National Library of Energy BETA

Sample records for determination replace aging

  1. 10 CFR 830 Major Modification Determination for Emergency Firewater Injection System Replacement

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-05-01

    The continued safe and reliable operation of the ATR is critical to the Department of Energy (DOE) Office of Nuclear Energy (NE) mission. While ATR is safely fulfilling current mission requirements, a variety of aging and obsolescence issues challenge ATR engineering and maintenance personnel’s capability to sustain ATR over the long term. First documented in a series of independent assessments, beginning with an OA Environmental Safety and Health Assessment conducted in 2003, the issues were validated in a detailed Material Condition Assessment (MCA) conducted as a part of the ATR Life Extension Program in 2007.Accordingly, near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent sub-projects. The first project will replace the existent diesel-electrical bus (E-3), switchgear, and the fifty year old antiquated marine diesels with commercial power that is backed with safety-related emergency diesel generators (EDGs), switchgear, and uninterruptible power supply. The second project will replace the four, obsolete, original primary coolant pumps and motors. The third project, the subject of this major modification determination, will replace the current emergency firewater injection system (EFIS). The replacement water injection system will function as the primary emergency water injection system with the EFIS being retained as a defense-in-depth backup. Completion of this and the two other age-related projects (replacement of the ATR diesel bus (E-3) and switchgear and replacement of the existent aged primary coolant pumps and motors) will resolve major age-related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

  2. 10 CFR 830 Major Modification Determination for the ATR Diesel Bus (E-3) and Switchgear Replacement

    SciTech Connect (OSTI)

    Noel Duckwtiz

    2011-05-01

    Near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project, subject of this determination, will replace the existent diesel-electrical bus (E-3) and associated switchgear. More specifically, INL proposes transitioning ATR to 100% commercial power with appropriate emergency backup to include: • Provide commercial power as the normal source of power to the ATR loads currently supplied by diesel-electric power. • Provide backup power to the critical ATR loads in the event of a loss of commercial power. • Replace obsolescent critical ATR power distribution equipment, e.g., switchgear, transformers, motor control centers, distribution panels. Completion of this and two other age-related projects (primary coolant pump and motor replacement and emergency firewater injection system replacement) will resolve major age related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues make the project a major modification: 1. Evaluation Criteria #2 (Footprint change). The addition of a new PC-4 structure to the ATR Facility to house safety-related SSCs requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., structural qualification, fire suppression) to ensure no adverse impacts to the safety-related functions of the housed equipment. 2. Evaluation Criteria #3 (Change of existing process). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps requires careful attention and analysis to ensure it meets a project primary object to maintain or reduce CDF and does not negatively affect the efficacy of the currently approved strategy. 3. Evaluation Criteria #5 (Create the need for new or revised safety SSCs). The change to the strategy for providing continuous reliable power to the safety-related emergency coolant pumps, based on the pre-conceptual design, will require the addition of two quick start diesel generators, their associated power coordination/distribution controls, and a UPS to the list of safety-related SSCs. Similarly to item 1 above, the addition of these active SSCs to the list of safety-related SSCs and replacement of the E-3 bus requires careful attention to maintaining adherence to applicable engineering and nuclear safety design criteria (e.g., seismic qualification, isolation of redundant trains from common fault failures) to ensure no adverse impacts to the safety-related functions.

  3. 10 CFR 830 Major Modification Determination for Replacement of ATR Primary Coolant Pumps and Motors

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-05-01

    The continued safe and reliable operation of the ATR is critical to the Department of Energy (DOE) Office of Nuclear Energy (NE) mission. While ATR is safely fulfilling current mission requirements, a variety of aging and obsolescence issues challenge ATR engineering and maintenance personnel’s capability to sustain ATR over the long term. First documented in a series of independent assessments, beginning with an OA Environmental Safety and Health Assessment conducted in 2003, the issues were validated in a detailed Material Condition Assessment (MCA) conducted as a part of the ATR Life Extension Program in 2007.Accordingly, near term replacement of aging and obsolescent original ATR equipment has become important to ensure ATR capability in support of NE’s long term national missions. To that end, a mission needs statement has been prepared for a non-major system acquisition which is comprised of three interdependent subprojects. The first project will replace the existent diesel-electrical bus (E-3), switchgear, and the 50-year-old obsolescent marine diesels with commercial power that is backed with safety related emergency diesel generators, switchgear, and uninterruptible power supply (UPS). The second project, the subject of this major modification determination, will replace the four, obsolete, original primary coolant pumps (PCPs) and motors. Completion of this and the two other age-related projects (replacement of the ATR diesel bus [E-3] and switchgear and replacement of the existent emergency firewater injection system) will resolve major age-related operational issues plus make a significant contribution in sustaining the ATR safety and reliability profile. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification: 1. Evaluation Criteria #3 (Change of existing process). The proposed strategy for equipping the replacement PCPs with VFDs and having the PCPs also function as ECPs will require significant safety basis changes requiring DOE approval. 2. Evaluation Criteria #4 (Use of new technology). The use of VFD and VFD “pump catcher” technology for the PCPs is not currently in use and has not been previously formally reviewed/approved by DOE for ATR. It is noted that VFD technology has several decades of commercial use and experience. However, the ATR probabilistic risk assessment will have to be updated, reflecting the changes for supplying ECP flows including VFD reliability, to confirm that the proposed activity maintains or reduces the CDF for the ATR. 3. Evaluation Criteria #5 (Create the need for new or revised safety SSCs). It is expected that the proposed activity will result in a revised list of safety-related SSCs. Specifically, as currently proposed, the existing ECPs will be deleted from the list. The PCPs and their associated components, picking up the ECP function, will be classified as safety-related active Seismic Category I.

  4. 10 CFR 830 Major Modification Determination for Advanced Test Reactor RDAS and LPCIS Replacement

    SciTech Connect (OSTI)

    David E. Korns

    2012-05-01

    The replacement of the ATR Control Complex's obsolete computer based Reactor Data Acquisition System (RDAS) and its safety-related Lobe Power Calculation and Indication System (LPCIS) software application is vitally important to ensure the ATR remains available to support this national mission. The RDAS supports safe operation of the reactor by providing 'real-time' plant status information (indications and alarms) for use by the reactor operators via the Console Display System (CDS). The RDAS is a computer support system that acquires analog and digital information from various reactor and reactor support systems. The RDAS information is used to display quadrant and lobe powers via a display interface more user friendly than that provided by the recorders and the Control Room upright panels. RDAS provides input to the Nuclear Engineering ATR Surveillance Data System (ASUDAS) for fuel burn-up analysis and the production of cycle data for experiment sponsors and the generation of the Core Safety Assurance Package (CSAP). RDAS also archives and provides for retrieval of historical plant data which may be used for event reconstruction, data analysis, training and safety analysis. The RDAS, LPCIS and ASUDAS need to be replaced with state-of-the-art technology in order to eliminate problems of aged computer systems, and difficulty in obtaining software upgrades, spare parts, and technical support. The major modification criteria evaluation of the project design did not lead to the conclusion that the project is a major modification. The negative major modification determination is driven by the fact that the project requires a one-for-one equivalent replacement of existing systems that protects and maintains functional and operational requirements as credited in the safety basis.

  5. Power Plant Replacement Study

    SciTech Connect (OSTI)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University’s aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  6. Power Plant Replacement Study

    SciTech Connect (OSTI)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois Universitys aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  7. Power Plant Replacement Study

    SciTech Connect (OSTI)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self-funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois University's aging and failing circa 1925 central steam production plant. Twenty-three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  8. Power Plant Replacement Study

    SciTech Connect (OSTI)

    Reed, Gary

    2010-09-30

    This report represents the final report for the Eastern Illinois University power plant replacement study. It contains all related documentation from consideration of possible solutions to the final recommended option. Included are the economic justifications associated with the chosen solution along with application for environmental permitting for the selected project for construction. This final report will summarize the results of execution of an EPC (energy performance contract) investment grade audit (IGA) which lead to an energy services agreement (ESA). The project includes scope of work to design and install energy conservation measures which are guaranteed by the contractor to be self?funding over its twenty year contract duration. The cost recovery is derived from systems performance improvements leading to energy savings. The prime focus of this EPC effort is to provide a replacement solution for Eastern Illinois Universitys aging and failing circa 1925 central steam production plant. Twenty?three ECMs were considered viable whose net impact will provide sufficient savings to successfully support the overall project objectives.

  9. Energy Replacement Generation Tax Exemption

    Broader source: Energy.gov [DOE]

    Under the Energy Replacement Generation Tax Exemption, the following facilities are exempt from the replacement tax:

  10. Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants – Interim Study FY13

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Fifield, Leonard S.; Westman, Matthew P.; Ramuhalli, Pradeep; Pardini, Allan F.; Tedeschi, Jonathan R.; Jones, Anthony M.

    2013-09-27

    The most important criterion for cable performance is its ability to withstand a design-basis accident. With nearly 1000 km of power, control, instrumentation, and other cables typically found in an NPP, it would be a significant undertaking to inspect all of the cables. Degradation of the cable jacket, electrical insulation, and other cable components is a key issue that is likely to affect the ability of the currently installed cables to operate safely and reliably for another 20 to 40 years beyond the initial operating life. The development of one or more nondestructive evaluation (NDE) techniques and supporting models that could assist in determining the remaining life expectancy of cables or their current degradation state would be of significant interest. The ability to nondestructively determine material and electrical properties of cable jackets and insulation without disturbing the cables or connections has been deemed essential. Currently, the only technique accepted by industry to measure cable elasticity (the gold standard for determining cable insulation degradation) is the indentation measurement. All other NDE techniques are used to find flaws in the cable and do not provide information to determine the current health or life expectancy. There is no single NDE technique that can satisfy all of the requirements needed for making a life-expectancy determination, but a wide range of methods have been evaluated for use in NPPs as part of a continuous evaluation program. The commonly used methods are indentation and visual inspection, but these are only suitable for easily accessible cables. Several NDE methodologies using electrical techniques are in use today for flaw detection but there are none that can predict the life of a cable. There are, however, several physical and chemical ptoperty changes in cable insulation as a result of thermal and radiation damage. In principle, these properties may be targets for advanced NDE methods to provide early warning of aging and degradation. Examples of such key indicators include changes in chemical structure, mechanical modulus, and dielectric permittivity. While some of these indicators are the basis of currently used technologies, there is a need to increase the volume of cable that may be inspected with a single measurement, and if possible, to develop techniques for in-situ inspection (i.e., while the cable is in operation). This is the focus of the present report.

  11. Using naturally occurring radionuclides to determine drinking water age in a community water system

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Waples, James T.; Bordewyk, Jason K.; Knesting, Kristina M.; Orlandini, Kent A.

    2015-07-22

    Drinking water quality in a community water system is closely linked to the age of water from initial treatment to time of delivery. However, water age is difficult to measure with conventional chemical tracers; particularly in stagnant water, where the relationship between disinfectant decay, microbial growth, and water age is poorly understood. Using radionuclides that were naturally present in source water, we found that measured activity ratios of 90Y/90Sr and 234Th/238U in discrete drinking water samples of known age accurately estimated water age up to 9 days old (σest: ± 3.8 h, P < 0.0001, r2 = 0.998, n =more » 11) and 25 days old (σest: ± 13.3 h, P < 0.0001, r2 = 0.996, n = 12), respectively. Moreover, 90Y-derived water ages in a community water system (6.8 × 104 m3 d–1 capacity) were generally consistent with water ages derived from an extended period simulation model. Radionuclides differ from conventional chemical tracers in that they are ubiquitous in distribution mains and connected premise plumbing. The ability to measure both water age and an analyte (e.g., chemical or microbe) in any water sample at any time allows for new insight into factors that control drinking water quality.« less

  12. Radiation Source Replacement Workshop

    SciTech Connect (OSTI)

    Griffin, Jeffrey W.; Moran, Traci L.; Bond, Leonard J.

    2010-12-01

    This report summarizes a Radiation Source Replacement Workshop in Houston Texas on October 27-28, 2010, which provided a forum for industry and researchers to exchange information and to discuss the issues relating to replacement of AmBe, and potentially other isotope sources used in well logging.

  13. Using naturally occurring radionuclides to determine drinking water age in a community water system

    SciTech Connect (OSTI)

    Waples, James T.; Bordewyk, Jason K.; Knesting, Kristina M.; Orlandini, Kent A.

    2015-07-22

    Drinking water quality in a community water system is closely linked to the age of water from initial treatment to time of delivery. However, water age is difficult to measure with conventional chemical tracers; particularly in stagnant water, where the relationship between disinfectant decay, microbial growth, and water age is poorly understood. Using radionuclides that were naturally present in source water, we found that measured activity ratios of 90Y/90Sr and 234Th/238U in discrete drinking water samples of known age accurately estimated water age up to 9 days old (σest: ± 3.8 h, P < 0.0001, r2 = 0.998, n = 11) and 25 days old (σest: ± 13.3 h, P < 0.0001, r2 = 0.996, n = 12), respectively. Moreover, 90Y-derived water ages in a community water system (6.8 × 104 m3 d–1 capacity) were generally consistent with water ages derived from an extended period simulation model. Radionuclides differ from conventional chemical tracers in that they are ubiquitous in distribution mains and connected premise plumbing. The ability to measure both water age and an analyte (e.g., chemical or microbe) in any water sample at any time allows for new insight into factors that control drinking water quality.

  14. ARRANGEMENT FOR REPLACING FILTERS

    DOE Patents [OSTI]

    Blomgren, R.A.; Bohlin, N.J.C.

    1957-08-27

    An improved filtered air exhaust system which may be continually operated during the replacement of the filters without the escape of unfiltered air is described. This is accomplished by hermetically sealing the box like filter containers in a rectangular tunnel with neoprene covered sponge rubber sealing rings coated with a silicone impregnated pneumatic grease. The tunnel through which the filters are pushed is normal to the exhaust air duct. A number of unused filters are in line behind the filters in use, and are moved by a hydraulic ram so that a fresh filter is positioned in the air duct. The used filter is pushed into a waiting receptacle and is suitably disposed. This device permits a rapid and safe replacement of a radiation contaminated filter without interruption to the normal flow of exhaust air.

  15. Replacing Lightbulbs and Ballasts | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lighting Replacing Lightbulbs and Ballasts Replacing Lightbulbs and Ballasts Replace frequently used bulbs with more energy efficient options to save money and energy. Replace...

  16. CX-006496: Categorical Exclusion Determination | Department of Energy

    Office of Environmental Management (EM)

    42: Categorical Exclusion Determination CX-004842: Categorical Exclusion Determination Replacement of Los Alamos Neutron Science Center Operational Equipment CX(s) Applied: B1.3 Date: 12/01/2010 Location(s): New Mexico Office(s): Los Alamos Site Office As part of the Los Alamos Neutron Science Center (LANSCE) Risk Mitigation Project, Los Alamos National Laboratory proposes to refurbish critical operating programmatic equipment at the LANSCE facility at TA-53. The project would replace aging

  17. Nashville Gas treads carefully to replace pipe

    SciTech Connect (OSTI)

    1997-06-01

    The private gas utility, Nashville Gas, was responsible for replacing damaged or inadequate 2- and 4-inch steel gas lines beneath Music City, USA. The line replacements required either size for size or upsizing. The first choice was directional drilling, which was quickly determined to be unpractical because of rocky soil conditions. The second option was open trenching. Undoubtedly, trenching would mean having to contend with angry residents and tourists, since gas lines ran beneath yards, mature trees, sidewalks, roadways, and railways. In addition to the negative social factors, trenching would require additional funds for substantial landscaping and pavement replacement. It at all possible, a no-dig alternative was desired. Nashville Gas found Grundomat piercing tools which create a bore, then pushes pipe back through it. These same tools can simultaneously pull in pipe. These tools were customized for the Nashville project.

  18. WIPP Workers Perform Filter Replacement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 10, 2015 WIPP Workers Perform Filter Replacement As recovery operations at the Waste Isolation Pilot Plant continue, increased work activity in the underground results in higher levels of airborne salt dust, increasing the frequency with which filters are replaced. Last week, workers performed a filter replacement on WIPP's Underground Ventilation System. WIPP's ventilation system has two filter units. Each unit has 84 separate filters arranges in four layers- moderate efficiency

  19. Virent is Replacing Crude Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virent 2014 Virent is Replacing Crude Oil. Biomass 2014 July 30, 2014 Randy D. Cortright, ... Plants Partners & Investors Converting plant-based feedstocks to fuels and chemicals 75 ...

  20. Is it Cost-Effective to Replace Old Eddy-Current Drives? - Motor Tip Sheet #12

    SciTech Connect (OSTI)

    2008-07-01

    New pulse-width-modulated (PWM) adjustable speed drives (ASDs) may be cost-effective replacements for aging or maintenance-intensive eddy-current drives.

  1. Replacement Cost of Domestic Crude

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    The DEEPWATER model forecasts the replacement cost of domestic crude oil for 13 offshore regions in the lower 48 states. The replacement cost of domestic crude oil is the constant or levelized selling price that will recover the full expense of exploration, development, and productions with a reasonable return on capital.

  2. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of a Minimum Soiling Level to Affect Photovoltaic Devices Patrick D. Burton and Bruce H. King Sandia National Laboratories, Albuquerque, NM 87185 USA...

  3. AGING GAUGE

    DOE Patents [OSTI]

    Betts, Robert E.; Crawford, John F.

    1989-04-04

    An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.

  4. Aging gauge

    DOE Patents [OSTI]

    Betts, Robert E.; Crawford, John F.

    1989-01-01

    An aging gauge comprising a container having a fixed or a variable sized t opening with a cap which can be opened to control the sublimation rate of a thermally sublimational material contained within the container. In use, the aging gauge is stored with an item to determine total heat the item is subjected to and also the maximum temperature to which the item has been exposed. The aging gauge container contains a thermally sublimational material such as naphthalene or similar material which has a low sublimation rate over the temperature range from about 70.degree. F. to about 160.degree. F. The aging products determined by analyses of a like item aged along with the aging gauge for which the sublimation amount is determined is employed to establish a calibration curve for future aging evaluation. The aging gauge is provided with a means for determining the maximum temperature exposure (i.e., a thermally indicating material which gives an irreversible color change, Thermocolor pigment). Because of the relationship of doubling reaction rates for increases of 10.degree. C., equivalency of item used in accelerated aging evaluation can be obtained by referring to a calibration curve depicting storage temperature on the abscissa scale and multiplier on the ordinate scale.

  5. Auger electron spectroscopy for the determination of sex and age related Ca/P ratio at different bone sites

    SciTech Connect (OSTI)

    Balatsoukas, Ioannis; Kourkoumelis, Nikolaos; Tzaphlidou, Margaret

    2010-10-15

    The Ca/P ratio of normal cortical and trabecular rat bone was measured by Auger electron spectroscopy (AES). Semiquantitative analysis was carried out using ratio techniques to draw conclusions on how age, sex and bone site affect the relative composition of calcium and phosphorus. Results show that Ca/P ratio is not sex dependent; quite the opposite, bone sites exhibit variations in elemental stoichiometry where femoral sections demonstrate higher Ca/P ratio than rear and front tibias. Age-related changes are more distinct for cortical bone in comparison with the trabecular bone. The latter's Ca/P ratio remains unaffected from all the parameters under study. This study confirms that AES is able to successfully quantify bone mineral main elements when certain critical points, related to the experimental conditions, are addressed effectively.

  6. Do You Have Windows That Need Replacing?

    Broader source: Energy.gov [DOE]

    Do you have windows that need replacing, too? Do you have any plans to replace them with newer, more efficient windows?

  7. Constraining the age of the NGC 4565 H I disk WARP: Determining the origin of gas WARPS

    SciTech Connect (OSTI)

    Radburn-Smith, David J.; Dalcanton, Julianne J.; Stilp, Adrienne M.; De Jong, Roelof S.; Streich, David; Bell, Eric F.; Monachesi, Antonela; Dolphin, Andrew E.; Holwerda, Benne W.; Bailin, Jeremy

    2014-01-01

    We have mapped the distribution of young and old stars in the gaseous H I warp of NGC 4565. We find a clear correlation of young stars (<600 Myr) with the warp but no coincident old stars (>1 Gyr), which places an upper limit on the age of the structure. The formation rate of the young stars, which increased ?300 Myr ago relative to the surrounding regions, is (6.3{sub ?1.5}{sup +2.5})10{sup ?5} M {sub ?} yr{sup 1} kpc{sup 2}. This implies a ?60 20 Gyr depletion time of the H I warp, similar to the timescales calculated for the outer H I disks of nearby spiral galaxies. While some stars associated with the warp fall into the asymptotic giant branch (AGB) region of the color-magnitude diagram, where stars could be as old as 1 Gyr, further investigation suggests that they may be interlopers rather than real AGB stars. We discuss the implications of these age constraints for the formation of H I warps and the gas fueling of disk galaxies.

  8. HVAC & Building Management Control System Energy Efficiency Replacements

    SciTech Connect (OSTI)

    Hernandez, Adriana

    2012-09-21

    The project objective was the replacement of an aging, un-repairable HVAC system which has grown inefficient and a huge energy consumer with low energy and efficient HVAC units, and installation of energy efficient building control technologies at City's YMCA Community Center.

  9. Modifications to Replacement Costs System

    SciTech Connect (OSTI)

    Godec, M. [ICF Resources, Inc., Fairfax, VA (United States)

    1989-05-18

    The purpose of this memorandum is to document the improvements and modifications made to the Replacement Costs of Crude Oil (REPCO) Supply Analysis System. While some of this work was performed under our previous support contract to DOE/ASFE, we are presenting all modifications and improvements are presented here for completeness. The memo primarily documents revisions made to the Lower-48 Onshore Model. Revisions and modifications made to other components and models in the REPCO system which are documented elsewhere are only highlighted in this memo. Generally, the modifications made to the Lower-48 Onshore Model reflect changes that have occurred in domestic drilling, oil field costs, and reserves since 1982, the date of the most recent available data used for the original Replacement Costs report, published in 1985.

  10. Is it Cost-Effective to Replace Old Eddy-Current Drives?

    Broader source: Energy.gov [DOE]

    New pulse-width-modulated (PWM) adjustable speed drives (ASDs) may be cost-effective replacements for aging or maintenance-intensive eddy-current drives. This tip sheet provides suggested actions and example energy savings calculations.

  11. B Plant process piping replacement feasibility study

    SciTech Connect (OSTI)

    Howden, G.F.

    1996-02-07

    Reports on the feasibility of replacing existing embedded process piping with new more corrosion resistant piping between cells and between cells and a hot pipe trench of a Hanford Site style canyon facility. Provides concepts for replacement piping installation, and use of robotics to replace the use of the canyon crane as the primary means of performing/supporting facility modifications (eg, cell lining, pipe replacement, equipment reinstallation) and operational maintenenace.

