Sample records for determination modeling carbon

  1. Solubility of carbon dioxide in tar sand bitumen; Experimental determination and modeling

    SciTech Connect (OSTI)

    Deo, M.D.; Wang, C.J.; Hanson, F.V. (Dept. of Fuels Engineering, Univ. of Utah, Salt Lake City, UT (US))

    1991-03-01T23:59:59.000Z

    This paper reports on an understanding of the solubility of carbon dioxide (CO{sub 2}) in tar sand bitumen that is essential for the development of in situ processes in the recovery of bitumen from tar and deposits. The solubility of CO{sub 2} in the Tar Sand Triangle (Utah), the PR Spring Rainbow I (Utah), and the Athabasca (Canada) tar sand bitumens was determined with the use of a high-pressure microbalance at temperatures of 358.2 and 393.2 K and pressures up to 6.2 MPa. As expected, the solubilities increased with pressure at a given temperature and decreased with increases in temperature. The Peng--Robinson and the Schmidt--Wenzel equations of state were used to match the experimentally observed solubilities. Correlations for the interaction parameters between CO{sub 2} and the bitumen were developed for both equations of state, wherein the interaction parameter could be obtained by using specific gravity and the UOP {ital K} factor for the bitumen. The correlations were developed with the optimum interaction parameters obtained for each of the samples at each temperature.

  2. Multiphase Sequestration Geochemistry: Model for Mineral Carbonation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Multiphase Sequestration Geochemistry: Model for Mineral Carbonation. Multiphase Sequestration Geochemistry: Model for Mineral Carbonation. Abstract: Carbonation of formation...

  3. Use of molecular modeling to determine the interaction and competition of gases within coal for carbon dioxide sequestration

    SciTech Connect (OSTI)

    Jeffrey D. Evanseck; Jeffry D. Madura; Jonathan P. Mathews

    2006-04-21T23:59:59.000Z

    Molecular modeling was employed to both visualize and probe our understanding of carbon dioxide sequestration within a bituminous coal. A large-scale (>20,000 atoms) 3D molecular representation of Pocahontas No. 3 coal was generated. This model was constructed based on a the review data of Stock and Muntean, oxidation and decarboxylation data for aromatic clustersize frequency of Stock and Obeng, and the combination of Laser Desorption Mass Spectrometry data with HRTEM, enabled the inclusion of a molecular weight distribution. The model contains 21,931 atoms, with a molecular mass of 174,873 amu, and an average molecular weight of 714 amu, with 201 structural components. The structure was evaluated based on several characteristics to ensure a reasonable constitution (chemical and physical representation). The helium density of Pocahontas No. 3 coal is 1.34 g/cm{sup 3} (dmmf) and the model was 1.27 g/cm{sup 3}. The structure is microporous, with a pore volume comprising 34% of the volume as expected for a coal of this rank. The representation was used to visualize CO{sub 2}, and CH{sub 4} capacity, and the role of moisture in swelling and CO{sub 2}, and CH{sub 4} capacity reduction. Inclusion of 0.68% moisture by mass (ash-free) enabled the model to swell by 1.2% (volume). Inclusion of CO{sub 2} enabled volumetric swelling of 4%.

  4. 4, 1367, 2007 Modelling carbon

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    BGD 4, 13­67, 2007 Modelling carbon overconsumption and extracellular POC formation M. Schartau et carbon overconsumption and the formation of extracellular particulate organic carbon M. Schartau1 , A Correspondence to: M. Schartau (markus.schartau@gkss.de) 13 #12;BGD 4, 13­67, 2007 Modelling carbon

  5. Carbon Mineralizability Determines Interactive Effects onMineralizatio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Effects onMineralization of Pyrogenic Organic Matter and Soil Organic Carbon. Carbon Mineralizability Determines Interactive Effects onMineralization of Pyrogenic...

  6. 3, 409447, 2006 Modeling carbon

    E-Print Network [OSTI]

    Boyer, Edmond

    BGD 3, 409­447, 2006 Modeling carbon dynamics in farmland of China F. Zhang et al. Title Page impacts of management alternatives on soil carbon storage of farmland in Northwest China F. Zhang1,3 , C-term losses of soil organic carbon (SOC) have been observed in many agricul- ture lands in Northwest China

  7. Simple ocean carbon cycle models

    SciTech Connect (OSTI)

    Caldeira, K. [Lawrence Livermore National Lab., CA (United States); Hoffert, M.I. [New York Univ., NY (United States). Dept. of Earth System Sciences; Siegenthaler, U. [Bern Univ. (Switzerland). Inst. fuer Physik

    1994-02-01T23:59:59.000Z

    Simple ocean carbon cycle models can be used to calculate the rate at which the oceans are likely to absorb CO{sub 2} from the atmosphere. For problems involving steady-state ocean circulation, well calibrated ocean models produce results that are very similar to results obtained using general circulation models. Hence, simple ocean carbon cycle models may be appropriate for use in studies in which the time or expense of running large scale general circulation models would be prohibitive. Simple ocean models have the advantage of being based on a small number of explicit assumptions. The simplicity of these ocean models facilitates the understanding of model results.

  8. USE OF MOLECULAR MODELING TO DETERMINE THE INTERACTION AND COMPETITION OF GASES WITHIN COAL FOR CARBON DIOXIDE SEQUESTRATION

    SciTech Connect (OSTI)

    Jeffrey D. Evanseck; Jeffry D. Madura; Jonathan P. Mathews

    2005-05-27T23:59:59.000Z

    We have made progress in carrying out large scale molecular dynamics simulations using the CHARMM force field in order to refine our coal/guest interactions. There have been two issues facing us over the last year. First, we have had to create a completely new topology and parameter definition for coal. Since we are using a classical force field, we have adopted the strategy of treating coal composed of individual common fragments based upon a distribution of mass, composition, and bonding. Our procedure is similar to treating a protein as being composed of the discrete set of amino acids. Second, we have had to incorporate the quality CO{sub 2} parameters that we have developed over the last two years. There are the geometric and arithmetic procedures, which we have successfully implemented. We have utilized computational molecular modeling to generate a state-of-the-art large scale structural representation of a bituminous coal of low volatile bituminous rank. This structure(s) has been used to investigate the molecular forces between the bituminous coal structure (or idealized pores) and the molecular species CH{sub 4} and CO{sub 2}. We are close to carrying out molecular dynamics simulations, which will allow us to explore and test the newly created model of coal.

  9. Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling

    E-Print Network [OSTI]

    to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able associated with both the manufacture of carbon fibers themselves as well as their composites. Traditional

  10. Determination of carbon, nitrogen, and oxygen in high purity magnesium 

    E-Print Network [OSTI]

    Roche, Neil Gerard

    1981-01-01T23:59:59.000Z

    DETERMINATION OF CARBON, NITROGEN, AND OXYGEN IN HIGH PURITY MAGNESIUM A Thesis by NEIL GERARD ROCHE Submitted to the Graduate College of Texas A8cM University in partial i'ulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1981 Major Subject: Chemistry DETERMINATION OF CARBON, NITROGEN, AND OXYGEN IN HIGH PURITY MAGNESIUM A Thesis by NEIL GERARD ROCHE Approved as to style and content by: E. A. Schweikert (Chairman of Committee) G. J. Bastiaans (Member) L...

  11. EB2012-MS-43 ADVANCES IN THE MODELLING OF CARBON/CARBON

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , the Carbon-Carbon composites (C/C) are materials frequently used in industrial applications such as planeEB2012-MS-43 ADVANCES IN THE MODELLING OF CARBON/CARBON COMPOSITE UNDER TRIBOLOGICAL CONSTRAINTS 1, homogenization, carbon ABSTRACT Thermo mechanical properties of Carbon-Carbon composite (C/C) allow them

  12. Three phase carbon EOS model with electronic excitation

    SciTech Connect (OSTI)

    van Thiel, M.; Ree, F.H.; Grover, R.

    1987-07-01T23:59:59.000Z

    A simple and rapid way for computing EOS data of multiphase solids with a liquid phase is described with emphasis on carbon. The method uses a scaling model for the liquid phase and includes a provision for electronic effects. The free energy minimum determines the stable phase.

  13. Determination of carbon, nitrogen, and oxygen in high purity magnesium

    E-Print Network [OSTI]

    Roche, Neil Gerard

    1981-01-01T23:59:59.000Z

    the determination of low Z impurities (carbon, nitrogen, and oxygen) is a prerequisite for gaining an understanding of the effects of chemical imperfections on the physical, metallurgical, and chemical properties of magnesium (2). The purpose of this study... of nitrogen was accomplished with a 7. 8 MeV Be beam and 9 3 some modifications of the preceeding He procedure were necessary due to the nature of the ion beam. Sam les and Standards Eleven magnesium ingots were received from Dow Chemical Co. , Texas...

  14. Soil Carbon Modeling (Mac Post) A. Rothamsted model carbon pools and processes. Their approximate equivalents for the EBIS sample processing

    E-Print Network [OSTI]

    Soil Carbon Modeling (Mac Post) A. Rothamsted model carbon pools and processes. Their approximate' soil horizon show that model improvements need to be made to capture observed soil carbon cycling and transport processes. Testing and improvement of soil carbon cycling models is a key anticipated output

  15. Determining timescales of natural carbonation of peridotite in the Samail Ophiolite, Sultanate of Oman

    E-Print Network [OSTI]

    Mervine, Evelyn Martinique

    2012-01-01T23:59:59.000Z

    Determining timescales of the formation and preservation of carbonate alteration products in mantle peridotite is important in order to better understand the role of this potentially important sink in the global carbon ...

  16. Carbon Dioxide Corrosion: Modelling and Experimental Work

    E-Print Network [OSTI]

    Carbon Dioxide Corrosion: Modelling and Experimental Work Applied to Natural Gas Pipelines Philip in the corrosion related research institutions at IFE and the Ohio University or any other scientific research;#12;Introduction - v - Summary CO2 corrosion is a general problem in the industry and it is expensive. The focus

  17. Incorporating Carbon Capture and Storage Technologies in Integrated Assessment Models

    E-Print Network [OSTI]

    Incorporating Carbon Capture and Storage Technologies in Integrated Assessment Models J. R. Mc carbon capture and storage, 2) a natural gas combined cycle technology with carbon capture and storage 1 emissions growth. Both the magnitude and rate of technological change toward low- or no-carbon emitting

  18. Theoretical Model for Nanoporous Carbon Supercapacitors

    SciTech Connect (OSTI)

    Sumpter, Bobby G [ORNL; Meunier, Vincent [ORNL; Huang, Jingsong [ORNL

    2008-01-01T23:59:59.000Z

    The unprecedented anomalous increase in capacitance of nanoporous carbon supercapacitors at pore sizes smaller than 1 nm [Science 2006, 313, 1760.] challenges the long-held presumption that pores smaller than the size of solvated electrolyte ions do not contribute to energy storage. We propose a heuristic model to replace the commonly used model for an electric double-layer capacitor (EDLC) on the basis of an electric double-cylinder capacitor (EDCC) for mesopores (2 {50 nm pore size), which becomes an electric wire-in-cylinder capacitor (EWCC) for micropores (< 2 nm pore size). Our analysis of the available experimental data in the micropore regime is confirmed by 1st principles density functional theory calculations and reveals significant curvature effects for carbon capacitance. The EDCC (and/or EWCC) model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size. The new model not only explains the experimental data, but also offers a practical direction for the optimization of the properties of carbon supercapacitors through experiments.

