower Molina 115 kV Road Maintenance and...

  3. CX-011395: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Using Multiple In Situ Approaches to Assess Fish Communities and their Connectivity in the Vicinity of Natural Rocky Outcrops and an...

  4. CX-002604: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002604: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s)...

  5. CX-002605: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002605: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s)...

  6. CX-000413: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000413: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s)...

  7. CX-000416: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000416: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s)...

  8. CX-000415: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000415: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s)...

  9. Geologic and geotechnical assessment RFETS Building 371, Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Maryak, M.E.; Wyatt, D.E.; Bartlett, S.F.; Lewis, M.R.; Lee, R.C.

    1995-12-13T23:59:59.000Z

    This report describes the review and evaluation of the geological, geotechnical and geophysical data supporting the design basis analysis for the Rocky Flats Environmental Test Site (RFETS) Building 371. The primary purpose of the geologic and geotechnical reviews and assessments described herein are to assess the adequacy of the crustal and near surface rock and soil model used in the seismic analysis of Building 371. This review was requested by the RFETS Seismic Evaluation Program. The purpose was to determine the adequacy of data to support the design basis for Building 371, with respect to seismic loading. The objectives required to meet this goal were to: (1) review techniques used to gather data (2) review analysis and interpretations of the data; and (3) make recommendations to gather additional data if required. Where there were questions or inadequacies in data or interpretation, recommendations were made for new data that will support the design basis analysis and operation of Building 371. In addition, recommendations are provided for a geologic and geophysical assessment for a new facility at the Rocky Flats Site.

  10. Basic TRUEX process for Rocky Flats Plant

    SciTech Connect (OSTI)

    Leonard, R.A.; Chamberlain, D.B.; Dow, J.A.; Farley, S.E.; Nunez, L.; Regalbuto, M.C.; Vandegrift, G.F.

    1994-08-01T23:59:59.000Z

    The Generic TRUEX Model was used to develop a TRUEX process flowsheet for recovering the transuranics (Pu, Am) from a nitrate waste stream at Rocky Flats Plant. The process was designed so that it is relatively insensitive to changes in process feed concentrations and flow rates. Related issues are considered, including solvent losses, feed analysis requirements, safety, and interaction with an evaporator system for nitric acid recycle.

  11. Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    White Tilapia Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Rocky Mountain White Tilapia Aquaculture Low Temperature Geothermal Facility Facility...

  12. EIS-0276: Rocky Flats Plutonium Storage, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action to provide safe interim storage of approximately 10 metric tons of plutonium at the Rocky Flats Environmental Technology Site (RFETS).

  13. 2006 Annual Ecology Report for the Rocky Flats Site

    Office of Legacy Management (LM)

    Ecology Report for the Rocky Flats Site Click on the links below to access different portions of the electronic annual report. 2006 Annual Report Sections Diffuse Knapweed...

  14. Preliminary Notice of Violation , Rocky Flats Environmental Technology...

    Broader source: Energy.gov (indexed) [DOE]

    deficiencies associated two events in March and April 1996 that resulted in the spread of contamination and personnel uptakes of radioactive material at the Rocky Flats...

  15. DOE - Office of Legacy Management -- Rocky

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne CoColorado RioMill SiteRocky Flats

  16. DOE - Office of Legacy Management -- Rocky

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntownRocky Flats Site, Colorado Key Documents

  17. DOE - Office of Legacy Management -- Rocky Benefits

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntownRocky Flats Site, Colorado Key

  18. Risk, media, and stigma at Rocky Flats

    SciTech Connect (OSTI)

    Flynn, J.; Peters, E.; Mertz, C.K.; Slovic, P. [Decision Research, Eugene, OR (United States)] [Decision Research, Eugene, OR (United States)

    1998-12-01T23:59:59.000Z

    Public responses to nuclear technologies are often strongly negative. Events, such as accidents or evidence of unsafe conditions at nuclear facilities, receive extensive and dramatic coverage by the news media. These news stories affect public perceptions of nuclear risks and the geographic areas near nuclear facilities. One result of these perceptions, avoidance behavior, is a form of technological stigma that leads to losses in property values near nuclear facilities. The social amplification of risk is a conceptual framework that attempts to explain how stigma is created through media transmission of information about hazardous places and public perceptions and decisions. This paper examines stigma associated with the US Department of energy`s Rocky Flats facility, a major production plant in the nation`s nuclear weapons complex, located near Denver, Colorado. This study, based upon newspaper analyses and a survey of Denver area residents, finds that the social amplification theory provides a reasonable framework for understanding the events and public responses that took place in regard to Rocky Flats during a 6-year period, beginning with an FBI raid of the facility in 1989.

  19. Rocky Flats Environmental Technology Site Ecological Monitoring Program 1995 annual report

    SciTech Connect (OSTI)

    NONE

    1995-05-31T23:59:59.000Z

    The Ecological Monitoring Program (ECMP) was established at the Rocky Flats Environmental Technology Site (Site) in September 1992. At that time, EcMP staff developed a Program Plan that was peer-reviewed by scientists from western universities before submittal to DOE RFFO in January 1993. The intent of the program is to measure several quantitative variables at different ecological scales in order to characterize the Rocky Flats ecosystem. This information is necessary to document ecological conditions at the Site in impacted and nonimpacted areas to determine if Site practices have had ecological impacts, either positive or negative. This information can be used by managers interested in future use scenarios and CERCLA activities. Others interested in impact analysis may also find the information useful. In addition, these measurements are entered into a database which will serve as a long-term information repository that will document long-term trends and potential future changes to the Site, both natural and anthropogenic.

  20. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  1. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    SciTech Connect (OSTI)

    Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

    2003-02-27T23:59:59.000Z

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.

  2. Microsoft Word - Rocky Ridge_CX Memo .docx

    Broader source: Energy.gov (indexed) [DOE]

    site. Project activities would include possible blasting andor the use of a hydraulic hammer and rock cutting tools due to the rocky ground. No more than 4700 cubic feet of spoils...

  3. Historical Exposures to Chemicals at the Rocky Flats Nuclear Weapons Plant: A Pilot Retrospective Exposure Assessment

    SciTech Connect (OSTI)

    Janeen Denise Robertson

    1999-02-01T23:59:59.000Z

    In a mortality study of white males who had worked at the Rocky Flats Nuclear Weapons Plant between 1952 and 1979, an increased number of deaths from benign and unspecified intracranial neoplasms was found. A case-control study nested within this cohort investigated the hypothesis that an association existed between brain tumor death and exposure to either internally deposited plutonium or external ionizing radiation. There was no statistically significant association found between estimated radiation exposure from internally deposited plutonium and the development of brain tumors. Exposure by job or work area showed no significant difference between the cohort and the control groups. An update of the study found elevated risk estimates for (1) all lymphopoietic neoplasms, and (2) all causes of death in employees with body burdens greater than or equal to two nanocuries of plutonium. There was an excess of brain tumors for the entire cohort. Similar cohort studies conducted on worker populations from other plutonium handling facilities have not yet shown any elevated risks for brain tumors. Historically, the Rocky Flats Nuclear Weapons Plant used large quantities of chemicals in their production operations. The use of solvents, particularly carbon tetrachloride, was unique to Rocky Flats. No investigation of the possible confounding effects of chemical exposures was done in the initial studies. The objectives of the present study are to (1) investigate the history of chemical use at the Rocky Flats facility; (2) locate and analyze chemical monitoring information in order to assess employee exposure to the chemicals that were used in the highest volume; and (3) determine the feasibility of establishing a chemical exposure assessment model that could be used in future epidemiology studies.

  4. Environmental Survey preliminary report, Rocky Flats Plant, Golden, Colorado

    SciTech Connect (OSTI)

    Not Available

    1987-06-01T23:59:59.000Z

    This report presents the preliminary findings of the Environmental Survey of the United States Department of Energy (DOE), Rocky Flats Plant (RFP), conducted August 11 through 22, 1986. The Survey is being conducted by an multidisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team members are outside experts supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the RFP. The Survey covers all environmental media and all areas of environmental regulations. It is being performed in accordance with the DOE Environmental Survey Manual. The on-site phase of the Survey involves the review of existing site environmental data observations of the operations carried on at RFP, and interviews with site personnel. The Survey team developed a Sampling and Analysis Plan to assist in further assessing certain environmental problems identified during its on-site activates. The Sampling and Analysis Plan is being executed by DOE's Oak Ridge National Laboratory. When completed, the results will be incorporated into the RFP Environmental Survey Interim Report. The Interim Report will reflect the final determinations of the RFP Survey. 75 refs., 24 figs., 33 tabs.

  5. Commercial Decommissioning at DOE's Rocky Flats

    SciTech Connect (OSTI)

    Freiboth, C.; Sandlin, N.; Schubert, A.; Hansen, S.

    2002-02-25T23:59:59.000Z

    Due in large part to the number of nuclear facilities that make up the DOE complex, DOE-EM work has historically been paperwork intensive and driven by extensive regulations. Requirements for non-nuclear facilities are often grouped with those of nuclear facilities, driving up costs. Kaiser-Hill was interested in applying a commercial model to demolition of these facilities and wanted to apply necessary and sufficient standards to the work activities, but avoid applying unnecessary requirements. Faced with demolishing hundreds of uncontaminated or non-radiologically contaminated facilities, Kaiser-Hill has developed a subcontracting strategy to drastically reduce the cost of demolishing these facilities at Rocky Flats. Aiming to tailor the demolition approach of such facilities to more closely follow commercial practices, Kaiser-Hill recently released a Request for Proposals (RFP) for the demolition of the site's former central administration facility. The RFP significantly reduced requirements for compliance with specific DOE directives. Instead, the RFP required subcontractors to comply with health and safety requirements commonly found in the demolition of similar facilities in a commercial setting. This resulted in a number of bids from companies who have normally not bid on DOE work previously and at a reduced cost over previous approaches. This paper will discuss the details of this subcontracting strategy.

  6. The Critical Mass Laboratory at Rocky Flats

    SciTech Connect (OSTI)

    Rothe, Robert E

    2003-10-15T23:59:59.000Z

    The Critical Mass Laboratory (CML) at Rocky Flats northwest of Denver, Colorado, was built in 1964 and commissioned to conduct nuclear experiments on January 28, 1965. It was built to attain more accurate and precise experimental data to ensure nuclear criticality safety at the plant than were previously possible. Prior to its construction, safety data were obtained from long extrapolations of subcritical data (called in situ experiments), calculated parameters from reactor engineering 'models', and a few other imprecise methods. About 1700 critical and critical-approach experiments involving several chemical forms of enriched uranium and plutonium were performed between then and 1988. These experiments included single units and arrays of fissile materials, reflected and 'bare' systems, and configurations with various degrees of moderation, as well as some containing strong neutron absorbers. In 1989, a raid by the Federal Bureau of Investigation (FBI) caused the plant as a whole to focus on 'resumption' instead of further criticality safety experiments. Though either not recognized or not admitted for a few years, that FBI raid did sound the death knell for the CML. The plant's optimistic goal of resumption evolved to one of deactivation, decommissioning, and plantwide demolition during the 1990s. The once-proud CML facility was finally demolished in April of 2002.

  7. CX-006664: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Rocky Mountain Oilfield Testing Center Process Improvement Old Pipe Yard Clean Up CX(s) Applied: B1.3, B1.23 Date: 11162009 Location(s): Casper, Wyoming...

  8. PIA - Rocky Mountain OTC GSS | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical:Rocky Mountain OTC GSS PIA - Rocky

  9. United States Department of Agriculture / Forest Service Rocky Mountain Research Station

    E-Print Network [OSTI]

    Flury, Markus

    United States Department of Agriculture / Forest Service Rocky Mountain Research Station Research Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 8 p Sciences Laboratory of the Rocky Mountain Research Station (U.S. Department of Agriculture, Forest Service

  10. Rocky Flats Cleanup Agreement implementation successes and challenges

    SciTech Connect (OSTI)

    Shelton, D.C.

    1997-02-01T23:59:59.000Z

    On July 19, 1996 the US Department of Energy (DOE), State of Colorado (CDPHE), and US Environmental Protection Agency (EPA) entered into an agreement called the Rocky Flats Cleanup Agreement (RFCA) for the cleanup and closure of the Rocky Flats Environmental Technology Site (RFETS or Rocky Flats). Major elements of the agreement include: an Integrated Site-Wide Baseline; up to twelve significant enforceable milestones per year; agreed upon soil and water action levels and standards for cleanup; open space as the likely foreseeable land use; the plutonium and TRU waste removed by 2015; streamlined regulatory process; agreement with the Defense Nuclear Facilities Safety Board (DNFSB) to coordinate activities; and a risk reduction focus. Successful implementation of RFCA requires a substantial effort by the parties to change their way of thinking about RFETS and meet the deliverables and commitments. Substantial progress toward Site closure through the implementation of RFCA has been accomplished in the short time since the signing, yet much remains to be done. Much can be learned from the Rocky Flats experience by other facilities in similar situations.

  11. NATURAL HERITAGE RESOURCES OF THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE

    E-Print Network [OSTI]

    NATURAL HERITAGE RESOURCES OF THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE AND THEIR CONSERVATION. Dr. Fred Harrington, Dr. Mark Bakeman, and Alison Deans of the Pawnee Natural History Society Environmental Technology Site (RFETS). The exclusion of the general public over the last 20 to 40 years has

  12. Dr Rocky K. C. Chang Warden of Lizhi Hall

    E-Print Network [OSTI]

    Chang, Rocky Kow-Chuen

    Dr Rocky K. C. Chang Warden of Lizhi Hall Warden Office: Room 968 Intercom: 0968 Email: csrchang in women sports (swimming, field and track, badminton, volleyball, etc). I have confirmed with Ruby on energy saving came as a pleasant surprise. Our achievements are by no means limited to these external

  13. Montana State of mind Small City, the Rockies

    E-Print Network [OSTI]

    Dyer, Bill

    #12;#12;#12;#12;#12;#12;#12;Montana State of mind Small City, Big Energy Museum of the Rockies Streamline offers fare free bus service throughout the Bozeman area. Bozeman offers plenty of outdoor and intellectual and cultural activity. Bozeman offers all the amenities of a bigger city, including many chain

  14. Rocky Flats Plant Site Environmental Report for 1992

    SciTech Connect (OSTI)

    Cirrincione, D.A.; Erdmann, N.L. [eds.

    1992-12-31T23:59:59.000Z

    The Rocky Rats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1992. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population.

  15. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5,000,000 kWh or a 1,000 kW peak load. Through...

  16. Rocky Mountain Power- Self-Direction Credit Program

    Broader source: Energy.gov [DOE]

    Rocky Mountain Power offers a Self-Direction Credit program to its industrial and large commercial customers with annual electric usage of more than 5 million kWh or a peak load of 1,000 kW or more...

  17. Evaluation of Rocky Flats Plant stored plutonium inventory at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Clements, T.L. Jr.; Einerson, J.J.

    1995-09-01T23:59:59.000Z

    The purpose of this document is to evaluate reported inventories of plutonium contained in stored transuranic (TRU) waste generated by the Rocky Flats Plant (RFP). From 1970 to 1989, this waste was shipped to the Idaho National Engineering Laboratory (INEL) and placed in aboveground retrievable storage at the Radioactive Waste Management Complex (RWMC)-Transuranic Storage Area (TSA). This evaluation was initiated to address potential uncertainty in quantities of stored plutonium reported in the Radioactive Waste Management Information System (RWMIS). The RWMIS includes radionuclide information from generators that shipped TRU waste to INEL for storage. Recent evaluations performed on buried TRU waste (1954-1970) resulted in significant revision to the original reported values of plutonium, americium, and enriched uranium. These evaluations were performed based on Rocky Flats Plant (RFP) Inventory Difference (ID) records. This evaluation for stored TRU waste was performed to: (1) identify if significant discrepancies exist between RWMIS reported values and RFP ID records, (2) describe the methodology used to perform the RWMIS evaluation, (3) determine a Best Estimate (BE) and 95% Upper Confidence Bound (UB) on the plutonium inventory, (4) provide conclusions based on this evaluation, and (5) identify recommendations and/or actions that might be needed.

  18. Facility overview for commercial application of selected Rocky Flats facilities

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The purpose of this Facility Overview is to support the Rocky Flats Local Impacts Initiative`s Request for Interest, to solicit interest from commercial corporations for utilizing buildings 865 and 883, and the equipment contained within each building, for a commercial venture. In the following sections, this document describes the Rocky Flats Site, the buildings available for lease, the equipment within these buildings, the site services available to a tenant, the human resources available to support operations in buildings 865 and 883, and the environmental condition of the buildings and property. In addition, a brief description is provided of the work performed to date to explore the potential products that might be manufactured in Buildings 865 and 883, and the markets for these products.

  19. Polymer solidification of mixed wastes at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Faucette, A.M.; Logsdon, B.W.; Lucerna, J.J.; Yudnich, R.J.

    1994-02-01T23:59:59.000Z

    The Rocky Flats Plant is pursuing polymer solidification as a viable treatment option for several mixed waste streams that are subject to land disposal restrictions within the Resource Conservation and Recovery Act provisions. Tests completed to date using both surrogate and actual wastes indicate that polyethylene microencapsulation is a viable treatment option for several mixed wastes at the Rocky Flats Plant, including nitrate salts, sludges, and secondary wastes such as ash. Treatability studies conducted on actual salt waste demonstrated that the process is capable of producing waste forms that comply with all applicable regulatory criteria, including the Toxicity Characteristic Leaching Procedure. Tests have also been conducted to evaluate the feasibility of macroencapsulating certain debris wastes in polymers. Several methods and plastics have been tested for macroencapsulation, including post-consumer recycle and regrind polyethylene.

  20. DECOMMISSIONING CHALLENGES AT THE ROCKY FLATS ENVIRONMENTAL TECHNOLOGY SITE

    SciTech Connect (OSTI)

    Dorr, K. A.; Hoover, J.

    2002-02-25T23:59:59.000Z

    This paper presents a discussion of the demolition of the Building 788 cluster at the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado. The Building 788 Cluster was a Resource Conservation and Recovery Act (RCRA) permitted storage facilities and ancillary structures. Topics covered include the methods employed for Project Planning, Regulatory Compliance, Waste Management, Hazard Identification, Radiological Controls, Risk Management, Field Implementation, and Cost Schedule control, and Lessons Learned and Project Closeout.

  1. Rocky Flats Plant Site Environmental Report: 1993 Highlights

    SciTech Connect (OSTI)

    Not Available

    1993-12-31T23:59:59.000Z

    The Rocky Flats Plant Site Environmental Report provides summary information on the plant`s environmental monitoring programs and the results recorded during 1993. The report contains a compliance summary, results of environmental monitoring and other related programs, a review of environmental remediation activities, information on external gamma radiation dose monitoring, and radiation dose estimates for the surrounding population. This section provides an overview of these topics and summarizes more comprehensive discussions found in the main text of this annual report.

  2. E-Print Network 3.0 - annual rocky mountain Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    system occurs on dry... , and extends out onto breaks in the Great Plains. In Colorado, the southern Rocky ... Source: Colorado State University, Center for Environmental...

  3. Rocky Flats Neutron Detector Testing at Valduc, France

    SciTech Connect (OSTI)

    Kim, S S; Dulik, G M

    2011-01-03T23:59:59.000Z

    Recent program requirements of the US Department of Energy/NNSA have led to a need for a criticality accident alarm system to be installed at a newly activated facility. The Criticality Safety Group of the Lawrence Livermore National Laboratory (LLNL) was able to recover and store for possible future use approximately 200 neutron criticality detectors and 20 master alarm panels from the former Rocky Flats Plant in Golden, Colorado when the plant was closed. The Criticality Safety Group participated in a facility analysis and evaluation, the engineering design and review process, as well as the refurbishment, testing, and recalibration of the Rocky Flats criticality alarm system equipment to be used in the new facility. In order to demonstrate the functionality and survivability of the neutron detectors to the effects of an actual criticality accident, neutron detector testing was performed at the French CEA Valduc SILENE reactor from October 7 to October 19, 2010. The neutron detectors were exposed to three criticality events or pulses generated by the SILENE reactor. The first excursion was performed with a bare or unshielded reactor, and the second excursion was made with a lead shielded/reflected reactor, and the third excursion with a polyethylene reflected core. These tests of the Rocky Flats neutron detectors were performed as a part of the 2010 Criticality Accident Alarm System Benchmark Measurements at the SILENE Reactor. The principal investigators for this series of experiments were Thomas M. Miller and John C. Wagner of the Oak Ridge National Laboratory, with Nicolas Authier and Nathalie Baclet of CEA Valduc. Several other organizations were also represented, including the Y-12 National Security Complex, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, CEA Saclay, and Babcock International Group.

  4. ROCKY FLATS CLOSURE PROJECT EM, AUG 2006 | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and DevelopmentDepartmentinBattery TechnologyJanuaryROCKY FLATS

  5. Western Area Power Administration Rocky Mountain Region (Western)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun Deng Associate ResearchWestern AreaRocky

  6. Rocky Flats 100th Shipments Arrives at WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergy Innovation Portal Robust,RELEASE Rocky

  7. DOE - Office of Legacy Management -- Rocky Mountain Research Laboratories -

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne CoColorado RioMill SiteRocky

  8. Rocky Flats Site Expands Solar Power for Treating Groundwater | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap for Bioenergy and Biobasedof Energy Rocky

  9. DOE - Office of Legacy Management -- Rocky Flats Archive

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*. . : '* FEB 1972. :NewArchive Rocky

  10. DOE - Office of Legacy Management -- Rocky Flats SOG

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545*. . : '* FEB 1972.SOG Rocky Flats Site,

  11. Atmospheric heat redistribution and collapse on tidally locked rocky planets

    E-Print Network [OSTI]

    Wordsworth, Robin

    2014-01-01T23:59:59.000Z

    Atmospheric collapse is likely to be of fundamental importance to tidally locked rocky exoplanets but remains understudied. Here, general results on the heat transport and stability of tidally locked terrestrial-type atmospheres are reported. First, the problem is modeled with an idealized 3D general circulation model (GCM) with gray gas radiative transfer. It is shown that over a wide range of parameters the atmospheric boundary layer, rather than the large-scale circulation, is the key to understanding the planetary energy balance. Through a scaling analysis of the interhemispheric energy transfer, theoretical expressions for the day-night temperature difference and surface wind speed are created that reproduce the GCM results without tuning. Next, the GCM is used with correlated-k radiative transfer to study heat transport for two real gases (CO2 and CO). For CO2, empirical formulae for the collapse pressure as a function of planetary mass and stellar flux are produced, and critical pressures for atmospher...

