National Library of Energy BETA

Sample records for determination oklahoma municipal

  1. Oklahoma

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma

  2. Silicon Valley Power and Oklahoma Municipal Power Authority Win...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind ...

  3. Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

  4. Oklahoma Municipal Power Authority- WISE Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Oklahoma Municipal Power Authority (OMPA) offers residential customers rebates on a variety of HVAC equipment through its WISE Rebate program. This program encourages residential customers and...

  5. Oklahoma Municipal Power Authority- WISE Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers rebates on a variety of HVAC equipment through its WISE Rebate program. This program encourages residential customers and builders to upgrade to...

  6. Oklahoma Municipal Power Authority- WISE Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers loans for a variety of measures and equipment through its "Ways I Save Electricity" (WISE) Loan Program. This program encourages residential and...

  7. Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards

    Broader source: Energy.gov [DOE]

    The Energy Department and the American Public Power Association named Oklahoma Municipal Power Authority and Silicon Valley Power as the winners of the 2014 Public Power Wind Awards.

  8. CX-006216: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-006216: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large System Request R ...

  9. Categorical Exclusion Determinations: Oklahoma | Department of...

    Energy Savers [EERE]

    ... December 19, 2013 CX-011417: Categorical Exclusion Determination Technology Integration ... Kapin LLC - Mayes County Compressed Natural Gas Fueling CX(s) Applied: B5.1 Date: 09232013 ...

  10. Oklahoma - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Oklahoma

  11. Oklahoma - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Oklahoma

  12. Oklahoma - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Oklahoma

  13. CX-006005: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Categorical Exclusion Determination CX-006005: Categorical Exclusion Determination Oklahoma Municipal Power Authority Large System Application Request P CX(s) Applied: B5.1 Date: 05/25/2011 Location(s): Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Oklahoma Department of Commerce is proposing to fund the Oklahoma Comfort Program through their sub-grantee the Oklahoma Municipal Power Authority. Kaushik Daji is proposing to use the funding to help cover the

  14. CX-005432: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    32: Categorical Exclusion Determination CX-005432: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large System Rebate Request Land M CX(s) Applied: B5.1 Date: 03/17/2011 Location(s): Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Oklahoma Department of Commerce (ODC) is proposing to fund the Oklahoma Comfort Program (OCP) through their Sub-grantee the Oklahoma

  15. CX-006215: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Categorical Exclusion Determination CX-006215: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Department of Commerce Large System Application Request O CX(s) Applied: B5.1 Date: 05/04/2011 Location(s): Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Oklahoma Department of Commerce is proposing to fund the Oklahoma Comfort Program through their sub-grantee the Oklahoma Municipal Power

  16. Oklahoma County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    City, Oklahoma Nichols Hills, Oklahoma Nicoma Park, Oklahoma Oklahoma City, Oklahoma Smith Village, Oklahoma Spencer, Oklahoma The Village, Oklahoma Valley Brook, Oklahoma Warr...

  17. Bryan County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oklahoma Bennington, Oklahoma Bokchito, Oklahoma Caddo, Oklahoma Calera, Oklahoma Colbert, Oklahoma Durant, Oklahoma Hendrix, Oklahoma Kemp, Oklahoma Kenefic, Oklahoma Mead,...

  18. Okmulgee County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Oklahoma Beggs, Oklahoma Dewar, Oklahoma Grayson, Oklahoma Henryetta, Oklahoma Hoffman, Oklahoma Liberty, Oklahoma Morris, Oklahoma Okmulgee, Oklahoma Schulter, Oklahoma...

  19. CX-006227: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7: Categorical Exclusion Determination CX-006227: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large System Request T CX(s) Applied: B5.1 Date: 07/15/2011 Location(s): Walters, Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Department of Energy is proposing to provide $750,000 in State Energy Program funding to the Oklahoma Department of Commerce who is proposing to

  20. Pottawatomie County, Oklahoma: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Asher, Oklahoma Bethel Acres, Oklahoma Brooksville, Oklahoma Earlsboro, Oklahoma Johnson, Oklahoma Macomb, Oklahoma Maud, Oklahoma McLoud, Oklahoma Oklahoma City, Oklahoma...

  1. Garfield County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Garfield County, Oklahoma Breckenridge, Oklahoma Carrier, Oklahoma Covington, Oklahoma Douglas, Oklahoma Drummond, Oklahoma Enid, Oklahoma Fairmont, Oklahoma Garber, Oklahoma...

  2. Blaine County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Blaine County, Oklahoma Canton, Oklahoma Geary, Oklahoma Greenfield, Oklahoma Hitchcock, Oklahoma Hydro, Oklahoma Longdale, Oklahoma Okeene, Oklahoma Watonga, Oklahoma...

  3. Payne County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oklahoma Drumright, Oklahoma Glencoe, Oklahoma Mulhall, Oklahoma Orlando, Oklahoma Perkins, Oklahoma Ripley, Oklahoma Stillwater, Oklahoma Yale, Oklahoma Retrieved from "http:...

  4. Comanche County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oklahoma Cache, Oklahoma Chattanooga, Oklahoma Elgin, Oklahoma Faxon, Oklahoma Fletcher, Oklahoma Geronimo, Oklahoma Indiahoma, Oklahoma Lawton, Oklahoma Medicine Park,...

  5. Sequoyah County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Notchietown, Oklahoma Paradise Hill, Oklahoma Pinhook Corners, Oklahoma Redbird Smith, Oklahoma Remy, Oklahoma Roland, Oklahoma Sallisaw, Oklahoma Short, Oklahoma Stoney...

  6. CX-008602: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program- Oklahoma Municipal Power Authority Large Systems Request AO CX(s) Applied: B5.19 Date: 07/26/2012 Location(s): Oklahoma, Oklahoma Offices(s): Golden Field Office

  7. Determining sand-body geometries for waterflood reservoirs: Examples from Oklahoma

    SciTech Connect (OSTI)

    Kreisa, R.D.; Pinero, E. )

    1987-02-01

    Waterflood projects require an accurate knowledge of reservoir geometry and well-to-well continuity. However, sandstones with thin, multiple-pay zones can be extremely difficult to correlate with confidence. Two case studies of Pennsylvanian sandstones in Oklahoma illustrate how a model for the depositional history of such reservoirs can be an effective tool for determining reservoir continuity. In contrast, correlation criteria such as similar wireline log signatures and relative sand-body thicknesses are not reliable in many situations. In Southwest Logan field (Beaver County), 5 to 15-ft thick reservoir sands formed as shallow marine sand ridges. Their dimensions were approximated from height-to-width ratios of modern sand ridges. Then the reservoir sands were mapped using wireline logs and core data. Individual reservoir sands were approximately 1-2 km wide and stacked en echelon vertically. Thus, a line-drive waterflood pattern oriented parallel to the axes of the ridges is recommended. Tatums field (Carter County) consists of 5 to 50-ft thick sandstones deposited in various deltaic environments. Distributary channel sands have good continuity downdip, but are narrow and lenticular across depositional strike. Crevasse splay and other bay-fill sands were deposited marginal to the channels and are extremely discontinuous. This depositional model can be used to improve flood patterns for these sands, leading to improved sweep efficiency. In both examples, for effective mapping, the depositional facies models have been used to register reservoir quality and wireline log signatures.

  8. Wagoner County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Arrow, Oklahoma Catoosa, Oklahoma Coweta, Oklahoma Fair Oaks, Oklahoma Okay, Oklahoma Porter, Oklahoma Redbird, Oklahoma Tullahassee, Oklahoma Tulsa, Oklahoma Wagoner, Oklahoma...

  9. Coal County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oklahoma Bromide, Oklahoma Centrahoma, Oklahoma Coalgate, Oklahoma Lehigh, Oklahoma Phillips, Oklahoma Tupelo, Oklahoma Retrieved from "http:en.openei.orgw...

  10. Cleveland County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Veolia Energy Places in Cleveland County, Oklahoma Etowah, Oklahoma Lexington, Oklahoma Moore, Oklahoma Noble, Oklahoma Norman, Oklahoma Oklahoma City, Oklahoma Purcell, Oklahoma...

  11. Canadian County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Canadian County, Oklahoma Calumet, Oklahoma El Reno, Oklahoma Geary, Oklahoma Mustang, Oklahoma Okarche, Oklahoma Oklahoma City, Oklahoma Piedmont, Oklahoma Union City,...

  12. Oklahoma City, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    congressional district and Oklahoma's 5th congressional district.12 US Recovery Act Smart Grid Projects in Oklahoma City, Oklahoma Oklahoma Gas and Electric Company Smart...

  13. CX-007559: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large Systems Request AA CX(s) Applied: B5.19 Date: 01/05/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  14. CX-007412: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    OKLAHOMA State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large Systems Request W CX(s) Applied: B5.19 Date: 12/15/2011 Location(s): Oklahoma Offices(s): Golden Field Office

  15. CX-008565: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program- Oklahoma Municipal Power Authority Large Systems Request AI CX(s) Applied: B5.19 Date: 06/05/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  16. CX-008566: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program- Oklahoma Municipal Power Authority Large Systems Request AK CX(s) Applied: B5.19 Date: 06/05/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  17. CX-009009: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large Systems Request AP CX(s) Applied: B5.19 Date: 08/09/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  18. CX-008567: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program- Oklahoma Municipal Power Authority Large Systems Request AL CX(s) Applied: B5.19 Date: 06/06/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  19. CX-008231: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large Systems Request AH CX(s) Applied: B5.19 Date: 04/11/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  20. CX-009164: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program Recovery Act- Oklahoma Municipal Power Authority Large Systems Request AQ CX(s) Applied: B5.19 Date: 09/05/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  1. CX-008568: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program- Oklahoma Municipal Power Authority Large Systems Request AM CX(s) Applied: B5.19 Date: 06/06/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  2. CX-007573: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large Systems Request Z CX(s) Applied: B5.19 Date: 12/29/2011 Location(s): Oklahoma Offices(s): Golden Field Office

  3. CX-007560: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large Systems Request AB CX(s) Applied: B5.19 Date: 01/05/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  4. CX-009165: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program Recovery Act- Oklahoma Municipal Power Authority Large Systems Request AR CX(s) Applied: B5.19 Date: 09/05/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  5. CX-007572: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large Systems Request Y CX(s) Applied: B5.19 Date: 12/29/2011 Location(s): Oklahoma Offices(s): Golden Field Office

  6. Hughes County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oklahoma Holdenville, Oklahoma Horntown, Oklahoma Lamar, Oklahoma Spaulding, Oklahoma Stuart, Oklahoma Wetumka, Oklahoma Yeager, Oklahoma Retrieved from "http:en.openei.orgw...

  7. McClain County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in McClain County, Oklahoma Blanchard, Oklahoma Byars, Oklahoma Cole, Oklahoma Dibble, Oklahoma Goldsby, Oklahoma Newcastle, Oklahoma Purcell, Oklahoma...

  8. Ottawa County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Ottawa County, Oklahoma Afton, Oklahoma Cardin, Oklahoma Commerce, Oklahoma Dotyville, Oklahoma Fairland, Oklahoma Miami, Oklahoma Narcissa, Oklahoma...

  9. Mayes County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Murphy, Oklahoma Pensacola, Oklahoma Pin Oak Acres, Oklahoma Pryor Creek, Oklahoma Pump Back, Oklahoma Salina, Oklahoma Sams Corner, Oklahoma Snake Creek, Oklahoma Spavinaw,...

  10. Johnston County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Johnston County, Oklahoma Bromide, Oklahoma Mannsville, Oklahoma Milburn, Oklahoma Mill Creek, Oklahoma Ravia, Oklahoma Tishomingo, Oklahoma Wapanucka, Oklahoma Retrieved from...

  11. Grady County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Grady County, Oklahoma Alex, Oklahoma Amber, Oklahoma Blanchard, Oklahoma Bradley, Oklahoma Bridge Creek, Oklahoma Chickasha, Oklahoma Minco,...

  12. Le Flore County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Le Flore County, Oklahoma Arkoma, Oklahoma Bokoshe, Oklahoma Cameron, Oklahoma Cowlington, Oklahoma Fanshawe, Oklahoma Fort Coffee, Oklahoma Heavener,...

  13. Woods County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Oklahoma Alva, Oklahoma Avard, Oklahoma Capron, Oklahoma Dacoma, Oklahoma Freedom, Oklahoma Waynoka, Oklahoma Retrieved from "http:en.openei.orgw...

  14. Stephens County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Central High, Oklahoma Comanche, Oklahoma Duncan, Oklahoma Empire City, Oklahoma Loco, Oklahoma Marlow, Oklahoma Velma, Oklahoma Retrieved from "http:en.openei.orgw...

  15. Custer County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Custer County, Oklahoma Arapaho, Oklahoma Butler, Oklahoma Clinton, Oklahoma Custer City, Oklahoma Hammon, Oklahoma Thomas, Oklahoma...

  16. Washington County, Oklahoma: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Subtype A. Places in Washington County, Oklahoma Bartlesville, Oklahoma Copan, Oklahoma Dewey, Oklahoma Ochelata, Oklahoma Ramona, Oklahoma Vera, Oklahoma Retrieved from "http:...

  17. Muskogee County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oklahoma Sour John, Oklahoma Summit, Oklahoma Taft, Oklahoma Wainwright, Oklahoma Warner, Oklahoma Webbers Falls, Oklahoma Retrieved from "http:en.openei.orgw...

  18. Washita County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Washita County, Oklahoma Bessie, Oklahoma Burns Flat, Oklahoma Canute, Oklahoma Clinton, Oklahoma Colony, Oklahoma Corn, Oklahoma Dill...

  19. Pittsburg County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Oklahoma Krebs, Oklahoma Longtown, Oklahoma McAlester, Oklahoma Pittsburg, Oklahoma Quinton, Oklahoma Savanna, Oklahoma Retrieved from "http:en.openei.orgw...

  20. Beckham County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Places in Beckham County, Oklahoma Carter, Oklahoma Elk City, Oklahoma Erick, Oklahoma Sayre, Oklahoma Sweetwater, Oklahoma Texola, Oklahoma Retrieved from "http:...

  1. Adair County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Adair County, Oklahoma Bell, Oklahoma Cherry Tree, Oklahoma Chewey, Oklahoma Christie, Oklahoma Fairfield, Oklahoma Greasy, Oklahoma...

  2. Selenium in Oklahoma ground water and soil

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  3. Noble County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    County, Oklahoma Billings, Oklahoma Marland, Oklahoma Morrison, Oklahoma Perry, Oklahoma Red Rock, Oklahoma Retrieved from "http:en.openei.orgwindex.php?titleNobleCounty,Okl...

  4. CX-004059: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Oklahoma Comfort Program Large System Rebate Request C-DCX(s) Applied: B5.1Date: 10/08/2010Location(s): Edmond, OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  5. CX-004060: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Oklahoma Comfort Program Large System Rebate Request BCX(s) Applied: B5.1Date: 10/08/2010Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  6. CX-003353: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Oklahoma Comfort Program Large System Rebate Request ACX(s) Applied: A9, A11, B5.1Date: 08/09/2010Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  7. CX-004828: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program American Recovery and Reinvestment Act-Oklahoma Municipal Power Authority Oklahoma Comfort Program Large System Rebate Request HCX(s) Applied: B5.1Date: 12/22/2010Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  8. CX-004730: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Oklahoma Comfort Program Large System Request GCX(s) Applied: B5.1Date: 12/14/2010Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  9. CX-004544: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority (OMPA) Oklahoma Comfort Program Large System Request E and FCX(s) Applied: B5.1Date: 11/24/2010Location(s): Duncan, OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  10. CX-007904: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma Municipal Power Authority Large Systems Request AD CX(s) Applied: B5.19 Date: 02/10/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  11. CX-005123: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma Municipal Power Authority Large System Rebate Request ICX(s) Applied: B5.1Date: 01/25/2011Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  12. CX-007903: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma Municipal Power Authority Large Systems Request AC CX(s) Applied: B5.19 Date: 02/10/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  13. CX-005754: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program- Oklahoma Municipal Power Authority Large System Application Request OCX(s) Applied: B5.1Date: 05/04/2011Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  14. CX-007905: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma Municipal Power Authority Large Systems Request AE CX(s) Applied: B5.19 Date: 02/10/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  15. RES Oklahoma 2016

    Broader source: Energy.gov [DOE]

    The National Center for American Indian Enterprise Development is hosting RES Oklahoma. The four-day conference includes events, tradeshow, business expo, procurement, and more.

  16. Oklahoma Municipal Power Auth | Open Energy Information

    Open Energy Info (EERE)

    -Power-Authority-OMPA125994407444079 Outage Hotline: 405-340-5047 or 580-763-8047 Outage Map: ompa.comoutages References: EIA Form EIA-861 Final Data File for 2010 - File1a1...

  17. Pawnee County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Climate Zone Number 3 Climate Zone Subtype A. Places in Pawnee County, Oklahoma Blackburn, Oklahoma Cleveland, Oklahoma Hallett, Oklahoma Jennings, Oklahoma Mannford,...

  18. CX-005431: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large System Rebate Requests J and KCX(s) Applied: B5.1Date: 03/07/2011Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  19. CX-006179: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large System Request QCX(s) Applied: B5.1Date: 06/17/2011Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  20. CX-007411: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    OKLAHOMA State Energy Program American Recovery and Reinvestment Act· Oklahoma Municipal Power Authority Large System Request V CX(s) Applied: B5.19 Date: 12/15/2011 Location(s): Oklahoma Offices(s): Golden Field Office

  1. CX-006226: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large System Request SCX(s) Applied: B5.1Date: 07/14/2011Location(s): Ponca City, OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  2. CX-005433: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large System Application Request NCX(s) Applied: B5.1Date: 03/16/2011Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  3. Latimer County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 3 Climate Zone Subtype A. Places in Latimer County, Oklahoma Fanshawe, Oklahoma Red Oak, Oklahoma Wilburton, Oklahoma Retrieved from "http:en.openei.orgw...

  4. Key Renewable Energy Opportunities for Oklahoma Tribes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Renewable Energy Opportunities for Oklahoma Tribes Key Renewable Energy Opportunities for Oklahoma Tribes August 13, 2012 Oklahoma City, Oklahoma Cox Convention Center The...

  5. Oklahoma Natural Gas Plant Liquids Production Extracted in Oklahoma

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Oklahoma (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 166,776 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Oklahoma-Oklahoma

  6. Oklahoma Natural Gas Processed in Oklahoma (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Oklahoma (Million Cubic Feet) Oklahoma Natural Gas Processed in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 1,121,999 1,282,707 1,349,870 1,670,265 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Oklahoma-Oklahoma

  7. Best Practices in Determining the Impacts of Municipal Programs on Energy Use, Air Quality, and Other Ancillary Costs and Benefits (Poster)

    SciTech Connect (OSTI)

    Brown, E.; Mosey, G.

    2006-10-03

    This poster, submitted for the CU Energy Initiative/NREL Symposium on October 3, 2006 held in Boulder, Colorado, discusses best practices for determining the impacts of municipal programs on energy use, air quality, and other costs and benefits.

  8. Organization: Iowa Tribe of Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Iowa Tribe of Oklahoma ØFederally Recognized Indian Tribe ØCentral Oklahoma (between OKC & Tulsa) ØStrong Commitment to Energy Efficiency & Renewables * BKJ Solutions, Inc. ØTribally Owned Construction Company ØConstruction with USACE, IHS, BIA & Tribe ØFuture Renewable Energy Development Iowa Tribe of Oklahoma's traditional jurisdictional lands FEASIBILITY GRANT * Objectives ØConduct in-Depth Feasibility Study of Wind Energy ØIdentify & Address Technical Issues Related

  9. Tulsa, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Tulsa, Oklahoma Harvest Solar Utility Companies in Tulsa, Oklahoma Earth Power Resources Inc References US Census Bureau Incorporated place and minor civil division...

