National Library of Energy BETA

Sample records for determination northeast photovoltaic

  1. Sandia Energy - Sandia Tool Determines Value of Solar Photovoltaic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Determines Value of Solar Photovoltaic Power Systems Home Renewable Energy Energy Partnership News News & Events Photovoltaic Solar Sandia Tool Determines Value of Solar...

  2. Advancing the Deployment of Utility-Scale Photovoltaic Plants in the Northeast

    SciTech Connect (OSTI)

    Lofaro R.; Villaran, M; Colli, A.

    2012-06-03

    As one of the premier research laboratories operated by the Department of Energy, Brookhaven National Laboratory (BNL) is pursuing an energy research agenda that focuses on renewable energy systems and will help to secure the nation's energy security. A key element of the BNL research is the advancement of grid-connected utility-scale solar photovoltaic (PV) plants, particularly in the northeastern part of the country where BNL is located. While a great deal of information has been generated regarding solar PV systems located in mostly sunny, hot, arid climates of the southwest US, very little data is available to characterize the performance of these systems in the cool, humid, frequently overcast climates experienced in the northeastern portion of the country. Recognizing that there is both a need and a market for solar PV generation in the northeast, BNL is pursuing research that will advance the deployment of this important renewable energy resource. BNL's research will leverage access to unique time-resolved data sets from the 37MWp solar array recently developed on its campus. In addition, BNL is developing a separate 1MWp solar research array on its campus that will allow field testing of new PV system technologies, including solar modules and balance of plant equipment, such as inverters, energy storage devices, and control platforms. These research capabilities will form the cornerstone of the new Northeast Solar Energy Research Center (NSERC) being developed at BNL. In this paper, an overview of BNL's energy research agenda is given, along with a description of the 37MWp solar array and the NSERC.

  3. CX-007867: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-007867: Categorical Exclusion Determination Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B5.16 Date: 01272012...

  4. Photovoltaics

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  5. Photovoltaics

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  6. CNEEC - Photovoltaics Tutorial by Prof. Clemens

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaics

  7. Photovoltaics

    SciTech Connect (OSTI)

    Ebisch, R.

    1981-07-01

    Applications of photovoltaics to non-residential buildings are discussed. Most of the projects underway represent a joint effort by DOE and fifteen manufacturing companies now offering or developing photovoltaics. The systems are either flat-plate arrays, in which the sunlight is received directly on the photocells, or concentrating systems, in which the sunlight is focused on the photocells by mirrors or lenses. The DOE price goal for 1986 is to have photovoltaic systems capable of supplying shopping centers, apartment complexes, and industries with modules costing 70 cents/W and systems costing $1.60 to $2.60/W with the price of power to the user at 7 cents to 11 cents/kWh. New technologies discussed include the use of silicon with no crystal structure and the use of ribbons of silicon. (MJF)

  8. NREL Determines Better Testing Methods for Photovoltaic Module Durability (Fact Sheet), NREL Highlights, Research & Development

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    NREL discoveries will enable manufacturers to produce more robust photovoltaic modules. Over the past decade, some photovoltaic (PV) modules have experienced power losses because of the system voltage stress that modules experience in fielded arrays. This is partly because qualification tests and standards do not adequately evaluate the durability of modules that undergo the long-term effects of high voltage. Scientists at the National Renewable Energy Laboratory (NREL) tried various testing methods and stress levels to demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. The results of these accelerated tests, along with outdoor testing, were used to estimate the acceleration factors needed to more accurately evaluate the durability of modules to system voltage stress. NREL was able to determine stress factors, levels, and methods for testing based on the stresses experienced by modules in the field. These results, in combination with those in the literature, suggest that constant stress with humidity and system voltage is more damaging than stress applied intermittently or with periods of recovery comprising hot and dry conditions or alternating bias in between. NREL has determined some module constructions to be extremely durable to PID. These findings will help the manufacturers of PV materials and components produce more durable products that better satisfy their customers. NREL determined that there is rapid degradation of some PV modules under system voltage stress and evaluated degradation rates in the field to develop more accurate accelerated testing methods. PV module manufacturers will be better able to choose robust materials and durable designs and guarantee sturdier, longer-lasting products. As PV modules become more durable, and thus more efficient over the long term, the risks and the cost of PV power will be reduced.

  9. Northeast Reserves

    Gasoline and Diesel Fuel Update (EIA)

    Northeast Home Heating Oil Reserve classified as ultra-low sulfur distillate (15 parts per million) Terminal operator Location Thousand Barrels Buckeye Partners LP Port Reading, NJ ...

  10. Photovoltaic device

    DOE Patents [OSTI]

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-06-02

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device with a multilayered photovoltaic cell assembly and a body portion joined at an interface region and including an intermediate layer, at least one interconnecting structural member, relieving feature, unique component geometry, or any combination thereof.

  11. Photovoltaic device

    SciTech Connect (OSTI)

    Reese, Jason A.; Keenihan, James R.; Gaston, Ryan S.; Kauffmann, Keith L.; Langmaid, Joseph A.; Lopez, Leonardo C.; Maak, Kevin D.; Mills, Michael E.; Ramesh, Narayan; Teli, Samar R.

    2015-09-01

    The present invention is premised upon an improved photovoltaic device ("PV device"), more particularly to an improved photovoltaic device (10) with a multilayered photovoltaic cell assembly (100) and a body portion (200) joined at an interface region (410) and including an intermediate layer (500), at least one interconnecting structural member (1500), relieving feature (2500), unique component geometry, or any combination thereof.

  12. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics (Redirected from Solar Photovoltaics) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic...

  13. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics (Redirected from Photovoltaic) Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic Panels...

  14. Photovoltaic Product Directory and Buyers Guide

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Dirks, J.A.; Mazzucchi, R.P.; Lee, V.E.

    1984-04-01

    The directory guide explains photovoltaic systems briefly and shows what products are available off-the-shelf. Information is given to assist in designing a photovoltaic system and on financial incentives. Help is given for determining if photovoltaic products can meet a particular buyer's needs, and information is provided on actual photovoltaic user's experiences. Detailed information is appended on various financial incentives available from state and federal governments, sources of additional information on photovoltaics, sources of various photovoltaic products, and a listing of addresses of photovoltaic products suppliers. (LEW)

  15. Northeast Regional Biomass Program

    SciTech Connect (OSTI)

    Lusk, P.D.

    1992-12-01

    The Northeast Regional Biomass Program has been in operation for a period of nine years. During this time, state managed programs and technical programs have been conducted covering a wide range of activities primarily aim at the use and applications of wood as a fuel. These activities include: assessments of available biomass resources; surveys to determine what industries, businesses, institutions, and utility companies use wood and wood waste for fuel; and workshops, seminars, and demonstrations to provide technical assistance. In the Northeast, an estimated 6.2 million tons of wood are used in the commercial and industrial sector, where 12.5 million cords are used for residential heating annually. Of this useage, 1504.7 mw of power has been generated from biomass. The use of wood energy products has had substantial employment and income benefits in the region. Although wood and woodwaste have received primary emphasis in the regional program, the use of municipal solid waste has received increased emphasis as an energy source. The energy contribution of biomass will increase as potentia users become more familiar with existing feedstocks, technologies, and applications. The Northeast Regional Biomass Program is designed to support region-specific to overcome near-term barriers to biomass energy use.

  16. Residential photovoltaics

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The photovoltaics overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  17. Thermal stability of photovoltaic a-Si:H determined by neutron reflectometry

    SciTech Connect (OSTI)

    Qviller, A. J. Haug, H.; You, C. C.; Hasle, I. M.; Marstein, E. S.; Frommen, C.; Hauback, B. C.; Dennison, A. J. C.; Vorobiev, A.; streng, E.; Fjellvg, H.; Hjrvarsson, B.

    2014-12-08

    Neutron and X-ray reflectometry were used to determine the layer structure and hydrogen content of thin films of amorphous silicon (a-Si:H) deposited onto crystalline silicon (Si) wafers for surface passivation in solar cells. The combination of these two reflectometry techniques is well suited for non-destructive probing of the structure of a-Si:H due to being able to probe buried interfaces and having sub-nanometer resolution. Neutron reflectometry is also unique in its ability to allow determination of density gradients of light elements such as hydrogen (H). The neutron scattering contrast between Si and H is strong, making it possible to determine the H concentration in the deposited a-Si:H. In order to correlate the surface passivation properties supplied by the a-Si:H thin films, as quantified by obtainable effective minority carrier lifetime, photoconductance measurements were also performed. It is shown that the minority carrier lifetime falls sharply when H has been desorbed from a-Si:H by annealing.

  18. Photovoltaic cell

    DOE Patents [OSTI]

    Gordon, Roy G.; Kurtz, Sarah

    1984-11-27

    In a photovoltaic cell structure containing a visibly transparent, electrically conductive first layer of metal oxide, and a light-absorbing semiconductive photovoltaic second layer, the improvement comprising a thin layer of transition metal nitride, carbide or boride interposed between said first and second layers.

  19. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Jump to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic Panels Solar cells, also called...

  20. Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search (The following text is derived from NREL's description of photovoltaic technology.)1 Photovoltaic Panels Solar cells, also called photovoltaic (PV)...

  1. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Credit: Northeast Energy Efficiency...

  2. Tianda Photovoltaic Co Ltd Yunnan Tianda Photovoltaic | Open...

    Open Energy Info (EERE)

    Tianda Photovoltaic Co Ltd Yunnan Tianda Photovoltaic Jump to: navigation, search Name: Tianda Photovoltaic Co Ltd (Yunnan Tianda Photovoltaic) Place: Kunming, Yunnan Province,...

  3. Northeast Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: Northeast Biofuels Place: United Kingdom Sector: Biofuels Product: Northeast biofuels is a cluster of companies and organisations...

  4. CX-008563: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 06/13/2012 Location(s): New York Offices(s): Golden Field Office

  5. CX-005993: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Northeast Photovoltaic Regional Training ProviderCX(s) Applied: A9, A11, B5.1Date: 05/26/2011Location(s): Turners Falls, MassachusettsOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  6. CX-007872: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 01/27/2012 Location(s): New York Offices(s): Golden Field Office

  7. CX-007862: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 01/27/2012 Location(s): Connecticut Offices(s): Golden Field Office

  8. CX-009007: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Northeast Provider of Solar Photovoltaic Instructor Training CX(s) Applied: A9, A11, B5.16 Date: 08/08/2012 Location(s): New York Offices(s): Golden Field Office

  9. CX-007873: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Northeast Photovoltaic Regional Training Provider CX(s) Applied: A9, A11, B3.14 Date: 01/27/2012 Location(s): New York Offices(s): Golden Field Office

  10. CX-008230: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Northeast Photovoltaic Instructor Training Provider CX(s) Applied: A9, A11 Date: 04/30/2012 Location(s): New York Offices(s): Golden Field Office

  11. Northeast Gasoline Supply Reserve

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Northeast region of the U.S. is particularly vulnerable to gasoline disruptions as a result of hurricanes and other natural events. Hurricane Sandy in 2012 caused widespread issues related to...

  12. NREL: Photovoltaics Research - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    success. The following events and meetings are of interest to partners of NREL Photovoltaics (PV) Research and the National Center for Photovoltaics (NCPV). Printable Version...

  13. China Solar Photovoltaic Group CNPV aka Dongying Photovoltaic...

    Open Energy Info (EERE)

    Group CNPV aka Dongying Photovoltaic Power Co Ltd or China Solar PV Jump to: navigation, search Name: China Solar Photovoltaic Group (CNPV, aka Dongying Photovoltaic Power Co Ltd...