  12. Epidemiologic surveillance. Annual report for EG&G Rocky Flats

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    Epidemiologic surveillance at U.S. Department of Energy (DOE) facilities consists of regular and systematic collection, analysis, and interpretation of data on absences resulting from illness and injury in the work force. Its purpose is to provide an early warning system for health problems occurring among employees at participating sites. Data are collected by coordinators at each site and submitted to the Epidemiologic Surveillance Data Center, located at the Oak Ridge Institute for Science and Education, where quality control procedures and analyses are carried out. Rates of absences and rates of diagnoses associated with absences are analyzed by occupation and other relevant variables. They may be compared with the disease experience of different groups within the DOE work force and with populations that do not work for DOE to identify disease patterns or clusters that may be associated with work activities. This report presents the 1994 morbidity data for the Rocky Flats plant.

  13. On glacier retreat and drought cycles in the Rocky Mountains of Montana and Canada

    E-Print Network [OSTI]

    Berger, Wolfgang H

    2009-01-01T23:59:59.000Z

    North America – Glaciers of Canada Glaciers of the CanadianRocky Mountains of Montana and Canada W. H. Berger * ScrippsMontana and southwestern Canada. The presence of tidal lines

  14. Comparison and evaluation of turbulence estimation schemes at Rocky Flats Plant

    SciTech Connect (OSTI)

    Bowen, B.M.; Pamp, S.E.

    1993-10-01T23:59:59.000Z

    The Rocky Flats Plant (RFP) routinely measures meteorological data to support Air Quality and Emergency Response activities. These data help to characterize the transport and dispersion of actual or potential airborne releases of radionuclides or other hazardous materials.

  15. VWZ-0008- In the Matter of EG&G Rocky Flats, Inc.

    Broader source: Energy.gov [DOE]

    This decision will consider a Motion for Partial Dismissal and Limitation on Scope of Complainant's Claims filed by EG&G Rocky Flats, Inc. (EG&G) on June 13, 1997. In its motion, EG&G...

  16. EA-1146: Radioactive Waste Storage at Rocky Flats Environmental Technology Site, Golden, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to convert buildings at the U.S. Department of Energy Rocky Flats Environmental Technology Site from their former uses to interim waste...

  17. DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year...

    Office of Environmental Management (EM)

    U.S. Department of Energy (DOE) today announced that the Project Management Institute (PMI) has awarded its 2006 Project of the Year to DOE's Rocky Flats Environmental Technology...

  18. Reduced attachment strength of rocky shore gastropods caused by trematode infection

    E-Print Network [OSTI]

    Poulin, Robert

    ) leave the snail to seek the next host in the life cycle (Galaktionov and Dobrovolskij, 2003). Trematodes. To adhere to the substrate, most rocky shore gastro- pods, such as limpets and periwinkles, use

  19. Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2

    SciTech Connect (OSTI)

    NONE

    1998-01-23T23:59:59.000Z

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.

  20. Seismic equipment qualification at Rocky Flats Plant: Lessons learned

    SciTech Connect (OSTI)

    Peregoy, W.; Herring, K.

    1993-08-01T23:59:59.000Z

    Seismic equipment qualification is being evaluated as a part of the Systematic Evaluation Program (SEP) at Rocky Flats Plant (RFP). Initially it was believed that the experience database developed by the Seismic Qualification Utility Group (SQUG) for commercial nuclear power plants, as outlined in their Generic Implementation Procedure (GIP), would provide a substantial benefit for the seismic adequacy verification of equipment at RFP. However, further review of the simplified guidelines contained in the GIP with respect to the specific RFP structures and components revealed substantial differences from the GIP criteria. Therefore, the number of ``outliers`` from the experience database defined in the GIP is greater than was initially anticipated. This paper presents details of the differences found between the RFP structures and components and those represented in the GIP, and the challenges presented for their evaluation at RFP. Approaches necessary to develop seismic verification data are also discussed. The discussions focus on experience with one of the nuclear facilities at RFP, Building 707. However, the conclusions are generally applicable to other similar facilities that typically comprise the RFP nuclear facilities.

  1. Technical Safety Appraisal of the Rocky Flats Plant

    SciTech Connect (OSTI)

    Brown, Blake P.

    1989-01-01T23:59:59.000Z

    This report provides the results of a Technical Safety Appraisal (TSA) of the Rocky Flats Plant (RFP) conducted November 14 to 18 and November 28 to December 9, 1988. This appraisal covered the effectiveness and improvements in the RFP safety program across the site, evaluating progress to date against standards of accepted practice. The appraisal included coverage of the timeliness and effectiveness of actions taken in response to the recommendations/concerns in three previous Technical Safety Appraisals (TSAs) of RFP Bldg. 707 conducted in July 1986, Bldgs. 771/774 conducted in October/November 1986, and Bldgs. 776/777 conducted in January/February 1988. Results of this appraisal are given in Section IV for each of 14 technical safety areas at RFP. These results include a discussion, conclusions and any new safety concerns for each technical safety area. Appendix A contains a description of the system for categorizing concerns, and the concerns are tabulated in Appendix B. Appendix C reports on the evaluation of the contractor's actions and the current status of each of the 230 recommendations and concerns contained in the three previous TSA reports.

  2. Project Fever - Fostering Electric Vehicle Expansion in the Rockies

    SciTech Connect (OSTI)

    Swalnick, Natalia

    2013-06-30T23:59:59.000Z

    Project FEVER (Fostering Electric Vehicle Expansion in the Rockies) is a part of the Clean Cities Community Readiness and Planning for Plug-in Electric Vehicles and Charging Infrastructure Funding Opportunity funded by the U.S. Department of Energy (DOE) for the state of Colorado. Tasks undertaken in this project include: Electric Vehicle Grid Impact Assessment; Assessment of Electrical Permitting and Inspection for EV/EVSE (electric vehicle/electric vehicle supply equipment); Assessment of Local Ordinances Pertaining to Installation of Publicly Available EVSE;Assessment of Building Codes for EVSE; EV Demand and Energy/Air Quality Impacts Assessment; State and Local Policy Assessment; EV Grid Impact Minimization Efforts; Unification and Streamlining of Electrical Permitting and Inspection for EV/EVSE; Development of BMP for Local EVSE Ordinances; Development of BMP for Building Codes Pertaining to EVSE; Development of Colorado-Specific Assessment for EV/EVSE Energy/Air Quality Impacts; Development of State and Local Policy Best Practices; Create Final EV/EVSE Readiness Plan; Develop Project Marketing and Communications Elements; Plan and Schedule In-person Education and Outreach Opportunities.

  3. Implementation of Revision 19 of the TRUPACT-II Safety Analysis Report at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    D'Amico, E.; O'Leary, J.; Bell, S.; Djordjevic, S.; Givens, C,; Shokes, T.; Thompson, S.; Stahl, S.

    2003-02-25T23:59:59.000Z

    The U.S. Nuclear Regulatory Commission on July 27, 2001 approved Revision 19 of the TRUPACT-II Safety Analysis Report (SAR) and the associated TRUPACT-II Authorized Methods for Payload Control (TRAMPAC). Key initiatives in Revision 19 included matrix depletion, unlimited mixing of shipping categories, a flammability assessment methodology, and an alternative methodology for the determination of flammable gas generation rates. All U.S. Department of Energy (DOE) sites shipping transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) were required to implement Revision 19 methodology into their characterization and waste transportation programs by May 20, 2002. An implementation process was demonstrated by the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado. The three-part process used by RFETS included revision of the site-specific TRAMPAC, an evaluation of the contact-handled TRU waste inventory against the regulations in Revision 19, and design and development of software to facilitate future inventory analyses.

  4. Hanford/Rocky Flats collaboration on development of supercritical carbon dioxide extraction to treat mixed waste

    SciTech Connect (OSTI)

    Hendrickson, D.W.; Biyani, R.K. [Westinghouse Hanford Co., Richland, WA (United States); Brown, C.M.; Teter, W.L. [Kaiser-Hill Co., Golden, CO (United States)

    1995-11-01T23:59:59.000Z

    Proposals for demonstration work under the Department of Energy`s Mixed Waste Focus Area, during the 1996 through 1997 fiscal years included two applications of supercritical carbon dioxide to mixed waste pretreatment. These proposals included task RF15MW58 of Rocky Flats and task RL46MW59 of Hanford. Analysis of compatibilities in wastes and work scopes yielded an expectation of substantial collaboration between sites whereby Hanford waste streams may undergo demonstration testing at Rocky Flats, thereby eliminating the need for test facilities at Hanford. This form of collaboration is premised the continued deployment at Rocky Flats and the capability for Hanford samples to be treated at Rocky Flats. The recent creation of a thermal treatment contract for a facility near Hanford may alleviate the need to conduct organic extraction upon Rocky Flats wastes by providing a cost effective thermal treatment alternative, however, some waste streams at Hanford will continue to require organic extraction. Final site waste stream treatment locations are not within the scope of this document.

  5. Technical safety appraisal: Buildings 776/777 Rocky Flats Plant

    SciTech Connect (OSTI)

    Field, H C

    1988-03-01T23:59:59.000Z

    Buildings 776/777 at the Rocky Flats Plant are major components of the production complex at the plant site. They have been in operation since 1957. The operations taking place in the buildings are nuclear weapons production support, processing of weapons assemblies returned from Pantex, waste processing, research and development in support of production, special projects, and those generated by support groups, such as maintenance. The appraisal team identified nine deficiencies that it believed required prompt attention. DOE management for EH, the program office (Defense Programs), and the field office analyzed the information provided by the appraisal team and instituted compensatory measures for closer monitoring of contractor activities by knowledgeable DOE staff and staff from other sites. Concurrently, the contractor was requested to address both short-term and long-term remedial measures to correct the identified issues as well as the underlying problems. The contractor has provided his action plan, which is included. This plan was under evaluation by EH and the DOE program office at the time this report was prepared. In addressing the major areas of concern identified above, a well as the specific deficiencies identified by the appraisal team, the contractor and the field office are cautioned to search for the root causes for the problems and to direct corrective actions to those root causes rather than solely to the symptoms to assure the sustainability of the improvements being made. The results of prior TSAs led DOE to conclude that previous corrective actions were not sufficient in that a large number of the individual findings are recurrent. Pending completion of remedial actions over the next few months, enhanced DOE oversight of the contractor is warranted.

  6. Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-30T23:59:59.000Z

    The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

  7. Evaluation of Vitrification Processing Step for Rocky Flats Incinerator Ash

    SciTech Connect (OSTI)

    Wigent, W.L.; Luey, J.K.; Scheele, R.D.; Li, H.

    1999-04-08T23:59:59.000Z

    In 1997, Pacific Northwest National Laboratory (PNNL) staff developed a processing option for incinerator ash at the Rocky Flats Environmental Technology Sites (RFETS). This work was performed with support from Los Alamos National Laboratory (LANL) and Safe Sites of Colorado (SSOC). A description of the remediation needs for the RFETS incinerator ash is provided in a report summarizing the recommended processing option for treatment of the ash (Lucy et al. 1998). The recommended process flowsheet involves a calcination pretreatment step to remove carbonaceous material followed by a vitrification processing step for a mixture of glass tit and calcined incinerator ash. Using the calcination pretreatment step to remove carbonaceous material reduced process upsets for the vitrification step, allowed for increased waste loading in the final product, and improved the quality of the final product. Figure 1.1 illustrates the flow sheet for the recommended processing option for treatment of RFETS incinerator ash. In 1998, work at PNNL further developed the recommended flow sheet through a series of studies to better define the vitrification operating parameters and to address secondary processing issues (such as characterizing the offgas species from the calcination process). Because a prototypical rotary calciner was not available for use, studies to evaluate the offgas from the calcination process were performed using a benchtop rotary calciner and laboratory-scale equipment (Lucy et al. 1998). This report focuses on the vitrification process step after ash has been calcined. Testing with full-scale containers was performed using ash surrogates and a muffle furnace similar to that planned for use at RFETS. Small-scale testing was performed using plutonium-bearing incinerator ash to verify performance of the waste form. Ash was not obtained from RFETS because of transportation requirements to calcine the incinerator ash prior to shipment of the material. Because part of PNNL's work was to characterize the ash prior to calcination and to investigate the effect of calcination on product quality, representative material was obtained from LANL. Ash obtained from LANL was selected based on its similarity to that currently stored at RFETS. The plutonium-bearing ashes obtained from LANL are likely from a RFETS incinerator, but the exact origin was not identified.

  8. Altitudinal Gradients of Stable Isotopes in Lee-Slope Precipitation in the Canadian Rocky Mountains

    E-Print Network [OSTI]

    , this isotopic fractionation and distillation can be driven by vapor transport to higher altitudes, higher of the Canadian Rockies at the Continental Divide and receives precipitation from both westerly (Pacific) air altitudes. Surface and upper-air meteorological data were analyzed to classify the type of weather systems

  9. Tools for Closure Project and Contract Management: Development of the Rocky Flats Integrated Closure Project Baseline

    SciTech Connect (OSTI)

    Gelles, C. M.; Sheppard, F. R.

    2002-02-26T23:59:59.000Z

    This paper details the development of the Rocky Flats Integrated Closure Project Baseline - an innovative project management effort undertaken to ensure proactive management of the Rocky Flats Closure Contract in support of the Department's goal for achieving the safe closure of the Rocky Flats Environmental Technology Site (RFETS) in December 2006. The accelerated closure of RFETS is one of the most prominent projects within the Department of Energy (DOE) Environmental Management program. As the first major former weapons plant to be remediated and closed, it is a first-of-kind effort requiring the resolution of multiple complex technical and institutional challenges. Most significantly, the closure of RFETS is dependent upon the shipment of all special nuclear material and wastes to other DOE sites. The Department is actively working to strengthen project management across programs, and there is increasing external interest in this progress. The development of the Rocky Flats Integrated Closure Project Baseline represents a groundbreaking and cooperative effort to formalize the management of such a complex project across multiple sites and organizations. It is original in both scope and process, however it provides a useful precedent for the other ongoing project management efforts within the Environmental Management program.

  10. SIZE COMPOSITION AND GROWTH OF YOUNG ROCK CRAB, CANCER IRRORATUS, ON A ROCKY BEACH IN MAINE!

    E-Print Network [OSTI]

    . Because rock crab is a valuable commercial species as well as an important food source of lobsters (EnnisSIZE COMPOSITION AND GROWTH OF YOUNG ROCK CRAB, CANCER IRRORATUS, ON A ROCKY BEACH IN MAINE! JAY S KROUSE' ABSTRACT Monthly hand collections of small rock crab, Cancer irrorallls, were made from

  11. DOWNSTREAM EFFECTS OF DIVERSION DAMS ON SEDIMENT AND HYDRAULIC CONDITIONS OF ROCKY MOUNTAIN STREAMS

    E-Print Network [OSTI]

    Poff, N. LeRoy

    DOWNSTREAM EFFECTS OF DIVERSION DAMS ON SEDIMENT AND HYDRAULIC CONDITIONS OF ROCKY MOUNTAIN STREAMS of downstream channels and lead to accumulation of fine sediments and habitat degradation. To investigate, we-sediment measures, and an intensive sampling scheme, this study found that channels downstream of diversions

  12. WATER QUALITY CHANGES AS A RESULT OF COALBED METHANE DEVELOPMENT IN A ROCKY MOUNTAIN WATERSHED1

    E-Print Network [OSTI]

    McClain, Michael

    WATER QUALITY CHANGES AS A RESULT OF COALBED METHANE DEVELOPMENT IN A ROCKY MOUNTAIN WATERSHED1 Xixi Wang, Assefa M. Melesse, Michael E. McClain, and Wanhong Yang2 ABSTRACT: Coalbed methane (CBM the Powder River. (KEY TERMS: coalbed methane, produced water; Montana; natural gas; pattern analysis

  13. Introduction The Colorado potato beetle became a pest when settlers brought potatoes into the Rocky

    E-Print Network [OSTI]

    New Hampshire, University of

    16 Introduction The Colorado potato beetle became a pest when settlers brought potatoes into the Rocky Mountain area, the native habitat of this beetle. The beetle preferred the potato to its host weed, and now is a serious pest throughout the U.S. and Eastern Canada. The Colorado potato beetle feeds

  14. Eocene and Oligocene Floras and Vegetation of the Rocky Mountains Scott L. Wing

    E-Print Network [OSTI]

    Lyons, S. Kathleen

    copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing of the state of Wy- oming (106,000 kmz), and their total outcrop The Rocky Mountain region is geologicallydi

  15. The Role of Biodiversity for the Functioning of Rocky Reef Communities

    E-Print Network [OSTI]

    Brody, James P.

    Chapter 26 The Role of Biodiversity for the Functioning of Rocky Reef Communities Lars Gamfeldt and provide suggestions for future research into the functional roles of marine biodiversity in temperate 31 #12;362 L. Gamfeldt and M.E.S. Bracken 26.2 How and Why Biodiversity Can Be Linked to Ecosystem

  16. EIS-0064: Rocky Flats Plant Site, Jefferson County, Golden, Colorado (see also ERDA-1545-D)

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this statement to evaluate the site specific environmental impacts of continuing to conduct nuclear weapons production activities at the Rocky Flats Plant; alternatives for the conduct of such activities; and environmental impacts of the U.S. policy to produce nuclear weapons.

  17. NATIVE MYCORRHIZAL FUNGI WITH ASPEN ON SMELTER-IMPACTED SITES IN THE NORTHERN ROCKY MOUNTAINS

    E-Print Network [OSTI]

    Cripps, Cathy

    by extensive aspen stands on the East Ridge of Butte, MT (inactive copper smelter), adjacent to the smelter stack at Anaconda, MT (inactive copper smelter), at the (removed) lead smelter at Kellogg, ID, and alongNATIVE MYCORRHIZAL FUNGI WITH ASPEN ON SMELTER- IMPACTED SITES IN THE NORTHERN ROCKY MOUNTAINS

  18. Finding of no significant impact. Consolidation and interim storage of special nuclear material at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA -- 1060, for the consolidation, processing, and interim storage of Category I and II special nuclear material (SNM) in Building 371 at the Rocky Flats Environmental Technology Site (hereinafter referred to as Rocky Flats or Site), Golden, Colorado. The scope of the EA included alternatives for interim storage including the no action alternative, the construction of a new facility for interim storage at Rocky Flats, and shipment to other DOE facilities for interim storage.

  19. EIS-0277: Management of Certain Plutonium Residues and Scrub Alloy Stored at the Rocky Flats Environmental Technology Site

    Broader source: Energy.gov [DOE]

    This EIS evaluates the potential alternatives and impacts associated with a proposal to process certain plutonium residues and all of the scrub alloy currently stored at Rocky Flats. While ongoing...

  20. Solar-Powered Air Stripping at the Rocky Flats Site, Colorado - 12361

    SciTech Connect (OSTI)

    Boylan, John A. [S.M. Stoller Corporation, Rocky Flats Site, 11025 Dover Street, Suite 1000, Westminster, Colorado 80021 (United States)

    2012-07-01T23:59:59.000Z

    The U.S. Department of Energy's Rocky Flats Site (the Site), near Denver, Colorado, is a former nuclear weapons facility that was constructed beginning in 1951. With the end of the Cold War, the Site was cleaned up and closed in 2005. Four gravity-driven groundwater treatment systems were installed during cleanup, and their continued operation was incorporated into the final remedy for the Site. All utilities, including electrical power, were removed as part of this closure, so all Site electrical power needs are now met with small solar-powered systems. The Mound Site Plume Treatment System (MSPTS) was installed in 1998 as an innovative system based on zero-valent iron (ZVI). Groundwater flow from the Mound source area containing elevated concentrations of volatile organic compounds (VOCs), primarily in the tetrachloroethene (PCE)-trichloroethene (TCE) family of chlorinated solvents, is intercepted by a collection trench and routed to twin ZVI treatment cells. Later, in 2005, remediation of VOC-contaminated soils at a second up-gradient source area included adding an electron donor to the backfill to help stimulate biodegradation. This reduced concentrations of primary constituents but caused down-gradient groundwater to contain elevated levels of recalcitrant degradation byproducts, particularly cis-1,2-dichloroethene and vinyl chloride. A gravel drain installed as part of the 2005 remediation directs contaminated groundwater from this second source area to the MSPTS for treatment. This additional contaminant load, coupled with correspondingly reduced residence time within the ZVI media due to the increased flow rate, resulted in reduced treatment effectiveness. Elevated concentrations of VOCs were then detected in MSPTS effluent, as well as in surface water at the downstream performance monitoring location for the MSPTS. Subsequent consultations with the Site regulators led to the decision to add a polishing component to reduce residual VOCs in MSPTS effluent. Initially, several alternatives such as commercial air strippers and cascade aerators were evaluated; resulting cost estimates exceeded $100,000. After several simpler alternatives were considered and prototype testing was conducted, the existing effluent metering manhole was converted to house a spray-nozzle based, solar-powered air stripper, at a cost of approximately $20,000. About two-thirds of this cost was for the solar power system, which was initially designed to only provide power for 12 hours per day. Performance data are being collected and adjustments made to optimize the design, determine maintenance requirements, and establish power needs for continuous operation. Analytical data confirm the air stripper is sharply reducing concentrations of residual contaminants. (authors)

  1. The marriage of RCRA and CERCLA at the Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Shelton, D.C.; Brooks, L.M.

    1998-11-01T23:59:59.000Z

    A key goal of the Rocky Flats Cleanup Agreement (RFCA) signed in July of 1996 was to provide a seamless marriage of the Resource Conservation and Recovery Act (RCRA) (and other media specific programs) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) and the implementing agencies of each. This paper examines the two years since the signing of RFCA and identifies the successes, failures, and stresses of the marriage. RFCA has provided an excellent vehicle for regulatory and substantive progress at the Department of Energy`s Rocky Flats facility. The key for a fully successful marriage is to build on the accomplishments to date and to continually improve the internal and external systems and relationships. To date, the parties can be proud of both the substantial accomplishment of substantive environmental work and the regulatory systems that have enabled the work.

  2. Project plan: Procedure system design for the Rocky Flats Plant Emergency Preparedness Program

    SciTech Connect (OSTI)

    Hodgin, C.R.; Brown-Strattan, M.

    1989-10-01T23:59:59.000Z

    This procedure system is being designed for the Rocky Flats Plant Emergency Preparedness Program (EPP) to: assess the procedural needs of the Emergency Preparedness Program in light of the existing Rocky Flats Plant policies, plans, procedures, and applicable DOE orders; design the structure of the Emergency Preparedness Program procedural system based on the classes of procedures needed, the types of procedures (procedures vs job outline), the sections of procedures required, and the timetable for procedure maintenance; develop boiler plate formats for the various authors in writing the necessary standardized procedures; develop a list of all the necessary procedures that must be produced for Emergency Preparedness Program; and provide consistency for department-wide activities relating to the quality control in writing, distribution, and revising procedures for Emergency Preparedness Program. 23 refs., 18 figs.