  10. Oklahoma/Incentives | Open Energy Information

    Open Energy Info (EERE)

    Yes Property Tax Exemption for Wind Generators (Oklahoma) Property Tax Incentive Yes Red River Valley REA - Heat Pump Loan Program (Oklahoma) Utility Loan Program Yes...

  11. ,"Oklahoma Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Consumption by End ... 11:05:14 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Consumption by End Use" ...

  12. ,"Oklahoma Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Vehicle Fuel Consumption ... 12:00:19 PM" "Back to Contents","Data 1: Oklahoma Natural Gas Vehicle Fuel Consumption ...

  13. ,"Oklahoma Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Underground Storage ... 11:44:01 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Underground Storage ...

  14. ,"Oklahoma Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Underground Storage Capacity ... 11:44:43 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Underground Storage Capacity ...

  15. ,"Oklahoma Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Heat Content of Natural Gas ... 11:00:12 AM" "Back to Contents","Data 1: Oklahoma Heat Content of Natural Gas Consumed

  16. Oklahoma Tribe to Install Solar Roof

    Broader source: Energy.gov [DOE]

    An Indian tribe in Anadarko, Oklahoma is installing solar panel roofs on two tribal government buildings.

  17. Selenium in Oklahoma ground water and soil. Quarterly report No. 6

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  18. Key Renewable Energy Opportunities for Oklahoma Tribes | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Key Renewable Energy Opportunities for Oklahoma Tribes Key Renewable Energy Opportunities for Oklahoma Tribes August 13, 2012 Oklahoma City, Oklahoma Cox Convention Center The Office of Indian Energy Tribal Leader Energy Forum on Key Renewable Energy Opportunities for Oklahoma Tribes was held August 13, 2012, in Oklahoma City, Oklahoma. The forum gave Oklahoma tribal leaders the opportunity to receive the latest updates on DOE's energy development efforts in Indian Country and

  19. Johnson, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Johnson is a town in Pottawatomie County, Oklahoma. It falls under Oklahoma's 5th...

  20. Purcell, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Purcell is a city in Cleveland County and McClain County, Oklahoma. It falls under Oklahoma's...

  1. Iowa Tribe of Oklahoma Wind Feasibility Study

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oklahoma Wind Feasibility Study ORGANIZATION * Iowa Tribe of Oklahoma Federally Recognized Indian Tribe Central Oklahoma (between OKC & Tulsa) Strong Commitment to Energy Efficiency & Renewables * BKJ Solutions, Inc. Tribally Owned Construction Company Construction with USACE, IHS, BIA & Tribe Iowa Tribe of Oklahoma's traditional jurisdictional lands FEASIBILITY GRANT * Objectives Conduct in-Depth Feasibility Study of Wind Energy Identify & Address Technical

  2. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    SciTech Connect (OSTI)

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  3. Oklahoma Municipal Power Authority - Geothermal Heat Pump Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    < Back Eligibility Commercial Industrial Residential Agricultural Savings Category Geothermal Heat Pumps Commercial Refrigeration Equipment Maximum Rebate 1,000ton Program Info...

  4. Smith Village, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Smith Village is a town in Oklahoma County, Oklahoma. It falls under Oklahoma's 5th...

  5. Oklahoma Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Oklahoma Regions National Science Bowl (NSB) NSB Home About High School High School ... High School Regionals Oklahoma Regions Print Text Size: A A A FeedbackShare Page Oklahoma ...

  6. Forest Park, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Forest Park is a town in Oklahoma County, Oklahoma. It falls under Oklahoma's 5th congressional...

  7. Key Renewable Energy Opportunities for Oklahoma Tribes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    KEY RENEWABLE ENERGY OPPORTUNITIES FOR OKLAHOMA TRIBES August 13, 2012 COX CONVENTION CENTER 100 West Sheridan Avenue, Oklahoma City, OK 73102 (405) 602-8500 The fifth in a series of planned U.S. DOE Office of Indian Energy-sponsored strategic energy development & investment forums, this forum is designed to give Oklahoma tribal leaders the opportunity to receive the latest updates on DOE's energy development efforts in Indian Country. The Forum will provide a venue for tribal leaders to

  8. Recovery Act State Memos Oklahoma

    Broader source: Energy.gov (indexed) [DOE]

    Oklahoma For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  9. Porter, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Porter, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8709334, -95.522476 Show Map Loading map... "minzoom":false,"mappingservic...

  10. Oklahoma/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Oklahoma Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  11. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Monthly","42016","01151989" ,"Release ...

  12. Moore, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Moore, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.3395079, -97.4867028 Show Map Loading map... "minzoom":false,"mappingservic...

  13. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Annual",2014,"06301967" ,"Release...

  14. Tulsa, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tulsa, Oklahoma: Energy Resources (Redirected from Tulsa, OK) Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1539816, -95.992775 Show Map Loading map......

  15. Mustang, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Mustang, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.384226, -97.7244867 Show Map Loading map... "minzoom":false,"mappingservi...

  16. Oklahoma Natural Gas - Residential Efficiency Rebates | Department...

    Broader source: Energy.gov (indexed) [DOE]

    250 Clothes Dryer: up to 500 Summary To encourage customers to install high-efficiency natural gas equipment in homes, Oklahoma Natural Gas offers rebates to residential...

  17. Arkansas Oklahoma Gas (AOG) Residential Rebate Program

    Broader source: Energy.gov [DOE]

    Arkansas Oklahoma Gas (AOG) provides financial incentives to its residential and small commercial customers for both existing and new construction homes and small business whose primary fuel for...

  18. Bixby, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    1st congressional district.12 Registered Energy Companies in Bixby, Oklahoma Sun City Solar Energy References US Census Bureau Incorporated place and minor civil...

  19. ,"Oklahoma Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    ...282016 11:29:50 AM" "Back to Contents","Data 1: Total Underground Storage" ... Natural Gas in Underground Storage (Base Gas) (MMcf)","Oklahoma Natural Gas in ...

  20. City of Lexington, Oklahoma (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Lexington, Oklahoma (Utility Company) Jump to: navigation, search Name: City of Lexington Place: Oklahoma Phone Number: (405) 527-6123 Website: www.cityoflexington.comutilit...

  1. Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone | Open...

    Open Energy Info (EERE)

    Alfalfa County, Oklahoma ASHRAE 169-2006 Climate Zone Jump to: navigation, search County Climate Zone Place Alfalfa County, Oklahoma ASHRAE Standard ASHRAE 169-2006 Climate Zone...

  2. Oklahoma Wind Energy Center - A | Open Energy Information

    Open Energy Info (EERE)

    A Jump to: navigation, search Name Oklahoma Wind Energy Center - A Facility Oklahoma Wind Energy Center - A Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  3. Oklahoma Wind Energy Center - B | Open Energy Information

    Open Energy Info (EERE)

    B Jump to: navigation, search Name Oklahoma Wind Energy Center - B Facility Oklahoma Wind Energy Center - B Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  4. Tulsa County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Zone Subtype A. Registered Energy Companies in Tulsa County, Oklahoma Harvest Solar Sun City Solar Energy Utility Companies in Tulsa County, Oklahoma Earth Power Resources Inc...

  5. Oklahoma Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Oklahoma Regions National Science Bowl (NSB) NSB Home About High School Middle School ... Middle School Regionals Oklahoma Regions Print Text Size: A A A FeedbackShare Page ...

  6. ,"Oklahoma Dry Natural Gas Expected Future Production (Billion...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Dry Natural Gas Expected Future ... 12:18:22 PM" "Back to Contents","Data 1: Oklahoma Dry Natural Gas Expected Future ...

  7. ,"Oklahoma Natural Gas Liquids Lease Condensate, Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Liquids Lease Condensate, ... 12:17:34 PM" "Back to Contents","Data 1: Oklahoma Natural Gas Liquids Lease Condensate, ...

  8. Oklahoma Corporate Commission Oil and Gas | Open Energy Information

    Open Energy Info (EERE)

    Corporate Commission Oil and Gas Jump to: navigation, search Name: Oklahoma Corporate Commission Oil and Gas Place: Oklahoma Zip: 73152-2000 Website: www.occeweb.comogoghome.htm...

  9. GE Global Research in Oklahoma City

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oklahoma City, USA Oklahoma City, USA GE's first sector-specific global research center is dedicated to developing and accelerating innovative oil and gas technologies. Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Visit the Careers page to search and apply for Global Research jobs in Oklahoma City. We also welcome

  10. Oklahoma Electric Cooperative- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Oklahoma Energy Cooperative (OEC) offers rebates to residential customers for the purchase of air-source heat pumps, geothermal heat pumps and water heaters. Air-source heat pumps are eligible for...

  11. Oklahoma Electric Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Electric Coop Inc Place: Oklahoma Phone Number: 1-405-321-2024 Website: www.okcoop.org Twitter: @okcoop Facebook: https:www.facebook.comOklaElec Outage Hotline: 405-321-2024...

  12. Iowas of Oklahoma Renewable Energy Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FUN * Involved in a Renewable Energy Project Grant Application - April 2009 Notification - September 2009 Finalized Details - March 2010 Project Kickoff - May 2010 * Cutting Edge Technology * Economic Development for Tribe FORTUNATE * Project Manager * Iowa Tribe of Oklahoma Federally Recognized Indian Tribe Central Oklahoma (between OKC & Tulsa) Fewer than 700 Tribal Members * BKJ Solutions, Inc. 8(a) / HUBZone Certified Business with SBA Construction with U.S.

  13. GE funds initiative to support STEM initiatives in Oklahoma ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STEM Empowers OK: Initiative to enrich STEM education in Oklahoma On April 21, 2015, GE announced a grant to the state of Oklahoma to enhance STEM education initiatives. Jeff ...

  14. City of Perry, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    City of Perry, Oklahoma (Utility Company) Jump to: navigation, search Name: City of Perry Place: Oklahoma Phone Number: 580-336-4241 or 580-336-4113 or 580-336-4111 Website:...

  15. El Reno, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. El Reno is a city in Canadian County, Oklahoma. It falls under Oklahoma's 3rd congressional...

  16. City of Orlando, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Orlando, Oklahoma (Utility Company) Jump to: navigation, search Name: City of Orlando Place: Oklahoma References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form...

  17. ,"Oklahoma Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:16:15 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OK3" "Date","Oklahoma...

  18. Rich Mountain Elec Coop, Inc (Oklahoma) | Open Energy Information

    Open Energy Info (EERE)

    Inc (Oklahoma) Jump to: navigation, search Name: Rich Mountain Elec Coop, Inc Place: Oklahoma Phone Number: 1-877-828-4074 Website: www.rmec.com Outage Hotline: 1-877-828-4074...

  19. ,"Oklahoma Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Oklahoma Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035OK3" "Date","Oklahoma Natural Gas Industrial Price ...

  20. U.S. Representative Frank Lucas and Oklahoma State Senator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 U.S. Representative Frank Lucas and Oklahoma State Senator David Myers recently voiced ... Though the SGP central facility and activity hub near Lamont, Oklahoma, has 31 employees ...

  1. ,"Oklahoma Natural Gas Underground Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Oklahoma Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070OK2" "Date","Oklahoma Natural Gas Underground Storage Net ...

  2. GE launches 'STEM empowers OK' initiative in Oklahoma City |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GE Foundation donates 400,000 to enhance STEM education initiatives across Oklahoma STEM Empowers OK to sponsor week-long, GE Summer Science Academy at OSSM for Oklahoma students ...

  3. Application of spatial and non-spatial data analysis in determination of the factors that impact municipal solid waste generation rates in Turkey

    SciTech Connect (OSTI)

    Keser, Saniye; Duzgun, Sebnem; Aksoy, Aysegul

    2012-03-15

    Highlights: Black-Right-Pointing-Pointer Spatial autocorrelation exists in municipal solid waste generation rates for different provinces in Turkey. Black-Right-Pointing-Pointer Traditional non-spatial regression models may not provide sufficient information for better solid waste management. Black-Right-Pointing-Pointer Unemployment rate is a global variable that significantly impacts the waste generation rates in Turkey. Black-Right-Pointing-Pointer Significances of global parameters may diminish at local scale for some provinces. Black-Right-Pointing-Pointer GWR model can be used to create clusters of cities for solid waste management. - Abstract: In studies focusing on the factors that impact solid waste generation habits and rates, the potential spatial dependency in solid waste generation data is not considered in relating the waste generation rates to its determinants. In this study, spatial dependency is taken into account in determination of the significant socio-economic and climatic factors that may be of importance for the municipal solid waste (MSW) generation rates in different provinces of Turkey. Simultaneous spatial autoregression (SAR) and geographically weighted regression (GWR) models are used for the spatial data analyses. Similar to ordinary least squares regression (OLSR), regression coefficients are global in SAR model. In other words, the effect of a given independent variable on a dependent variable is valid for the whole country. Unlike OLSR or SAR, GWR reveals the local impact of a given factor (or independent variable) on the waste generation rates of different provinces. Results show that provinces within closer neighborhoods have similar MSW generation rates. On the other hand, this spatial autocorrelation is not very high for the exploratory variables considered in the study. OLSR and SAR models have similar regression coefficients. GWR is useful to indicate the local determinants of MSW generation rates. GWR model can be utilized to

  4. Alternative Fuels Data Center: Oklahoma Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Oklahoma Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Oklahoma Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Oklahoma Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Oklahoma Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  5. SBOT OKLAHOMA SOUTHWESTERN POWER ADMIN POC Gary Bridges Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OKLAHOMA SOUTHWESTERN POWER ADMIN POC Gary Bridges Telephone (918) 595-6671 Email gary.bridges@swpa...

  6. Wind Resources on Tribal Land. Iowa Tribe of Oklahoma

    SciTech Connect (OSTI)

    Holiday, Michelle

    2015-03-27

    Final project report submitted by the Iowa Tribe of Oklahoma for the Department of Energy Wind Energy Grant

  7. Community-Scale Project Development and Finance Workshop: Oklahoma |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Oklahoma Community-Scale Project Development and Finance Workshop: Oklahoma June 9, 2015 - 10:19am Addthis June 9-11, 2015 Norman, Oklahoma Riverwind Hotel and Casino The DOE Office of Indian Energy hosted a Community-Scale Renewable Energy Project Development and Finance Workshop June 9-11, 2015, at the Riverwind Hotel and Casino in Norman, Oklahoma. Download the agenda and presentations. Addthis Related Articles Ted Wright of the Stillaguamish Tribe and Shannon Loeve

  8. One West Third Street Tulsa, Oklahoma

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Third Street Tulsa, Oklahoma 74103-3502 918-595-6600 Fax 918-595-6656 www.swpa.gov The UPDATE is published by and for customers, retirees, and employees of Southwestern Power Administration like: Katherine (K.C.) Thomas Director, Division of Information Technology (CIO) Tulsa, Oklahoma Special thanks to: Ron Beck Miya Boyken Ashley Butler Scott Carpenter Mike Deihl Ruben Garcia William Hiller David Kannady Jim McDonald Beth Nielsen Fritha Ohlson Tracey Stewart U P D AT E S O U T H W E S T E R N

  9. Oklahoma Shale Production (Billion Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Production (Billion Cubic Feet) Oklahoma Shale Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 40 168 249 2010's 403 476 637 698 869 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Estimated Production Oklahoma Shale Gas Proved Reserves, Reserves Changes, and

  10. Oklahoma Shale Proved Reserves (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet) Oklahoma Shale Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 944 3,845 6,389 2010's 9,670 10,733 12,572 12,675 16,653 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Shale Natural Gas Proved Reserves as of Dec. 31 Oklahoma Shale Gas

  11. Kansas Natural Gas Processed in Oklahoma (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Oklahoma (Million Cubic Feet) Kansas Natural Gas Processed in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 804 775 703 248 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Kansas-Oklahoma

  12. Kansas Natural Gas Plant Liquids Production Extracted in Oklahoma (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Oklahoma (Million Cubic Feet) Kansas Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 7 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Kansas-Oklahoma

  13. Small Wind Electric Systems: An Oklahoma Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Oklahoma Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  14. Love County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Love County, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.985839, -97.2221421 Show Map Loading map... "minzoom":false,"mappings...

  15. Smart Meters Helping Oklahoma Consumers Save Hundreds During...

    Energy Savers [EERE]

    Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat July 26, 2011 - ... on Good Morning America that he's saving over 320 per month compared to last ...

  16. Texas County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Texas County, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia...

  17. Alfalfa County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Alfalfa County, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.7435919, -98.3964938 Show Map Loading map... "minzoom":false,"mapp...

  18. Dewey County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Dewey County, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.017265, -98.9245343 Show Map Loading map... "minzoom":false,"mapping...

  19. ,"Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma...

  20. Rocky Mountain, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Rocky Mountain, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.8053663, -94.7674486 Show Map Loading map... "minzoom":false,"mapp...

  1. Sand Springs, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Sand Springs, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.1398102, -96.108891 Show Map Loading map... "minzoom":false,"mapping...

  2. Valley Brook, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Valley Brook, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.4020066, -97.4814258 Show Map Loading map... "minzoom":false,"mappin...

  3. Warr Acres, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Warr Acres, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5225567, -97.6189304 Show Map Loading map... "minzoom":false,"mappings...

  4. Cotton County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Cotton County, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.309094, -98.3964938 Show Map Loading map... "minzoom":false,"mappin...

  5. Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels) Decade Year-0 ... Release Date: 11192015 Next Release Date: 12312016 Referring Pages: Crude Oil plus ...

  6. Cherry Tree, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Tree, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.7414755, -94.6432774 Show Map Loading map... "minzoom":false,"mappingservice...

  7. City of Edmond, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Edmond Place: Oklahoma Phone Number: (405) 359-4541 Website: www.edmondok.comindex.aspx?NI Twitter: @cityofedmond Facebook: https:www.facebook.comcoedmond Outage Hotline: After...

  8. ,"Oklahoma Natural Gas Underground Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","102015" ,"Release...

  9. ,"Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  10. Valley Park, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Park, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 36.2928744, -95.737483 Show Map Loading map... "minzoom":false,"mappingservice"...

  11. Woodlawn Park, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Woodlawn Park, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.5114455, -97.6500419 Show Map Loading map... "minzoom":false,"mappi...

  12. Nicoma Park, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Nicoma Park, Oklahoma: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.4911731, -97.3230893 Show Map Loading map... "minzoom":false,"mapping...

  13. RES Oklahoma 2016: Office of Indian Energy Session on Tribal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Indian Energy Session on Tribal Energy: Strategic Roadmap 2025 RES Oklahoma 2016: Office of Indian Energy Session on Tribal Energy: Strategic Roadmap 2025 July 12, 2016 ...

  14. ,"Oklahoma Natural Gas Plant Liquids, Expected Future Production...

    U.S. Energy Information Administration (EIA) Indexed Site

    Plant Liquids, Expected Future Production (Million Barrels)" ,"Click worksheet name or tab ... Data for" ,"Data 1","Oklahoma Natural Gas Plant Liquids, Expected Future Production ...

  15. Oklahoma Working Natural Gas Underground Storage Capacity (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

  16. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, J.L.

    1988-04-13

    This invention relates to apparatus for processing municipal waste, and more particularly to vibrating mesh screen conveyor systems for removing grit, glass, and other noncombustible materials from dry municipal waste. Municipal waste must be properly processed and disposed of so that it does not create health risks to the community. Generally, municipal waste, which may be collected in garbage trucks, dumpsters, or the like, is deposited in processing areas such as landfills. Land and environmental controls imposed on landfill operators by governmental bodies have increased in recent years, however, making landfill disposal of solid waste materials more expensive. 6 figs.