  14. Photovoltaic solar concentrator

    SciTech Connect (OSTI)

    Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J.; Sanchez, Carlos Anthony; Clews, Peggy J.; Gupta, Vipin P.

    2015-09-08

    A process including forming a photovoltaic solar cell on a substrate, the photovoltaic solar cell comprising an anchor positioned between the photovoltaic solar cell and the substrate to suspend the photovoltaic solar cell from the substrate. A surface of the photovoltaic solar cell opposite the substrate is attached to a receiving substrate. The receiving substrate may be bonded to the photovoltaic solar cell using an adhesive force or a metal connecting member. The photovoltaic solar cell is then detached from the substrate by lifting the receiving substrate having the photovoltaic solar cell attached thereto and severing the anchor connecting the photovoltaic solar cell to the substrate. Depending upon the type of receiving substrate used, the photovoltaic solar cell may be removed from the receiving substrate or remain on the receiving substrate for use in the final product.

  15. American Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Jump to: navigation, search Logo: American Photovoltaics Name: American Photovoltaics Place: Houston, Texas Zip: 77002 Region: Texas Area Sector: Solar Product: Will...

  16. Nanostructured Photovoltaics: - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Nanostructured Photovoltaics: Atomic Layer Deposition Thin Film Technology Enables Cost Effective Solar ...

  17. Northeast Biofuels Collaborative | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Collaborative Jump to: navigation, search Logo: Northeast Biofuels Collaborative Name: Northeast Biofuels Collaborative Address: 101 Tremont Street Place: Boston,...

  18. NREL: Photovoltaics Research - Concentrator Photovoltaic (CPV...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrator Photovoltaic (CPV) Report - Fraunhofer ISE and NREL Analyze Status of Market and Technology February 4, 2015 The German Fraunhofer Institute for Solar Energy Systems...

  19. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-06-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  20. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-06-27

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  1. NREL: Photovoltaics Research - Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Reliability team serves to improve PV technologies. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  2. Sandia Energy Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed 0 Sandian Contributes to Western Electricity Coordinating Council Photovoltaic Power Plant Model Validation Guideline http:energy.sandia.gov...

  3. Load controller and method to enhance effective capacity of a photovoltaic power supply using a dynamically determined expected peak loading

    DOE Patents [OSTI]

    Perez, Richard

    2005-05-03

    A load controller and method are provided for maximizing effective capacity of a non-controllable, renewable power supply coupled to a variable electrical load also coupled to a conventional power grid. Effective capacity is enhanced by monitoring power output of the renewable supply and loading, and comparing the loading against the power output and a load adjustment threshold determined from an expected peak loading. A value for a load adjustment parameter is calculated by subtracting the renewable supply output and the load adjustment parameter from the current load. This value is then employed to control the variable load in an amount proportional to the value of the load control parameter when the parameter is within a predefined range. By so controlling the load, the effective capacity of the non-controllable, renewable power supply is increased without any attempt at operational feedback control of the renewable supply.

  4. Photovoltaic device and method

    SciTech Connect (OSTI)

    Cleereman, Robert; Lesniak, Michael J.; Keenihan, James R.; Langmaid, Joe A.; Gaston, Ryan; Eurich, Gerald K.; Boven, Michelle L.

    2015-11-24

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  5. Photovoltaic device and method

    DOE Patents [OSTI]

    Cleereman, Robert J; Lesniak, Michael J; Keenihan, James R; Langmaid, Joe A; Gaston, Ryan; Eurich, Gerald K; Boven, Michelle L

    2015-01-27

    The present invention is premised upon an improved photovoltaic device ("PVD") and method of use, more particularly to an improved photovoltaic device with an integral locator and electrical terminal mechanism for transferring current to or from the improved photovoltaic device and the use as a system.

  6. Amorphous silicon photovoltaic devices

    DOE Patents [OSTI]

    Carlson, David E.; Lin, Guang H.; Ganguly, Gautam

    2004-08-31

    This invention is a photovoltaic device comprising an intrinsic or i-layer of amorphous silicon and where the photovoltaic device is more efficient at converting light energy to electric energy at high operating temperatures than at low operating temperatures. The photovoltaic devices of this invention are suitable for use in high temperature operating environments.

  7. High density photovoltaic

    SciTech Connect (OSTI)

    Haigh, R.E.; Jacobson, G.F.; Wojtczuk, S.

    1997-10-14

    Photovoltaic technology can directly generate high voltages in a solid state material through the series interconnect of many photovoltaic diodes. We are investigating the feasibility of developing an electrically isolated, high-voltage power supply using miniature photovoltaic devices that convert optical energy to electrical energy.

  8. Renewable Energy Ready Home Solar Photovoltaic Specifications...

    Energy Savers [EERE]

    Renewable Energy Ready Home Solar Photovoltaic Specifications Renewable Energy Ready Home Solar Photovoltaic Specifications Solar Photovoltaic Specification, Checklist and Guide, ...

  9. Northeast Energy Efficiency Partnerships: Advanced Lighting Controls |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Northeast Energy Efficiency Partnerships: Advanced Lighting Controls Credit: Northeast Energy Efficiency Partnerships Credit: Northeast Energy Efficiency Partnerships Lead Performer: Northeast Energy Efficiency Partnerships, Lexington, MA Partners: -- Burlington Electric Department -- Cape Light Compact -- Connecticut Light and Power -- Efficiency Vermont -- National Grid -- NSTAR Electric and Gas --

  10. Photovoltaic Materials

    SciTech Connect (OSTI)

    Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

    2012-10-15

    The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNL’s unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporation’s Electronic, Color and Glass Materials (“ECGM”) business unit is currently the world’s largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferro’s ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and

  11. CX-100686 Categorical Exclusion Determination | Department of...

    Energy Savers [EERE]

    CX-100686 Categorical Exclusion Determination U.S. Photovoltaic Manufacturing ... DOE is proposing to provide federal funding to U.S. Photovoltaic Manufacturing Consortium ...

  12. Photovoltaic System Performance

    Energy Science and Technology Software Center (OSTI)

    1989-09-25

    PVFORM4.0 is used to design a photovoltaic (PV) system using a set of design parameters which optimize the system's economic potential for the proposed location and the expected operating conditions. PVFORM3.3 has been used to determine PV system size and optimum mounting configuration. The anticipated electrical load determines the system size and the weather and the mounting configuration affect the system output. PVFORM4.0 uses program-supplied default values or their user-supplied equivalents for each of amore » large number of parameters describing the system and time-series data describing the environment to perform a series of hourly calculations to simulate the physical (photovoltaic) performance of a PV system for a one-year period. These iterative calculations sample the performance of the PV system throughout a simulated 365-day year of system operation. Within any simulated day on which system performance is sampled, the calculations are done hourly. The number of days sampled and the interval between them is determined by an input parameter. The results of these calculations are summarized on a monthly basis in output tables and an optional plot file. The program is applicable to grid interactive or stand-alone flat-plate systems. The grid interactive system is assumed to use power purchased from a local utility to supply that portion of the load not met by the simulated PV array. If the array produces more energy than can be consumed by the load, the excess energy is assumed to be sold back to the utility at a constant energy sellback price. If a stand-alone system is being modeled, the program assumes that all energy produced by the simulated PV array is first applied to the external load, and any excess is then used to charge the battery bank. Energy not consumed by the load or the batteries is considered to be wasted.« less

  13. NREL: Photovoltaics Research - Awards for Photovoltaic Manufacturing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards for Photovoltaic Manufacturing R&D The following research efforts within the PV Manufacturing R&D Project were honored with prestigious industry awards. 1995-AstroPower (now ...

  14. NREL: Photovoltaics Research - Photovoltaic Energy Ratings Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Validation Photovoltaic Energy Ratings Methods Validation The Photovoltaic (PV) Engineering group at NREL validates energy ratings methods by standards committees to establish an energy rating methodology. We are evaluating techniques to account for the impact on PV performance from variations in the spectral distribution of solar radiation. Two types of methods were evaluated for correcting the short-circuit current of PV modules for variations in the solar spectrum under clear skies: (1)

  15. Northeast Sustainable Energy Association | Open Energy Information

    Open Energy Info (EERE)

    Association Jump to: navigation, search Logo: Northeast Sustainable Energy Association Name: Northeast Sustainable Energy Association Address: 50 Miles Street Place: Greenfield,...

  16. Photovoltaic technology assessment

    SciTech Connect (OSTI)

    Backus, C.E.

    1981-01-01

    After a brief review of the history of photovoltaic devices and a discussion of the cost goals set for photovoltaic modules, the status of photovoltaic technology is assessed. Included are discussions of: current applications, present industrial production, low-cost silicon production techniques, energy payback periods for solar cells, advanced materials research and development, concentrator systems, balance-of-system components. Also discussed are some nontechnical aspects, including foreign markets, US government program approach, and industry attitudes and approaches. (LEW)

  17. Solar Photovoltaic SPECIFICATION, CHECKLIST...

    Energy Savers [EERE]

    Ready Home SOLAR PHOTOVOLTAIC SPECIFICATION, CHECKLIST AND GUIDE i Table of Contents About the Renewable Energy Ready Home Specifications Assumptions of the RERH Solar ...

  18. National Laboratory Photovoltaics Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  19. Photovoltaics Business Models

    SciTech Connect (OSTI)

    Frantzis, L.; Graham, S.; Katofsky, R.; Sawyer, H.

    2008-02-01

    This report summarizes work to better understand the structure of future photovoltaics business models and the research, development, and demonstration required to support their deployment.

  20. NREL: Photovoltaics Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For archived editions of the NCPV Hotline. See also PV events. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  1. NREL: Photovoltaics Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reply. Your name: Your email address: Your message: Send Message Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  2. NREL: Photovoltaics Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technologies and applications. These facilities within the National Center for Photovoltaics (NCPV) serve both multi-use and dedicated-use functions. We encourage our research...

  3. Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-01-20

    Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

  4. Solar Photovoltaic Technology Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Technology Basics Solar cells, also called photovoltaic (PV) cells by scientists, convert sunlight directly into electricity. PV gets its name from the process ...

  5. NREL: Photovoltaics Research - Steve Rummel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Moriarty, Carl Osterwald, Larry Ottoson, Steve Rummel, and Rafell Williams, "Rating Photovoltaics" 39th IEEE Photovoltaic Specialist Conference, Tampa Bay, Florida, June 16-21,...

  6. Integrated Photovoltaics | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Jump to: navigation, search Name: Integrated Photovoltaics Place: Sunnyvale, California Product: California-based stealth mode PV startup. Coordinates: 32.780338,...

  7. Ligitek Photovoltaic | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic Jump to: navigation, search Name: Ligitek Photovoltaic Place: Taiwan Sector: Solar Product: Ligitek solar is a fully owned subsidiary of Ligitek Electronics, that will...

  8. QER- Comment of Northeast Gas Association

    Broader source: Energy.gov [DOE]

    Please find enclosed comments of the Northeast Gas Association regarding the Quadrennial Energy Review. Thank you.