  3. Rocky Flats Plant fluidized-bed incinerator. Engineering design and reference manual

    SciTech Connect (OSTI)

    Meile, L.J.

    1982-11-05T23:59:59.000Z

    The information in this manual is being presented to complete the documentation of the fluidized-bed incineration (FBI) process development at the Rocky Flats Plant. The information pertains to the 82-kg/hour demonstration unit at the Rocky Flats Plant. This document continues the presentation of design reference material in the aeas of equipment drawings, space requirements, and unit costs. In addition, appendices contain an operating procedure and an operational safety analysis of the process. The cost figures presented are based on 1978 dollars and have not been converted to a current dollar value. Also, the cost of modifications are not included, since they would be insignificant if they were incorporated into a new installation.

  4. Rocky Mountain area petroleum product availability with reduced PADD IV refining capacity

    SciTech Connect (OSTI)

    Hadder, G.R.; Chin, S.M.

    1994-02-01T23:59:59.000Z

    Studies of Rocky Mountain area petroleum product availability with reduced refining capacity in Petroleum Administration for Defense IV (PADD IV, part of the Rocky Mountain area) have been performed with the Oak Ridge National Laboratory Refinery Yield Model, a linear program which has been updated to blend gasolines to satisfy constraints on emissions of nitrogen oxides and winter toxic air pollutants. The studies do not predict refinery closures in PADD IV. Rather, the reduced refining capacities provide an analytical framework for probing the flexibility of petroleum refining and distribution for winter demand conditions in the year 2000. Industry analysts have estimated that, for worst case scenarios, 20 to 35 percent of PADD IV refining capacity could be shut-down as a result of clean air and energy tax legislation. Given these industry projections, the study scenarios provide the following conclusions: The Rocky Mountain area petroleum system would have the capability to satisfy winter product demand with PADD IV refinery capacity shut-downs in the middle of the range of industry projections, but not in the high end of the range of projections. PADD IV crude oil production can be maintained by re-routing crude released from PADD IV refinery demands to satisfy increased crude oil demands in PADDs II (Midwest), III (Gulf Coast), and Washington. Clean Air Act product quality regulations generally do not increase the difficulty of satisfying emissions reduction constraints in the scenarios.

  5. Report of the oversight assessment of the operational readiness review of the Rocky Flats Plant, Building 707

    SciTech Connect (OSTI)

    Krupar, J.J. Jr.

    1992-12-18T23:59:59.000Z

    This report presents the results of an oversight assessment (OA) conducted by the US Department of Energy`s (DOE) office of Environment, Safety and Health (EH) of the Operational Readiness Review (ORR) activities for the resumption of Building 707 operations at the Rocky Flats Plant (RFP). The EH OA was simultaneously conducted with the Office of Defense Programs (DP) line management ORR, which was conducted from September 21 to October 2, 1992, and November 2 to 13, 1992. The EH OA evaluated the comprehensiveness and effectiveness of the DP ORR. Based on its oversight assessment, the EH OA believes that Building 707 operations may be safely resumed contingent upon satisfactory resolution of all DP ORR findings. The EH OA determined that the DP ORR was conducted in a comprehensive and effective manner and represents an adequate basis for recommending resumption of Building 707 operations. The EH OA was based primarily on an evaluation of the comprehensiveness and effectiveness of the DP ORR and addressed the following areas: Management and Organization, Industrial Safety, Fire Protection, Industrial Hygiene, Conduct of Operations, Maintenance, Quality Assurance, and Training. In a limited number of these areas, the EH OA conducted independent vertical-slice reviews DP ORR results.

  6. Report of the oversight assessment of the operational readiness review of the Rocky Flats Plant, Building 707

    SciTech Connect (OSTI)

    Krupar, J.J. Jr.

    1992-12-18T23:59:59.000Z

    This report presents the results of an oversight assessment (OA) conducted by the US Department of Energy's (DOE) office of Environment, Safety and Health (EH) of the Operational Readiness Review (ORR) activities for the resumption of Building 707 operations at the Rocky Flats Plant (RFP). The EH OA was simultaneously conducted with the Office of Defense Programs (DP) line management ORR, which was conducted from September 21 to October 2, 1992, and November 2 to 13, 1992. The EH OA evaluated the comprehensiveness and effectiveness of the DP ORR. Based on its oversight assessment, the EH OA believes that Building 707 operations may be safely resumed contingent upon satisfactory resolution of all DP ORR findings. The EH OA determined that the DP ORR was conducted in a comprehensive and effective manner and represents an adequate basis for recommending resumption of Building 707 operations. The EH OA was based primarily on an evaluation of the comprehensiveness and effectiveness of the DP ORR and addressed the following areas: Management and Organization, Industrial Safety, Fire Protection, Industrial Hygiene, Conduct of Operations, Maintenance, Quality Assurance, and Training. In a limited number of these areas, the EH OA conducted independent vertical-slice reviews DP ORR results.

  7. Rocky Flats CAAS System Recalibrated, Retested, and Analyzed to Install in the Criticality Experiments Facility at the Nevada Test Site

    SciTech Connect (OSTI)

    Kim, S; Heinrichs, D; Biswas, D; Huang, S; Dulik, G; Scorby, J; Boussoufi, M; Liu, B; Wilson, R

    2009-05-27T23:59:59.000Z

    Neutron detectors and control panels transferred from the Rocky Flats Plant (RFP) were recalibrated and retested for redeployment to the CEF. Testing and calibration were successful with no failure to any equipment. Detector sensitivity was tested at a TRIGA reactor, and the response to thermal neutron flux was satisfactory. MCNP calculated minimum fission yield ({approx} 2 x 10{sup 15} fissions) was applied to determine the thermal flux at selected detector positions at the CEF. Thermal flux levels were greater than 6.39 x 10{sup 6} (n/cm{sup 2}-sec), which was about four orders of magnitude greater than the minimum alarm flux. Calculations of detector survivable distances indicate that, to be out of lethal area, a detector needs to be placed greater than 15 ft away from a maximum credible source. MCNP calculated flux/dose results were independently verified by COG. CAAS calibration and the testing confirmed that the RFP CAAS system is performing its functions as expected. New criteria for the CAAS detector placement and 12-rad zone boundaries at the CEF are established. All of the CAAS related documents and hardware have been transferred from LLNL to NSTec for installation at the CEF high bay areas.

  8. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1981

    SciTech Connect (OSTI)

    Lunis, B.C. (ed.)

    1982-08-01T23:59:59.000Z

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. The period covered is July through December 1981. Background information is provided, program objectives and the technical approach used are discussed, and the benefits of the program are described. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized.

  9. Computerization upgrade project for the Rocky Flats Plant Critical Mass Laboratory Reactor Control Console

    SciTech Connect (OSTI)

    Bachman, H.C.; Miles, R.E.; Sachs, R.D.

    1987-01-01T23:59:59.000Z

    This report discusses present and planned future work on computerization of the Rocky Flats Plant (RFP) Critical Mass Laboratory (CML) Nuclear Reactor Control Console. No computerized control functions are planned or anticipated at this time. The scope of this computerization effort is limited to Data Acquisition and Analysis. In this work an IBM-PC will be connected to four (4) Nuclear Safety channels, and two (2) nonnuclear safety channels. Programming is being done in interpretive advanced BASIC. At the present time only two channels, Linear Picoammeters 1 and 2, are having their signals processed by the IBM-PC.

  10. Rebaselining seismic risks for resumption of Building 707 plutonium operations at the Rocky Flats Plant

    SciTech Connect (OSTI)

    Elia, F. Jr. [Stone and Webster Engineering Corp., Boston, MA (United States); Foppe, T.; Stahlnecker, E. [EG and G Rocky Flats, Inc., Golden, CO (United States)

    1993-08-01T23:59:59.000Z

    Natural phenomena risks have been assessed for plutonium handling facilities at the Rocky Flats Plant, based on numerous studies performed for the Department of Energy Natural Phenomena Hazards Project. The risk assessment was originally utilized in the facilities Final Safety Analysis Reports and in subsequent risk management decisions. Plutonium production operations were curtailed in 1989 in order for a new operating contractor to implement safety improvements. Since natural phenomena events dominated risks to the public, a re-assessment of these events were undertaken for resumption of plutonium operations.

  11. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980

    SciTech Connect (OSTI)

    Lunis, B. C.; Toth, W. J. [comps.

    1981-10-01T23:59:59.000Z

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. Background information is provided; program objectives and the technical approach that is used are discussed; and the benefits of the program are described. The summary of findings is presented. Prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are covered and findings and recommendations are summarized. The commercialization activities carried out by the respective state teams are described for the following: Colorado, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming.

  12. State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, January-July 1981

    SciTech Connect (OSTI)

    Lunis, B.C.; Toth, W.J. (comps.)

    1982-05-01T23:59:59.000Z

    The activities and findings of the seven state commercialization teams participating in the Rocky Mountain Basin and Range commercialization program are described. For each state (Colorado, Montana, New Mexico, North and South Dakota, Utah, and Wyoming), prospect identification, area development plans, site specific development analyses, time-phased project plans, the aggregated prospective geothermal energy use, and institutional analyses are discussed. Public outreach activities are also covered, and findings and recommendations are given for each state. Some background information about the program is provided. (LEW)

  13. Evaluation of safety assessment methodologies in Rocky Flats Risk Assessment Guide (1985) and Building 707 Final Safety Analysis Report (1987)

    SciTech Connect (OSTI)

    Walsh, B.; Fisher, C.; Zigler, G.; Clark, R.A. [Science and Engineering Associates, Inc., Albuquerque, NM (United States)

    1990-11-09T23:59:59.000Z

    FSARs. Rockwell International, as operating contractor at the Rocky Flats plant, conducted a safety analysis program during the 1980s. That effort resulted in Final Safety Analysis Reports (FSARs) for several buildings, one of them being the Building 707 Final Safety Analysis Report, June 87 (707FSAR) and a Plant Safety Analysis Report. Rocky Flats Risk Assessment Guide, March 1985 (RFRAG85) documents the methodologies that were used for those FSARs. Resources available for preparation of those Rocky Flats FSARs were very limited. After addressing the more pressing safety issues, some of which are described below, the present contractor (EG&G) intends to conduct a program of upgrading the FSARs. This report presents the results of a review of the methodologies described in RFRAG85 and 707FSAR and contains suggestions that might be incorporated into the methodology for the FSAR upgrade effort.

  14. 1 -SUBTIDAL 2 -INTERTIDAL RB ROCK UB UNCONSOLIDATED AB AQUATIC BED RF -REEF OW -OPEN WATER/ AB AQUATIC BED RF REEF RS ROCKY SHORE US -UNCONSOLIDATED

    E-Print Network [OSTI]

    Gray, Matthew

    M - MARINE 1 - SUBTIDAL 2 - INTERTIDAL RB ­ ROCK UB ­ UNCONSOLIDATED AB ­ AQUATIC BED RF - REEF OW - OPEN WATER/ AB ­ AQUATIC BED RF­ REEF RS ­ ROCKY SHORE US - UNCONSOLIDATED BOTTOM BOTTOM Unknown Bottom ­ UNCONSOLIDATED AB ­ AQUATIC RF ­ REEF OW - OPEN WATER/ AB ­ AQUATIC RF­ REEF SB ­ STREAMBED RS - ROCKY US

  15. Theoretical Emission Spectra of Atmospheres of Hot Rocky Super-Earths

    E-Print Network [OSTI]

    Ito, Yuichi; Kawahara, Hajime; Nagahara, Hiroko; Kawashima, Yui; Nakamoto, Taishi

    2015-01-01T23:59:59.000Z

    Motivated by recent detection of transiting high-density super-Earths, we explore the detectability of hot rocky super-Earths orbiting very close to their host stars. In the environment hot enough for their rocky surfaces to be molten, they would have the atmosphere composed of gas species from the magma oceans. In this study, we investigate the radiative properties of the atmosphere that is in the gas/melt equilibrium with the underlying magma ocean. Our equilibrium calculations yield Na, K, Fe, Si, SiO, O, and O$_2$ as the major atmospheric species. We compile the radiative-absorption line data of those species available in literature, and calculate their absorption opacities in the wavelength region of 0.1--100~$\\mathrm{\\mu m}$. Using them, we integrate the thermal structure of the atmosphere. Then, we find that thermal inversion occurs in the atmosphere because of the UV absorption by SiO. In addition, we calculate the ratio of the planetary to stellar emission fluxes during secondary eclipse, and find pr...

  16. Wave-swept rocky shores support a surprisingly diverse assemblage of organisms that includes members of virtually

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Wave-swept rocky shores support a surprisingly diverse assemblage of organisms that includes members of virtually every animal phylum and both algae and vascular plants. In general, wave that hydrodynamic forces can play an important role in limiting the size of wave-swept plants and animals (Denny et

  17. Variable effects of a kelp foundation species on rocky intertidal diversity and species interactions in central California

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Variable effects of a kelp foundation species on rocky intertidal diversity and species Facilitation Foundation species Kelp Negative effects Species diversity The effect of foundation species scales. Egregia menziesii (Turner) J.E. Areschoug is a large and robust perennial kelp that creates

  18. Convective Snowbands Downstream of the Rocky Mountains in an Environment with Conditional, Dry Symmetric, and Inertial Instabilities

    E-Print Network [OSTI]

    Schumacher, Russ

    Convective Snowbands Downstream of the Rocky Mountains in an Environment with Conditional, Dry quickly equatorward. The bands occurred downstream of complex terrain on the anticyclonic-shear side banners downstream of mountains, and in association with frontogenetical ascent along two baroclinic zones

  19. Community Surveys: Low Dose Radiation. Fernald, Ohio and Rocky Flats, Colorado

    SciTech Connect (OSTI)

    C. K. Mertz; James Flynn; Donald G. MacGregor; Theresa Satterfield; Stephen M. Johnson; Seth Tuler; Thomas Webler

    2002-10-16T23:59:59.000Z

    This report is intended to present a basic description of the data from the two community surveys and to document the text of the questions; the methods used for the survey data collection; and a brief overview of the results. Completed surveys were conducted at local communities near the Rocky Flats, Colorado and the Fernald, Ohio sites; no survey was conducted for the Brookhaven, New York site. Fernald. The Fernald sample was randomly selected from 98% of all potential residential telephones in the townships of Ross, Morgan, and Crosby. The only telephone exchanges not used for the Fernald study had 4%, or fewer, of the holders of the telephone numbers actually living in either of the three target townships. Surveying started on July 24, 2001 and finished on August 30, 2001. A total of 399 completed interviews were obtained resulting in a CASRO response rate of 41.8%. The average length of an interview was 16.5 minutes. Rocky Flats. The sample was randomly selected from all potential residential telephones in Arvada and from 99% of the potential telephones in Westminster. Surveying started on August 10, 2001 and finished on September 25, 2001. A total of 401 completed interviews were obtained with a CASRO response rate of 32.5%. The average length of an interview was 15.7 minutes. Overall, respondents hold favorable views of science. They indicate an interest in developments in science and technology, feel that the world is better off because of science, and that science makes our lives healthier, easier, and more comfortable. However, respondents are divided on whether science should decide what is safe or not safe for themselves and their families. The majority of the respondents think that standards for exposure to radiation should be based on what science knows about health effects of radiation and on what is possible with today's technology. Although few respondents had visited the sites, most had heard or read something about Fernald or Rocky Flat s in the media. Impressions of the sites tend to be negative. Most respondents feel that overall their community would be better off without the site. However, when asked about the economic future of their community after cleanup and closure of the site, only 31-43% thought that it will be better, 47-56% thought their local economy will be about the same.

  20. Environmental standards setting for Rocky Flats Plant: The pursuit of zero risk

    SciTech Connect (OSTI)

    Daugherty, N.M.

    1992-01-01T23:59:59.000Z

    The Rocky Flats Plant (RFP) is a Department of Energy facility, located near Denver, Colorado, whose primary mission has been the fabrication of nuclear weapons components using plutonium, uranium, beryllium, and stainless steel. Past RFP activities have resulted in contamination of soil, surface water, sediment, and ground water with radioactive and/or hazardous chemical constituents. Although RFP environmental contamination levels generally are low in comparison to other DOE sites, close proximity to the Denver metropolitan area has resulted in proposed and implemented RFP environmental protection standards which are far more stringent than those for comparable facilities in the nation. The RFP experience with State and local involvement in standards setting, which often bypasses the traditional organizations and recommendations for radiation protection, may set precedence for future environmental radiation protection at other nuclear facilities.

  1. Environmental standards setting for Rocky Flats Plant: The pursuit of zero risk

    SciTech Connect (OSTI)

    Daugherty, N.M.

    1992-11-01T23:59:59.000Z

    The Rocky Flats Plant (RFP) is a Department of Energy facility, located near Denver, Colorado, whose primary mission has been the fabrication of nuclear weapons components using plutonium, uranium, beryllium, and stainless steel. Past RFP activities have resulted in contamination of soil, surface water, sediment, and ground water with radioactive and/or hazardous chemical constituents. Although RFP environmental contamination levels generally are low in comparison to other DOE sites, close proximity to the Denver metropolitan area has resulted in proposed and implemented RFP environmental protection standards which are far more stringent than those for comparable facilities in the nation. The RFP experience with State and local involvement in standards setting, which often bypasses the traditional organizations and recommendations for radiation protection, may set precedence for future environmental radiation protection at other nuclear facilities.

  2. A Ten Step Protocol and Plan for CCS Site Characterization, Based on an Analysis of the Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    McPherson, Brian; Matthews, Vince

    2013-09-15T23:59:59.000Z

    This report expresses a Ten-Step Protocol for CO2 Storage Site Characterization, the final outcome of an extensive Site Characterization analysis of the Rocky Mountain region, USA. These ten steps include: (1) regional assessment and data gathering; (2) identification and analysis of appropriate local sites for characterization; (3) public engagement; (4) geologic and geophysical analysis of local site(s); (5) stratigraphic well drilling and coring; (6) core analysis and interpretation with other data; (7) database assembly and static model development; (8) storage capacity assessment; (9) simulation and uncertainty assessment; (10) risk assessment. While the results detailed here are primarily germane to the Rocky Mountain region, the intent of this protocol is to be portable or generally applicable for CO2 storage site characterization.

  3. The September 1957 Rocky Flats fire: A guide to record series of the Department of Energy and its contractors

    SciTech Connect (OSTI)

    NONE

    1995-07-19T23:59:59.000Z

    The primary purpose of this guide is to help the DOE locate and make available information relating to the 1957 Rocky Flats fire. The records are arranged into six categories: administrative and general; facilities and equipment; production and materials handling; waste management; workplace and environmental monitoring; and employee occupational exposure and health. A brief explanation of each category follows. The administrative and general section pertains to the administration of individual contractor organizations and DOE divisions at Rocky Flats. It also contains records which encompass several different subject areas and therefore can not be placed in a single category. The facilities and equipment category relates to the routine construction and maintenance of plant buildings as well as the purchase and installation of equipment. The production and materials handling records relate primarily to the inventory and production of nuclear materials and weapons components. The waste management records series found under this heading relate to the storage, handling, treatment, and disposal of radioactive, chemical or mixed materials produced or used at Rocky Flats. The records consist mostly of waste sampling and shipment records. The workplace and environmental monitoring records series found in this section pertain to monitoring of the workplace. The section also includes records that document efforts to monitor the environment outside of buildings, either onsite or offsite. Records in this category consist of sampling data and environmental impact reports. The employee occupational exposure and health section pertains to documentation relating to the health and occupational exposures of employees and visitors at Rocky Flats. Records series consist generally of dosimeter data, radiation exposure records, and medical records. Many of the records contain personal data pertaining to individual employees and may therefore be Privacy Act systems and records.

  4. State geothermal commercialization programs in ten Rocky Mountain states. Semi-annual progress report, July-December 1979

    SciTech Connect (OSTI)

    Griffith, J.L. (comp.)

    1980-08-01T23:59:59.000Z

    The activities and findings of the ten state teams participating in the Rocky Mountain Basin and Range Regional Hydrothermal Commercialization Program for the period are described. A summary of the state projects, compilation of project accomplishments, summary of findings, and a description of the major conclusions and recommendations are presented. Also included are chapters on the commercialization activities carried out by individual teams in each state: Arizona, Colorado, Idaho, Montana, Nevada, New-Mexico, North Dakota, South Dakota, Utah, and Wyoming. (MHR)

  5. Determination of dispersivities and reactionkinetics of selected basalts of columbia river plateau using an inverse analytical solution technique

    E-Print Network [OSTI]

    Fahlquist, Lisa Armstrong

    2012-06-07T23:59:59.000Z

    on the determination of transport parameters by modeling sodium transport in the Priest Rapids and Roza flow tops of the Wanapum formation, and Rocky Coulee and Umtanum flow tops of the Grande Ronde formation, within the Cold Creek Syncline of the Hanford Nuclear Waste...

  6. Evaluation of prospective hazardous waste treatment technologies for use in processing low-level mixed wastes at Rocky Flats

    SciTech Connect (OSTI)

    McGlochlin, S.C.; Harder, R.V.; Jensen, R.T.; Pettis, S.A.; Roggenthen, D.K.

    1990-09-18T23:59:59.000Z

    Several technologies for destroying or decontaminating hazardous wastes were evaluated (during early 1988) as potential processes for treating low-level mixed wastes destined for destruction in the Fluidized Bed Incinerator. The processes that showed promise were retained for further consideration and placed into one (or more) of three categories based on projected availability: short, intermediate, and long-term. Three potential short-term options were identified for managing low-level mixed wastes generated or stored at the Rocky Flats Plant (operated by Rockwell International in 1988). These options are: (1) Continue storing at Rocky Flats, (2) Ship to Nevada Test Site for landfill disposal, or (3) Ship to the Idaho National Engineering Laboratory for incineration in the Waste Experimental Reduction Facility. The third option is preferable because the wastes will be destroyed. Idaho National Engineering Laboratory has received interim status for processing solid and liquid low-level mixed wastes. However, low-level mixed wastes will continue to be stored at Rocky Flats until the Department of Energy approval is received to ship to the Nevada Test Site or Idaho National Engineering Laboratory. Potential intermediate and long-term processes were identified; however, these processes should be combined into complete waste treatment systems'' that may serve as alternatives to the Fluidized Bed Incinerator. Waste treatment systems will be the subject of later work. 59 refs., 2 figs.