  17. Oklahoma Center for High Energy Physics (OCHEP)

    SciTech Connect (OSTI)

    S. Nandi; M.J. Strauss; J. Snow; F. Rizatdinova; B. Abbott; K. Babu; P. Gutierrez; C. Kao; A. Khanov; K.A. Milton; H. Neaman; H. Severini, P. Skubic

    2012-02-29

    The DOE EPSCoR implementation grant, with the support from the State of Oklahoma and from the three universities, Oklahoma State University, University of Oklahoma and Langston University, resulted in establishing of the Oklahoma Center for High Energy Physics (OCHEP) in 2004. Currently, OCHEP continues to flourish as a vibrant hub for research in experimental and theoretical particle physics and an educational center in the State of Oklahoma. All goals of the original proposal were successfully accomplished. These include foun- dation of a new experimental particle physics group at OSU, the establishment of a Tier 2 computing facility for the Large Hadron Collider (LHC) and Tevatron data analysis at OU and organization of a vital particle physics research center in Oklahoma based on resources of the three universities. OSU has hired two tenure-track faculty members with initial support from the grant funds. Now both positions are supported through OSU budget. This new HEP Experimental Group at OSU has established itself as a full member of the Fermilab D0 Collaboration and LHC ATLAS Experiment and has secured external funds from the DOE and the NSF. These funds currently support 2 graduate students, 1 postdoctoral fellow, and 1 part-time engineer. The grant initiated creation of a Tier 2 computing facility at OU as part of the Southwest Tier 2 facility, and a permanent Research Scientist was hired at OU to maintain and run the facility. Permanent support for this position has now been provided through the OU university budget. OCHEP represents a successful model of cooperation of several universities, providing the establishment of critical mass of manpower, computing and hardware resources. This led to increasing Oklahoma’s impact in all areas of HEP, theory, experiment, and computation. The Center personnel are involved in cutting edge research in experimental, theoretical, and computational aspects of High Energy Physics with the research

  18. Oklahoma State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Oklahoma State Historic Preservation Programmatic Agreement Oklahoma State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. state_historic_preservation_programmatic_agreement_ok.pdf (1.13 MB) More Documents & Publications Delaware State Historic Preservation Programmatic Agreement Florida State Historic Preservation Programmatic Agreement Louisiana

  19. Eversource- Municipal Smart Start Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Eversource (previously Public Service of New Hampshire), an electric utility, offers the Smart Start Program to municipal customers. This program assists municipalities in reducing energy...

  20. PSNH- Municipal Smart Start Program

    Broader source: Energy.gov [DOE]

    Public Service of New Hampshire (PSNH), an electric utility, offers the Smart Start Program to Municipal customers. This program assists municipalities in reducing energy consumption and electric...

  1. Oklahoma Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Primary Renewable Energy Capacity Source Wind Primary Renewable Energy Generation Source Wind Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 21,022 100.0 Total Net Summer Renewable Capacity 2,412 11.5 Geothermal - - Hydro Conventional 858 4.1 Solar - - Wind 1,480 7.0 Wood/Wood Waste 58 0.3 MSW/Landfill Gas 16 0.1 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 72,251 100.0 Total Renewable Net Generation

  2. Oklahoma Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Primary Renewable Energy Capacity Source","Wind" "Primary Renewable Energy Generation Source","Wind" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",21022,100 "Total Net Summer Renewable Capacity",2412,11.5 " Geothermal","-","-" " Hydro Conventional",858,4.1 " Solar","-","-"

  3. Municipal Energy Reduction Fund

    Office of Energy Efficiency and Renewable Energy (EERE)

    In March 2010, the New Hampshire Community Development Finance Authority (CDFA) launched a revolving loan program to encourage the state’s municipal governments to invest in energy efficiency and...

  4. Texas Onshore Natural Gas Plant Liquids Production Extracted in Oklahoma

    Gasoline and Diesel Fuel Update (EIA)

    (Million Cubic Feet) Oklahoma (Million Cubic Feet) Texas Onshore Natural Gas Plant Liquids Production Extracted in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 8,718 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Texas Onshore-Oklahoma

  5. Texas Onshore Natural Gas Processed in Oklahoma (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Oklahoma (Million Cubic Feet) Texas Onshore Natural Gas Processed in Oklahoma (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 96,052 85,735 84,723 84,386 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Texas Onshore-Oklahoma

  6. Oklahoma Natural Gas Repressuring (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Repressuring (Million Cubic Feet) Oklahoma Natural Gas Repressuring (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 81,755 86,285 87,196 1970's 86,432 85,027 82,265 82,396 83,488 83,486 85,479 89,365 91,342 96,366 1980's 101,198 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  7. Jackson County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Jackson County is a county in Oklahoma. Its FIPS County Code is 065. It is classified as...

  8. Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 ...

  9. City of Pawhuska, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    search Name: City of Pawhuska Place: Oklahoma Phone Number: 918-287-2751 Website: ok-pawhuska.civiccities.comin Outage Hotline: After Hours 918-287-3260 References: EIA...

  10. Category:Oklahoma City, OK | Open Energy Information

    Open Energy Info (EERE)

    OK Jump to: navigation, search Go Back to PV Economics By Location Media in category "Oklahoma City, OK" The following 16 files are in this category, out of 16 total....

  11. City of Purcell, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Name: Purcell City of Place: Oklahoma Phone Number: (405) 527-6561 Website: www.purcell.ok.govindex.aspx? Twitter: @CityOfPurcellOK Facebook: https:www.facebook.com...

  12. City of Cordell, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    search Name: City of Cordell Place: Oklahoma Phone Number: 580-832-3825 Website: cordell-ok.comcity.html Outage Hotline: 580-832-3825 References: EIA Form EIA-861 Final Data File...

  13. ,"Oklahoma Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"03282016 11:41:07 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ...

  14. Tri-County Electric Coop, Inc (Oklahoma) | Open Energy Information

    Open Energy Info (EERE)

    Logo: Tri-County Electric Coop, Inc Name: Tri-County Electric Coop, Inc Address: PO Box 880 302 East Glaydas Place: Hooker, Oklahoma Zip: 73945 Product: Distribution Electric...

  15. City of Newkirk, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Place: Oklahoma Phone Number: 580 362-2117 or 580 362-2155 Website: newkirkchamber.comhtmlUtilit Outage Hotline: 580 362-2117 References: EIA Form EIA-861 Final Data File for...

  16. City of Mooreland, Oklahoma (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Oklahoma Phone Number: 580-994-5924 or 580-994-5925 Website: www.moorelandok.comindex.html Outage Hotline: 580-994-5924 or 580-994-5925 References: EIA Form EIA-861 Final Data...

  17. West Peavine, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. West Peavine is a census-designated place in Adair County, Oklahoma.1 References US...

  18. Murray County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Murray County is a county in Oklahoma. Its FIPS County Code is 099. It is classified as...

  19. Water Law and Management in Oklahoma | Open Energy Information

    Open Energy Info (EERE)

    OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - GuideHandbook: Water Law and Management in OklahomaPermittingRegulatory GuidanceGuideHandbook Abstract...

  20. Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Gas (Million Cubic Feet) Oklahoma Natural Gas Gross Withdrawals from Shale Gas (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2007 7,051 6,368 ...

  1. Oklahoma Natural Gas in Underground Storage (Working Gas) (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Working Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 129,245 ...

  2. 2009 National Electric Transmission Congestion Study- Oklahoma City Workshop

    Broader source: Energy.gov [DOE]

    On June 18, 2008, DOE hosted a regional pre-study workshop in Oklahoma City, OK to receive input and suggestions concerning the 2009 National Electric Transmission Congestion Study. The agenda,...

  3. City of Stroud, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Stroud Place: Oklahoma Phone Number: (918) 968-2571 Website: cityofstroud.comindex.aspx?ni Outage Hotline: (918) 968-2571 or After Hours (918) 968-2733 References: EIA Form...

  4. Logan County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Logan County is a county in Oklahoma. Its FIPS County Code is 083. It is classified as...

  5. Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet...

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 ...

  6. Oklahoma Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Fossil",68093,67765,70122,68700,65435 " Coal",35032,34438,36315,34059,31475 " Petroleum",64,160,23,9,18 " Natural ...

  7. Harper County, Oklahoma: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Harper County is a county in Oklahoma. Its FIPS County Code is 059. It is classified as...

  8. Reducing Peak Demand to Defer Power Plant Construction in Oklahoma

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reducing Peak Demand to Defer Power Plant Construction in Oklahoma Located in the heart of "Tornado Alley," Oklahoma Gas & Electric Company's (OG&E) electric grid faces significant challenges from severe weather, hot summers, and about 2% annual load growth. To better control costs and manage electric reliability under these conditions, OG&E is pursuing demand response strategies made possible by implementation of smart grid technologies, tools, and techniques from

  9. Municipal Solid Waste | Open Energy Information

    Open Energy Info (EERE)

    Municipal Solid Waste Jump to: navigation, search TODO: Add description List of Municipal Solid Waste Incentives Retrieved from "http:en.openei.orgwindex.php?titleMunicipalSo...

  10. Hull Municipal Light Plant | Open Energy Information

    Open Energy Info (EERE)

    Hull Municipal Light Plant Jump to: navigation, search Logo: Hull Municipal Light Plant Name: Hull Municipal Light Plant Place: Massachusetts Phone Number: 781-925-0051 Website:...

  11. Workplace Charging Challenge: Sample Municipal Workplace Charging...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Workplace Charging Agreement Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement Review the agreement proposed by one municipality to register PEV ...

  12. New Global Oil & Gas Hub in Oklahoma City | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selects Oklahoma City Site for New Global Hub of Oil & Gas Technology Innovation Click to ... GE Selects Oklahoma City Site for New Global Hub of Oil & Gas Technology Innovation New ...

  13. Oklahoma Natural Gas Processed (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Processed (Million Cubic Feet) Oklahoma Natural Gas Processed (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,038,103 1,122,692 1,167,150 1970's 1,183,273 1,123,614 1,116,872 1,175,548 1,092,487 1,033,003 1,072,992 1,057,326 1,069,293 1980's 1,063,256 1,112,740 1,023,057 1,118,403 1,137,463 1,103,062 1,127,780 1,301,673 1,145,688 1990's 1,102,301 1,100,812 1,071,426 1,082,452 1,092,734 1,015,965 1,054,123 1,014,008 947,177 892,396 2000's

  14. Iowa Tribe of Oklahoma's Assessment of Wind Resources on Tribal Land

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oklahoma's Assessment of Wind Resources on Tribal Land DOE's Tribal Energy Program Review March 24-27, 2014 - Denver, CO Overview  Iowa Tribe of Oklahoma  Iowa Tribe Long Term Energy Vision  Historical Renewable Energy Timeline  Project Objectives  Wind Study Reports  New Location Update  Changes and Challenges  Next Steps and Final Report Iowa Tribe of Oklahoma  Tribal enrollment is over 780  Organized under the Oklahoma Indian Welfare Act, which authorized the

  15. Municipal Solid Waste:

    U.S. Energy Information Administration (EIA) Indexed Site

    Methodology for Allocating Municipal Solid Waste to Biogenic and Non-Biogenic Energy May 2007 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U.S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be

  16. Oklahoma Dry Natural Gas Reserves Sales (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Sales (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Sales (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,243 480 767 1,598 511 539 821 1,545 395 600 2010's 219 2,995 1,133 733 1,088 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Sales Oklahoma Dry Natural

  17. ARM - Evaluation Product - Oklahoma Mesonet Soil Moisture Product

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsOklahoma Mesonet Soil Moisture Product ARM Data Discovery Browse Data Documentation Use the Data File Inventory tool to view data availability at the file level. Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Evaluation Product : Oklahoma Mesonet Soil Moisture Product [ ARM research - evaluation data product ] Land surface and subsurface states (e.g., soil moisture) are critical for analyses of land-atmospheric interactions in climate

  18. Oklahoma Natural Gas Plant Liquids Production Extracted in Texas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Cubic Feet) Texas (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production Extracted in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 2,434 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: NGPL Production, Gaseous Equivalent Oklahoma-Texas

  19. Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat Smart Meters Helping Oklahoma Consumers Save Hundreds During Summer Heat July 26, 2011 - 4:27pm Addthis Small business owner Steve Kaplan told ABC News’ “Show Me the Money” on Good Morning America that he's saving over $320 per month compared to last summer, which they calculated could result in $1,300 a year. Small business owner Steve Kaplan told ABC News' "Show Me the Money" on

  20. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Proved Reserves (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 568 684 1,265 511 338 2010's 325 274 439 440 602 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Coalbed Methane Proved Reserves as of Dec. 31 Oklahoma Coalbed Methane

  1. Oklahoma Natural Gas Processed in Texas (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Texas (Million Cubic Feet) Oklahoma Natural Gas Processed in Texas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2010's 16,462 18,595 18,455 17,361 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date: 09/30/2016 Referring Pages: Natural Gas Processed Oklahoma-Texas

  2. University of Oklahoma - High Energy Physics

    SciTech Connect (OSTI)

    Skubic, Patrick L.

    2013-07-31

    The High Energy Physics program at the University of Oklahoma, Pat Skubic, Principal Investigator, is attempting to understand nature at the deepest level using the most advanced experimental and theoretical tools. The four experimental faculty, Brad Abbott, Phil Gutierrez, Pat Skubic, and Mike Strauss, together with post-doctoral associates and graduate students, are finishing their work as part of the D0 collaboration at Fermilab, and increasingly focusing their investigations at the Large Hadron Collidor (LHC) as part of the ATLAS Collaboration. Work at the LHC has become even more exciting with the recent discovery by ATLAS and the other collaboration, CMS, of the long-sought Higgs boson, which plays a key role in generating masses for the elementary constituents of matter. Work of the OUHEP group has been in the three areas of hardware, software, and analysis. Now that the Higgs boson has been discovered, completing the Standard Model of fundamental physics, new efforts will focus on finding hints of physics beyond the standard model, such as supersymmetry. The OUHEP theory group (Kim Milton, PI) also consists of four faculty members, Howie Baer, Chung Kao, Kim Milton, and Yun Wang, and associated students and postdocs. They are involved in understanding fundamental issues in formulating theories of the microworld, and in proposing models that carry us past the Standard Model, which is an incomplete description of nature. They therefore work in close concert with their experimental colleagues. One also can study fundamental physics by looking at the large scale structure of the universe; in particular the ``dark energy'' that seems to be causing the universe to expand at an accelerating rate, effectively makes up about 3/4 of the energy in the universe, and yet is totally unidentified. Dark energy and dark matter, which together account for nearly all of the energy in the universe, are an important probe of fundamental physics at the very shortest distances

  3. Field Evaluation of a Near Zero Energy Home in Oklahoma

    SciTech Connect (OSTI)

    Hendron, R.; Hancock, E.; Barker, G.; Reeves, P.

    2008-08-01

    The authors evaluated a zero energy home built by Ideal Homes in Edmond, Oklahoma, that included an extensive package of energy-efficient technologies and a photovoltaic array for site electricity generation. The home was part of a Building America research project in partnership with the Building Science Consortium to exhibit high efficiency technologies while keeping costs within the reach of average home buyers.

  4. Oklahoma Dry Natural Gas Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Dry Natural Gas Production (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2006 129,135 117,495 130,894 129,451 133,836 135,150 137,891 136,729 ...

  5. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, John L.

    1988-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Pieces of material which become lodged in the openings of the conveyor belt may be removed by cylindrical deraggers or pressurized air. The crushed materials may be fed onto the conveyor belt by a vibrating feed plate which shakes the materials so that they tend to lie flat.

  6. Municipal waste processing apparatus

    DOE Patents [OSTI]

    Mayberry, John L.

    1989-01-01

    Municipal waste materials are processed by crushing the materials so that pieces of noncombustible material are smaller than a selected size and pieces of combustible material are larger than the selected size. The crushed materials are placed on a vibrating mesh screen conveyor belt having openings which pass the smaller, noncombustible pieces of material, but do not pass the larger, combustible pieces of material. Consecutive conveyors may be connected by an intermediate vibratory plate. An air knife can be used to further separate materials based on weight.

  7. Determining the optimum strategy of techniques from the municipal solid waste management hierarchy to maximize social value. Master`s thesis

    SciTech Connect (OSTI)

    Still, C.M.

    1996-12-01

    The primary waste management alternatives are source reduction, recycling, composting, incineration, and landfilling. Often waste management policies are based entirely on technical considerations and ignore that actual disposal practices depend on individuals` attitudes and behaviors. This research formulated a decision analysis model that incorporates social value measures to determine the waste management strategy that maximizes the individuals` willingness to participate. The social values that are important and that were considered in the decision support model to assist with making decisions about solid waste management were convenience, feeling good about reducing waste, feeling good about leaving a good environment for future generations, and the value of recreation programs that can be provided with profit from a recycling program.

  8. Design Case Summary: Production of Mixed Alcohols from Municipal Solid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste via Gasification | Department of Energy Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via Gasification Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via Gasification The Bioenergy Technologies Office develops design cases to understand the current state of conversion technologies and to determine where improvements need to take place in the future. This design case establishes cost targets for converting MSW to ethanol and

  9. Utah Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    Municipal Power Agency Place: Utah Phone Number: (801) 798-7489 Website: www.umpa.cc Facebook: https:www.facebook.compagesUtah-Municipal-Power-Agency152219714819535 Outage...

  10. BT16 Municipal Solid Waste Resources

    Broader source: Energy.gov (indexed) [DOE]

    Municipal Solid Waste Resources Municipal solid waste (MSW) is a source of biomass ... trimmings, paper and paperboard, plastics, rubber, leather, textiles, and food wastes. ...

  11. Connected Outdoor Lighting Systems for Municipalities - Text...

    Energy Savers [EERE]

    Outdoor Lighting Systems for Municipalities - Text-Alt Version Connected Outdoor Lighting Systems for Municipalities - Text-Alt Version Welcome, everyone. This is Bruce Kinzey with ...

  12. Community Renewable Energy Deployment: Sacramento Municipal Utility...

    Open Energy Info (EERE)

    Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects AgencyCompany...

  13. Massachusetts Municipal Commercial Industrial Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Rebate Varies depending on utility Program Info Sector Name Utility Administrator Massachusetts Municipal Wholesale Electric Company in collaboration with municipal utilities...

  14. American Municipal Power | Open Energy Information

    Open Energy Info (EERE)

    Municipal Power Jump to: navigation, search Name: American Municipal Power Place: Columbus, Ohio Zip: 43219 Product: AMP is a non-profit corporation that owns and operates electric...

  15. Wakefield Municipal Gas & Light Department - Residential Conservation...

    Broader source: Energy.gov (indexed) [DOE]

    Programmable Thermostats: 25 Water Heater: 100 Summary The Wakefield Municipal Gas & Light Department (WMGLD), in cooperation with the Massachusetts Municipal Wholesale Electric...

  16. Keosauqua Municipal Light & Pwr | Open Energy Information

    Open Energy Info (EERE)

    Keosauqua Municipal Light & Pwr Jump to: navigation, search Name: Keosauqua Municipal Light & Pwr Place: Iowa Phone Number: 319-293-3406 Website: villagesofvanburen.comdirecto...

  17. Thurmont Municipal Light Co | Open Energy Information

    Open Energy Info (EERE)

    Thurmont Municipal Light Co Jump to: navigation, search Name: Thurmont Municipal Light Co Place: Maryland Phone Number: 301-271-7313 Website: www.thurmont.com Facebook: https:...

  18. Price Municipal Corporation | Open Energy Information

    Open Energy Info (EERE)

    Price Municipal Corporation Jump to: navigation, search Name: Price Municipal Corporation Place: Utah Phone Number: 435-636-3197 Website: www.priceutah.netCityDirUti Outage...

  19. Philippi Municipal Electric | Open Energy Information

    Open Energy Info (EERE)

    Philippi Municipal Electric Jump to: navigation, search Name: Philippi Municipal Electric Place: West Virginia Phone Number: 304-457-3700 Outage Hotline: 304-457-3700 References:...

  20. Willmar Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Willmar Municipal Utilities Jump to: navigation, search Name: Willmar Municipal Utilities Place: Minnesota Phone Number: 320.235.4422 Website:...

  1. Delano Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Delano Municipal Utilities Jump to: navigation, search Name: Delano Municipal Utilities Place: Minnesota Website: www.dmumn.com Outage Hotline: (763)972-0557 References: EIA Form...