  12. Retail Replacement Lamps | Department of Energy

    Energy Savers [EERE]

    CALiPER Testing » Application Reports » Retail Replacement Lamps Retail Replacement Lamps Annual CALiPER testing of A19, G25, candelabra, night light, MR16/PAR16, PAR20, and PAR30 replacement lamps - purchased directly from store shelves - offers insights on performance trends from year to year. The report findings offer valuable insights for manufacturers and retailers alike. Retail Lamps Study 3 (48 pages, February 2014) Retail Lamps Study 3.1: Dimming, Flicker, and Power Quality

  13. Grand Coulee & Hungry Horse SCADA Replacement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    extensive maintenance and repairs. The turbine hubs on these units have experienced chronic oil leaks. The history of problems led to a decision to replace the turbine runners...

  14. Ni Clusterbank Replacement Project | Argonne Leadership Computing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ni Clusterbank Replacement Project Event Sponsor: Argonne Leadership Computing Facility Seminar Start Date: Oct 20 2015 - 12:00pm BuildingRoom: Building 241Room D173...

  15. Test report for K Basin MK I lid removal and replacement system

    SciTech Connect (OSTI)

    Omberg, R.P.; Roe, N.R.

    1996-08-21

    This report provides the results of acceptance testing of sampling equipment for use in the Hanford K Basin. The equipment, MK I Lid Removal/Replacement Tools, were designed to remove/replace MK I Spent Fuel Canister lids so that other equipment may be used to sample the canister contents. The tools were determined to be acceptable for their intended use.

  16. Replacement solvents for use in chemical synthesis

    DOE Patents [OSTI]

    Molnar, Linda K.; Hatton, T. Alan; Buchwald, Stephen L.

    2001-05-15

    Replacement solvents for use in chemical synthesis include polymer-immobilized solvents having a flexible polymer backbone and a plurality of pendant groups attached onto the polymer backbone, the pendant groups comprising a flexible linking unit bound to the polymer backbone and to a terminal solvating moiety. The polymer-immobilized solvent may be dissolved in a benign medium. Replacement solvents for chemical reactions for which tetrahydrofuran or diethyl may be a solvent include substituted tetrahydrofurfuryl ethers and substituted tetrahydro-3-furan ethers. The replacement solvents may be readily recovered from the reaction train using conventional methods.

  17. Conceptual Design Plan SM-43 Replacement Project

    SciTech Connect (OSTI)

    University of California, Los Alamos National Laboratory, SCC Project Office

    2000-11-01

    The Los Alamos National Laboratory Conceptual Design Plan for the SM-43 Replacement Project outlines plans for replacing the SM-43 Administration Building. Topics include the reasons that replacement is considered a necessity; the roles of the various project sponsors; and descriptions of the proposed site and facilities. Also covered in this proposal is preliminary information on the project schedule, cost estimates, acquisition strategy, risk assessment, NEPA strategy, safety strategy, and safeguards and security. Spreadsheets provide further detail on space requirements, project schedules, and cost estimates.

  18. Grand Coulee & Hungry Horse SCADA Replacement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gates Replacement This project is part of the Third Powerplant overhaul at Grand Coulee Dam. The full overhaul effort involves a mechanical overhaul of units G19 - G24. The...

  19. Marin County- Wood Stove Replacement Rebate Program

    Broader source: Energy.gov [DOE]

    Homes in the San Geronimo Valley (Forest Knolls, Lagunitas, San Geronimo, and Woodacre) can receive a rebate of $1,500 for the removal and replacement of non-certified wood burning appliances with...

  20. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, Kevin L.; Ramuhalli, Pradeep; Brenchley, David L.; Coble, Jamie B.; Hashemian, Hash; Konnik, Robert; Ray, Sheila

    2012-09-14

    The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), NDE instrumentation development, universities, commercial NDE services and cable manufacturers, and Electric Power Research Institute (EPRI). The motivation for the R&D roadmap comes from the need to address the aging management of in-containment cables at nuclear power plants (NPPs).

  1. Valve assembly having remotely replaceable bearings

    DOE Patents [OSTI]

    Johnson, Evan R.; Tanner, David E.

    1980-01-01

    A valve assembly having remotely replaceable bearings is disclosed wherein a valve disc is supported within a flow duct for rotation about a pair of axially aligned bearings, one of which is carried by a spindle received within a diametral bore in the valve disc, and the other of which is carried by a bearing support block releasably mounted on the duct circumferentially of an annular collar on the valve disc coaxial with its diametrical bore. The spindle and bearing support block are adapted for remote removal to facilitate servicing or replacement of the valve disc support bearings.

  2. Evaluation Prompts ENERGY STAR Program to Replace Web Tool, Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prompts ENERGY STAR Program to Replace Web Tool, Saving 90 Percent of Annual Costs A ... program managers decided to drop the web tool, eventually replacing it with a ...

  3. Applications of molecular replacement to G protein-coupled receptors...

    Office of Scientific and Technical Information (OSTI)

    Applications of molecular replacement to G protein-coupled receptors Citation Details In-Document Search Title: Applications of molecular replacement to G protein-coupled receptors ...

  4. WPN 00-5: Approval of Replacement Refrigerators and Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Provides states with the approval to include refrigerator and electric water heater replacements as an allowable measure. PDF icon WPN 00-5: Approval of Replacement Refrigerators ...

  5. Molecular replacement and model-building using distant homology...

    Office of Scientific and Technical Information (OSTI)

    Molecular replacement and model-building using distant homology models as templates Citation Details In-Document Search Title: Molecular replacement and model-building using...

  6. Replacement-2-A Wholesale Power Rate Schedule | Department of...

    Office of Environmental Management (EM)

    2-A Wholesale Power Rate Schedule Replacement-2-A Wholesale Power Rate Schedule Area: Replacement Energy System: Kerr-Philpott This rate schedule shall be available to public...

  7. Avoiding a Train Wreck: Replacing Old Coal Plants with Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Avoiding a Train Wreck: Replacing Old Coal Plants with Energy Efficiency, August 2011 Avoiding a Train Wreck: Replacing Old Coal Plants with Energy Efficiency, August 2011 This ...

  8. Virent is Replacing Crude Oil | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virent is Replacing Crude Oil Virent is Replacing Crude Oil Breakout Session 2A-Conversion Technologies II: Bio-Oils, Sugar Intermediates, Precursors, Distributed Models, and ...

  9. Trim or Replace Impellers on Oversized Pumps

    SciTech Connect (OSTI)

    Not Available

    2006-09-01

    One in a series of tip sheets to help manufacturers optimize their industrial pumping systems. As a result of conservative engineering practices, pumps are often substantially larger than they need to be for an industrial plant's process requirements. Centrifugal pumps can often be oversized because of ''rounding up'', trying to accommodate gradual increases in pipe surface roughness and flow resistance over time, or anticipating future plant capacity expansions. In addition, the plant's pumping requirements might not have been clearly defined during the design phase. Because of this conservative approach, pumps can have operating points completely different from their design points. The pump head is often less than expected, while the flow rate is greater. This can cause cavitation and waste energy as the flow rate typically must be regulated with bypass or throttle control. Oversized and throttled pumps that produce excess pressure are excellent candidates for impeller replacement or ''trimming'', to save energy and reduce costs. Trimming involves machining the impeller to reduce its diameter. Trimming should be limited to about 75% of a pump's maximum impeller diameter, because excessive trimming can result in a mismatched impeller and casing. As the impeller diameter decreases, added clearance between the impeller and the fixed pump casing increases internal flow recirculation, causes head loss, and lowers pumping efficiency. For manufacturing standardization purposes, pump casings and shafts are designed to accommodate impellers in a range of sizes. Many pump manufacturers provide pump performance curves that indicate how various models will perform with different impeller diameters or trims. The impeller should not be trimmed any smaller than the minimum diameter shown on the curve. Net positive suction head requirements (NPSHR) usually decrease at lower flow rates and can increase at the higher end of the pump head curve. The NPSHR at a given flow rate will normally be greater with a smaller impeller, but engineers should consult with the pump manufacturer to determine variations in NPSHR before trimming the impeller. Manufacturers can often provide trim correction charts based on historical test data.

  10. Light Water Reactor Sustainability (LWRS) Program – Non-Destructive Evaluation (NDE) R&D Roadmap for Determining Remaining Useful Life of Aging Cables in Nuclear Power Plants

    SciTech Connect (OSTI)

    Simmons, K.L.; Ramuhali, P.; Brenchley, D.L.; Coble, J.B.; Hashemian, H.M.; Konnick, R.; Ray, S.

    2012-09-01

    Executive Summary [partial] The purpose of the non-destructive evaluation (NDE) R&D Roadmap for Cables is to support the Materials Aging and Degradation (MAaD) R&D pathway. A workshop was held to gather subject matter experts to develop the NDE R&D Roadmap for Cables. The focus of the workshop was to identify the technical gaps in detecting aging cables and predicting their remaining life expectancy. The workshop was held in Knoxville, Tennessee, on July 30, 2012, at Analysis and Measurement Services Corporation (AMS) headquarters. The workshop was attended by 30 experts in materials, electrical engineering, and NDE instrumentation development from the U.S. Nuclear Regulatory Commission (NRC), U.S. Department of Energy (DOE) National Laboratories (Oak Ridge National Laboratory, Pacific Northwest National Laboratory, Argonne National Laboratory, and Idaho National Engineering Laboratory), universities, commercial NDE service vendors and cable manufacturers, and the Electric Power Research Institute (EPRI).

  11. Measure Guideline: Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  12. A Guide to AC Motor Repair and Replacement

    SciTech Connect (OSTI)

    2004-03-01

    This booklet provides helpful information for making informed repair or replace decisions for electric motors.

  13. Operational Readiness Review: Savannah River Replacement Tritium Facility

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    The Operational Readiness Review (ORR) is one of several activities to be completed prior to introducing tritium into the Replacement Tritium Facility (RTF) at the Savannah River Site (SRS). The Secretary of Energy will rely in part on the results of this ORR in deciding whether the startup criteria for RTF have been met. The RTF is a new underground facility built to safely service the remaining nuclear weapons stockpile. At RTF, tritium will be unloaded from old components, purified and enriched, and loaded into new or reclaimed reservoirs. The RTF will replace an aging facility at SRS that has processed tritium for more than 35 years. RTF has completed construction and is undergoing facility startup testing. The final stages of this testing will require the introduction of limited amounts of tritium. The US Department of Energy (DOE) ORR was conducted January 19 to February 4, 1993, in accordance with an ORR review plan which was developed considering previous readiness reviews. The plan also considered the Defense Nuclear Facilities Safety Board (DNFSB) Recommendations 90-4 and 92-6, and the judgements of experienced senior experts. The review covered three major areas: (1) Plant and Equipment Readiness, (2) Personnel Readiness, and (3) Management Systems. The ORR Team was comprised of approximately 30 members consisting of a Team Leader, Senior Safety Experts, and Technical Experts. The ORR objectives and criteria were based on DOE Orders, industry standards, Institute of Nuclear Power Operations guidelines, recommendations of external oversight groups, and experience of the team members.

  14. NEPA Determination Form

    National Nuclear Security Administration (NNSA)

    LA NEPA COMPLIANCE DETERMINATION FORM PRID - 09P-0059 V2 Page 1 of 8 Project/Activity Title: TA-3 Substation Replacement Project PRID: 09P-0059 V2 Date: February 16, 2016 Purpose: The proposed demolition and replacement of the Los Alamos National Laboratory's (LANL) Technical Area (TA)-3 electrical power substation is needed to provide reliable and efficient electrical distribution systems with sufficient electrical capacity to support the national security missions. The electrical distribution

  15. CX-005846: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-005846: Categorical Exclusion Determination Wood Pole Replacement and Minor Access Road Maintenance Along Various Transmission Line Rights-Of-Way in the Wenatchee District CX(s) ...

  16. Replaces DOE F 5120.2

    Energy Savers [EERE]

    700.2 (09-93) Replaces DOE F 5120.2 (02-90) edition may be used 1. INITIATOR: NAME & SIGNATURE ORGANIZATION CODE TELEPHONE NO. 2. PROJECT TITLE: 3. RESPONSIBLE ASSISTANT SECRETARY: 4. RESPONSIBLE OPERATIONS OFFICE: 5. M&O CONTRACTOR NAME: 6. WORK AUTHORIZATION NO.: FUNDS HEREBY AUTHORIZED 7. REVISION: B&R No. $000 13. WORK AUTHORIZED: (Brief description, schedule, results or products and reporting requirements, and any shifting of funds permitted within the work authorization): U.S.

  17. Evaluation Prompts ENERGY STAR Program to Replace Web Tool, Saving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Prompts ENERGY STAR Program to Replace Web Tool, Saving 90 Percent of Annual Costs Evaluation Prompts ENERGY STAR Program to Replace Web Tool, Saving 90 Percent of Annual Costs ...

  18. California: SQAMD Replaces Drayage Trucks with CNG | Department...

    Energy Savers [EERE]

    California: SQAMD Replaces Drayage Trucks with CNG California: SQAMD Replaces Drayage Trucks with CNG November 6, 2013 - 12:00am Addthis In 2008, the South Coast Air Quality ...

  19. Text-Alternative Version: LED Replacements for Linear Fluorescent Lamps

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the "LED Replacements for Linear Fluorescent Lamps" webcast, held June 20, 2011.

  20. CX-010776: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor (ATR) Primary Coolant Leak Rate Determination System Equipment Replacement CX(s) Applied: B2.2 Date: 07/24/2013 Location(s): Idaho Offices(s): Nuclear Energy

  1. Alternatives to proposed replacement production reactors

    SciTech Connect (OSTI)

    Cullingford, H.S.

    1981-06-01

    To insure adequate supplies of plutonium and tritium for defense purposes, an independent evaluation was made by Los Alamos National Laboratory of the numerous alternatives to the proposed replacement production reactors (RPR). This effort concentrated on the defense fuel cycle operation and its technical implications in identifying the principal alternatives for the 1990s. The primary options were identified as (1) existing commercial reactors, (2) existing and planned government-owned facilities (not now used for defense materials production), and (3) other RPRs (not yet proposed) such as CANDU or CANDU-type heavy-water reactors (HWR) for both plutonium and tritium production. The evaluation considered features and differences of various options that could influence choice of RPR alternatives. Barring a change in the US approach to civilian and defense fuel cycles and precluding existing commercial reactors at government-owned sites, the most significant alternatives were identified as a CANDU-type HWR at Savannah River Plant (SRP) site or the Three Mile Island commercial reactor with reprocessing capability at Barnwell Nuclear Fuel Plant and at SRP.

  2. Window Replacement, Rehabilitation, & Repair Guides - Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effec guid-window repair.jpg This Top Innovation describes research by Building Science Corporation to determine that whole-house energy savings of up to 10% can be achieved ...

  3. LED Replacements for Linear Fluorescent Lamps Webcast | Department of

    Energy Savers [EERE]

    Energy Replacements for Linear Fluorescent Lamps Webcast LED Replacements for Linear Fluorescent Lamps Webcast In this June 20, 2011 webcast on LED products marketed as replacements for linear fluorescent lamps, Jason Tuenge of the Pacific Northwest National Laboratory (PNNL) discussed current Lighting Facts-listed products as well as products evaluated in the latest CALiPER reports. Eric Richman, also of PNNL, reported on a recently completed GATEWAY demonstration project, in which LED and

  4. Building America Technology Solutions for New and Existing Homes: Replacing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resistance Heating with Mini-Split Heat Pumps | Department of Energy Replacing Resistance Heating with Mini-Split Heat Pumps Building America Technology Solutions for New and Existing Homes: Replacing Resistance Heating with Mini-Split Heat Pumps In this project, the Advanced Residential Integrated Solutions team investigated the suitability of mini-split heat pumps for multifamily retrofits. PDF icon Replacing Resistance Heating with Mini-Split Heat Pumps More Documents & Publications

  5. Replacement-1 Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    Replacement-1 Wholesale Power Rate Schedule Replacement-1 Wholesale Power Rate Schedule Area: Replacement Energy System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, Florida, South Carolina, or North Carolina to whom power is provided pursuant to contracts between the Government and the Customer. This rate schedule shall be applicable to the sale at

  6. QUENCHING AND PARTITIONING PROCESS DEVELOPMENT TO REPLACE HOT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OF HIGH STRENGTH AUTOMOTIVE STEEL QUENCHING AND PARTITIONING PROCESS DEVELOPMENT TO REPLACE HOT STAMPING OF HIGH STRENGTH AUTOMOTIVE STEEL Colorado School of Mines - Golden, ...

  7. Quenching and Partitioning Process Development to Replace Hot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quenching and Partitioning Process Development to Replace Hot Stamping of High-Strength Automotive Steel Novel Steel Heat Treatment Process to Produce Third Generation AHSS ...

  8. Trim or Replace Impellers on Oversized Pumps | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    tip sheet discusses the reasoning behind trimming or replacing impellers on oversized pumps and describes how it works to improve pumping system efficiency. PUMPING SYSTEMS TIP ...

  9. LED T8 Replacement Lamps | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon LED T8 Replacement Lamps (April 2010) More Documents & Publications Emerging Lighting Technology General Service LED Lamps Guiding Market Introduction of High-Performance ...

  10. New Feedstocks and Replacement Fuels - Future Energy for Mobility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuels - Future Energy for Mobility New Feedstocks and Replacement Fuels - Future Energy for Mobility Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. ...

  11. Jordan Malheur Resource Area Jonesboro Diversion Dam Replacement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The proposed replacement would help improve fish passage and facilitate continued ... the existing diversion dam to help improve fish passage and facilitate continued ...

  12. EA-1994: Malheur Resource Area Jonesboro Diversion Dam Replacement...

    Broader source: Energy.gov (indexed) [DOE]

    Burns Paiute Tribe for replacement of an existing diversion dam and installation of a fish passage structure. BPA's proposed action was to fund the project. PUBLIC COMMENT...

  13. "Green" Replacement for Industrial Applications of Polar Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search "Green" Replacement for Industrial Applications ... The lower volatility can lead to more energy intensive separation of the solvent; however, ...

  14. Magnesium Replacement of Aluminum Cast Components in a Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Effect Cost-Effective Mass Reduction Magnesium Replacement of Aluminum Cast Components in a Production V6 Engine to Effect Cost-Effective Mass Reduction Presentation given ...

  15. Replace Fossil Fuels, Final Technical Report Roberts, William...

    Office of Scientific and Technical Information (OSTI)

    Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report Roberts, William L 09 BIOMASS FUELS biofuels, glycerin, glycerol,...

  16. Replacing an Oversized and Underloaded Electric Motor | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Replacing an Oversized and Underloaded Electric Motor (September 1996) More Documents & Publications MotorMaster+ User Manual Buying an Energy-Efficient Electric Motor ...

  17. Window Replacement, Rehabilitation, & Repair Guides- Building America Top Innovation

    Broader source: Energy.gov [DOE]

    Building America team Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

  18. CX-006819: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Aging Wood Poles on Trans Alta?s Centralia Tap to Chehalis-Covington No. 1 230-Kilovolt Transmission LineCX(s) Applied: B1.3Date: 09/16/2011Location(s): Lewis County, WashingtonOffice(s): Bonneville Power Administration

  19. Replacing 16 mm film cameras with high definition digital cameras

    SciTech Connect (OSTI)

    Balch, K.S.

    1995-12-31

    For many years 16 mm film cameras have been used in severe environments. These film cameras are used on Hy-G automotive sleds, airborne gun cameras, range tracking and other hazardous environments. The companies and government agencies using these cameras are in need of replacing them with a more cost effective solution. Film-based cameras still produce the best resolving capability, however, film development time, chemical disposal, recurring media cost, and faster digital analysis are factors influencing the desire for a 16 mm film camera replacement. This paper will describe a new camera from Kodak that has been designed to replace 16 mm high speed film cameras.

  20. REQUEST FOR LOST/STOLEN BADGE REPLACEMENT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REQUEST FOR LOST/STOLEN BADGE REPLACEMENT REQUEST FOR LOST/STOLEN BADGE REPLACEMENT Form documents the circumstances surrounding the loss of the security badge, i.e., the date the badge was Iost/stolen, location where the badge may have been Iost/stolen, attempts to find the lost badge, etc. PDF icon REQUEST FOR LOST/STOLEN BADGE REPLACEMENT More Documents & Publications DOE HQ F 473.1 (fillable pdf) DOE F 5639.2 DOE F 5634.1

  1. Reminder: Y-12 Public Warning Siren System being replaced, tested...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    located around the Oak Ridge area is being replaced this month with a test of the new system on Sept. 26. The vendor, American Signal, will be testing the sirens Sept. 26...

  2. Replace Pressure-Reducing Valves with Backpressure Turbogenerators

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    This revised ITP steam tip sheet on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  3. EA-0923: Winnett School District Boiler Replacement Project, Winnett, Montana

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to replace the Winnett School District complex's existing oil-fired heating system with a new coal-fired heating system with funds...

  4. Ultrasound image guided acetabular implant orientation during total hip replacement

    DOE Patents [OSTI]

    Chang, John; Haddad, Waleed; Kluiwstra, Jan-Ulco; Matthews, Dennis; Trauner, Kenneth

    2003-08-19

    A system for assisting in precise location of the acetabular implant during total hip replacement. The system uses ultrasound imaging for guiding the placement and orientation of the implant.

  5. Washington State Department of Ecology: Replacement Wells Requiring...

    Open Energy Info (EERE)

    Ecology: Replacement Wells Requiring a Water Right Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: Washington State Department of...

  6. Laboratory Evaluation of LED T8 Replacement Lamp Products

    SciTech Connect (OSTI)

    Richman, Eric E.; Kinzey, Bruce R.; Miller, Naomi J.

    2011-05-23

    A report on a lab setting analysis involving LED lamps intended to directly replace T8 fluorescent lamps (4') showing light output, power, and economic comparisons with other fluorescent options.

  7. Replace Pressure-Reducing Valves with Backpressure Turbogenerators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This tip sheet on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies. STEAM TIP SHEET ...