  7. Environmental Aspects of Two Volatile Organic Compound Groundwater Treatment Designs at the Rocky Flats Site - 13135

    SciTech Connect (OSTI)

    Michalski, Casey C.; DiSalvo, Rick; Boylan, John [Stoller LMS Team, 11025 Dover Street, Suite 1000, Westminster, CO 80021 (United States)] [Stoller LMS Team, 11025 Dover Street, Suite 1000, Westminster, CO 80021 (United States)

    2013-07-01T23:59:59.000Z

    DOE's Rocky Flats Site in Colorado is a former nuclear weapons production facility that began operations in the early 1950's. Because of releases of hazardous substances to the environment, the federally owned property and adjacent offsite areas were placed on the CERCLA National Priorities List in 1989. The final remedy was selected in 2006. Engineered components of the remedy include four groundwater treatment systems that were installed before closure as CERCLA-accelerated actions. Two of the systems, the Mound Site Plume Treatment System and the East Trenches Plume Treatment System, remove low levels of volatile organic compounds using zero-valent iron media, thereby reducing the loading of volatile organic compounds in surface water resulting from the groundwater pathway. However, the zero-valent iron treatment does not reliably reduce all volatile organic compounds to consistently meet water quality goals. While adding additional zero-valent iron media capacity could improve volatile organic compound removal capability, installation of a solar powered air-stripper has proven an effective treatment optimization in further reducing volatile organic compound concentrations. A comparison of the air stripper to the alternative of adding additional zero-valent iron capacity to improve Mound Site Plume Treatment System and East Trenches Plume Treatment System treatment based on several key sustainable remediation aspects indicates the air stripper is also more 'environmentally friendly'. These key aspects include air pollutant emissions, water quality, waste management, transportation, and costs. (authors)

  8. Rocky Flats 10 year plan: over 500 structures to be demolished

    SciTech Connect (OSTI)

    Evans, B. [Kaiser-Hill L.L.C., Rocky Flats, CO (United States); Bengel, P. [Rocky Mountain Remediation Services, L.L.C., Rocky Flats, CO (United States)

    1997-03-01T23:59:59.000Z

    Rocky Flats Environmental Technology Site has prepared a Ten Year Plan (Plan) that demonstrates how the Site would achieve accelerated cleanup and rapidly reduce the risks the Site currently poses to its workers, the public, and the environment. A major element of the Plan is the decontamination and demolition of over 500 Site facilities, including all of the former nuclear production facilities, by the end of 2006. Facilities used for the storage of plutonium, treatment of low-level mixed waste, and several office building would remain until the plutonium is removed or there is no longer a need for the facility, in which case it would be demolished. While the Plan considers all aspects of the cleanup and closure, this paper focuses on the challenges posed by the removal of highly contaminated equipment and the demolition of structures. This paper describes near- term decommissioning projects as well as the long range plans and budgets. Cash flow ultimately controls schedule, and sharing of budget priorities among processing of special nuclear material, disposing of waste, and cleaning up the environment has to be juggled carefully to attain the goals of the Plan. The total cost of the Plan exceeds $5 billion, and over $1 billion will be spent on decommissioning activities. Following removal of the plutonium and the demolition of the plutonium storage and remaining Site facilities by the end of 2015, the cost to perform the long-term environmental monitoring at the Site is estimated to be $10 million per year.

  9. Characterization of uranium in surface-waters collected at the Rocky Flats Facility

    SciTech Connect (OSTI)

    Efurd, D.W.; Rokop, D.J.; Aguilar, R.D.; Roensch, F.R.; Perrin, R.E.; Banar, J.C.

    1994-06-01T23:59:59.000Z

    The Rocky Flats Plant (RFP) is a Department of Energy (DOE) facility where plutonium and uranium components were manufactured for nuclear weapons. During plant operations radioactivity was inadvertently released into the environment. This study was initiated to characterize the uranium present in surface-waters at RFP. Three drainage basins and natural ephemeral streams transverse RFP. The Woman Creek drainage basin traverses and drains the southern portion of the site. The Rock Creek drainage basin drains the northwestern portion of the plant complex. The Walnut Creek drainage basin traverses the western, northern, and northeastern portions of the RFP site. Dams, detention ponds, diversion structures, and ditches have been constructed at RFP to control the release of plant discharges and surface (storm water) runoff. The ponds located downstream of the plant complex on North Walnut Creek are designated A-1 through A-4. Ponds on South Walnut Creek are designated B-1 through B-5. The ponds in the Woman Creek drainage basin are designated C-1 and C-2. Water samples were collected from each pond and the uranium was characterized by TIMS measurement techniques.

  10. Coal in the Northern Rocky Mountains and Great Plains Region -- Clean, compliant, and available

    SciTech Connect (OSTI)

    Stricker, G.D.; Ellis, M.S.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

    1998-12-31T23:59:59.000Z

    The Northern Rocky Mountains and Great Plains region produced over 340 million short tons of coal in 1997, approximately 30 percent of the nation`s total coal production. Coals from this region are shipped to 26 states in the western, midwest, southern, and eastern US and production is projected to increase to 415 million short tons by 2015; the projected increase will be utilized primarily for production of electric power. The coals are economically attractive because they can be produced by surface mining, and do not require costly beneficiation to be compliant with emission standards. The coals are compliant because their chemical composition was influenced by tectonic settings of the coal basins and provenance of the sediments entering the basins. Tectonics during the Paleocene also influenced rates of precipitation and depositional systems. These factors, in concert, controlled the amount, distribution, and levels of sulfur, ash, and trace elements of environmental concern in the region`s coals. The emphasis of this paper is on the chemistry of these thick, high-quality coals and the geologic controls that resulted in their accumulation.

  11. Field testing of new multilateral drilling and completion technology at the Rocky Mountain Oilfield Testing Center

    SciTech Connect (OSTI)

    Giangiacomo, L.A. [Fluor Daniel NPOSR, Inc., Casper, WY (United States). Rocky Mountain Oilfield Testing Center

    1998-12-31T23:59:59.000Z

    The Rocky Mountain Oilfield Testing Center (RMOTC) has played an important role in bringing new multilateral well technology to the marketplace. Multilateral technology is more complex than most new technologies being brought to the oilfield. It is very difficult to test new designs in the laboratory or conventional test wells. They must be tested downhole in specialized wells to work out design and procedural details. Most of the applications for multilateral technology are in high cost drilling areas, such as offshore or in remote, environmentally sensitive areas. For this reason, opportunities for testing the new technology in the course of routine drilling and completion operations are scarce. Operators are not willing to risk expensive rig time, or losing a wellbore itself, on a test. RMOTC offers a neutral site where the technology can be tested in a relatively low cost environment. There are two drilling rigs and three workover and completion rigs available. Most associated services such as warehouse, roustabouts, backhoe, welders, and mechanics are also available on site, while specialized oilfield services and machine shops are available in nearby Casper. Technologies such as the hollow whipstock, adjustable stabilizer, downhole kickoff assembly, single trip sidetrack tool, stacked multidrain system, rotary steerable systems, and procedures for abandoning an open hole lateral have benefited through the use of RMOTC`s facilities. This paper details the capabilities of the new technologies and the benefits of testing them in a real oilfield environment before taking them to market.

  12. Nondestructive assay (NDA) of fissile material solutions in tanks at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Fleissner, J.G.; Lamb, F.W.; Maul, M.R.

    1995-07-01T23:59:59.000Z

    Nondestructive assay of holdup in solution tanks at Rocky Flats has been performed to address criticality safety concerns since 1974. Destructive analysis techniques were used for quantification of the fissile material content of the tanks. With termination of operations in 1989, including sparging and sampling of tanks, a need arose for nondestructive assay of solutions in tanks to confirm previous inventory values. Gamma ray measurement methodologies were investigated and several techniques, including Poor Man`s Densitometry were implemented. These techniques have been applied to several different types of tanks including: annular, raschig ring filled, and pencil tanks. For the annular tanks ``Poor Man`s Densitometry`` is used, with the densities of the measured solutions normalized to the value of one ``accepted`` concentration tank. Measurement uncertainties for this technique has been better than was anticipated. Measurements are also performed at several levels to attempt to detect variations in density. For the current tank draining program, solution in tanks is assayed by the NDA gamma-ray technique before draining. Measurement results were obtained for plutonium, uranium, and mixtures of U/Pu solutions for concentrations ranging from less than 0.5 g/l to 150 g/l. Tanks with expected concentrations were used to establish a relationship between concentration and count rate. ``Bootstrapping`` calibration techniques were used in some cases to obtain quantitative results.

  13. Nondestructive assay (NDA) of fissile material in gloveboxes and equipment at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    Dreher, D.J.; Lamb, F.W.

    1997-10-01T23:59:59.000Z

    At Rocky Flats Environmental Technology Site (RFETS), a glovebox and equipment holdup measurement program called Untoward Areas was performed in FY92. These measurements were completed in selected areas of one building. After completing this task, measurements in two other buildings had been completed to assist in characterizing their entire inventory. This information was used as part of evaluating safeguards and security requirements. However, a large percent of the gloveboxes and equipment in process buildings have not been measured. Before FY97, holdup measurements were being performed prior to decommissioning and deactivation activities. To accelerate the quantification of holdup a list of areas suspected to have high amounts of holdup was compiled and funding was requested and recently received. Glovebox and equipment locations were selected by use of several selection criteria. The following steps were taken in the selection process: (1) attribute scan results (FY95) were examined and high scan result locations were selected, (2) knowledgeable personnel within and outside the organization were consulted, and (3) video characterization of the Building 707 chainveyor system was examined. Only a few of the high scan result areas from the attribute scan list had not been identified by the use of process knowledge. The primary driver for holdup measurements is Department of energy (DOE) Order 5633.3B, Section II-3, Physical Inventories.

  14. The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health-related research. Volume VI, workplace and environmental monitoring

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This is the sixth in a series of seven volumes which constitute a guide to records of the Rocky Flats Plant useful for conducting health-related research. The primary purpose of Volume VI is to describe record series pertaining to workplace and environmental monitoring activities at the Department of Energy`s (DOE) Rocky Flats Plant, now named the Rocky Flats Environmental Technology Site, near Denver, Colorado. History Associates Incorporated (HAI) prepared this guide as part of its work as the support services contractor for DOE`s Epidemiologic Records Inventory Project. This introduction briefly describes the Epidemiologic Records Inventory Project and HAI`s role in the project, provides a history of workplace and environmental monitoring practices at Rocky Flats, and identifies organizations contributing to workplace and environmental monitoring policies and activities. Other topics include the scope and arrangement of this volume and the organization to contact for access to these records. Comprehensive introductory and background information is available in Volume I. Other volumes in the guide pertain to administrative and general subjects, facilities and equipment, production and materials handling, waste management, and employee health. In addition, HAI has produced a subject-specific guide, titled The September 1957 Rocky Flats Fire. A Guide to Record Series of the Department of Energy and Its Contractors, which researchers should consult for further information about records related to this incident.

  15. Water quality changes as a result of coalbed methane development in a Rocky mountain watershed

    SciTech Connect (OSTI)

    Wang, X.; Melesse, A.M.; McClain, M.E.; Yang, W. [Tarleton State University, Stephenville, TX (USA)

    2007-12-15T23:59:59.000Z

    Coalbed methane (CBM) development raises serious environmental concerns. In response, concerted efforts have been made to collect chemistry, salinity, and sodicity data on CBM produced water. However, little information on changes of stream water quality resulting from directly and/or indirectly received CBM produced water is available in the literature. The objective of this study was to examine changes in stream water quality, particularly sodicity and salinity, due to CBM development in the Powder River watershed, which is located in the Rocky Mountain Region and traverses the states of Wyoming and Montana. To this end, a retrospective analysis of water quality trends and patterns was conducted using data collected from as early as 1946 up to and including 2002 at four U.S. Geological Survey gauging stations along the Powder River. Trend analysis was conducted using linear regression and Seasonal Kendall tests, whereas, Tukey's test for multiple comparisons was used to detect changes in the spatial pattern. The results indicated that the CBM development adversely affected the water quality in the Powder River. First, the development elevated the stream sodicity, as indicated by a significant increase trend of the sodium adsorption ratio. Second, the development tended to shrink the water quality differences among the three downstream stations but to widen the differences between these stations and the farthest upstream station. In contrast, the development had only a minor influence on stream salinity. Hence, the CBM development is likely an important factor that can be managed to lower the stream sodicity. The management may need to take into account that the effects of the CBMdevelopment were different from one location to another along the Powder River.

  16. Dispersion by chemical reaction of Rocky Mountain Arsenal Basin F waste soils

    SciTech Connect (OSTI)

    Payne, J.R.; Marion, G.M.

    1997-02-01T23:59:59.000Z

    Many military installations have soil contamination problems that range from heavy metals to petroleum products. Rocky Mountain Arsenal (RMA) Basin F contains high concentrations of salts, heavy metals, ammonia, urea, and organics. The Dispersion by Chemical Reaction (DCR) process leads to a reduction in the mobility of the organic and inorganic constituents by first removing volatile constituents via steam stripping and volatilization, then trapping the nonvolatile contaminants in a nonmobile phase (microencapsulation), and finally compacting the treated material into large soil bodies (macroencapsulation). This report summarizes the results of the DCR testing of soil-amended Basin F sludge from RMA. The primary focus of this study is on pesticide leachability. The DCR process used to treat the Basin F waste soil produced a dry, homogeneous, soil-like material with desirable physical properties that on compaction achieved the following remediation goals: reduction of all leachable volatiles to nondetectable levels, confinement of all metals to below RCRA TCLP levels, and a decrease in pesticide leachability to levels approaching RCRA standards. For example, endrin TCLP concentration was reduced from 74 microgram/L to 20-28 microgram/L (regulatory limit = 20 ug/L). In several cases, reductions in pesticide leachability could be attributed to simple dilution with the calcium oxide (CaO) reagent. However in other cases, microencapsulation and/or macroencapsulation also played a role in reducing pesticide leachability. Additional work is necessary to optimize the amounts of lime-milk, hydrophobic CaO, and benign oil used in the processing of RMA Basin F waste soils. Ideally, the optimum design should achieve the regulatory and client goals, while minimizing materials handling, energy, and reagent inputs.

  17. A rational approach for evaluation and screening of treatment and disposal options for the solar pond sludges at Rocky Flats

    SciTech Connect (OSTI)

    Dickerson, K.S.

    1995-12-31T23:59:59.000Z

    This document consists of information about the treatment options for the sludge that is located in the evaporation ponds at the Rocky Flats Plant. The sludges are mixed low-level radioactive wastes whose composition and character were variable. Sludges similar to these are typically treated prior to ultimate disposal. Disposal of treated sludges includes both on-site and off-site options. The rational approach described in this paper is useful for technology evaluation and screening because it provides a format for developing objectives, listing alternatives, and weighing the alternatives against the objectives and against each other.

  18. REDUCING RISK IN LOW-PERMEABILITY GAS FORMATIONS: UNDERSTANDING THE ROCK/FLUID CHARACTERISTICS OF ROCKY MOUNTAIN LARAMIDE BASINS

    SciTech Connect (OSTI)

    Ronald C. Surdam

    2003-12-29T23:59:59.000Z

    An anomalous velocity model was constructed for the Wind River Basin (WRB) based on {approx}2000 mi of 2-D seismic data and 175 sonic logs, for a total of 132,000 velocity/depth profiles. Ten cross sections were constructed through the model coincident with known gas fields. In each cross section, an intense, anomalously slow velocity domain coincided with the gas-productive rock/fluid interval. The anomalous velocity model: (1) Easily isolates gas-charged rock/fluid systems characterized by anomalously slow velocities and water-rich rock/fluid systems characterized by normal velocities; and (2) Delineates the regional velocity inversion surface, which is characterized by steepening of the Ro/depth gradient, a significant increase in capillary displacement pressure, a significant change in formation water composition, and acceleration of the reaction rate of smectite-to-illite diagenesis in mixed-layer clays. Gas chimneys are observed as topographic highs on the regional velocity inversion surface. Beneath the surface are significant fluid-flow compartments, which have a gas-charge in the fluid phase and are isolated from meteoric water recharge. Water-rich domains may occur within regional gas-charged compartments, but are not being recharged from the meteoric water system (i.e., trapped water). The WRB is divided into at least two regionally prominent fluid-flow compartments separated by the velocity inversion surface: a water-dominated upper compartment likely under strong meteoric water drive and a gas-charged, anomalously pressured lower compartment. Judging from cross sections, numerous gas-charged subcompartments occur within the regional compartment. Their geometries and boundaries are controlled by faults and low-permeability rocks. Commercial gas production results when a reservoir interval characterized by enhanced porosity/permeability intersects one of these gas-charged subcompartments. The rock/fluid characteristics of the Rocky Mountain Laramide Basins (RMLB) described in this work determine the potential for significant, relatively unconventional, so-called ''basin-center'' hydrocarbon accumulations. If such accumulations occur, they will be characterized by the following critical attributes: (1) Location beneath a regional velocity inversion surface that typically is associated with low-permeability lithologies; (2) Anomalous pressure, both over- and underpressure, and when, less commonly, they appear to be normally pressured, they are not in contact with the meteoric water system; (3) A significant gas component in the regional multiphase fluid-flow system (water-gas-oil) that occurs beneath the regional velocity inversion surface; (4) Domains of intense gas charge (i.e., high gas saturation) within the regional multiphase fluid-flow system; (5) Compartmentalization of the rock/fluid system to a far greater extent beneath the regional velocity inversion surface than above it (i.e., convection of fluids across the regional velocity inversion surface is reduced or eliminated depending on the nature of the capillary properties of the low-permeability rocks associated with the inversion surface); (6) Commercial gas accumulations occurring at the intersection of reservoir intervals characterized by enhanced porosity and permeability and gas-charged domains; (7) Productive intersections of reservoir intervals and gas-charged domains, which are controlled by the structural, stratigraphic, and diagenetic elements affecting the rock/fluid system; and (8) No apparent meteoric water connection with the gas accumulations and gas columns up to several thousand feet in height. Because some of these critical attributes are not associated with conventional hydrocarbon accumulations, a new set of diagnostic tools are required in order to explore for and exploit these types of gas prospects efficiently and effectively. Some of these new diagnostic tools have been discussed in this report; other have been described elsewhere. In order to maximize risk reduction, it is recommended when exploring for these types of gas accu

  19. 146 USDA Forest Service Proceedings RMRS-P-34. 2004. Abstract--Limber pine and Rocky Mountain bristlecone pine are currently threat-

    E-Print Network [OSTI]

    pine is ex- periencing mortality in the Northern Rocky Mountains and the infection front con- tinues and Sullivan 2004), at a site that is more than 220 miles away from the former infection front. No mortality as erect trees, clusters of erect trees and as wind-sculpted wedge-shaped shrubs (krummholz). Limber pine

  20. EA-1956: Site-Wide Environmental Assessment for the Divestiture of Rocky Mountain Oilfield Testing Center and Naval Petroleum Reserve No. 3, Natrona County, Wyoming

    Broader source: Energy.gov [DOE]

    Draft Site-Wide EA: Public Comment Period Ends 04/14/2014DOE is preparing an EA to assess potential environmental impacts of the proposed discontinuation of DOE operations at, and the proposed divestiture of, the Rocky Mountain Oilfield Testing Center (RMOTC) and Naval Petroleum Reserve Number 3 (NPR-3).

  1. CX-010890: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sheep's Knob Communication Site Road Maintenance CX(s) Applied: B1.3 Date: 08/20/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  2. CX-010111: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Animas River Substation Site Drainage Remediation CX(s) Applied: B4.6 Date: 04/26/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  3. CX-007819: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Yellowtail Dam Tie Lines CX(s) Applied: B2.5, B4.6 Date: 01/25/2012 Location(s): Montana Offices(s): Western Area Power Administration-Rocky Mountain Region

  4. CX-000556: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Willoby Substation Construction Project-Weld County, ColoradoCX(s) Applied: B4.11Date: 12/16/2009Location(s): Weld County, ColoradoOffice(s): Western Area Power Administration-Rocky Mountain Region

  5. CX-012085: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Urban Transmission Line Hazard Tree Management CX(s) Applied: B1.3 Date: 03/06/2014 Location(s): Colorado, Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  6. CX-011235: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wood Pole Inspection and Treatment - Routine Transmission Line Maintenance CX(s) Applied: B1.3 Date: 10/24/2013 Location(s): CX: none Offices(s): Western Area Power Administration-Rocky Mountain Region

  7. CX-011210: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bridgeport-Gering 115-Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 09/12/2013 Location(s): Nebraska, Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  8. CX-005580: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sidney to Sterling Transmission Line Structure Replacement, Logan County, ColoradoCX(s) Applied: B4.6Date: 12/22/2010Location(s): Logan County, ColoradoOffice(s): Western Area Power Administration-Rocky Mountain Region

  9. CX-011211: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Box Butte-Chadron 115-Kilovolt Transmission Line Structure Replacements CX(s) Applied: B1.3 Date: 09/26/2013 Location(s): Nebraska, Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  10. CX-010686: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cheyenne Substation KV2A 115-kilovolt Tie Line Installation CX(s) Applied: B4.6 Date: 07/02/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  11. CX-011723: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Happy Jack 230 Kilovolt Substation Fiber Optic Installation in Laramie County, Wyoming CX(s) Applied: B4.7 Date: 12/31/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  12. CX-006241: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rock River Microwave Fiber Optic Installation, Albany County, WyomingCX(s) Applied: B4.7Date: 06/17/2011Location(s): Albany County, WyomingOffice(s): Western Area Power Administration-Rocky Mountain Region

  13. CX-012071: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer Substation Microwave Building Fiber Optic Installation CX(s) Applied: B4.7 Date: 04/29/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  14. CX-011613: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bald Mountain Fiber Optic Splice Temporary Pad CX(s) Applied: B1.15 Date: 12/11/2013 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  15. CX-010891: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer-Stegall 230-Kilovolt Fiber Optic Ground Wire Addition CX(s) Applied: B4.7 Date: 08/20/2013 Location(s): Nebraska, Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  16. CX-011618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kremmling-Windy Gap 138-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 11/21/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  17. CX-011614: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Curecanti-Blue Mesa 115-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 12/04/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  18. CX-011209: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer-North Park 230-Kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 09/10/2013 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  19. CX-011616: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gore Pass-Kremmling 138-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 11/21/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  20. CX-011619: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Muddy Pass-Walden 69-kilovolt Transmission Line Danger Tree Management CX(s) Applied: B1.3 Date: 11/21/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  1. CX-011204: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hayden-North Park 230-Kilovolt Transmission Lane Danger Tree Management CX(s) Applied: B1.3 Date: 08/30/2013 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  2. CX-011208: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Malta-Mount Elbert 230-Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 09/09/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  3. CX-008401: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Giant Track Communications Tower Removal CX(s) Applied: B1.19 Date: 05/09/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  4. CX-008381: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big Thompson to Flatiron 13.8 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 05/09/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  5. CX-011205: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lost Canyon-Shiprock 230-Kilovolt Transmission Line Road Maintenance CX(s) Applied: B1.3 Date: 08/30/2013 Location(s): New Mexico Offices(s): Western Area Power Administration-Rocky Mountain Region

  6. CX-010886: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Curecanti-Lost Canyon 230-Kilovolt Emergency Repairs of Downed Conductor CX(s) Applied: B1.3 Date: 08/06/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  7. CX-004299: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tree Cutting Cheyenne Field Office Maintenance AreaCX(s) Applied: B1.3Date: 10/21/2010Location(s): Larimer, ColoradoOffice(s): Western Area Power Administration-Rocky Mountain Region

  8. CX-006280: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gore Pass Substation Pole ReplacementCX(s) Applied: B1.3Date: 07/01/2011Location(s): Ground County, ColoradoOffice(s): Western Area Power Administration-Rocky Mountain Region

  9. CX-011612: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Akron Hill Communication Site Cable Project CX(s) Applied: B1.3 Date: 11/19/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  10. CX-010106: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Flaming Gorge Microwave Site Communications Building Access Road Repairs CX(s) Applied: B1.3 Date: 04/01/2013 Location(s): Utah Offices(s): Western Area Power Administration-Rocky Mountain Region

  11. CX-012072: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer-Cheyenne North/South 115-kilovolt Transmission Line Structure Replacement CX(s) Applied: B4.13 Date: 03/18/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  12. CX-008386: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Bridgeport to Sydney 115 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 04/11/2012 Location(s): Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  13. CX-012080: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deering Lake and Yuma Substation Upgrades CX(s) Applied: B4.6 Date: 03/06/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  14. CX-012345: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Collbran Substation Conduit Installation and Breaker Replacement, Mesa County, Colorado CX(s) Applied: B4.6 Date: 06/03/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  15. CX-012076: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Curecanti-Lost Canyon 230-Kilovolt Reconductoring Project CX(s) Applied: B1.3 Date: 04/25/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  16. CX-012084: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Snowy Range-Happy Jack 115-Kilovolt Transmission Line Structure Replacements CX(s) Applied: B1.3 Date: 03/10/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  17. CX-011860: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Magnetic Mountain Microwave Tower Access road Maintenance, Rio Blanco County, Colorado CX(s) Applied: B1.3 Date: 01/28/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  18. CX-012086: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wray-Wray Tap 115-Kilovolt Transmission Line Construction CX(s) Applied: B4.12 Date: 02/28/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  19. CX-012078: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on the Great Cut Tap 115-Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 02/20/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  20. CX-012357: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shiprock Substation Stormwater Erosion Control Maintenance, San Juan County, New Mexico CX(s) Applied: B1.33 Date: 07/01/2014 Location(s): New Mexico Offices(s): Western Area Power Administration-Rocky Mountain Region

  1. CX-009801: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Copper Mountain to Boysen 34.5 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 01/11/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  2. CX-010551: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region Western Area Power Administration's (WAPA) Casper Field Office proposes to replace deteriorating...