  2. Indianola Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Indianola Municipal Utilities Jump to: navigation, search Name: Indianola Municipal Utilities Place: Iowa Phone Number: 515.961.9444 Website: www.i-m-u.com Outage Hotline:...

  3. Osage Municipal Utilities Wind | Open Energy Information

    Open Energy Info (EERE)

    Name Osage Municipal Utilities Wind Facility Osage Municipal Utilities Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Osage...

  4. Woodstock Municipal Wind | Open Energy Information

    Open Energy Info (EERE)

    search Name Woodstock Municipal Wind Facility Woodstock Municipal Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  5. Draft Powerpoint: Toward Energy Efficient Municipalities, LLC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powerpoint: Toward Energy Efficient Municipalities, LLC comment Draft Powerpoint: Toward Energy Efficient Municipalities, LLC comment Green Grid Gateway @ North Coast Oregon. ...

  6. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2002-03-31

    The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

  7. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma

    SciTech Connect (OSTI)

    Mohan Kelkar

    2007-06-30

    Hunton formation in Oklahoma has been the subject of attention for the last ten years. The new interest started with the drilling of the West Carney field in 1995 in Lincoln County. Subsequently, many other operators have expanded the search for oil and gas in Hunton formation in other parts of Oklahoma. These fields exhibit many unique production characteristics, including: (1) decreasing water-oil or water-gas ratio over time; (2) decreasing gas-oil ratio followed by an increase; (3) poor prediction capability of the reserves based on the log data; and (4) low geological connectivity but high hydrodynamic connectivity. The purpose of this investigation is to understand the principal mechanisms affecting the production, and propose methods by which we can optimize the production from fields with similar characteristics.

  8. AmeriFlux US-Shd Shidler- Oklahoma

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Verma, Shashi [University of Nebraska - Lincoln

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Shd Shidler- Oklahoma. Site Description - Native tall grass prairie. A prairie management prescribed burn was conducted in the spring of 1997, but not in 1996. The site was not grazed from early August 1996-September 1997. almost all plants are warm season C4 species, grasslands, temperate continental climate

  9. FE0003537_UofOklahoma | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Generation Surfactants for Improved Chemical Flooding Technology Last Reviewed 12/15/2012 DE-FE0003537 Goal The principle objective of the project is to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focusing on reservoirs in Pennsylvanian age (Penn) sands. Performer Oklahoma University Enhanced Oil Recovery Design Center, Norman, OK Background Primary and secondary methods have produced approximately one-third of

  10. Anisotropy in Broken Cloud Fields Over Oklahoma from Ladsat Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anisotropy in Broken Cloud Fields Over Oklahoma from Landsat Data L. M. Hinkelman National Institute of Aerospace Hampton, Virginia K. F. Evans University of Colorado Boulder, Colorado Introduction Previously, it was shown (Hinkelman et al. 2002) that anisotropy, or the existence of a preferred direction, in cumulus fields significantly affects solar radiative transfer through these fields. In this poster, we investigate the occurrence of anisotropy in broken cloud fields near the Atmospheric

  11. FPDS-NG Change Management Notice for the Oklahoma Tornado and Storm

    Broader source: Energy.gov [DOE]

    A new National Interest Action value for the 'Oklahoma Tornado and Storm 2013' has been added to the FPDS-NG Production system.

  12. AEP Public Service Company of Oklahoma- Non-Residential Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    AEP Public Services Company of Oklahoma (PSO) offers several incentives and programs to non-residential customers who install energy efficiency measures.

  13. Jobs, tax revenue persuade Oklahoma to waive buyback rule

    SciTech Connect (OSTI)

    Hines, V.

    1985-10-28

    The chance to add up to 900 new jobs and $54 million in tax revenues led Oklahoma regulators to agree to a one-time waiver of a controversial state ruling that discourages long-term buyback rates for cogenerators. The ruling will allow a 100 MW cogeneration project to proceed with its plan to sell steam to the Firestone tire plant and electricity to the local utility. Economic forecasts show that the deal will give the Oklahoma facility the lowest operating cost for any Firestone plant in the country. It will also make Oklahoma more attractive to new businesses and industry. Regulators emphasize that the waiver of rule 58-H applies only to this project, with future proposals to be judged on their own merits. Despite its large gas surplus, the state has virtually no cogeneration, which requires a steady, low-cost fuel supply, an expanding requirement for electricity, and the presence of large industrial steam users. Other issues the commission considered were the capacity and energy buyback rates.

  14. Field trip guide to selected outcrops, Arbuckle Mountains, Oklahoma

    SciTech Connect (OSTI)

    1991-11-17

    The Arbuckle Mountains, named for Brigadier General Matthew Arbuckle, are located in south-central Oklahoma. The formations that comprise the Arbuckle Mountains have been extensively studied for hydrocarbon source rock and reservoir rock characteristics that can be applied to the subsurface in the adjacent Anadarko and Ardmore basins. Numerous reports and guidebooks have been written concerning the Arbuckle Mountains. A few important general publications are provided in the list of selected references. The purpose of this handout is to provide general information on the geology of the Arbuckle Mountains and specific information on the four field trip stops, adapted from the literature. The four stops were at: (1) Sooner Rock and Sand Quarry; (2) Woodford Shale; (3) Hunton Anticline and Hunton Quarry; and (4) Tar Sands of Sulfur Area. As part of this report, two papers are included for more detail: Paleomagnetic dating of basinal fluid migration, base-metal mineralization, and hydrocarbon maturation in the Arbuckle Mountains, Oklahoma and Laminated black shale-bedded chert cyclicity in the Woodford Formation, southern Oklahoma.

  15. Energy Incentive Programs, Oklahoma | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy prices, for usage below or above a pre-determined customer baseline load profile. ... Energy Division Library. Federal facilities should contact their account executive to

  16. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2003-10-01

    This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on log data, and sustained oil rates over long periods of time. To understand the unique characteristics of the field, an integrated evaluation was undertaken. Production data from the field were meticulously collected, and over forty wells were cored and logged to better understand the petrophysical and engineering characteristics. Based on the work done in this budget period so far, some of the preliminary conclusions can be listed as follows: (1) Based on PVT analysis, the field most likely contains volatile oil with bubble point close to initial reservoir pressure of 1,900 psia. (2) The initial oil in place, which is contact with existing wells, can be determined by newly developed material balance technique. The oil in place, which is in communication, is significantly less than determined by volumetric analysis, indicating heterogeneous nature of the reservoir. The oil in place, determined by material balance, is greater than determined by decline curve analysis. This difference may lead to additional locations for in fill wells. (3) The core and log evaluation indicates that the intermediate pores (porosity between 2 and 6 %) are very important in determining production potential of the reservoir. These intermediate size pores contain high oil saturation. (4) The limestone part of the reservoir, although low in porosity (mostly less than 6 %) is much more prolific in terms of oil production than the dolomite portion of the reservoir. The reason for this difference is the higher oil saturation in low porosity region. As the average porosity

  17. Photovoltaics for municipal planners

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

  18. Energy Department to Lead Workshop on Tribal Renewable Energy Development in Oklahoma

    Broader source: Energy.gov [DOE]

    Oklahoma tribal energy leaders have an opportunity to explore the tribal energy project development and financing process hands-on at an interactive workshop being hosted by the U.S. Department of Energy (DOE) Office of Indian Energy June 9–11 at the Riverwind Hotel and Casino in Norman, Oklahoma.

  19. CX-010648: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    48: Categorical Exclusion Determination CX-010648: Categorical Exclusion Determination Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters CX(s) Applied: B3.6 Date: 06/26/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory Three fuel flex burners will be retrofitted in Shell's Deer Park Plant and will replace existing conventional burners. Phase 2 burner testing conducted at Zeeco, Broken Arrow, Oklahoma. CX-010648.pdf (149.59 KB) More

  20. Oklahoma Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Acquisitions (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Acquisitions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 2000's 1,325 671 845 1,864 763 728 1,202 1,567 599 387 2010's 1,519 2,459 975 738 1,210 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Dry Natural Gas Reserves Acquisitions

  1. Oklahoma Dry Natural Gas Reserves Adjustments (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Adjustments (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Adjustments (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 36 615 -138 1980's -1,099 1,017 891 -323 -337 -500 835 559 203 202 1990's 838 -451 -121 -94 374 -67 122 82 106 -1,233 2000's 424 196 904 226 -113 297 -149 13 99 984 2010's -394 -368 -686 -622 816 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company

  2. Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) New Field Discoveries (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves New Field Discoveries (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 181 155 197 1980's 168 412 376 53 53 94 14 11 26 91 1990's 50 10 0 25 0 23 30 2 4 0 2000's 20 13 14 6 8 1 0 6 21 0 2010's 51 47 44 2 135 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015

  3. Oklahoma Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonhydrocarbon Gases Removed from Natural Gas (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's - 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Nonhydrocarbon Gases Removed from Natural Gas Oklahoma Natural Gas Gross Withdrawals and Production

  4. Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million

    Gasoline and Diesel Fuel Update (EIA)

    Barrels) Reserves Based Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Reserves Based Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 59 1980's 62 65 67 70 75 77 76 76 79 73 1990's 75 76 77 77 76 70 74 71 69 70 2000's 69 66 61 59 64 65 67 69 74 77 2010's 82 88 96 99 117 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  5. Exploitation and Optimization of Reservoir Performance in Hunton Formation, Oklahoma

    SciTech Connect (OSTI)

    Kelkar, Mohan

    2001-05-08

    This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil and ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on long data, and sustained oil rates over long periods of time.

  6. Oklahoma Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves in Nonproducing Reservoirs (Million Barrels) Oklahoma Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's NA NA 98 80 2000's 111 109 105 92 92 101 90 118 129 138 2010's 143 244 279 292 444 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 11/19/2015 Next Release Date: 12/31/2016 Referring Pages: Proved

  7. Oklahoma Natural Gas Liquids Lease Condensate, Proved Reserves (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids Lease Condensate, Proved Reserves (Million Barrels) Oklahoma Natural Gas Liquids Lease Condensate, Proved Reserves (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 72 1980's 67 66 78 89 86 95 89 79 79 68 1990's 65 61 63 68 60 69 69 75 85 82 2000's 96 89 94 104 124 142 160 152 164 180 2010's 216 271 346 450 480 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  8. Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Barrels) Liquids, Expected Future Production (Million Barrels) Oklahoma Natural Gas Plant Liquids, Expected Future Production (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 511 1980's 537 565 667 740 683 731 768 702 686 586 1990's 592 567 566 575 592 605 615 610 613 667 2000's 639 605 601 582 666 697 732 797 870 985 2010's 1,270 1,445 1,452 1,408 1,752 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Oklahoma Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",624,3066,3811,3553,2809 "Solar","-","-","-","-","-" "Wind",1712,1849,2358,2698,3808 "Wood/Wood Waste",297,276,23,68,255 "MSW Biogenic/Landfill Gas","-",4,5,"-","-" "Other

  10. Texas Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    Texas Municipal Power Agency Jump to: navigation, search Name: Texas Municipal Power Agency Place: Texas Sector: Wind energy Phone Number: (936) 873-1100 Website: www.texasmpa.org...

  11. Kenyon Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Kenyon Municipal Utilities Jump to: navigation, search Name: Kenyon Municipal Utilities Place: Minnesota References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form...

  12. Permian karst topography in the Wichita uplift, southwestern Oklahoma

    SciTech Connect (OSTI)

    Donovan, R.N. Busbey, A.B. . Geology Dept.)

    1993-02-01

    The Wichita uplift in southwestern Oklahoma is one part of a record of Pennsylvania and early Permian deformation that affected the Southern Oklahoma aulacogen. As a result of a partial inversion, the Lower Paleozoic section of this aulacogen was sequentially stripped off an uplift between the Wichita uplift and the Anadarko basin, resulting in the exposure of ultrabasic rocks deep in the Cambrian igneous fill of the aulacogen. Following the late Paleozoic tectonism, the topography of the uplift was entombed beneath Permian sediments and remained essentially undisturbed until exhumation during the present erosional cycle. Modern erosion is gradually exposing this topography, permitting morphometric analysis of the Permian hill forms. Because of the variation of lithology in the uplift, it is possible to isolate the effects of weathering processes such as intense hydrolysis of the igneous rocks (producing, among other features, or topography) and limestone dissolution, in the form of a surface and subsurface karst imprint. The latter process resulted in a network of small caves that are essentially fissures eroded along tectonic fractures. These small caves can be found in all the exposed areas of limestone. They are particularly noteworthy for three reasons: in at least five examples they contain a complex fauna of Permian vertebrates (mostly fragmentary), speleothems in some examples contain hydrocarbon inclusions, derived from the underlying Anadarko basin, some of the caves yield evidence of post burial evolution in the form of clay infiltration from the surface and brine flushing from the underlying Anadarko basin.

  13. GE funds initiative to support STEM initiatives in Oklahoma | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research STEM Empowers OK: Initiative to enrich STEM education in Oklahoma Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) STEM Empowers OK: Initiative to enrich STEM education in Oklahoma On April 21, 2015, GE announced a grant to the state of Oklahoma to enhance STEM education initiatives. Jeff Immelt, GE's

  14. Oklahoma Dry Natural Gas Reserves Extensions (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Extensions (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Extensions (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,129 1,324 1,022 1980's 1,690 1,864 1,815 1,191 1,016 1,134 861 823 1,030 713 1990's 707 485 382 548 818 661 714 638 600 624 2000's 894 1,325 1,186 1,509 1,983 1,818 2,051 2,380 2,974 3,463 2010's 4,571 5,735 4,903 3,300 3,661 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  15. Oklahoma Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Decreases (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Revision Decreases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,016 969 1,211 1980's 1,303 1,371 2,520 1,891 1,611 1,648 1,963 2,047 2,280 1,732 1990's 1,542 1,456 1,263 1,008 932 1,049 1,602 1,282 1,997 2,251 2000's 1,331 1,895 1,513 2,843 1,912 2,945 1,868 1,366 2,580 3,592 2010's 3,474 6,856 7,731 5,031 4,585 - = No Data Reported; -- = Not Applicable; NA = Not

  16. Oklahoma Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Increases (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Revision Increases (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 837 962 1,026 1980's 1,293 1,262 2,374 2,189 2,245 2,357 2,158 2,251 2,538 1,984 1990's 1,803 1,710 1,988 1,554 1,580 1,892 1,886 2,396 2,995 3,029 2000's 2,498 1,458 2,159 2,892 2,173 3,064 1,515 2,115 2,786 2,894 2010's 3,224 5,142 4,153 4,118 6,573 - = No Data Reported; -- = Not Applicable; NA = Not

  17. Oklahoma Natural Gas Lease Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Lease Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 49,480 60,470 57,064 54,495 68,664 60,418 51,833 1990's 72,318 46,200 53,278 60,658 55,607 45,946 37,803 51,042 35,509 32,868 2000's 41,032 38,916 30,281 40,292 35,875 35,989 36,396 38,229 42,250 40,164 2010's 39,489 40,819 43,727 45,581 50,621 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  18. Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  19. Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Oklahoma Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 2,772 2,689 2,877 1990's 2,889 2,840 2,859 2,912 2,853 2,845 2,843 2,531 3,295 3,040 2000's 2,821 3,403 3,438 3,367 3,283 2,855 2,811 2,822 2,920 2,618 2010's 2,731 2,733 2,872 2,958 3,063 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  20. Oklahoma Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Oklahoma Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 809,171 805,107 806,875 1990's 814,296 824,172 832,677 842,130 845,448 856,604 866,531 872,454 877,236 867,922 2000's 859,951 868,314 875,338 876,420 875,271 880,403 879,589 920,616 923,650 924,745 2010's 914,869 922,240 927,346 931,981 937,237 - = No Data Reported; -- = Not Applicable; NA = Not

  1. Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 26,130 24,242 23,833 2000's 21,001 23,537 23,340 30,396 30,370 31,444 31,333 28,463 27,581 28,876 2010's 30,611 30,948 32,838 41,813 45,391 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  2. Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 29,750 31,237 31,121 29,705 35,751 40,508 38,392 1990's 39,249 42,166 39,700 39,211 35,432 34,900 35,236 30,370 26,034 25,055 2000's 25,934 28,266 25,525 26,276 27,818 27,380 28,435 28,213 27,161 24,089 2010's 23,238 24,938 27,809 32,119 36,231 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  3. Oklahoma Natural Gas Plant Liquids Production (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Production (Million Cubic Feet) Oklahoma Natural Gas Plant Liquids Production (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 50,952 55,724 57,270 1970's 58,926 55,914 56,376 61,647 62,860 60,008 52,087 55,238 61,868 71,559 1980's 74,434 80,401 85,934 90,772 98,307 99,933 100,305 99,170 103,302 94,889 1990's 96,698 101,851 104,609 101,962 101,564 94,930 100,379 96,830 92,785 93,308 2000's 96,787 88,885 81,287 74,745 84,355 87,404

  4. Oklahoma Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Oklahoma Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 567,050 575,855 538,329 2000's 538,563 491,458 508,298 540,103 538,576 582,536 624,400 658,379 687,989 659,305 2010's 675,727 655,919 691,661 658,569 640,607 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next

  5. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vented and Flared (Million Cubic Feet) Oklahoma Natural Gas Vented and Flared (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 126,629 129,408 130,766 1970's 129,629 39,799 38,797 36,411 34,199 31,802 30,197 29,186 27,489 26,605 1980's 25,555 2000's 0 0 0 0 0 0 0 0 2010's 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release

  6. Oklahoma Quantity of Production Associated with Reported Wellhead Value

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Oklahoma Quantity of Production Associated with Reported Wellhead Value (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 1,730,061 1,985,869 1,936,341 1,917,493 2,004,797 2,106,632 2,185,204 1990's 2,186,153 2,119,161 1,937,224 2,005,971 1,879,257 1,765,788 1,751,487 1,452,233 1,644,531 1,577,961 2000's 1,612,890 1,477,058 1,456,375

  7. Oklahoma Natural Gas Plant Liquids Production Extracted in Kansas (Million

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Consumers (Number of Elements) Oklahoma Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 87,824 86,666 86,172 1990's 85,790 86,744 87,120 88,181 87,494 88,358 89,852 90,284 89,711 80,986 2000's 80,558 79,045 80,029 79,733 79,512 78,726 78,745 93,991 94,247 94,314 2010's 92,430 93,903 94,537 95,385 96,004 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  8. Oklahoma Natural Gas Vented and Flared (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 21 19 21 20 21 20 21 21 20 21 20 21 2011 22 20 22 21 22 21 22 22 21 22 21 22 2012 22 20 22 21 22 21 22 22 21 22 21 22 2013 29 27 29 28 29 28 29 29 28 29 28 29 2014 34 31 34 33 34 33 34 34 33 34 33 34 2015 24 22 24 24 24 32 34 34 33 34 33 34 2016 38 35 38 37 44 43

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  9. Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    Proved Reserves (Billion Cubic Feet) Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2,246 1980's 2,252 2,441 2,426 2,269 2,244 2,149 2,191 2,017 1,894 1,785 1990's 1,820 1,406 1,483 1,550 1,342 1,228 1,023 1,015 1,196 1,238 2000's 1,113 1,109 1,177

  10. Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Expected Future Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Expected Future Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 13,889 14,417 13,816 1980's 13,138 14,699 16,207 16,211 16,126 16,040 16,685 16,711 16,495 15,916 1990's 16,151 14,725 13,926 13,289 13,487 13,438 13,074 13,439 13,645 12,543 2000's 13,699 13,558 14,886 15,401 16,238 17,123 17,464 19,031 20,845 22,769 2010's 26,345 27,830 26,599 26,873 31,778 -

  11. Oklahoma Natural Gas Underground Storage Volume (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Storage Volume (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 296,629 281,511 286,917 279,978 298,202 307,083 317,720 325,432 332,591 338,392 353,804 327,277 1991 283,982 278,961 284,515 298,730 313,114 323,305 324,150 328,823 338,810 342,711 317,072 306,300 1992 288,415 280,038 276,287 282,263 290,192 301,262 318,719 326,705 339,394 346,939 330,861 299,990 1993 275,054 253,724

  12. Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 14,545 1980's 13,908 15,507 17,140 17,261 17,102 17,078 17,779 17,703 17,450 16,733 1990's 16,967 15,518 14,732 14,099 14,323 14,295 13,952 14,311 14,517 13,490 2000's 14,543 14,366 15,753 16,231 17,200 18,146 18,535 20,184 22,113 24,207 2010's

  13. Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    Reserves (Billion Cubic Feet) Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 12,299 1980's 11,656 13,066 14,714 14,992 14,858 14,929 15,588 15,686 15,556 14,948 1990's 15,147 14,112 13,249 12,549 12,981 13,067 12,929 13,296 13,321 12,252 2000's 13,430 13,256 14,576

  14. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Oklahoma

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Oklahoma.