  19. Economic Modeling of Carbon Capture and Sequestration Technologies

    E-Print Network [OSTI]

    Economic Modeling of Carbon Capture and Sequestration Technologies Jim McFarland (jrm1@mit.edu; +1 explores the economics of carbon capture and sequestration technologies as applied to electric generating of the world economy, is used to model two of the most promising carbon capture and sequestration (CCS

  20. Estimation of Parameters in Carbon Sequestration Models from Net Ecosystem

    E-Print Network [OSTI]

    White, Luther

    Estimation of Parameters in Carbon Sequestration Models from Net Ecosystem Exchange Data Luther in the context of a deterministic com- partmental carbon sequestration system. Sensitivity and approximation usefulness in the estimation of parameters within a compartmental carbon sequestration model. Previously we

  1. Ab Initio Thermodynamic Model for Magnesium Carbonates and Hydrates

    SciTech Connect (OSTI)

    Chaka, Anne M.; Felmy, Andrew R.

    2014-03-28T23:59:59.000Z

    An ab initio thermodynamic framework for predicting properties of hydrated magnesium carbonate minerals has been developed using density-functional theory linked to macroscopic thermodynamics through the experimental chemical potentials for MgO, water, and CO2. Including semiempirical dispersion via the Grimme method and small corrections to the generalized gradient approximation of Perdew, Burke, and Ernzerhof for the heat of formation yields a model with quantitative agreement for the benchmark minerals brucite, magnesite, nesquehonite, and hydromagnesite. The model shows how small differences in experimental conditions determine whether nesquehonite, hydromagnesite, or magnesite is the result of laboratory synthesis from carbonation of brucite, and what transformations are expected to occur on geological time scales. Because of the reliance on parameter-free first principles methods, the model is reliably extensible to experimental conditions not readily accessible to experiment and to any mineral composition for which the structure is known or can be hypothesized, including structures containing defects, substitutions, or transitional structures during solid state transformations induced by temperature changes or processes such as water, CO2, or O2 diffusion. Demonstrated applications of the ab initio thermodynamic framework include an independent means to evaluate differences in thermodynamic data for lansfordite, predicting the properties of Mg analogs of Ca-based hydrated carbonates monohydrocalcite and ikaite which have not been observed in nature, and an estimation of the thermodynamics of barringtonite from the stoichiometry and a single experimental observation.

  2. Silicon Carbide Derived Carbons: Experiments and Modeling

    SciTech Connect (OSTI)

    Kertesz, Miklos [Georgetown University, Washington DC 20057

    2011-02-28T23:59:59.000Z

    The main results of the computational modeling was: 1. Development of a new genealogical algorithm to generate vacancy clusters in diamond starting from monovacancies combined with energy criteria based on TBDFT energetics. The method revealed that for smaller vacancy clusters the energetically optimal shapes are compact but for larger sizes they tend to show graphitized regions. In fact smaller clusters of the size as small as 12 already show signatures of this �¢����graphitization�¢����. The modeling gives firm basis for the �¢����slit-pore�¢���� modeling of porous carbon materials and explains some of their properties. 2. We discovered small vacancy clusters and their physical characteristics that can be used to spectroscopically identify them. 3. We found low barrier pathways for vacancy migration in diamond-like materials by obtaining for the first time optimized reaction pathways.

  3. Modelling Heat Transfer of Carbon Nanotubes

    E-Print Network [OSTI]

    Yang, Xin-She

    2010-01-01T23:59:59.000Z

    Modelling heat transfer of carbon nanotubes is important for the thermal management of nanotube-based composites and nanoelectronic device. By using a finite element method for three-dimensional anisotropic heat transfer, we have simulated the heat conduction and temperature variations of a single nanotube, a nanotube array and a part of nanotube-based composite surface with heat generation. The thermal conductivity used is obtained from the upscaled value from the molecular simulations or experiments. Simulations show that nanotube arrays have unique cooling characteristics due to its anisotropic thermal conductivity.

  4. Carbon Mineralizability Determines Interactive Effects on Mineralization of Pyrogenic Organic Matter and Soil Organic Carbon

    SciTech Connect (OSTI)

    Whitman, Thea L.; Zhu, Zihua; Lehmann, Johannes C.

    2014-10-31T23:59:59.000Z

    Soil organic carbon (SOC) is a critical and active pool in the global C cycle, and the addition of pyrogenic organic matter (PyOM) has been shown to change SOC cycling, increasing or decreasing mineralization rates (often referred to as priming). We adjusted the amount of easily mineralizable C in the soil, through 1-day and 6-month pre-incubations, and in PyOM made from maple wood at 350°C, through extraction. We investigated the impact of these adjustments on C mineralization interactions, excluding pH and nutrient effects and minimizing physical effects. We found short-term increases (+20-30%) in SOC mineralization with PyOM additions in the soil pre-incubated for 6 months. Over the longer term, both the 6-month and 1-day pre-incubated soils experienced net ~10% decreases in SOC mineralization with PyOM additions. This was possibly due to stabilization of SOC on PyOM surfaces, suggested by nanoscale secondary ion mass spectrometry. Additionally, the duration of pre-incubation affected priming interactions, indicating that there may be no optimal pre-incubation time for SOC mineralization studies. We show conclusively that relative mineralizability of SOC in relation to PyOM-24 C is an important determinant of the effect of PyOM additions on SOC mineralization.

  5. Determination of the Effect of Geological Reservoir Variability on Carbon Dioxide Storage

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Determination of the Effect of Geological Reservoir Variability on Carbon Dioxide Storage Using'expériences -- Dans le contexte de l'étude du stockage géologique du dioxyde de carbone dans les réservoirs al. (2007) Energy Convers. Manage. 48, 1782-1797; Gunter et al. (1999) Appl. Geochem. 4, 1

  6. Using tracer experiments to determine deep saline aquifers caprocks transport characteristics for carbon dioxide storage

    E-Print Network [OSTI]

    Boyer, Edmond

    for carbon dioxide storage P. Bachaud1,2 , Ph. Berne1 , P. Boulin1,3,4 , F. Renard5,6 , M. Sardin2 , J caprocks from a deep saline aquifer in the Paris basin. Introduction Storage of carbon dioxide in deep bubble. Determination of the diffusion properties is also required since they will govern how dissolved

  7. Validation of Material Models for Automotive Carbon Fiber Composite...

    Broader source: Energy.gov (indexed) [DOE]

    Validation of Material Models for Automotive Carbon Fiber Composite Structures (VMM) Libby Berger (General Motors), Omar Faruque (Ford) Co-Principal Investigators US Automotive...

  8. Pore Models Track Reactions in Underground Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    want to model what happens to the crystals' geochemistry when the greenhouse gas carbon dioxide is injected underground for sequestration. Image courtesy of David...

  9. CX-002612: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002612: Categorical Exclusion Determination Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate...

  10. CX-002609: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002609: Categorical Exclusion Determination Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate...

  11. CX-000462: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-000462: Categorical Exclusion Determination Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate...

  12. CX-002611: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-002611: Categorical Exclusion Determination Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate...

  13. Ris-R-1143(EN) Modelling Calcium Carbonate Deposition

    E-Print Network [OSTI]

    Risø-R-1143(EN) CRACK2 - Modelling Calcium Carbonate Deposition from Bicarbonate Solution in Cracks: The numerical CRACK2 model simulates precipitation of calcite from calcium bi- carbo-nate solution (e is simulated as calcium hydroxide mixed with inert material but with sodium hydroxide dissolved in the pore

  14. Slow bainite: an opportunity to determine the carbon content of the bainitic ferrite during growth

    SciTech Connect (OSTI)

    Caballero, Francesca G. [CENIM-CSIC, Madrid, Spain; Miller, Michael K [ORNL; Garcia-Mateo, C. [CENIM-CSIC, Madrid, Spain

    2011-01-01T23:59:59.000Z

    The amount of carbon in solid solution in bainitic ferrite at the early stage of transformation has been directly determined by atom probe tomography at 200 C, taking advantage of the extremely slow transformation kinetics of a novel nanocrystalline steel. Results demonstrated that the original bainitic ferrite retains much of the carbon content of the parent austenite providing strong evidence that bainite transformation is essentially displacive in nature. In this work, the carbon content of the bainitic ferrite away from any carbon-enriched regions has been determined by atom probe tomography as the bainite transformation progresses at 200 C in this nanocrystalline steel. Results provide experimental evidence for the mechanism controlling bainitic ferrite growth in steels.

  15. A method for the determination of dissolved organic carbon in sea water by gas chromatography

    E-Print Network [OSTI]

    Fredericks, Alan D

    1965-01-01T23:59:59.000Z

    OF PLATES Plate Page I Front Oblique View of Ampoule Flushing and Sealing Apparatus . 15 2 Side View of Ampoule Flushing and Sealing Apparatus . 17 3 Ampoule Crushing Apparatus 4 Two Position Gas Valve 5 Carbon Dioxide Analysis Apparatus 29 37 45... is passed through an infrared analyzer using nitrogen as a carrier gas. The purpose of this investigation was to develop a shipboard method for determining the concentration of dissolved organic carbon in sea water samples. Sea water was sealed in glass...

  16. Estimation of the carbon monoxide emissions due to Sandia National Laboratories commuter and on-base traffic for conformity determination

    SciTech Connect (OSTI)

    McClellan, Y. [Sandia National Labs., Albuquerque, NM (United States); Royer, R. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Biochemistry

    1996-09-01T23:59:59.000Z

    This report describes the analysis and conclusion of an investigation of the carbon monoxide emissions resulting from Sandia National Laboratories and Department of Energy (DOE) commuter and on-base traffic for the Clean Air Act (CAA) Conformity Determination. Albuquerque/Bernalillo County was classified as a nonattainment area by the Environmental Protection Agency. Nonattainment area is an area which is shown by monitored data or which is calculated by air quality modeling to exceed any National Ambient Air Quality Standard (NAAQS) for the pollutant. Albuquerque/Bernalillo County exceeds the NAAQS for carbon monoxide and ozone. The Conformity Determination was needed to complete the CAA Title V Permitting process for SNL and the DOE. The analysis used the EPA approved MOBILE5a Carbon Monoxide (CO) emissions modeling program. This analysis will provide a baseline for mobile sources to allow Sandia to estimate any future activity and how that activity will impact CO emissions. The General Conformity Rule (AQCR 43) requires that operations which will increase CO emissions in nonattaimnent or maintenance areas such as Bernalillo County undergo conformity analyses to determine whether or not they will impact ambient air quality in the area.