  8. Exploring the speed and performance of molecular replacement with AMPLE

    Office of Scientific and Technical Information (OSTI)

    using QUARK ab initio protein models (Journal Article) | SciTech Connect Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models Citation Details In-Document Search Title: Exploring the speed and performance of molecular replacement with AMPLE using QUARK ab initio protein models Two ab initio modelling programs solve complementary sets of targets, enhancing the success of AMPLE with small proteins. AMPLE clusters and truncates ab initio

  9. Biomass 2011: Replace the Whole Barrel, Supply the Whole Market |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 1: Replace the Whole Barrel, Supply the Whole Market Biomass 2011: Replace the Whole Barrel, Supply the Whole Market The New Horizons of Bioenergy Biomass 2011 July 26-27, 2011 Gaylord National Resort and Convention Center 201 Waterfront Street National Harbor, MD 20745 Thank you to everyone who attended and participated to help make Biomass 2011 a remarkable success. More than 600 speakers, moderators, sponsors, exhibitors, and attendees were able to listen to

  10. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cobalt Discovery Replaces Precious Metals Cobalt discovery replaces precious metals as industrial catalyst Cobalt holds promise as an industrial catalyst with potential applications in such energy-related technologies such as production of biofuels and reduction of carbon dioxide. November 26, 2012 The artwork depicts the substitution of cobalt for precious metals in catalysis as a variation on the ancient alchemical theme of transmuting base metals into precious ones. The artwork depicts the

  11. Cobalt discovery replaces precious metals as industrial catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cobalt Discovery Replaces Precious Metals Cobalt discovery replaces precious metals as industrial catalyst Cobalt holds promise as an industrial catalyst with potential applications in such energy-related technologies such as production of biofuels and reduction of carbon dioxide. November 26, 2012 The artwork depicts the substitution of cobalt for precious metals in catalysis as a variation on the ancient alchemical theme of transmuting base metals into precious ones. The artwork depicts the

  12. Promoting plumbing fixture and fitting replacement: Recommendations and review for state and local water resource authorities

    SciTech Connect (OSTI)

    Dunham, C.; Lutz, J.D.; Pickle, S.J.

    1995-06-01

    Lawrence Berkeley National Laboratory (LBNL) has prepared this report to facilitate compliance with the requirements of Section 123 of the Energy Policy Act of 1992 (EPACT). Section 123 requires the Department of Energy to issue recommendations for establishing state and local incentive programs to encourage acceleration of voluntary consumer replacement of existing water closets, urinals, showerheads and faucets with water-saving products meeting EPACT standards. The authors recommend that state and local authorities working together and also with utilities: (A) investigate the cost-effectiveness of voluntary replacement of plumbing fixtures and fittings as an effective component of a water efficiency incentive program; (B) allow utilities to distribute the costs of water saving products by billing at pre-installation rates until devices have been paid for; (C) encourage decreased water usage by establishing rate structures such as increasing block rates or seasonal pricing; (D) add additional incentive to rebate programs by making the rebates untaxable income. (E) require municipalities or utilities to exhaust every reasonable method of water conservation before applying for permits to construct water supply or water treatment systems; (F) require high-efficiency toilets, urinals, showerheads, and faucets in new construction and changing plumbing codes to incorporate different pipe sizing needs; and (G) and mandate installation of meters to correctly measure water consumption. Following the introduction, a general overview of these recommendations is presented. Each recommendation is discussed briefly. After determining the cost-effectiveness of a plumbing replacement program (or plumbing replacement aspect of a larger program) states can encourage replacement of toilets, urinals, showerheads, and faucets in a number of ways. This report lists both legislative and economic measures that can be implemented on the state level that impact local programs.

  13. Categorical Exclusion Determinations: West Virginia | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 2, 2014 CX-012402: Categorical Exclusion Determination B-33 Roof Replacement and Fall Protection System Installation CX(s) Applied: B1.3, B2.2, B2.3 Date: 41884 ...

  14. Categorical Exclusion Determinations: Delaware | Department of...

    Office of Environmental Management (EM)

    ... August 26, 2011 CX-006578: Categorical Exclusion Determination Delaware State Energy Office Sub GranteeBridgeville Well Pump Replacement CX(s) Applied: B5.1 Date: 08262011 ...

  15. Construction and operation of replacement hazardous waste handling facility at Lawrence Berkeley Laboratory. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0423, for the construction and operation of a replacement hazardous waste handling facility (HWHF) and decontamination of the existing HWHF at Lawrence Berkeley Laboratory (LBL), Berkeley, California. The proposed facility would replace several older buildings and cargo containers currently being used for waste handling activities and consolidate the LBL`s existing waste handling activities in one location. The nature of the waste handling activities and the waste volume and characteristics would not change as a result of construction of the new facility. Based on the analysis in the EA, DOE has determined that the proposed action would not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, 42 USC. 4321 et seq. Therefore, an environmental impact statement is not required.

  16. Accelerated Aging Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerated Aging Studies LA-UR -15-27339 This document is approved for public release; further dissemination unlimited Property (max) log (aging time) Property (failure) Property (time=0) Accelerated Aging Data Predicted Storage Aging Response log (predicted lifetime) Property (max) log (aging time) Property (failure) Property (time=0) Accelerated Aging Data Predicted Storage Aging Response log (predicted lifetime) Accelerated Aging Studies Factors such as temperature, pressure, or radiation

  17. Replacing the whole barrel of oil with plants and microbes

    ScienceCinema (OSTI)

    Simmons, Blake

    2014-06-24

    In this May 13, 2013 talk, Blake Simmons discusses how scientists are exploring how plants and microbes can be used to replace many of the everyday goods we use that are derived from petroleum. To watch the entire entire Science at the Theater event, in which seven of our scientists present BIG ideas in eight minutes each.

  18. Measure Guideline. Wood Window Repair, Rehabilitation, and Replacement

    SciTech Connect (OSTI)

    Baker, P.; Eng, P.

    2012-12-01

    This measure guideline provides information and guidance on rehabilitating, retrofitting, and replacing existing window assemblies in residential construction. The intent is to provide information regarding means and methods to improve the energy and comfort performance of existing wood window assemblies in a way that takes into consideration component durability, in-service operation, and long term performance of the strategies.

  19. Selection and Implementation of a Replacement Cutting Tool Selection Application

    SciTech Connect (OSTI)

    Rice, Gordon

    2008-10-06

    A new commercial cutting tool software package replaced an internally created legacy system. This report describes the issues that surfaced during the migration and installation of the commercial package and the solutions employed. The primary issues discussed are restructuring the data between two drastically different database schemas and the creation of individual component graphics.

  20. Replacing the whole barrel of oil with plants and microbes

    SciTech Connect (OSTI)

    Simmons, Blake

    2013-05-29

    In this May 13, 2013 talk, Blake Simmons discusses how scientists are exploring how plants and microbes can be used to replace many of the everyday goods we use that are derived from petroleum. To watch the entire entire Science at the Theater event, in which seven of our scientists present BIG ideas in eight minutes each.

  1. Replacement of alloy 800H superheated steam line

    SciTech Connect (OSTI)

    Barbier, R.A.; Bullock, J.W. [Sterling Chemicals, Texas City, TX (United States)

    1996-07-01

    Sterling Chemicals utilizes alloy 800HT (UNS N08811) piping for superheated steam service in its styrene dehydrogenation unit. An engineering project to replace these lines was recently completed. Material acquisition, shop fabrication, inspection requirements, and field erection will be highlighted in this paper.

  2. CALiPER Exploratory Study Retail Replacement Lamps – 2011

    SciTech Connect (OSTI)

    2012-04-02

    In 2010, CALiPER conducted a study on LED replacement lamps found in retail stores. The results were less than satisfactory, and many products were classified as being unlikely to meet consumer expectations. In November 2011, CALiPER purchased a new sample of products for a follow-up study, with the intent of characterizing the progress of this essential market segment.

  3. CALiPER Special Summary Report: Retail Replacement Lamp Testing

    SciTech Connect (OSTI)

    2011-04-01

    CALiPER testing has evaluated many products for commercial lighting markets and found some excellent performers. However, many of these are not available on the retail market. This special testing was undertaken to identify and test solid-state lighting (SSL) replacement lamp products that are available to the general public through retail stores and websites.

  4. CX-013440: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Record of Categorical Exclusion Determination to Replace Piping Header at Bryan Mound RWIS and RWIP (BM-MM-1027) CX(s) Applied: B1.3Date: 02/18/2015 Location(s): TexasOffices(s): Strategic Petroleum Reserve Field Office

  5. ARP/wARP and molecular replacement: the next generation

    SciTech Connect (OSTI)

    Cohen, Serge X. Ben Jelloul, Marouane; Long, Fei; Vagin, Alexei; Knipscheer, Puck; Lebbink, Joyce; Sixma, Titia K.; Lamzin, Victor S.; Murshudov, Garib N.; Perrakis, Anastassis

    2008-01-01

    A systematic test shows how ARP/wARP deals with automated model building for structures that have been solved by molecular replacement. A description of protocols in the flex-wARP control system and studies of two specific cases are also presented. Automatic iterative model (re-)building, as implemented in ARP/wARP and its new control system flex-wARP, is particularly well suited to follow structure solution by molecular replacement. More than 100 molecular-replacement solutions automatically solved by the BALBES software were submitted to three standard protocols in flex-wARP and the results were compared with final models from the PDB. Standard metrics were gathered in a systematic way and enabled the drawing of statistical conclusions on the advantages of each protocol. Based on this analysis, an empirical estimator was proposed that predicts how good the final model produced by flex-wARP is likely to be based on the experimental data and the quality of the molecular-replacement solution. To introduce the differences between the three flex-wARP protocols (keeping the complete search model, converting it to atomic coordinates but ignoring atom identities or using the electron-density map calculated from the molecular-replacement solution), two examples are also discussed in detail, focusing on the evolution of the models during iterative rebuilding. This highlights the diversity of paths that the flex-wARP control system can employ to reach a nearly complete and accurate model while actually starting from the same initial information.

  6. Brain surgery breathes new life into aging plants

    SciTech Connect (OSTI)

    Makansi, J.

    2006-04-15

    Unlike managing the human aging process, extending the life of a power plant often includes brain surgery, modernizing its control and automation system. Lately, such retrofits range from wholesale replacing of existing controls to the addition of specific control elements that help optimize performance. Pending revisions to safety codes and cybersecurity issues also need to be considered. 4 figs.

  7. Accelerated Aging Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerated Aging Studies LA-UR -15-27339 This document is approved for public release; further dissemination unlimited Property (max) log (aging time) Property (failure) Property ...

  8. Measure Guideline: Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  9. Measure Guideline. Air Conditioner Diagnostics, Maintenance, and Replacement

    SciTech Connect (OSTI)

    Springer, David; Dakin, Bill

    2013-03-01

    This guideline responds to the need for an efficient means of identifying, diagnosing, and repairing faults in air conditioning systems in existing homes that are undergoing energy upgrades. Inadequate airflow due to constricted ducts or undersized filters, improper refrigerant charge, and other system defects can be corrected at a fraction of the cost of equipment replacement and can yield significant savings. The guideline presents a two-step approach to diagnostics and repair.

  10. OSRAM SYLVANIA Develops High-Efficiency LED Troffer Replacement

    Broader source: Energy.gov [DOE]

    With the help of DOE funding, OSRAM SYLVANIA is developing a high-efficiency LED 2'x2' troffer replacement that is expected to be commercially available in the spring of 2012 and to be cost-competitive with existing troffers of that size. It is projected to have a light output of up to 4,000 lumens, an efficacy of more than 100 lm/W, and a CCT of 3500K.

  11. Magnetic Nanoparticle Capilary Flow as a Replacement for Lateral Flow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chromatography - Energy Innovation Portal Magnetic Nanoparticle Capilary Flow as a Replacement for Lateral Flow Chromatography Colorado School of Mines Contact CSM About This Technology Technology Marketing SummaryThis invention looks at method to detect targeted analytes. DescriptionThe method most often used now is Lateral Flow Chromatography (LFC) which has many drawbacks including: the need for extensive optimization, sensitivity, specificity, lack of quantitative data and extensive

  12. Polypeptide having an amino acid replaced with N-benzylglycine

    DOE Patents [OSTI]

    Mitchell, Alexander R.; Young, Janis D.

    1996-01-01

    The present invention relates to one or more polypeptides having useful biological activity in a mammal, which comprise: a polypeptide related to bradykinin of four to ten amino acid residues wherein one or more specific amino acids in the polypeptide chain are replaced with achiral N-benzylglycine. These polypeptide analogues have useful potent agonist or antagonist pharmacological properties depending upon the structure. A preferred polypeptide is (N-benzylglycine.sup.7)-bradykinin.

  13. The Sandia MEMS Passive Shock Sensor : dormancy and aging. (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect The Sandia MEMS Passive Shock Sensor : dormancy and aging. Citation Details In-Document Search Title: The Sandia MEMS Passive Shock Sensor : dormancy and aging. This report presents the results of an aging experiment that was established in FY09 and completed in FY10 for the Sandia MEMS Passive Shock Sensor. A total of 37 packages were aged at different temperatures and times, and were then tested after aging to determine functionality. Aging temperatures were

  14. Electronic-type vacuum gauges with replaceable elements

    DOE Patents [OSTI]

    Edwards, Jr., David (7 Brown's La., Bellport, NY 11713)

    1984-01-01

    In electronic devices for measuring pressures in vacuum systems, the metal elements which undergo thermal deterioration are made readily replaceable by making them parts of a simple plug-in unit. Thus, in ionization gauges, the filament and grid or electron collector are mounted on the novel plug-in unit. In thermocouple pressure gauges, the heater and attached thermocouple are mounted on the plug-in unit. Plug-in units have been designed to function, alternatively, as ionization gauge and as thermocouple gauge, thus providing new gauges capable of measuring broader pressure ranges than is possible with either an ionization gauge or a thermocouple gauge.

  15. Electronic-type vacuum gauges with replaceable elements

    DOE Patents [OSTI]

    Edwards, D. Jr.

    1984-09-18

    In electronic devices for measuring pressures in vacuum systems, the metal elements which undergo thermal deterioration are made readily replaceable by making them parts of a simple plug-in unit. Thus, in ionization gauges, the filament and grid or electron collector are mounted on the novel plug-in unit. In thermocouple pressure gauges, the heater and attached thermocouple are mounted on the plug-in unit. Plug-in units have been designed to function, alternatively, as ionization gauge and as thermocouple gauge, thus providing new gauges capable of measuring broader pressure ranges than is possible with either an ionization gauge or a thermocouple gauge. 5 figs.

  16. Nuclear criticality safety assessment of the proposed CFC replacement coolants

    SciTech Connect (OSTI)

    Jordan, W.C.; Dyer, H.R.

    1993-12-01

    The neutron multiplication characteristics of refrigerant-114 (R-114) and proposed replacement coolants perfluorobutane (C{sub 4}F{sub 10}) and cycloperfluorobutane C{sub 4}F{sub 8}) have been compared by evaluating the infinite media multiplication factors of UF{sub 6}/H/coolant systems and by replacement calculations considering a 10-MW freezer/sublimer. The results of these comparisons demonstrate that R-114 is a neutron absorber, due to its chlorine content, and that the alternative fluorocarbon coolants are neutron moderators. Estimates of critical spherical geometries considering mixtures of UF{sub 6}/HF/C{sub 4}F{sub 10} indicate that the flourocarbon-moderated systems are large compared with water-moderated systems. The freezer/sublimer calculations indicate that the alternative coolants are more reactive than R-114, but that the reactivity remains significantly below the condition of water in the tubes, which was a limiting condition. Based on these results, the alternative coolants appear to be acceptable; however, several follow-up tasks have been recommended, and additional evaluation will be required on an individual equipment basis.

  17. How do I know if my RTUs are Efficient? When do I Replace or...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How do I know if my RTUs are Efficient? When do I Replace or Retrofit them? How do I know if my RTUs are Efficient? When do I Replace or Retrofit them? December 2, 2015 - 3:05pm ...

  18. Webinar: The L Prize-Winning LED A19 Replacement-What Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The L Prize-Winning LED A19 Replacement-What Commercial Building OwnersOperators Can Expect in 2012 Webinar: The L Prize-Winning LED A19 Replacement-What Commercial Building ...

  19. CALiPER Benchmark Report: Performance of Halogen Incandescent MR16 Lamps and LED Replacement

    SciTech Connect (OSTI)

    Paget, M. L.; Lingard, R. D.; Myer, M. A.

    2008-11-01

    This benchmark report addresses the halogen MR16 lamp and its commercially available light-emitting diode (LED) replacements.

  20. DEVELOPMENT OF REMOTE HANFORD CONNECTOR GASKET REPLACEMENT TOOLING FOR DWPF

    SciTech Connect (OSTI)

    Krementz, D.; Coughlin, Jeffrey

    2009-05-05

    The Defense Waste Processing Facility (DWPF) requested the Savannah River National Laboratory (SRNL) to develop tooling and equipment to remotely replace gaskets in mechanical Hanford connectors to reduce personnel radiation exposure as compared to the current hands-on method. It is also expected that radiation levels will continually increase with future waste streams. The equipment is operated in the Remote Equipment Decontamination Cell (REDC), which is equipped with compressed air, two master-slave manipulators (MSM's) and an electro-mechanical manipulator (EMM) arm for operation of the remote tools. The REDC does not provide access to electrical power, so the equipment must be manually or pneumatically operated. The MSM's have a load limit at full extension of ten pounds, which limited the weight of the installation tool. In order to remotely replace Hanford connector gaskets several operations must be performed remotely, these include: removal of the spent gasket and retaining ring (retaining ring is also called snap ring), loading the new snap ring and gasket into the installation tool and installation of the new gasket into the Hanford connector. SRNL developed and tested tools that successfully perform all of the necessary tasks. Removal of snap rings from horizontal and vertical connectors is performed by separate air actuated retaining ring removal tools and is manipulated in the cell by the MSM. In order install a new gasket, the snap ring loader is used to load a new snap ring into a groove in the gasket installation tool. A new gasket is placed on the installation tool and retained by custom springs. An MSM lifts the installation tool and presses the mounted gasket against the connector block. Once the installation tool is in position, the gasket and snap ring are installed onto the connector by pneumatic actuation. All of the tools are located on a custom work table with a pneumatic valve station that directs compressed air to the desired tool and vents the tools as needed. Extensive testing of tooling operation was performed in the DWPF manipulator repair shop. This testing allowed the operators to gain confidence before the equipment was exposed to radioactive contamination. The testing also led to multiple design improvements. On July 17 and 29, 2008 the Remote Gasket Replacement Tooling was successfully demonstrated in the REDC at the DWPF of The Savannah River Site.

  1. Categorical Exclusion Determinations: B5.2 | Department of Energy

    Energy Savers [EERE]

    B5.2: Modifications to pumps and piping Modifications to existing pump and piping ... Determination Bryan Mound Brine Disposal Pump Replacement (Install) CX(s) Applied: B5.2 ...

  2. Aging management of fossil-fired plants of Electricite de France: PVP maintenance aspects

    SciTech Connect (OSTI)

    Thoraval, G.

    1995-12-01

    The generation mix of EDF comprises 17,000 MW of fossil-fired units, the ages of which go from 10 to 32 years. Extensive studies have been launched in 1994, inside the Company, to determine: (1) prospects of needs of the grid (domestic/exports); (2) prospects of possible competition in generation field; (3) environmental aspects and possible evolution; (4) adaptation of management of men and organizations; and (5) management of condition of equipment through maintenance policy. This paper focuses on the last item, spotted on pressure vessels and piping. The question is: How to conserve the ``patrimony`` for very long term, with lowest costs to keep it competitive in its very specific role? Several items are examined: (1) the background, the different programs of retrofitting, refurbishment and life extension; (2) conservation during outages, and mothballing procedures and experience; (3) design review, actual design life expectancy; (4) analysis of aging mechanisms through experience feedback; (5) determination of critical components, analysis of their condition, periodical updating; (6) maintenance adaptation, extensive condition-monitored maintenance approach: use of existing probes and data, development of new devices and skills; (7) policy of progressive replacement of worn-out and potentially dangerous components; examples concerning generic problems; (8) management of requirements of pressure vessels regulations; (9) adaptation of spare parts policy; and (10) research and development needed by life management.

  3. Business Case Analysis for Replacing the Mazak 30Y Mill-Turn Machine in SM-39. Summary

    SciTech Connect (OSTI)

    Booth, Steven Richard; Dinehart, Timothy Grant; Benson, Faith Ann

    2015-03-19

    Business case studies are being looked at to support procurement of new machines and capital equipment in the SM-39 and TA-03-0102 machine shops. The first effort conducted economic analysis of replacing the Mazak 30Y Mill-Turn Machine located in SM-39. To determine the value of switching machinery, a baseline scenario was compared with a future scenario where new machinery was purchased and installed. The conditions under the two scenarios were defined via interviews with subject matter experts in terms of one-time and periodic costs. The results of the analysis were compiled in a life-cycle cost/benefit table. The costs of procuring, installing, and maintaining a new machine were balanced against the costs avoided by replacing older machinery. Productivity savings were included as a measure to show the costs avoided by being able to produce parts at a quicker and more efficient pace.

  4. Evidence of aging effects on certain safety-related components

    SciTech Connect (OSTI)

    Magleby, H.L.; Atwood, C.L.; MacDonald, P.E.; Edson, J.L.; Bramwell, D.L.

    1996-01-01

    In response to interest shown by the Nuclear Energy Agency (NEA), Principal Working Group I (PWG- 1) of the Committee on the Safety of Nuclear Installations (CSNI) conducted a generic study on the effects of aging of active components in nuclear power plants. (This focus on active components is consistent with PWG-l`s mandate; passive components are primarily within the mandate of PWG-3.) Representatives from France, Sweden, Finland, Japan, the United States, and the United Kingdom participated in the study by submitting reports documenting aging studies performed in their countries. This report consists of summaries of those reports, along with a comparison of the various statistical analysis methods used in the studies. The studies indicate that with some exceptions, active components generally do not present a significant aging problem in nuclear power plants. Design criteria and effective preventative maintenance programs, including timely replacement of components, are effective in mitigating potential aging problems. However, aging studies (such as qualitative and statistical analyses of failure modes and maintenance data) are an important part of efforts to identify and solve potential aging problems. Solving these problems typically includes such strategies as replacing suspect components with improved components, and implementing improved maintenance programs.