  9. Microsystems Enabled Photovoltaics

    SciTech Connect (OSTI)

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2012-07-02

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  10. Microsystems Enabled Photovoltaics

    ScienceCinema (OSTI)

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2014-06-23

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  11. Photovoltaics industry profile

    SciTech Connect (OSTI)

    1980-10-01

    A description of the status of the US photovoltaics industry is given. Principal end-user industries are identified, domestic and foreign market trends are discussed, and industry-organized and US government-organized trade promotion events are listed. Trade associations and trade journals are listed, and a photovoltaic product manufacturers list is included. (WHK)

  12. Webinar: Northeast States’ Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Northeast States’ Hydrogen Economy" on Tuesday, December 1, from 12:00 to 1:00 p.m. Eastern Standard Time (EST).

  13. Detailed Photovoltaic Analysis Simulation Spreadsheet

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The software calculates photovoltaic system energy and financial performance via the utilization of very detailed parameters.

  14. Photovoltaics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics Photovoltaics The SunShot Initiative supports the research and development of photovoltaic (PV) technologies to improve efficiency and reliability and to lower manufacturing costs in order to make solar electricity cost-competitive with other sources of energy by 2020. As of November 2015, four years into the decade-long SunShot Initiative, the solar industry is about 70% of the way to achieving SunShot's cost target of $0.06 per kilowatt-hour for utility-scale PV (based on 2010

  15. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  16. HISTORICAL NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) TRIGGER...

    Office of Environmental Management (EM)

    HISTORICAL NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) TRIGGER REPORTS HISTORICAL NORTHEAST HOME HEATING OIL RESERVE (NEHHOR) TRIGGER REPORTS Historical Northeast Home Heating Oil ...

  17. NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM NORTHEAST HOME HEATING OIL RESERVE TRIGGER MECHANISM Historical Northeast Home Heating Oil Reserve Trigger Mechanism Charts ...

  18. Photovoltaic module with removable wind deflector (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Patent: Photovoltaic module with removable wind deflector Citation Details In-Document Search Title: Photovoltaic module with removable wind deflector A photovoltaic (PV) module ...

  19. Energy 101: Solar Photovoltaics | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaics Energy 101: Solar Photovoltaics February 10, 2011 - 5:29pm Addthis Learn more about photovoltaic systems that convert light energy into electricity. Andy Oare ...

  20. Solar Photovoltaic Technology Basics | Department of Energy

    Energy Savers [EERE]

    Solar Solar Photovoltaic Technology Basics Solar Photovoltaic Technology Basics August ... Photovoltaic (PV) materials and devices convert sunlight into electrical energy. A single ...

  1. Photovoltaic module with removable wind deflector (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Photovoltaic module with removable wind deflector Title: Photovoltaic module with removable wind deflector A photovoltaic (PV) module assembly including a PV module, a deflector, ...

  2. Category:Photovoltaic Incentives | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic Incentives Jump to: navigation, search Category for Photovoltaic Incentives. Pages in category "Photovoltaic Incentives" The following 107 pages are in this category,...

  3. Alternating Current Photovoltaic Building Block - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Alternating Current Photovoltaic Building Block Sandia National Laboratories Contact SNL About This...

  4. Category:Photovoltaic | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic Jump to: navigation, search This is the Photovoltaic category. Pages in category "Photovoltaic" The following 7 pages are in this category, out of 7 total. A American...

  5. Sputtered Thin Film Photovoltaics - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Sputtered Thin Film Photovoltaics Naval Research Laboratory Contact NRL About This Technology ...

  6. Photovoltaics: Separating Multiple Excitons

    SciTech Connect (OSTI)

    Nozik, A. J.

    2012-05-01

    Scientists have demonstrated an efficient process for generating multiple excitons in adjacent silicon nanocrystals from a single high-energy photon. Their findings could prove useful for a wide range of photovoltaic applications.

  7. Residential Photovoltaic Solar Panels

    Office of Energy Efficiency and Renewable Energy (EERE)

    This b-roll footage shows exteriors of two Colorado residences that use photovoltaic panels to collect renewable solar energy, thereby reducing their dependence on external electric power. Net...

  8. Photovoltaics: A Diverse Technology

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video illustrates the diversity of photovoltaic (PV) technology, which is due to innovations in PV materials, reductions in manufacturing costs, and expanding uses of the technology. A brief...

  9. Photovoltaic Research Facilities

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) funds photovoltaic (PV) research and development (R&D) at its national laboratory facilities located throughout the country. To encourage further innovation,...

  10. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Cruz-Campa, Jose Luis; Okandan, Murat; Resnick, Paul J

    2014-05-20

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electricity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  11. Photovoltaic solar cell

    DOE Patents [OSTI]

    Nielson, Gregory N; Okandan, Murat; Cruz-Campa, Jose Luis; Resnick, Paul J

    2013-11-26

    A photovoltaic solar cell for generating electricity from sunlight is disclosed. The photovoltaic solar cell comprises a plurality of spaced-apart point contact junctions formed in a semiconductor body to receive the sunlight and generate the electicity therefrom, the plurality of spaced-apart point contact junctions having a first plurality of regions having a first doping type and a second plurality of regions having a second doping type. In addition, the photovoltaic solar cell comprises a first electrical contact electrically connected to each of the first plurality of regions and a second electrical contact electrically connected to each of the second plurality of regions, as well as a passivation layer covering major surfaces and sidewalls of the photovoltaic solar cell.

  12. Photonic Design for Photovoltaics

    SciTech Connect (OSTI)

    Kosten, E.; Callahan, D.; Horowitz, K.; Pala, R.; Atwater, H.

    2014-08-28

    We describe photonic design approaches for silicon photovoltaics including i) trapezoidal broadband light trapping structures ii) broadband light trapping with photonic crystal superlattices iii) III-V/Si nanowire arrays designed for broadband light trapping.

  13. Photovoltaic System Fault Detection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic System Fault Detection and Diagnostics using Laterally Primed Adaptive Resonance Theory Neural Network C. Birk Jones, Joshua S. Stein, Sigifredo Gonzalez, and Bruce H. King Sandia National Laboratories, Albuquerque, NM, 87185, U.S.A Abstract-Cost effective integration of solar photovoltaic (PV) systems requires increased reliability. This can be achieved with a robust fault detection and diagnostic (FDD) tool that auto- matically discovers faults. This paper introduces the Laterally

  14. Photovoltaics Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Verde National Park in Colorado is the home of this PV array, where it provides energy for the visitor center. Photo Courtesy: Department of Energy Photovoltaics The U.S. Department of Energy (DOE)'s Solar Energy Technologies Office works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV), which is the direct conversion of sunlight into electricity by a semiconductor, in support of the goals of the SunShot Initiative. SunShot

  15. Amonix Photovoltaic System

    Office of Energy Efficiency and Renewable Energy (EERE)

    This photograph features the Amonix and Arizona Public Service (APS) partnership to install the world’s largest utility-scale concentrating photovoltaic (CPV) power plant in 2002. Photovoltaic (PV) systems at the APS facility use a combination of technologies. The systems in the foreground are single-axis tracking flat-plate silicon systems. Shown in the upper right are three large (35 kilowatt) Amonix CPV.

  16. Amonix Photovoltaic System

    Broader source: Energy.gov [DOE]

    This photograph features the Amonix and Arizona Public Service (APS) partnership to install the worlds largest utility-scale concentrating photovoltaic (CPV) power plant in 2002. Photovoltaic (PV) systems at the APS facility use a combination of technologies. The systems in the foreground are single-axis tracking flat-plate silicon systems. Shown in the upper right are three large (35 kilowatt) Amonix CPV.

  17. Photovoltaic systems and applications

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    Abstracts are given of presentations given at a project review meeting held at Albuquerque, NM. The proceedings cover the past accomplishments and current activities of the Photovoltaic Systems Research, Balance-of-System Technology Development and System Application Experiments Projects at Sandia National Laboratories. The status of intermediate system application experiments and residential system analysis is emphasized. Some discussion of the future of the Photovoltaic Program in general, and the Sandia projects in particular is also presented.

  18. Photovoltaics: The next generation

    SciTech Connect (OSTI)

    Wilson, A.

    1986-08-01

    The development of photovoltaics in the United States, with a few notable exceptions, has been carried out by the oil industry. Companies such as Arco, Exxon, Mobil and Sohio have played a tremendously important role in bringing photovoltaic technology to its current state of development. Many of these companies are continuing very active programs in pv, including the investigation of new and potentially far-reaching technologies.

  19. Photovoltaic module and interlocked stack of photovoltaic modules

    SciTech Connect (OSTI)

    Wares, Brian S.

    2014-09-02

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame. A plurality of individual male alignment features and a plurality of individual female alignment features are included on each frame. Adjacent photovoltaic modules are interlocked by multiple individual male alignment features on a first module of the adjacent photovoltaic modules fitting into and being surrounded by corresponding individual female alignment features on a second module of the adjacent photovoltaic modules. Other embodiments, features and aspects are also disclosed.

  20. NREL: Photovoltaics Research - Company Partners in Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing R&D Company Partners in Photovoltaic Manufacturing R&D More than 40 private-sector companies partnered with NREL on successful efforts within the PV Manufacturing R&D Project. They included manufacturers of crystalline silicon, thin-film, and concentrator solar technologies. The companies are listed below. Advanced Energy Systems Alpha Solarco ASE Americas AstroPower/GE Energy Boeing Aerospace BP Solar Cronar Crystal Systems Dow Corning Energy Conversion Devices

  1. Ultrafast Photovoltaic Response in Ferroelectric Nanolayers ...

    Office of Scientific and Technical Information (OSTI)

    Ultrafast Photovoltaic Response in Ferroelectric Nanolayers Citation Details In-Document Search Title: Ultrafast Photovoltaic Response in Ferroelectric Nanolayers Authors:...

  2. Research Opportunities in Reliability of Photovoltaic Modules (Presentation)

    SciTech Connect (OSTI)

    Hacke, P.

    2010-05-01

    The motivation for an increased scope and a more proactive effort in reliability research of photovoltaic modules and systems includes reducing the levelized cost of energy and gaining better confidence in the energy and financial payback for photovoltaic systems. This increased reliability and confidence will lead to greater penetration of photovoltaics in the energy portfolio and greater employment in photovoltaics and related industries. Present research needs include the fundamental degradation mechanisms of polymers, connectors and other module components, mapping of failure mechanisms observed in the field to those in accelerated lifetime tests, determining the acceleration factors, and improving standards for modules such that tests can appropriately be assigned to evaluate their long term durability. Specific mechanisms discussed are corrosion in module components, metastability in thin-film active layers, delamination and loss of elastic properties in module polymeric materials, and inverter failure. Presently, there is hiring of reliability scientists and engineers at many levels of the value chain for photovoltaics.

  3. Solar Energy Technologies Program: Photovoltaics

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its photovoltaics subprogram.

  4. NREL: Photovoltaics Research -Kent Terwilliger

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: Troubleshooting and repairing environmental test chambers. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  5. NREL: Photovoltaics Research - Greg Perrin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    maintenance, and repair; machining and other lab support. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  6. Photovoltaic Subcontract Program

    SciTech Connect (OSTI)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.

  7. Nanowires enabling strained photovoltaics

    SciTech Connect (OSTI)

    Greil, J.; Bertagnolli, E.; Lugstein, A.; Birner, S.

    2014-04-21

    Photovoltaic nano-devices have largely been relying on charge separation in conventional p-n junctions. Junction formation via doping, however, imposes major challenges in process control. Here, we report on a concept for photovoltaic energy conversion at the nano scale without the need for intentional doping. Our approach relies on charge carrier separation in inhomogeneously strained germanium nanowires (Ge NWs). This concept utilizes the strain-induced gradient in bandgap along tapered NWs. Experimental data confirms the feasibility of strain-induced charge separation in individual vapor-liquid-solid grown Ge NW devices with an internal quantum efficiency of ?5%. The charge separation mechanism, though, is not inherently limited to a distinct material. Our work establishes a class of photovoltaic nano-devices with its opto-electronic properties engineered by size, shape, and applied strain.