  3. CX-008775: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Administration-Rocky Mountain Region Western Area Power Administration will replace transformer KV1A at the Archer Substation. CX-008775.pdf More Documents & Publications...

  4. Investigation of the unconfined flow system at the Rocky Mountain Arsenal, Denver, Colorado

    E-Print Network [OSTI]

    Sturdivant, Peter Laurence

    1993-01-01T23:59:59.000Z

    Associates. b) Bedrock elevation database, provided by Ebasco Environmental. 2) Developing a methodology to determine unconfined vs confined conditions for wells at the Arsenal. 3) Producing contour maps of quarterly water elevadons for wells reflecting...

  5. CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses

    SciTech Connect (OSTI)

    Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

    2013-07-30T23:59:59.000Z

    The purpose of this report is to provide a summary of individual local-­?scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­? specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­?scale analyses is to provide a basis for regional-­?scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­? resolution characterization of a state-­?sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­?scale geology. For the RMCCS project, the outcomes of these local-­?scale studies provide a starting point for future local-­?scale site characterization efforts in the Rocky Mountain region.

  6. Distribution of hazardous air pollutant trace elements, total sulfur, and ash in coals from five Tertiary basins in the Rocky Mountain Region

    SciTech Connect (OSTI)

    Ellis, M.S.; Stricker, G.D.; Flores, R.M. [Geological Survey, Denver, CO (United States)

    1994-12-31T23:59:59.000Z

    Arithmetic mean values of the contents of hazardous air pollutant (HAP) trace elements named in the 1990 Clean Air Act Amendments (antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium), ash, and total sulfur were statistically compared on a whole-coal basis for Paleocene coals from five Tertiary basins in the Rocky Mountain Region. The study of proximate and elemental analyses indicate a relationship between trace element contents and paleogeography.

  7. Cost Estimating for Decommissioning of a Plutonium Facility--Lessons Learned From The Rocky Flats Building 771 Project

    SciTech Connect (OSTI)

    Stevens, J. L.; Titus, R.; Sanford, P. C.

    2002-02-26T23:59:59.000Z

    The Rocky Flats Closure Site is implementing an aggressive approach in an attempt to complete Site closure by 2006. The replanning effort to meet this goal required that the life-cycle decommissioning effort for the Site and for the major individual facilities be reexamined in detail. As part of the overall effort, the cost estimate for the Building 771 decommissioning project was revised to incorporate both actual cost data from a recently-completed similar project and detailed planning for all activities. This paper provides a brief overview of the replanning process and the original estimate, and then discusses the modifications to that estimate to reflect new data, methods, and planning rigor. It provides the new work breakdown structure and discusses the reasons for the final arrangement chosen. It follows with the process used to assign scope, cost, and schedule elements within the new structure, and development of the new code of accounts. Finally, it describes the project control methodology used to track the project, and provides lessons learned on cost tracking in the decommissioning environment.

  8. Solidification Tests Conducted on Transuranic Mixed Oil Waste (TRUM) at the Rocky Flats Environmental Technology Site (RFETS)

    SciTech Connect (OSTI)

    Brunkow, W. G.; Campbell, D.; Geimer, R.; Gilbreath, C.; Rivera, M.

    2002-02-25T23:59:59.000Z

    Rocky Flats Environmental Technology Site (RFETS) near Golden, Colorado is the first major nuclear weapons site within the DOE complex that has been declared a full closure site. RFETS has been given the challenge of closing the site by 2006. Key to meeting this challenge is the removal of all waste from the site followed by site restoration. Crucial to meeting this challenge is Kaiser-Hill's (RFETS Operating Contractor) ability to dispose of significant quantities of ''orphan'' wastes. Orphan wastes are those with no current disposition for treatment or disposal. Once such waste stream, generically referred to as Transuranic oils, poses a significant threat to meeting the closure schedule. Historically, this waste stream, which consist of a variety of oil contaminated with a range of organic solvents were treated by simply mixing with Environstone. This treatment method rendered a solidified waste form, but unfortunately not a TRUPACT-II transportable waste. So for the last ten years, RFETS has been accumulating these TRU oils while searching for a non-controversial treatment option.

  9. Can we constrain interior structure of rocky exoplanets from mass and radius measurements?

    E-Print Network [OSTI]

    Dorn, Caroline; Heng, Kevin; Alibert, Yann; Connolly, James A D; Benz, Willy; Tackley, Paul

    2015-01-01T23:59:59.000Z

    We present an inversion method based on Bayesian analysis to constrain the interior structure of terrestrial exoplanets, in the form of chemical composition of the mantle and core size. Specifically, we identify what parts of the interior structure of terrestrial exoplanets can be determined from observations of mass, radius, and stellar elemental abundances. We perform a full probabilistic inverse analysis to formally account for observational and model uncertainties and obtain confidence regions of interior structure models. This enables us to characterize how model variability depends on data and associated uncertainties. We test our method on terrestrial solar system planets and find that our model predictions are consistent with independent estimates. Furthermore, we apply our method to synthetic exoplanets up to 10 Earth masses and up to 1.7 Earth radii as well as to exoplanet Kepler-36b. Importantly, the inversion strategy proposed here provides a framework for understanding the level of precision requ...

  10. THE ROLE OF LAND USE IN ENVIRONMENTAL DECISION MAKING AT THREE DOE MEGA-CLEANUP SITES FERNALD & ROCKY FLATS & MOUND

    SciTech Connect (OSTI)

    JEWETT MA

    2011-01-14T23:59:59.000Z

    This paper explores the role that future land use decisions have played in the establishment of cost-effective cleanup objectives and the setting of environmental media cleanup levels for the three major U.S. Department of Energy (DOE) sites for which cleanup has now been successfully completed: the Rocky Flats, Mound, and Fernald Closure Sites. At each site, there are distinct consensus-building histories throughout the following four phases: (1) the facility shut-down and site investigation phase, which took place at the completion of their Cold War nuclear-material production missions; (2) the decision-making phase, whereby stakeholder and regulatory-agency consensus was achieved for the future land-use-based environmental decisions confronting the sites; (3) the remedy selection phase, whereby appropriate remedial actions were identified to achieve the future land-use-based decisions; and (4) the implementation phase, whereby the selected remedial actions for these high-profile sites were implemented and successfully closed out. At each of the three projects, there were strained relationships and distrust between the local community and the DOE as a result of site contamination and potential health effects to the workers and local residents. To engage citizens and interested stakeholder groups - particularly in the role of final land use in the decision-making process, the site management teams at each respective site developed new public-participation strategies to open stakeholder communication channels with site leadership, technical staff, and the regulatory agencies. This action proved invaluable to the success of the projects and reaching consensus on appropriate levels of cleanup. With the implementation of the cleanup remedies now complete, each of the three DOE sites have become models for future environmental-remediation projects and associated decision making.

  11. Regional Operations Research Program for Commercialization of Geothermal Energy in the Rocky Mountain Basin and Range. Final Technical Report, January 1980--March 1981

    SciTech Connect (OSTI)

    None

    1981-07-01T23:59:59.000Z

    This report describes the work accomplished from January 1980 to March 1981 in the Regional Operations Research efforts for the Rocky Mountain Basin and Range Geothermal Commercialization Program. The scope of work is as described in New Mexico State University Proposal 80-20-207. The work included continued data acquisition and extension of the data base, enhancement and refinement of the economic models for electric and direct use applications, site-specific and aggregated analyses in support of the state teams, special analyses in support of several federal agencies, and marketing assistance to the state commercialization teams.

  12. CX-009234: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hesperus- Montrose 345 Kilovolt Transmission Line Private Lands Herbicide Treatment for Vegetation Management CX(s) Applied: B1.3 Date: 09/13/2012 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  13. CX-008399: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Erosion Control Measures Structure No. 110-3 Dave Johnston to Stegall 230 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 03/29/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  14. CX-009235: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Willow Creek - Granby Tap 2.4 Kilovolt Distribution Line Structure 0/3A Pole Replacement Project CX(s) Applied: B4.6 Date: 09/20/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  15. CX-003021: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Structure Replacements and Reconductor Black Hollow to Ault Transmission Line, Weld County, ColoradoCX(s) Applied: B4.6Date: 06/01/2010Location(s): Weld County, ColoradoOffice(s): Western Area Power Administration-Rocky Mountain Region

  16. CX-010885: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kiowa Creek-Weld 115-Kilovolt Transmission Line Culvert Replacement CX(s) Applied: B1.3, B1.33 Date: 08/06/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  17. CX-010549: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chappell, Julesburg, and Kersey Tap Line Switch Replacements in Deuel County, Nebraska and Weld County, Colorado CX(s) Applied: B4.6, B4.11 Date: 06/04/2013 Location(s): Nebraska, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  18. CX-012355: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kayenta-Navajo 230-kilovolt Transmission Line Landing Construction and Insulator Replacement, Navajo County, Arizona CX(s) Applied: B1.3 Date: 06/05/2014 Location(s): Arizona Offices(s): Western Area Power Administration-Rocky Mountain Region

  19. CX-011858: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Beaver Creek-Sterling 115 Kilovolt Transmission Line Structure Relocation, Morgan County, Colorado CX(s) Applied: B4.13 Date: 01/21/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  20. CX-009227: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Beaver Creek- Big Sandy 115 Kilovolt Transmission Line Structure Replacements - Last Chance Fire CX(s) Applied: B4.13 Date: 08/31/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  1. CX-012083: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rosedale-Willowby-Kiowa Creek 115-Kilovolt Transmission Line Wood H-Structure Replacement CX(s) Applied: B1.3 Date: 04/10/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  2. CX-012213: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Boysen-Thermopolis 115 Kilovolt Transmission Line Structure Replacement Project, Hot Springs and Fremont Counties, Wyoming CX(s) Applied: B1.3 Date: 05/16/2014 Location(s): Wyoming, Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  3. CX-011857: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer-Cheyenne North/South 115 Kilovolt Transmission Line Structure Replacement, Laramie County, Wyoming CX(s) Applied: B4.13 Date: 01/28/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  4. CX-005936: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Erie to Terry Street and Lyons to Longmont Northwest 115 Kilovolt Transmission Line Structure Replacements, Boulder and Broomfield Counties, ColoradoCX(s) Applied: B4.6Date: 05/16/2011Location(s): Boulder County, ColoradoOffice(s): Western Area Power Administration-Rocky Mountain Region

  5. CX-010884: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Gunnison-Salida 115-Kilovolt Pole Installation and Site Road Maintenance, Saquache County, Colorado CX(s) Applied: B1.3 Date: 07/31/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  6. CX-009803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Western's Power Marketing Operations Center New Fiber Optic Cable Installation CX(s) Applied: B1.31, B2.2, B4.7 Date: 01/16/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  7. CX-005937: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Boyd-Valley Transmission Line Optical Ground Wire Fiber Optic Installation, Larimer County, ColoradoCX(s) Applied: B4.7Date: 05/18/2011Location(s): Larimer County, ColoradoOffice(s): Western Area Power Administration-Rocky Mountain Region

  8. CX-006244: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Craig-Bears Ears-Hayden Substations Fiber Optic and Pole Installation, Moffat and Routt Counties, ColoradoCX(s) Applied: B4.6, B4.7Date: 05/17/2011Location(s): Moffat, ColoradoOffice(s): Western Area Power Administration-Rocky Mountain Region

  9. CX-008783: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fiber Optic Installation at the Stegall 230 Kilovolt Substation Scotts Bluff County, Nebraska CX(s) Applied: B4.7 Date: 06/20/2012 Location(s): Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  10. CX-010888: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Great Cut-McPhee 12.5-Kilovolt Fiber Optic Line Replacement CX(s) Applied: B1.3, B4.7 Date: 08/08/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  11. CX-012073: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big George-Heart Mountain 69-Kilovolt Transmission Line Glendale Tap Replacement (Amended) CX(s) Applied: B4.13 Date: 05/01/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  12. CX-011859: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big George-Heart Mountain 69 Kilovolt Transmission Line Glendale Tap Replacement, Park County, Wyoming CX(s) Applied: B4.6 Date: 01/21/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  13. CX-012075: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cheyenne-Snowy Range 230-Kilovolt Central Rig Upgrade Eaglenet Communications Cable Interconnection CX(s) Applied: B4.7 Date: 02/10/2014 Location(s): Wyoming, Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  14. CX-004456: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Boysen-Copper Mountain Structure 98/1 Replacement Project, Fremont County, WyomingCX(s) Applied: B1.3, B4.6Date: 11/10/2010Location(s): Fremont County, WyomingOffice(s): Western Area Power Administration-Rocky Mountain Region

  15. CX-012074: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Canyon City West-Midway 230-Kilovolt Transmission Line Safety Marker Ball Installation CX(s) Applied: B.13 Date: 04/07/2014 Location(s): Colorado, Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  16. CX-008403: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Multiple Structure Replacement Flaming Gorge to Vernal No. 1 138 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 03/29/2012 Location(s): Utah Offices(s): Western Area Power Administration-Rocky Mountain Region

  17. CX-012352: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Flaming Gorge Microwave Site Communications Building Access Road Repairs, Daggett County, Utah (Amended) CX(s) Applied: B1.3 Date: 06/03/2014 Location(s): Utah Offices(s): Western Area Power Administration-Rocky Mountain Region

  18. CX-008793: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gore Pass to Muddy Pass: Single Pole and Multiple Cross Arm Replacements Grand County, Wyoming CX(s) Applied: B1.3, B4.6 Date: 09/16/2011 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  19. CX-011620: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Terry Ranch Road Substation (Amended) CX(s) Applied: B1.24, B4.1, B4.11 Date: 12/04/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  20. CX-008389: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Estes-Pole Hill and Pole Hill-Flatiron 115 Kilovolt Transmission Lines CX(s) Applied: B1.3 Date: 03/09/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  1. CX-012353: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Green Mountain-Kremmling 69-kilovolt Transmission Line Maintenance, Grand and Summit Counties, Colorado CX(s) Applied: B1.3 Date: 07/02/2014 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  2. CX-008396: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Shiprock-Four Corners 345 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 04/13/2012 Location(s): New Mexico Offices(s): Western Area Power Administration-Rocky Mountain Region

  3. CX-012356: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lovell-Yellowtail No. 1 115-kilovolt Transmission Line Culvert Replacement Project, Big Horn County, Wyoming CX(s) Applied: B1.3 Date: 07/01/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  4. CX-012349: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Gore Pass-Hayden 138-kilovolt Transmission Line, Grand and Routt Counties, Colorado CX(s) Applied: B1.3 Date: 06/02/2014 Location(s): Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  5. CX-010108: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Curecanti-Crystal, 115 Kilovolt Transmission Line Danger Tree and Vegetation Management CX(s) Applied: B1.3 Date: 04/25/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  6. CX-012351: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Green Mountain-Blue Ridge Repeater 2.4-kilovolt Distribution Line (Amended), Grand County, Colorado CX(s) Applied: B1.3 Date: 06/23/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  7. CX-012347: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Craig-Rifle 230-kilovolt Transmission Line, Moffat, Rio Blanco, and Garfield Counties, Colorado CX(s) Applied: B1.3 Date: 06/02/2014 Location(s): Colorado, Colorado, Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  8. CX-012217: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deering Lake-Eckley 115 Kilovolt Transmission Line Structure Replacements, Yuma County, Colorado CX(s) Applied: B1.3 Date: 05/19/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  9. CX-012350: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Danger Tree Management on Gore Pass-Kremmling 138-kilovolt Transmission Line (Amended), Grand County, Colorado CX(s) Applied: B1.3 Date: 07/01/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  10. CX-010107: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Curecanti-Morrow Point 230 Kilovolt (kV) and 12.47-kV Transmission Lines Access Road Maintenance CX(s) Applied: B1.3 Date: 04/12/2013 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  11. CX-012214: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Copper Mountain-Pilot Butte 34.5 Kilovolt Transmission Line Structure Pole Replacement Project, Fremont County, Wyoming CX(s) Applied: B1.3 Date: 05/05/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  12. CX-005848: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    optic cable would replace the overhead groundwire (OHGW) on the Midway-Rocky Ford No.1 transmission towers. The fiber would span from a tower in the Midway Substation yard to...

  13. CX-005942: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    of Most Promising Sequestration Formations in the Rocky Mountain Region - DrillingCoring Actions CX(s) Applied: B3.1, B3.8 Date: 06042011 Location(s): Craig,...

  14. CX-011206: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Maintenance CX(s) Applied: B1.3 Date: 08302013 Location(s): Colorado, Colorado, New Mexico Offices(s): Western Area Power Administration-Rocky Mountain Region Western Area Power...

  15. The Department of Energy`s Rocky Flats Plant: A guide to record series useful for health-related research. Volume I, introduction

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This guide consists of seven volumes which describe records useful for conducting health-related research at the DOE`s Rocky Flats Plant. Volume I is an introduction, and the remaining six volumes are arranged by the following categories: administrative and general, facilities and equipment, production and materials handling, waste management, workplace and environmental monitoring, and employee occupational exposure and health. Volume I briefly describes the Epidemiologic Records Project and provides information on the methodology used to inventory and describe the records series contained in subsequent volumes. Volume II describes records concerning administrative functions and general information. Volume III describes records series relating to the construction and routine maintenance of plant buildings and the purchase and installation of equipment. Volume IV describes records pertaining to the inventory and production of nuclear materials and weapon components. Records series include materials inventories, manufacturing specifications, engineering orders, transfer and shipment records, and War Reserve Bomb Books. Volume V describes records series pertaining to the storage, handling, treatment, and disposal of radioactive, chemical, or mixed materials produced or used at Rocky Flats. Volume VI describes records series pertaining to monitoring of the workplace and of the environment outside of buildings onsite and offsite. Volume VII describes records series pertaining to the health and occupational exposures of employees and visitors.

  16. Rocky Mountain's Home page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome toResearchInnovation protecting

  17. About Rocky Mountain Region

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects of GlobalASCRAbigailAboutquestions fromAbout

  18. Rocky Mountain Contact Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »SubmitterJ. NorbyN.Rocks Rocks Rocks have

  19. Rocky Mountain Customers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar HomePromisingStories »SubmitterJ. NorbyN.Rocks Rocks Rocks have RM Home

  20. Cleanup at Rocky Flats

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of WesternVail Global Energy Forum Dr.2Sites

  1. Evaluation of S-101 course Supervisors' orientation to occupational safety in DOE'' taught at Rocky Flats, Colorado, April 23--May 2, 1991

    SciTech Connect (OSTI)

    Vinther, R W

    1991-07-01T23:59:59.000Z

    This report summarizes trainee evaluations for the DOE Safety Training Institute's course, Supervisors Orientation to Occupational Safety in DOE,'' which was conducted twice at the Rocky Flats facility between April 23, 1991 and May 2, 1991. The first part of the report summarizes the quantitative course evaluations that trainees provided upon completion of the course and provides a transcript of the trainees written comments in Appendices A and B. The second part summarizes results from the final examination designed to measure the knowledge gained from the course. The third part of the report summarizes course modifications and recommendations for improvement. Numeric course ratings were generally positive and show that the course material and instruction was very effective. Written comments supported the positive numeric ratings. The course content and knowledge gained by the trainees exceeded most of the students expectations of the course. Results from the final examination showed that students gained appropriate knowledge from the course.

  2. SIMULATION MODEL ANALYSIS OF THE MOST PROMISING GEOLOGIC SEQUESTRATION FORMATION CANDIDATES IN THE ROCKY MOUNTAIN REGION, USA, WITH FOCUS ON UNCERTAINTY ASSESSMENT

    SciTech Connect (OSTI)

    Lee, Si-Yong; Zaluski, Wade; Will, Robert; Eisinger, Chris; Matthews, Vince; McPherson, Brian

    2013-09-01T23:59:59.000Z

    The purpose of this report is to report results of reservoir model simulation analyses for forecasting subsurface CO2 storage capacity estimation for the most promising formations in the Rocky Mountain region of the USA. A particular emphasis of this project was to assess uncertainty of the simulation-based forecasts. Results illustrate how local-scale data, including well information, number of wells, and location of wells, affect storage capacity estimates and what degree of well density (number of wells over a fixed area) may be required to estimate capacity within a specified degree of confidence. A major outcome of this work was development of a new workflow of simulation analysis, accommodating the addition of “random pseudo wells” to represent virtual characterization wells.