  5. CX-003374: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    374: Categorical Exclusion Determination CX-003374: Categorical Exclusion Determination Installation of Energy Management Equipment CX(s) Applied: B1.4, B2.2, B5.1 Date: 08/12/2010 Location(s): Jenks, Oklahoma Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory The Recipient proposes to replace manually operated thermostats with a digital control system as well as replace 76 Heating, Ventilating, and Air Conditioning units with newer, more energy efficient

  6. CX-003496: Categorical Exclusion Determination | Department of Energy

    Office of Environmental Management (EM)

    374: Categorical Exclusion Determination CX-003374: Categorical Exclusion Determination Installation of Energy Management Equipment CX(s) Applied: B1.4, B2.2, B5.1 Date: 08/12/2010 Location(s): Jenks, Oklahoma Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory The Recipient proposes to replace manually operated thermostats with a digital control system as well as replace 76 Heating, Ventilating, and Air Conditioning units with newer, more energy efficient

  7. CX-013631: Categorical Exclusion Determination | Department of Energy

    Energy Savers [EERE]

    31: Categorical Exclusion Determination CX-013631: Categorical Exclusion Determination Alvey Substation 230-Kilovolt Reactor Replacement CX(s) Applied: B4.11 Date: 04/24/2015 Location(s): Oregon Offices(s): Bonneville Power Administration Bonneville Power Administration (BPA) proposes to replace equipment and expand its Alvey Substation yard near the City of Eugene. Document(s) Available for Download PDF icon CX-013631.pdf More Documents & Publications From Cleanup to Stewardship Building

  8. CX-012402: Categorical Exclusion Determination | Department of Energy

    Office of Environmental Management (EM)

    B-33 Roof Replacement and Fall Protection System Installation CX(s) Applied: B1.3, B2.2, B2.3 Date: 41884 Location(s): West Virginia Offices(s): National Energy Technology Laboratory Roof and lightning protection system replacement and fall protection system installation for B-33. Document(s) Available for Download PDF icon CX-012402.pdf More Documents & Publications CX-012402: Categorical Exclusion Determination CX-012223: Categorical Exclusion Determination CX-012649

  9. Understanding aging in pentaerythritol tetranitrate

    SciTech Connect (OSTI)

    Brown, Geoffrey W; Sandstrom, Mary M; Giambra, Anna M; Archuleta, Jose G; Monroe, Deidre C

    2009-01-01

    Pentaerythritol Tetranitrate (PETN) powder is commonly used in detonators because of its sensitivity and explosive power. PETN detonation is largely determined by the average PETN particle size. This is an issue for aging and storage of weapons because PETN has a relatively high vapor pressure and its average particle size changes due to thermal energy input from the environment. PETN aging is a well known problem although the mechanism is not well understood. It is important to understand PETN aging so that predictive models can be constructed that will benefit stockpile surveillance and lifetime extension programs. PETN particles are known to coarsen over time at relatively low temperatures. Particle coarsening requires mass redistribution since decomposition causes powders to become finer as PETN mass is lost. Two possible mechanisms for mass redistribution are vapor phase transfer via sublimation-redeposition and solid-state mass transfer through surface diffusion. In this work we have examined PETN powders us ing permeability, atomic force microscopy (AFM), and optical microscopy based particle analysis. The results of these measurements lead us to a suggested coarsening mechanism that we reproduce with rudimentary simulations. The physical mechanisms used in the simulations are then used to create an empirical model of the coarsening that may be used to make predictions of PETN aging. In the future we will be measuring the vapor pressures and other physical properties of our powders to be able to make predictions using simulations.

  10. Categorical Exclusion Determinations: Nuclear Energy | Department...

    Energy Savers [EERE]

    ... June 17, 2015 CX-013826: Categorical Exclusion Determination Assessment of Aging Degradation Mechanisms of Alloy 709 for Sodium Fast Reactors - Colorado School of Mines CX(s) ...

  11. Parylene C Aging Studies.

    SciTech Connect (OSTI)

    Achyuthan, Komandoor; Sawyer, Patricia Sue.; Mata, Guillermo Adrian; White II, Gregory Von; Bernstein, Robert

    2014-09-01

    Parylene C is used in a device because of its conformable deposition and other advantages. Techniques to study Parylene C aging were developed, and %22lessons learned%22 that could be utilized for future studies are the result of this initial study. Differential Scanning Calorimetry yielded temperature ranges for Parylene C aging as well as post-deposition treatment. Post-deposition techniques are suggested to improve Parylene C performance. Sample preparation was critical to aging regimen. Short-term (~40 days) aging experiments with free standing and ceramic-supported Parylene C films highlighted %22lessons learned%22 which stressed further investigations in order to refine sample preparation (film thickness, single sided uniform coating, machine versus laser cutting, annealing time, temperature) and testing issues (%22necking%22) for robust accelerated aging of Parylene C.

  12. Modeling Mechanical Behavior of a Prismatic Replaceable Reflector Block

    SciTech Connect (OSTI)

    Robert Bratton

    2009-04-01

    This report outlines the development of finite element models used to determine temperature and stresses in a prismatic core reflector block. This initial analysis determines an appropriate temperature distribution in a prismatic reflector from limiting conditions in the adjacent fuel block based on simplifying assumptions.

  13. Replacing precious metals with carbide catalysts for hydrogenation reactions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; Wang, Tiefeng

    2015-03-03

    Molybdenum carbide (Mo₂C and Ni/Mo₂C) catalysts were compared with Pd/SiO₂ for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO₂, Mo₂C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo₂C could be completely regenerated by H₂ treatment at 723 K for the three molecules. The Ni modified Mo₂C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Nimore » modified Mo₂C catalysts, 8.6%Ni/Mo₂C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO₂. Compared to Pd/SiO₂, both Mo₂C and Ni/Mo₂C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.« less

  14. Replacing precious metals with carbide catalysts for hydrogenation reactions

    SciTech Connect (OSTI)

    Ruijun, Hou; Chen, Jingguang G.; Chang, Kuan; Wang, Tiefeng

    2015-03-03

    Molybdenum carbide (Mo?C and Ni/Mo?C) catalysts were compared with Pd/SiO? for the hydrogenation of several diene molecules, 1,3- butadiene, 1,3- and 1,4-cyclohexadiene (CHD). Compared to Pd/SiO?, Mo?C showed similar hydrogenation rate for 1,3-butadiene and 1,3-CHD and even higher rate for 1,4-CHD, but with significant deactivation rate for 1,3-CHD hydrogenation. However, the hydrogenation activity of Mo?C could be completely regenerated by H? treatment at 723 K for the three molecules. The Ni modified Mo?C catalysts retained similar activity for 1,3-butadiene hydrogenation with significantly enhanced selectivity for 1-butene production. The 1-butene selectivity increased with increasing Ni loading below 15%. Among the Ni modified Mo?C catalysts, 8.6%Ni/Mo?C showed the highest selectivity to 1-butene, which was even higher selectivity than that over Pd/SiO?. Compared to Pd/SiO?, both Mo?C and Ni/Mo?C showed combined advantages in hydrogenation activity and catalyst cost reduction, demonstrating the potential to use less expensive carbide catalysts to replace precious metals for hydrogenation reactions.

  15. LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR®

    Energy Savers [EERE]

    | Department of Energy Replacement Lamps: Current Performance and the Latest on ENERGY STAR® LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® This May 19, 2009 webcast summarized CALiPER's recent benchmark testing of common omnidirectional incandescent lamps (e.g., A-lamps), and provided an update on ENERGY STAR criteria for LED integral replacement lamps - currently in its second draft. Robert Lingard of Pacific Northwest National Laboratory (PNNL) gave an

  16. Evaluation Prompts ENERGY STAR Program to Replace Web Tool, Saving 90

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Percent of Annual Costs | Department of Energy Prompts ENERGY STAR Program to Replace Web Tool, Saving 90 Percent of Annual Costs Evaluation Prompts ENERGY STAR Program to Replace Web Tool, Saving 90 Percent of Annual Costs This document, from the U.S. Environmental Protection Agency's ENERGY STAR Residential Program, is part of the Case Study Series, highlighting how "Evaluation Prompts ENERGY STAR Program to Replace Web Tool, Saving 90 Percent of Annual Costs." PDF icon ENERGY

  17. KP-Replacement-2-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacement-2-B Wholesale Power Rate Schedule KP-Replacement-2-B Wholesale Power Rate Schedule Area: Replacement Energy System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and Virginia to whom power is provided pursuant to contracts between the Government and the customer from the John H. Kerr and Philpott Projects (or Kerr-Philpott System). This rate schedule shall be applicable to

  18. Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil Converting domestic biomass into affordable fuels, products, and power supports our national strategy to diversify energy resources and reduce dependence on imported oil. PDF icon replacing_barrel_overview.pdf More Documents & Publications Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Bioenergy Technologies Office Conversion

  19. Fact #568: April 27, 2009 For Modern Cars, Replacing an Air Filter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance but Not Fuel Economy Fact 568: April 27, 2009 For Modern Cars, Replacing an Air Filter Will Improve Performance but Not Fuel Economy A February 2009 study ...

  20. Building America Top Innovations 2013 Profile – Window Replacement, Rehabilitation, & Repair Guide

    SciTech Connect (OSTI)

    none,

    2013-09-01

    In this Top Innovation profile, Building Science Corporation guides contractors through several options for repairing or replacing old windows to improve air sealing and thermal performance.

  1. Feasibility/alternatives study for the planned replacement of Nuclear Material Safeguards System (NMSS)

    SciTech Connect (OSTI)

    McBride, K.C.; Russell, V.K.

    1994-10-04

    This document is a study which describes the NMSS replacement alternatives and provides recommended solutions. It also describes a NMSS Paradox prototype.

  2. Text-Alternative Version: LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR®

    Broader source: Energy.gov [DOE]

    Below is the text-alternative version of the LED Replacement Lamps: Current Performance and the Latest on ENERGY STAR® webcast.

  3. CALiPER Benchmark Report: Performance of Incandescent A Type and Decorative Lamps and LED Replacements

    SciTech Connect (OSTI)

    Lingard, R. D.; Myer, M. A.; Paget, M. L.

    2008-11-01

    This benchmark report addresses common omnidirectional incandescent lamps - A-type and small decorative, candelabra-type lamps - and their commercially available light-emitting diode (LED) replacements.

  4. Cancer and Aging

    SciTech Connect (OSTI)

    Campisi, Julie

    2015-05-06

    Berkeley Lab biochemist Judy Campisi discusses her work on understanding the molecular and cellular basis of aging and the control of cellular senescence and its role in tumor suppression.

  5. Age Dating of Mixed SNM--Preliminary Investigations

    SciTech Connect (OSTI)

    Yuan, D., Guss, P. P., Yfantis, E., Klingensmith, A., Emer, D.

    2011-12-01

    Recently we investigated the nuclear forensics problem of age determination for mixed special nuclear material (SNM). Through limited computational mixing experiments and interactive age analysis, it was observed that age dating results are generally affected by the mixing of samples with different assays or even by small radioactive material contamination. The mixing and contamination can be detected through interactive age analysis, a function provided by the Decay Interaction, Visualization and Analysis (DIVA) software developed by NSTec. It is observed that for mixed SNM with two components, the age estimators typically fall into two distinct clusters on the time axis. This suggests that averaging or other simple statistical methods may not always be suitable for age dating SNM mixtures. Instead, an interactive age analysis would be more suitable for age determination of material components of such SNM mixtures. This work was supported by the National Center for Nuclear Security (NCNS).

  6. Design Tools to Assess Hydro-Turbine Biological Performance: Priest Rapids Dam Turbine Replacement Project

    SciTech Connect (OSTI)

    Richmond, Marshall C.; Rakowski, Cynthia L.; Serkowski, John A.; Strickler, Brad; Weisbeck, Molly; Dotson, Curtis L.

    2013-06-25

    Over the past two decades, there have been many studies describing injury mechanisms associated with turbine passage, the response of various fish species to these mechanisms, and the probability of survival through dams. Although developing tools to design turbines that improve passage survival has been difficult and slow, a more robust quantification of the turbine environment has emerged through integrating physical model data, fish survival data, and computational fluid dynamics (CFD) studies. Grant County Public Utility District (GCPUD) operates the Priest Rapids Dam (PRD), a hydroelectric facility on the Columbia River in Washington State. The dam contains 10 Kaplan-type turbine units that are now almost 50 years old. The Utility District plans to refit all of these aging turbines with new turbines. The Columbia River at PRD is a migratory pathway for several species of juvenile and adult salmonids, so passage of fish through the dam is a major consideration when replacing the turbines. In this presentation, a method for turbine biological performance assessment (BioPA) is introduced. Using this method, a suite of biological performance indicators is computed based on simulated data from a CFD model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. Using known relationships between the dose of an injury mechanism and frequency of injury (dose–response) from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from proposed designs, the engineer can identify the more-promising alternatives. We will present application of the BioPA method for baseline risk assessment calculations for the existing Kaplan turbines at PRD that will be used as the minimum biological performance that a proposed new design must achieve.

  7. Safety Design Strategy for the Advanced Test Reactor Emergency Firewater Injection System Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  8. Safety Design Strategy for the Advanced Test Reactor Primary Coolant Pump and Motor Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  9. Safety Design Strategy for the Advanced Test Reactor Diesel Bus (E-3) and Switchgear Replacement Project

    SciTech Connect (OSTI)

    Noel Duckwitz

    2011-06-01

    In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3B, “Program and Project Management for the Acquisition of Capital Assets,” safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3B and DOE Order 420.1B, “Facility Safety,” and the expectations of DOE-STD-1189-2008, “Integration of Safety into the Design Process,” provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Advanced Test Reactor Reliability Sustainment Project. While this project does not introduce new hazards to the ATR, it has the potential for significant impacts to safety-related systems, structures, and components that are credited in the ATR safety basis and are being replaced. Thus the project has been determined to meet the definition of a major modification and is being managed accordingly.

  10. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement

    SciTech Connect (OSTI)

    Sales, Almir; Lima, Sofia Araujo

    2010-06-15

    Sugarcane today plays a major role in the worldwide economy, and Brazil is the leading producer of sugar and alcohol, which are important international commodities. The production process generates bagasse as a waste, which is used as fuel to stoke boilers that produce steam for electricity cogeneration. The final product of this burning is residual sugarcane bagasse ash (SBA), which is normally used as fertilizer in sugarcane plantations. Ash stands out among agroindustrial wastes because it results from energy generating processes. Many types of ash do not have hydraulic or pozzolanic reactivity, but can be used in civil construction as inert materials. The present study used ash collected from four sugar mills in the region of Sao Carlos, SP, Brazil, which is one of the world's largest producers of sugarcane. The ash samples were subjected to chemical characterization, sieve analysis, determination of specific gravity, X-ray diffraction, scanning electron microscopy, and solubilization and leaching tests. Mortars and concretes with SBA as sand replacement were produced and tests were carried out: compressive strength, tensile strength and elastic modulus. The results indicated that the SBA samples presented physical properties similar to those of natural sand. Several heavy metals were found in the SBA samples, indicating the need to restrict its use as a fertilizer. The mortars produced with SBA in place of sand showed better mechanical results than the reference samples. SBA can be used as a partial substitute of sand in concretes made with cement slag-modified Portland cement.

  11. Agents for replacement of NAD+/NADH system in enzymatic reactions

    DOE Patents [OSTI]

    Fish, Richard H.; Kerr, John B.; Lo, Christine H.

    2004-04-06

    Novel agents acting as co-factors for replacement of NAD(P).sup.+ /NAD(P)H co-enzyme systems in enzymatic oxido-reductive reactions. Agents mimicking the action of NAD(P).sup.+ /NAD(P)H system in enzymatic oxidation/reduction of substrates into reduced or oxidized products. A method for selection and preparation of the mimicking agents for replacement of NAD(P).sup.+ /NAD(P)H system and a device comprising co-factors for replacement of NAD(P).sup.+ /NAD(P)H system.

  12. EERE Success Story-California: SQAMD Replaces Drayage Trucks with CNG |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SQAMD Replaces Drayage Trucks with CNG EERE Success Story-California: SQAMD Replaces Drayage Trucks with CNG November 6, 2013 - 12:00am Addthis In 2008, the South Coast Air Quality Management District (AQMD) Heavy-Duty Natural Gas Drayage Truck Replacement Program started to address a significant need to reduce diesel emissions and associated public health risks from goods movement at the Ports of Los Angeles and Long Beach. In 2010, the two ports processed goods worth

  13. Replace Pressure-Reducing Valves with Backpressure Turbogenerators - Steam Tip Sheet #20

    SciTech Connect (OSTI)

    2012-01-01

    This revised AMO steam tip sheet on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  14. Replacing the Whole BarrelTo Reduce U.S. Dependence on Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacing the Whole Barrel To Reduce U.S. Dependence on Oil July 2013 Biofuels are ... We've got to develop every source of American energy-not just oil and gas, but wind power ...

  15. Is it Cost-Effective to Replace Old Eddy-Current Drives?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Drives? Electronic pulse-width-modulated (PWM) variable frequency drives (VFD) may be ... life; the proposed replacement is a PWM VFD. The fan operates for 8,000 hours per ...

  16. Replaces DOE F 3530.1 5. HOW LONG IN PRESENT POSITION GRADE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (07-95) Replaces DOE F 3530.1 5. HOW LONG IN PRESENT POSITION GRADE 6. DATE NEXT REGULAR STEP INCREASE IS DUE: 7. LIST ANY AWARDS OR QUALITY INCREASES RECEIVED IN LAST 5 YEARS...

  17. Aging assessment of reactor instrumentation and protection system components. Aging-related operating experiences

    SciTech Connect (OSTI)

    Gehl, A.C.; Hagen, E.W.

    1992-07-01

    A study of the aging-related operating experiences throughout a five-year period (1984--1988) of six generic instrumentation modules (indicators, sensors, controllers, transmitters, annunciators, and recorders) was performed as a part of the Nuclear Plant Aging Research Program. The effects of aging from operational and environmental stressors were characterized from results depicted in Licensee Event Reports (LERs). The data are graphically displayed as frequency of events per plant year for operating plant ages from 1 to 28 years to determine aging-related failure trend patterns. Three main conclusions were drawn from this study: (1) Instrumentation and control (I&C) modules make a modest contribution to safety-significant events: 17% of LERs issued during 1984--1988 dealt with malfunctions of the six I&C modules studied, and 28% of the LERs dealing with these I&C module malfunctions were aging related (other studies show a range 25--50%); (2) Of the six modules studied, indicators, sensors, and controllers account for the bulk (83%) of aging-related failures; and (3) Infant mortality appears to be the dominant aging-related failure mode for most I&C module categories (with the exception of annunciators and recorders, which appear to fail randomly).

  18. CU-Replacement-3 Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replacement-3 Wholesale Power Rate Schedule CU-Replacement-3 Wholesale Power Rate Schedule Area: Virginia, North Carolina, Tennessee, Georgia, Alabama, Mississippi, Kentucky, southern Illinois System: CU This rate schedule shall be available to public bodies and cooperatives ( any one of whom is hereinafter called the Customer) in Virginia, North Carolina, Tennessee, Georgia, Alabama, Mississippi, Kentucky and southern Illinois to whom power is provided pursuant to contracts between the

  19. Molecular replacement and model-building using distant homology models as

    Office of Scientific and Technical Information (OSTI)

    templates (Technical Report) | SciTech Connect Molecular replacement and model-building using distant homology models as templates Citation Details In-Document Search Title: Molecular replacement and model-building using distant homology models as templates Authors: Terwilliger, Thomas C. [1] + Show Author Affiliations Los Alamos National Laboratory [Los Alamos National Laboratory Publication Date: 2013-11-26 OSTI Identifier: 1107986 Report Number(s): LA-UR-13-29025 DOE Contract Number:

  20. The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory

    Energy Savers [EERE]

    Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos National Laboratory OAS-L-13-15 September 2013 Department of Energy Washington, DC 20585 September 26, 2013 MEMORANDUM FOR THE ASSOCIATE ADMINISTRATOR FOR ACQUISITION AND PROJECT MANAGEMENT MANAGER LOS ALAMOS FIELD OFFICE FROM: David Sedillo Western Audits Division Office of Inspector General SUBJECT: INFORMATION: Audit Report on "The Radioactive Liquid Waste Treatment Facility Replacement Project at Los Alamos

  1. Building America Top Innovations 2013 Profile … Window Replacement, Rehabilitation, & Repair Guide

    Energy Savers [EERE]

    Window Replacement, Rehabilitation, & Repair Guide TOP INNOVATOR: BSC Old single-glazed windows have such low thermal resistance that their effect on the overall thermal resistance of the walls can be staggering. Building America recommends several ways to improve the performance of existing windows at varying price points. Owners of older homes who want to improve their homes' efficiency often conclude that window replacement is a necessary first step. They are right that windows can be a

  2. Avoiding a Train Wreck: Replacing Old Coal Plants with Energy Efficiency,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2011 | Department of Energy Avoiding a Train Wreck: Replacing Old Coal Plants with Energy Efficiency, August 2011 Avoiding a Train Wreck: Replacing Old Coal Plants with Energy Efficiency, August 2011 This paper discusses the so-called "coal train wreck" which may afford an opportunity to modernize our electric utility regulations to reflect a new century of different economic and energy markets, creating opportunities for the utility industry to define a new path to

  3. New York Power Authority/New York City Housing Authority refrigerator replacement program, first program year evaluation. Final report

    SciTech Connect (OSTI)

    Kinney, L.F.; Lewis, G.; Pratt, R.G.; Miller, J.

    1997-08-01

    Acting as an energy services provider, the New York Power Authority (NYPA) has initiated a long-term project through which 20,000 refrigerators per year will be replaced with the most energy-efficient units possible in apartments managed by the New York City Housing Authority (NYCHA). Using bulk purchasing as an incentive to appliance manufacturers to produce energy-efficient refrigerators suitable for use in apartments, replaced in the first year of the program, which ended in December 1996. These units, kWh per year. Savings were determined by field testing and laboratory testing of 220 existing refrigerators and 56 newly-installed units. In the next program year, a 15.0-cubic-foot Maytag refrigerator, newly-designed in response to bulk purchasing incentives, is being installed. The new unit has a label rating of 437 kWh per year, 31 percent better than 1993 energy standards. Old refrigerators removed from apartments are {open_quotes}demanufactured{close_quotes} in an environmentally-appropriate way and both metals and refrigerants are recovered for reuse.

  4. COTNAINSETREFERENCE NO OF DOCUMENT BEING CONTINUED ~AGE OF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NO OF DOCUMENT BEING CONTINUED ~AGE OF CONINUTIO SHE PF, , '-C c NAME OF OFFEROR OR CONTRACTOR WASHAINGTON. 1 IVEP, PPOTFCIO SDO2LUYI, roLT ITEM NO SUPPLIES/SERVICES QUANTITY UNIT UNIT PRICE AMOUNT App-rl Usel fU))J ( P~~PA 14 CIYBI Pr-' T 1, Contract N umber I)E-AC27-08RVI 4800 Continuation Page, Modification 106 Pagye 3 of 4 Attachment DE-AC27-O8RVI 4800, MODIFICATION 106 Replacement Pages Section B, Page B-3, (2 pages total including this cover page) Tank Operations Contract Section B

  5. Better Buildings Alliance, adidas Case Study: adidas Saves Energy and Costs with Planned RTU Replacement Program (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    Case study describing how adidas implemented a best practice of a planned replacement program for its RTUs.