  15. Arkansas Oklahoma Gas Company (AOG)- Commerial and Industrial Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Arkansas Oklahoma Gas (AOG) programs are available to all commercial and industrial AOG customers in Arkansas. The Commercial and Industrial Prescriptive program offers rebates for the instal...

  16. Oklahoma Regional High School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Oklahoma Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us High School Regionals Oklahoma Regional High School

  17. Oklahoma Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Oklahoma Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Oklahoma Regional Middle

  18. Interactions Between the Daytime Mixed Layer and the Surface: Oklahoma Mesonet and EBBR Heat Fluxes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactions Between the Daytime Mixed Layer and the Surface: Oklahoma Mesonet and EBBR Heat Fluxes R. L. Coulter Argonne National Laboratory Argonne, Illinois Introduction Surface layer estimates of surface sensible heat flux have been made at 10 - 14 locations within the Central Facility (CF) of the Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) Program site by using energy balance Bowen ratio (EBBR) stations located mostly in uncultivated areas. The advent of the Oklahoma

  19. Iowa Tribe of Oklahoma - Assessment of Wind Resource on Tribal Land

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tribe of Oklahoma The Iowa Tribe of Oklahoma is a federally recognized Indian Tribe eligible for the special programs and services provided by the United States to Indian Tribes, and is recognized as possessing and exercising powers of self- government. Mission The overall objective of the Tribe is to improve the economic and social quality of life for Tribal members and adjacent communities, and to secure the rights, powers and privileges common to a sovereign entity of government. The

  20. Working With Municipal Utilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    With Municipal Utilities Working With Municipal Utilities Better Buildings Residential Network Program Sustainability / Working with Utilities Peer Exchange Call: Working with Smaller Municipal Utilities, Call Slides and Summary, June 27, 2013. Call Slides and Summary (490.27 KB) More Documents & Publications Better Buildings Working with Utilities Peer Exchange Call: Kick-off Transitioning to a Utility Funded Program Environment: What Do I Need to Know? Tracking and Using Data to Support

  1. Shawano Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Place: Wisconsin Phone Number: 715-526-3131 Website: www.shawano.tv Facebook: https:www.facebook.compagesShawano-Municipal-Utilities156410777732483 Outage...

  2. Municipalities and Renewable Energy Opportunities | Open Energy...

    Open Energy Info (EERE)

    Municipalities and Renewable Energy Opportunities Jump to: navigation, search BUILDING COMMUNITIES WITH RENEWABLE ENERGY --Rsiegent 20:06, 20 January 2010 (UTC) BC communities and...

  3. Denton Municipal Electric- Standard Offer Rebate Program

    Broader source: Energy.gov [DOE]

    Within the GreenSense program, Denton Municipal Electric's Standard Offer Program provides rebates to large commercial and industrial customers for lighting retrofits, HVAC upgrades and motor...

  4. Reading Municipal Light Department - Business Lighting Rebate...

    Broader source: Energy.gov (indexed) [DOE]

    with Electronic Ballasts: 100fixture De-lamping: 4 - 9lamp Lighting Sensors: 20sensor LED Exit Signs: 20fixture Summary Reading Municipal Light Department (RMLD) offers...

  5. Canton Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Facebook: https:www.facebook.compagesCanton-Municipal-Utilities332942860232523?refhl Outage Hotline: 601.859.2474 References: EIA Form EIA-861 Final Data File for 2010 -...

  6. Municipal Consortium LED Street Lighting Workshop Presentations...

    Broader source: Energy.gov (indexed) [DOE]

    Workshop Agenda DOE Municipal Solid-State Street Lighting Consortium James Brodrick, U.S. Department of Energy Boston's LED Street Lighting Initiative Joanne Massaro, Glenn Cooper, ...

  7. Indianola Municipal Utilities- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Indianola Municipal Utilities offers a number of energy efficiency rebates to residential, commercial and industrial customers. The program provides rebates for commercial lighting, central air...

  8. Marblehead Municipal Light Department - Residential Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and additional program requirements can be found in the rebate guide located on the program web site. Contact Marblehead Municipal Light Department for more details on this...

  9. Mora Municipal Utilities - Commercial & Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Mora Municipal Utilities Website http:www.SaveEnergyInMora.com State Minnesota Program...

  10. Municipal Consortium Annual Meeting Presentations and Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Meeting Presentations and Materials-Phoenix, AZ Municipal Consortium Annual Meeting Presentations and Materials-Phoenix, AZ This page provides links to presentations and ...

  11. Watertown Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Place: South Dakota Phone Number: (605)882-6233 Website: watertownmu.com Twitter: @watertownmu Facebook: https:www.facebook.compagesWatertown-Municipal-Utiliti...

  12. Wyandotte Municipal Serv Comm | Open Energy Information

    Open Energy Info (EERE)

    Municipal Serv Comm Place: Michigan Phone Number: 734.324.7190 Website: www.wyan.org Twitter: @wyandottemunsvs Facebook: https:www.facebook.comwyandottemunicipalservices...

  13. Tipton Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    Electric Util Jump to: navigation, search Name: Tipton Municipal Electric Util Address: P.O. Box 288 Place: Tipton, Indiana Zip: 46072 Service Territory: Indiana Phone Number:...

  14. CX-008902: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma-Tribe-Wyandotte Nation of Oklahoma CX(s) Applied: B2.5, B5.1 Date: 08/14/2012 Location(s): Oklahoma Offices(s): Energy Efficiency and Renewable Energy

  15. CX-006428: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oklahoma-Tribe-Muscogee (Creek) Nation, OklahomaCX(s) Applied: A9, A11, B2.5, B5.1Date: 05/11/2011Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy

  16. CX-002080: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma-Tribe-Absentee-Shawnee Tribe of Indians of OklahomaCX(s) Applied: B2.5, B5.1Date: 04/13/2010Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy

  17. Optical losses of solar mirrors due to atmospheric contamination at Liberal, Kansas and Oologah, Oklahoma

    SciTech Connect (OSTI)

    Dake, L.S.; Lind, M.A.

    1981-09-01

    An assessment is presented of the effect of outdoor exposure on mirrors located at two sites selected for potential solar cogeneration/repowering facilities: Liberal, Kansas and Oologah, Oklahoma. Mirror coupons were placed on tracking heliostat simulators located in the proposed heliostat fields and were removed periodically. The spectral hemispherical and diffuse reflectances of these coupons were measured. Representative samples were analyzed for the chemical composition of the dust particulates using SEM/EDX. Other samples were washed with a high pressure spray and recharacterized to determine the effects of the residual dust. Average specular reflectance losses over the entire test period (up to 504 days) were 6 to 12%, with a range of 1 to 30%. Specular reflectance losses varied widely from day to day depending on local weather conditions. The losses due to scattering were 2 to 5 times greater than the losses due to absorptance. The average degradation rate over the first thirty days was an order of magnitude larger than the average degradation rate over the entire sampling period. Specular reflectance loss rates averaged 0.5% per day and greater between periods of natural cleaning. The chemical composition of the dust on the mirrors was characteristic of the indigenous soil, with some samples also showing the presence of sulfur and chlorine, possibly from cooling tower drift.

  18. Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Estimated Production (Billion Cubic Feet) Oklahoma Dry Natural Gas Reserves Estimated Production (Billion Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 1,691 1,667 1,592 1980's 1,526 1,700 1,636 1,544 1,778 1,686 1,658 1,813 1,896 1,983 1990's 2,058 1,983 1,895 1,770 1,721 1,562 1,580 1,555 1,544 1,308 2000's 1,473 1,481 1,518 1,554 1,563 1,587 1,601 1,659 1,775 1,790 2010's 1,703 1,697 1,763 1,890 2,123 - = No Data Reported; -- = Not Applicable;

  19. Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 1.65 1970's 0.18 0.18 0.19 0.22 0.26 0.27 0.36 0.58 0.66 0.99 1980's 1.45 1.83 2.53 2.75 2.71 2.48 2.30 2.06 2.10 1.83 1990's 1.85 1.62 1.79 1.72 1.64 1.36 2.12 2.34 1.90 2.04 2000's 3.49 3.21 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA

  20. Oklahoma Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,040 1,037 1,038 1,039 1,041 1,043 1,044 1,042 1,042 1,044 1,043 1,042 2014 1,036 1,036 1,039 1,037 1,040 1,043 1,042 1,042 1,044 1,043 1,041 1,041 2015 1,042 1,043 1,044 1,045 1,048 1,049 1,050 1,047 1,049 1,049 1,047 1,050 2016 1,049 1,047 1,048 1,044 1,047 1,046

    % of Total Residential Deliveries (Percent) Oklahoma Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  1. EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA

    SciTech Connect (OSTI)

    Mohan Kelkar

    2005-02-01

    Hunton formation in Oklahoma has displayed some unique production characteristics. These include high initial water-oil and gas-oil ratios, decline in those ratios over time and temporary increase in gas-oil ratio during pressure build up. The formation also displays highly complex geology, but surprising hydrodynamic continuity. This report addresses three key issues related specifically to West Carney Hunton field and, in general, to any other Hunton formation exhibiting similar behavior: (1) What is the primary mechanism by which oil and gas is produced from the field? (2) How can the knowledge gained from studying the existing fields can be extended to other fields which have the potential to produce? (3) What can be done to improve the performance of this reservoir? We have developed a comprehensive model to explain the behavior of the reservoir. By using available production, geological, core and log data, we are able to develop a reservoir model which explains the production behavior in the reservoir. Using easily available information, such as log data, we have established the parameters needed for a field to be economically successful. We provide guidelines in terms of what to look for in a new field and how to develop it. Finally, through laboratory experiments, we show that surfactants can be used to improve the hydrocarbons recovery from the field. In addition, injection of CO{sub 2} or natural gas also will help us recover additional oil from the field.

  2. Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.14 0.15 1970's 0.16 0.16 0.16 0.19 0.28 0.32 0.50 0.79 0.90 1.12 1980's 1.51 1.88 2.74 2.83 2.72 2.47 1.71 1.47 1.55 1.59 1990's 1.57 1.47 1.70 1.88 1.70 1.44 2.21 2.32 1.77 2.05 2000's 3.63 4.03 2.94 4.97 5.52 7.21 6.32 6.24 7.56 3.53 2010's 4.71 - = No Data Reported; -- = Not Applicable;

  3. Draft Transcript on Municipal PV Systems

    Broader source: Energy.gov [DOE]

    Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

  4. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determinants of Household Use of Selected Energy Star Appliances May 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Determinants of Household Use of Selected Energy Star Appliances i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  5. Sacramento Municipal Utility District Solar Array | Open Energy...

    Open Energy Info (EERE)

    Municipal Utility District Solar Array Sector Solar Facility Type Ground-mounted fixed tilt Owner EnXco Developer EnXco Energy Purchaser Sacramento Municipal Utility District...

  6. Stuart Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stuart Municipal Utilities Energy Purchaser Stuart Municipal Utilities Location Stuart IA Coordinates 41.493988, -94.327403 Show Map Loading map... "minzoom":false,"mappings...

  7. Lenox Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Lenox Municipal Utilities Energy Purchaser Lenox Municipal Utilities Location Lenox IA Coordinates 40.880592, -94.559029 Show Map Loading map... "minzoom":false,"mappings...

  8. Wall Lake Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Municipal Utilities Energy Purchaser Wall Lake Municipal Utilities Location Wall Lake IA Coordinates 42.281965, -95.094098 Show Map Loading map... "minzoom":false,"mappings...

  9. Energy Department Works with Sacramento Municipal Utility District...

    Energy Savers [EERE]

    EERE Investment More than 5 million Location Sacramento, California Partners Sacramento Municipal Utility District California Energy Commission The Sacramento Municipal Utility ...

  10. Text-Alternative Version: Municipal Solid-State Street Lighting...

    Energy Savers [EERE]

    Text-Alternative Version: Municipal Solid-State Street Lighting Consortium Kickoff Below is the text-alternative version of the Municipal Solid-State Street Lighting Consortium ...

  11. Cap May County Municipal Utilities Authority | Open Energy Information

    Open Energy Info (EERE)

    Cap May County Municipal Utilities Authority Jump to: navigation, search Name: Cap May County Municipal Utilities Authority Place: Cape May Court House, New Jersey Zip: 8210...

  12. Valley Center Municipal Water District | Open Energy Information

    Open Energy Info (EERE)

    Valley Center Municipal Water District Jump to: navigation, search Name: Valley Center Municipal Water District Place: Valley Center, California Zip: 92082 Product: VCMWD is the...

  13. Ouray Municipal Pool Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Municipal Pool Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Ouray Municipal Pool Space Heating Low Temperature Geothermal Facility Facility...

  14. Saint Peter Municipal Utilities- Commercial & Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    With help from the Southern Minnesota Municipal Power Agency (SMMPA), Saint Peter Municipal Utilities provides incentives for its commercial and industrial customers to improve the energy...

  15. Municipal Energy Agency of MS | Open Energy Information

    Open Energy Info (EERE)

    Name: Municipal Energy Agency of MS Place: Mississippi Phone Number: (601) 362-2252 Facebook: https:www.facebook.compagesMunicipal-Energy-Agency-of-Mississippi Outage...

  16. Business Case for Compressed Natural Gas in Municipal Fleets...

    Open Energy Info (EERE)

    Business Case for Compressed Natural Gas in Municipal Fleets Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Business Case for Compressed Natural Gas in Municipal Fleets...

  17. New Castle Municipal Serv Comm | Open Energy Information

    Open Energy Info (EERE)

    Municipal Serv Comm Jump to: navigation, search Name: New Castle Municipal Serv Comm Place: Delaware Phone Number: 302-323-2333 Website: www.newcastlemsc.comindex.php Outage...

  18. Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm I...

    Open Energy Info (EERE)

    I Jump to: navigation, search Name Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm I Facility Southern Minnesota Municipal Power Agency (SMMPA) Sector Wind energy...

  19. Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm Ii...

    Open Energy Info (EERE)

    Ii Jump to: navigation, search Name Southern Minnesota Municipal Power Agency (SMMPA) Wind Farm Ii Facility Southern Minnesota Municipal Power Agency (SMMPA) Sector Wind energy...

  20. Project Profile: The Sacramento Municipal Utility District Consumnes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar ...

  1. Design Case Summary: Production of Mixed Alcohols from Municipal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via Gasification Design Case Summary: Production of Mixed Alcohols from Municipal Solid Waste via ...

  2. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...

    Office of Environmental Management (EM)

    Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is a domestic energy resource with the ...

  3. Saint Peter Municipal Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    With help from Southern Minnesota Municipal Power Agency (SMMPA), Saint Peter Municipal Utilities provides incentives for its residential and commercial customers to improve the energy efficiency...

  4. Municipal Electric Authority | Open Energy Information

    Open Energy Info (EERE)

    Electric Authority Jump to: navigation, search Name: Municipal Electric Authority Place: Georgia Phone Number: 1-800-333-MEAG; 770-563-0300 Website: www.meagpower.org Twitter:...

  5. Atlantic Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Place: Iowa Phone Number: 712-243-1395 Website: www.a-m-u.net Twitter: @AMUAtlantic Facebook: https:www.facebook.comAtlanticMunicipalUtilities Outage Hotline: 712-243-1395...

  6. New London Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Jump to: navigation, search Name: New London Municipal Utilities Place: Iowa References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility...

  7. The Potential Economic Impact of Electricity Restructuring in the State of Oklahoma: Phase I Report

    SciTech Connect (OSTI)

    Hadley, SW

    2001-03-27

    Because of the recent experiences of several states undergoing restructuring (e.g., higher prices, greater volatility, lower reliability), concerns have been raised in states currently considering restructuring as to whether their systems are equally vulnerable. Factors such as local generation costs, transmission constraints, market concentration, and market design can all play a role in the success or failure of the market. These factors along with the mix of generation capacity supplying the state will influence the relative prices paid by consumers. The purpose of this project is to provide a model and process to evaluate the potential price and economic impacts of restructuring the Oklahoma electric industry. This Phase I report concentrates on providing an analysis of the Oklahoma system in the near-term, using only present generation resources and customer demands. In Phase II, a longer-term analysis will be conducted, incorporating the potential of new generation resources and customer responses. Oak Ridge National Laboratory (ORNL) has developed the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate marginal-cost-based and regulated prices for the state. The model dispatches the state's power plants to meet the demands from all customers based on the marginal cost of production. Consequent market-clearing prices for each hour of the year are applied to customers' demands to determine the average prices paid. The revenues from the sales are paid to each plant for their generation, resulting in a net profit or loss depending on the plant's costs and prices when it operates. Separately, the model calculates the total cost of generation, including fixed costs such as depreciation, interest and required return on equity. These costs are allocated among the customer classes to establish regulated prices for each class. These prices can be compared to the average market-based prices to see if prices increase or decrease with restructuring. An

  8. U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Oklahoma

  9. RES Oklahoma 2016: Office of Indian Energy Session on Tribal Energy: Strategic Roadmap 2025

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Office of Indian Energy will be hosting a session entitled “Tribal Energy: Strategic Roadmap 2025” at the Reservation Economic Summit (RES) taking place in Tulsa, Oklahoma, July 11–14.

  10. Categorical Exclusion Determinations: Southwestern Power Administration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Southwestern Power Administration Categorical Exclusion Determinations: Southwestern Power Administration Categorical Exclusion Determinations issued by Southwestern Power Administration. DOCUMENTS AVAILABLE FOR DOWNLOAD March 3, 2016 CX-014714: Categorical Exclusion Determination Chimney Hill Solar Project Interconnection with PEC and Interface with the SWPA Tupelo Switchyard CX(s) Applied: A9 Date: 03/03/2016 Location(s): Oklahoma Offices(s): Southwestern Power

  11. Summary of Interim Policy on CERCLA Settlements Involving Municipalities and Municipal Wastes. Fact sheet

    SciTech Connect (OSTI)

    Not Available

    1991-05-01

    The Fact Sheet addresses a consistent agency-wide approach for addressing municipalities and municipal wastes in the Superfund settlement process. The policy also addresses settlements with private generators and transporters of hazardous waste trash derived from a commercial, institutional, or industrial process or activity.

  12. Whole-building Design Increases Energy Efficiency in a Mixed-Humid Climate: Ideal Homes - Norman, Oklahoma

    SciTech Connect (OSTI)

    2001-06-01

    New houses designed by Ideal Homes, with technical support from the U.S. Department of Energy's Building America Program, save their homeowners money by applying the principles of "whole-building" design. The homes are in Norman, Oklahoma.

  13. Sam Rayburn Municipal Pwr Agny | Open Energy Information

    Open Energy Info (EERE)

    Municipal Pwr Agny Jump to: navigation, search Name: Sam Rayburn Municipal Pwr Agny Place: Texas Phone Number: 936-336-3684 or 936-336-5666 Website: www.cityofliberty.orgGOVERNME...

  14. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...

    Office of Environmental Management (EM)

    Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 2: A Techno-economic ... Municipal solid waste (MSW) on the other hand is readily available in large quantities in ...