  17. Carbon accumulation of tropical peatlands over millennia: a modeling approach

    E-Print Network [OSTI]

    in the global carbon cycle by storing about 40­90 Gt C in peat. Over the past several decades, tropical with lowering the water table and peat burning, releasing large amounts of carbon stored in peat the Holocene Peat Model (HPM), which has been successfully applied to northern temperate peatlands. Tropical

  18. Modelling of Reefs and Shallow Marine Carbonates 

    E-Print Network [OSTI]

    Hill, Jon

    2008-01-01T23:59:59.000Z

    Carbonate sediments are often highly heterogeneous due to the numerous factors that control deposition. Understanding the processes and controls that are responsible for such complexity has, however, proved problematic. ...

  19. Statistical Correlation and Modelling of Carbonate Heterogeneity 

    E-Print Network [OSTI]

    Price, David P

    2009-01-01T23:59:59.000Z

    In many carbonate reservoirs, much of the porosity is in the form of micropores (with diameter 1-10 microns). This porosity lies far below the resolution of any conventional wireline logging tools and can only be observed ...

  20. Modelling Correlation in Carbon and Energy Markets

    E-Print Network [OSTI]

    Koenig, Philipp

    2011-02-10T23:59:59.000Z

    The paper examines correlations between daily returns of month-ahead baseload electricity, fuel input and carbon emission allowance (EU-ETS) prices for Great Britain. The perspective of a CCGT plant operator is assumed, producing baseload...

  1. A Continuum Model for Carbon Nanotube-Infused Polyimides

    E-Print Network [OSTI]

    A Continuum Model for Carbon Nanotube-Infused Polyimides Heather Wilson1 , Sumanth Banda2 , Ralph C, the materials need to withstand this process. The nanotube-infused polyimides are flexible enough to withstand

  2. Modeling Infinite Dilution and Fickian Diffusion Coefficients of Carbon Dioxide in Water

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Modeling Infinite Dilution and Fickian Diffusion Coefficients of Carbon Dioxide in Water J. Wambui infinite dilution diffusion coefficients for carbon dioxide and water mixtures. The model takes, carbon dioxide, classical thermodynamics Introduction The increase in atmospheric concentrations of CO2

  3. Substrate and environmental controls on microbial assimilation of soil organic carbon: a framework for Earth System Models

    SciTech Connect (OSTI)

    Xu, Xiaofeng [ORNL] [ORNL; Schimel, Joshua [University of California, Santa Barbara] [University of California, Santa Barbara; Thornton, Peter E [ORNL] [ORNL; Song, Xia [ORNL] [ORNL; Yuan, Fengming [ORNL] [ORNL; Goswami, Santonu [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Microbial assimilation of soil organic carbon is one of the fundamental processes of global carbon cycling and it determines the magnitude of microbial biomass in soils. Mechanistic understanding of microbial assimilation of soil organic carbon and its controls is important for to improve Earth system models ability to simulate carbon-climate feedbacks. Although microbial assimilation of soil organic carbon is broadly considered to be an important parameter, it really comprises two separate physiological processes: one-time assimilation efficiency and time-dependent microbial maintenance energy. Representing of these two mechanisms is crucial to more accurately simulate carbon cycling in soils. In this study, a simple modeling framework was developed to evaluate the substrate and environmental controls on microbial assimilation of soil organic carbon using a new term: microbial annual active period (the length of microbes remaining active in one year). Substrate quality has a positive effect on microbial assimilation of soil organic carbon: higher substrate quality (lower C:N ratio) leads to higher ratio of microbial carbon to soil organic carbon and vice versa. Increases in microbial annual active period from zero stimulate microbial assimilation of soil organic carbon; however, when microbial annual active period is longer than an optimal threshold, increasing this period decreases microbial biomass. The simulated ratios of soil microbial biomass to soil organic carbon are reasonably consistent with a recently compiled global dataset at the biome-level. The modeling framework of microbial assimilation of soil organic carbon and its controls developed in this study offers an applicable ways to incorporate microbial contributions to the carbon cycling into Earth system models for simulating carbon-climate feedbacks and to explain global patterns of microbial biomass.

  4. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

    E-Print Network [OSTI]

    Thornton, P. E.; Doney, S. C.; Lindsay, Keith; Moore, J. K.; Mahowald, N. M.; Randerson, J. T.; Fung, I.; Lamarque, J. F.; Feddema, Johannes J.

    2009-01-01T23:59:59.000Z

    Biogeosciences, 6, 2099–2120, 2009 www.biogeosciences.net/6/2099/2009/ © Author(s) 2009. This work is distributed under the Creative Commons Attribution 3.0 License. Biogeosciences Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks.... Inclusion of fundamental ecological interactions between carbon and nitrogen cycles in the land component of an atmosphere-ocean general circulation model (AOGCM) leads to decreased carbon uptake associated with CO2 fertil- ization, and increased carbon...

  5. Evaluation of stress in bmi-carbon fiber laminate to determine the onset of microcracking 

    E-Print Network [OSTI]

    Pickle, Brent Durrell

    2005-02-17T23:59:59.000Z

    In this work the conditions for which a (0,90,90,0,0,90)s BMI-carbon fiber laminate will initiate transverse microcracking are determined for the fabrication of a cryogenic fuel tank for use in a Reusable Launch Vehicle ...

  6. Evaluation of stress in bmi-carbon fiber laminate to determine the onset of microcracking

    E-Print Network [OSTI]

    Pickle, Brent Durrell

    2005-02-17T23:59:59.000Z

    In this work the conditions for which a (0,90,90,0,0,90)s BMI-carbon fiber laminate will initiate transverse microcracking are determined for the fabrication of a cryogenic fuel tank for use in a Reusable Launch Vehicle (RLV). This is accomplished...

  7. A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbons, and Electrolyte

    SciTech Connect (OSTI)

    Sumpter, Bobby G [ORNL; Huang, Jingsong [ORNL; Meunier, Vincent [ORNL

    2008-01-01T23:59:59.000Z

    Supercapacitors, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy storage device with the potential to substitute batteries in applications requiring high power densities. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we propose a heuristic theoretical model that takes pore curvature into account as a replacement for the EDLC model which is based on a traditional parallel-plate capacitor. When the pore size is in the mesopore regime (2-50 nm), counterions enter mesoporous carbons and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (< 2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (> 50 nm) where pores are large enough so that the pore curvature is no longer significant, the EDCC model can be reduced naturally to the EDLC model. We present density functional theory calculations and detailed analyses of available experimental data in various pore regimes, showing the significant effects of pore curvature on the supercapacitor properties of nanoporous carbons. It is shown that the EDCC/EWCC model is universal to carbon supercapacitors with diverse carbon materials including activated carbons, template carbons, and novel carbide-derived carbons, and with diverse electrolytes including organic electrolytes such as tetraethylammonium tetrafluoroborate (TEABF4), tetraethylammonium methyl-sulfonate (TEAMS) in acetonitrile, aqueous H2SO4 and KOH electrolytes, and even ionic liquid electrolyte such as 1-ethyl-3-methylimmidazolium bis(trifluromethane-sulfonyl)imide (EMI-TFSI). The EDCC/EWCC model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration and dielectric constant, and solute ion size, and may lend a support for the systematic optimization of the properties of carbon supercapacitors via experiments. On the basis of the insight obtained from the new model, we also discuss the effects of the kinetic solvation/desolvation process, multimodal (versus unimodal) pore size distribution, and exohedral (versus endohedral) capacitors on the electrochemical properties of supercapacitors.

  8. Theoretical Modeling of Mechanical-Electrical Coupling of Carbon Nanotubes

    SciTech Connect (OSTI)

    Lu, Jun-Qiang [ORNL; Jiang, Hanqiang [Arizona State University

    2008-01-01T23:59:59.000Z

    Carbon nanotubes have been studied extensively due to their unique properties, ranging from electrical, mechanical, optical, to thermal properties. The coupling between the electrical and mechanical properties of carbon nanotubes has emerged as a new field, which raises both interesting fundamental problems and huge application potentials. In this article, we will review our recently work on the theoretical modeling on mechanical-electrical coupling of carbon nanotubes subject to various loading conditions, including tension/compression, torsion, and squashing. Some related work by other groups will be also mentioned.

  9. New kinetic model for the rapid step of calcium oxide carbonation by carbon dioxide Authors: Lydie Rouchon, Loc Favergeon, Michle Pijolat

    E-Print Network [OSTI]

    Boyer, Edmond

    New kinetic model for the rapid step of calcium oxide carbonation by carbon dioxide Authors: Lydie 94. Keywords: Carbonation, Calcium oxide, Kinetic modeling, TG Abstract Carbonation of solid calcium oxide by gaseous carbon dioxide was monitored by thermogravimetry (TG). A kinetic model of Ca

  10. THE CARBON-LAND MODEL INTERCOMPARISON PROJECT (C-LAMP): A PROTOTYPE FOR COUPLED BIOSPHERE-ATMOSPHERE MODEL

    E-Print Network [OSTI]

    Hoffman, Forrest M.

    often referred to as Earth System Models (ESMs). While a number of terrestrial and ocean carbon models

  11. Carbon-cycle models for better long-term predictions | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon-cycle models for better long-term predictions Carbon-cycle models for better long-term predictions Released: November 04, 2014 Reduced variation among models should improve...

  12. Modeling H2 adsorption in carbon-based structures

    E-Print Network [OSTI]

    Lamonte, Kevin Anthony

    2009-05-15T23:59:59.000Z

    MODELING H2 ADSORPTION IN CARBON-BASED STRUCTURES A Thesis by KEVIN ANTHONY LAMONTE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2008 Major... Subject: Chemical Engineering MODELING H2 ADSORPTION IN CARBON-BASED STRUCTURES A Thesis by KEVIN ANTHONY LAMONTE Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

  13. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity

    SciTech Connect (OSTI)

    Li, Jianwei [University of Oklahoma] [University of Oklahoma; Wang, Gangsheng [ORNL] [ORNL; Allison, Steven D. [University of California, Irvine] [University of California, Irvine; Mayes, Melanie [ORNL] [ORNL; Luo, Yiqi [University of Oklahoma] [University of Oklahoma

    2014-01-01T23:59:59.000Z

    Global ecosystem models may require microbial components to accurately predict feedbacks between climate warming and soil decomposition, but it is unclear what parameters and levels of complexity are ideal for scaling up to the globe. Here we conducted a model comparison using a conventional model with first-order decay and three microbial models of increasing complexity that simulate short- to long-term soil carbon dynamics. We focused on soil carbon responses to microbial carbon use efficiency (CUE) and temperature. Three scenarios were implemented in all models: constant CUE (held at 0.31), varied CUE ( 0.016 C 1), and 50 % acclimated CUE ( 0.008 C 1). Whereas the conventional model always showed soil carbon losses with increasing temperature, the microbial models each predicted a temperature threshold above which warming led to soil carbon gain. The location of this threshold depended on CUE scenario, with higher temperature thresholds under the acclimated and constant scenarios. This result suggests that the temperature sensitivity of CUE and the structure of the soil carbon model together regulate the long-term soil carbon response to warming. Equilibrium soil carbon stocks predicted by the microbial models were much less sensitive to changing inputs compared to the conventional model. Although many soil carbon dynamics were similar across microbial models, the most complex model showed less pronounced oscillations. Thus, adding model complexity (i.e. including enzyme pools) could improve the mechanistic representation of soil carbon dynamics during the transient phase in certain ecosystems. This study suggests that model structure and CUE parameterization should be carefully evaluated when scaling up microbial models to ecosystems and the globe.