  3. Evaluation of habitat use by Rocky Mountain elk (Cervus elaphus nelsoni) in north-central New Mexico using global positioning system radio collars

    SciTech Connect (OSTI)

    Biggs, J.; Bennett, K.; Fresquez, P.R.

    1997-04-01T23:59:59.000Z

    In 1996 the authors initiated a study to identify habitat use in north-central New Mexico by Rocky Mountain elk (Cervus elaphus nelsoni) using global positioning system (GPS) radio collars. They collared six elk in the spring of 1996 with GPS radio collars programmed to obtain locational fixes every 23 h. Between April 1, 1996 and January 7, 1997, they collected >1,200 fixes with an approximately 70% observation rate. They have interfaced GPS locational fixes of elk and detailed vegetation maps using the geographical information system to provide seasonal habitat use within mountainous regions of north-central New Mexico. Based on habitat use and availability analysis, use of grass/shrub and pinon/juniper habitats was generally higher than expected during most seasons and use of forested habitats was lower than expected. Most of the collared elk remained on LANL property year-round. The authors believe the application of GPS collars to elk studies in north-central New Mexico to be a more efficient and effective method than the use of VHF (very-high frequency) radio collars.

  4. Elements of environmental concern in the 1990 Clean Air Act Amendments: A perspective of Fort Union coals in northern Rocky Mountains and Great Plains region

    SciTech Connect (OSTI)

    Stricker, G.D.; Ellis, M.E.; Flores, R.M.; Bader, L.R.

    1998-07-01T23:59:59.000Z

    The elements of environmental concern (EECs) named in the 1990 Clean Air Act Amendments include 12 trace elements consisting of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium. Although all these trace elements are potentially hazardous, arsenic, mercury, lead, and selenium may be targeted in forthcoming Environmental Protection Agency regulations. Fort Union coals contain all the trace elements named in the Clean Air Act Amendments; however, the presence and amounts of individual trace elements vary from basin to basin. In the Powder River Basin, the major producing Fort Union coals (Wyodak-Anderson and equivalent coal beds, and Rosebud coal bed) contain the lowest (or statistically as low) amounts of EECs of any of the coal producing basins (i.e., Williston, Hanna, and Green River) in the region. In addition, when the arithmetic means of these trace elements in Powder River Basin coals are compared to other regions in the conterminous US, they are lower than those of Cretaceous coals in Colorado Plateau, Tertiary lignites in the Gulf Coast, and Pennsylvanian coals in the Illinois and Appalachian Basins. Thus, elements of environmental concern are generally low in Fort Union coals in the Northern Rocky Mountains and Great Plains region, and particularly low in the Powder River Basin. Projected increase in production of Powder River Basin coals will, therefore, be of greater benefit to the nation than an increase in development and production of coals in other basins.

  5. Elements of environmental concern in the 1990 Clean Air Act amendments: A perspective of Fort Union coals in northern Rocky Mountains and Great Plains region

    SciTech Connect (OSTI)

    Stricker, G.D.; Ellis, M.E.; Flores, R.M.; Bader, L.R. [Geological Survey, Denver, CO (United States)

    1998-04-01T23:59:59.000Z

    The elements of environmental concern (EECs) named in the 1990 Clean Air Act Amendments include 12 trace elements consisting of antimony, arsenic, beryllium, cadmium, chromium, cobalt, lead, manganese, mercury, nickel, selenium, and uranium. Although all these trace elements are potentially hazardous, arsenic, mercury, lead, and selenium may be targeted in forthcoming Environmental Protection Agency regulations. Fort Union coals contain all the trace elements named in the Clean Air Act Amendments; however, the presence and amounts of individual trace elements vary from basin to basin. In the Powder River Basin, the major producing Fort Union coals (Wyodak-Anderson and equivalent coal beds, and Rosebud coal bed) contain the lowest (or statistically as low) amounts of EECs of any of the coal producing basins (i.e. Williston, Hanna, and Green River) in the region. In addition, when the arithmetic means of these trace elements in Powder River Basin coals are compared to other regions in the conterminous U.S., they are lower than those of Cretaceous coals in Colorado Plateau, Tertiary lignites in the Gulf Coast, and Pennsylvanian coals in the Illinois and Appalachian Basins. Thus, elements of environmental concern are generally low in Fort Union coals in the Northern Rocky Mountains and Great Plains region, and particularly low in the Powder River Basin. Projected increase in production of Powder River Basin coals will, therefore, be of greater benefit to the nation than an increase in development and production of coals in other basins.

  6. Numerical modeling of the Snowmass Creek paleoglacier, Colorado, and climate in the Rocky Mountains during the Bull Lake glaciation (MIS 6)

    SciTech Connect (OSTI)

    Eric M. Leonard; Mitchell A. Plummer; Paul E. Carrara

    2014-04-01T23:59:59.000Z

    Well-preserved moraines from the penultimate, or Bull Lake, glaciation of Snowmass Creek Valley in the Elk Range of Colorado present an opportunity to examine the character of the high-altitude climate in the Rocky Mountains during Marine Oxygen Isotope Stage 6. This study employs a 2-D coupled mass/energy balance and flow model to assess the magnitudes of temperature and precipitation change that could have sustained the glacier in mass-balance equilibrium at its maximum extent during the Bull Lake glaciation. Variable substrate effects on glacier flow and ice thickness make the modeling somewhat more complex than in geologically simpler settings. Model results indicate that a temperature depression of about 6.7°C compared with the present (1971–2000 AD) would have been necessary to sustain the Snowmass Creek glacier in mass-balance equilibrium during the Bull Lake glaciation, assuming no change in precipitation amount or seasonality. A 50% increase or decrease from modern precipitation would have been coupled with 5.2°C and 9.1°C Bull Lake temperature depressions respectively. Uncertainty in these modeled temperature depressions is about 1°C.

  7. An assessment and evaluation for recycle/reuse of contaminated process and metallurgical equipment at the DOE Rocky Flats Plant Site -- Building 865. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    An economic analysis of the potential advantages of alternatives for recycling and reusing equipment now stored in Building 865 at the Rocky Flats Plant (RFP) in Colorado has been conducted. The inventory considered in this analysis consists primarily of metallurgical and process equipment used before January 1992, during development and production of nuclear weapons components at the site. The economic analysis consists of a thorough building inventory and cost comparisons for four equipment dispositions alternatives. The first is a baseline option of disposal at a Low Level Waste (LLW) landfill. The three alternatives investigated are metal recycling, reuse with the government sector, and release for unrestricted use. This report provides item-by-item estimates of value, disposal cost, and decontamination cost. The economic evaluation methods documented here, the simple cost comparisons presented, and the data provided as a supplement, should provide a foundation for D&D decisions for Building 865, as well as for similar D&D tasks at RFP and at other sites.

  8. Site plan safety submission for sampling, monitoring, decontamination of GB agent - north plant Rocky Mountain Arsenal. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1988-10-01T23:59:59.000Z

    The scope of this site plan safety submission (SPSS), includes: sampling plan to determine if GB is a contaminant in equipment and piping used in the production and demil processes; monitoring plan for personnel involved in the sampling effort; decon plan for personnel, equipment, and piping should contamination be identified. Additional sections and appendices include: historical use of bldg 1501, 1503, 1504, 1506, 1601, 1602, 1603, 1606; chemical information on GB; safety requirements; medical requirements and first aid procedures; piping drawings; rma sop's for sampling, monitoring, and decon.

  9. Use of iodine surface geochemical surveys in the Lodgepole and Minnelusa plays, U.S. northern Rockies

    SciTech Connect (OSTI)

    Tedesco, S.A.; Bretz, S. [Atoka Geochemical Services Corp., Englewood, CO (United States)

    1995-06-05T23:59:59.000Z

    The use of surface geochemistry is becoming more prevalent in oil exploration, especially for focusing specific target areas for 2D and 3D seismic surveys. Presented here are two surface geochemical surveys utilizing the iodine method in delineating Upper Minnelusa sands of Permian age in the Powder River basin and Lodgepole Waulsortian-like mounds of Mississippian age in the Williston basin. Iodine is an indirect indicator of a petroleum accumulation at depth. Increases in iodine anomalies are caused by the presence of petroleum seepage in the upper part of the soil section. In the very shallow surface, less than 10 ft, a reaction occurs between hydrocarbons and iodine under sunlight forming inorganic compounds. The source of the iodine is either from minerals in the soil and/or from the atmosphere with ultraviolet light as the initiator of the reaction. Any iodine in the subsurface could not migrate far in the presence of hydrocarbons and due to its large molecular size. The compounds that form in the soil remain solid and are relatively difficult to remove. Any surface geochemical anomaly needs to be followed by seismic in order to provide a specific drilling target. If a surface geochemical survey is properly designed and implemented, when no anomaly is present, then to date regardless of the type of method used the results have been dry holes. If a surface geochemical anomaly is present, the intensity, areal extent, and quality of the anomaly cannot determine the economic viability of the accumulation of depth, but there is a significant increase in the success rate. The best utilization of these methods is to determine areas where there is no possibility of finding petroleum and focusing on areas that do. In the case of the Lodgepole and Minnelusa plays, surface geochemistry allows a low cost approach and helps focus and minimize 2D and 3D survey costs.

  10. Compilation of data on strippable Fort Union coals in the northern Rocky Mountains and Great Plains region: A CD-ROM presentation

    SciTech Connect (OSTI)

    Flores, R.M.; Bader, L.R.; Cavaroc, V.V. [Geological Survey, Denver, CO (United States)] [and others

    1998-04-01T23:59:59.000Z

    The Fort Union Formation and equivalent formations of Paleocene age in the northern Rocky Mountains and Great Plains region contain 14 strippable coals that yielded more than 30 percent of the 1.03 billion short tons produced in the United States in 1996. These thick, low contaminant, compliant coals, which are utilized by electric power plants in 28 States, are being assessed by the US Geological Survey. The minable coals occur in the Powder River Basin in Wyoming and Montana, Hanna, Carbon and Greater Green River Basins in Wyoming, and Williston Basin in North Dakota. Production during the past 25 years of thick, high quality Fort Union and equivalent coal beds and zones in the region increased from 40 to more than 340 million short tons. The Powder River Basin is projected to produce 416 million short tons of coal in 2015. Major production in the Powder River Basin is from the Wyodak-Anderson, Anderson-Dietz, and Rosebud coal deposits. Producing Fort Union coals in the Williston Basin include the Beulah-Zap, Hagel, and Harmon coal deposits. Producing Fort Union coals in the Greater Green River Basin are in five beds of the Deadman coal zone. Coal production in the Hanna Basin is from eight beds in the Ferris and Hanna Formations. Coals in the Powder River Basin and Williston Basin contain much less sulfur and ash than coals produced in other regions in the conterminous US. When sulfur values are compared as pounds of SO{sub 2} per million Btu (as received basis), Powder River Basin and Williston Basin coals have the lowest amounts of any coals in the conterminous US.

  11. Estimates of incremental oil recoverable by carbon dioxide flooding and related carbon dioxide supply requirements for flooding major carbonate reservoirs in the Permian, Williston, and other Rocky Mountain basins

    SciTech Connect (OSTI)

    Goodrich, J.H.

    1982-12-01T23:59:59.000Z

    The objective of the work was to build a solid engineering foundation (in) carbonate reservoirs for the purpose of extending the technology base in carbon dioxide miscible flooding. This report presents estimates of incremental oil recovery and related carbon dioxide supply requirements for selected carbonate reservoirs in the Permian, Williston, and Rocky Mountain Basins. The estimates presented here are based on calculations using a volumetric model derived and described in this report. The calculations utilized data developed in previous work. Calculations were made for a total of 279 reservoirs in the Permian, Williston, and several smaller Rocky Mountain Basins. Results show that the carbonate reservoirs of the Permian Basin constitute an order of magnitude larger target for carbon dioxide flooding than do all the carbonate reservoirs of the Williston and Rocky Mountain intermontane basins combined. Review of the calculated data in comparison with information from earlier work indicates that the figures given here are probably optimistic in that incremental oil volumes may be biased toward the high side while carbon dioxide supply requirements may be biased toward the low side. However, the information available would not permit further practical refinement of the calculations. Use of the incremental oil figures given for individual reservoirs as an official estimate is not recommended because of various uncertainties in individual field data. Further study and compilation of data for field projects as they develop appears warranted to better calibrate the calculation procedures and thus to develop more refined estimates of incremental oil potential and carbon dioxide supply requirements. 11 figures, 16 tables.

  12. A WRF Simulation of the Impact of 3-D Radiative Transfer on Surface Hydrology over the Rocky Mountains and Sierra Nevada

    SciTech Connect (OSTI)

    Liou, K. N.; Gu, Y.; Leung, Lai-Yung R.; Lee, W- L.; Fovell, R. G.

    2013-12-03T23:59:59.000Z

    We investigate 3-D mountains/snow effects on solar flux distributions and their impact on surface hydrology over the western United States, specifically the Rocky Mountains and Sierra Nevada. The Weather Research and Forecasting (WRF) model, applied at a 30 km grid resolution, is used in conjunction with a 3-D radiative transfer parameterization covering a time period from 1 November 2007 to 31 May 2008, during which abundant snowfall occurred. A comparison of the 3-D WRF simulation with the observed snow water equivalent (SWE) and precipitation from Snowpack Telemetry (SNOTEL) sites shows reasonable agreement in terms of spatial patterns and daily and seasonal variability, although the simulation generally has a positive precipitation bias. We show that 3-D mountain features have a profound impact on the diurnal and monthly variation of surface radiative and heat fluxes, and on the consequent elevation dependence of snowmelt and precipitation distributions. In particular, during the winter months, large deviations (3-DPP, in which PP denotes the plane-parallel approach) of the monthly mean surface solar flux are found in the morning and afternoon hours due to shading effects for elevations below 2.5 km. During spring, positive deviations shift to the earlier morning. Over mountaintops higher than 3 km, positive deviations are found throughout the day, with the largest values of 40-60Wm?2 occurring at noon during the snowmelt season of April to May. The monthly SWE deviations averaged over the entire domain show an increase in lower elevations due to reduced snowmelt, which leads to a reduction in cumulative runoff. Over higher elevation areas, positive SWE deviations are found because of increased solar radiation available at the surface. Overall, this study shows that deviations of SWE due to 3-D radiation effects range from an increase of 18%at the lowest elevation range (1.5-2 km) to a decrease of 8% at the highest elevation range (above 3 km). Since lower elevation areas occupy larger fractions of the land surface, the net effect of 3-D radiative transfer is to extend snowmelt and snowmelt-driven runoff into the warm season. Because 60-90% of water resources originate from mountains worldwide, the aforementioned differences in simulated hydrology due solely to 3-D interactions between solar radiation and mountains/snow merit further investigation in order to understand the implications of modeling mountain water resources, and these resources’ vulnerability to climate change and air pollution.

  13. Fort Union coals of the northern Rockies and Great Plains: A linchpin toward a new approach to national coal resource assessment

    SciTech Connect (OSTI)

    Flores, R.M.; Stricker, G.D. [Geological Survey, Denver, CO (United States)

    1996-06-01T23:59:59.000Z

    The U.S. Geological Survey recently initiated a 5-year program to assess the Nation`s coal resources, which emphasizes a new approach relating coal quantity and quality. One assessment region includes the northern Rocky Mountains and Great Plains of Wyoming, Montana, and North Dakota, which contains a vast expanse of Paleocene Fort Union coal-bearing rocks that yielded about 30% (>299 million short tons) of the total coal produced (1.03 billion short tons) in the U.S. for 1994. Production is from 14 coal beds/zones (Wyodak-Anderson, Anderson-Dietz, Rosebud, Beulah-Zap, Hagel, Harmon, Ferris Nos. 23, 24, 25, 31, 38, 39, Hanna No. 80, and Deadman seams) mined in the Hanna, Green River, Powder River, and Williston Basins. About 254 million short tons produced from 25 mines are from the Wyodak-Anderson, Anderson-Dietz, and Rosebud coal beds/zones in the Powder River Basin (PRB). These coals are considered as clean and low contaminant compliance coals containing less sulfur and ash (arithmetic mean for sulfur is 0.58% and ash is 7%, as-received basis) than coals produced from other regions in the conterminous U.S. Preliminary elemental analysis of coal samples from the PRB for those hazardous air pollutants (HAPs) named in the Amendments to the 1990 Clean Air Act (including Sb, As, Be, Cd, Cr, Co, Pb, Mn, Hg, Ni, Se, and U), indicates that PRB coals are lower in HAPs contents than other coals from within the region and also other regions in the U.S. Arithmetic means of HAPs contents of these coals are: Sb=0.35, As=3.4, Be=0.6, Cd=0.08, Cr=6.1, Co=1.6, Pb=3.6, Mn=23.5, Hg=0.09, Ni=4.6, Se=0.9, and U=1.1 (in ppm, as-received, and on a whole-coal basis). These coal-quality parameters will be used to delineate coal quantity of the 14 Fort Union coal beds/zones defined in the resource assessment for expanded utilization of coals into the next several decades as controlled by present and future environmental constraints.

  14. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS

    E-Print Network [OSTI]

    Williams, Kenneth Stuart

    factors of i = 1,...,t, j = 1,...,n-1, by n, we have nfAjm+i = (jmnf +nif -nf +n).-.(jmnf +nif) = (.(if - f +1) -j)...(nif - j) (modp), so that Multiplying both sides of this congruence by Bn = n(2n) .(tf n

  15. ROCKY MOUNTAIN OILFIELD TESTING CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2ROBERT

  16. ROCKY MOUNTAIN OILFIELD TESTING CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2ROBERTALLIED OIL

  17. ROCKY MOUNTAIN OILFIELD TESTING CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2ROBERTALLIED

  18. ROCKY MOUNTAIN OILFIELD TESTING CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is a2ROBERTALLIEDNOVERFLO

  19. ROCKY MOUNTAIN OILFIELD TESTING CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This is

  20. ROCKY MOUNTAIN OILFIELD TESTING CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This isAUTOMATED THREE-PHASE

  1. info disclosure-rocky mts

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South Valley Responsible DOE Office: Office of Environmental

  2. Rockies Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginia BlueRiverwoods,Rock SamplingRockdale is a village

  3. EMPOWERING DIGITAL SELF DETERMINATION

    E-Print Network [OSTI]

    Das, Rhiju

    : Communication and Digital Media 2. Data Context and Digital Personas 3. Personal Data: Use, ReuseEMPOWERING DIGITAL SELF DETERMINATION Symposium Summary Stanford University, Summer 2012 #12;#12;EMPOWERING DIGITAL SELF DETERMINATION Symposium, Stanford University, CA Summer, 2012 210 Panama Street

  4. Determining Reactor Neutrino Flux

    E-Print Network [OSTI]

    Jun Cao

    2012-03-08T23:59:59.000Z

    Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

  5. Gender determination in populus

    SciTech Connect (OSTI)

    McLetchie, D.N. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Biological Sciences; Tuskan, G.A. [Oak Ridge National Lab., TN (United States)

    1994-12-31T23:59:59.000Z

    Gender, the expression of maleness or femaleness, in dioecious plants has been associated with changes in morphology, physiology, ecological position, and commercial importance of several species, including members of the Salicaceae family. Various mechanisms have been proposed to explain the expression of gender in Salicaceae, including sex chromosomes, simple Mendelian genes, quantitative genes, environment, and genotype-by-environment interactions. Published reports would favor a genetic basis for gender. The objective of this study was to identify molecular markers associated with gender in a segregating family of hybrid poplars. Bulked segregant analysis and chi-squared analysis were used to test for the occurrence of sex chromosomes, individual loci, and chromosome ratios (i.e., ploidy levels) as the mechanisms for gender determination. Examination of 2488 PCR based RAPD markers from 1219 primers revealed nine polymorphic bands between male and female bulked samples. However, linkage analysis indicated that none of these markers were significantly associated with gender. Chisquared results for difference in male-to-female ratios between diploid and triploid genotypes also revealed no significant differences. These findings suggest gender is not controlled via sex chromosomes, simple Mendelian loci or ratios of autosome to gender-determining loci. It is possible that gender is determined genetically by regions of the genome not sampled by the tested markers or by a complex of loci operating in an additive threshold manner or in an epistatic manner. It is also possible that gender is determined environmentally at an early zygote stage, canalizing gender expression.

  6. A comparison of plume dispersion characteristics at RFP using different stability class determination methods

    SciTech Connect (OSTI)

    Jordan, H.; Peterson, V.L.

    1993-06-01T23:59:59.000Z

    In the course of recent calculations of population dose using Rocky Flats Plant (RFP) meteorological statistics for the last several years, we have discovered interesting associations. It is the intent of this paper to communicate these to other workers in the field. In order to determine the potential dose to a person at the RFP site boundary from a source of radioactive effluent, it is necessary to account for atmospheric dispersion of the effluent. Often, a bounding calculation, using a ``worst case`` meteorological condition, is performed. We were interested, however, in using a more typical, or likely, condition. To do so, we used data derived from measurements at the RFP meteorological tower. These measurements include 15 minute samples of wind speed, wind direction, and temperatures at 10 meters, 25 meters and 60 meters above ground. We took these data for the complete period for which they are quality assured, March, 1989 through January, 1993, and used them in a simple computer program to develop dose statistics by repeated application of Gaussian plume dispersion.

  7. Ultratrace determination of curium

    SciTech Connect (OSTI)

    Beitz, J.V.

    1995-02-01T23:59:59.000Z

    Development of a method for detection of curium at near single atom levels is being undertaken as a part of the Advanced Concepts Project at Argonne National Laboratory with funding from the US Department of Energy, Office of Arms Control and Nonproliferation. Ultratrace determination of curium, with the ability to quantify the fraction that is curium-242, provides a signature method of detecting clandestine reprocessing of recently irradiated uranium targets. Curium initially present in any of a variety of materials such as air filters, solid or liquid process waste, soil, flora, or fauna can be recovered via current chemical separations processing techniques. Using the ultratrace method being developed, such recovered curium will be quantified with thousand-fold higher sensitivity than the best currently available method which is alpha counting. This high sensitivity arises because, on average, a given trivalent curium (Cm{sup 3+}) ion can emit a very large number of fluorescence photons before alpha decay occurs.