  15. CX-100193 Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-100193 Categorical Exclusion Determination Installation of Solar Panels at Municipal Owned Facilities Award Number: DE-EE0003195 CX(s) Applied: B5.1...

  16. A study of the Oklahoma City urban heat island using ground measurements and remote sensing

    SciTech Connect (OSTI)

    Brown, M. J.; Ivey, A.; McPherson, T. N.; Boswell, D.; Pardyjak, E. R.

    2004-01-01

    Measurements of temperature and position were collected during the night from an instrumented van on routes through Oklahoma City and the rural outskirts. The measurements were taken as part of the Joint URBAN 2003 Tracer Field Experiment conducted in Oklahoma City from June 29, 2003 to July 30, 2003 (Allwine et al., 2004). The instrumented van was driven over four primary routes that included legs from the downtown core to four different 'rural' areas. Each route went through residential areas and most often went by a line of permanently fixed temperature probes (Allwine et al., 2004) for cross-checking purposes. Each route took from 20 to 40 minutes to complete. Based on seven nights of data, initial analyses indicate that there was a temperature difference of 0.5-6.5 C between the urban core and nearby 'rural' areas. Analyses also suggest that there were significant fine scale temperature differences over distances of tens of meters within the city and in the nearby rural areas. The temperature measurements that were collected are intended to supplement the meteorological measurements taken during the Joint URBAN 2003 Field Experiment, to assess the importance of the urban heat island phenomenon in Oklahoma City, and to test new urban canopy parameterizations that have been developed for regional scale meteorological codes (e.g., Chin et al., 2000; Holt and Shi, 2004). In addition to the ground measurements, skin temperature measurements were also analyzed from remotely sensed images taken from the Earth Observing System's Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). A surface kinetic temperature thermal infrared image captured by the ASTER of the Oklahoma City area on July 21, 2001 was analyzed within ESRI's ArcGIS 8.3 to correlate variations in temperature with land use type. Analysis of this imagery suggests distinct variations in temperature across different land use categories. Through the use of remotely sensed imagery we hope to

  17. Workplace Charging Challenge: Sample Municipal Workplace Charging Agreement

    Broader source: Energy.gov [DOE]

    Review the agreement proposed by one municipality to register PEV drivers and inform staff of charging policy.

  18. ENHANCED OIL RECOVERY WITH DOWNHOLE VIBRATION STIMULATION IN OSAGE COUNTY OKLAHOMA

    SciTech Connect (OSTI)

    Robert Westermark; J. Ford Brett

    2003-11-01

    This Final Report covers the entire project from July 13, 2000 to June 30, 2003. The report summarizes the details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma'' under DOE Contract Number DE-FG26-00BC15191. The project was divided into nine separate tasks. This report is written in an effort to document the lessons learned during the completion of each task. Therefore each task will be discussed as the work evolved for that task throughout the duration of the project. Most of the tasks are being worked on simultaneously, but certain tasks were dependent on earlier tasks being completed. During the three years of project activities, twelve quarterly technical reports were submitted for the project. Many individual topic and task specific reports were included as appendices in the quarterly reports. Ten of these reports have been included as appendices to this final report. Two technical papers, which were written and accepted by the Society of Petroleum Engineers, have also been included as appendices. The three primary goals of the project were to build a downhole vibration tool (DHVT) to be installed in seven inch casing, conduct a field test of vibration stimulation in a mature waterflooded field and evaluate the effects of the vibration on both the produced fluid characteristics and injection well performance. The field test results are as follows: In Phase I of the field test the DHVT performed exceeding well, generating strong clean signals on command and as designed. During this phase Lawrence Berkeley National Laboratory had installed downhole geophones and hydrophones to monitor the signal generated by the downhole vibrator. The signals recorded were strong and clear. Phase II was planned to be ninety-day reservoir stimulation field test. This portion of the field tests was abruptly ended after one week of operations, when the DHVT became stuck in the well during a routine

  19. Interior Lighting Efficiency for Municipalities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interior Lighting Efficiency for Municipalities Interior Lighting Efficiency for Municipalities This webinar covered a basic understanding of lighting, different types of lamps and luminaries, importance of energy efficiency in lighting, and knowledge of where to find financial resources. Presentation (3.14 MB) Transcript (95 KB) More Documents & Publications interiorlightingefficiencyformunicipalities.doc Exterior Solid-State Lighting Solutions for Municipalities States & Emerging

  20. Agricultural, industrial and municipal waste management

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    It is right that consideration of the environment is of prime importance when agricultural and industrial processes are being developed. This book compiles the papers presented at the Institution of Mechanical Engineers conference. The contents include: The use of wastes for land reclamation and restoration; landfill, an environmentally acceptable method of waste disposal and an economic source of energy; control of leachate from waste disposal landfill sites using bentonite; landfill gas migration from operational landfill sites, monitoring and prevention; monitoring of emissions from hazardous waste incineration; hazardous wastes management in Hong Kong, a summary of a report and recommendations; the techniques and problems of chemical analysis of waste waters and leachate from waste tips; a small scale waste burning combustor; energy recovery from municipal waste by incineration; anaerobic treatment of industrial waste; a review of developments in the acid hydrolysis of cellulosic wastes; reduction of slag deposits by magnesium hydroxide injection; integrated rural energy centres (for agriculture-based economies); resource recovery; straw as a fuel in the UK; the computer as a tool for predicting the financial implications of future municipal waste disposal and recycling projects; solid wastes as a cement kiln fuel; monitoring and control of landfill gas; the utilization of waste derived fuels; the economics of energy recovery from municipal and industrial wastes; the development and construction of a municipal waste reclamation plant by a local authority.

  1. Categorical Exclusion (CX) Determinations By State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Categorical Exclusion (CX) Determinations By State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington

  2. Producing usable fuel from municipal solid waste

    SciTech Connect (OSTI)

    Ohlsson, O.O.

    1995-03-01

    Refuse disposal is a matter of increasing concern for municipalities and state governments. As existing land-fills become filled to capacity, and new landfills become more costly to site, it has become critical to develop alternative disposal methods. Some of the refuse that is presently being landfilled has the potential to provide considerable quantities of energy and thereby replace conventional fossil fuels. Another environmental concern is the problem of the emissions associated with combustion of traditional fossil fuels. The Clean Air Act Amendments of 1990 significantly restrict the level of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions permissible as effluent from combustion facilities. To address both of these concerns, Argonne National Laboratory, under sponsorship of the U.S. Department of Energy (DOE), has developed a means of producing fuel from municipal solid waste that can be co-fired with coal to supplement coal supplies and reduce problematic emissions.

  3. Energy utilization: municipal waste incineration. Final report

    SciTech Connect (OSTI)

    LaBeck, M.F.

    1981-03-27

    An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process and facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.

  4. Small Wind Electric Systems: An Oklahoma Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  5. CX-004138: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma-Tribe-Osage NationCX(s) Applied: A9, A11, B5.1Date: 10/01/2010Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy

  6. CX-007902: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    AASG State Geological Survey Contributions to the National Geothermal Data System- Oklahoma CX(s) Applied: B3.1, B3.6 Date: 02/10/2012 Location(s): Oklahoma, Arizona Offices(s): Golden Field Office

  7. CX-003602: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    University of Oklahoma Center for Biomass RefiningCX(s) Applied: B3.6, B3.11Date: 08/24/2010Location(s): Norman, OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  8. CX-006849: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    gridSMART - Public Service Company of OklahomaCX(s) Applied: B5.1Date: 09/16/2011Location(s): Tulsa; Burns Flat, OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  9. CX-004617: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cheyenne and Arapaho Tribes of Oklahoma - Energy Efficiency RetrofitsCX(s) Applied: B2.5, B5.1Date: 09/24/2009Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy

  10. CX-004234: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma-Tribe-Comanche NationCX(s) Applied: A9, A11, B5.1Date: 10/15/2010Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy

  11. CX-004559: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma-Tribe-Cheyenne and Arapaho TribesCX(s) Applied: A9, A11, B2.5, B5.1Date: 11/29/2010Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy

  12. CX-004336: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oklahoma-Tribe-Muscogee (Creek) NationCX(s) Applied: A9, A11, B2.5, B5.1Date: 10/26/2010Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy

  13. CX-002082: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma-Tribal Energy Program-Chickasaw NationCX(s) Applied: A9, B2.5, B5.1Date: 04/13/2010Location(s): Chickasaw, OklahomaOffice(s): Energy Efficiency and Renewable Energy

  14. CX-008426: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma-Tribe-Delaware Nation CX(s) Applied: A1, B2.5, B5.1 Date: 06/08/2012 Location(s): Oklahoma Offices(s): Energy Efficiency and Renewable Energy

  15. CX-004618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eastern Shawnee Tribe of Oklahoma - Residential and Commercial Building Energy AuditsCX(s) Applied: A9, B5.1Date: 01/11/2010Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy

  16. CX-004361: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oklahoma-Tribe-Muscogee (Creek) NationCX(s) Applied: A9, A11, B2.5, B5.1Date: 11/01/2010Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy

  17. CX-000620: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    gridSMART - Public Service Company of OklahomaCX(s) Applied: B5.1Date: 01/20/2010Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  18. CX-008564: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oklahoma State Energy Program Annual Program Year 2012 CX(s) Applied: A9, A11 Date: 06/28/2012 Location(s): Oklahoma Offices(s): Golden Field Office

  19. CX-005291: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma-County-CreekCX(s) Applied: B2.5, B5.1Date: 02/09/2011Location(s): Creek County, OklahomaOffice(s): Energy Efficiency and Renewable Energy

  20. CX-004997: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma-Tribe-Chickasaw NationCX(s) Applied: B2.5, B5.1Date: 01/11/2011Location(s): Chickasaw, OklahomaOffice(s): Energy Efficiency and Renewable Energy

  1. CX-002652: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Absentee-Shawnee Tribe of Indians of OklahomaCX(s) Applied: B2.5, B5.1Date: 05/26/2010Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy

  2. GE launches 'STEM empowers OK' initiative in Oklahoma City | GE Global

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research GE, OCAST and OSSM Partner to Launch "STEM Empowers OK" Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE, OCAST and OSSM Partner to Launch "STEM Empowers OK" stem empowers ok GE Foundation donates $400,000 to enhance STEM education initiatives across Oklahoma STEM Empowers OK to

  3. ,"Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Coalbed Methane Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Coalbed Methane Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  4. ,"Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)"

    U.S. Energy Information Administration (EIA) Indexed Site

    + Lease Condensate Proved Reserves (Million Barrels)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Crude Oil + Lease Condensate Proved Reserves (Million Barrels)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  5. ,"Oklahoma Natural Gas Gross Withdrawals and Production"

    U.S. Energy Information Administration (EIA) Indexed Site

    and Production" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Gross Withdrawals and Production",10,"Monthly","6/2016","01/15/1989" ,"Release Date:","08/31/2016" ,"Next Release Date:","09/30/2016" ,"Excel File

  6. ,"Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Wellhead Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Wellhead Price (Dollars per Thousand Cubic Feet)",1,"Annual",2010 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  7. ,"Oklahoma Shale Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Shale Proved Reserves (Billion Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Shale Proved Reserves (Billion Cubic Feet)",1,"Annual",2014 ,"Release Date:","11/19/2015" ,"Next Release Date:","12/31/2016" ,"Excel File

  8. Enhanced Oil Recovery with Downhole Vibrations Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2001-09-30

    This Technical Quarterly Report is for the reporting period July 1, 2001 to September 30, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well is permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has begun analyzing the cores recovered from the test well. Standard porosity, permeability and saturation measurements will be conducted. They will then begin the sonic stimulation core tests Calumet Oil Company, the operator of the NBU, has begun to collect both production and injection wells information to establish a baseline for the project in the pilot field test area. Green Country Submersible Pump Company, a subsidiary of Calumet Oil Company, will provide both the surface equipment and downhole tools to allow the Downhole Vibration Tool to be operated by a surface rod rotating system. The 7-inch Downhole Vibration Tool (DHVT) has been built and is ready for initial shallow testing. The shallow testing will be done in a temporarily abandoned well operated by Calumet Oil Co. in the Wynona waterflood unit. The data acquisition doghouse and rod rotating equipment have been placed on location in anticipation of the shallow test in Well No.20-12 Wynona Waterflood Unit. A notice of invention disclosure was submitted to the DOE Chicago Operations Office. DOE Case No.S-98,124 has been assigned to follow the documentation following the invention disclosure. A paper covering the material presented to the Oklahoma Geologic Survey (OGS)/DOE Annual Workshop in

  9. Oklahoma Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional",851,851,851,854,858 "Solar","-","-","-","-","-" "Wind",594,689,708,1130,1480 "Wood/Wood Waste",63,63,63,58,58 "MSW/Landfill Gas",16,16,16,16,16 "Other

  10. Oklahoma Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma" "Energy Source",2006,2007,2008,2009,2010 "Fossil",18301,18083,18364,18532,18350 " Coal",5372,5364,5302,5330,5330 " Petroleum",75,70,71,71,69 " Natural Gas",12854,12649,12985,13125,12951 " Other Gases","-","-",6,6,"-" "Nuclear","-","-","-","-","-" "Renewables",1524,1618,1637,2057,2412 "Pumped

  11. Oklahoma Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IRC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-06-15

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Oklahoma homeowners. Moving to the 2012 IECC from Chapter 11 of the 2009 International Residential Code (IRC) is cost effective over a 30-year life cycle. On average, Oklahoma homeowners will save $5,786 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $408 for the 2012 IECC.

  12. Municipal solid waste combustion: Fuel testing and characterization

    SciTech Connect (OSTI)

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  13. Connected Outdoor Lighting Systems For Municipalities | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Outdoor Lighting Systems For Municipalities Connected Outdoor Lighting Systems For Municipalities This webinar is intended for municipal staff who have had some introduction to connected outdoor lighting systems, and want to further explore whether today's commercially available offerings suit their needs. Presented by Michael Poplawski of Pacific Northwest National Laboratory, the webinar covers basic capabilities, key differentiators between systems, and common adoption issues - as

  14. Project Profile: The Sacramento Municipal Utility District Consumnes Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Solar Augmentation Project | Department of Energy The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project SMUD Logo -- This project is inactive -- The Sacramento Municipal Utility District (SMUD), under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program, is demonstrating a hybrid CSP

  15. 2010 Municipal Consortium Southwest Region Workshop Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 0 Municipal Consortium Southwest Region Workshop Materials 2010 Municipal Consortium Southwest Region Workshop Materials This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Southwest Region Workshop, held in Los Angeles on September 30, 2010. Presentations City of Los Angeles: LED Roadway Luminaire Specifications Ed Ebrahimian and Orlando Nova, City of Los Angeles Southwest Regional Workshop: Cost Savings and Finance

  16. Municipal Consortium LED Street Lighting Workshop Presentations and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials-Boston, MA | Department of Energy Boston, MA Municipal Consortium LED Street Lighting Workshop Presentations and Materials-Boston, MA This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Workshop held in Boston August 2-3, 2012. Workshop Agenda DOE Municipal Solid-State Street Lighting Consortium James Brodrick, U.S. Department of Energy Boston's LED Street Lighting Initiative Joanne Massaro, Glenn Cooper, Matthew Mayrl,

  17. Municipal Solid-State Street Lighting Consortium Kickoff Webcast |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Webcasts » Municipal Solid-State Street Lighting Consortium Kickoff Webcast Municipal Solid-State Street Lighting Consortium Kickoff Webcast This May 6, 2010 webcast served as the first official meeting of the new DOE Municipal Solid-State Street Lighting Consortium. Ed Smalley of Seattle City Light and Bruce Kinzey of Pacific Northwest National Laboratory discussed the Consortium's mission and goals, and provided an overview of its first steps, and opportunities to

  18. CX-006176: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Department of Career and Technology EducationCX(s) Applied: B5.1Date: 06/17/2011Location(s): Frederick, OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  19. CX-001566: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Efficiency and Conservation Block Grant City of Oklahoma City Statement of Work TemplateCX(s) Applied: A9, A11, B5.1Date: 03/31/2010Location(s): Oklahoma City, OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  20. CX-003655: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma - Tribe - Cherokee Nation, OklahomaCX(s) Applied: A1, A9, A11, B1.15, B2.5, B4.12, B5.1Date: 09/03/2010Location(s): OklahomaOffice(s): Energy Efficiency and Renewable Energy

  1. CX-002044: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Efficiency and Conservation Block Grant City of Oklahoma City Statement of Work TemplateCX(s) Applied: A9, A11, B5.1Date: 03/31/2010Location(s): Oklahoma City, OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  2. CX-001096: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Oklahoma State Energy Office Energy Efficiency and Conservation Block Grant National Environmental Policy Act Template (T)CX(s) Applied: A9, A11, B5.1Date: 02/19/2010Location(s): Oklahoma, OklahomaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  3. Shanghai Municipal Electric Power Company SMEPC | Open Energy...

    Open Energy Info (EERE)

    Shanghai Municipal Electric Power Company is a large enterprise engaging in Shanghai electric power transmission, distribution and sales. Coordinates: 31.247709,...

  4. Central Minnesota Municipal Power Agency | Open Energy Information

    Open Energy Info (EERE)

    Power Agency Place: Minnesota Phone Number: 507-526-2193 Website: www.cmmpa.org Facebook: https:www.facebook.compagesCentral-Minnesota-Municipal-Power-Agency-CMMPA...

  5. State Clean Energy Policies Analysis: State, Utility, and Municipal...

    Open Energy Info (EERE)

    Utility, and Municipal Loan Programs AgencyCompany Organization National Renewable Energy Laboratory Partner Eric Lantz Focus Area People and Policy, Renewable Energy Phase...

  6. Standards for Municipal Small Wind Regulations and Model Ordinance

    Office of Energy Efficiency and Renewable Energy (EERE)

    In July 2008, New Hampshire enacted legislation designed to prevent municipalities from adopting ordinances or regulations that place unreasonable limits on or hinder the performance of wind energy...

  7. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - February 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  8. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - June 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  9. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - March 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  10. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - April 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  11. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - January 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  12. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - August 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  13. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - July 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  14. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - May 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  15. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    October 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage Municipal Light and Power for October 2008. Monthly Electric Utility...

  16. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - March 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  17. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - December 2008 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  18. Business Case for CNG in Municipal Fleets (Presentation)

    SciTech Connect (OSTI)

    Johnson, C.

    2010-07-27

    Presentation about compressed natural gas in municipal fleets, assessing investment profitability, the VICE model, base-case scenarios, and pressing questions for fleet owners.

  19. Taunton Municipal Lighting Plant- Residential Energy Star Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Residential customers of Taunton Municipal Lighting Plant (TMLP) are eligible for rebates on energy efficient appliances. Clothes washers, dishwashers, refrigerators, and room A/C units are...

  20. Alameda Municipal Power- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Alameda Municipal Power offers financial incentives for its commercial customers to install a range of energy efficient equipment and measures. HVAC rebates include efficient variable frequency...

  1. Alameda Municipal Power- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Alameda Municipal Power (AMP) is currently offering a refrigerator recycling program through which customers can purchase a refrigerator that has the "Energy Star" label (refrigerators smaller than...

  2. Municipal Bond - Power Purchase Agreement Model Continues to...

    Broader source: Energy.gov (indexed) [DOE]

    power purchase agreement model to provide low-cost solar energy. Author: National Renewable Energy Laboratory Municipal Bond - Power Purchase Agreement Model Continues to Provide...

  3. Guide to Clean Development Mechanism Projects Related to Municipal...

    Open Energy Info (EERE)

    Guide to Clean Development Mechanism Projects Related to Municipal Solid Waste Management Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Guide to Clean Development...

  4. Municipal Utilities' Investment in Smart Grid Technologies Improves...

    Office of Environmental Management (EM)

    Three municipal utilities that received funding through the Recovery Act Smart Grid Investment Grant program are featured in this report. Burbank, California; Glendale, California; ...