  6. CX-007131: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Categorical Exclusion Determination CX-007131: Categorical Exclusion Determination Casa Grande-Empire Double Circuit Upgrade and Structure Replacement CX(s) Applied: B1.3 Date: 03/08/2011 Location(s): Pinal County, Arizona Office(s): Western Area Power Administration-Desert Southwest Region Western proposes to replace structures and upgrade to a double circuit 230- kilovolt (kV) transmission line on its Casa Grande-Empire 115-kV transmission line, from Thornton Road to its Empire Substation,

  7. Categorical Exclusion Determinations: Office of Energy Efficiency and

    Energy Savers [EERE]

    Renewable Energy | Department of Energy Energy Efficiency and Renewable Energy Categorical Exclusion Determinations: Office of Energy Efficiency and Renewable Energy Categorical Exclusion Determinations issued by Energy Efficiency and Renewable Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD April 11, 2013 CX-010104: Categorical Exclusion Determination Broken Link: Table Mountain Rancheria of California Tribe Proposes Energy Use Study As Well As Heating and Cooling Install/Replace CX(s) Applied:

  8. Study: Algae Could Replace 17% of U.S. Oil Imports | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study: Algae Could Replace 17% of U.S. Oil Imports Study: Algae Could Replace 17% of U.S. Oil Imports April 13, 2011 - 6:30pm Addthis Algae samples back at the NREL lab, ready to be analyzed and run through the Fluorescent-Activated Cell Sorter, or FACS, which separates the cells. | Credit: NREL Staff Photographer Dennis Schroeder. Algae samples back at the NREL lab, ready to be analyzed and run through the Fluorescent-Activated Cell Sorter, or FACS, which separates the cells. | Credit: NREL

  9. The How's and Why's of Replacing the Whole Barrel | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The How's and Why's of Replacing the Whole Barrel The How's and Why's of Replacing the Whole Barrel October 19, 2011 - 4:09pm Addthis A 42-U.S. gallon barrel of crude oil yields about 45 gallons of petroleum products. Source: Energy Information Administration, “Oil: Crude Oil and Petroleum Products Explained” and Annual Energy Outlook 2009 (Updated February 2010). A 42-U.S. gallon barrel of crude oil yields about 45 gallons of petroleum products. Source: Energy Information

  10. Monitoring Galvanic Replacement of Ag Nanoparticles by Pd using Low Dose In

    Office of Scientific and Technical Information (OSTI)

    Situ Liquid S/TEM. (Conference) | SciTech Connect Conference: Monitoring Galvanic Replacement of Ag Nanoparticles by Pd using Low Dose In Situ Liquid S/TEM. Citation Details In-Document Search Title: Monitoring Galvanic Replacement of Ag Nanoparticles by Pd using Low Dose In Situ Liquid S/TEM. Abstract not provided. Authors: Jungjohann, Katherine Leigh Publication Date: 2013-08-01 OSTI Identifier: 1106551 Report Number(s): SAND2013-6522C 465022 DOE Contract Number: AC04-94AL85000 Resource

  11. Reminder: Y-12 Public Warning Siren System being replaced, tested | Y-12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security Complex Reminder: Y-12 Public ... Reminder: Y-12 Public Warning Siren System being replaced, tested Posted: September 25, 2012 - 12:55pm The Y-12 Public Warning Siren System (PWSS) located around the Oak Ridge area is being replaced this month with a test of the new system on Sept. 26. The vendor, American Signal, will be testing the sirens Sept. 26 between 10 a.m. and 2 p.m. They may sound sirens multiple times during this window, and they probably will sound each siren

  12. Aging and the geochemical environment

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This report describes and assesses the aging process and related environmental aspects that may provide useful insights toward postponing some of the inevitable effects of aging. Although the Panel on Aging and the Geochemical Environment is convinced that the geochemical environment is associated with aging, it of course recognizes that other factors may also be significant or, perhaps, more important. Accordingly, the report is intended to enhance the awareness of biomedical and geochemical research scientists, decision makers in related areas, and the lay public interested in an understanding of the relation of the geochemical environment to senescence.

  13. Conformationally constrained farnesoid X receptor (FXR) agonists: Heteroaryl replacements of the naphthalene

    SciTech Connect (OSTI)

    Bass, Jonathan Y.; Caravella, Justin A.; Chen, Lihong; Creech, Katrina L.; Deaton, David N.; Madauss, Kevin P.; Marr, Harry B.; McFadyen, Robert B.; Miller, Aaron B.; Mills, Wendy Y.; Navas, III, Frank; Parks, Derek J.; Smalley, Jr., Terrence L.; Spearing, Paul K.; Todd, Dan; Williams, Shawn P.; Wisely, G. Bruce

    2014-08-13

    To improve on the drug properties of GSK8062 1b, a series of heteroaryl bicyclic naphthalene replacements were prepared. The quinoline 1c was an equipotent FXR agonist with improved drug developability parameters relative to 1b. In addition, analog 1c lowered body weight gain and serum glucose in a DIO mouse model of diabetes.

  14. The feasibility of replacing or upgrading utility distribution transformers during routine maintenance

    SciTech Connect (OSTI)

    Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.; Cohn, S.M.; Purucker, S.L.

    1995-04-01

    It is estimated that electric utilities use about 40 million distribution transformers in supplying electricity to customers in the United States. Although utility distribution transformers collectively have a high average efficiency, they account for approximately 61 billion kWh of the 229 billion kWh of energy lost annually in the delivery of electricity. Distribution transformers are being replaced over time by new, more efficient, lower-loss units during routine utility maintenance of power distribution systems. Maintenance is typically not performed on units in service. However, units removed from service with appreciable remaining life are often refurbished and returned to stock. Distribution transformers may be removed from service for many reasons, including failure, over- or underloading, or line upgrades such as voltage changes or rerouting. When distribution transformers are removed from service, a decision must be made whether to dispose of the transformer and purchase a lower-loss replacement or to refurbish the transformer and return it to stock for future use. This report contains findings and recommendations on replacing utility distribution transformers during routine maintenance, which is required by section 124(c) of the Energy Policy Act of 1992. The objectives of the study are to evaluate the practicability, cost-effectiveness, and potential energy savings of replacing or upgrading existing transformers during routine utility maintenance and to develop recommendations on was to achieve the potential energy savings.

  15. EA-1994: Malheur Resource Area Jonesboro Diversion Dam Replacement Project, Malheur County, Oregon

    Broader source: Energy.gov [DOE]

    The Bureau of Land Management, with the Bonneville Power Administration (BPA) as a cooperating agency, prepared an EA that assesses the potential environmental impacts of the proposed authorization of a right of way to the Burns Paiute Tribe for replacement of an existing diversion dam and installation of a fish passage structure. BPA’s proposed action was to fund the project

  16. Measure Guideline. Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    SciTech Connect (OSTI)

    Hunt, A.; Easley, S.

    2012-05-01

    This measure guideline evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provides a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  17. Measure Guideline: Replacing Single-Speed Pool Pumps with Variable Speed Pumps for Energy Savings

    SciTech Connect (OSTI)

    Hunt, A.; Easley, S.

    2012-05-01

    The report evaluates potential energy savings by replacing traditional single-speed pool pumps with variable speed pool pumps, and provide a basic cost comparison between continued uses of traditional pumps verses new pumps. A simple step-by-step process for inspecting the pool area and installing a new pool pump follows.

  18. Design Evolution Study - Aging Options

    SciTech Connect (OSTI)

    P. McDaniel

    2002-04-05

    The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential aging location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new subsurface area (high cost); surface aging in the complete waste package (risk to the waste package and impact on the Waste Handling Facility); and aging in the stainless steel liner (impact on the waste package design and new high risk operations added to the waste packaging process). The selection of a design basis for aging will be made in conjunction with the other design re-evaluation studies.

  19. CX-002327: Categorical Exclusion Determination | Department of Energy

    Office of Environmental Management (EM)

    327: Categorical Exclusion Determination CX-002327: Categorical Exclusion Determination Central Facility Area and Advanced Test Reactor-Complex Analytical and Research and Development Laboratory Operation (Overarching) CX(s) Applied: B3.6 Date: 05/06/2010 Location(s): Idaho Office(s): Idaho Operations Office, Nuclear Energy This EC replaces overarching Environmental Checklist (EC) INL-05-017 due to changes in the laboratories identified in EC INL-05-017. The proposed action will continue to

  20. CX-012705: Categorical Exclusion Determination | Department of Energy

    Office of Environmental Management (EM)

    05: Categorical Exclusion Determination CX-012705: Categorical Exclusion Determination Materials and Fuels Complex (MFC)-703 Fire Alarm Replacement CX(s) Applied: B2.2 Date: 41858 Location(s): Idaho Offices(s): Nuclear Energy The Sodium Storage Facility at MFC, building MFC-703, is a designated Hazardous Waste Management Act/ Resource Conservation and Recovery Act (HWMA/RCRA) Treatment, Storage and Disposal Facility permitted for storing reactive and ignitable hazardous waste and mixed waste.

  1. Rock of Ages | Open Energy Information

    Open Energy Info (EERE)

    of Ages Jump to: navigation, search Name Rock of Ages Facility Rock of Ages Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Rock of Ages Energy...

  2. NO2 Aging and Iodine Loading of Silver-Functionalized Aerogels

    SciTech Connect (OSTI)

    Patton, K K [ORNL; Bruffey, S H [ORNL; Walker, J F [ORNL; Jubin, R T [ORNL

    2014-07-31

    Off-gas treatment systems in used fuel reprocessing which use fixed-bed adsorbers are typically designed to operate for an extended period of time before replacement or regeneration of the adsorbent. During this time, the sorbent material will be exposed to the off-gas stream. Exposure could last for months, depending on the replacement cycle time. The gas stream will be at elevated temperature and will possibly contain a mixture of water vapor, NOx, nitric acid vapors, and a variety of other constituents in addition to the radionuclides of capture interest. A series of studies were undertaken to evaluate the effects of long-term exposure, or aging, on proposed iodine sorbent materials under increasingly harsh off-gas conditions. Previous studies have evaluated the effects of up to 6 months of aging under dry air and under humid air conditions on the iodine loading behavior of Ag0-functionalized aerogels. This study examines the effects of extended exposure (up to 6 months) to NO2 on the iodine loading capacity of Ag0- functionalized aerogels. Material aged for 1 and 2 months appeared to have a similar total loading capacity to fresh material. Over an aging period of 4 months, a loss of approximately 15% of the total iodine capacity was seen. The iodine capacity loss on silver-functionalized aerogels due to NO2 was smaller than the iodine capacity loss due to humid or dry air aging.

  3. Transportation, Aging and Disposal Canister System Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 ...

  4. AGING SYSTEM DESIGN DEVELOPMENT STRATEGY

    SciTech Connect (OSTI)

    J. Beesley

    2005-02-07

    This plan provides an overview, work to date, and the path forward for the design development strategy of the Aging cask for aging commercial spent nuclear fuel (CSNF) at the Yucca Mountain Project (YMP) repository site. Waste for subsurface emplacement at the repository includes US Department of Energy (DOE) high-level radioactive waste (HLW), DOE SNF, commercial fuel in dual-purpose canisters (DPCs), uncanistered bare fuel, naval fuel, and other waste types. Table 1-1 lists the types of radioactive materials that may be aged at YMP, and those materials that will not be placed in an aging cask or module. This plan presents the strategy for design development of the Aging system. The Aging system will not handle naval fuel, DOE HLW, MCOs, or DOE SNF since those materials will be delivered to the repository in a state and sequence that allows them to be placed into waste packages for emplacement. Some CSNF from nuclear reactors, especially CSNF that is thermally too hot for emplacement underground, will need to be aged at the repository.

  5. AGING FACILITY CRITICALITY SAFETY CALCULATIONS

    SciTech Connect (OSTI)

    C.E. Sanders

    2004-09-10

    The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging Facility. As the ongoing design evolution remains fluid, the results from this design calculation should be evaluated for applicability to any new or modified design. Consequently, the results presented in this document are limited to the current design. The information contained in this document was developed by Environmental and Nuclear Engineering and is intended for the use of Design and Engineering in its work regarding the various criticality related activities performed in the Aging Facility. Yucca Mountain Project personnel from Environmental and Nuclear Engineering should be consulted before the use of the information for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

  6. Compliant mechanism road bicycle brake: a rigid-body replacement case study

    SciTech Connect (OSTI)

    Olsen, Brian M; Howell, Larry L; Magleby, Spencer P

    2011-01-19

    The design of high-performance bicycle brakes is complicated by the competing design objectives of increased performance and low weight. But this challenge also provides a good case study to demonstrate the design of compliant mechanisms to replace current rigid-link mechanisms. This paper briefly reviews current road brake designs, demonstrates the use of rigid-body replacement synthesis to design a compliant mechanism, and illustrates the combination of compliant mechanism design tools. The resulting concept was generated from the modified dual-pivot brake design and is a partially compliant mechanism where one pin has the dual role of a joint and a mounting pin. The pseudo-rigid-body model, finite element analysis, and optimization algorithms are used to generate design dimensions, and designs are considered for both titanium and E-glass flexures. The resulting design has the potential of reducing the part count and overall weight while maintaining a performance similar to the benchmark.

  7. Replace V-Belts with Notched or Synchronous Belt Drives | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy V-Belts with Notched or Synchronous Belt Drives Replace V-Belts with Notched or Synchronous Belt Drives Belt drives provide flexibility in the positioning of the motor relative to the load. Pulleys (sheaves) of varying diameters allow the speed of the driven equipment to be increased or decreased relative to the motor speed. A properly designed belt power-transmission system offers high efficiency and low noise, requires no lubrication, and presents low maintenance requirements.

  8. 5-Carbon Alcohols for Drop-in Gasoline Replacement - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Vehicles and Fuels Vehicles and Fuels Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search 5-Carbon Alcohols for Drop-in Gasoline Replacement Lawrence Berkeley National Laboratory Contact LBL About This Technology Technology Marketing SummaryJay Keasling and Howard Chou of Berkeley Lab and the Joint BioEnergy Institute (JBEI) have invented a fermentation process to produce 5-carbon alcohols from genetically modified E. coli host cells regardless of the

  9. A Safer Replacement for Highly Flammable Liquids Currently Used in Li-ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Batteries | U.S. DOE Office of Science (SC) A Safer Replacement for Highly Flammable Liquids Currently Used in Li-ion Batteries Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) Applicant and Awardee Resources Commercialization Assistance Other Resources Awards SBIR/STTR Highlights Reporting Fraud Contact Information Small Business Innovation Research and Small Business Technology Transfer

  10. Bio-based ethylene able to replace petroleum as a feedstock - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Early Stage R&D Early Stage R&D Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Bio-based ethylene able to replace petroleum as a feedstock National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication Photosynthetic Conversion of CO2 to Fuels and Chemicals using Cyanobacteria - Accelerating Innovation Webinar Presentation (989 KB) Technology Marketing Summary Ethylene is the most

  11. Non-uniform Aging on Super Duty Diesel Truck Aged Urea Cu/Zeolite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Aging on Super Duty Diesel Truck Aged Urea CuZeolite SCR Catalysts Non-uniform Aging on Super Duty Diesel Truck Aged Urea CuZeolite SCR Catalysts CuZeolite SCR catalysts aged ...

  12. An opposite view data replacement approach for reducing artifacts due to metallic dental objects

    SciTech Connect (OSTI)

    Yazdi, Mehran; Lari, Meghdad Asadi; Bernier, Gaston; Beaulieu, Luc

    2011-04-15

    Purpose: To present a conceptually new method for metal artifact reduction (MAR) that can be used on patients with multiple objects within the scan plane that are also of small sized along the longitudinal (scanning) direction, such as dental fillings. Methods: The proposed algorithm, named opposite view replacement, achieves MAR by first detecting the projection data affected by metal objects and then replacing the affected projections by the corresponding opposite view projections, which are not affected by metal objects. The authors also applied a fading process to avoid producing any discontinuities in the boundary of the affected projection areas in the sinogram. A skull phantom with and without a variety of dental metal inserts was made to extract the performance metric of the algorithm. A head and neck case, typical of IMRT planning, was also tested. Results: The reconstructed CT images based on this new replacement scheme show a significant improvement in image quality for patients with metallic dental objects compared to the MAR algorithms based on the interpolation scheme. For the phantom, the authors showed that the artifact reduction algorithm can efficiently recover the CT numbers in the area next to the metallic objects. Conclusions: The authors presented a new and efficient method for artifact reduction due to multiple small metallic objects. The obtained results from phantoms and clinical cases fully validate the proposed approach.

  13. Technology Solutions Case Study: Replacement of Variable-Speed Motors for Furnaces

    SciTech Connect (OSTI)

    2013-02-01

    In conjunction with the New York State Energy Research and Development Authority (NYSERDA) and Proctor Engineering Group, Ltd. (PEG), the Consortium for Advanced Residential Buildings (CARB) evaluated the Concept 3 replacement motors for residential furnaces in eight homes in Syracuse, NY. These brushless, permanent magnet (BPM) motors can use much less electricity than their PSC (permanent split capacitor) predecessors. This evaluation focuses on existing homes in the heating-dominated climate of upstate New York with the goals of characterizing field performance and cost-effectiveness. The results of this study are intended to be useful to home performance contractors, HVAC contractors, and home efficiency program stakeholders. Tests and monitoring was performed both before and after fan motors were replaced. Average fan power reductions were approximately 126 Watts during heating and 220 Watts during cooling operation. Over the course of entire heating and cooling seasons, these translated into average electric energy savings of 163 kWh, with average cost savings of $20 per year. Homes where the fan was used outside of heating and cooling mode saved an additional $42 per year on average. Results indicate that BPM replacement motors will be most cost-effective in HVAC systems with longer run times and relatively low duct static pressures. More dramatic savings are possible if occupants use the fan-only setting when there is no thermal load.

  14. Cell Senescence: Aging and Cancer

    ScienceCinema (OSTI)

    Campisi, Judith

    2013-05-29

    Scientists have identified a molecular cause behind the ravages of old age and in doing so have also shown how a natural process for fighting cancer in younger persons can actually promote cancer in older individuals.

  15. The age of the universe

    SciTech Connect (OSTI)

    Schramm, D.N.

    1996-10-01

    An overview of the current controversy on the age of the universe is presented. It is shown that the age of the oldest star, globular clusters, yields an age estimate of approximately 14 {+-} 2 {+-} 2 Gyr (where the first {+-} is statistical and the second systematic, and the two should {ital not} be added in quadrature), with a firm lower bound of {ge} 10 Gyr. It is shown how radioactive dating, nucleocosmochronology, also yields a firm lower bound of {approx_gt} 10 Gyr. The currently favored values for the Hubble constant, when converted to ages using a cosmological model with zero cosmological constant, are shown {ital not} to be in conflict with statistical and systematic uncertainties at the present time when one takes both into account, even for critical density universes. 25 refs. , 3 figs., 1 tab.

  16. CX-012561: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Department of Energy Office Trailers CX(s) Applied: B1.15Date: 41871 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  17. CX-008161: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Prosser Hatchery Backup Generator Replacement CX(s) Applied: B1.31 Date: 04/16/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  18. CX-012656: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Bend Communication Site Engine Generator Replacement CX(s) Applied: B1.3Date: 41848 Location(s): WashingtonOffices(s): Bonneville Power Administration

  19. CX-010155: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Augspurger Radio Tower Replacement Project CX(s) Applied: B1.19 Date: 04/03/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  20. CX-008683: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shaniko Radio Station Replacement Project CX(s) Applied: B1.19 Date: 07/11/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  1. CX-012002: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Raver-Covington Conductor Replacement CX(s) Applied: B1.3 Date: 04/24/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  2. CX-009423: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Relay and Switchboard Panel Replacements CX(s) Applied: B4.6 Date: 10/29/2012 Location(s): Arkansas Offices(s): Southwestern Power Administration

  3. CX-008803: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Milling Machine Replacement Projects CX(s) Applied: B1.31 Date: 05/14/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  4. CX-012798: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Davis Creek Tap Wood Pole Replacements CX(s) Applied: B1.3Date: 41915 Location(s): CaliforniaOffices(s): Bonneville Power Administration

  5. CX-012495: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 6 Stack Replacement CX(s) Applied: B1.3Date: 41855 Location(s): West VirginiaOffices(s): National Energy Technology Laboratory

  6. CX-010734: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Covington District Culvert Replacements CX(s) Applied: B1.3 Date: 07/22/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  7. CX-012799: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Malin-Hilltop Wood Pole Replacements CX(s) Applied: B1.3Date: 41915 Location(s): CaliforniaOffices(s): Bonneville Power Administration

  8. CX-012805: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Brasada-Harney #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41908 Location(s): OregonOffices(s): Bonneville Power Administration

  9. CX-012658: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chief Joseph and Custer Substations Security Fence Replacement CX(s) Applied: B1.11Date: 41843 Location(s): WashingtonOffices(s): Bonneville Power Administration

  10. CX-013629: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oregon City Station Service Replacement CX(s) Applied: B1.3Date: 04/27/2015 Location(s): OregonOffices(s): Bonneville Power Administration

  11. CX-012818: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    La Pine-Chiloquin Wood Pole Replacements CX(s) Applied: B1.3Date: 41887 Location(s): OregonOffices(s): Bonneville Power Administration

  12. CX-010375: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Existing Firehouse CX(s) Applied: B1.15 Date: 09/20/2011 Location(s): California Offices(s): Berkeley Site Office

  13. CX-012195: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alfalfa Substation Control House Replacement CX(s) Applied: B4.11 Date: 05/02/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  14. CX-012813: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Redmond-Pilot Butte #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41893 Location(s): OregonOffices(s): Bonneville Power Administration

  15. CX-012730: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace West Hackberry Radio Tower CX(s) Applied: B1.19Date: 41880 Location(s): LouisianaOffices(s): Strategic Petroleum Reserve Field Office

  16. CX-012822: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Santiam-Toledo Structure 39/7 Replacement CX(s) Applied: B1.3Date: 41876 Location(s): OregonOffices(s): Bonneville Power Administration

  17. CX-013787: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bell Substation HVAC Replacement CX(s) Applied: B1.3Date: 06/30/2015 Location(s): OregonOffices(s): Bonneville Power Administration

  18. CX-012796: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big Eddy-Redmond #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41919 Location(s): OregonOffices(s): Bonneville Power Administration

  19. CX-008691: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mason Substation Metering Replacement Project CX(s) Applied: B1.7 Date: 06/25/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  20. CX-011173: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Yaak Substation Transformer Replacement CX(s) Applied: B4.6 Date: 09/18/2013 Location(s): Montana Offices(s): Bonneville Power Administration

  1. CX-011189: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Naselle Ridge Emergency Generator Replacement CX(s) Applied: B4.6 Date: 08/26/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  2. CX-012621: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace 730-2B Roof CX(s) Applied: B1.3Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  3. CX-012622: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace roofing system at 702-F CX(s) Applied: B1.3Date: 41799 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  4. The effect of chrome adhesion layer on quartz resonator aging. (Technical

    Office of Scientific and Technical Information (OSTI)

    Report) | SciTech Connect Technical Report: The effect of chrome adhesion layer on quartz resonator aging. Citation Details In-Document Search Title: The effect of chrome adhesion layer on quartz resonator aging. This SAND report documents a late start LDRD designed to determine the possible aging effects of a quartz resonator gold adhesion layer. Sandia uses quartz resonators for applications. These applications require a very stable frequency source with excellent aging (low drift)

  5. Environmental assessment of the brine pipeline replacement for the Strategic Petroleum Reserve Bryan Mound Facility in Brazoria County, Texas

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Department of Energy (DOE) has prepared an environmental assessment (EA), DOE/EA-0804, for the proposed replacement of a deteriorated brine disposal pipeline from the Strategic Petroleum Reserve (SPR) Bryan Mound storage facility in Brazoria County, Texas, into the Gulf of Mexico. In addition, the ocean discharge outfall would be moved shoreward by locating the brine diffuser at the end of the pipeline 3.5 miles offshore at a minimum depth of 30 feet. The action would occur in a floodplain and wetlands; therefore, a floodplain/wetlands assessment has been prepared in conjunction with this EA. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969 (42 USC. 4321, et seg.). Therefore, the preparation of an Environmental Impact Statement (EIS) is not required, and the Department is issuing this Finding of No Significant Impact (FONSI). This FONSI also includes a Floodplain Statement of Findings in accordance with 10 CFR Part 1022.