  8. Nanostructured Materials for Improved Photovoltaics

    SciTech Connect (OSTI)

    Morgan, Sarah E.; Cannon, Gordon C.; Heinhorst, Sabine; Rawlins, James W.

    2004-07-18

    This research addresses the fundamental issues of cell morphology and phase dimensions that determine conversion efficiency in polymeric organic photovoltaic devices. The approach will help explain the relationships between morphological control, domain size, and power conversion efficiency in OPV devices, with the goal of providing direction for development of OPV systems with greater efficiency. The program addresses the DOE Office of Energy Efficiency and Renewable Energy goals of providing economically sustainable clean energy technologies to reduce dependence on foreign oil. This research focused on synthesis, fabrication and analysis of both active and protective layers for improved organic and inorganic hybrid PV (PhotoVoltaic) materials. A systematic study of phase size, shape, and distance was conducted to determine the effects of morphology in each process. Four classes of nanostructured materials were studied: 1) functional block copolymers (AB, acceptor-donor blocks) that self-assemble into matched domain sizes 2) synthetic core-shell particles with separate acceptor and donor layers 3) bacterial micro-compartment (BMC) proteins as self-assembling shells for core-shell nanoparticle constructs and 4) polyhedral oligomeric silsesquioxane (POSS) nanostructured chemicals for enhanced efficiency and durability.

  9. Asphaltene based photovoltaic devices

    DOE Patents [OSTI]

    Chianelli, Russell R.; Castillo, Karina; Gupta, Vipin; Qudah, Ali M.; Torres, Brenda; Abujnah, Rajib E.

    2016-03-22

    Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises a photovoltaic device that comprises a first electrically conductive layer comprising a photo-sensitized electrode; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution comprising at least one asphaltene fraction, wherein the metal-oxide particles are optionally dispersed in a surfactant; and a second electrically conductive layer comprising a counter-electrode, wherein the second electrically conductive layer comprises one or more conductive elements comprising carbon, graphite, soot, carbon allotropes or any combinations thereof.

  10. High efficiency photovoltaic device

    DOE Patents [OSTI]

    Guha, Subhendu; Yang, Chi C.; Xu, Xi Xiang

    1999-11-02

    An N-I-P type photovoltaic device includes a multi-layered body of N-doped semiconductor material which has an amorphous, N doped layer in contact with the amorphous body of intrinsic semiconductor material, and a microcrystalline, N doped layer overlying the amorphous, N doped material. A tandem device comprising stacked N-I-P cells may further include a second amorphous, N doped layer interposed between the microcrystalline, N doped layer and a microcrystalline P doped layer. Photovoltaic devices thus configured manifest improved performance, particularly when configured as tandem devices.

  11. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  12. Reticulated Organic Photovoltaics

    SciTech Connect (OSTI)

    Schiros T.; Yager K.; Mannsfeld S.; Chiu C.-Y.; Ciston J.; Gorodetsky A.; Palma M.; Bullard Z.; Kramer T.; Delongchamp D.; Fischer D.; Kymissis I.; Toney M.F.; Nuckolls C.

    2012-03-21

    This paper shows how the self-assembled interlocking of two nanostructured materials can lead to increased photovoltaic performance. A detailed picture of the reticulated 6-DBTTC/C{sub 60} organic photovoltaic (OPV) heterojunction, which produces devices approaching the theoretical maximum for these materials, is presented from near edge X-ray absorption spectroscopy (NEXAFS), X-ray photoelectron spectroscopy (XPS), Grazing Incidence X-ray diffraction (GIXD) and transmission electron microscopy (TEM). The complementary suite of techniques shows how self-assembly can be exploited to engineer the interface and morphology between the cables of donor (6-DBTTC) material and a polycrystalline acceptor (C{sub 60}) to create an interpenetrating network of pure phases expected to be optimal for OPV device design. Moreover, we find that there is also a structural and electronic interaction between the two materials at the molecular interface. The data show how molecular self-assembly can facilitate 3-D nanostructured photovoltaic cells that are made with the simplicity and control of bilayer device fabrication. The significant improvement in photovoltaic performance of the reticulated heterojunction over the flat analog highlights the potential of these strategies to improve the efficiency of organic solar cells.

  13. Thin film photovoltaic cell

    DOE Patents [OSTI]

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  14. Formed photovoltaic module busbars

    SciTech Connect (OSTI)

    Rose, Douglas; Daroczi, Shan; Phu, Thomas

    2015-11-10

    A cell connection piece for a photovoltaic module is disclosed herein. The cell connection piece includes an interconnect bus, a plurality of bus tabs unitarily formed with the interconnect bus, and a terminal bus coupled with the interconnect bus. The plurality of bus tabs extend from the interconnect bus. The terminal bus includes a non-linear portion.

  15. Multiple gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  16. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, Dimitrios C.

    1983-01-01

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein the edge of which closely approaches but is spaced from the current collector strips.

  17. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  18. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    DOE works with national labs, academia, and industry to support the domestic photovoltaics (PV) industry and research enterprise. SunShot aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  19. Photovoltaic radiation detector element

    DOE Patents [OSTI]

    Agouridis, D.C.

    1980-12-17

    A radiation detector element is formed of a body of semiconductor material, a coating on the body which forms a photovoltaic junction therewith, and a current collector consisting of narrow metallic strips, the aforesaid coating having an opening therein in the edge of which closely approaches but is spaced from the current collector strips.

  20. Photovoltaics (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01

    The U.S. Department of Energy (DOE) works with industry, academia, national laboratories, and other government agencies to advance solar photovoltaics (PV) domestically. The SunShot Initiative aims to achieve widespread, unsubsidized cost-competitiveness through an applied research and development (R&D) portfolio spanning PV materials, devices, and manufacturing technologies.

  1. Calibration and Rating of Photovoltaics: Preprint

    SciTech Connect (OSTI)

    Emery, K.

    2012-06-01

    Rating the performance of photovoltaic (PV) modules is critical to determining the cost per watt, and efficiency is useful to assess the relative progress among PV concepts. Procedures for determining the efficiency for PV technologies from 1-sun to low concentration to high concentration are discussed. We also discuss the state of the art in primary and secondary calibration of PV reference cells used by calibration laboratories around the world. Finally, we consider challenges to rating PV technologies and areas for improvement.

  2. The Northeast Blackout of 1965

    SciTech Connect (OSTI)

    Vassell, G.S.

    1990-10-11

    Twenty-five years ago, on November 9, 1965, the electric utility industry - and the nation - experienced the biggest power failure in history. While major power outages did happen before and after this unique event, none of them came even close to the Great Northeast Blackout of 1965 - not in terms of the size of the area or the number of people affected, not in terms of the trauma inflicted on the society at large, and not in terms of its impact on the electric utility industry. With our institution memory - as a society - being as short as it is, many of the lessons that were learned by the industry, by the regulators, and by the nation at large in the wake of the Northeast Blackout have been, by now, mostly forgotten. The 25th anniversary of this event offers a unique opportunity, therefore, to refresh our institutional memory in this regard and, by doing so, bring to bear our past experience to the problems of today. This article has been written with this objective in mind and from the perspective of an individual who experienced firsthand - as an active electric utility industry participant - the Northeast Blackout itself, its aftermath, and the subsequent evolution of the industry to the present day.

  3. EIA - Natural Gas Pipeline System - Northeast Region

    U.S. Energy Information Administration (EIA) Indexed Site

    Northeast Region About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Natural Gas Pipelines in the Northeast Region Overview | Domestic Gas | Canadian Imports | Regional Pipeline Companies & Links Overview Twenty interstate natural gas pipeline systems operate within the Northeast Region (Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Virginia, and West Virginia). These

  4. Northeast Feedstock Supply Technical and Economica (Technical...

    Office of Scientific and Technical Information (OSTI)

    Northeast Feedstock Supply Technical and Economica Citation Details In-Document Search ... This in-depth analysis considers the current and f Authors: Corrie Nichol ; Kara Cafferty ...

  5. Northeast Honshu Arc | Open Energy Information

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Northeast Honshu Arc Details Areas (5) Power Plants (8) Projects (0) Techniques (0) References Geothermal Region Data Country(ies) Japan...

  6. Northeast Kansas Bioenergy LLC | Open Energy Information

    Open Energy Info (EERE)

    Kansas Bioenergy LLC Jump to: navigation, search Name: Northeast Kansas Bioenergy LLC Place: Hiawatha, Kansas Zip: 66434 Product: Developing and integrated Bioethanol Biodiesel...

  7. Northeast Piscataquis, Maine: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Northeast Piscataquis, Maine: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.9376353, -69.1023106 Show Map Loading map......

  8. Northeast Biodiesel Company LLC | Open Energy Information

    Open Energy Info (EERE)

    Company LLC Jump to: navigation, search Name: Northeast Biodiesel Company, LLC Place: Massachusetts Zip: 1301 Product: Massachusetts-based biodiesel producer and project developer....

  9. Northeast Sustainable Energy Association (Massachusetts) | Open...

    Open Energy Info (EERE)

    (Massachusetts) Jump to: navigation, search Name: Northeast Sustainable Energy Association Address: 50 Miles Street Place: Greenfield, Massachusetts Zip: 01301 Region: Greater...

  10. Photovoltaic module and interlocked stack of photovoltaic modules

    DOE Patents [OSTI]

    Wares, Brian S.

    2012-09-04

    One embodiment relates to an arrangement of photovoltaic modules configured for transportation. The arrangement includes a plurality of photovoltaic modules, each photovoltaic module including a frame having at least a top member and a bottom member. A plurality of alignment features are included on the top member of each frame, and a plurality of alignment features are included on the bottom member of each frame. Adjacent photovoltaic modules are interlocked by the alignment features on the top member of a lower module fitting together with the alignment features on the bottom member of an upper module. Other embodiments, features and aspects are also disclosed.

  11. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, D.M.

    1997-11-18

    A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.

  12. Temperature compensated photovoltaic array

    DOE Patents [OSTI]

    Mosher, Dan Michael

    1997-11-18

    A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.

  13. ARM - Field Campaign - 1996 NARSTO Northeast Field Study (NARSTO-NE)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 NARSTO Northeast Field Study (NARSTO-NE) ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 1996 NARSTO Northeast Field Study (NARSTO-NE) 1996.07.01 - 1996.07.28 Lead Scientist : Larry Kleinman For data sets, see below. Abstract The DOE G-1 aircraft was deployed in the New York City metropolitan area as part of the North American Research Strategy for Tropospheric Ozone-Northeast effort to determine the

  14. Microsystems Enabled Photovoltaics (MEPV)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enabled Photovoltaics (MEPV) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced

  15. Photovoltaics in the Classroom

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaics (PV) in the Classroom Workshop National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 National Renewable Energy Laboratory 2 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy National Laboratory Operated by Midwest Research Institute * Battelle * Bechtel NREL/PublicationCode June 1999 NOTICE This report was prepared as an account of work sponsored by an agency of the United States

  16. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H.