  14. Oxygen reduction by lithium on model carbon and oxidized carbon structures

    SciTech Connect (OSTI)

    Xu, Ye [ORNL; Shelton Jr, William Allison [ORNL

    2011-01-01T23:59:59.000Z

    Li-air batteries have attracted substantial interest for their high theoretical specific energies, but the oxygen reduction reaction by Li (Li-ORR) that occurs at the carbon cathode remains poorly understood. Periodic density functional theory calculations have been performed to examine the Li-ORR on several model carbon structures, including the graphite(0001) basal plane, the (8,0) single-wall nanotube, the armchair-type edge, and a di-vacancy in the basal plane. The inertness of the basal plane limits the reversible potential of O{sub 2} reduction to 1.1 V, and slightly higher to 1.2 V on the curved nanotube. The armchair edge and di-vacancy are highly reactive and significantly oxidized at ambient conditions to various CO{sub x} groups, which are reduced by Li via redox mechanisms at 1.2-1.4 V. These CO{sub x} groups can also catalyze O{sub 2} reduction at up to 2.3 V (an overpotential of 0.4 V vs. the calculated equilibrium potential for bulk Li{sub 2}O{sub 2} formation) by chelating and stabilizing the LiO{sub 2} intermediate. The Li-ORR on graphitic carbon, if via concerted Li{sup +}/e{sup -} transfer and involving carbon, lithium, and oxygen only, is therefore expected to initiate with the smallest overpotential at under-coordinated carbon centers that are oxidized at ambient conditions.

  15. Computer Modeling of Carbon Metabolism Enables Biofuel Engineering (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01T23:59:59.000Z

    In an effort to reduce the cost of biofuels, the National Renewable Energy Laboratory (NREL) has merged biochemistry with modern computing and mathematics. The result is a model of carbon metabolism that will help researchers understand and engineer the process of photosynthesis for optimal biofuel production.

  16. Wildland fire emissions, carbon, and climate: Modeling fuel consumption

    E-Print Network [OSTI]

    rate and pattern. Fuel consumption is the basic process that leads to heat absorbing emissions called evaluated with an independent, quality assured, fuel consumption data set. Furthermore, anecdotal evidenceWildland fire emissions, carbon, and climate: Modeling fuel consumption Roger D. Ottmar U

  17. Increase of Carbon Cycle Feedback with Climate Sensitivity: Results from a coupled Climate and Carbon Cycle Model

    SciTech Connect (OSTI)

    Govindasamy, B; Thompson, S; Mirin, A; Wickett, M; Caldeira, K; Delire, C

    2004-04-01T23:59:59.000Z

    Coupled climate and carbon cycle modeling studies have shown that the feedback between global warming and the carbon cycle, in particular the terrestrial carbon cycle, could accelerate climate change and result in larger warming. In this paper, we investigate the sensitivity of this feedback for year-2100 global warming in the range of 0 K to 8 K. Differing climate sensitivities to increased CO{sub 2} content are imposed on the carbon cycle models for the same emissions. Emissions from the SRES A2 scenario are used. We use a fully-coupled climate and carbon cycle model, the INtegrated Climate and CArbon model (INCCA) the NCAR/DOE Parallel Coupled Model coupled to the IBIS terrestrial biosphere model and a modified-OCMIP ocean biogeochemistry model. In our model, for scenarios with year-2100 global warming increasing from 0 to 8 K, land uptake decreases from 47% to 29% of total CO{sub 2} emissions. Due to competing effects, ocean uptake (16%) shows almost no change at all. Atmospheric CO{sub 2} concentration increases were 48% higher in the run with 8 K global climate warming than in the case with no warming. Our results indicate that carbon cycle amplification of climate warming will be greater if there is higher climate sensitivity to increased atmospheric CO{sub 2} content; the carbon cycle feedback factor increases from 1.13 to 1.48 when global warming increases from 3.2 to 8 K.

  18. Adjoint Inverse Modeling of Black Carbon During ACE-A. Hakami 1

    E-Print Network [OSTI]

    Sandu, Adrian

    in northeast China and Japan are increased. 1 #12;Introduction Black (or elemental) carbon (BC) is the mainAdjoint Inverse Modeling of Black Carbon During ACE- Asia A. Hakami 1 , D. K. Henze 1 , J. H model is used for inverse modeling of black carbon during ACE- Asia. We use the 4D-Var approach

  19. Retrievals of Carbon Dioxide from GOSAT: Validation, model comparison and approach development

    E-Print Network [OSTI]

    Retrievals of Carbon Dioxide from GOSAT: Validation, model comparison and approach development properties of aerosol and cirrus particles. 3. Model Comparison Retrievals of XCO2 were performed on cloud and compared to the CarbonTracker model. The retrieval averaging kernels were applied to Carbon

  20. Modeling soil respiration based on carbon, nitrogen, and root mass across diverse Great Lake forests

    E-Print Network [OSTI]

    Chen, Jiquan

    . Introduction Linkages between atmospheric carbon dioxide and global thermal properties have forcedModeling soil respiration based on carbon, nitrogen, and root mass across diverse Great Lake the examination of biospheric carbon flows and pools. Variability in carbon storage or the net ecosystem exchange

  1. Validation and Comparison of Carbon Sequestration Project Cost Models with Project Cost Data Obtained from the Southwest Partnership

    SciTech Connect (OSTI)

    Robert Lee; Reid Grigg; Brian McPherson

    2011-04-15T23:59:59.000Z

    Obtaining formal quotes and engineering conceptual designs for carbon dioxide (CO{sub 2}) sequestration sites and facilities is costly and time-consuming. Frequently, when looking at potential locations, managers, engineers and scientists are confronted with multiple options, but do not have the expertise or the information required to quickly obtain a general estimate of what the costs will be without employing an engineering firm. Several models for carbon compression, transport and/or injection have been published that are designed to aid in determining the cost of sequestration projects. A number of these models are used in this study, including models by J. Ogden, MIT's Carbon Capture and Sequestration Technologies Program Model, the Environmental Protection Agency and others. This report uses the information and data available from several projects either completed, in progress, or conceptualized by the Southwest Regional Carbon Sequestration Partnership on Carbon Sequestration (SWP) to determine the best approach to estimate a project's cost. The data presented highlights calculated versus actual costs. This data is compared to the results obtained by applying several models for each of the individual projects with actual cost. It also offers methods to systematically apply the models to future projects of a similar scale. Last, the cost risks associated with a project of this scope are discussed, along with ways that have been and could be used to mitigate these risks.

  2. Recovery Boiler Modeling: An Improved Char Burning Model Including Sulfate Reduction and Carbon Removal 

    E-Print Network [OSTI]

    Grace, T. M.; Wag, K. J.; Horton, R. R.; Frederick, W. J.

    1994-01-01T23:59:59.000Z

    This paper describes an improved model of char burning during black liquor combustion that is capable of predicting net rates of sulfate reduction to sulfide as well as carbon burnup rates. Enhancements include a proper ...

  3. THE FIRST FLUORINE ABUNDANCE DETERMINATIONS IN EXTRAGALACTIC ASYMPTOTIC GIANT BRANCH CARBON STARS

    SciTech Connect (OSTI)

    Abia, C.; Cristallo, S.; Dominguez, I. [Dpto. Fisica Teorica y del Cosmos, Universidad de Granada, 18071 Granada (Spain); Cunha, K.; Smith, V. V. [National Optical Astronomy Observatory, P.O. Box 26732, Tucson, AZ 85726 (United States); De Laverny, P.; Recio-Blanco, A. [University of Nice-Sophia Antipolis, CNRS (UMR 6202), Cassiopee, Observatoire de la Cote d'Azur, B.P. 4229, 06304 Nice Cedex 4 (France); Straniero, O., E-mail: cabia@ugr.es [INAF-Osservatorio di Collurania, 64100 Teramo (Italy)

    2011-08-10T23:59:59.000Z

    Fluorine ({sup 19}F) abundances (or upper limits) are derived in six extragalactic asymptotic giant branch (AGB) carbon stars from the HF(1-0) R9 line at 2.3358 {mu}m in high-resolution spectra. The stars belong to the Local Group galaxies, Large Magellanic Cloud, Small Magellanic Cloud, and Carina dwarf spheroidal, spanning more than a factor of 50 in metallicity. This is the first study to probe the behavior of F with metallicity in intrinsic extragalactic C-rich AGB stars. Fluorine could be measured only in four of the target stars, showing a wide range in F enhancements. Our F abundance measurements together with those recently derived in Galactic AGB carbon stars show a correlation with the observed carbon and s-element enhancements. The observed correlations, however, display a different dependence on the stellar metallicity with respect to theoretical predictions in low-mass, low-metallicity AGB models. We briefly discuss the possible reasons for this discrepancy. If our findings are confirmed in a larger number of metal-poor AGBs, the issue of F production in AGB stars will need to be revisited.

  4. An XFEM Model for Carbon Sequestration Journal: International Journal for Numerical Methods in Engineering

    E-Print Network [OSTI]

    Gracie, Robert

    PeerReview Only An XFEM Model for Carbon Sequestration Journal: International Journal for Numerical method, Carbon Sequestration, Multiphase flow, XFEM, Multifield systems, Petrov-Galerkin httpScience (www.interscience.wiley.com). DOI: 10.1002/nme An XFEM Model for Carbon Sequestration Chris Ladubec

  5. ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES

    E-Print Network [OSTI]

    ECONOMIC MODELING OF THE GLOBAL ADOPTION OF CARBON CAPTURE AND SEQUESTRATION TECHNOLOGIES J. R. Mc of carbon capture and sequestration technologies as applied to electric generating plants. The MIT Emissions, is used to model carbon capture and sequestration (CCS) technologies based on a natural gas combined cycle

  6. Determinant Formulas for Matrix Model Free Energy

    E-Print Network [OSTI]

    D. Vasiliev

    2005-07-11T23:59:59.000Z

    The paper contains a new non-perturbative representation for subleading contribution to the free energy of multicut solution for hermitian matrix model. This representation is a generalisation of the formula, proposed by Klemm, Marino and Theisen for two cut solution, which was obtained by comparing the cubic matrix model with the topological B-model on the local Calabi-Yau geometry $\\hat {II}$ and was checked perturbatively. In this paper we give a direct proof of their formula and generalise it to the general multicut solution.

  7. DOUBLE SHELL TANK (DST) HYDROXIDE DEPLETION MODEL FOR CARBON DIOXIDE ABSORPTION

    SciTech Connect (OSTI)

    OGDEN DM; KIRCH NW

    2007-10-31T23:59:59.000Z

    This document generates a supernatant hydroxide ion depletion model based on mechanistic principles. The carbon dioxide absorption mechanistic model is developed in this report. The report also benchmarks the model against historical tank supernatant hydroxide data and vapor space carbon dioxide data. A comparison of the newly generated mechanistic model with previously applied empirical hydroxide depletion equations is also performed.