  6. CX-009197: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2012 Spacer and Insulator Replacement Program; Hatwai-Dworshak No. 1 500-kilovolt (kV) Transmission Line Spacer Replacement Project CX(s) Applied: B1.3 Date: 09/24/2012 Location(s): Idaho, Idaho Offices(s): Bonneville Power Administration

  7. Lumen Maintenance Testing of the Philips 60-Watt Replacement Lamp L Prize Entry

    SciTech Connect (OSTI)

    Gordon, Kelly L.; Hafen, Ryan P.; Hathaway, John E.; McCullough, Jeffrey J.

    2012-09-01

    This paper describes testing conducted to evaluate the Philips' L Prize award winning 60-watt LED replacement product's ability to meet the lifetime/lumen maintenance requirement of the competition, which was: "having 70 percent of the lumen value under subparagraph (A) [producing a luminous flux greater than 900 lumens] exceeding 25,000 hours under typical conditions expected in residential use." A custom test apparatus was designed and constructed for this testing and a statistical approach was developed for use in evaluating the test results. This will be the only publicly available, third-party data set of long-term LED product operation.

  8. ANALYSIS OF DOSE RATES DURING REPLACEMENT OF MANIPULATORS IN THE FFTF INTERIM EXAMINATION & MAINTENANCE (IEM) CELL

    SciTech Connect (OSTI)

    NELSON, J.V.

    2002-01-23

    Replacement of a master-slave manipulator in the Interim Examination and Maintenance Cell at the Fast Flux Test Facility was carried out in August 2001. This operation created a 178-mm opening in the thick concrete wall of the hot cell. To aid in radiological work planning, dose rates outside the penetration in the wall were predicted using MCNP{trademark} photon transport calculations. The predicted dose rate was 7.7 mrem/h, which was reasonably close to the value of 10.4 mrem/h inferred from measurements.

  9. Recommendations for the treatment of aging in standard technical specifications

    SciTech Connect (OSTI)

    Orton, R.D.; Allen, R.P.

    1995-09-01

    As part of the US Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program, Pacific Northwest Laboratory (PNL) evaluated the standard technical specifications for nuclear power plants to determine whether the current surveillance requirements (SRs) were effective in detecting age-related degradation. Nuclear Plant Aging Research findings for selected systems and components were reviewed to identify the stressors and operative aging mechanisms and to evaluate the methods available to detect, differentiate, and trend the resulting aging degradation. Current surveillance and testing requirements for these systems and components were reviewed for their effectiveness in detecting degraded conditions and for potential contributions to premature degradation. When the current surveillance and testing requirements appeared ineffective in detecting aging degradation or potentially could contribute to premature degradation, a possible deficiency in the SRs was identified that could result in undetected degradation. Based on this evaluation, PNL developed recommendations for inspection, surveillance, trending, and condition monitoring methods to be incorporated in the SRs to better detect age- related degradation of these selected systems and components.

  10. Aging and the geochemical environment

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The report describes and assesses the aging process and related environmental aspects. Specific geographic areas of increased and decreased longevity were identified and geochemically characterized in terms of surface rocks, drinking water quality, soils, and abnormal absorption of trace elements by plants. Environmental factors that may be related to increased longevity are discussed. 11 references, 32 figures, 8 tables. (ACR)

  11. Replace Pressure-Reducing Valves with Backpressure Turbogenerators (International Fact Sheet), Energy Tips-Steam, Steam Tip Sheet #20c

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    This English/Chinese ITP steam tip sheet on replacing pressure-reducing valves provides how-to advice for improving industrial steam systems using low-cost, proven practices and technologies.

  12. AGE UFMG Incubator | Open Energy Information

    Open Energy Info (EERE)

    search Name: AGE-UFMG Incubator Place: Brazil Sector: Services Product: General Financial & Legal Services ( Academic Research foundation ) References: AGE-UFMG...

  13. Asian Age Enterprise Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Jump to: navigation, search Name: Asian Age Enterprise Ltd Place: Dhaka, Bangladesh Zip: 1000 Product: Bangladeshi private project developer. References: Asian Age...

  14. Determination of Total Petroleum Hydrocarbons (TPH) Using Total Carbon Analysis

    SciTech Connect (OSTI)

    Ekechukwu, A.A.

    2002-05-10

    Several methods have been proposed to replace the Freon(TM)-extraction method to determine total petroleum hydrocarbon (TPH) content. For reasons of cost, sensitivity, precision, or simplicity, none of the replacement methods are feasible for analysis of radioactive samples at our facility. We have developed a method to measure total petroleum hydrocarbon content in aqueous sample matrixes using total organic carbon (total carbon) determination. The total carbon content (TC1) of the sample is measured using a total organic carbon analyzer. The sample is then contacted with a small volume of non-pokar solvent to extract the total petroleum hydrocarbons. The total carbon content of the resultant aqueous phase of the extracted sample (TC2) is measured. Total petroleum hydrocarbon content is calculated (TPH = TC1-TC2). The resultant data are consistent with results obtained using Freon(TM) extraction followed by infrared absorbance.

  15. Replacement of chlorofluorocarbons (CFCs) at the DOE Gaseous Diffusion Plants: An assessment of global impacts

    SciTech Connect (OSTI)

    Socolof, M.L.; Saylor, R.E.; McCold, L.N.

    1994-12-31

    The US Department of Energy (DOE) operates two uranium enrichment plants. Together, the two plants maintain an inventory of approximately 14 million pounds of a chlorofluorocarbon (CFC), dichlorote-trafluoroethane (CFC-114) as a coolant. Annual operational CFC-114 losses total over 500,000 pounds. In February, 1992, President Bush announced that the US would terminate manufacture and importation of Class 1 ozone depleting substances (including CFC-114) by the end of 1995. To comply with this requirement DOE has considered introducing a replacement coolant by the end of 1995. Two perfluorocarbons (PFCs) - namely, octofluoro-cyclobutane and decafluorobutane - are presently the only known coolants that could meet safety requirements. They would not contribute to stratospheric ozone depletion but contribute to global warming. The paper describes an analysis of the potential global impacts of the proposed replacement of CFC-114 with a PFC. A problem with analyses of global warming and ozone depletion impacts is that even large sources of compounds that contribute to these effects contribute only very small fractions of the total effect. The authors take the position that significant effects to global warming and ozone depletion have already occurred, and that any additional contribution to these effects are contributions to cumulatively significant adverse effects on the environment. The paper describes four alternatives and the extent to which each would contribute to global warming and ozone depletion.

  16. Should a coal-fired power plant be replaced or retrofitted?

    SciTech Connect (OSTI)

    Dalia Patino-Echeverri; Benoit Morel; Jay Apt; Chao Chen

    2007-12-15

    In a cap-and-trade system, a power plant operator can choose to operate while paying for the necessary emissions allowances, retrofit emissions controls to the plant, or replace the unit with a new plant. Allowance prices are uncertain, as are the timing and stringency of requirements for control of mercury and carbon emissions. We model the evolution of allowance prices for SO{sub 2}, NOx, Hg, and CO{sub 2} using geometric Brownian motion with drift, volatility, and jumps, and use an options-based analysis to find the value of the alternatives. In the absence of a carbon price, only if the owners have a planning horizon longer than 30 years would they replace a conventional coal-fired plant with a high-performance unit such as a supercritical plant; otherwise, they would install SO{sub 2} and NOx controls on the existing unit. An expectation that the CO{sub 2} price will reach $50/t in 2020 makes the installation of an IGCC with carbon capture and sequestration attractive today, even for planning horizons as short as 20 years. A carbon price below $40/t is unlikely to produce investments in carbon capture for electric power. 1 ref., 5 figs., 2 tabs.

  17. A review of lunar chronology revealing a preponderance of 4.34-4.37 Ga ages

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borg, Lars E.; Gaffney, Amy M.; Shearer, Charles K.

    2014-11-24

    In this study, data obtained from Sm-Nd and Rb-Sr isotopic measurements of lunar highlands’ samples are renormalized to common standard values and then used to define ages with a common isochron regression algorithm. The reliability of these ages is evaluated using five criteria that include whether: (1) the ages are defined by multiple isotopic systems, (2) the data demonstrate limited scatter outside uncertainty, (3) initial isotopic compositions are consistent with the petrogenesis of the samples, (4) the ages are defined by an isotopic system that is resistant to disturbance by impact metamorphism, and (5) the rare-earth element abundances determined bymore » isotope dilution of bulk of mineral fractions match those measured by in situ analyses. From this analysis, it is apparent that the oldest highlands’ rock ages are some of the least reliable, and that there is little support for crustal ages older than ~4.40 Ga. A model age for ur-KREEP formation calculated using the most reliable Mg-suite Sm-Nd isotopic systematics, in conjunction with Sm-Nd analyses of KREEP basalts, is 4389 ± 45 Ma. This age is a good match to the Lu-Hf model age of 4353 ± 37 Ma determined using a subset of this sample suite, the average model age of 4353 ± 25 Ma determined on mare basalts with the 146Sm-142Nd isotopic system, with a peak in Pb-Pb ages observed in lunar zircons of ~4340 ± 20 Ma, and the oldest terrestrial zircon age of 4374 ± 6 Ma. The preponderance of ages between 4.34 and 4.37 Ga reflect either primordial solidification of a lunar magma ocean or a widespread secondary magmatic event on the lunar nearside. The first scenario is not consistent with the oldest ages reported for lunar zircons, whereas the second scenario does not account for concordance between ages of crustal rocks and mantle reservoirs.« less

  18. A review of lunar chronology revealing a preponderance of 4.34-4.37 Ga ages

    SciTech Connect (OSTI)

    Borg, Lars E.; Gaffney, Amy M.; Shearer, Charles K.

    2014-11-24

    In this study, data obtained from Sm-Nd and Rb-Sr isotopic measurements of lunar highlands’ samples are renormalized to common standard values and then used to define ages with a common isochron regression algorithm. The reliability of these ages is evaluated using five criteria that include whether: (1) the ages are defined by multiple isotopic systems, (2) the data demonstrate limited scatter outside uncertainty, (3) initial isotopic compositions are consistent with the petrogenesis of the samples, (4) the ages are defined by an isotopic system that is resistant to disturbance by impact metamorphism, and (5) the rare-earth element abundances determined by isotope dilution of bulk of mineral fractions match those measured by in situ analyses. From this analysis, it is apparent that the oldest highlands’ rock ages are some of the least reliable, and that there is little support for crustal ages older than ~4.40 Ga. A model age for ur-KREEP formation calculated using the most reliable Mg-suite Sm-Nd isotopic systematics, in conjunction with Sm-Nd analyses of KREEP basalts, is 4389 ± 45 Ma. This age is a good match to the Lu-Hf model age of 4353 ± 37 Ma determined using a subset of this sample suite, the average model age of 4353 ± 25 Ma determined on mare basalts with the 146Sm-142Nd isotopic system, with a peak in Pb-Pb ages observed in lunar zircons of ~4340 ± 20 Ma, and the oldest terrestrial zircon age of 4374 ± 6 Ma. The preponderance of ages between 4.34 and 4.37 Ga reflect either primordial solidification of a lunar magma ocean or a widespread secondary magmatic event on the lunar nearside. The first scenario is not consistent with the oldest ages reported for lunar zircons, whereas the second scenario does not account for concordance between ages of crustal rocks and mantle reservoirs.

  19. Method of determining lanthanidies in a transition element host

    DOE Patents [OSTI]

    De Kalb, Edward L.; Fassel, Velmer A.

    1976-02-03

    A phosphor composition contains a lanthanide activator element within a host matrix having a transition element as a major component. The host matrix is composed of certain rare earth phosphates or vanadates such as YPO.sub.4 with a portion of the rare earth replaced with one or more of the transition elements. On X-ray or other electromagnetic excitation, trace lanthanide impurities or additives within the phosphor are spectrometrically determined from their characteristic luminescence.

  20. Using Pb-210/Ra-226 disequilibria for sablefish, Anoplopoma fimbria, age validation

    SciTech Connect (OSTI)

    Kastelle, C.R.; Kimura, D.K. ); Nevissi, A.E.; Gunderson, D.R. )

    1994-04-01

    Age determination of sablefish (Anoplopoma fimbria) is typically done by counting growth zones on the burnt cross-section of the otolith. The break-and-burn method of age determination is difficult to apply to sablefish. Therefore, we applied a relatively new method of fish age validation, using the disequilibrium of Pb-210/Ra-226 in the otoliths. This method of validation complements previous methods which used oxytetracycline (OTC) marking to validate incremental growth in sablefish otoliths. The Pb-210/Ra-226 disequilibria generally confirmed the ageing criteria used to interpret the otolith's burnt cross-section.

  1. ARM: Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Karen Johnson; Nitin Bharadwaj

    1990-01-01

    Millimeter Wave Cloud Radar (MMCR), replaces mmcrcal and mmcrmoments datastreams following C-40 processor upgrade of 2003.09.09

  2. Static strain aging behavior of ultra low carbon bake hardening steel

    SciTech Connect (OSTI)

    De, A.K.; Cooman, B.C. de; Vandeputte, S.

    1999-09-10

    A detailed study of static strain aging in ultra low carbon (ULC) steel has not yet been reported. Therefore, the present study was carried out to gain an understanding of the aging kinetics in a ULC steel with a total carbon content of 20 ppm. The influence of dislocation density on the aging process was also taken into account. The kinetics of the aging were determined by means of the measurement of strength properties rather than solute concentration as it was experienced that quantitative estimation of such low amount of carbon during aging course would be too difficult with the existing diagnostic tools.

  3. Insights gained from aging research

    SciTech Connect (OSTI)

    Blahnik, D.E.; Casada, D.A.; Edson, J.L.; Fineman, D.L.; Gunther, W.E.; Haynes, H.D.; Hoopingarner, K.R.; Jacobus, M.J.; Jarrell, D.B.; Kryter, R.C.; Magelby, H.L.; Murphy, G.A.; Subudhi, M.M.

    1992-03-01

    The US NRC Office of Nuclear Regulatory Research has implemented hardware-oriented engineering research programs to identify and resolve technical issues related to the aging of systems, structures, and components (SSCs) in operating nuclear power plants. This report provides a summary of those research results which have been compiled and published in NUREGS and related technical reports. The systems, components and structures that have been studied are organized by alphabetical order. The research results summary on the SSCs is followed by an assessment guide to emphasize inspection techniques which may be useful for detecting aging degradation in nuclear power plants. This report will be updated periodically to reflect new research results on these or other SSCs.

  4. Transportation, Aging and Disposal Canister System Performance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Specification: Revision 1 | Department of Energy Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. PDF icon Transportation, Aging and Disposal Canister System Performance Specification: Revision 1 More Documents &

  5. Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programs are discussed in detail.

  6. Standard Measurement & Verification Plan for Lighting Equipment Retrofit or Replacement Projects

    SciTech Connect (OSTI)

    Richman, Eric E.

    2009-11-04

    This document provides a framework for a standard Measurement and Verification (M&V) plan for lighting projects. It was developed to support cost-effective retrofits (partial and complete replacements) of lighting systems and is intended to provide a foundation for an M&V plan for a lighting retrofit utilizing a "best practice" approach, and to provide guidance to site owners, contractors, and other involved organizations on what is essential for a robust M&V plan for lighting projects. This document provides examples of appropriate elements of an M&V plan, including the calculation of expected energy savings. The standard M&V plan, as provided, also allows for consistent comparison with other similar lighting projects. Although intended for lighting retrofit applications, M&V plans developed per this framework document may also be used for other non-lighting technology retrofits and new installations.

  7. Lessons learned from reheater replacements TVA Gallatin Fossil Plant units 1 and 2

    SciTech Connect (OSTI)

    Chang, P.S.; Stangarone, R.J.

    1996-07-01

    Gallatin Units 1 and 2 have experienced a long history of problems in the reheat front inlet platens and front outlet pendants. Cracks were discovered at lug welds on the reheat inlet platen assemblies after six years of operation. During the next ten years cracking at lugs continued to be a problem in both the inlet platen and front outlet assemblies. Solutions included changing tube material and spacing, and redesigning lugs. None of the solutions were successful. In 1980, a fuel switch to washed coal was made to reduce boiler slagging. Within two years of the fuel change, liquid phase corrosion began to attack the tubes. The corrosion became severe and elements were replaced at seven year intervals. During this time, EPRI sought utilities with boilers experiencing liquid phase corrosion to test new corrosion resistant materials. Gallatin Unit 2 was selected as one of the test units. Probes containing a number of different alloys were inserted into the furnace and subjected to the corrosion attacks. After a five year study, HR3C was selected as the alloy from which to build a complete set of elements for further testing. Reheat assemblies were manufactured from HR3C and installed in Unit 2 and Unit 1 Shortly after Unit 1 returned to service, swages between the front pendant and inlet platen elements failed by brittle fracture due to the cold swaging operation used in fabrication. Cracks were discovered after two years of operation at the tube to lug welds and the new elements were experiencing the same liquid phase corrosion as in the past. The attempt to resolve the liquid phase corrosion problem in Gallatin Units 1 and 2 pendant reheater revealed that past replacements did not address the root cause of the problems. HR3C is a relatively brittle material and manufacturers used traditional methods to design and fabricate the elements. Inadequate fabrication and erection procedures have led to several in-service problems not associated with liquid phase corrosion.

  8. CX-010162: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Revenue Meter Replacement at Oregon Trail Electric Co-ops (OTEC's) West John Day Substation CX(s) Applied: B1.7 Date: 03/13/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  9. CX-009596: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    723-A Distribution Panel 2 (DP2) Replacement CX(s) Applied: B1.3 Date: 12/10/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  10. CX-007141: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Electrical District 4 - Electrical District 5 - Structure ReplacementCX(s) Applied: B4.6Date: 09/01/2011Location(s): Pinal County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  11. CX-100509 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kongiganak Wind Turbine Replacement & System Upgrades Award Number: DE-EE0006481 CX(s) Applied: A9, B1.31 Wind Power Date: 05/14/2014 Location(s): AK Office(s): Golden Field Office

  12. CX-010546: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Liberty Substation Transformer Replacement Project, Maricopa County, Arizona CX(s) Applied: B4.11 Date: 06/06/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  13. CX-012005: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2014 Alvey District Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 04/28/2014 Location(s): Oregon, Oregon, Oregon Offices(s): Bonneville Power Administration

  14. CX-012741: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Liberty-Westwing 230 Kilovolt Transmission Line Insulator Replacement CX(s) Applied: B1.3Date: 41795 Location(s): ArizonaOffices(s): Western Area Power Administration-Desert Southwest Region

  15. CX-005744: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Reclamation Facilities Blower ReplacementsCX(s) Applied: B5.1Date: 05/04/2011Location(s): Scottsdale, ArizonaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  16. CX-000562: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Miller Picking Air Handling Unit (AHU) Replacement (4488)CX(s) Applied: B1.3, B2.2Date: 01/05/2010Location(s): Oak Ridge, TennesseeOffice(s): Y-12 Site Office

  17. CX-008347: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    West Hackberry Building 301 Air Handling Unit-1 Heating, Ventilation, and Air Conditioning Replacement CX(s) Applied: B1.4 Date: 04/16/2012 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  18. CX-007813: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bayou Choctaw Building 401 Air Handling Unit-3 Heating, Ventilation and Air Conditioning Replacement CX(s) Applied: B1.4 Date: 02/01/2012 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  19. CX-006290: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cardwell-Cowlitz 2011 Wood Pole ReplacementsCX(s) Applied: B1.3Date: 07/25/2011Location(s): Cowlitz County, WashingtonOffice(s): Bonneville Power Administration

  20. CX-008687: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bandon-Rogue Transmission Line Rebuild Project - Fiscal Year 2012 Culvert Replacement and Associated Access Road Reconstruction CX(s) Applied: B1.3 Date: 07/06/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  1. CX-004856: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sullivan County Health Care Window ReplacementCX(s) Applied: B2.5, B5.1Date: 12/30/2010Location(s): Sullivan County, New HampshireOffice(s): Energy Efficiency and Renewable Energy

  2. CX-000065: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Huber Heights' Replacement of Heating/Cooling TowerCX(s) Applied: B5.1, B2.5Date: 11/12/2009Location(s): Huber Heights, OhioOffice(s): Energy Efficiency and Renewable Energy

  3. CX-002543: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Automated Fuel Management System (AFMS) ReplacementCX(s) Applied: B2.2Date: 05/05/2010Location(s): Aiken, South CarolinaOffice(s): Environmental Management, Savannah River Operations Office

  4. CX-011052: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    B-922 Grease Interceptor Replacement CX(s) Applied: B1.3, B1.31 Date: 09/09/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  5. CX-004344: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bryan Mound Replace Interior and Exterior Entryway to Building 201CX(s) Applied: B1.3Date: 10/13/2010Location(s): Bryan Mound, TexasOffice(s): Fossil Energy, Strategic Petroleum Reserve Field Office