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  17. Iron Chalcogenide Photovoltaic Absorbers

    SciTech Connect (OSTI)

    Yu, Liping; Lany, Stephan; Kykyneshi, Robert; Jieratum, Vorranutch; Ravichandran, Ram; Pelatt, Brian; Altschul, Emmeline; Platt, Heather A. S.; Wager, John F.; Keszler, Douglas A.; Zunger, Alex

    2011-08-10

    An integrated computational and experimental study of FeS? pyrite reveals that phase coexistence is an important factor limiting performance as a thin-film solar absorber. This phase coexistence is suppressed with the ternary materials Fe?SiS? and Fe?GeS?, which also exhibit higher band gaps than FeS?. Thus, the ternaries provide a new entry point for development of thin-film absorbers and high-efficiency photovoltaics.

  18. Photovoltaic self-assembly.

    SciTech Connect (OSTI)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  19. Photovoltaic module reliability workshop

    SciTech Connect (OSTI)

    Mrig, L.

    1990-01-01

    The paper and presentations compiled in this volume form the Proceedings of the fourth in a series of Workshops sponsored by Solar Energy Research Institute (SERI/DOE) under the general theme of photovoltaic module reliability during the period 1986--1990. The reliability Photo Voltaic (PV) modules/systems is exceedingly important along with the initial cost and efficiency of modules if the PV technology has to make a major impact in the power generation market, and for it to compete with the conventional electricity producing technologies. The reliability of photovoltaic modules has progressed significantly in the last few years as evidenced by warranties available on commercial modules of as long as 12 years. However, there is still need for substantial research and testing required to improve module field reliability to levels of 30 years or more. Several small groups of researchers are involved in this research, development, and monitoring activity around the world. In the US, PV manufacturers, DOE laboratories, electric utilities and others are engaged in the photovoltaic reliability research and testing. This group of researchers and others interested in this field were brought together under SERI/DOE sponsorship to exchange the technical knowledge and field experience as related to current information in this important field. The papers presented here reflect this effort.

  20. Photovoltaic Films - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Photovoltaic Films Los Alamos National Laboratory Contact LANL About This Technology LANL’s solar power portfolio includes a deposition process known as PAD. PAD eliminates the need for vacuum-based thin film equipment. LANL's solar power portfolio includes a deposition process known as PAD. PAD eliminates the need for vacuum-based thin film equipment. Technology Marketing SummaryThe rising total cost of energy

  1. Photovoltaics Team | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team Photovoltaics Team Dr. Lenny Tinker Headshot Lenny-Tinker.jpg Dr. Lenny Tinker is the acting program manager for the photovoltaics team. He has been at the U.S. Department of Energy Solar Energy Technologies Office (SETO) since September 2011 and started as an AAAS Science and Technology Policy Fellow on the Photovoltaics team working on Incubator Round 6. As a Federal employee, he now manages early-stage applied research and development programs at national labs, universities, and

  2. NREL: Photovoltaics Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaics Research Photo of Photovoltaic Solar Panels. Photovoltaic (PV) research and development (R&D) at the National Renewable Energy Laboratory (NREL) focuses on (1) boosting solar cell conversion efficiencies, (2) lowering the cost of solar cells, modules, and systems, and (3) improving the reliability of PV components and systems. NREL's PV effort contributes to these goals through high-impact successes in fundamental research, advanced materials and devices, and technology

  3. Solar photovoltaics for development applications

    SciTech Connect (OSTI)

    Shepperd, L.W.; Richards, E.H.

    1993-08-01

    This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

  4. Photovoltaic Cart Receives Presidential Award

    Broader source: Energy.gov [DOE]

    This photograph features a photovoltaic (PV)-powerd cart that members of the Facilities Energy Management team and Fleet Services organization at Sandia National Laboratories designed. With the...

  5. Glitter-Sized Solar Photovoltaics

    Broader source: Energy.gov [DOE]

    Featured in this photograph are tiny glitter-sized photovoltaic cells, developed by Sandia National Laboratories scientists, that could revolutionize the way solar energy is collected and used....

  6. Process Development for Nanostructured Photovoltaics

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Nanofabrication Method To Develop Nanostructured, Dye-Sensitized Solar Cells Introduction Photovoltaic (PV) manufacturing is an emerging industry that promises a ...

  7. Photovoltaics Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc Jump to: navigation, search Name: Photovoltaics Inc Place: Ft. Pierce, Florida Zip: 34981 Product: Makes nano crystalline silicon particles and collides, and has over 22...

  8. NREL: Photovoltaics Research - Bill Sekulic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Silicon Modules to Qualify Their Resistance to System Voltage Stress." Progress in Photovoltaics: Research and Applications, 22(7): 775-83; Golden, CO: National Renewable Energy...

  9. NREL: Photovoltaics Research - Bill Marion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Publications View NREL publications for this staff member. Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  10. NREL: Photovoltaics Research - NCPV Hotline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | April-June | July-September | October-December Annual Index Printable Version Photovoltaics Research Home Silicon Polycrystalline Thin Films Multijunctions New Materials,...

  11. Utility-scale photovoltaic concentrators

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The photovoltaics concentrators section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  12. Microsystems Enabled Photovoltaics (MEPV) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Microsystems Enabled Photovoltaics (MEPV) Solar Glitter(tm) Photovoltaic Technology Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Microsystems Enabled Photovoltaics (MEPV) "Solar Glitter" (3,459 KB) Technology Marketing Summary Revolutionary microsolar technology utilizes glitter-sized photovoltaic cells to change how we generate and use solar power. The

  13. Northeast

    Broader source: Energy.gov (indexed) [DOE]

    The N ortheast c onsists o f a n umber o f l arge a nd d ensely populated u rban a nd i ndustrial a reas, a s w ell a s w ide--- ranging r ural a reas a nd d eciduous f orestland. ...

  14. Funding Opportunity Announcement: Photovoltaic Research & Development...

    Energy Savers [EERE]

    Photovoltaic Research & Development (PVRD) Funding Opportunity Announcement: Photovoltaic Research & Development (PVRD) Funding Number: DE-FOA-0001387 Funding Amount: 20,000,000 ...

  15. Photovoltaic Research and Development - Small Innovative Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaic Research and Development - Small Innovative Projects in Solar (PVRD-SIPS) Photovoltaic Research and Development - Small Innovative Projects in Solar (PVRD-SIPS) ...

  16. PROJECT PROFILE: Rapid Development of Disruptive Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rapid Development of Disruptive Photovoltaic Technologies PROJECT PROFILE: Rapid Development of Disruptive Photovoltaic Technologies Funding Opportunity: SuNLaMP SunShot ...

  17. Photovoltaic Degradation Rates -- An Analytical Review: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Degradation Rates - An Analytical Review Dirk C. Jordan and Sarah R. Kurtz To ... Abstract As photovoltaic penetration of the power grid increases, accurate predictions of ...

  18. PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scientific Approach to Reducing Photovoltaic Module Material Costs While Increasing Durability PROJECT PROFILE: Scientific Approach to Reducing Photovoltaic Module Material Costs ...

  19. Advancing Solar Through Photovoltaic Technology Innovations ...

    Energy Savers [EERE]

    Advancing Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity ...

  20. Aurora Photovoltaics Manufacturing | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Manufacturing Jump to: navigation, search Name: Aurora Photovoltaics Manufacturing Place: Lawrenceville, New Jersey Zip: 8648 Sector: Solar Product: A subsidiary of...

  1. Sandia Energy Photovoltaic Systems Evaluation Laboratory ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feed 0 Sandians Win 'Best Paper' Award at Photovoltaic Conference in Japan http:energy.sandia.govsandians-win-best-paper-award-at-photovoltaic-conference-in-j...

  2. Photovoltaic Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Related Articles Quiz: Test Your Solar IQ Energy 101: Solar Photovoltaics Photovoltaic Cell Basics Energy Basics Home Renewable Energy Biomass Geothermal Hydrogen & Fuel ...

  3. Photovoltaic Cell Performance Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance Basics Photovoltaic Cell Performance Basics August 19, 2013 - 4:55pm Addthis Photovoltaic (PV), or solar cells use the energy in sunlight to produce electricity. ...

  4. Advancing Solar Through Photovoltaic Technology Innovations ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Through Photovoltaic Technology Innovations Advancing Solar Through Photovoltaic Technology Innovations April 19, 2011 - 5:17pm Addthis At NREL's High-Intensity Pulse Solar ...

  5. Solar Leasing for Residential Photovoltaic Systems | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Leasing for Residential Photovoltaic Systems Solar Leasing for Residential Photovoltaic Systems This publication examines the solar lease option for residential PV systems ...

  6. Photovoltaics Value Clearinghouse | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics Value Clearinghouse Jump to: navigation, search The Photovoltaics Value Clearinghouse was developed by NREL and Clean Power Research.1 The PV Value Clearinghouse is...

  7. Earth-abundant semiconductors for photovoltaic applications ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth-abundant semiconductors for photovoltaic applications Thin film photovoltaics (solar cells) has the potential to revolutionize our energy landscape by producing clean,...

  8. Jiaxing Winsaint Photovoltaic | Open Energy Information

    Open Energy Info (EERE)

    Winsaint Photovoltaic Jump to: navigation, search Name: Jiaxing Winsaint Photovoltaic Place: Jiashan Town, Zhejiang Province, China Zip: 314100 Product: China-based manufacturer of...

  9. Dazhan Photovoltaic Co | Open Energy Information

    Open Energy Info (EERE)

    Dazhan Photovoltaic Co Jump to: navigation, search Name: Dazhan Photovoltaic Co Place: Wenzhou City, Zhejiang Province, China Sector: Solar Product: China-based solar energy cell...

  10. Shaanxi Photovoltaic Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Shaanxi Photovoltaic Co Ltd Place: Shaanxi Province, China Product: Shaanxi-based intergrated PV company. References: Shaanxi Photovoltaic...

  11. Institute of Concentration Photovoltaic Systems ISFOC | Open...

    Open Energy Info (EERE)

    Photovoltaic Systems ISFOC Jump to: navigation, search Name: Institute of Concentration Photovoltaic Systems (ISFOC) Place: Puertallano, Spain Zip: 13500 Product: Part of the R&D...

  12. British Photovoltaic Association | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic Association Jump to: navigation, search Name: British Photovoltaic Association Place: Milton Keynes, United Kingdom Zip: MK5 8NG Product: Trade body for the PV...

  13. Jinzhou Jinmao Photovoltaic Technology | Open Energy Information

    Open Energy Info (EERE)

    Jinmao Photovoltaic Technology Jump to: navigation, search Name: Jinzhou Jinmao Photovoltaic Technology Place: Jinzhou, Liaoning Province, China Product: China-based manufacturer...

  14. American Photovoltaics LP | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaics LP Place: Houston, Texas Product: Manufactures and markets thin-film photovoltaic modules. Coordinates: 29.76045, -95.369784 Show Map Loading map......

  15. Southwest Photovoltaic Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Southwest Photovoltaic Systems Inc Jump to: navigation, search Name: Southwest Photovoltaic Systems Inc Place: Tomball, Texas Zip: 77375 Product: Distributor of small scale PV...

  16. Webinar December 1: Northeast States’ Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department will present a live webinar titled "Northeast States’ Hydrogen Economy" on Tuesday, December 1, from 12:00 to 1:00 p.m. EST. The webinar will focus on state efforts to support the regional development of hydrogen infrastructure for the deployment of fuel cell electric vehicles in the Northeast United States.