  8. Integrated Assessment Modeling of Carbon Sequestration and Land Use Emissions Using Detailed Model Results and Observations

    SciTech Connect (OSTI)

    Dr. Atul Jain

    2005-04-17T23:59:59.000Z

    This report outlines the progress on the development and application of Integrated Assessment Modeling of Carbon Sequestrations and Land Use Emissions supported by the DOE Office of Biological and Environmental Research (OBER), U.S. Department of Energy, Grant No. DOE-DE-FG02-01ER63069. The overall objective of this collaborative project between the University of Illinois at Urbana-Champaign (UIUC), Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL), and Pacific Northwest National Laboratory (PNNL) was to unite the latest advances in carbon cycle research with scientifically based models and policy-related integrated assessment tools that incorporate computationally efficient representations of the latest knowledge concerning science and emission trajectories, and their policy implications. As part of this research we accomplished the following tasks that we originally proposed: (1) In coordination with LLNL and ORNL, we enhanced the Integrated Science Assessment Model's (ISAM) parametric representation of the ocean and terrestrial carbon cycles that better represent spatial and seasonal variations, which are important to study the mechanisms that influence carbon sequestration in the ocean and terrestrial ecosystems; (2) Using the MiniCAM modeling capability, we revised the SRES (IPCC Special Report on Emission Scenarios; IPCC, 2000) land use emission scenarios; and (3) On the application front, the enhanced version of ISAM modeling capability is applied to understand how short- and long-term natural carbon fluxes, carbon sequestration, and human emissions contribute to the net global emissions (concentrations) trajectories required to reach various concentration (emission) targets. Under this grant, 21 research publications were produced. In addition, this grant supported a number of graduate and undergraduate students whose fundamental research was to learn a disciplinary field in climate change (e.g., ecological dynamics and ocean circulations) and then complete research on how this field could be linked to the other factors we need to consider in its dynamics (e.g., land use, ocean and terrestrial carbon sequestration and climate change).

  9. States of Carbon-12 in the Skyrme Model

    E-Print Network [OSTI]

    P. H. C. Lau; N. S. Manton

    2014-11-28T23:59:59.000Z

    The Skyrme model has two Skyrmion solutions of baryon number $12$, with $D_{3h}$ and $D_{4h}$ symmetries. The first has an equilateral triangular shape and the second an extended linear shape, analogous to the triangle and linear chain structures of three alpha particles. We recalculate the moments of inertia of these Skyrmions, and deduce the energies and spins of their quantized rotational excitations. There is a good match with the ground-state band of Carbon-12, and with the recently established rotational band of the Hoyle state. The ratio of the root mean square matter radii also matches the experimental value.

  10. Predicting the net carbon exchanges of crop rotations in Europe with an agro-ecosystem model

    E-Print Network [OSTI]

    Boyer, Edmond

    Predicting the net carbon exchanges of crop rotations in Europe with an agro-ecosystem model S.Lehuger@art.admin.ch. Fax: (+41) 44 377 72 01. Phone: (+41) 44 377 75 13. hal-00414342,version2-1Sep2010 #12;Abstract Carbon and measuring land-atmosphere carbon exchanges from arable lands are important tasks to predict the influence

  11. January 2, 2008 Numerical modeling of the effect of carbon dioxide

    E-Print Network [OSTI]

    Boyer, Edmond

    January 2, 2008 Numerical modeling of the effect of carbon dioxide sequestration on the rate souterrain de dioxyde de carbone sur la déformation des calcaires par dissolution sous contrainte: résultats;Abstract When carbon dioxide (CO2) is injected into an aquifer or a depleted geological reservoir, its

  12. September 25, 2006 Numerical modeling of the effect of carbon dioxide

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    September 25, 2006 Numerical modeling of the effect of carbon dioxide sequestration on the rate souterrain de dioxyde de carbone sur la déformation des calcaires par dissolution sous contrainte: résultats@obs.ujf- grenoble.fr, marielle.collombet@ujf-grenoble.fr, yleguen@lgit.obs.ujf-grenoble.fr. #12;Abstract When carbon

  13. Evaluating carbon sequestration efficiency in an ocean circulation model by adjoint sensitivity analysis

    E-Print Network [OSTI]

    Follows, Mick

    Evaluating carbon sequestration efficiency in an ocean circulation model by adjoint sensitivity the application of the adjoint method to develop three-dimensional maps of carbon sequestration efficiency. Sequestration efficiency (the percentage of carbon injected at a continuous point source that remains

  14. Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China

    E-Print Network [OSTI]

    Modeling impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils impacts of carbon sequestration on net greenhouse gas emissions from agricultural soils in China, Global Biogeochem. Cycles, 23, GB1007, doi:10.1029/2008GB003180. 1. Introduction [2] Carbon (C) sequestration has

  15. Back to Exploration 2008 CSPG CSEG CWLS Convention 1 A Computational Model of Catalyzed Carbon Sequestration

    E-Print Network [OSTI]

    Spiteri, Raymond J.

    explores the feasibility of catalysis-based carbon sequestration by efficiently and accurately modeling that this method can be scaled to accurately predict the efficacy of such systems for carbon sequestration to help find the most cost effective methods possible. Most carbon sequestration methods are capture

  16. A model for calcium carbonate neutralization in the presence of armoring

    E-Print Network [OSTI]

    Primicerio, Mario

    A model for calcium carbonate neutralization in the presence of armoring L. Fusia , M. Primicerioa for the reaction between calcium carbonate (CaCO3) and a solution containing sulfuric acid (H2SO4). We assume system and where the neutralizing agent is calcium carbonate (see [3], [4], [5]). These mod- els have

  17. Carbon Footprint and the Management of Supply Chains: Insights from Simple Models

    E-Print Network [OSTI]

    Benjaafar, Saifallah

    Carbon Footprint and the Management of Supply Chains: Insights from Simple Models Saif Benjaafar1, we illustrate how carbon emission concerns could be integrated into operational decision-making with regard to procurement, production, and inventory management. We show how, by associating carbon emission

  18. Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs among land-use

    E-Print Network [OSTI]

    Rissman, Adena

    Forest cover, carbon sequestration, and wildlife habitat: policy review and modeling of tradeoffs and services, including timber production, carbon sequestration and storage, scenic amenities, and wildlife habitat. International efforts to mitigate climate change through forest carbon sequestration

  19. Determination of iridium in industrial concentrates by controlled-potential coulometry with a glassy-carbon electrode

    SciTech Connect (OSTI)

    Stril'chenko, T.G.; Kabanova, O.L.; Danilova, F.I.

    1987-02-01T23:59:59.000Z

    The authors present a coulometric method for determining iridium without separating nonferrous and noble metals using a glassy-carbon (GC) crucible instead of the expensive platinum electrode. The crucible also serves as the electrochemical cell for the coulometric determination and as a vessel in which an aliquot weight of the analyzed solution is taken. The KP-3 concentrate contains several metals that accompany iridium. The main metals which interfere in the electrochemical determination of iridium with the use of a platinum electrode are iron and ruthenium. This paper describes the authors' proposed procedure for determining iridium in hydrochloric acid solutions with the GC crucible-electrode.

  20. A Semi-Empirical Two Step Carbon Corrosion Reaction Model in PEM Fuel Cells

    SciTech Connect (OSTI)

    Young, Alan; Colbow, Vesna; Harvey, David; Rogers, Erin; Wessel, Silvia

    2013-01-01T23:59:59.000Z

    The cathode CL of a polymer electrolyte membrane fuel cell (PEMFC) was exposed to high potentials, 1.0 to 1.4 V versus a reversible hydrogen electrode (RHE), that are typically encountered during start up/shut down operation. While both platinum dissolution and carbon corrosion occurred, the carbon corrosion effects were isolated and modeled. The presented model separates the carbon corrosion process into two reaction steps; (1) oxidation of the carbon surface to carbon-oxygen groups, and (2) further corrosion of the oxidized surface to carbon dioxide/monoxide. To oxidize and corrode the cathode catalyst carbon support, the CL was subjected to an accelerated stress test cycled the potential from 0.6 VRHE to an upper potential limit (UPL) ranging from 0.9 to 1.4 VRHE at varying dwell times. The reaction rate constants and specific capacitances of carbon and platinum were fitted by evaluating the double layer capacitance (Cdl) trends. Carbon surface oxidation increased the Cdl due to increased specific capacitance for carbon surfaces with carbon-oxygen groups, while the second corrosion reaction decreased the Cdl due to loss of the overall carbon surface area. The first oxidation step differed between carbon types, while both reaction rate constants were found to have a dependency on UPL, temperature, and gas relative humidity.

  1. Changes in soil organic carbon storage predicted by Earth system models during the 21st century

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    carbon changes in Earth system models K. E. O. Todd-Brown etcarbon changes in Earth system models K. E. O. Todd-Brown etcarbon changes in Earth system models K. E. O. Todd-Brown et

  2. Carbon nanotubes and graphene in aqueous surfactant solutions : molecular simulations and theoretical modeling

    E-Print Network [OSTI]

    Lin, Shangchao

    2012-01-01T23:59:59.000Z

    This thesis describes combined molecular simulations and theoretical modeling studies, supported by experimental observations, on properties and applications of carbon nanotubes (CNTs) and graphene sheets dispersed in ...

  3. AN INTEGRATED MODELING FRAMEWORK FOR CARBON MANAGEMENT TECHNOLOGIES

    SciTech Connect (OSTI)

    Anand B. Rao; Edward S. Rubin; Michael B. Berkenpas

    2004-03-01T23:59:59.000Z

    CO{sub 2} capture and storage (CCS) is gaining widespread interest as a potential method to control greenhouse gas emissions from fossil fuel sources, especially electric power plants. Commercial applications of CO{sub 2} separation and capture technologies are found in a number of industrial process operations worldwide. Many of these capture technologies also are applicable to fossil fuel power plants, although applications to large-scale power generation remain to be demonstrated. This report describes the development of a generalized modeling framework to assess alternative CO{sub 2} capture and storage options in the context of multi-pollutant control requirements for fossil fuel power plants. The focus of the report is on post-combustion CO{sub 2} capture using amine-based absorption systems at pulverized coal-fired plants, which are the most prevalent technology used for power generation today. The modeling framework builds on the previously developed Integrated Environmental Control Model (IECM). The expanded version with carbon sequestration is designated as IECM-cs. The expanded modeling capability also includes natural gas combined cycle (NGCC) power plants and integrated coal gasification combined cycle (IGCC) systems as well as pulverized coal (PC) plants. This report presents details of the performance and cost models developed for an amine-based CO{sub 2} capture system, representing the baseline of current commercial technology. The key uncertainties and variability in process design, performance and cost parameters which influence the overall cost of carbon mitigation also are characterized. The new performance and cost models for CO{sub 2} capture systems have been integrated into the IECM-cs, along with models to estimate CO{sub 2} transport and storage costs. The CO{sub 2} control system also interacts with other emission control technologies such as flue gas desulfurization (FGD) systems for SO{sub 2} control. The integrated model is applied to study the feasibility and cost of carbon capture and sequestration at both new and existing PC plants as well as new NGCC plants. The cost of CO{sub 2} avoidance using amine-based CO{sub 2} capture technology is found to be sensitive to assumptions about the reference plant design and operation, as well as assumptions about the CO{sub 2} capture system design. The case studies also reveal multi-pollutant interactions and potential tradeoffs in the capture of CO{sub 2}, SO{sub 2}, NO{sub 2} and NH{sub 3}. The potential for targeted R&D to reduce the cost of CO{sub 2} capture also is explored using the IECM-cs in conjunction with expert elicitations regarding potential improvements in key performance and cost parameters of amine-based systems. The results indicate that the performance of amine-based CO{sub 2} capture systems can be improved significantly, and the cost of CO{sub 2} capture reduced substantially over the next decade or two, via innovations such as new or improved sorbents with lower regeneration heat requirements, and improvements in power plant heat integration to reduce the (currently large) energy penalty of CO{sub 2} capture. Future work will explore in more detail a broader set of advanced technology options to lower the costs of CO{sub 2} capture and storage. Volume 2 of this report presents a detailed User's Manual for the IECM-cs computer model as a companion to the technical documentation in Volume 1.