  8. Significant Radionuclides Determination

    SciTech Connect (OSTI)

    Jo A. Ziegler

    2001-07-31T23:59:59.000Z

    The purpose of this calculation is to identify radionuclides that are significant to offsite doses from potential preclosure events for spent nuclear fuel (SNF) and high-level radioactive waste expected to be received at the potential Monitored Geologic Repository (MGR). In this calculation, high-level radioactive waste is included in references to DOE SNF. A previous document, ''DOE SNF DBE Offsite Dose Calculations'' (CRWMS M&O 1999b), calculated the source terms and offsite doses for Department of Energy (DOE) and Naval SNF for use in design basis event analyses. This calculation reproduces only DOE SNF work (i.e., no naval SNF work is included in this calculation) created in ''DOE SNF DBE Offsite Dose Calculations'' and expands the calculation to include DOE SNF expected to produce a high dose consequence (even though the quantity of the SNF is expected to be small) and SNF owned by commercial nuclear power producers. The calculation does not address any specific off-normal/DBE event scenarios for receiving, handling, or packaging of SNF. The results of this calculation are developed for comparative analysis to establish the important radionuclides and do not represent the final source terms to be used for license application. This calculation will be used as input to preclosure safety analyses and is performed in accordance with procedure AP-3.12Q, ''Calculations'', and is subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (DOE 2000) as determined by the activity evaluation contained in ''Technical Work Plan for: Preclosure Safety Analysis, TWP-MGR-SE-000010'' (CRWMS M&O 2000b) in accordance with procedure AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''.

  9. Rocky Mountain Power- Solar Incentive Program

    Broader source: Energy.gov [DOE]

    '''''Note: Applications for 2013 were accepted during a two-week period from January 15 to 5:00 PM through January 28, 2013. The program is now closed through the remainder of 2013. '''''

  10. Rocky Mountain Institute | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar PowerstoriesNrelPartnerType JumpJersey) Jump to: navigation, searchMountain

  11. Northern Rockies Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)References ↑ US CensusNortheastName}}} Province is situated in

  12. REVEGETATION OF THE ROCKY FLATS SITE, COLORADO

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket37963American |Purpose ThisRESORT

  13. Immobilization of Rocky Flats Graphite Fines Residue

    SciTech Connect (OSTI)

    Rudisill, T.S.

    1999-04-06T23:59:59.000Z

    The development of the immobilization process for graphite fines has proceeded through a series of experimental programs. The experimental procedures and results from each series of experiments are discussed in this report.

  14. Rocky Mountain Humane Investing | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm It isRockwall, Texas:Humane

  15. Rocky Ridge I | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm It isRockwall,Sector Wind energy

  16. Rocky Flats resumes shipments to WIPP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergy Innovation Portal Robust,RELEASE

  17. Rocky Mountain Research Station and LANL build

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0 Resource ProgramEnergy Innovation Portal Atech tool predicts

  18. Overview of Rocky Mountain Region's Capital Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002Optics GroupPlanning Workshop Overview of Western's Current

  19. ROCKY MOUNTAIN OILFIELD TESTING CENTER MICROTURBINE PROJECT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.OfficeNote: This isAUTOMATED

  20. Southern Rockies Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd JumpGTZHolland, Illinois:5717551° LoadingSoutheastSRF JumpRElecEnergy

  1. Overview of Rocky Mountain Region's Capital Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 HS Lovell - Big George 69 kV * Study Outcome - Loss of Lovell 69115 kV Transformer Big George - Heart Mtn. 69 kV Overloads Big George 69115 kV Transformer...

  2. U.S. Department of Energy Categorical Exclusion Determination Form

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICE OF CIVIL toRockyDECEMBER 20044

  3. Low-potential Amperometric Determination of Hydrogen Peroxide with a

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: VegetationEquipment Surfaces and InterfacesAdministration - RockyTemperatureEnergy InnovationBiomass

  4. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, Carol Maryanne (Aiken, SC); Pickett, John Butler (Aiken, SC); Brown, Kevin George (Augusta, GA); Edwards, Thomas Barry (Aiken, SC)

    1998-01-01T23:59:59.000Z

    A process for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, .DELTA.G.sub.p, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, .DELTA.G.sub.a, based upon the free energy associated with weak acid dissociation, .DELTA.G.sub.a.sup.WA, and accelerated matrix dissolution at high pH, .DELTA.G.sub.a.sup.SB associated with solution strong base formation, and determining a final hydration free energy, .DELTA.G.sub.f. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log.sub.10 (N C.sub.i (g/L))=a.sub.i +b.sub.i .DELTA.G.sub.f. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained.

  5. Method of determining glass durability

    DOE Patents [OSTI]

    Jantzen, C.M.; Pickett, J.B.; Brown, K.G.; Edwards, T.B.

    1998-12-08T23:59:59.000Z

    A process is described for determining one or more leachate concentrations of one or more components of a glass composition in an aqueous solution of the glass composition by identifying the components of the glass composition, including associated oxides, determining a preliminary glass dissolution estimator, {Delta}G{sub p}, based upon the free energies of hydration for the component reactant species, determining an accelerated glass dissolution function, {Delta}G{sub a}, based upon the free energy associated with weak acid dissociation, {Delta}G{sub a}{sup WA}, and accelerated matrix dissolution at high pH, {Delta}G{sub a}{sup SB} associated with solution strong base formation, and determining a final hydration free energy, {Delta}G{sub f}. This final hydration free energy is then used to determine leachate concentrations for elements of interest using a regression analysis and the formula log{sub 10}(N C{sub i}(g/L))=a{sub i} + b{sub i}{Delta}G{sub f}. The present invention also includes a method to determine whether a particular glass to be produced will be homogeneous or phase separated. The present invention is also directed to methods of monitoring and controlling processes for making glass using these determinations to modify the feedstock materials until a desired glass durability and homogeneity is obtained. 4 figs.

  6. Determining Cropland Share Rental Arrangements

    E-Print Network [OSTI]

    Dhuyvetter, Kevin C.; Kastens, Terry L.; Outlaw, Joe

    1999-06-23T23:59:59.000Z

    Many crop producers rely heavily on rented land in their farming operations. With this publication, they can learn more about determining crop shares and the principles of crop share leases....

  7. CX-010776: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor (ATR) Primary Coolant Leak Rate Determination System Equipment Replacement CX(s) Applied: B2.2 Date: 07/24/2013 Location(s): Idaho Offices(s): Nuclear Energy

  8. National Mining Association Experimental Determination

    E-Print Network [OSTI]

    National Mining Association Experimental Determination of Radon Fluxes over Water #12;Introduction research funded by the National Mining Association (NMA) regarding radon fluxes from water surfaces surfaces at uranium recovery operations are insignificant and approximate background soil fluxes for most

  9. Gender determination of avian embryo

    DOE Patents [OSTI]

    Daum, Keith A. (Idaho Falls, ID); Atkinson, David A. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    Disclosed is a method for gender determination of avian embryos. During the embryo incubation process, the outer hard shells of eggs are drilled and samples of allantoic fluid are removed. The allantoic fluids are directly introduced into an ion mobility spectrometer (IMS) for analysis. The resulting spectra contain the relevant marker peaks in the positive or negative mode which correlate with unique mobilities which are sex-specific. This way, the gender of the embryo can be determined.

  10. CX-011104: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-011104: Categorical Exclusion Determination Coupled Thermo-Mechanical and Photo-Chemical Degradation Mechanisms that Determine the Reliability and...

  11. CX-001473: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-001473: Categorical Exclusion Determination Direct Coal Liquefaction Process Development Date: 04022010 Location(s): Grand Forks, North...

  12. CX-011250: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-011250: Categorical Exclusion Determination Transforming Photovoltaic Installations Toward Dispatchable, Schedulable Energy Solutions CX(s) Applied:...

  13. CX-000771: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-000771: Categorical Exclusion Determination New York Revised Narrative Information Worksheet for Energy Efficiency Program for...

  14. CX-006275: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006275: Categorical Exclusion Determination Energy Audit; Efficiency Improvements; and Renewable Energy Installations; Township of...

  15. CX-001459: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-001459: Categorical Exclusion Determination Air Quality VIII: An International Conference on Carbon Management, Mercury, Trace Elements,...

  16. CX-004791: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-004791: Categorical Exclusion Determination Hydroelectric Facility Improvement Project? Automated Intake Cleaning Equipment and Materials...

  17. CX-001276: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-001276: Categorical Exclusion Determination Install Photovoltaic Roof System, Energy Efficiency Retrofits, Building Audits, and Hire a Committee...

  18. CX-012136: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-012136: Categorical Exclusion Determination Distributed Fiber Optic Arrays: Integrated Temperature and Seismic Sensing for Detection of Carbon...

  19. CX-011016: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011016: Categorical Exclusion Determination Distributed Fiber Optic Arrays: Integrated Temperature and Seismic Sensing for Detection of Carbon...

  20. CX-011013: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011013: Categorical Exclusion Determination Distributed Fiber Optic Arrays: Integrated Temperature and Seismic Sensing for Detection of Carbon...

  1. CX-011017: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011017: Categorical Exclusion Determination Distributed Fiber Optic Arrays: Integrated Temperature and Seismic Sensing for Detection of Carbon...

  2. CX-001714: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-001714: Categorical Exclusion Determination Vehicle Test Location at Bone Yard; National Renewable Energy Laboratory (NREL) Tracking Number...

  3. CX-005153: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005153: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - West Virginia University Research Corporation...

  4. CX-006226: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006226: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

  5. CX-000621: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    1: Categorical Exclusion Determination CX-000621: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Alternative Fuel...

  6. CX-003353: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    3: Categorical Exclusion Determination CX-003353: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

  7. CX-001996: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-001996: Categorical Exclusion Determination Oklahoma State Energy Program (SEP) American Recovery and Reinvestment Act (ARRA) - Washita...

  8. CX-004060: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-004060: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

  9. CX-001998: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-001998: Categorical Exclusion Determination Oklahoma State Energy Program (SEP) American Recovery and Reinvestment Act (ARRA) - Shawnee...

  10. CX-004730: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-004730: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

  11. CX-001096: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-001096: Categorical Exclusion Determination Oklahoma State Energy Office Energy Efficiency and Conservation Block Grant National...

  12. CX-007573: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    3: Categorical Exclusion Determination CX-007573: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

  13. CX-003498: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-003498: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Newman Memorial...

  14. CX-005432: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-005432: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

  15. CX-000619: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-000619: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Metropolitan Tulsa...

  16. CX-006227: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006227: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

  17. CX-008602: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-008602: Categorical Exclusion Determination Oklahoma State Energy Program- Oklahoma Municipal Power Authority Large Systems Request AO...

  18. CX-007412: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-007412: Categorical Exclusion Determination OKLAHOMA State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

  19. CX-009009: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009009: Categorical Exclusion Determination "Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

  20. CX-010176: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-010176: Categorical Exclusion Determination Radiation Heat Transfer and Turbulent Fluctuations in Internal Combustion Engines - Toward...

  1. CX-010175: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-010175: Categorical Exclusion Determination Radiation Heat Transfer and Turbulent Fluctuations in Internal Combustion Engines - Toward...

  2. CX-001608: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001608: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant City of Jacksonville: 6) Metropolitan Government Clean Transportation...

  3. CX-000669: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    69: Categorical Exclusion Determination CX-000669: Categorical Exclusion Determination Illinois Energy Conservation Plan for State Facilities - Capital Development Board Projects...

  4. CX-001074: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-001074: Categorical Exclusion Determination Chicago, Illinois American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block...

  5. CX-000670: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    70: Categorical Exclusion Determination CX-000670: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant State of Illinois Categorical Exclusion...

  6. CX-004469: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9: Categorical Exclusion Determination CX-004469: Categorical Exclusion Determination Forest County Potawatomi Community - Community Renewable Energy Deployment - Solar Hot Water...

  7. CX-002686: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    686: Categorical Exclusion Determination CX-002686: Categorical Exclusion Determination Forest County Potawatomi Community- Community Renewable Energy Deployment - Centralized...

  8. CX-001110: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-001110: Categorical Exclusion Determination Fracture Network and Fluid Flow Imaging for Engineered Geothermal Systems Applications from...

  9. CX-005022: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005022: Categorical Exclusion Determination Small Wind Turbine Regional Test Center, Canyon Texas; National Renewable Energy Laboratory Tracking...

  10. CX-003523: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003523: Categorical Exclusion Determination Small Wind Turbine Regional Test Center Kansas State University; National Renewable Energy Laboratory...

  11. CX-001424: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001424: Categorical Exclusion Determination Thermal-Hydrological-Mechanical-Chemical Modeling of Enhanced Geothermal System Reservoirs - Continuum through...

  12. CX-002132: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002132: Categorical Exclusion Determination Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below...

  13. CX-000616: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000616: Categorical Exclusion Determination Enhanced Wind Resource Assessment at Naval Station Newport; National Renewable Energy Laboratory...

  14. CX-008582: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-008582: Categorical Exclusion Determination Bay Area Photovoltaics Consortium, Photovoltaic (PV) Manufacturing Initiative - Core Subawards CX(s)...

  15. CX-001915: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    15: Categorical Exclusion Determination CX-001915: Categorical Exclusion Determination Green Vision Community Energy Program and Evergreen Municipal Energy Efficiency Program-...

  16. CX-003975: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination CX-003975: Categorical Exclusion Determination State Energy Program - American Recovery and Reinvestment Act Green Jobs Training Program -...

  17. CX-011555: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-011555: Categorical Exclusion Determination Managing Zirconium Chemistry and Phase Compatibility in Combined Process Separations for Minor Actinide...

  18. CX-009310: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009310: Categorical Exclusion Determination Optimization of Reservoir Storage Capacity in Different Depositional Environments (Rock...

  19. CX-009311: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009311: Categorical Exclusion Determination Optimization of Reservoir Storage Capacity in Different Depositional Environments (Champaign)...

  20. CX-005490: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005490: Categorical Exclusion Determination Thermal Analysis of Radioactive Materials by Thermagravimetric Analysis, Differential Scanning...

  1. CX-011320: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-011320: Categorical Exclusion Determination Continuous Regional Methane Emissions Estimates in Northern Pennsylvania Gas Field Using Atmospheric Inversions...

  2. CX-011319: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-011319: Categorical Exclusion Determination Continuous Regional Methane Emissions Estimates in Northern Pennsylvania Gas Field Using Atmospheric Inversions...

  3. CX-007854: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007854: Categorical Exclusion Determination Streamlining Solar Standards & Processes: The Southern California Rooftop Solar Challenge CX(s)...

  4. CX-004643: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-004643: Categorical Exclusion Determination Colorado State Energy Program American Recovery and Reinvestment Act - Renewable Ready Grant -...

  5. CX-004707: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-004707: Categorical Exclusion Determination Colorado State Energy Program American Recovery and Reinvestment Act - Commercial Buildings -...

  6. CX-006872: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006872: Categorical Exclusion Determination Colorado State Energy Program American Recovery and Reinvestment Act - Renewable Energy...

  7. CX-009383: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009383: Categorical Exclusion Determination Hybrid Rotor Compression for Multiphase and Liquids-Rich Wellhead Production Applications...

  8. CX-005745: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-005745: Categorical Exclusion Determination Low Cost High Concentration Photovoltaic Systems for Utility Power Generation? University of...

  9. CX-005385: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-005385: Categorical Exclusion Determination Low Cost High Concentration Photovoltaic Power Systems for Utility Power Generation -Sandia...

  10. CX-002611: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002611: Categorical Exclusion Determination Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate...

  11. CX-000462: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000462: Categorical Exclusion Determination Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate...

  12. CX-002609: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002609: Categorical Exclusion Determination Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate...

  13. CX-002612: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002612: Categorical Exclusion Determination Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate...

  14. Determining solar abundances using helioseismology

    E-Print Network [OSTI]

    H. M. Antia; Sarbani Basu

    2006-02-28T23:59:59.000Z

    The recent downward revision of solar photospheric abundances of Oxygen and other heavy elements has resulted in serious discrepancies between solar models and solar structure as determined through helioseismology. In this work we investigate the possibility of determining the solar heavy-element abundance without reference to spectroscopy by using helioseismic data. Using the dimensionless sound-speed derivative in the solar convection zone, we find that the heavy element abundance, Z, of 0.0172 +/- 0.002, which is closer to the older, higher value of the abundances.

  15. CX-008738: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Microstructure and Chemical State Changes in Ion-Irradiated Fuels and Structural Components with a High Kinetic Energy Electron Detector – Illinois Institute of Technology CX(s) Applied: B3.6 Date: 05/22/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  16. Toeplitz determinants with merging singularities

    E-Print Network [OSTI]

    T. Claeys; I. Krasovsky

    2014-10-28T23:59:59.000Z

    We study asymptotic behavior for determinants of $n\\times n$ Toeplitz matrices corresponding to symbols with two Fisher-Hartwig singularities at the distance $2t\\ge0$ from each other on the unit circle. We obtain large $n$ asymptotics which are uniform for $0gas, and a conjecture of Fyodorov and Keating on the second moment of powers of the characteristic polynomials of random matrices.

  17. Method for determining gene knockouts

    DOE Patents [OSTI]

    Maranas, Costas D. (Port Matilda, PA); Burgard, Anthony R. (State College, PA); Pharkya, Priti (State College, PA)

    2011-09-27T23:59:59.000Z

    A method for determining candidates for gene deletions and additions using a model of a metabolic network associated with an organism, the model includes a plurality of metabolic reactions defining metabolite relationships, the method includes selecting a bioengineering objective for the organism, selecting at least one cellular objective, forming an optimization problem that couples the at least one cellular objective with the bioengineering objective, and solving the optimization problem to yield at least one candidate.

  18. Method for determining gene knockouts

    DOE Patents [OSTI]

    Maranas, Costa D; Burgard, Anthony R; Pharkya, Priti

    2013-06-04T23:59:59.000Z

    A method for determining candidates for gene deletions and additions using a model of a metabolic network associated with an organism, the model includes a plurality of metabolic reactions defining metabolite relationships, the method includes selecting a bioengineering objective for the organism, selecting at least one cellular objective, forming an optimization problem that couples the at least one cellular objective with the bioengineering objective, and solving the optimization problem to yield at least one candidate.

  19. Determining boiler-water makeup

    SciTech Connect (OSTI)

    Beecher, J.; Herman, K. [Ashland Chemical Co., Boonton, NJ (United States). Drew Industrial Div.

    1995-10-01T23:59:59.000Z

    In boiler operations, it is desirable to determine blowdown--and, thus, the feedwater`s concentration cycles--because it enables operators to calculate the theoretical concentrations of iron, copper or dispersant in the system. These calculations are important for maintaining boiler cleanliness. In practice, however, it isn`t always feasible to determine blowdown. For example, if the steam, feedwater and blowdown flows are not measured in a system, or if the measurements are not accurate, the blowdown and feedwater concentration cycles cannot be accurately determined. Also, if demineralized makeup water with very-low silica concentrations is mixed with essentially silica-free condensate, the ratio of silica in the boiler water to the silica in the feedwater may not yield accurate values for the concentration cycle. This method for calculating concentration cycles is accurate to within 5%, when the accuracy of the parameters measured are within the following limits: steam flow (2%); phosphate, residual (5%); micro calcium (50%); micro iron (25%); and phosphate, feed (10%).

  20. Price determination for breeding bulls

    E-Print Network [OSTI]

    Namken, Jerry Carl

    1987-01-01T23:59:59.000Z

    of Oammittee) Ra A. ietrzch C. J ~) Daru. I (Heai of August l987 Price Detezlainatian for Breeding Bulls. (August 1987) Jerry Carl Namkan, B. S. , Texas A&M University; Chair of Advisory Committee: Dr. Donald E. Ferris A study using two different data... sets was conducted to determine the factors affecting the price of zmg~ Hereford hulls. In the first data set, both ~ and lagged national ~ feeder steer, utility cow, and crude oil prices, and net farm income were analyzed in a regzmsion procedure...

  1. Crystal face temperature determination means

    DOE Patents [OSTI]

    Nason, D.O.; Burger, A.

    1994-11-22T23:59:59.000Z

    An optically transparent furnace having a detection apparatus with a pedestal enclosed in an evacuated ampule for growing a crystal thereon is disclosed. Temperature differential is provided by a source heater, a base heater and a cold finger such that material migrates from a polycrystalline source material to grow the crystal. A quartz halogen lamp projects a collimated beam onto the crystal and a reflected beam is analyzed by a double monochromator and photomultiplier detection spectrometer and the detected peak position in the reflected energy spectrum of the reflected beam is interpreted to determine surface temperature of the crystal. 3 figs.

  2. Determining $?$ from cluster correlation function

    E-Print Network [OSTI]

    A. Kashlinsky

    1998-06-17T23:59:59.000Z

    It is shown how data on the cluster correlation function can be used in order to reconstruct the density of the pregalactic density field on the cluster mass scale. The method is applied to the data on the cluster correlation amplitude -- richness dependence. The spectrum of the recovered density field has the same shape as the density field derived from data on the galaxy correlation function which is measured as function of linear scales. Matching the two amplitudes relates the mass to the comoving scale it contains and thereby leads to a direct determination of $\\Omega$. The resultant density parameter turns out to be $\\Omega$=0.25.

  3. Structure determination of enterovirus 71

    SciTech Connect (OSTI)

    Plevka, Pavel; Perera, Rushika; Cardosa, Jane; Kuhn, Richard J.; Rossmann, Michael G. (Purdue); (Sentinext)

    2013-02-20T23:59:59.000Z

    Enterovirus 71 is a picornavirus that causes hand, foot and mouth disease but may induce fatal neurological illness in infants and young children. Enterovirus 71 crystallized in a body-centered orthorhombic space group with two particles in general orientations in the crystallographic asymmetric unit. Determination of the particle orientations required that the locked rotation function excluded the twofold symmetry axes from the set of icosahedral symmetry operators. This avoided the occurrence of misleading high rotation-function values produced by the alignment of icosahedral and crystallographic twofold axes. Once the orientations and positions of the particles had been established, the structure was solved by molecular replacement and phase extension.

  4. CX-003701: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    701: Categorical Exclusion Determination CX-003701: Categorical Exclusion Determination Bio-Diesel Cellulosic Ethanol Research Project CX(s) Applied: A9 Date: 09162010...

  5. CX-008797: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    797: Categorical Exclusion Determination CX-008797: Categorical Exclusion Determination Coal Pile Basin Project CX(s) Applied: B1.29 Date: 06042012 Location(s): Tennessee...

  6. CX-009105: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009105: Categorical Exclusion Determination 284-H Track Coal Hopper Pit Modifications CX(s) Applied: B1.28 Date: 08292012 Location(s): South...

  7. CX-001500: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001500: Categorical Exclusion Determination Forrest County Geothermal Energy Project CX(s) Applied: B3.1, A9 Date: 04012010 Location(s): Forrest County,...