  17. 2016 Northeast Energy Efficiency Summit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast Energy Efficiency Summit 2016 Northeast Energy Efficiency Summit June 13, 2016 7:30AM EDT to June 14, 2016 3:3

  18. Northeast Energy Efficiency Partnerships, Inc | Open Energy Informatio...

    Open Energy Info (EERE)

    Energy Efficiency Partnerships, Inc Jump to: navigation, search Logo: Northeast Energy Efficiency Partnerships, Inc Name: Northeast Energy Efficiency Partnerships, Inc Address: 5...

  19. Additional Storage Contracts Awarded for Northeast Home Heating...

    Broader source: Energy.gov (indexed) [DOE]

    storage services for the one million barrel Northeast Home Heating Oil Reserve (NEHHOR). ... The Northeast Home Heating Oil Reserve was authorized by Congress in the Energy Policy Act ...

  20. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) (3.31 MB) More Documents & Publications PIA - WEB Physical ...

  1. Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release...

    Energy Savers [EERE]

    Heating Oil Reserve Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release Northeast Home Heating Oil Reserve (NEHHOR) Guidelines for Release The Energy Policy and ...

  2. Paducah Gaseous Diffusion Plant - GW OU Northeast Plume | Department...

    Office of Environmental Management (EM)

    Northeast Plume Paducah Gaseous Diffusion Plant - GW OU Northeast Plume January 1, 2014 - ... InstallationName, State: Paducah Gaseous Diffusion Plant, KY Responsible DOE Office: ...

  3. Graphite-based photovoltaic cells

    DOE Patents [OSTI]

    Lagally, Max; Liu, Feng

    2010-12-28

    The present invention uses lithographically patterned graphite stacks as the basic building elements of an efficient and economical photovoltaic cell. The basic design of the graphite-based photovoltaic cells includes a plurality of spatially separated graphite stacks, each comprising a plurality of vertically stacked, semiconducting graphene sheets (carbon nanoribbons) bridging electrically conductive contacts.

  4. Photovoltaics: solar electric power systems

    SciTech Connect (OSTI)

    1980-02-01

    The operation and uses of solar cells and the National Photovoltaic Program are briefly described. Eleven DOE photovoltaic application projects are described including forest lookout towers; Wilcox Memorial Hospital in Hawaii; WBNO daytime AM radio station; Schuchuli Indian Village; Meade, Nebraska, agricultural experiment; Mt. Laguna Air Force Station; public schools and colleges; residential applications; and Sea World of Florida. (WHK)

  5. Photovoltaic Degradation Risk: Preprint

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    The ability to accurately predict power delivery over the course of time is of vital importance to the growth of the photovoltaic (PV) industry. Important cost drivers include the efficiency with which sunlight is converted into power, how this relationship changes over time, and the uncertainty in this prediction. An accurate quantification of power decline over time, also known as degradation rate, is essential to all stakeholders - utility companies, integrators, investors, and researchers alike. In this paper we use a statistical approach based on historical data to quantify degradation rates, discern trends and quantify risks related to measurement uncertainties, number of measurements and methodologies.

  6. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  7. Thin film photovoltaic device

    DOE Patents [OSTI]

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  8. Bracket for photovoltaic modules

    DOE Patents [OSTI]

    Ciasulli, John; Jones, Jason

    2014-06-24

    Brackets for photovoltaic ("PV") modules are described. In one embodiment, a saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. The gusset can have a first leg and a second leg extending at an angle relative to the mounting surface. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets. The mounting feature can be coupled to the first gusset and configured to stand the one or more PV modules off the tube.

  9. Photovoltaic manufacturing technology

    SciTech Connect (OSTI)

    Wohlgemuth, J.H.; Whitehouse, D.; Wiedeman, S.; Catalano, A.W.; Oswald, R. )

    1991-12-01

    This report identifies steps leading to manufacturing large volumes of low-cost, large-area photovoltaic (PV) modules. Both crystalline silicon and amorphous silicon technologies were studied. Cost reductions for each step were estimated and compared to Solarex Corporation's manufacturing costs. A cost model, a simple version of the SAMICS methodology developed by the Jet Propulsion Laboratory (JPL), projected PV selling prices. Actual costs of materials, labor, product yield, etc., were used in the cost model. The JPL cost model compared potential ways of lowering costs. Solarex identified the most difficult technical challenges that, if overcome, would reduce costs. Preliminary research plans were developed to solve the technical problems. 13 refs.

  10. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Mittan, Margaret Birmingham; Miros, Robert H. J.; Brown, Malcolm P.; Stancel, Robert

    2012-06-05

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  11. Photovoltaic panel clamp

    DOE Patents [OSTI]

    Brown, Malcolm P.; Mittan, Margaret Birmingham; Miros, Robert H. J.; Stancel, Robert

    2013-03-19

    A photovoltaic panel clamp includes an upper and lower section. The interface between the assembled clamp halves and the module edge is filled by a flexible gasket material, such as EPDM rubber. The gasket preferably has small, finger like protrusions that allow for easy insertion onto the module edge while being reversed makes it more difficult to remove them from the module once installed. The clamp includes mounting posts or an integral axle to engage a bracket. The clamp also may include a locking tongue to secure the clamp to a bracket.

  12. Economics of Future Growth in Photovoltaics Manufacturing

    SciTech Connect (OSTI)

    Basore, Paul A.; Chung, Donald; Buonassisi, Tonio

    2015-06-14

    The past decade's record of growth in the photovoltaics manufacturing industry indicates that global investment in manufacturing capacity for photovoltaic modules tends to increase in proportion to the size of the industry. The slope of this proportionality determines how fast the industry will grow in the future. Two key parameters determine this slope. One is the annual global investment in manufacturing capacity normalized to the manufacturing capacity for the previous year (capacity-normalized capital investment rate, CapIR, units $/W). The other is how much capital investment is required for each watt of annual manufacturing capacity, normalized to the service life of the assets (capacity-normalized capital demand rate, CapDR, units $/W). If these two parameters remain unchanged from the values they have held for the past few years, global manufacturing capacity will peak in the next few years and then decline. However, it only takes a small improvement in CapIR to ensure future growth in photovoltaics. Any accompanying improvement in CapDR will accelerate that growth.

  13. NREL Center for Photovoltaics

    SciTech Connect (OSTI)

    2009-01-01

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  14. NREL Center for Photovoltaics

    ScienceCinema (OSTI)

    None

    2013-05-29

    Solar cells, also called photovoltaics (PV) by solar cell scientists, convert sunlight directly into electricity. Solar cells are often used to power calculators and watches. The performance of a solar cell is measured in terms of its efficiency at turning sunlight into electricity. Only sunlight of certain energies will work efficiently to create electricity, and much of it is reflected or absorbed by the material that make up the cell. Because of this, a typical commercial solar cell has an efficiency of 15%?about one-sixth of the sunlight striking the cell generates electricity. Low efficiencies mean that larger arrays are needed, and that means higher cost. Improving solar cell efficiencies while holding down the cost per cell is an important goal of the PV industry, researchers at the National Renewable Energy Laboratory (NREL) and other U.S. Department of Energy (DOE) laboratories, and they have made significant progress. The first solar cells, built in the 1950s, had efficiencies of less than 4%. For a text version of this video visit http://www.nrel.gov/learning/re_photovoltaics_video_text.html

  15. Renewable Energy Ready Home Solar Photovoltaic Specifications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Solar Photovoltaic Specification, Checklist and Guide, from the U.S. Environmental Protection Agency.

  16. Report Comparing the Impacts of Northeast Hurricanes Now Available

    Broader source: Energy.gov [DOE]

    The report "Comparing the Impacts of Northeast Hurricanes on Energy Infrastructure" is now available for download.

  17. Method and apparatus for increasing the durability and yield of thin film photovoltaic devices

    DOE Patents [OSTI]

    Phillips, James E.; Lasswell, Patrick G.

    1987-01-01

    Thin film photovoltaic cells having a pair of semiconductor layers between an opaque and a transparent electrical contact are manufactured in a method which includes the step of scanning one of the semiconductor layers to determine the location of any possible shorting defect. Upon the detection of such defect, the defect is eliminated to increase the durability and yield of the photovoltaic device.

  18. CX-006491: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination CX-006491: Categorical Exclusion Determination Photovoltaic Manufacturing Consortium CX(s) Applied: B3.6 Date: 09012011 Location(s): Florida...

  19. Plasmonic Backscattering Enhanced Inverted Photovoltaics

    SciTech Connect (OSTI)

    Dissanayake, D. M. N. M.; Roberts, B.; Ku, P.C.

    2011-01-01

    A plasmonic nanoparticle incorporated inverted organic photovoltaic structure was demonstrated where a monolayer of Ag nanoparticles acted as a wavelength selective reflector. Enhanced light harvesting via plasmonic backscattering into the photovoltaic absorber was observed, resulting in a two-fold improvement in the photocurrent and increased open-circuit voltage. Further, utilizing an optical spacer, the plasmonic backscattering was spectrally controlled, thereby modulating the external quantum efficiency and the photocurrent. Unlike a regular thin-film metallic back reflector, excellent off-resonance optical transmission in excess of 80% was observed from the Ag nanoparticles, making this structure highly suitable for semi-transparent and multi-junction photovoltaic applications.

  20. Photovoltaic module with adhesion promoter

    DOE Patents [OSTI]

    Xavier, Grace

    2013-10-08

    Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.

  1. High Performance Photovoltaic Project Overview

    SciTech Connect (OSTI)

    Symko-Davies, M.; McConnell, R.

    2005-01-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and environment in the 21st century. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. In this paper, we describe the recent research accomplishments in the in-house directed efforts and the research efforts under way in the subcontracted area.

  2. Photovoltaic power generation system free of bypass diodes (Patent...

    Office of Scientific and Technical Information (OSTI)

    Photovoltaic power generation system free of bypass diodes Title: Photovoltaic power generation system free of bypass diodes A photovoltaic power generation system that includes a ...

  3. AWEA Wind Energy Regional Summit: Northeast

    Office of Energy Efficiency and Renewable Energy (EERE)

    The AWEA Wind Energy Northeast Regional Summit will connect you with New England-area wind energy professionals and offers the opportunity to discuss significant issues related to land-based and...

  4. Northeast Clean Energy Application Center

    SciTech Connect (OSTI)

    Bourgeois, Tom

    2013-09-30

    From October 1, 2009 through September 30, 2013 (“contract period”), the Northeast Clean Energy Application Center (“NE-CEAC”) worked in New York and New England (Connecticut, Rhode Island, Vermont, Massachusetts, New Hampshire, and Maine) to create a more robust market for the deployment of clean energy technologies (CETs) including combined heat and power (CHP), district energy systems (DES), and waste heat recovery (WHR) systems through the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers. CHP, DES, and WHR can help reduce greenhouse gas emissions, reduce electrical and thermal energy costs, and provide more reliable energy for users throughout the United States. The NE-CEAC’s efforts in the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers helped advance the market for CETs in the Northeast thereby helping the region move towards the following outcomes: • Reduction of greenhouse gas emissions and criteria pollutants • Improvements in energy efficiency resulting in lower costs of doing business • Productivity gains in industry and efficiency gains in buildings • Lower regional energy costs • Strengthened energy security • Enhanced consumer choice • Reduced price risks for end-users • Economic development effects keeping more jobs and more income in our regional economy Over the contract period, NE-CEAC provided technical assistance to approximately 56 different potential end-users that were interested in CHP and other CETs for their facility or facilities. Of these 56 potential end-users, five new CHP projects totaling over 60 MW of install capacity became operational during the contract period. The NE-CEAC helped host numerous target market workshops, trainings, and webinars; and NE-CEAC staff delivered presentations at many other workshops and conferences. In total, over 60 different workshops

  5. Thin film photovoltaic panel and method

    SciTech Connect (OSTI)

    Ackerman, B.; Albright, S.P.; Jordan, J.F.