  4. Formation of Carbon Dwarfs

    E-Print Network [OSTI]

    Charles L. Steinhardt; Dimitar D. Sasselov

    2012-01-27T23:59:59.000Z

    We consider the formation of dwarf carbon stars via accretion from a carbon AGB companion in light of the new 107 object sample of Downes et al. (2004). This sample is now large enough to allow good mass determination via comparison of a composite spectrum to theoretical atmospheric models. Carbon dwarfs of spectral type M are indeed main sequence M dwarfs with enhanced metallicity and carbon abundance. We also calculate the predicted abundance of both M and of F/G carbon dwarfs, and show that the latter should be falsifiable in the near future.

  5. Determination of the permeability of carbon aerogels by gas flow measurements

    SciTech Connect (OSTI)

    Kong, F.M.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W.

    1992-04-01T23:59:59.000Z

    Carbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050{degree}C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy`s law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10{sup {minus}12}to 10{sup {minus}10} cm{sup 2} for densities ranging from 0.44 to 0.05 g/cm{sup 3}. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.

  6. Determination of the permeability of carbon aerogels by gas flow measurements

    SciTech Connect (OSTI)

    Kong, F.M.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W.

    1992-04-01T23:59:59.000Z

    Carbon aerogels are synthesized via the polycondensation of resorcinol and formaldehyde, followed by supercritical drying and pyrolysis at 1050{degree}C in nitrogen. Because of their interconnected porosity, ultrafine cell structure and high surface area, carbon aerogels have many potential applications, such as in supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, we calculated the permeability of carbon aerogels from equations based upon Darcy's law. Our measurements show that carbon aerogels have apparent permeabilities on the order of 10{sup {minus}12}to 10{sup {minus}10} cm{sup 2} for densities ranging from 0.44 to 0.05 g/cm{sup 3}. Like their mechanical properties, the permeability of carbon aerogels follows a power law relationship with density and average pore size. Such findings help us to estimate the average pore sizes of carbon aerogels once their densities are known. This paper reveals the relationships among permeability, pore size and density in carbon aerogels.

  7. Resource Portfolio Model's Determination of Conservation's Cost-Effectiveness1

    E-Print Network [OSTI]

    ,008 average megawatts of conservation8. The electricity price forecast used for this initial estimResource Portfolio Model's Determination of Conservation's Cost- Effectiveness1 The regional Resource Portfolio Model (RPM) finds large amounts of conservation cost effective. The cost of some

  8. Modelling the convenience yield in carbon prices using daily and realized measures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ) for crude oil or natural gas markets. This article focuses on the modelling of the convenience yield, and economic risks specific to this market (see Chevallier et al. (2009) for more details). Besides, carbon: This article investigates the modelling of the convenience yield in the European carbon market by using daily

  9. Carbon steady-state model of the planktonic food web of Lake Biwa, Japan

    E-Print Network [OSTI]

    Jackson, George

    after degradation of detritus to release dissolved organic carbon. Keywords: detritus, food web, lakeCarbon steady-state model of the planktonic food web of Lake Biwa, Japan NATHALIE NIQUIL,* GRETTA planktonic food web in the surface mixed-layer of the North Basin in Lake Biwa, Japan. This model synthesised

  10. Computational modeling of thermal conductivity of single walled carbon nanotube polymer composites

    E-Print Network [OSTI]

    Maruyama, Shigeo

    was developed to study the thermal conductivity of single walled carbon nanotube (SWNT)-polymer composites1 Computational modeling of thermal conductivity of single walled carbon nanotube polymer resistance on effective conductivity of composites were quantified. The present model is a useful tool

  11. A Mathematical Model of OxideCarbon Composite Electrode for Supercapacitors

    E-Print Network [OSTI]

    Popov, Branko N.

    A Mathematical Model of OxideÃ?Carbon Composite Electrode for Supercapacitors Hansung Kim for the general application of supercapacitors consisting of an oxide/carbon composite electrode. The model takes. Supercapacitors can be divided into two categories: electric double-layer capacitors and pseudocapacitors

  12. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15T23:59:59.000Z

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcy’s law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  13. A Finite Element Model for Simulation of Carbon Dioxide Sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Fang, Yilin

    2013-11-02T23:59:59.000Z

    We present a hydro-mechanical model, followed by stress, deformation, and shear-slip failure analysis for geological sequestration of carbon dioxide (CO2). The model considers the poroelastic effects by taking into account of the two-way coupling between the geomechanical response and the fluid flow process. Analytical solutions for pressure and deformation fields were derived for a typical geological sequestration scenario in our previous work. A finite element approach is introduced here for numerically solving the hydro-mechanical model with arbitrary boundary conditions. The numerical approach was built on an open-source finite element code Elmer, and results were compared to the analytical solutions. The shear-slip failure analysis was presented based on the numerical results, where the potential failure zone is identified. Information is relevant to the prediction of the maximum sustainable injection rate or pressure. The effects of caprock permeability on the fluid pressure, deformation, stress, and the shear-slip failure zone were also quantitatively studied. It was shown that a larger permeability in caprock and base rock leads to a larger uplift but a smaller shear-slip failure zone.

  14. CARBON DEFLAGRATION IN TYPE Ia SUPERNOVA. I. CENTRALLY IGNITED MODELS

    SciTech Connect (OSTI)

    Ma, H.; Woosley, S. E.; Malone, C. M. [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Almgren, A.; Bell, J. [Center for Computational Sciences and Engineering, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States)

    2013-07-01T23:59:59.000Z

    A leading model for Type Ia supernovae (SNe Ia) begins with a white dwarf near the Chandrasekhar mass that ignites a degenerate thermonuclear runaway close to its center and explodes. In a series of papers, we shall explore the consequences of ignition at several locations within such dwarfs. Here we assume central ignition, which has been explored before, but is worth revisiting, if only to validate those previous studies and to further elucidate the relevant physics for future work. A perturbed sphere of hot iron ash with a radius of {approx}100 km is initialized at the middle of the star. The subsequent explosion is followed in several simulations using a thickened flame model in which the flame speed is either fixed-within the range expected from turbulent combustion-or based on the local turbulent intensity. Global results, including the explosion energy and bulk nucleosynthesis (e.g., {sup 56}Ni of 0.48-0.56 M{sub Sun }) turn out to be insensitive to this speed. In all completed runs, the energy released by the nuclear burning is adequate to unbind the star, but not enough to give the energy and brightness of typical SNe Ia. As found previously, the chemical stratification observed in typical events is not reproduced. These models produce a large amount of unburned carbon and oxygen in central low velocity regions, which is inconsistent with spectroscopic observations, and the intermediate mass elements and iron group elements are strongly mixed during the explosion.

  15. Integrated Analysis and Application of Reservoir Models to Early Permian Detrital Carbonate Deposits, Midland Basin, Texas

    E-Print Network [OSTI]

    Johnston, Travis Wayne 1987-

    2012-11-01T23:59:59.000Z

    A 3-D seismic volume, wireline logs and core data were integrated to determine the spatial distribution of porous reservoirs within the Wolfcampian-Leonardian detrital carbonate slope and basin strata in Glasscock County, Texas. A 3-D seismic...

  16. An alternative to the Winland R35 method for determining carbonate reservoir quality 

    E-Print Network [OSTI]

    Lafage, Stephanie Isabelle

    2008-10-10T23:59:59.000Z

    quality in carbonate reservoirs. To evaluate alternatives to the conventional Winland technique, based on rock facies characteristics, samples from the Jurassic Smackover Formation in Alabama and the Permian Clearfork Formation in Texas were tested...

  17. New Computer Model Pinpoints Prime Materials for Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plants that spew carbon dioxide (CO2) into the atmosphere and contribute to global warming. While humans could potentially mitigate this effect by capturing CO2 from power...

  18. Activation and micropore structure determination of activated carbon-fiber composites

    SciTech Connect (OSTI)

    Jagtoyen, M.; Derbyshire, F.; Kimber, G. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1997-09-05T23:59:59.000Z

    Rigid, high surface area activated carbon fiber composites have been produced with high permeabilities for environmental applications in gas and water purification. These novel monolithic adsorbents can be produced in single pieces to a given size and shape. The project involves a collaboration between the Oak Ridge National Laboratory (ORNL) and the Center for Applied Energy Research (CAER), University of Kentucky. The carbon fiber composites are produced at the ORNL and activated at the CAER using different methods, with the aims of producing a uniform degree of activation, and of closely controlling pore structure and adsorptive properties. The main focus of the present work has been to find a satisfactory means to uniformly activate large samples of carbon fiber composites and produce controlled pore structures. Several environmental applications have been explored for the activated carbon fiber composites. One of these was to evaluate the activated composites for the separation of CH{sub 4}-CO{sub 2} mixtures, and an apparatus was constructed specifically for this purpose. The composites were further evaluated in the cyclic recovery of volatile organics. The activated carbon fiber composites have also been tested for possible water treatment applications by studying the adsorption of sodium pentachlorophenolate, PCP.

  19. Key Factors for Determining Groundwater Impacts Due to Leakage from Geologic Carbon Sequestration Reservoirs

    SciTech Connect (OSTI)

    Carroll, Susan A.; Keating, Elizabeth; Mansoor, Kayyum; Dai, Zhenxue; Sun, Yunwei; Trainor-Guitton, Whitney; Brown, Christopher F.; Bacon, Diana H.