  6. CX-005580: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sidney to Sterling Transmission Line Structure Replacement, Logan County, ColoradoCX(s) Applied: B4.6Date: 12/22/2010Location(s): Logan County, ColoradoOffice(s): Western Area Power Administration-Rocky Mountain Region

  7. CX-012072: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer-Cheyenne North/South 115-kilovolt Transmission Line Structure Replacement CX(s) Applied: B4.13 Date: 03/18/2014 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  8. CX-012345: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Collbran Substation Conduit Installation and Breaker Replacement, Mesa County, Colorado CX(s) Applied: B4.6 Date: 06/03/2014 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  9. CX-013630: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    FY15 Snohomish District Danger Pole Replacement Project CX(s) Applied: B1.3Date: 04/23/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  10. CX-012004: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2014 Chemawa District Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 04/28/2014 Location(s): Oregon, Oregon, Oregon, Oregon, Oregon Offices(s): Bonneville Power Administration

  11. CX-012731: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Windows of Bryan Mound Portal Building #281 CX(s) Applied: B1.3Date: 41884 Location(s): TexasOffices(s): Strategic Petroleum Reserve Field Office

  12. CX-005369: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacement of Big Hill Deep Anode Ground Bed Site for Cavern 103CX(s) Applied: B1.3Date: 02/22/2011Location(s): TexasOffice(s): Strategic Petroleum Reserve Field Office

  13. CX-013882: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Bayou Choctaw Brine Disposal/Recycle Piping in Pump/Pond Area CX(s) Applied: B1.3Date: 07/17/2015 Location(s): None ProvidedOffices(s): Strategic Petroleum Reserve Field Office

  14. CX-011653: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Saguaro-Tucson 115 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 12/03/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  15. CX-013462: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacement of Control Panel 670-E-80 (Outer Shim and Safety Rod Drive Motor Control Centers) CX(s) Applied: B2.2Date: 03/02/2015 Location(s): IdahoOffices(s): Nuclear Energy

  16. CX-008380: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer to Ault 230 Kilovolt Transmission Line Structure Replacement, Weld County, Colorado CX(s) Applied: B1.3 Date: 05/09/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  17. CX-004252: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Two Broken Transformers Near the Roza Dam Adult Trap FacilityCX(s) Applied: B4.6Date: 10/13/2010Location(s): Kittitas County, WashingtonOffice(s): Bonneville Power Administration

  18. CX-010164: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2013 Spacer and Insulator Replacement Program: First and Second Quarter Projects CX(s) Applied: B1.3 Date: 03/11/2013 Location(s): Oregon, Oregon, Washington, Montana, Montana Offices(s): Bonneville Power Administration

  19. CX-003611: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Schultz - Raver Number 3 and 4 500-kilovolt (kV) Transmission Lines Spacer ReplacementCX(s) Applied: B1.3Date: 08/25/2010Location(s): King County, WashingtonOffice(s): Bonneville Power Administration

  20. CX-010738: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2013 Spacer and Insulator Replacement Program; Third and Fourth Quarter Projects CX(s) Applied: B1.3 Date: 07/15/2013 Location(s): Washington, Washington, Washington Offices(s): Bonneville Power Administration

  1. CX-005677: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fiscal Year 2011 Ellensburg Transmission Line Management District Wood Pole Replacement ProjectsCX(s) Applied: B1.3Date: 04/15/2011Location(s): Douglas County, WashingtonOffice(s): Bonneville Power Administration

  2. CX-010166: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wenatchee District Wood Pole Replacements CX(s) Applied: B1.3 Date: 03/22/2013 Location(s): Washington, Washington Offices(s): Bonneville Power Administration

  3. CX-013658: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grandview-Red Mountain #1 Wood Pole Replacement CX(s) Applied: B1.3Date: 03/18/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  4. CX-013636: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    FY15 Wood Pole Replacement - Kalispell District CX(s) Applied: B1.3Date: 04/21/2015 Location(s): MontanaOffices(s): Bonneville Power Administration

  5. CX-013647: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    FY15 Danger Pole Replacements - Longview District CX(s) Applied: B1.3Date: 04/08/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  6. CX-013642: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    FY15 Wood Pole Replacement - Spokane District CX(s) Applied: B1.3Date: 04/20/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  7. CX-013646: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2015 North Bend District Wood Pole Replacement Projects CX(s) Applied: B1.3Date: 04/08/2015 Location(s): OregonOffices(s): Bonneville Power Administration

  8. CX-012639: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chehalis-Covington #1 Structure 5/4 Footing Replacement CX(s) Applied: B1.3Date: 41869 Location(s): WashingtonOffices(s): Bonneville Power Administration

  9. CX-002210: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Uninterruptable Power Supply/Generator ReplacementCX(s) Applied: B1.23, B1.3Date: 04/19/2010Location(s): Amarillo, TexasOffice(s): NNSA-Headquarters, Pantex Site Office

  10. CX-010158: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Revenue Meter Replacement at Franklin County Public Utility Districts (PUD) Taylor Flats Substation CX(s) Applied: B1.7 Date: 03/25/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  11. CX-007800: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Blythe-Knob Guy Wire Anchor Replacement CX(s) Applied: B4.6 Date: 11/14/2011 Location(s): California Offices(s): Western Area Power Administration-Desert Southwest Region

  12. CX-011654: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Tucson Substation 162/262 Breaker Replacement CX(s) Applied: B3.1, B4.11 Date: 09/05/2012 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  13. CX-006650: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Culvert Replacement Near 81-66-SX-15CX(s) Applied: B1.3Date: 10/26/2009Location(s): Casper, WyomingOffice(s): RMOTC

  14. CX-009599: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Glovebox LAB-GB-50 CX(s) Applied: B1.3 Date: 12/10/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  15. CX-002551: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Replace Defense Waste Processing Facility Argon TankCX(s) Applied: B1.3Date: 04/07/2010Location(s): Aiken, South CarolinaOffice(s): Environmental Management, Savannah River Operations Office

  16. CX-012369: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Bend District Wood Pole Replacements 2014 CX(s) Applied: B1.3 Date: 05/09/2014 Location(s): Oregon, Oregon, Oregon, Oregon Offices(s): Bonneville Power Administration

  17. CX-013488: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Replace 24" West Hackberry Brine Disposal Pipeline (GFE) (WH-MM-826A) CX(s) Applied: B1.3Date: 03/09/2015 Location(s): LouisianaOffices(s): Strategic Petroleum Reserve Field Office

  18. CX-009713: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Bayou Choctaw Warehouse Firewater Piping CX(s) Applied: B1.3 Date: 11/26/2012 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  19. CX-006672: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Electrical Line From Well to Power PoleCX(s) Applied: B1.3Date: 03/11/2010Location(s): Casper, WyomingOffice(s): RMOTC

  20. CX-006674: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Down Guy Rod 24-SHX-3CX(s) Applied: B1.3Date: 12/01/2009Location(s): Casper, WyomingOffice(s): RMOTC

  1. CX-011850: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Replace Bayou Choctaw 16 B-Spec Crude Oil Header Piping CX(s) Applied: B1.3 Date: 01/27/2014 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  2. CX-008775: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer KV1A Replacement Laramie County, Wyoming CX(s) Applied: B4.6 Date: 05/24/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  3. CX-013395: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacement of the 254-13H Safety Significant (SS) Standby Diesel Generator CX(s) Applied: B2.5Date: 01/05/2015 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  4. CX-013380: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacement of the 254-13H Safety Significant (SS) Standby Diesel Generator CX(s) Applied: B2.5Date: 01/14/2015 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  5. CX-012081: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kimball Substation KY1A Transformer Replacement and Road Maintenance CX(s) Applied: B1.3 Date: 02/10/2014 Location(s): Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  6. CX-010428: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alvey Substation 115-kilovolt and 230-kV Breaker Replacement Project CX(s) Applied: B4.6 Date: 06/14/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  7. CX-012003: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    John Day Powerhouse-John Day Number 1-4 Conductor Replacements CX(s) Applied: B1.3 Date: 04/25/2014 Location(s): Oregon Offices(s): Bonneville Power Administration

  8. CX-005797: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Replace Poles 356 and 425 in Forestry (G-Area)CX(s) Applied: B1.3Date: 04/06/2011Location(s): Aiken, South CarolinaOffice(s): Environmental Management, Savannah River Operations Office

  9. CX-012509: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Potable Water and Fire Water Supply Line Replacement CX(s) Applied: B1.3, B2.5Date: 41849 Location(s): West VirginiaOffices(s): National Energy Technology Laboratory

  10. CX-012749: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Buffalo Pass Communications Building Replacement, Routt County, CO CX(s) Applied: B1.19Date: 41843 Location(s): ColoradoOffices(s): Western Area Power Administration-Rocky Mountain Region

  11. CX-013416: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Prosser Tap to Grandview-Red Mountain #1 Wood Pole Replacement CX(s) Applied: B1.3Date: 02/11/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  12. CX-008888: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Bonneville-Midway No. 1 Tower 75/4 Replacement CX(s) Applied: B1.3 Date: 08/01/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  13. CX-013424: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    McNary-Franklin #2 Wood Pole Replacement CX(s) Applied: B1.3Date: 01/27/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  14. CX-012370: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pasco District Wood Pole Replacements (Multiple Lines) 2014 CX(s) Applied: B1.3 Date: 05/09/2014 Location(s): Washington, Washington, Oregon Offices(s): Bonneville Power Administration

  15. CX-005130: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ringold Substation Structure Replacement ProjectCX(s) Applied: B4.6Date: 01/21/2011Location(s): Basin City, WashingtonOffice(s): Bonneville Power Administration

  16. CX-012480: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 920 AHU-1 Replacement Project CX(s) Applied: B1.15, B1.23, B2.1Date: 41862 Location(s): PennsylvaniaOffices(s): National Energy Technology Laboratory

  17. CX-003133: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    D-Zero Experiment Emergency Generator Fuel Tank Replacement ProjectCX(s) Applied: B1.3Date: 07/13/2010Location(s): Batavia, IllinoisOffice(s): Fermi Site Office, Science

  18. CX-008587: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacing Traditional Electric Meters with Smart Electric Meters - City of Newark, Delaware CX(s) Applied: B1.7 Date: 07/23/2012 Location(s): Delaware Offices(s): Golden Field Office

  19. CX-010393: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Sitewide Domestic Water Service Replacement Project CX(s) Applied: B1.3, B1.15 Date: 09/10/2012 Location(s): Illinois Offices(s): Fermi Site Office

  20. CX-010506: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Quenching and Partitioning Process Development to Replace Hot Stamping of High Strength Automotive Steel CX(s) Applied: A9, B3.6 Date: 06/14/2013 Location(s): Colorado Offices(s): Golden Field Office

  1. CX-008978: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Parking Garage Gutter Replacement and Installation of Roof Ice Melt System CX(s) Applied: B2.3, B2.5 Date: 08/01/2012 Location(s): West Virginia Offices(s): National Energy Technology Laboratory

  2. CX-011223: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bryan Mound Brine Disposal Pump Replacement (Install) CX(s) Applied: B5.2 Date: 10/28/2013 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office

  3. CX-002438: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rocky Reach-Maple Valley Number-1 Transmission Line Bridge Replacement ProjectCX(s) Applied: B1.3Date: 05/03/2010Location(s): Kittitas County, WashingtonOffice(s): Bonneville Power Administration

  4. CX-007637: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Trailer Space Roll Door North Side Purification CX(s) Applied: B1.3 Date: 01/18/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  5. CX-012748: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big Spring-Sydney 115 Kilovolt Transmission Line Pole Replacement Project, Deuel County, Nebraska CX(s) Applied: B1.3Date: 41845 Location(s): NebraskaOffices(s): Western Area Power Administration-Rocky Mountain Region

  6. CX-010545: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gila Knob Transmission Line Crossarm Replacement at Structure 18/3 CX(s) Applied: B4.6 Date: 06/03/2013 Location(s): California Offices(s): Western Area Power Administration-Desert Southwest Region

  7. CX-012797: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Canby Tap to Malin-Hilltop #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41915 Location(s): CaliforniaOffices(s): Bonneville Power Administration

  8. CX-013767: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    AFFF System Replacement at Bayou Choctaw, Big Hill and West Hackberry CX(s) Applied: B1.3Date: 04/07/2015 Location(s): Multiple LocationsOffices(s): Strategic Petroleum Reserve Field Office

  9. CX-004207: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Underground Electrical Feeder CablesCX(s) Applied: B4.6Date: 09/27/2010Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  10. CX-010414: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Vernal Substation 138 Kilovolt Breaker Replacement CX(s) Applied: B4.6 Date: 05/08/2013 Location(s): Utah Offices(s): Western Area Power Administration-Rocky Mountain Region

  11. CX-008703: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oregon City-Chemawa #2 Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 05/31/2012 Location(s): Oregon, Oregon Offices(s): Bonneville Power Administration

  12. CX-007113: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Incorporating Refrigerator Replacement into the Weatherization Assistance ProgramCX(s) Applied: B5.1Date: 02/03/2010Location(s): NationwideOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  13. CX-012804: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot Butte-La Pine #1 Wood Pole Replacements CX(s) Applied: B1.3Date: 41912 Location(s): OregonOffices(s): Bonneville Power Administration

  14. CX-009212: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Replace Three Wood Poles-In-Kind at Bryan Mound West Gate CX(s) Applied: B1.3 Date: 08/23/2012 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office

  15. CX-011143: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Replace River Water Pelton Valves and Remove Existing Valve Houses CX(s) Applied: B1.3. Date: 08/21/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  16. CX-010145: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City of Sherwood Sewer Line Replacement Land Use Review Request CX(s) Applied: B4.9 Date: 04/25/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  17. CX-005356: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Commercial Industrial and Large Profit- Lance Chiller ReplacementCX(s) Applied: B5.1Date: 03/09/2011Location(s): Charlotte, North CarolinaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  18. CX-008794: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Transformer Replacement and Foundation Work at Flaming Gorge Substation Daggett County, Utah CX(s) Applied: B4.6 Date: 10/05/2011 Location(s): Utah Offices(s): Western Area Power Administration-Rocky Mountain Region

  19. CX-002187: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hempfield Park Baseball Field Lighting ReplacementCX(s) Applied: B1.3, B5.1Date: 05/05/2010Location(s): Hempfield, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy

  20. CX-008621: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace 766-H Deteriorated Grease Trap CX(s) Applied: B1.3 Date: 06/21/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  1. CX-011210: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bridgeport-Gering 115-Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 09/12/2013 Location(s): Nebraska, Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  2. CX-008663: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacement of A-Area Critical Fire Hydrants 3001, 3013, 3018, & 3032 CX(s) Applied: B1.3 Date: 05/07/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. CX-007521: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    MPLE Test Stand Replacement Project CX(s) Applied: B1.3, B1.27, B1.31 Date: 12/15/2011 Location(s): Tennessee Offices(s): Y-12 Site Office

  4. CX-010594: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Monroe-Snohomish Expanded Conductor Replacement CX(s) Applied: B4.6 Date: 06/13/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  5. CX-008361: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Power Supply poles for Savannah River National Laboratory trailer CX(s) Applied: B2.5 Date: 04/10/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  6. CX-005946: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    National Energy Technology Laboratory Pittsburgh - Replacement of Satellite AntennaCX(s) Applied: B1.7Date: 06/04/2011Location(s): Pittsburgh, PennsylvaniaOffice(s): Fossil Energy, National Energy Technology Laboratory

  7. CX-005104: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    221-H Warm Gang Valve Corridor Section 9 Air Conditioner Replacement UnitCX(s) Applied: B2.1Date: 01/12/2011Location(s): Aiken, South CarolinaOffice(s): Savannah River Operations Office

  8. CX-013654: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    BPA Idaho Falls District 2015 Wood Pole Replacement and Access Road Maintenance CX(s) Applied: B1.3Date: 04/02/2015 Location(s): MontanaOffices(s): Bonneville Power Administration

  9. CX-010674: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mead KU2A Emergency Bushing Replacement CX(s) Applied: B1.3 Date: 07/02/2013 Location(s): Nevada Offices(s): Western Area Power Administration-Desert Southwest Region

  10. CX-005888: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Pressure Fire Loop Tank and Pump ReplacementCX(s) Applied: B1.15Date: 04/26/2011Location(s): Pantex Plant, TexasOffice(s): NNSA-Headquarters, Pantex Site Office

  11. CX-013878: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Naval Reactors Facility (NRF) Storm Sewer West Main Replacement Project CX(s) Applied: B2.5Date: 07/06/2015 Location(s): None ProvidedOffices(s): Naval Nuclear Propulsion Program

  12. CX-008798: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Duct Chase Sprinkler Replacement Project CX(s) Applied: B1.3 Date: 06/04/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  13. CX-012642: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Snohomish-Beverly Park #3 and #4 Line Structure Replacements CX(s) Applied: B1.3Date: 41865 Location(s): WashingtonOffices(s): Bonneville Power Administration

  14. CX-011648: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Davis-Parker 230 Kilovolt Transmission Line- Marker Ball(s) Replacement CX(s) Applied: B1.3 Date: 12/17/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  15. CX-008715: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2012 Alvey District Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 05/21/2012 Location(s): Oregon, Oregon Offices(s): Bonneville Power Administration

  16. CX-007805: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gila-Gila Valley Structure Replacement CX(s) Applied: B4.13 Date: 09/29/2011 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  17. CX-007138: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Davis-MKT Kingman Tap Crossarm ReplacementCX(s) Applied: B4.6Date: 12/28/2010Location(s): Mohave County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  18. CX-007986: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pearl-Marion #1 Tower 6/2 Replacement Project CX(s) Applied: B4.6 Date: 02/23/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  19. CX-005510: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    785-A Cooling Tower ReplacementCX(s) Applied: B1.3Date: 02/10/2011Location(s): Aiken, South CarolinaOffice(s): Environmental Management, Savannah River Operations Office

  20. CX-013562: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    773-51A & 773-52A Roof Replacement CX(s) Applied: B1.3Date: 04/16/2015 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  1. CX-013581: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Section E B Block Cell Exhaust (CE) Fans CX(s) Applied: B1.3Date: 03/30/2015Location(s): South CarolinaOffices(s): Savannah River Operations Office

  2. CX-013903: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Section E B-Block Cell Windows 14-16 Replacement CX(s) Applied: B2.1Date: 05/04/2015 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  3. CX-013500: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace 735-A Process Water Heater CX(s) Applied: B1.3Date: 02/19/2015 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  4. CX-005593: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 39 - Replace Waterless UrinalsCX(s) Applied: B1.15Date: 04/11/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  5. CX-006445: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 4 Overhead Crane ReplacementCX(s) Applied: B2.5Date: 08/03/2011Location(s): Albany, OregonOffice(s): Fossil Energy, National Energy Technology Laboratory

  6. CX-008696: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Power Circuit Breaker Replacement Project CX(s) Applied: B4.6 Date: 06/12/2012 Location(s): Washington, Oregon, Idaho, Montana, Wyoming Offices(s): Bonneville Power Administration

  7. CX-005116: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lusk Substation Transformer Replacement, Lusk, Niobrara County, WyomingCX(s) Applied: B4.6Date: 01/24/2011Location(s): Lusk, WyomingOffice(s): Western Area Power Administration-Rocky Mountain Region

  8. CX-005114: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fleming Substation Transformer Replacement, Fleming, Logan County, ColoradoCX(s) Applied: B4.6Date: 12/20/2010Location(s): Fleming, ColoradoOffice(s): Western Area Power Administration-Rocky Mountain Region

  9. CX-000554: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Ogallala Substation KY1A Transformer ReplacementCX(s) Applied: B4.6Date: 11/16/2009Location(s): Ogallala, NebraskaOffice(s): Western Area Power Administration-Rocky Mountain Region

  10. CX-007952: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Esperanza Roof Replacement CX(s) Applied: A1, B2.1, B5.1 Date: 02/01/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  11. CX-013793: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Shelton-Fairmount No. 1 Switches Replacement Project CX(s) Applied: B1.3Date: 06/18/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  12. CX-007993: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hatwai 230-Kilovolt Substation Breaker Replacement CX(s) Applied: B4.6 Date: 02/09/2012 Location(s): Idaho Offices(s): Bonneville Power Administration

  13. CX-010095: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Casa Grande Substation, CAG 262 Breaker Replacement CX(s) Applied: B1.3 Date: 04/04/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  14. CX-013784: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Malin-Hilltop #1 Wood Pole Replacement CX(s) Applied: B1.25Date: 07/02/2015 Location(s): OregonOffices(s): Bonneville Power Administration

  15. CX-008689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2012 Spacer and Insulator Replacement Program; Third and Fourth Quarter Projects CX(s) Applied: B1.3 Date: 06/28/2012 Location(s): Washington, Oregon Offices(s): Bonneville Power Administration

  16. CX-004224: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 860 Electrical Bus Duct Replacement (TA-I)CX(s) Applied: B1.3Date: 05/05/2010Location(s): New MexicoOffice(s): Sandia Site Office

  17. CX-012058: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Roof Removal and Replacement at +34 and +38, K-Area Materials Storage Building CX(s) Applied: B1.3 Date: 03/18/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  18. CX-002235: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Drain Line at the Tuba City, Arizona, Disposal SiteCX(s) Applied: B1.3Date: 05/08/2010Location(s): Tuba City, ArizonaOffice(s): Legacy Management

  19. CX-012192: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fiscal Year 2014 Communication Site Engine Generator Replacements CX(s) Applied: B1.3 Date: 05/05/2014 Location(s): Oregon, Oregon, Washington, Oregon Offices(s): Bonneville Power Administration

  20. CX-000004: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Lane-Wendson #1 Structure 10/5 Access Road Improvement and Pole Replacement ProjectCX(s) Applied: B1.3Date: 10/08/2009Location(s): Lane County, OregonOffice(s): Bonneville Power Administration

  1. CX-008400: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Estes Park to Mary's Lake West 115 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 05/02/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  2. CX-010424: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grand Coulee District Wood Replacement CX(s) Applied: B1.3 Date: 06/07/2013 Location(s): Washington, Washington Offices(s): Bonneville Power Administration

  3. CX-005355: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Commercial Industrial and Large Profit- Maersk Chiller ReplacementCX(s) Applied: B5.1Date: 03/09/2011Location(s): Charlotte, North CarolinaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  4. CX-004256: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Spacer Dampers Along the Dworshak PH-Dworshak Number 1 500-Kilovolt Transmission LineCX(s) Applied: B1.3Date: 10/05/2010Location(s): Clearwater County, IdahoOffice(s): Bonneville Power Administration

  5. CX-013682: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacement of Man Hole Covers Test Reactor Area Confined Space-051 and TRA-CX-091 CX(s) Applied: B2.5Date: 03/31/2015 Location(s): IdahoOffices(s): Idaho Operations Office