  8. CX-000940: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000940: Categorical Exclusion Determination Distributed Generation Wind Power at Navy Sites - Second Meteorological tower at Naval Station Newport, Rhode Island;...

  9. CX-012001: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    01: Categorical Exclusion Determination CX-012001: Categorical Exclusion Determination Meter Installation at Fossil Lake Solar Project CX(s) Applied: B1.7 Date: 04242014...

  10. CX-012193: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-012193: Categorical Exclusion Determination "Slatt Substation Meter and Communication Equipment Installation CX(s) Applied: B1.7 Date: 05052014...

  11. CX-000016: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000016: Categorical Exclusion Determination Ross-Lexington 1 Meter Project CX(s) Applied: B3.1 Date: 12172009 Location(s): Vancouver, Washington...

  12. CX-010133: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-010133: Categorical Exclusion Determination Establish Digital Density Meter Analytical Capability in 735-A, D-wing CX(s) Applied: B3.6 Date: 03112013...

  13. CX-010740: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-010740: Categorical Exclusion Determination Integration of Behind-the-Meter Photovoltaic Fleet Forecasts into Utility Grid System Operations CX(s) Applied: A9,...

  14. CX-000374: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000374: Categorical Exclusion Determination Novel Sorbents for Emission Control from Coal Combustion CX(s) Applied: B3.6 Date: 12112009 Location(s):...

  15. CX-004126: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-004126: Categorical Exclusion Determination Machine Shop Equipment Burn CX(s) Applied: B1.12 Date: 08022010 Location(s): New Mexico...

  16. CX-008803: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008803: Categorical Exclusion Determination Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05142012 Location(s): Tennessee...

  17. CX-006593: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-006593: Categorical Exclusion Determination Vermont Biofuels Initiative: Renewable Energy Resources CDP-09 CX(s) Applied: B5.1 Date: 08292011 Location(s):...

  18. CX-011482: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011482: Categorical Exclusion Determination Obtain soil samples for potential D-Area borrow sources CX(s) Applied: B6.1 Date: 11072013...

  19. CX-004198: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-004198: Categorical Exclusion Determination Lurance Canyon Burn Site Soil and Groundwater Site Characterization CX(s) Applied: B3.1 Date: 06142010 Location(s):...

  20. CX-008632: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008632: Categorical Exclusion Determination Sampling of Soil Vapor Extraction Wells at the Western Sector Dynamic Underground Stripping System CX(s)...

  1. CX-005672: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    672: Categorical Exclusion Determination CX-005672: Categorical Exclusion Determination Energy Systems Integration Facility Excavation Soil Stockpile CX(s) Applied: B1.15 Date: 04...

  2. CX-006710: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006710: Categorical Exclusion Determination Binary Power Unit Test (Recurrent Engineering LLC, Geothermal Test) CX(s) Applied: B5.1 Date: 08...

  3. CX-009133: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009133: Categorical Exclusion Determination New York Program Year 2012 Formula Grants - State Energy Program CX(s) Applied: A9, A11 Date:...

  4. CX-000935: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000935: Categorical Exclusion Determination Onondaga County, New York Energy Efficiency and Conservation Block Grant - American Recovery and Reinvestment Act...

  5. CX-002167: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002167: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  6. CX-002168: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002168: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  7. CX-001088: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-001088: Categorical Exclusion Determination City of New York American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant...

  8. CX-006748: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006748: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  9. CX-007020: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-007020: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

  10. CX-001403: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-001403: Categorical Exclusion Determination West New York Energy Efficiency Projects CX(s) Applied: B5.1 Date: 04092010 Location(s): West New...

  11. CX-001260: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-001260: Categorical Exclusion Determination Energy Audit, Revolving Loan Program, Mortgage Buy-Down Program, Energy Efficiency Retrofits,...

  12. CX-003761: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003761: Categorical Exclusion Determination Ramgen Supersonic Shock Wave Compression and Engine Technology CX(s) Applied: B3.6 Date: 09032010 Location(s):...

  13. CX-009134: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    34: Categorical Exclusion Determination CX-009134: Categorical Exclusion Determination Wave Energy Technology- New Zealand Multi-Mode Wave Energy Converter Advancement Project...

  14. CX-005120: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005120: Categorical Exclusion Determination Wavebob Advanced Wave Energy Conversion Project CX(s) Applied: A9, B3.6 Date: 01272011 Location(s):...

  15. CX-009553: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009553: Categorical Exclusion Determination Mild Biomass Liquefaction Process for Economic Production of Stabilized Refiner-Ready Bio-Oils...

  16. CX-003518: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003518: Categorical Exclusion Determination Energy from Biomass Research and Technology Transfer Program CX(s) Applied: B3.6 Date: 08232010...

  17. CX-007003: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-007003: Categorical Exclusion Determination Missile System Low-Earth Orbit Nanosatellite Integrated Defense Autonomous System Component Development CX(s)...

  18. CX-004926: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    926: Categorical Exclusion Determination CX-004926: Categorical Exclusion Determination Radioactive Waste Management Complex ? Analytical Laboratory Operations CX(s) Applied: B3.1...

  19. CX-000903: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    903: Categorical Exclusion Determination CX-000903: Categorical Exclusion Determination Smart Grid Photovoltaic Pilot CX(s) Applied: B5.1 Date: 02242010 Location(s): Illinois...

  20. CX-009151: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009151: Categorical Exclusion Determination Simpson College Boiler Plant De-Centralization CX(s) Applied: B5.1 Date: 09242012 Location(s): Iowa...

  1. CX-005200: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-005200: Categorical Exclusion Determination Hull Offshore Wind Research and Development CX(s) Applied: A9 Date: 02162011 Location(s): Hull,...

  2. CX-002377: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-002377: Categorical Exclusion Determination Offshore Wind Technology Data Collection Project CX(s) Applied: A9 Date: 05132010...

  3. CX-007380: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007380: Categorical Exclusion Determination National Offshore Wind Energy Grid Interconnection Study CX(s) Applied: A9 Date: 10262011...

  4. CX-011651: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011651: Categorical Exclusion Determination Hazard Tree Removal Along the Prescott Peacock 230 Kilovolt Transmission Line CX(s) Applied: B1.3...

  5. CX-012077: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-012077: Categorical Exclusion Determination Danger Tree Management on Craig to Hayden 230-Kilovolt Transmission Line CX(s) Applied: B1.3 Date:...

  6. CX-005687: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    7: Categorical Exclusion Determination CX-005687: Categorical Exclusion Determination Tree Cutting Cheyenne Field Office Maintenance Area, Spring 2011 CX(s) Applied: B1.3 Date: 04...

  7. CX-005747: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005747: Categorical Exclusion Determination Biobased Materials Automotive Value Chain Market Development Analysis CX(s) Applied: A9 Date: 05042011...

  8. CX-002864: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    4: Categorical Exclusion Determination CX-002864: Categorical Exclusion Determination Harris County North Bayou Central Plant CX(s) Applied: B5.1 Date: 07012010 Location(s):...

  9. CX-004115: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    15: Categorical Exclusion Determination CX-004115: Categorical Exclusion Determination Harris County North Bayou Central Plant CX(s) Applied: B5.1 Date: 09242010 Location(s):...

  10. CX-000733: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000733: Categorical Exclusion Determination Detection and Production of Methane Hydrates CX(s) Applied: A9 Date: 01222010 Location(s): Austin,...

  11. CX-003805: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-003805: Categorical Exclusion Determination Co-Production of Electricity and Hydrogen Using a Novel Iron-Based Catalyst CX(s) Applied: A9...

  12. CX-006865: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006865: Categorical Exclusion Determination Use of Inedible Energy Crops for Production of Advanced Biofuels with the Mcgyan Process CX(s) Applied:...

  13. CX-005901: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005901: Categorical Exclusion Determination Ammonia Production from Electricity, Water, and Nitrogen CX(s) Applied: B3.6 Date: 05162011...

  14. CX-005054: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005054: Categorical Exclusion Determination Gas Hydrate Production Test (Phase III - AdministrativePlanningModeling Tasks) CX(s) Applied: A2,...

  15. CX-009710: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009710: Categorical Exclusion Determination Spring Creek - Wine County No. 1 Transmission Tower Relocation CX(s) Applied: B4.6 Date: 11292012...

  16. CX-000571: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-000571: Categorical Exclusion Determination Photovoltaic Panel Installation (Building 833, TA-I) CX(s) Applied: B5.1 Date: 12102009...

  17. CX-008563: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008563: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 06132012...

  18. CX-007873: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007873: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 01272012...

  19. CX-000653: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000653: Categorical Exclusion Determination Helios - Project: Photovoltaic Crystalline Module Assembly Plant CX(s) Applied: B5.1 Date: 01272010 Location(s):...

  20. CX-005993: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005993: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B5.1 Date: 05262011...

  1. CX-001393: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001393: Categorical Exclusion Determination High Penetration of Photovoltaic Generation - Award Number DE-EE0002060 Date: 03212010 Location(s): Arizona...

  2. CX-001654: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001654: Categorical Exclusion Determination Burlington County Photovoltaic (PV) System CX(s) Applied: B5.1 Date: 04092010 Location(s): County of Burlington,...

  3. CX-006491: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006491: Categorical Exclusion Determination Photovoltaic Manufacturing Consortium CX(s) Applied: B3.6 Date: 09012011 Location(s): Florida...

  4. CX-010855: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-010855: Categorical Exclusion Determination Development for Hydrogen Storage and Neutron Conversion Materials, Lab 152 CX(s) Applied: B3.6 Date: 07...

  5. CX-005204: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005204: Categorical Exclusion Determination Renewable Energy Research and Development CX(s) Applied: A9 Date: 02162011 Location(s): Nevada...

  6. CX-000199: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000199: Categorical Exclusion Determination Agricultural Renewable Energy Conversion Incentive Program CX(s) Applied: B5.1 Date: 11232009 Location(s): Arizona...

  7. CX-003378: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    378: Categorical Exclusion Determination CX-003378: Categorical Exclusion Determination Photovoltaic Solar Cell Fabrication Alkaline Texturing Process Improvement CX(s) Applied:...

  8. CX-007385: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-007385: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9...

  9. CX-011252: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination CX-011252: Categorical Exclusion Determination Concentrating Solar Power Heat Integration for Baseload Renewable Energy Deployment CX(s) Applied: A9 Date:...

  10. CX-009338: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-009338: Categorical Exclusion Determination Cost-Effective Treatment of Produced Water Using Co-Produced Energy Sources Phase II: Field Scale Demonstration and...

  11. CX-009340: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-009340: Categorical Exclusion Determination Cost-Effective Treatment of Produced Water Using Co-Produced Energy Sources Phase II: Field Scale Demonstration and...

  12. CX-009038: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-009038: Categorical Exclusion Determination Radiation-induced Ductility Enhancement in Amorphous Fe and Al2O3+TiO2 Nanostructured Coatings...

  13. CX-008745: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-008745: Categorical Exclusion Determination Equipment for a Radiation Detection and Measurements Laboratory for Education - University of Pittsburgh CX(s)...

  14. CX-003921: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003921: Categorical Exclusion Determination Mobile Sediment Analysis Laboratory CX(s) Applied: B3.6 Date: 09232010 Location(s): Morgantown,...

  15. CX-012114: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: Categorical Exclusion Determination CX-012114: Categorical Exclusion Determination Test Procedures for Measuring Energy Efficiency of Consumer Products and Industrial Equipment...

  16. CX-004163: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-004163: Categorical Exclusion Determination Mobile Meteorological Equipment CX(s) Applied: B3.1 Date: 08022010 Location(s): New Mexico...

  17. CX-003969: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-003969: Categorical Exclusion Determination Mobile Plutonium Facility (MPF); Set Up and Test Thermogravimetric Analyzer CX(s) Applied:...

  18. CX-010092: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-010092: Categorical Exclusion Determination Land Mobile Radio - Bi Directional Amplifier (BDA) Installation CX(s) Applied: B1.7 Date: 0321...

  19. CX-005109: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005109: Categorical Exclusion Determination Y589, Mobile Digital Radiography Identification System - Station CX(s) Applied: B1.15 Date: 0121...

  20. CX-000489: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000489: Categorical Exclusion Determination Locating Mobile Mini Office Buildings CX(s) Applied: B1.15 Date: 05052009 Location(s): Aiken, South...

  1. CX-006681: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006681: Categorical Exclusion Determination New Drilling Location in Section 29 CX(s) Applied: B3.1 Date: 12232009 Location(s): Casper,...

  2. CX-006682: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006682: Categorical Exclusion Determination New Drilling Location in Section 29 (Revision 1) CX(s) Applied: B3.7 Date: 06022010 Location(s):...

  3. CX-003888: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003888: Categorical Exclusion Determination Improved Drilling and Fracturing Fluids for Shale Gas Reservoirs CX(s) Applied: B3.6 Date: 09102010...

  4. CX-000855: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000855: Categorical Exclusion Determination 25A5208 - Low-contact Drilling Technology to Enable Economical Engineered Geothermal System Wells CX(s) Applied:...

  5. CX-009218: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009218: Categorical Exclusion Determination Replace Sparge Piping at Bryan Mound Raw Water Intake Structure CX(s) Applied: B1.3 Date: 09202012...

  6. CX-007666: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-007666: Categorical Exclusion Determination Addition of Pump, Piping, and Ion Exchange Column in Effluent Treatment Project CX(s) Applied: B2.5 Date: 11...

  7. CX-005159: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005159: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Indiana Geological Survey CX(s) Applied: A9,...

  8. CX-005156: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005156: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Lawrence Livermore National Laboratory CX(s)...

  9. CX-005154: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005154: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Kentucky CX(s) Applied: A9, A11,...

  10. CX-005151: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005151: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Wyoming CX(s) Applied: A9, A11...

  11. CX-004621: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    1: Categorical Exclusion Determination CX-004621: Categorical Exclusion Determination Red Cliff Band of Lake Superior Chippewa of Wisconsin - Commercial Building Energy Audits...

  12. CX-004622: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    22: Categorical Exclusion Determination CX-004622: Categorical Exclusion Determination Red Cliff Band of Lake Superior Chippewa of Wisconsin - Energy Efficiency and Conservation...

  13. CX-003789: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003789: Categorical Exclusion Determination Grandview-Red Mountain Number 1 Proposed Transmission Line Interconnection CX(s) Applied: B4.6 Date:...

  14. CX-006967: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006967: Categorical Exclusion Determination Mitigation of Syngas Cooler Plugging and Fouling CX(s) Applied: B3.6 Date: 09282011 Location(s): Salt...

  15. CX-000586: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000586: Categorical Exclusion Determination 25A1455 - Carbon Dioxide Capture with Enzyme Synthetic Analogue Date: 12152009 Location(s): Connecticut Office(s):...

  16. CX-003463: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003463: Categorical Exclusion Determination Carbon Dioxide Capture by Sub-Ambient Membrane Operation CX(s) Applied: A9, B3.6 Date: 08232010...

  17. CX-011391: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-011391: Categorical Exclusion Determination Municipal Complex Solar Power Project CX(s) Applied: B3.14 Date: 12102013 Location(s): New Jersey...

  18. CX-004374: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    74: Categorical Exclusion Determination CX-004374: Categorical Exclusion Determination Solar Electric Power for Nonsectarian Educational and Social CX(s) Applied: A9, B5.1 Date:...

  19. CX-005123: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-005123: Categorical Exclusion Determination Oklahoma Municipal Power Authority Large System Rebate Request I CX(s) Applied: B5.1 Date: 01...

  20. CX-006215: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    5: Categorical Exclusion Determination CX-006215: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Department of...

  1. CX-006005: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006005: Categorical Exclusion Determination Oklahoma Municipal Power Authority Large System Application Request P CX(s) Applied: B5.1...

  2. CX-005754: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005754: Categorical Exclusion Determination State Energy Program- Oklahoma Municipal Power Authority Large System Application Request O CX(s) Applied: B5.1...

  3. CX-004828: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-004828: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act-Oklahoma Municipal Power...

  4. CX-007904: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    4: Categorical Exclusion Determination CX-007904: Categorical Exclusion Determination Oklahoma Municipal Power Authority Large Systems Request AD CX(s) Applied: B5.19 Date: 0210...

  5. CX-000622: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    2: Categorical Exclusion Determination CX-000622: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Electric Vehicle Solar...

  6. CX-011783: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011783: Categorical Exclusion Determination Analytical Physics - Scanning Electron Microscope CX(s) Applied: B3.6 Date: 02192014 Location(s):...

  7. CX-004989: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-004989: Categorical Exclusion Determination Analytical Physics - Scanning Electron Microscope (SEM) CX(s) Applied: B3.6 Date: 01122011...

  8. CX-011324: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011324: Categorical Exclusion Determination Analytical Physics - Wavelength Dispersive X-Ray Fluorescence Spectroscopy CX(s) Applied: B3.6 Date: 10...

  9. CX-004269: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-004269: Categorical Exclusion Determination Analytical Physics - Thermal Analysis CX(s) Applied: B3.6 Date: 10202010 Location(s): Albany, Oregon...

  10. CX-011798: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011798: Categorical Exclusion Determination Analytical Physics - Thermal Analysis CX(s) Applied: B3.6 Date: 01302014 Location(s): Oregon...

  11. CX-011799: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011799: Categorical Exclusion Determination Analytical Physics - Transmission Electron Microscopy (TEM) CX(s) Applied: B3.6 Date: 01302014...

  12. CX-006459: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006459: Categorical Exclusion Determination Analytical Physics - Transmission Electron Microscopy (TEM) CX(s) Applied: B3.6 Date: 08082011...

  13. CX-008011: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-008011: Categorical Exclusion Determination Install EMSL Super-Computer Power Infrastructure CX(s) Applied: B1.7 Date: 06302011 Location(s): Washington...

  14. CX-009555: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009555: Categorical Exclusion Determination Assisting the Tooling and Machining Industry to Become Energy Efficient CX(s) Applied: A9 Date: 12102012...

  15. CX-000835: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000835: Categorical Exclusion Determination Wachs Cutter Tooling Station (4495) CX(s) Applied: B1.31 Date: 02112010 Location(s): Oak Ridge,...

  16. CX-005198: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005198: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9,...

  17. CX-005199: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005199: Categorical Exclusion Determination Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants CX(s) Applied: A9,...

  18. CX-001004: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001004: Categorical Exclusion Determination West Hackberry Site Security Detection Systems Upgrade (Install) CX(s) Applied: B2.2 Date: 03032010...

  19. CX-004414: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    414: Categorical Exclusion Determination CX-004414: Categorical Exclusion Determination Grants to Promote Mid-Size Renewables at Private and Government Buildings-Saint Mary's...

  20. CX-000301: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000301: Categorical Exclusion Determination Maryland Revision 1 - Grants to Promote Mid-size Renewables at Private & Government Buildings CX(s) Applied: A7,...

  1. CX-005350: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    350: Categorical Exclusion Determination CX-005350: Categorical Exclusion Determination Grants to Promote Mid-size Renewables at Private and Government Buildings - Savage River...

  2. CX-005824: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    4: Categorical Exclusion Determination CX-005824: Categorical Exclusion Determination Grants to Promote Mid-size Renewables at Private and Government Buildings - Ocean Landings...

  3. CX-004768: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-004768: Categorical Exclusion Determination State Energy Program - Grants to Promote Mid-Size Renewables at Private and Government Buildings CX(s) Applied:...

  4. CX-004709: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    09: Categorical Exclusion Determination CX-004709: Categorical Exclusion Determination Grants to Promote Midsize Renewables at Private and Government Building - Anne Arundel...

  5. CX-005253: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    53: Categorical Exclusion Determination CX-005253: Categorical Exclusion Determination Grants to Promote Mid-Size Renewables at Private and Government Buildings - Sempno 1, LLC...

  6. CX-004416: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    416: Categorical Exclusion Determination CX-004416: Categorical Exclusion Determination Grants to Promote Mid-Size Renewables at Private and Government Buildings - Talbot County...

  7. CX-007064: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    064: Categorical Exclusion Determination CX-007064: Categorical Exclusion Determination Grants to Promote Mid-size Renewables at Private and Government Buildings - Nautilus Solar...

  8. CX-001118: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-001118: Categorical Exclusion Determination Emergency Wood Pole Replacement at 59 Structures Located Along the Coolidge-Oracle 115-Kilovolt...

  9. CX-010725: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-010725: Categorical Exclusion Determination 2013 Ross Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 08192013 Location(s): Washington,...

  10. CX-006583: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    3: Categorical Exclusion Determination CX-006583: Categorical Exclusion Determination Wood Pole Replacement Along Portions of the Grand Coulee-Chief Joseph 1 and 2 230-Kilovolt...

  11. CX-006819: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-006819: Categorical Exclusion Determination Replace Aging Wood Poles on Trans Alta?s Centralia Tap to Chehalis-Covington No. 1 230-Kilovolt...

  12. CX-008693: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    693: Categorical Exclusion Determination CX-008693: Categorical Exclusion Determination Wood Pole Structure Replacements on the Chehalis-Centralia No. 2 115 Kilovolt Transmission...

  13. CX-010345: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-010345: Categorical Exclusion Determination North Bend District Wood Poles CX(s) Applied: B1.3 Date: 05092013 Location(s): Oregon, Oregon, Oregon...

  14. CX-006580: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    0: Categorical Exclusion Determination CX-006580: Categorical Exclusion Determination Wood Pole Replacement Along the Grand Coulee-Okanogan 2 115-Kilovolt Transmission Line CX(s)...

  15. CX-005846: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    46: Categorical Exclusion Determination CX-005846: Categorical Exclusion Determination Wood Pole Replacement and Minor Access Road Maintenance Along Various Transmission Line...

  16. CX-005967: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-005967: Categorical Exclusion Determination North Bend District Wood Poles: Wendson-Tahkenitch Number 1 and Tahkenitch-Reedsport Number 1 CX(s) Applied:...

  17. CX-003083: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    83: Categorical Exclusion Determination CX-003083: Categorical Exclusion Determination Wood Pole Replacement of Ross-Vancouver Shipyard Number 1, Structure 23 in Fog Chamber Dump...

  18. CX-010424: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-010424: Categorical Exclusion Determination Grand Coulee District Wood Replacement CX(s) Applied: B1.3 Date: 06072013 Location(s): Washington, Washington...

  19. CX-010732: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-010732: Categorical Exclusion Determination 2013 Spokane District Wood pole Replacement Projects CX(s) Applied: B1.3 Date: 07312013 Location(s): Washington,...

  20. CX-010166: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-010166: Categorical Exclusion Determination Wenatchee District Wood Pole Replacements CX(s) Applied: B1.3 Date: 03222013 Location(s): Washington,...