    2014-09-15T23:59:59.000Z

    The National Risk Assessment Partnership (NRAP) is developing a science-based toolset for the analysis of potential impacts to groundwater chemistry from CO2 injection (www.netldoe.gov/nrap). The toolset adopts a stochastic approach in which predictions address uncertainties in shallow groundwater and leakage scenarios. It is derived from detailed physics and chemistry simulation results that are used to train more computationally efficient models, referred to here as reduced-order models (ROMs), for each component system. In particular, these tools can be used to help regulators and operators understand the expected sizes and longevity of plumes in pH, TDS, and dissolved metals that could result from a leakage of brine and/or CO2 from a storage reservoir into aquifers. This information can inform, for example, decisions on monitoring strategies that are both effective and efficient. We have used this approach to develop predictive reduced-order models for two common types of reservoirs, but the approach could be used to develop a model for a specific aquifer or other common types of aquifers. In this paper we describe potential impacts to groundwater quality due to CO2 and brine leakage, discuss an approach to calculate thresholds under which no impact to groundwater occurs, describe the time scale for impact on groundwater, and discuss the probability of detecting a groundwater plume should leakage occur. To facilitate this, multi-phase flow and reactive transport simulations and emulations were developed for two classes of aquifers, considering uncertainty in leakage source terms and aquifer hydrogeology. We targeted an unconfined fractured carbonate aquifer based on the Edwards aquifer in Texas and a confined alluvium aquifer based on the High Plains Aquifer in Kansas, which share characteristics typical of many drinking water aquifers in the United States. The hypothetical leakage scenarios centered on the notion that wellbores are the most likely conduits for brine and CO2 leaks. Leakage uncertainty was based on hypothetical injection of CO2 for 50 years at a rate of 5 million tons per year into a depleted oil/gas reservoir with high permeability and, one or more wells provided leakage pathways from the storage reservoir to the overlying aquifer. This scenario corresponds to a storage site with historical oil/gas production and some poorly completed legacy wells that went undetected through site evaluation, operations, and post-closure. For the aquifer systems and leakage scenarios studied here, CO2 and brine leakage are likely to drive pH below and increase total dissolved solids (TDS) above the “no-impact thresholds;” and the subsequent plumes, although small, are likely to persist for long periods of time in the absence of remediation. In these scenarios, however, risk to human health may not be significant for two reasons. First, our simulated plume volumes are much smaller than the average inter-well spacing for these representative aquifers, so the impacted groundwater would be unlikely to be pumped for drinking water. Second, even within the impacted plume volumes little water exceeds the primary maximum contamination levels.

  20. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model

    E-Print Network [OSTI]

    2009-01-01T23:59:59.000Z

    2009 P. E. Thornton et al. : Carbon-nitrogen interactionsregulate climate-carbon cycle feedbacks Monfray, P. ,T. H. : A global ocean carbon climatology: Results from

  1. A modelling approach to carbon, water and energy feedbacks and interactions across the

    E-Print Network [OSTI]

    ) Advanced Very High Resolution Radiometer BOREAS - (the) BOReal Ecosystem-Atmosphere Study C - Carbon CABi A modelling approach to carbon, water and energy feedbacks and interactions across the land partitioning of energy, the evapotranspiration of water and if the land-surface is a sink or a source of CO2

  2. Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    Mathematical Modeling of Carbon Dioxide Injection in the Subsurface for Improved Hydrocarbon Recovery and Sequestration Philip C. Myint, Laurence Rongy, Kjetil B. Haugen, Abbas Firoozabadi Department. Combustion of fossil fuels contributes to rising atmospheric carbon dioxide (CO2) levels that have been

  3. Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic formations

    E-Print Network [OSTI]

    Mills, Richard

    Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic performance computing to assess the risks involved in carbon sequestration in deep geologic formations-thermal- chemical processes in variably saturated, non-isothermal porous media is applied to sequestration

  4. Continuum Models of Carbon Nanotube-Based Composites Using the Boundary Element Method

    E-Print Network [OSTI]

    Liu, Yijun

    Continuum Models of Carbon Nanotube-Based Composites Using the Boundary Element Method Y.J. Liu)-based composites. Carbon nanotubes, formed conceptually by rolling thin graphite sheets, have been found to be extremely stiff, strong and resilient, and therefore may be ideal for reinforcing composite materials

  5. Modeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    , for example, increasing atmospheric carbon dioxide. Until the early 1980s, global atmospheric generalModeling the Exchanges of Energy, Water, and Carbon Between Continents and the Atmosphere P. J varying data of land surface properties were assembled from ecological and geo- graphical surveys

  6. A mixed finite element discretization scheme for a concrete carbonation model with concentration-dependent porosity

    E-Print Network [OSTI]

    Suciu, Nicolae

    A mixed finite element discretization scheme for a concrete carbonation model with concentration/unsaturated porous media. The special features of our problem are twofold: the reaction produces water and therefore for the case of concrete carbonation ­ one of the most important physico-chemical processes affecting

  7. Non-parametric regression and neural-network inll drilling recovery models for carbonate reservoirs

    E-Print Network [OSTI]

    Valkó, Peter

    , and operations e- ciency. Consequent to the primary recovery, water- ¯ood is often used as a secondary recoveryNon-parametric regression and neural-network in®ll drilling recovery models for carbonate ultimate oil recovery from reservoirs in San Andres and Clearfork carbonate formations in West Texas

  8. Measurement of carbon capture efficiency and stored carbon leakage

    DOE Patents [OSTI]

    Keeling, Ralph F.; Dubey, Manvendra K.

    2013-01-29T23:59:59.000Z

    Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

  9. The impact of the Self-Determined Learning Model of Instruction on student self-determination

    E-Print Network [OSTI]

    Wehmeyer, Michael L.; Shogren, Karrie A.; Palmer, Susan B.; Williams-Diehm, Kendra; Little, Todd D.; Boulton, Aaron Jacob

    2012-01-01T23:59:59.000Z

    multifaceted construct and interventions that achieve the best outcomes are multicomponent interventions. The SDLMI (Wehmeyer et al., 2000) is a model of teaching (i.e., intended for teachers as end users to guide and direct instruction) that supports teachers... the impact of the SDLMI (Wehmeyer et al., 2000) on self-determination. Project personnel contacted school districts, and districts that agreed to participate (« < 20) identi- fied high school campuses {n < 39) to participate. Next, the primary district...

  10. Global Biogeochemistry Models and Global Carbon Cycle Research at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Covey, C; Caldeira, K; Guilderson, T; Cameron-Smith, P; Govindasamy, B; Swanston, C; Wickett, M; Mirin, A; Bader, D

    2005-05-27T23:59:59.000Z

    The climate modeling community has long envisioned an evolution from physical climate models to ''earth system'' models that include the effects of biology and chemistry, particularly those processes related to the global carbon cycle. The widely reproduced Box 3, Figure 1 from the 2001 IPCC Scientific Assessment schematically describes that evolution. The community generally accepts the premise that understanding and predicting global and regional climate change requires the inclusion of carbon cycle processes in models to fully simulate the feedbacks between the climate system and the carbon cycle. Moreover, models will ultimately be employed to predict atmospheric concentrations of CO{sub 2} and other greenhouse gases as a function of anthropogenic and natural processes, such as industrial emissions, terrestrial carbon fixation, sequestration, land use patterns, etc. Nevertheless, the development of coupled climate-carbon models with demonstrable quantitative skill will require a significant amount of effort and time to understand and validate their behavior at both the process level and as integrated systems. It is important to consider objectively whether the currently proposed strategies to develop and validate earth system models are optimal, or even sufficient, and whether alternative strategies should be pursued. Carbon-climate models are going to be complex, with the carbon cycle strongly interacting with many other components. Off-line process validation will be insufficient. As was found in coupled atmosphere-ocean GCMs, feedbacks between model components can amplify small errors and uncertainties in one process to produce large biases in the simulated climate. The persistent tropical western Pacific Ocean ''double ITCZ'' and upper troposphere ''cold pole'' problems are examples. Finding and fixing similar types of problems in coupled carbon-climate models especially will be difficult, given the lack of observations required for diagnosis and validation of biogeochemical processes.

  11. Modeling of Seismic Signatures of Carbonate Rock Types 

    E-Print Network [OSTI]

    Jan, Badr H.

    2011-02-22T23:59:59.000Z

    Carbonate reservoirs of different rock types have wide ranges of porosity and permeability, creating zones with different reservoir quality and flow properties. This research addresses how seismic technology can be used ...

  12. Design and modeling of carbon nanotube-based compliant mechanisms

    E-Print Network [OSTI]

    DiBiasio, Christopher M. (Christopher Michael)

    2007-01-01T23:59:59.000Z

    The objective of this research is to generate the knowledge required to adapt macro- and microscale compliant mechanism theory to design carbon nanotube-based nano-scale compliant mechanisms. Molecular simulations of a ...

  13. Modeling of Seismic Signatures of Carbonate Rock Types

    E-Print Network [OSTI]

    Jan, Badr H.

    2011-02-22T23:59:59.000Z

    Carbonate reservoirs of different rock types have wide ranges of porosity and permeability, creating zones with different reservoir quality and flow properties. This research addresses how seismic technology can be used to identify different...

  14. Sensitivity of injection costs to input petrophysical parameters in numerical geologic carbon sequestration models

    SciTech Connect (OSTI)

    Cheng, C. L.; Gragg, M. J.; Perfect, E.; White, Mark D.; Lemiszki, P. J.; McKay, L. D.

    2013-08-24T23:59:59.000Z

    Numerical simulations are widely used in feasibility studies for geologic carbon sequestration. Accurate estimates of petrophysical parameters are needed as inputs for these simulations. However, relatively few experimental values are available for CO2-brine systems. Hence, a sensitivity analysis was performed using the STOMP numerical code for supercritical CO2 injected into a model confined deep saline aquifer. The intrinsic permeability, porosity, pore compressibility, and capillary pressure-saturation/relative permeability parameters (residual liquid saturation, residual gas saturation, and van Genuchten alpha and m values) were varied independently. Their influence on CO2 injection rates and costs were determined and the parameters were ranked based on normalized coefficients of variation. The simulations resulted in differences of up to tens of millions of dollars over the life of the project (i.e., the time taken to inject 10.8 million metric tons of CO2). The two most influential parameters were the intrinsic permeability and the van Genuchten m value. Two other parameters, the residual gas saturation and the residual liquid saturation, ranked above the porosity. These results highlight the need for accurate estimates of capillary pressure-saturation/relative permeability parameters for geologic carbon sequestration simulations in addition to measurements of porosity and intrinsic permeability.

  15. A modeling study on the climate impacts of black carbon aerosols

    E-Print Network [OSTI]

    Wang, Chien.

    The role of black carbon (BC) aerosols in climate change is important because of its strong capability in causing extinction of solar radiation. A three-dimensional interactive aerosol-climate model has been used to study ...

  16. Modeling and Optimization of Matrix Acidizing in Horizontal Wells in Carbonate Reservoirs

    E-Print Network [OSTI]

    Tran, Hau

    2013-05-07T23:59:59.000Z

    concentration, temperature and acid flux in the formation. The work concentrated on the investigation of the acid flux. Analytical equations for injection rate schedule for different wormhole models. In carbonate acidizing, the existence of the optimum...

  17. Modelling Urban scale Retrofit, Pathways to 2050 Low Carbon Residential Building Stock 

    E-Print Network [OSTI]

    Lannon, Simon; Georgakaki, Aliki; Macdonald, Stuart

    A bottom up engineering modelling approach has been used to investigate the pathways to 2050 low carbon residential building stock. The impact of housing retrofit, renewable technologies, occupant behaviour, and grid decarbonisation is measured at a...