  6. CX-013458: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Test Reactor Area (TRA)-609 Switchgear Replacement, Rollup Door Installation, and Diesel Removal CX(s) Applied: B1.31Date: 03/09/2015 Location(s): IdahoOffices(s): Nuclear Energy

  7. CX-013680: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacement of Test Reactor Area-671 Chemistry Monitoring Unit and Modification of Piping and Components CX(s) Applied: B2.5Date: 04/16/2015 Location(s): IdahoOffices(s): Idaho Operations Office

  8. CX-009532: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Holyoke Substation Transformer Replacement CX(s) Applied: B4.6 Date: 12/11/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  9. CX-006132: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacement of Sidewalk Along Collins Ferry RoadCX(s) Applied: B1.3Date: 06/21/2011Location(s): Morgantown, West VirginiaOffice(s): Fossil Energy, National Energy Technology Laboratory

  10. CX-006884: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Big Hill Raw Water Intake Structure Screen Wash PipingCX(s) Applied: B1.3Date: 09/22/2011Location(s): Big Hill, TexasOffice(s): Strategic Petroleum Reserve Field Office, Sandia Site Office

  11. CX-002431: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Alvey Substation Pole and Fencing ReplacementCX(s) Applied: B1.11Date: 05/13/2010Location(s): Lane County, OregonOffice(s): Bonneville Power Administration

  12. CX-005675: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fiscal Year 2011 Kalispell District Wood Pole Replacement ProjectsCX(s) Applied: B1.3Date: 04/15/2011Location(s): MontanaOffice(s): Bonneville Power Administration

  13. CX-013637: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    FY15 Wood Pole Replacement - Wenatchee District CX(s) Applied: B1.3Date: 04/21/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  14. CX-001178: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fiscal Year 2010 Kalispell District Wood Pole ReplacementCX(s) Applied: B1.3Date: 03/16/2010Location(s): Kalispell, MontanaOffice(s): Bonneville Power Administration

  15. CX-010593: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot Butte-La Pine #1 Wood Pole Replacements CX(s) Applied: B1.3 Date: 06/13/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  16. CX-008167: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    La Pine-Chiloquin Number 1 Wood Pole Replacement Project CX(s) Applied: B4.6 Date: 03/21/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  17. CX-013840: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor Cold Waste Collection Tank 670-M-186 Vessel Replacement CX(s) Applied: B6.3Date: 06/09/2015 Location(s): IdahoOffices(s): Nuclear Energy

  18. CX-007136: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Coolidge-Oracle Pole ReplacementCX(s) Applied: B4.6Date: 11/13/2009Location(s): Pinal County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  19. CX-005679: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cowlitz Tap to Chehalis-Covington #1 Transmission Line Wood Pole ReplacementCX(s) Applied: B1.3Date: 04/18/2011Location(s): Pierce County, WashingtonOffice(s): Bonneville Power Administration

  20. CX-011211: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Box Butte-Chadron 115-Kilovolt Transmission Line Structure Replacements CX(s) Applied: B1.3 Date: 09/26/2013 Location(s): Nebraska, Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  1. CX-007158: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oracle-Tucson Pole ReplacementCX(s) Applied: B4.6Date: 04/16/2010Location(s): Pima County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  2. CX-009609: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Push Pole Replacement in D-Area CX(s) Applied: B1.3 Date: 11/27/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  3. CX-008349: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacement Anode Bed on West Hackberry 42-inch Crude Oil Pipeline at Gum Cove Road CX(s) Applied: B1.3 Date: 04/10/2012 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  4. CX-008377: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alcova-Casper North 115 Kilovolt Transmission Line Pole Replacements CX(s) Applied: B1.3 Date: 04/10/2012 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  5. CX-008381: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big Thompson to Flatiron 13.8 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 05/09/2012 Location(s): Colorado Offices(s): Western Area Power Administration-Rocky Mountain Region

  6. CX-006289: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Willow Creek Substation -Transformer Replacement and Substation ModificationsCX(s) Applied: B4.6Date: 07/26/2011Location(s): Grand County, ColoradoOffice(s): Western Area Power Administration-Rocky Mountain Region

  7. CX-006280: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Gore Pass Substation Pole ReplacementCX(s) Applied: B1.3Date: 07/01/2011Location(s): Ground County, ColoradoOffice(s): Western Area Power Administration-Rocky Mountain Region

  8. CX-010404: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Brine Disposal System Header to West Hackberry Brine Tanks, Government Furnished Equipment CX(s) Applied: B1.3 Date: 04/22/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  9. CX-010401: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Brine Disposal System Header to West Hackberry Brine Tanks CX(s) Applied: B1.3 Date: 04/22/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  10. CX-009718: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Brine Disposal System Header to Bryan Mound Brine Tank, GFE CX(s) Applied: B1.3 Date: 12/11/2012 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office

  11. CX-012051: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    773-A, E114 Roof Replacement CX(s) Applied: B1.3 Date: 03/24/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  12. CX-005173: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Roof Replacement/Repair, Gutters, and DownspoutsCX(s) Applied: B5.1Date: 01/27/2011Location(s): Northampton County, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  13. CX-004419: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    City of Panama City Lighting Replacement ProgramCX(s) Applied: B2.5, B5.1Date: 12/07/2009Location(s): Panama City, FloridaOffice(s): Energy Efficiency and Renewable Energy

  14. CX-008337: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Air System Replacement CX(s) Applied: B1.31, B2.2 Date: 04/20/2012 Location(s): New York Offices(s): Naval Nuclear Propulsion Program

  15. CX-003621: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hayden Substation Transformer ReplacementCX(s) Applied: B4.6Date: 08/23/2010Location(s): Routt County, ColoradoOffice(s): Western Area Power Administration-Rocky Mountain Region

  16. CX-001230: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace 200,000 Gallon Water Storage Tank at Material Fuels ComplexCX(s) Applied: B1.15Date: 03/15/2010Location(s): IdahoOffice(s): Idaho Operations Office, Nuclear Energy

  17. CX-010737: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Insulator Replacement on Bonneville Power Administration's (BPA) North Bonneville-Midway No. 1 Transmission Line CX(s) Applied: B4.6 Date: 07/16/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  18. CX-010423: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Underwood Tap Structure Replacement and Access Road CX(s) Applied: B4.6 Date: 06/07/2013 Location(s): Washington Offices(s): Bonneville Power Administration

  19. CX-013659: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Little Goose-Lower Granite #1 Wood Pole Replacement CX(s) Applied: B1.3Date: 03/18/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration

  20. CX-008802: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dry Pipe System Sprinkler Piping Replacement Projects CX(s) Applied: B1.3 Date: 05/14/2012 Location(s): Tennessee Offices(s): Y-12 Site Office

  1. CX-010729: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2013 Chemawa District Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 08/12/2013 Location(s): Oregon, Oregon, Oregon Offices(s): Bonneville Power Administration

  2. CX-008832: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hills Creek-Lookout Point No. 1 Wood Pole Replacements CX(s) Applied: B1.3 Date: 07/19/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  3. CX-008713: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2012 Chemawa District Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 05/21/2012 Location(s): Oregon, Oregon, Oregon Offices(s): Bonneville Power Administration

  4. CX-004258: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Spacer Dampers Along the Ostrander-McLaughlin Number 1 500-Kilovolt Transmission LineCX(s) Applied: B1.3Date: 09/29/2010Location(s): Clackamas County, OregonOffice(s): Bonneville Power Administration

  5. CX-004257: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Spacer Dampers Along the Slatt-John Day Number 1 500-Kilovolt Transmission LineCX(s) Applied: B1.3Date: 10/04/2010Location(s): Sherman County, OregonOffice(s): Bonneville Power Administration

  6. CX-010725: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2013 Ross Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 08/19/2013 Location(s): Washington, Washington, Oregon, Oregon, Oregon Offices(s): Bonneville Power Administration

  7. CX-005546: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    McNary-Ross Number 1 Structure 162/4 Relocation and Insulator Replacement ProjectCX(s) Applied: B1.3Date: 03/25/2011Location(s): Clark County, WashingtonOffice(s): Bonneville Power Administration

  8. CX-001214: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Kilby Correctional Facility Boiler ReplacementCX(s) Applied: B5.1Date: 03/24/2010Location(s): Mount Meigs, AlabamaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  9. CX-012740: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Insulator Replacements for the Flagstaff to Pinnacle Peak #1 and #2 345 Kilovolt Transmission Lines CX(s) Applied: B1.3Date: 41821 Location(s): ArizonaOffices(s): Western Area Power Administration-Desert Southwest Region

  10. CX-010129: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    707-C Roof Replacement CX(s) Applied: B1.3 Date: 03/15/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  11. CX-013677: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Idaho National Laboratory Fire Stations' Vehicle Exhaust Extraction Systems Replacement CX(s) Applied: B2.3Date: 05/14/2015 Location(s): IdahoOffices(s): Idaho Operations Office

  12. CX-013792: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Capitol Peak Communication Site Back-up Generator Replacement CX(s) Applied: B1.3Date: 06/23/2015 Location(s): OregonOffices(s): Bonneville Power Administration

  13. CX-003236: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Augspurger Fiber Replacement ProjectCX(s) Applied: B1.7, B4.7Date: 07/21/2010Location(s): Skamania County, WashingtonOffice(s): Bonneville Power Administration

  14. CX-004895: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Davis Dam Switchyard (Breaker Cable Replacement)CX(s) Applied: B4.6Date: 08/05/2010Location(s): Maricopa County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  15. CX-012711: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuels Complex (MFC) Fire Water Replacement and Upgrades CX(s) Applied: B2.5Date: 41849 Location(s): IdahoOffices(s): Nuclear Energy

  16. CX-009862: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 4 Drain Line Replacement CX(s) Applied: B1.3, B1.15, B1.31 Date: 01/08/2013 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  17. CX-009320: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    B17 Roof Replacement & Painting CX(s) Applied: B1.23, B2.1, B2.5 Date: 08/30/2012 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  18. CX-006578: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Delaware State Energy Office Sub Grantee/Bridgeville Well Pump ReplacementCX(s) Applied: B5.1Date: 08/26/2011Location(s): Bridgeville, DelawareOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  19. CX-011374: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Willow Creek Building Pedestrian Bridge Replacement CX(s) Applied: B2.5 Date: 08/25/2009 Location(s): Idaho Offices(s): Idaho Operations Office

  20. CX-008693: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Wood Pole Structure Replacements on the Chehalis-Centralia No. 2 115 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 06/20/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  1. CX-005353: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Commercial Industrial and Large Profit- Keller Cresent Chiller ReplacementCX(s) Applied: B5.1Date: 03/09/2011Location(s): Pineville, North CarolinaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  2. CX-010151: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Brasada-Harney No. 1 Wood Pole Replacement Project CX(s) Applied: B1.3 Date: 04/12/2013 Location(s): Oregon, Oregon Offices(s): Bonneville Power Administration

  3. CX-010408: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Emergency Current Transformer Replacement at Gila Substation CX(s) Applied: B4.6 Date: 04/26/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  4. CX-010542: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Replace Obsolete West Hackberry Raw Water Injection Pump Vibration Transmitters CX(s) Applied: B5.2 Date: 06/24/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  5. CX-011199: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Replace Obsolete West Hackberry Raw Water Injection Pump Vibration Transmitters Government Furnished Equipment CX(s) Applied: B5.2 Date: 09/17/2013 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  6. CX-008702: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Forest Grove-McMinnville #1 Wood Pole Replacement Projects CX(s) Applied: B1.3 Date: 06/05/2012 Location(s): Oregon, Oregon Offices(s): Bonneville Power Administration

  7. CX-000110: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bell's Public Lighting Replacement ProjectCX(s) Applied: B1.3, B5.1Date: 12/23/2009Location(s): Bell, CaliforniaOffice(s): Energy Efficiency and Renewable Energy

  8. CX-002532: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Spacer Damper Replacements on the McNary-Coyote Springs Number-1 Transmission LineCX(s) Applied: B1.3Date: 05/26/2010Location(s): MorrowCounty, OregonOffice(s): Bonneville Power Administration

  9. CX-012596: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace 707-C Emergency Diesel Generator (SRO 7850) CX(s) Applied: B1.3Date: 41827 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  10. CX-001944: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Spacer Dampers Along the Grizzly - Captain Jack No. 1 500 Kilovolt Transmission LineCX(s) Applied: B1.3Date: 04/21/2010Location(s): Crook County, OregonOffice(s): Bonneville Power Administration

  11. CX-001414: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coyote Springs-Slatt #1: Spacer Damper ReplacementsCX(s) Applied: B1.3Date: 04/12/2010Location(s): Gilliam County, Oregon Office(s): Bonneville Power Administration

  12. CX-008626: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace 607-6A Sanitary Sewer Lift Station CX(s) Applied: B1.3 Date: 06/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  13. CX-011512: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    108-1K Basement Sump Pump Replacement CX(s) Applied: B1.3 Date: 10/16/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  14. CX-009590: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    723-A Distribution Panel 4 (DB4) Replacement CX(s) Applied: B1.3 Date: 12/19/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  15. CX-008154: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    In-Kind Wood Pole Replacements - Driscoll-Naselle Number 1 CX(s) Applied: B1.3 Date: 04/30/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  16. CX-008730: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuels Complex Underground and Aboveground Storage Tank Replacement CX(s) Applied: B2.5 Date: 06/07/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  17. CX-001232: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Test Reactor Area-609 Compressed Air System Drain Line Modification and Valve ReplacementCX(s) Applied: B2.5Date: 03/18/2010Location(s): IdahoOffice(s): Idaho Operations Office, Nuclear Energy

  18. CX-010887: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Archer-Sidney 115-Kilovolt Transmission Line Structure Replacement CX(s) Applied: B4.13 Date: 08/08/2013 Location(s): Nebraska Offices(s): Western Area Power Administration-Rocky Mountain Region

  19. CX-009514: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Franklin-Badger Canyon and Grandview-Red Mountain Switch Replacements CX(s) Applied: B1.3 Date: 10/18/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  20. CX-008160: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wood Pole Replacement on The Dalles-Discovery Number 1 Transmission Line CX(s) Applied: B1.3 Date: 04/23/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  1. CX-008891: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Pilot Butte-La Pine No. 1 Wood Pole Replacement Project CX(s) Applied: B4.6 Date: 07/30/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  2. CX-000008: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Raver-Paul #1 Access Road Improvement and Bridge ReplacementCX(s) Applied: B1.3Date: 11/02/2009Location(s): Pierce County, WashingtonOffice(s): Bonneville Power Administration

  3. CX-007157: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    North Gila-Senator Wash Pole ReplacementCX(s) Applied: B4.6Date: 11/03/2010Location(s): Yuma County, ArizonaOffice(s): Western Area Power Administration-Desert Southwest Region

  4. CX-009789: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Coulee-Westside Transfer Trip Replacement CX(s) Applied: B1.7 Date: 02/06/2013 Location(s): Washington, Washington Offices(s): Bonneville Power Administration

  5. CX-010427: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Hat Rock Switching Station Replacement Project CX(s) Applied: B4.6 Date: 06/17/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  6. CX-008579: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery Act: Hydroelectric Facility Improvement Project - Replacement of Current Mechanical Seal System with Rope Packing System CX(s) Applied: B5.1 Date: 07/25/2012 Location(s): Arkansas Offices(s): Golden Field Office

  7. CX-012343: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Metal Mountain Communications Site - Emergency Air Conditioner Replacement CX(s) Applied: B1.4 Date: 07/03/2014 Location(s): California Offices(s): Western Area Power Administration-Desert Southwest Region

  8. CX-011647: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacement of Big Hill TX-14 Transformer, Government Furnished Equipment CX(s) Applied: B1.3 Date: 10/31/2013 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office

  9. CX-008342: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Big Hill Raw Water Intake System Oil Water Separator Tank with Concrete Tank GFE CX(s) Applied: B1.3 Date: 05/18/2012 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office

  10. CX-007514: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Record of Categorical Exclusion for Big Hill Anhydrite Pond Liner Replacement CX(s) Applied: B1.3 Date: 12/20/2011 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office

  11. CX-008348: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Big Hill Raw Water Intake System Oil Water Separator Tank with Concrete Tank CX(s) Applied: B1.3 Date: 04/16/2012 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  12. CX-008827: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Big Hill RWIS Oil Water Separator Tank with Concrete Tank GFE CX(s) Applied: B1.3 Date: 05/18/2012 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office

  13. CX-010878: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Big Hill Circuit Breakers OCB-4009, 4010, and 4011 (install) CX(s) Applied: B1.3 Date: 08/08/2013 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office

  14. CX-010713: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Big Hill Circuit Breakers OCB-4009, 4010 and 4011 CX(s) Applied: B1.33 Date: 06/28/2013 Location(s): Texas Offices(s): Strategic Petroleum Reserve Field Office

  15. CX-006715: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Maintaining and Replacing InfrastructureCX(s) Applied: B1.22, B5.2Date: 06/07/2011Location(s): Casper, WyomingOffice(s): RMOTC

  16. CX-009801: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Copper Mountain to Boysen 34.5 Kilovolt Transmission Line Structure Replacement CX(s) Applied: B1.3 Date: 01/11/2013 Location(s): Wyoming Offices(s): Western Area Power Administration-Rocky Mountain Region

  17. CX-012605: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Replacement Air Dryer for the HB-Line Breathing Air System CX(s) Applied: B1.3Date: 41810 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  18. CX-005673: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fiscal Year 2011 Pasco District Wood Pole Replacement ProjectsCX(s) Applied: B1.3Date: 04/11/2011Location(s): Pasco District, WashingtonOffice(s): Bonneville Power Administration

  19. CX-008162: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Redmond-Pilot Butte Number 1 Wood Pole Replacement Project CX(s) Applied: B4.6 Date: 04/13/2012 Location(s): Oregon Offices(s): Bonneville Power Administration

  20. CX-010726: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big Eddy-Redmond No.1 Wood Pole Replacement Project CX(s) Applied: B1.3 Date: 08/14/2013 Location(s): Oregon Offices(s): Bonneville Power Administration

  1. CX-006263: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Big Eddy-Redmond and Redmond-Pilot Butte Wood Pole ReplacementsCX(s) Applied: B1.3Date: 07/07/2011Location(s): Wasco County, OregonOffice(s): Bonneville Power Administration

  2. CX-004751: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace West Hackberry Radio TowerCX(s) Applied: B1.19Date: 11/23/2010Location(s): LouisianaOffice(s): Strategic Petroleum Reserve Field Office

  3. CX-012336: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace West Hackberry Ported Coax at Northwest Perimeter (WH-OM-1194) CX(s) Applied: B1.7 Date: 06/09/2014 Location(s): Louisiana Offices(s): Strategic Petroleum Reserve Field Office

  4. CX-002429: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Echo Lake-Monroe Spacer-Damper ReplacementsCX(s) Applied: B1.3Date: 05/17/2010Location(s): King County, WashingtonOffice(s): Bonneville Power Administration

  5. CX-012112: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chehalis-Mayfield Number 1 Line Impairment Structure Replacements CX(s) Applied: B1.3 Date: 04/03/2014 Location(s): Washington Offices(s): Bonneville Power Administration

  6. CX-010732: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    2013 Spokane District Wood pole Replacement Projects CX(s) Applied: B1.3 Date: 07/31/2013 Location(s): Washington, Washington, Washington, Washington, Idaho Offices(s): Bonneville Power Administration

  7. CX-006742: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    National Energy Technology Laboratory Pittsburgh - Replace 25 Kilovolt Air Switch 920 AreaCX(s) Applied: B4.6Date: 09/08/2011Location(s): Pittsburgh, PennsylvaniaOffice(s): Fossil Energy, National Energy Technology Laboratory

  8. CX-008823: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    High Pressure Fire Loop and Lead-In Replacement in the MAA - Amendment 01 CX(s) Applied: B5.4 Date: 05/29/2012 Location(s): Texas Offices(s): Pantex Site Office

  9. CX-012315: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor Primary Coolant Pump Motor Starters Replacement CX(s) Applied: B1.31 Date: 06/24/2014 Location(s): Idaho Offices(s): Nuclear Energy

  10. CX-013716: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Morgantown Site-Wide Exterior Door Replacement CX(s) Applied: B1.3Date: 05/05/2015 Location(s): West VirginiaOffices(s): National Energy Technology Laboratory

  11. CX-004209: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 922 Uninterruptable Power System (UPS) ReplacementCX(s) Applied: B2.1Date: 09/27/2010Location(s): Allegheny County, PennsylvaniaOffice(s): National Energy Technology Laboratory

  12. CX-010411: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Parker Substation 161 Kilovolt 2013 Breaker Replacement CX(s) Applied: B4.6 Date: 05/17/2013 Location(s): California Offices(s): Western Area Power Administration-Desert Southwest Region

  13. CX-008709: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Wood Pole Replacements As Needed on the Shelton-Fairmount No. 1, 115 Kilovolt Transmission Line CX(s) Applied: B1.3 Date: 05/24/2012 Location(s): Washington, Washington Offices(s): Bonneville Power Administration

  14. CX-012626: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace Antifreeze in Sprinkler System F-wing Loading Dock CX(s) Applied: B1.3Date: 41793 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  15. CX-013317: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuels Complex (MFC)-776 (Zero Power Physics Reactor [ZPPR]) Roof Repairs/Replacement CX(s) Applied: B3.11Date: 12/18/2014 Location(s): IdahoOffices(s): Nuclear Energy

  16. CX-011201: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Adams Tap Motor-Operator Interrupters and Control Building Replacement CX(s) Applied: B4.6 Date: 09/11/2013 Location(s): Arizona Offices(s): Western Area Power Administration-Desert Southwest Region

  17. CX-013736: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Buildings 7-11 Sidewalk Replacement CX(s) Applied: B1.3, B1.13Date: 04/03/2015 Location(s): OregonOffices(s): National Energy Technology Laboratory

  18. CX-005131: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Spacer-Damper Replacements on the Captain Jack-Malin 500-kilovolt Transmission LineCX(s) Applied: B1.3Date: 01/24/2011Location(s): Klamath County, OregonOffice(s): Bonneville Power Administration

  19. CX-013672: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Materials and Fuel Complex-752 Analytical Laboratory Main Stack Modifications for Sample Probe Replacement CX(s) Applied: B2.2Date: 05/11/2015 Location(s): IdahoOffices(s): Idaho Operations Office

  20. CX-013626: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Murray-Custer FY15 Wood Pole Replacement Project CX(s) Applied: B1.3Date: 05/01/2015 Location(s): WashingtonOffices(s): Bonneville Power Administration