    1991-06-11

    This patent describes an improved stability photovoltaic panel. It comprises photovoltaic cells each having polycrystalline thin film layers, each of the thin film layers respectively deposited on a common vitreous substrate for allowing light to pass therethrough to reach a photovoltaic heterojunction formed by at least two of the thin film layers, at least one of the film layers forming the photovoltaic heterojunction for each of the photovoltaic cells, each of the photovoltaic cells lying within a plane substantially parallel to an interior planar surface of the vitreous substrate, each of the photovoltaic cells being connected electrically in series to pass electrical current from the photovoltaic panel, a pliable sheet material backcap opposite the vitreous substrate with respect to the photovoltaic cells and spaced from the photovoltaic cells so as to form a substantially planar spacing between the photovoltaic cells and an interior surface of the sheet material backcap, a perimeter portion of the sheet material backcap having a bend for positioning an edge strip of the sheet material backcap spaced from the interior surface of the backcap to form the planar spacing, the edge strip forming a planar surface parallel with a sealingly engaging the vitreous substrate for forming a fluid-tight seal with the vitreous substrate about the perimeter of the photovoltaic cells for protecting the photovoltaic cells from elements exterior of the photovoltaic panel, and a selected desiccant filling substantially the planar spacing for preventing water vapor within the planar spacing from adversely affecting the photovoltaic cells.

  6. NREL: Photovoltaics Research - Photovoltaic Manufacturing R&D Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Manufacturing R&D Project Photo of blue solar cells being sorted in a production line. A woman works behind the protective glass in the background. BP Solar's manufacturing capabilities include automatic sorting of solar cells after final testing. NREL's Photovoltaic (PV) Manufacturing Research and Development (R&D) Project was a cost-shared partnership between NREL and a number of private-sector solar companies. The primary project goals were to reduce costs for consumers

  7. Salvage Values Determines Reliability of Used Photovoltaics ...

    Broader source: Energy.gov (indexed) [DOE]

    Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13ps1energyideasmccabe.pdf More Documents & Publications Revitalizing ...

  8. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N; Holland, Rodney H

    2012-09-18

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  9. Photovoltaic module mounting system

    DOE Patents [OSTI]

    Miros, Robert H. J.; Mittan, Margaret Birmingham; Seery, Martin N.; Holland, Rodney H.

    2012-04-17

    A solar array mounting system having unique installation, load distribution, and grounding features, and which is adaptable for mounting solar panels having no external frame. The solar array mounting system includes flexible, pedestal-style feet and structural links connected in a grid formation on the mounting surface. The photovoltaic modules are secured in place via the use of attachment clamps that grip the edge of the typically glass substrate. The panel mounting clamps are then held in place by tilt brackets and/or mid-link brackets that provide fixation for the clamps and align the solar panels at a tilt to the horizontal mounting surface. The tilt brackets are held in place atop the flexible feet and connected link members thus creating a complete mounting structure.

  10. Photovoltaic cell assembly

    DOE Patents [OSTI]

    Beavis, Leonard C.; Panitz, Janda K. G.; Sharp, Donald J.

    1990-01-01

    A photovoltaic assembly for converting high intensity solar radiation into lectrical energy in which a solar cell is separated from a heat sink by a thin layer of a composite material which has excellent dielectric properties and good thermal conductivity. This composite material is a thin film of porous Al.sub.2 O.sub.3 in which the pores have been substantially filled with an electrophoretically-deposited layer of a styrene-acrylate resin. This composite provides electrical breakdown strengths greater than that of a layer consisting essentially of Al.sub.2 O.sub.3 and has a higher thermal conductivity than a layer of styrene-acrylate alone.

  11. Photovoltaic solar cell

    SciTech Connect (OSTI)

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2015-09-08

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  12. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  13. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  14. Northeast States Hydrogen Economy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Northeast States' Hydrogen Economy U.S. Department of Energy Fuel Cell Technologies Office December 1 st , 2015 Presenter: Joel Rinebold - Connecticut Center for Advanced Technology, Inc. DOE Host: Peter Devlin- DOE Fuel Cell Technologies Office Question and Answer * Please type your questions into the question box 2 Northeast States' Hydrogen Economy Economic Development, Environmental Performance, Energy Reliability Joel M. Rinebold Connecticut Center for Advanced Technology, Inc. December 1,

  15. Plug-and-Play Photovoltaics

    Broader source: Energy.gov [DOE]

    On December 7, 2012, DOE announced $21 million in funding for the Plug-and-Play Photovoltaics funding opportunity. Part of the SunShot Systems Integration efforts, the following projects were...

  16. Denver International Airport Photovoltaic System

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Denver International Airport (DIA) features a 2-megawatt (MW) photovoltaic (PV) system. DIA also hosts to a second 1.6-MW system. Denver is a Solar America City.

  17. Salem Electric- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    Salem Electric offers a rebate to residential customers who install solar photovoltaic (PV) systems. The rebate offered is $600 for the first three kilowatts (kWs) installed and $300/kW for any...

  18. Photovoltaic as | Open Energy Information

    Open Energy Info (EERE)

    as Jump to: navigation, search Name: Photovoltaic as Place: Zl-n, Czech Republic Zip: 760 01 Product: Czech developer operating a 1.4MW plant in the Czech Republic. Coordinates:...

  19. Rooftop Photovoltaics Market Penetration Scenarios

    SciTech Connect (OSTI)

    Paidipati, J.; Frantzis, L.; Sawyer, H.; Kurrasch, A.

    2008-02-01

    The goal of this study was to model the market penetration of rooftop photovoltaics (PV) in the United States under a variety of scenarios, on a state-by-state basis, from 2007 to 2015.

  20. Solid State Photovoltaic Research Branch

    SciTech Connect (OSTI)

    Not Available

    1990-09-01

    This report summarizes the progress of the Solid State Photovoltaic Research Branch of the Solar Energy Research Institute (SERI) from October 1, 1988, through September 30,l 1989. Six technical sections of the report cover these main areas of SERIs in-house research: Semiconductor Crystal Growth, Amorphous Silicon Research, Polycrystalline Thin Films, III-V High-Efficiency Photovoltaic Cells, Solid-State Theory, and Laser Raman and Luminescence Spectroscopy. Sections have been indexed separately for inclusion on the data base.

  1. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, R.J.; Osbourn, G.C.

    1983-07-08

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  2. Quantum well multijunction photovoltaic cell

    DOE Patents [OSTI]

    Chaffin, Roger J.; Osbourn, Gordon C.

    1987-01-01

    A monolithic, quantum well, multilayer photovoltaic cell comprises a p-n junction comprising a p-region on one side and an n-region on the other side, each of which regions comprises a series of at least three semiconductor layers, all p-type in the p-region and all n-type in the n-region; each of said series of layers comprising alternating barrier and quantum well layers, each barrier layer comprising a semiconductor material having a first bandgap and each quantum well layer comprising a semiconductor material having a second bandgap when in bulk thickness which is narrower than said first bandgap, the barrier layers sandwiching each quantum well layer and each quantum well layer being sufficiently thin that the width of its bandgap is between said first and second bandgaps, such that radiation incident on said cell and above an energy determined by the bandgap of the quantum well layers will be absorbed and will produce an electrical potential across said junction.

  3. UTILITY-SCALE PHOTOVOLTAIC SOLAR | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UTILITY-SCALE PHOTOVOLTAIC SOLAR UTILITY-SCALE PHOTOVOLTAIC SOLAR SOLAR: UTILITY-SCALE PHOTOVOLTAIC SOLAR POSTER (1.07 MB) More Documents & Publications UTILITY-SCALE PHOTOVOLTAIC SOLAR Download LPO's Illustrated Poster Series ANTELOPE VALLEY SOLAR RANCH MESQUITE

  4. Photovoltaic array mounting apparatus, systems, and methods

    SciTech Connect (OSTI)

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2015-04-14

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  5. Photovoltaic array mounting apparatus, systems, and methods

    DOE Patents [OSTI]

    West, Jack Raymond; Atchley, Brian; Hudson, Tyrus Hawkes; Johansen, Emil

    2016-01-05

    A photovoltaic array, including: (a) supports laid out on a surface in rows and columns; (b) photovoltaic modules positioned on top of the supports; and (c) fasteners connecting the photovoltaic modules to the supports, wherein the supports have an upper pedestal surface and a lower pedestal surface such that the photovoltaic modules are positioned at a non-horizontal angle when edges of the photovoltaic modules are positioned on top of the upper and lower pedestal surfaces, and wherein a portion of the fasteners rotate to lock the photovoltaic modules onto the supports.

  6. PROJECT PROFILE: Degradation Assessment of Fielded CIGS Photovoltaic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Degradation Assessment of Fielded CIGS Photovoltaic Module Technologies PROJECT PROFILE: Degradation Assessment of Fielded CIGS Photovoltaic Module Technologies Funding ...

  7. Photovoltaics for municipal planners

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    This booklet is intended for city and county government personnel, as well as community organizations, who deal with supplying, regulating, or recommending electric power resources. Specifically, this document deals with photovoltaic (PV) power, or power from solar cells, which is currently the most cost-effective energy source for electricity requirements that are relatively small, located in isolated areas, or difficult to serve with conventional technology. Recently, PV has been documented to be more cost-effective than conventional alternatives (such as line extensions or engine generators) in dozens of applications within the service territories of electric, gas, and communications utilities. Here, we document numerous cost-effective urban applications, chosen by planners and utilities because they were the most cost-effective option or because they were appropriate for environmental or logistical reasons. These applications occur within various municipal departments, including utility, parks and recreation, traffic engineering, transportation, and planning, and they include lighting applications, communications equipment, corrosion protection, irrigation control equipment, remote monitoring, and even portable power supplies for emergency situations.

  8. Photovoltaic Incentive Design Handbook

    SciTech Connect (OSTI)

    Hoff, T. E.

    2006-12-01

    Investments in customer-owned grid-connected photovoltaic (PV) energy systems are growing at a steady pace. This is due, in part, to the availability of attractive economic incentives offered by public state agencies and utilities. In the United States, these incentives have largely been upfront lump payments tied to the system capacity rating. While capacity-based ''buydowns'' have stimulated the domestic PV market, they have been criticized for subsidizing systems with potentially poor energy performance. As a result, the industry has been forced to consider alternative incentive structures, particularly ones that pay based on long-term measured performance. The industry, however, lacks consensus in the debate over the tradeoffs between upfront incentive payments versus longer-term payments for energy delivery. This handbook is designed for agencies and utilities that offer or intend to offer incentive programs for customer-owned PV systems. Its purpose is to help select, design, and implement incentive programs that best meet programmatic goals. The handbook begins with a discussion of the various available incentive structures and then provides qualitative and quantitative tools necessary to design the most appropriate incentive structure. It concludes with program administration considerations.