  5. Concord Municipal Light Plant- Commercial Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Concord Municipal Light Plant (CMLP) offers rebates to commercial customers for installing energy efficient lighting. General lighting upgrades to facilities are eligible for a 50% rebate worth up...

  6. Text-Alternative Version: Municipal Solid-State Street Lighting...

    Energy Savers [EERE]

    Street Lighting Consortium Retrofit Financial Analysis Tool Webcast Below is the text-alternative version of the "Municipal Solid-State Street Lighting Consortium ...

  7. Concord Municipal Light Plant- Residential Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Concord Municipal Light Plant (CMLP) offers residential customers rebates on home weatherization, air conditioning system upgrades, and the purchase of LED bulbs.

  8. Lassen Municipal Utility District- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lassen Municipal Utility District (LMUD) offers an incentive for residential customers who purchase and install energy efficient equipment. Contact LMUD for information regarding which local...

  9. About the DOE Municipal Solid-State Street Lighting Consortium...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    their unfamiliarity with the various characteristics of LEDs that are relevant to their performance. The Municipal Solid-State Street Lighting Consortium represents a ...

  10. Alameda Municipal Power- Residential Energy Efficiency Grant Program

    Broader source: Energy.gov [DOE]

    Alameda Municipal Power (AMP) offers a grant to help residential customerswith electricheat weatherize their homes. To participate in the weatherization program, customers must complete and send...

  11. NOVEL MEMBRANES AND SYSTEMS FOR INDUSTRIAL AND MUNICIPAL WATER...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A smooth resin deposition technology will be developed for reverse osmosis membranes used in water treatment and industrial and municipal wastewater reuse. Thin films of the resin ...

  12. Hercules Municipal Utility- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Hercules Municipal Utility provides financial incentives for its residential members to increase the energy efficiency of participating homes. Rebates are offered for a variety of home appliances...

  13. Municipal Energy Agency of NE | Open Energy Information

    Open Energy Info (EERE)

    https:www.facebook.compagesNebraska-Municipal-Power-Pool198598933540030?skwall Outage Hotline: (800) 234-2595 References: EIA Form EIA-861 Final Data File for 2010 -...

  14. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage Municipal Light and Power for February 2009. Monthly Electric Utility Sales and Revenue Data Short...

  15. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage Municipal Light and Power for November 2008. Monthly Electric Utility Sales and Revenue Data Short...

  16. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    Anchorage Municipal Light and Power (Alaska) EIA Revenue and Sales - January 2009 Jump to: navigation, search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage...

  17. Anchorage Municipal Light and Power (Alaska) EIA Revenue and...

    Open Energy Info (EERE)

    search EIA Monthly Electric Utility Sales and Revenue Data for Anchorage Municipal Light and Power for September 2008. Monthly Electric Utility Sales and Revenue Data Short...

  18. Municipal Consortium Annual Meeting Presentations and Materials—Phoenix, AZ

    Broader source: Energy.gov [DOE]

    This page provides links to presentations and materials from the DOE Municipal Solid-State Street Lighting Consortium Annual Meeting held in Phoenix on September 11, 2013.

  19. Wakefield Municipal Gas & Light Department- Residential Conservation Services Program

    Broader source: Energy.gov [DOE]

    The Wakefield Municipal Gas & Light Department (WMGLD), offers the "Incentive Rebate Program" to encourage residential customers to improve the energy efficiency of their homes. After a home...

  20. Marblehead Municipal Light Department- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    The Marblehead Municipal Light Department encourages conservation within the residential sector through the Energy Efficiency Rebate Program. Rebates are available for energy efficient appliances,...

  1. Mansfield Municipal Electric Department- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Mansfield Municipal Electric Department encourages energy efficiency through the ENERGY STAR Appliance Rebate Incentive Program. Cash rebates are offered for ENERGY STAR central air conditioners,...

  2. Stabilization of Oklahoma expensive soils using lime and class C fly ash

    SciTech Connect (OSTI)

    Buhler, R.L.; Cerato, A.B.

    2007-01-15

    This study uses lime and class C fly ash, an industrial byproduct of electric power production produced from burning lignite and subbituminous coal, to study the plasticity reduction in highly expensive natural clays from Idabel, Oklahoma. This study is important, especially in Oklahoma, because most of the native soils are expansive and cause seasonal damage to roadways and structures. The addition of lime or fly ash helps to arrest the shrinkage and swelling behavior of soil. Four soil samples with the same AASHTO classification were used in this study to show shrinkage variability within a soil group with the addition of lime and class C fly ash. The plasticity reduction in this study was quantified using the linear shrinkage test. It was found that soils classified within the same AASHTO group had varying shrinkage characteristics. It was also found that both lime and fly ash reduced the lienar shrinkage, however, the addition of lime reduced the linear shrinkage to a greater degree than the same percentage of class C fly ash. Even though it takes much less lime than fly ash to reduce the plasticity of a highly expansive soil, it may be less expensive to utilize fly ash, which is a waste product of electric power production. Lime also has a lower unit weight than fly ash so weight percentage results may be misleading.

  3. Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel

    SciTech Connect (OSTI)

    Lebersorger, S.; Beigl, P.

    2011-09-15

    Waste management planning requires reliable data concerning waste generation, influencing factors on waste generation and forecasts of waste quantities based on facts. This paper aims at identifying and quantifying differences between different municipalities' municipal solid waste (MSW) collection quantities based on data from waste management and on socio-economic indicators. A large set of 116 indicators from 542 municipalities in the Province of Styria was investigated. The resulting regression model included municipal tax revenue per capita, household size and the percentage of buildings with solid fuel heating systems. The model explains 74.3% of the MSW variation and the model assumptions are met. Other factors such as tourism, home composting or age distribution of the population did not significantly improve the model. According to the model, 21% of MSW collected in Styria was commercial waste and 18% of the generated MSW was burned in domestic heating systems. While the percentage of commercial waste is consistent with literature data, practically no literature data are available for the quantity of MSW burned, which seems to be overestimated by the model. The resulting regression model was used as basis for a waste prognosis model (Beigl and Lebersorger, in preparation).

  4. Optimal planning for the sustainable utilization of municipal solid waste

    SciTech Connect (OSTI)

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J.; Serna-González, Medardo; El-Halwagi, Mahmoud M.

    2013-12-15

    Highlights: • An optimization approach for the sustainable management of municipal solid waste is proposed. • The proposed model optimizes the entire supply chain network of a distributed system. • A case study for the sustainable waste management in the central-west part of Mexico is presented. • Results shows different interesting solutions for the case study presented. - Abstract: The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits.

  5. Municipal solid-waste management in Istanbul

    SciTech Connect (OSTI)

    Kanat, Gurdal

    2010-08-15

    Istanbul, with a population of around 13 million people, is located between Europe and Asia and is the biggest city in Turkey. Metropolitan Istanbul produces about 14,000 tons of solid waste per day. The aim of this study was to assess the situation of municipal solid-waste (MSW) management in Istanbul. This was achieved by reviewing the quantity and composition of waste produced in Istanbul. Current requirements and challenges in relation to the optimization of Istanbul's MSW collection and management system are also discussed, and several suggestions for solving the problems identified are presented. The recovery of solid waste from the landfills, as well as the amounts of landfill-generated biogas and electricity, were evaluated. In recent years, MSW management in Istanbul has improved because of strong governance and institutional involvement. However, efforts directed toward applied research are still required to enable better waste management. These efforts will greatly support decision making on the part of municipal authorities. There remains a great need to reduce the volume of MSW in Istanbul.

  6. CX-000663: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    63: Categorical Exclusion Determination CX-000663: Categorical Exclusion Determination Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems CX(s) Applied: A9, B3.1, B3.6 Date: 02/09/2010 Location(s): Tulsa, Oklahoma Office(s): Energy Efficiency and Renewable Energy, Golden Field Office This project proposes to develop a cost-effective microhole drilling and completion technology with the Flash Abrasive Slurry Jet (ASJ) system

  7. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2002-06-30

    This Technical Quarterly Report is for the reporting period March 31, 2002 to June 30, 2002. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation Well 111-W-27 is located in section 8 T26N R6E of the North Burbank Unit (NBU), Osage County Oklahoma. It was drilled to 3090-feet cored, logged, cased and cemented. The rig moved off August 6, 2001. Phillips Petroleum Co. has performed several core studies on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. In addition Phillips has prepared a Core Petrology Report, detailing the lithology, stratigraphy and sedimentology for Well 111-W27, NBU. Phillips has also conducted the sonic stimulation core tests, the final sonic stimulation report has not yet been released. Calumet Oil Company, the operator of the NBU, began collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The original 7-inch Downhole Vibration Tool (DHVT) has been thoroughly tested and it has been concluded that it needs to be redesigned. An engineering firm from Fayetteville AR has been retained to assist in developing a new design for the DHVT. The project participants requested from the DOE, a no-cost extension for the project through December 31, 2002. The no-cost extension amendment to the contract was signed during this reporting period. A technical paper SPE 75254 ''Enhanced Oil Recovery with Downhole Vibration Stimulation, Osage County, Oklahoma'' was presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, April 17, 2002. A one-day short course was conducted at

  8. The Potential Economic Impact of Electricity Restructuring in the State of Oklahoma: Phase II Report

    SciTech Connect (OSTI)

    Hadley, SW

    2001-10-30

    Because of the recent experiences of several states undergoing restructuring (e.g., higher prices, greater volatility, lower reliability), concerns have been raised in states currently considering restructuring as to whether their systems are equally vulnerable. Factors such as local generation costs, transmission constraints, market concentration, and market design can all play a role in the success or failure of the market. These factors along with the mix of generation capacity supplying the state will influence the relative prices paid by consumers. The purpose of this project is to provide a model and process to evaluate the potential price and economic impacts of restructuring the Oklahoma electric industry. The Phase I report concentrated on providing an analysis of the Oklahoma system in the near-term, using only present generation resources and customer demands. This Phase II study analyzed the Oklahoma power market in 2010, incorporating the potential of new generation resources and customer responses. Five key findings of this Phase II were made: (1) Projected expansion in generating capacity exceeds by over 3,000 MW the demands within the state plus the amount that could be exported with the current transmission system. (2) Even with reduced new plant construction, most new plants could lose money (although residential consumers would see lower rates) unless they have sufficient market power to raise their prices without losing significant market share (Figure S-1). (3) If new plants can raise prices to stay profitable, existing low-cost coal and hydro plants will have very high profits. Average prices to customers could be 5% to 25% higher than regulated rates (Figure S-1). If the coal and hydro plants are priced at cost-based rates (through long-term contracts or continued regulation) while all other plants use market-based rates then prices are lower. (4) Customer response to real-time prices can lower the peak capacity requirements by around 9

  9. Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    and Plant Fuel Consumption (Million Cubic Feet) Oklahoma Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 65,167 84,259 103,361 1970's 98,417 101,126 98,784 80,233 80,780 79,728 84,025 77,631 82,046 128,475 1980's 59,934 56,785 91,465 79,230 91,707 88,185 84,200 104,415 100,926 90,225 1990's 111,567 88,366 92,978 99,869 91,039 80,846 73,039 81,412 61,543 - = No Data Reported; -- = Not Applicable;

  10. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of

    U.S. Energy Information Administration (EIA) Indexed Site

    Elements) Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 27,443 1990's 24,547 28,216 28,902 29,118 29,121 29,733 29,733 29,734 30,101 21,790 2000's 21,507 32,672 33,279 34,334 35,612 36,704 38,060 38,364 41,921 43,600 2010's 44,000 41,238 40,000 39,776 40,070 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  11. Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.83 3.06 2.66 2.36 2.36 2.36 2.46 2.49 1.72 2000's 1.61 6.59 5.34 6.71 8.55 11.61 16.67 12.83 11.01 9.69 2010's 8.18 10.98 9.13 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release

  12. Oklahoma Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Million Cubic Feet) Million Cubic Feet) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -3,932 5,480 7,289 -2,690 234 1,959 -4,575 -3,502 -6,399 723 4,670 1991 -18,020 -11,848 -7,774 9,453 9,540 10,851 1,058 -1,981 846 -1,053 -36,391 -20,972 1992 4,433 1,077 -7,840 -16,283 -22,923 -22,043 -5,431 -2,118 584 4,227 9,780 -10,318 1993 -69,197

  13. Oklahoma Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Oklahoma Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 12,217 3,988 1990's 2,944 3,445 4,052 4,095 4,214 5,894 7,165 8,204 11,752 11,218 2000's 11,920 10,549 11,682 10,755 14,253 18,468 17,798 21,216 19,870 22,220 2010's 21,966 21,697 21,258 24,494

  14. Oklahoma Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Base Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 167,385 163,458 167,385 163,458 167,385 167,385 167,385 167,385 167,385 167,385 173,097 172,762 1991 172,757 172,757 172,757 172,757 172,757 172,757 172,757 172,757 172,757 172,757 172,757 172,757 1992 172,757 172,757 172,368 172,573 172,757 172,757 172,757 172,757 172,757 172,757 176,765 176,765 1993 228,593 227,252 227,560 226,942

  15. Municipal solid waste (garbage): problems and benefits

    SciTech Connect (OSTI)

    Stillman, G.I.

    1983-05-01

    The average person in the USA generates from 3 1/2 to 7 lb of garbage/day. The combustible portion of garbage consists primarily of paper products, plastics, textiles, and wood. Problems connected with energy production from municipal solid waste (garbage), and the social, economic, and environmental factors associated with this technology are discussed. The methods for using garbage as a fuel for a combustion process are discussed. One method processes the garbage to produce a fuel that is superior to raw garbage, the other method of using garbage as a fuel is to burn it directly - the mass burning approach. The involvement of the Power Authority of the State of New York in garbage-to-energy technology is discussed.

  16. Feasibility study of heavy oil recovery in the Midcontinent region (Kansas, Missouri, Oklahoma)

    SciTech Connect (OSTI)

    Olsen, D.K.; Johnson, W.I.

    1993-08-01

    This report is one of a series of publications assessing the feasibility/constraints of increasing domestic heavy oil production. Each report covers a select area of the United States. The Midcontinent (Kansas, Nssouri, Oklahoma) has produced significant oil, but contrary to early reports, the area does not contain the huge volumes of heavy oil that, along with the development of steam and in situ combustion as oil production technologies, sparked the area`s oil boom of the 1960s. Recovery of this heavy oil has proven economically unfeasible for most operators due to the geology of the formations rather than the technology applied to recover the oil. The geology of the southern Midcontinent, as well as results of field projects using thermal enhanced oil recovery (TEOR) methods to produce the heavy oil, was examined based on analysis of data from secondary sources. Analysis of the performance of these projects showed that the technology recovered additional heavy oil above what was produced from primary production from the consolidated, compartmentalized, fluvial dominated deltaic sandstone formations in the Cherokee and Forest City basins. The only projects producing significant economic and environmentally acceptable heavy oil in the Midcontinent are in higher permeability, unconsolidated or friable, thick sands such as those found in south-central Oklahoma. There are domestic heavy oil reservoirs in other sedimentary basins that are in younger formations, are less consolidated, have higher permeability and can be economically produced with current TEOR technology. Heavy oil production from the carbonates of central and wester Kansas has not been adequately tested, but oil production is anticipated to remain low. Significant expansion of Midcontinent heavy oil production is not anticipated because the economics of oil production and processing are not favorable.

  17. Evaluating the efficiency of municipalities in collecting and processing municipal solid waste: A shared input DEA-model

    SciTech Connect (OSTI)

    Rogge, Nicky; De Jaeger, Simon

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Complexity in local waste management calls for more in depth efficiency analysis. Black-Right-Pointing-Pointer Shared-input Data Envelopment Analysis can provide solution. Black-Right-Pointing-Pointer Considerable room for the Flemish municipalities to improve their cost efficiency. - Abstract: This paper proposed an adjusted 'shared-input' version of the popular efficiency measurement technique Data Envelopment Analysis (DEA) that enables evaluating municipality waste collection and processing performances in settings in which one input (waste costs) is shared among treatment efforts of multiple municipal solid waste fractions. The main advantage of this version of DEA is that it not only provides an estimate of the municipalities overall cost efficiency but also estimates of the municipalities' cost efficiency in the treatment of the different fractions of municipal solid waste (MSW). To illustrate the practical usefulness of the shared input DEA-model, we apply the model to data on 293 municipalities in Flanders, Belgium, for the year 2008.

  18. Frequently Asked Questions About the Municipal Solid-State Street Lighting Consortium

    Broader source: Energy.gov [DOE]

    This page addresses many of the questions about the Municipal Solid-State Street Lighting Consortium.

  19. Concord Municipal Light Plant- Solar Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Concord Municipal Light Plant (CMLP) offers rebates to customers who install solar photovoltaic (PV) systems that are designed to offset the customer's electrical needs. Systems must be owned by...

  20. Taunton Municipal Lighting Plant- Residential PV Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for a $1.50/watt rebate on solar photovoltaic (PV) installations, up to a maximum rebate of $4,500. The system must be installed...

  1. Alameda Municipal Power- Commercial New Construction Rebate Program

    Broader source: Energy.gov [DOE]

    Alameda Municipal Power (AMP) offers the following grant and rebate programs to AMP customers. Projects will only be funded if AMP receives and approves the application and performs a pre...

  2. Reading Municipal Light Department- Residential Renewable Energy Rebates

    Broader source: Energy.gov [DOE]

    Reading Municipal Light Department (RMLD) offers rebates of $1.00/watt for solar photovoltaic and small wind installations for residential customers. A $0.25/watt adder is available for using local...

  3. Reading Municipal Light Department- Business Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Reading Municipal Light Department (RMLD) offers energy efficiency incentives to eligible commercial and industrial customers. Rebates of up to $50,000 are available to customers who wish to reduce...

  4. Design Case Summary: Production of Mixed Alcohols from Municipal...

    Energy Savers [EERE]

    One type of biomass feedstock is the organic portion of municipal solid waste (MSW). The organic portion of MSW is composed of yard wastes, food scraps, and other biomass ...

  5. Iowa Association of Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Iowa Association of Municipal Utilities Place: Ankeny, IA Website: www.iamu.org References: SGIC1 This article is a stub. You can help OpenEI...

  6. Reading Municipal Light Department- Commercial Lighting Retrofit Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Reading Municipal Light Department (RMLD) offers incentives for non-residential customers to install energy-efficient lighting and sensors in existing facilities. Rebates are limited to $20,000 per...

  7. FirstEnergy (Potomac Edison)- Municipal and Street Lighting Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    FirstEnergy (Potomac Edision) offers several incentives for non-residential and municipal customers to upgrade traffic signals, pedestrian signals, street lights to more efficient  fixtures. The...

  8. Elk River Municipal Utilities- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    For energy savings measures not listed above, Elk River Municipal Utilities offers a custom grant program. In order to qualify for the grant, the benefit cost ratio (BCR) of the project must be...

  9. Denton Municipal Electric- GreenSense Energy Efficiency Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Denton Municipal Electric pays residential and small commercial customers to reduce energy demand and consumption in order to reduce the utility bills of DME customers, reduce peak load, reduce...

  10. General Permit for Small Municipal Separate Storm Sewer Systems...

    Open Energy Info (EERE)

    Storm Sewer Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: General Permit for Small Municipal Separate Storm Sewer Systems Abstract Permit...

  11. Marshall Municipal Utilities- Solar Thermal Water Heater Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    To invest in a renewable resource, consider an ENERGY STAR Solar Thermal Water Heater and use free energy from the sun to heat your water. Marshall Municipal Utilities (MMU) offers rebates of $20...

  12. Title 24 Chapter 117 Municipal and Regional Planning and Development...

    Open Energy Info (EERE)

    Title 24 Chapter 117 Municipal and Regional Planning and Development Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 24...

  13. Title 24 Chapter 117 Municipal Planning and Development | Open...

    Open Energy Info (EERE)

    Title 24 Chapter 117 Municipal Planning and Development Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: Title 24 Chapter 117...

  14. Reading Municipal Light Department- Residential Energy Star Appliance Rebate Program

    Broader source: Energy.gov [DOE]

    Reading Municipal Light Department (RMLD) offers rebates to residential customers who install Energy Star appliances in eligible homes. The offer is limited to one rebate per appliance, or a...

  15. Simplified method to characterize municipal solid waste properties under seismic conditions

    SciTech Connect (OSTI)

    Choudhury, Deepankar Savoikar, Purnanand

    2009-02-15

    The response of municipal solid waste landfills during earthquakes is gaining worldwide attention due to the devastating nature of earthquakes on landfills. Safety code provisions and regulations of various countries require the incorporation of safety measures against seismic hazards in the design of new landfills, as well as for extensions of existing landfills in seismic zones. Determination of dynamic properties is the first step for the analysis of municipal solid waste materials under seismic conditions. Landfill composition and properties, like unit weight, shear wave velocity, shear strength, normalized shear modulus, and material damping, are the most important dynamic properties that have direct impact on the seismic behaviour of landfills, and need to be evaluated carefully. In the present study, based on the extensive data provided by various researchers, the dynamic properties of landfill materials are analyzed using curve-fitting techniques, and simple mathematical equations are proposed. The resulting profiles are compared with laboratory and field data wherever possible. These properties are difficult to generalize and may vary from landfill to landfill. Hence, the proposed simple mathematical models for these landfill properties can be used to design municipal solid waste landfills in the absence of landfill-specific field data under seismic conditions.

  16. Surface coal mining operations in two Oklahoma Counties raise questions about prime farmland reclamation and bond adequacy

    SciTech Connect (OSTI)

    Not Available

    1985-08-08

    The Surface Mining Control and Reclamation Act of 1977 allows prime farmland to be mined but requires the coal operator to reclaim it according to special reclamation standards. To be considered prime farmland, the soil must meet the Secretary of Agriculture's definition of prime soil and have historically been used for intensive agricultural purposes. In Oklahoma, the historical-use provision has generally been applied to lands that have been used for cropland for 5 of the preceding 10 years. GAO's review of mining activities in two Oklahoma counties showed that the land comprising 54 of the 58 mine permits issued since the act's passage contained some prime soil. None, however, required reclamation to prime farmland standards because landowners signed letters stating that the land had not been farmed for crops for five of the preceding 10 years. GAO also found that numerous sites in the two counties were abandoned by mining companies after the act was passed. Since abandonment, no reclamation has occurred on most of these sites. The Department of the Interior's Office of Surface Mining questions whether the bonds on the unreclaimed sites, if collected, will be adequate to do the necessary reclamation. Oklahoma's Department of Mines has taken action to increase bond amounts on newly-issued permits and on some older permitted areas in order to prevent future reclamation problems.

  17. Toward Energy Efficient Municipalities: General Comments on Policy and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Logistical Challenges to Smart Grid Implementation | Department of Energy Toward Energy Efficient Municipalities: General Comments on Policy and Logistical Challenges to Smart Grid Implementation Toward Energy Efficient Municipalities: General Comments on Policy and Logistical Challenges to Smart Grid Implementation I am seeking to develop America's first Smart Grid R&D Testing business campus on 200 near-enterprise zone acres owned by Clatsop County Oregon zoned and master-planned as

  18. 2011 Municipal Consortium Northeast Region Workshop Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Northeast Region Workshop Materials 2011 Municipal Consortium Northeast Region Workshop Materials This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Northeast Region Workshop, held in Philadelphia, May 19-20, 2011. Presentations Calculating Light Loss Factors for LED Street Lighting Systems Rick Kauffman, Kauffman Consulting LLC LM-79, LM-80, and Other Challenges of the "Revolution" Eric Haugaard, BetaLED by

  19. 2011 Municipal Consortium Northwest Region Workshop Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Northwest Region Workshop Materials 2011 Municipal Consortium Northwest Region Workshop Materials This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Northwest Region Workshop, held in Seattle July 15, 2011. Presentations and Materials Workshop Agenda Seattle City Light: LED Streetlight Program Case Study Edward Smalley, Seattle City Light; Lok Chan, DKS Associates SSL Not As Simple As It Seems: Things to Know and Things

  20. 2011 Municipal Consortium Southwest Region Workshop Materials | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Southwest Region Workshop Materials 2011 Municipal Consortium Southwest Region Workshop Materials This page provides links to the presentations given at the DOE Municipal Solid-State Street Lighting Consortium Southwest Region Workshop, held in San Jose, California, August 25--26, 2011. Presentations and Materials Workshop Agenda San Jose's "Smart" LED Streetlight Program Laura Stuchinsky, City of San Jose Department of Transportation San Jose Story Nancy Clanton, Clanton

  1. Business Case for Compressed Natural Gas in Municipal Fleets | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Business Case for Compressed Natural Gas in Municipal Fleets Business Case for Compressed Natural Gas in Municipal Fleets This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas. 47919.pdf (1.06 MB) More Documents & Publications QER - Comment of American Gas Association 3 Fuel Cell Buses in U.S. Transit Fleets: Summary of Experiences and Current

  2. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Availability of Feedstock and Technology | Department of Energy 1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is a domestic energy resource with the potential to provide a significant amount of energy to meet US liquid fuel requirements. MSW is defined as household waste, commercial solid waste, nonhazardous sludge, conditionally exempt, small quantity hazardous

  3. Mechanical properties of Municipal Solid Waste by SDMT

    SciTech Connect (OSTI)

    Castelli, Francesco; Maugeri, Michele

    2014-02-15

    Highlights: • The adoption of the SDMT for the measurements of MSW properties is proposed. • A comparison between SDMT results and laboratory tests was carried out. • A good reliability has been found in deriving waste properties by SDMT. • Results seems to be promising for the friction angle and Young’s modulus evaluation. - Abstract: In the paper the results of a geotechnical investigation carried on Municipal Solid Waste (MSW) materials retrieved from the “Cozzo Vuturo” landfill in the Enna area (Sicily, Italy) are reported and analyzed. Mechanical properties were determined both by in situ and laboratory large-scale one dimensional compression tests. While among in situ tests, Dilatomer Marchetti Tests (DMT) is used widely in measuring soil properties, the adoption of the DMT for the measurements of MSW properties has not often been documented in literature. To validate its applicability for the estimation of MSW properties, a comparison between the seismic dilatometer (SDMT) results and the waste properties evaluated by laboratory tests was carried out. Parameters for “fresh” and “degraded waste” have been evaluated. These preliminary results seems to be promising as concerns the assessment of the friction angle of waste and the evaluation of the S-wave in terms of shear wave velocity. Further studies are certainly required to obtain more representative values of the elastic parameters according to the SDMT measurements.

  4. GHG emission factors developed for the recycling and composting of municipal waste in South African municipalities

    SciTech Connect (OSTI)

    Friedrich, Elena Trois, Cristina

    2013-11-15

    Highlights: • GHG emission factors for local recycling of municipal waste are presented. • GHG emission factors for two composting technologies for garden waste are included. • Local GHG emission factors were compared to international ones and discussed. • Uncertainties and limitations are presented and areas for new research highlighted. - Abstract: GHG (greenhouse gas) emission factors for waste management are increasingly used, but such factors are very scarce for developing countries. This paper shows how such factors have been developed for the recycling of glass, metals (Al and Fe), plastics and paper from municipal solid waste, as well as for the composting of garden refuse in South Africa. The emission factors developed for the different recyclables in the country show savings varying from −290 kg CO{sub 2} e (glass) to −19 111 kg CO{sub 2} e (metals – Al) per tonne of recyclable. They also show that there is variability, with energy intensive materials like metals having higher GHG savings in South Africa as compared to other countries. This underlines the interrelation of the waste management system of a country/region with other systems, in particular with energy generation, which in South Africa, is heavily reliant on coal. This study also shows that composting of garden waste is a net GHG emitter, releasing 172 and 186 kg CO{sub 2} e per tonne of wet garden waste for aerated dome composting and turned windrow composting, respectively. The paper concludes that these emission factors are facilitating GHG emissions modelling for waste management in South Africa and enabling local municipalities to identify best practice in this regard.

  5. Municipal solid waste effective stress analysis

    SciTech Connect (OSTI)

    Shariatmadari, Nader; Machado, Sandro Lemos; Noorzad, Ali; Karimpour-Fard, Mehran

    2009-12-15

    The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

  6. Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County, Oklahoma

    SciTech Connect (OSTI)

    J. Ford Brett; Robert V. Westermark

    2001-12-31

    This Technical Quarterly Report is for the reporting period September 30, 2001 to December 31, 2001. The report provides details of the work done on the project entitled ''Enhanced Oil Recovery with Downhole Vibration Stimulation in Osage County Oklahoma''. The project is divided into nine separate tasks. Several of the tasks are being worked on simultaneously, while other tasks are dependent on earlier tasks being completed. The vibration stimulation well was permitted as Well 111-W-27, section 8 T26N R6E Osage County Oklahoma. It was spud July 28, 2001 with Goober Drilling Rig No. 3. The well was drilled to 3090-feet cored, logged, cased and cemented. The Rig No.3 moved off August 6, 2001. Phillips Petroleum Co. has performed standard core analysis on the cores recovered from the test well. Standard porosity, permeability and saturation measurements have been conducted. Phillips has begun the sonic stimulation core tests. Calumet Oil Company, the operator of the NBU, has been to collecting both production and injection wells information to establish a baseline for the project in the pilot field test area since May 2001. The 7-inch Downhole Vibration Tool (DHVT) has been built and has been run in a shallow well for initial power source testing. This testing was done in a temporarily abandoned well, Wynona Waterflood Unit, Well No.20-12 operated by Calumet Oil Co both in October and December 2001. The data acquisition system, and rod rotating equipment performed as designed. However, the DHVT experienced two internal failures during vibration operations. The DHVT has been repaired with modifications to improve its functionality. A proposed technical paper abstract has been accepted by the SPE to be presented at the 2002 SPE/DOE Thirteenth Symposium on Improved Oil Recovery, in Tulsa OK, 13-17 April 2002. A one-day SPE sponsored short course which is planned to cover seismic stimulation efforts around the world, will be offered at the SPE/DOE Thirteenth Symposium on

  7. Hydrogen production from municipal solid waste

    SciTech Connect (OSTI)

    Wallman, P.H.; Richardson, J.H.; Thorsness, C.B.

    1996-06-28

    We have modified a Municipal Solid Waste (MSW) hydrothermal pretreatment pilot plant for batch operation and blowdown of the treated batch to low pressure. We have also assembled a slurry shearing pilot plant for particle size reduction. Waste paper and a mixture of waste paper/polyethylene plastic have been run in the pilot plant with a treatment temperature of 275{degrees}C. The pilot-plant products have been used for laboratory studies at LLNL. The hydrothermal/shearing pilot plants have produced acceptable slurries for gasification tests from a waste paper feedstock. Work is currently underway with combined paper/plastic feedstocks. When the assembly of the Research Gasification Unit at Texaco (feed capacity approximately 3/4-ton/day) is complete (4th quarter of FY96), gasification test runs will commence. Laboratory work on slurry samples during FY96 has provided correlations between slurry viscosity and hydrothermal treatment temperature, degree of shearing, and the presence of surfactants and admixed plastics. To date, pumpable slurries obtained from an MSW surrogate mixture of treated paper and plastic have shown heating values in the range 13-15 MJ/kg. Our process modeling has quantified the relationship between slurry heating value and hydrogen yield. LLNL has also performed a preliminary cost analysis of the process with the slurry heating value and the MSW tipping fee as parameters. This analysis has shown that the overall process with a 15 MJ/kg slurry gasifier feed can compete with coal-derived hydrogen with the assumption that the tipping fee is of the order $50/ton.

  8. Conversion of municipal solid waste to hydrogen

    SciTech Connect (OSTI)

    Richardson, J.H.; Rogers, R.S.; Thorsness, C.B.

    1995-09-01

    LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL`s focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

  9. Mercury emissions from municipal solid waste combustors

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  10. Passive energy design and habitability aspects of earth-sheltered housing in Oklahoma

    SciTech Connect (OSTI)

    Boyer, L.L.; Grondzik, W.T.; Weber, M.J.

    1980-05-01

    Identified earth-sheltered houses in Oklahoma were examined through a detailed questionnaire during the first phase of a long-range funded project. Preliminary results of energy and habitability aspects are presented here. Saving energy is reported to be the primary incentive for building such structures. Habitability aspects have generally not received much study until recently. The results indicate that although a majority of the respondents feel their energy-savings expectations have been reached, over 40% feel that their energy consumption is much higher than they expected. Preliminary energy performance studies indicate that in a majority of the projects, the potential thermal mass of the structure has been decoupled by insulation and furred interior surface treatments. This situation can lead to a significant reduction in the amount of free earth cooling available during the summer months. Other factors, not yet studied, undoubtedly contribute additional adverse effects. The substantial energy savings that are realized have been achieved with little decrease, and often an increase, in comfort and habitability aspects. Most occupants are particularly satisfied with the safety of the structure and the arrangement of the rooms, which in most cases were custom designed by or for the occupants. However, daylighting and privacy of family members, for example, were not as highly rated. A number of other parameters are identified from the survey that present implications for design enhancement in this contemporary type of residential structure. 14 references, 4 figures, 6 tables.

  11. Oklahoma Natural Gas in Underground Storage - Change in Working Gas from

    U.S. Energy Information Administration (EIA) Indexed Site

    Same Month Previous Year (Percent) Percent) Oklahoma Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 -13.9 -10.0 -6.5 8.1 7.3 7.8 0.7 -1.3 0.5 -0.6 -20.1 -13.6 1992 4.0 1.0 -7.0 -12.9 -16.3 -14.6 -3.6 -1.4 0.4 2.5 6.8 -7.7 1993 -59.8 -75.3 -81.3 -71.8 -58.1 -47.8 -43.7 -38.0 -33.1 -31.7 -34.3 -29.9 1994 20.6 33.2 68.7 60.2 49.2 29.1 25.2 21.3 11.9 8.6 24.6 27.3 1995 54.1 106.0 91.5

  12. Regional geologic characteristics relevant to horizontal drilling, Woodford Shale, Anadarko basin, Oklahoma

    SciTech Connect (OSTI)

    Hester, T.C.; Schmoker, J.W. )

    1991-06-01

    Horizontal drilling in the Late Devonian-Early Mississippian Bakken Formation of the Williston basin has spurred new interest in other black shales as primary hydrocarbon reservoirs. The Late Devonian-Early Mississippian Woodford Shale, which is similar in some respects to the Bakken Formation, is a major source of oil and gas in the Anadarko basin of Oklahoma and could prove to be a significant reservoir rock as well. The three regional geologic characteristics of the Woodford discussed here are of likely importance to horizontal drilling programs, although direct relations to drilling strategy cannot be developed until empirical data from horizontal tests become available. First, the Woodford Shale is composed of three distinct depositional units (the upper, middle, and lower informal members) with different physical and geochemical properties. Second, a paleotopographic high that was rising before and during Woodford deposition divided the Woodford Shale into northeast and southwest depocenters. Third, Woodford depositional patterns are overprinted by thermal-maturity trends shaped primarily by differential burial of the Woodford during Pennsylvanian and Permian time. The Woodford Shale northeast of the forebulge is generally immature to marginally mature, whereas its thermal maturity southwest of the forebulge ranges from mature to postmature with respect to oil generation. A formation resistivity of about 35 ohm-m approximates the updip limit of oil-saturated Woodford Shale from which free oil might be produced from fracture systems.

  13. CX-000832: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bennington Communication Tower SiteCX(s) Applied: B1.19Date: 02/02/2010Location(s): Bennington, OklahomaOffice(s): Southwestern Power Administration

  14. CX-010717: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Moodys Radio Tower Land Acquisition CX(s) Applied: B1.24 Date: 07/15/2013 Location(s): Oklahoma Offices(s): Southwestern Power Administration

  15. CX-007841: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Efficiency Retrofits CX(s) Applied: B5.1 Date: 01/30/2012 Location(s): Oklahoma Offices(s): Energy Efficiency and Renewable Energy

  16. CX-007792: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Gore Substation Safety Lighting CX(s) Applied: B2.3 Date: 09/01/2011 Location(s): Oklahoma Offices(s): Southwestern Power Administration

  17. Battery collection in municipal waste management in Japan: Challenges for hazardous substance control and safety

    SciTech Connect (OSTI)

    Terazono, Atsushi; Oguchi, Masahiro; Iino, Shigenori; Mogi, Satoshi

    2015-05-15

    Highlights: • Consumers need to pay attention to the specific collection rules for each type of battery in each municipality in Japan. • 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. • Despite announcements by producers and municipalities, only 2.0% of discarded cylindrical dry batteries were insulated. • Batteries made up an average of 4.6% of the total collected small WEEE under the small WEEE recycling scheme in Japan. • Exchangeable batteries were used in almost all of mobile phones, but the removal rate was as low as 22% for mobile phones. - Abstract: To clarify current collection rules of waste batteries in municipal waste management in Japan and to examine future challenges for hazardous substance control and safety, we reviewed collection rules of waste batteries in the Tokyo Metropolitan Area. We also conducted a field survey of waste batteries collected at various battery and small waste electric and electronic equipment (WEEE) collection sites in Tokyo. The different types of batteries are not collected in a uniform way in the Tokyo area, so consumers need to pay attention to the specific collection rules for each type of battery in each municipality. In areas where small WEEE recycling schemes are being operated after the enforcement of the Act on Promotion of Recycling of Small Waste Electrical and Electronic Equipment in Japan in 2013, consumers may be confused about the need for separating batteries from small WEEE (especially mobile phones). Our field survey of collected waste batteries indicated that 6–10% of zinc carbon and alkaline batteries discarded in Japan currently could be regarded as containing mercury. More than 26% of zinc carbon dry batteries currently being discarded may have a lead content above the labelling threshold of the EU Batteries Directive (2006/66/EC). In terms of safety, despite announcements by producers and municipalities about using

  18. Assessment of municipal solid waste for energy production in the western United States

    SciTech Connect (OSTI)

    Goodman, B.J.; Texeira, R.H.

    1990-08-01

    Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

  19. Source rock geochemistry and liquid and solid petroleum occurrences of the Ouachita Mountains, Oklahoma

    SciTech Connect (OSTI)

    Curiale, J.A.

    1981-01-01

    Crude oils, solid bitumens and potential oil source rocks of the Frontal and Central Ouachita Mountains of southeastern Oklahoma were examined. The purposes of this study are to characterize the organic matter in each of these materials, and to correlate oils to potential source rocks in the Ouachita Mountains. Four Ouachita Mountain oils and seven solid bitumens (grahamite and impsonite were analyzed. The oils are paraffinic and range from 31.8 to 43.1 API gravity. Results indicate that the oils are thermally mature and generally unaltered. All four oils are commonly sourced, as suggested by n-alkane, sterane and hopane distributions, stable isotope ratios, infrared spectra and vanadium/nickel ratios. A common source for the solid bitumens is also suggested by isotope ratios and pyrolyzate characteristics. An origin due to crude oil biodegradation is suggested for these solids, based on carbon isotope ratios, elemental analyses, and sterane distributions of the solid bitumen pyrolyzates. Several stratigraphic intervals in the Ouachita Mountains possess adequate source potential for petroleum generation, based on contents of total organic carbon and extractable organic matter. Devonian rocks are oil-generative. The entire Paleozoic section examined is thermally mature enough to have generated oil, being located at about the middle of the oil window. In general, the best oil source potential is present in upper Ordovician (Polk Creek/Womble) rocks. Oil-source rock correlation techniques indicate that oils examined from the Frontal and Central Ouachita Mountains have a Siluro-Ordovician (Missouri Mountain-Polk Creek-Womble) source.

  20. ,"Oklahoma Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release