  9. Controlling of grid connected photovoltaic lighting system with fuzzy logic

    SciTech Connect (OSTI)

    Saglam, Safak; Ekren, Nazmi; Erdal, Hasan

    2010-02-15

    In this study, DC electrical energy produced by photovoltaic panels is converted to AC electrical energy and an indoor area is illuminated using this energy. System is controlled by fuzzy logic algorithm controller designed with 16 rules. Energy is supplied from accumulator which is charged by photovoltaic panels if its energy would be sufficient otherwise it is supplied from grid. During the 1-week usage period at the semester time, 1.968 kWh energy is used from grid but designed system used 0.542 kWh energy from photovoltaic panels at the experiments. Energy saving is determined by calculations and measurements for one education year period (9 months) 70.848 kWh. (author)

  10. Process Development for Nanostructured Photovoltaics

    SciTech Connect (OSTI)

    Elam, Jeffrey W.

    2015-01-01

    Photovoltaic manufacturing is an emerging industry that promises a carbon-free, nearly limitless source of energy for our nation. However, the high-temperature manufacturing processes used for conventional silicon-based photovoltaics are extremely energy-intensive and expensive. This high cost imposes a critical barrier to the widespread implementation of photovoltaic technology. Argonne National Laboratory and its partners recently invented new methods for manufacturing nanostructured photovoltaic devices that allow dramatic savings in materials, process energy, and cost. These methods are based on atomic layer deposition, a thin film synthesis technique that has been commercialized for the mass production of semiconductor microelectronics. The goal of this project was to develop these low-cost fabrication methods for the high efficiency production of nanostructured photovoltaics, and to demonstrate these methods in solar cell manufacturing. We achieved this goal in two ways: 1) we demonstrated the benefits of these coatings in the laboratory by scaling-up the fabrication of low-cost dye sensitized solar cells; 2) we used our coating technology to reduce the manufacturing cost of solar cells under development by our industrial partners.

  11. ULTRA BARRIER TOPSHEET (UBT) FOR FLEXIBLE PHOTOVOLTAICS

    SciTech Connect (OSTI)

    DeScioli, Derek

    2013-06-01

    This slide-show presents 3M photovoltaic-related products, particularly flexible components. Emphasis is on the 3M Ultra Barrier Solar Films. Topics covered include reliability and qualification testing and flexible photovoltaic encapsulation costs.

  12. Mounting support for a photovoltaic module

    DOE Patents [OSTI]

    Brandt, Gregory Michael; Barsun, Stephan K.; Coleman, Nathaniel T.; Zhou, Yin

    2013-03-26

    A mounting support for a photovoltaic module is described. The mounting support includes a foundation having an integrated wire-way ledge portion. A photovoltaic module support mechanism is coupled with the foundation.

  13. Plug-and-Play Photovoltaics Funding Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Through the Plug-and-Play Photovoltaics program, DOE will advance the development of a commercial plug-and-play photovoltaic (PV) system, an off-the-shelf product that is fully inclusive with...

  14. Thin film photovoltaic panel and method

    DOE Patents [OSTI]

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  15. Photovoltaic product directory and buyers guide

    SciTech Connect (OSTI)

    Watts, R.L.; Smith, S.A.; Mazzucchi, R.P.

    1981-06-01

    Basic information on photovoltaic conversion technology is provided for those unfamiliar with the field. Various types of photovoltaic products and systems currently available off-the-shelf are described. These include products without batteries, battery chargers, power packages, home electric systems, and partial systems. Procedures are given for designing a photovoltaic system from scratch. A few custom photovoltaic systems are described, and a list is compiled of photovoltaic firms which can provide custom systems. Guidance is offered for deciding whether or not to use photovoltaic products. A variety of installations are described and their performance is appraised by the owners. Information is given on various financial incentives available from state and federal governments. Sources of additional information on photovoltaics are listed. A matrix is provided indicating the sources of various types of photovoltaic products. The addresses of suppliers are listed. (LEW)

  16. Photovoltaic Cell Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cell Basics Photovoltaic Cell Basics August 16, 2013 - 4:53pm Addthis Photovoltaic (PV) cells, or solar cells, take advantage of the photoelectric effect to produce electricity. PV ...

  17. Concentrator Photovoltaic System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrator Photovoltaic System Basics August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material than other PV systems. PV cells are the ...

  18. Polar Photovoltaics Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Polar Photovoltaics Co Ltd Jump to: navigation, search Name: Polar Photovoltaics Co Ltd Place: Bengbu, Anhui Province, China Zip: 233030 Product: A Chinese a-Si thin film PV cell...

  19. Canrom Photovoltaics Inc | Open Energy Information

    Open Energy Info (EERE)

    Canrom Photovoltaics Inc Jump to: navigation, search Name: Canrom Photovoltaics Inc Place: Niagara Falls, New York Zip: 14305 Sector: Solar Product: Developer of a thin-film CdTe...

  20. NREL: Photovoltaics Research - Thin Film Photovoltaic Partnership Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed the United States to attain world leadership in this area of solar technology. Three national R&D teams focused on thin-film semiconductor materials: amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium

  1. PROJECT PROFILE: Photovoltaic Stakeholder Engagement Initiatives |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Photovoltaic Stakeholder Engagement Initiatives PROJECT PROFILE: Photovoltaic Stakeholder Engagement Initiatives Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: Sandia National Lab, Albuquerque, NM SunShot Award Amount: $89,000 This project is focused on independent stakeholder engagement activities conducted by Sandia National Laboratory relating to photovoltaic (PV) outreach at the national and international level. APPROACH The International

  2. Reducing Photovoltaic Costs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Photovoltaics » Reducing Photovoltaic Costs Reducing Photovoltaic Costs Photo of gloved hands pouring liquid from a glass bottle to glass beaker. The development of more efficient, affordable photovoltaics (PV) and concentrating solar power (CSP) technologies are crucial to the U.S. Department of Energy (DOE) SunShot Initiative, and making solar cost-competitive with other sources of energy. DOE is fueling innovative solar technology solutions with focused project funding and partnerships with

  3. Funding Opportunity Announcement: Photovoltaic Research & Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (PVRD) | Department of Energy Photovoltaic Research & Development (PVRD) Funding Opportunity Announcement: Photovoltaic Research & Development (PVRD) Funding Number: DE-FOA-0001387 Funding Amount: $20,000,000 The Photovoltaic Research & Development (PVRD) funding opportunity will fund approximately 30 to 35 projects that will advance the limits of photovoltaic cell and module performance toward and beyond the 2020 SunShot goals. Successful applicants will demonstrate a convincing

  4. Interband Cascade Photovoltaic Cells

    SciTech Connect (OSTI)

    Yang, Rui Q.; Santos, Michael B.; Johnson, Matthew B.

    2014-09-24

    In this project, we are performing basic and applied research to systematically investigate our newly proposed interband cascade (IC) photovoltaic (PV) cells [1]. These cells follow from the great success of infrared IC lasers [2-3] that pioneered the use of quantum-engineered IC structures. This quantum-engineered approach will enable PV cells to efficiently convert infrared radiation from the sun or other heat source, to electricity. Such cells will have important applications for more efficient use of solar energy, waste-heat recovery, and power beaming in combination with mid-infrared lasers. The objectives of our investigations are to: achieve extensive understanding of the fundamental aspects of the proposed PV structures, develop the necessary knowledge for making such IC PV cells, and demonstrate prototype working PV cells. This research will focus on IC PV structures and their segments for utilizing infrared radiation with wavelengths from 2 to 5 μm, a range well suited for emission by heat sources (1,000-2,000 K) that are widely available from combustion systems. The long-term goal of this project is to push PV technology to longer wavelengths, allowing for relatively low-temperature thermal sources. Our investigations address material quality, electrical and optical properties, and their interplay for the different regions of an IC PV structure. The tasks involve: design, modeling and optimization of IC PV structures, molecular beam epitaxial growth of PV structures and relevant segments, material characterization, prototype device fabrication and testing. At the end of this program, we expect to generate new cutting-edge knowledge in the design and understanding of quantum-engineered semiconductor structures, and demonstrate the concepts for IC PV devices with high conversion efficiencies.

  5. Photovoltaic hydrogen production

    SciTech Connect (OSTI)

    Hiser, H.W.; Memory, S.B.; Veziroglu, T.N.; Padin, J.

    1996-10-01

    This is a new project, which started in June 1995, and involves photovoltaic hydrogen production as a fuel production method for the future. In order to increase the hydrogen yield, it was decided to use hybrid solar collectors to generate D.C. electricity, as well as high temperature steam for input to the electrolyzer. In this way, some of the energy needed to dissociate the water is supplied in the form of heat (or low grade energy), to generate steam, which results in a reduction of electrical energy (or high grade energy) needed. As a result, solar to hydrogen conversion efficiency is increased. In the above stated system, the collector location, the collector tracking sub-system (i.e., orientation/rotation), and the steam temperature have been taken as variables. Five locations selected - in order to consider a variety of latitudes, altitudes, cloud coverage and atmospheric conditions - are Atlanta, Denver, Miami, Phoenix and Salt Lake City. Plain PV and hybrid solar collectors for a stationary south facing system and five different collector rotation systems have been analyzed. Steam temperatures have been varied between 200{degrees}C and 1200{degrees}C. During the first year, solar to hydrogen conversion efficiencies have been considered. The results show that higher steam temperatures, 2 dimensional tracking system, higher elevations and dryer climates causes higher conversion efficiencies. Cost effectiveness of the sub-systems and of the overall system will be analyzed during the second year. Also, initial studies will be made of an advanced high efficiency hybrid solar hydrogen production system.

  6. Cadmium telluride photovoltaic radiation detector

    DOE Patents [OSTI]

    Agouridis, D.C.; Fox, R.J.

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semi-conductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  7. Cadmium telluride photovoltaic radiation detector

    DOE Patents [OSTI]

    Agouridis, Dimitrios C.; Fox, Richard J.

    1981-01-01

    A dosimetry-type radiation detector is provided which employs a polycrystalline, chlorine-compensated cadmium telluride wafer fabricated to operate as a photovoltaic current generator used as the basic detecting element. A photovoltaic junction is formed in the wafer by painting one face of the cadmium telluride wafer with an n-type semiconductive material. The opposite face of the wafer is painted with an electrically conductive material to serve as a current collector. The detector is mounted in a hermetically sealed vacuum containment. The detector is operated in a photovoltaic mode (zero bias) while DC coupled to a symmetrical differential current amplifier having a very low input impedance. The amplifier converts the current signal generated by radiation impinging upon the barrier surface face of the wafer to a voltage which is supplied to a voltmeter calibrated to read quantitatively the level of radiation incident upon the detecting wafer.

  8. Photovoltaic Subcontract Program, FY 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This report summarizes the fiscal year (FY) 1991 (October 1, 1990, through September 30, 1991) progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL) -- formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Amorphous Silicon Research Project, Polycrystalline Thin Films, Crystalline Silicon Materials Research, High-Efficiency Concepts, the New Ideas Program, the University Participation Program, and the Photovoltaic Manufacturing Technology (PVMaT) project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1991, and future research directions.

  9. International photovoltaic products and manufacturers directory, 1995

    SciTech Connect (OSTI)

    Shepperd, L.W.

    1995-11-01

    This international directory of more than 500 photovoltaic-related manufacturers is intended to guide potential users of photovoltaics to sources for systems and their components. Two indexes help the user to locate firms and materials. A glossary describes equipment and terminology commonly used in the photovoltaic industry.

  10. Northeast Missouri El Pwr Coop | Open Energy Information

    Open Energy Info (EERE)

    Pwr Coop Jump to: navigation, search Name: Northeast Missouri El Pwr Coop Place: Missouri Phone Number: 573-769-2107 Website: www.northeast-power.coop Outage Hotline: 573-769-2107...