  18. China's terrestrial carbon balance: Contributions from multiple global change factors

    E-Print Network [OSTI]

    Montana, University of

    China's terrestrial carbon balance: Contributions from multiple global change factors Hanqin Tian,1 to be investigated. China is important in determining the global carbon balance in terms of both carbon emission change) on net carbon balance in terrestrial ecosystems of China for the period 1961­2005 were modeled

  19. A mathematical model for countercurrent moving-bed activated carbon adsorption

    E-Print Network [OSTI]

    Anderson, Douglas Harold

    1976-01-01T23:59:59.000Z

    the column. There was insufficient data taken to verify this model. The testing procedure was limited by the approximate uniformity of the influent concentrations in the pilot plant and the effect of the activated carbon concentration and initial solute...A MATHEMATICAL MODEL FOR COUNTERCURRENT MOVING-BED ACTIVATED CARBON ADSORPTION A Thesis by DOUGLAS HAROLD ANDERSON Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER...

  20. Molecular Modelling of Adsorption and Transport in Nanoporous Carbons: From the Simple Slit Pore Model to Virtual Porous Carbons

    E-Print Network [OSTI]

    Adler, Joan

    of energy derived from solar and other intermittent renewable sources, water remediation and desalination, South Australia, Australia, 5005. mark.biggs@adelaide.edu.au Nanoporous carbons are relatively inert

  1. Review and model-based analysis of factors influencing soil carbon sequestration beneath switchgrass (Panicum virgatum)

    SciTech Connect (OSTI)

    Garten Jr, Charles T [ORNL

    2012-01-01T23:59:59.000Z

    Abstract. A simple, multi-compartment model was developed to predict soil carbon sequestration beneath switchgrass (Panicum virgatum) plantations in the southeastern United States. Soil carbon sequestration is an important component of sustainable switchgrass production for bioenergy because soil organic matter promotes water retention, nutrient supply, and soil properties that minimize erosion. A literature review was included for the purpose of model parameterization and five model-based experiments were conducted to predict how changes in environment (temperature) or crop management (cultivar, fertilization, and harvest efficiency) might affect soil carbon storage and nitrogen losses. Predictions of soil carbon sequestration were most sensitive to changes in annual biomass production, the ratio of belowground to aboveground biomass production, and temperature. Predictions of ecosystem nitrogen loss were most sensitive to changes in annual biomass production, the soil C/N ratio, and nitrogen remobilization efficiency (i.e., nitrogen cycling within the plant). Model-based experiments indicated that 1) soil carbon sequestration can be highly site specific depending on initial soil carbon stocks, temperature, and the amount of annual nitrogen fertilization, 2) response curves describing switchgrass yield as a function of annual nitrogen fertilization were important to model predictions, 3) plant improvements leading to greater belowground partitioning of biomass could increase soil carbon sequestration, 4) improvements in harvest efficiency have no indicated effects on soil carbon and nitrogen, but improve cumulative biomass yield, and 5) plant improvements that reduce organic matter decomposition rates could also increase soil carbon sequestration, even though the latter may not be consistent with desired improvements in plant tissue chemistry to maximize yields of cellulosic ethanol.

  2. A validation of heat and carbon fluxes from highresolution land surface and regional models

    E-Print Network [OSTI]

    D'Andrea, Fabio

    ) or regional climate models (RCMs) [Alessandri et al., 2007; Steiner et al., 2009]. [3., 2006; Alessandri et al., 2007; Jarlan et al., 2008; Steiner et al., 2009]. However, the SVAT models models do not account for the role of terrestrial vegetation in the carbon cycle variability [Alessandri

  3. Modeling of C stars with core/mantle grains: Amorphous carbon + SiC

    E-Print Network [OSTI]

    S. Lorenz-Martins; F. X. de Araujo; S. J. Codina Landaberry; W. G. de Almeida; R. V. de Nader

    2000-12-08T23:59:59.000Z

    A set of 45 dust envelopes of carbon stars has been modeled. Among them, 34 were selected according to their dust envelope class (as suggested by Sloan, Little-Marenin & Price, 1998) and 11 are extreme carbon stars. The models were performed using a code that describes the radiative transfer in dust envelopes considering core/mantle grains composed by an alpha-SiC core and an amorphous carbon (A.C.) mantle. In addition, we have also computed models with a code that considers two kinds of grains - alpha-SiC and A.C. - simultaneously. Core-mantle grains seem to fit dust envelopes of evolved carbon stars, while two homogeneous grains are more able to reproduce thinner dust envelopes. Our results suggest that there exists an evolution of dust grains in the carbon star sequence. In the beginning of the sequence, grains are mainly composed of SiC and amorphous carbon; with dust envelope evolution, carbon grains are coated in SiC. This phenomena could perhaps explain the small quantity of SiC grains observed in the interstellar medium. However, in this work we consider only alpha-SiC grains, and the inclusion of beta-SiC grains can perhaps change some of there results.

  4. Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis

    SciTech Connect (OSTI)

    Dietze, Michael; Vargas, Rodrigo; Richardson, Andrew D.; Stoy, Paul C.; Barr, Alan; Anderson, Ryan; Arain, M. A.; Baker, Ian; Black, T. Andrew; Chen, Jing Ming; Ciais, Philippe; Flanagan, Lawrence; Gough, Christopher; Grant, R. F.; Hollinger, D.; Izaurralde, Roberto C.; Kucharik, Chris; Lafleur, Peter; Liu, Shuguang; Lokupitiya, Erandathie; Luo, Yiqi; Munger, J. W.; Peng, Changhui; Poulter, Benjamin; Price, David T.; Ricciuto, Daniel M.; Riley, William; Sahoo, Alok Kumar; Schaefer, Kevin; Suyker, Andrew E.; Tian, Hanqin; Tonitto, Christine; Verbeeck, Hans; Verma, Shashi B.; Wang, Weifeng; Weng, Ensheng

    2011-12-20T23:59:59.000Z

    Ecosystem models are important tools for diagnosing the carbon cycle and projecting its behavior across space and time. Most assessments of model performance occur at individual temporal scales, but ecosystems respond to drivers at multiple time scales. Spectral methods, such as wavelet analyses, present an alternative approach that enables the identification of the dominant time scales contributing to model performance in the frequency domain. In this study we used wavelet analyses to synthesize the performance of twenty-one ecosystem models at nine eddy-covariance towers as part of the North American Carbon Program's site-level inter-comparison. This study expands upon previous single-site and single-model analyses to determine what patterns of model failure are consistent across a diverse range of models and sites.

  5. Rate of reduction of ore-carbon composites: Part II. Modeling of reduction in extended composites

    SciTech Connect (OSTI)

    Fortini, O.M.; Fruehan, R.J. [US Steel Research & Technological Center, Monroeville, PA (United States)

    2005-12-01T23:59:59.000Z

    A new process for ironmaking was proposed using a rotary hearth furnace and an iron bath smelter to produce iron employing wood charcoal as an energy source and reductant. This paper examines reactions in composite pellet samples with sizes close to sizes used in industrial practice (10 to 16 min in diameter). A model was constructed using the combined kinetic mechanism developed in Part I of this series of articles along with equations for the computation of pellet temperature and shrinkage during the reaction. The analysis of reaction rates measured for pellets with wood charcoal showed that heat transfer plays a significant role in their overall rate of reaction at elevated temperatures. The slower rates measured in pellets containing coal char show that the intrinsic kinetics of carbon oxidation is more significant than heat transfer. Model calculations suggest that the rates are highly sensitive to the thermal conductivity of pellets containing wood charcoal and are less sensitive to the external conditions of heat transfer. It was seen that the changes in pellet surface area and diameter due to shrinkage introduce little change on reaction rates. The model developed provides an adequate description of pellets of wood charcoal up to circa 90% of reduction. Experimentally determined rates of reduction of iron oxide by wood charcoal were approximately 5 to 10 times faster than rates measured in pellets with coal char.

  6. Conceptual design of an integrated technology model for carbon policy assessment.

    SciTech Connect (OSTI)

    Backus, George A.; Dimotakes, Paul E. (NASA Jet Propulsion Laboratory, Pasadena, CA)

    2011-01-01T23:59:59.000Z

    This report describes the conceptual design of a technology choice model for understanding strategies to reduce carbon intensity in the electricity sector. The report considers the major modeling issues affecting technology policy assessment and defines an implementable model construct. Further, the report delineates the basis causal structure of such a model and attempts to establish the technical/algorithmic viability of pursuing model development along with the associated analyses.

  7. Ocean Carbon Cycle Models from the Carbon Dioxide Information Analysis Center (CDIAC)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    •\tPacific data-model intercomparison from Patrick Wetzel (Max Planck Institute for Meteorology, Germany)

  8. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models

    E-Print Network [OSTI]

    German, Donovan P.

    , accounting for the response of microbial communities to environmental parameters in Earth system models may

  9. Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity

    E-Print Network [OSTI]

    McCollum, David L; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    research in the field of carbon capture and storage (CCS)heightened interest in carbon capture and storage (CCS) as areservoirs. To be sure, carbon capture and sequestration is

  10. Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models

    SciTech Connect (OSTI)

    Jorge L. Sarmiento - Princeton PI, Anand Gnanadesikan - Princeton Co-I, Nicolas Gruber - UCLA PI, Xin Jin - UCLA PostDoc, Robert Armstrong - SUNY /Stony Brook Consultant

    2007-06-21T23:59:59.000Z

    This final report summarizes research undertaken collaboratively between Princeton University, the NOAA Geophysical Fluid Dynamics Laboratory on the Princeton University campus, the State University of New York at Stony Brook, and the University of California, Los Angeles between September 1, 2000, and November 30, 2006, to do fundamental research on ocean iron fertilization as a means to enhance the net oceanic uptake of CO2 from the atmosphere. The approach we proposed was to develop and apply a suite of coupled physical-ecological-biogeochemical models in order to (i) determine to what extent enhanced carbon fixation from iron fertilization will lead to an increase in the oceanic uptake of atmospheric CO2 and how long this carbon will remain sequestered (efficiency), and (ii) examine the changes in ocean ecology and natural biogeochemical cycles resulting from iron fertilization (consequences). The award was funded in two separate three-year installments: • September 1, 2000 to November 30, 2003, for a project entitled “Ocean carbon sequestration by fertilization: An integrated biogeochemical assessment.” A final report was submitted for this at the end of 2003 and is included here as Appendix 1. • December 1, 2003 to November 30, 2006, for a follow-on project under the same grant number entitled “Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models.” This report focuses primarily on the progress we made during the second period of funding subsequent to the work reported on in Appendix 1. When we began this project, we were thinking almost exclusively in terms of long-term fertilization over large regions of the ocean such as the Southern Ocean, with much of our focus being on how ocean circulation and biogeochemical cycling would interact to control the response to a given fertilization scenario. Our research on these types of scenarios, which was carried out largely during the first three years of our project, led to several major new insights on the interaction between ocean biogeochemistry and circulation. This work, which is described in the following Section II on “Large scale fertilization,” has continued to appear in the literature over the past few years, including two high visibility papers in Nature. Early on in the first three years of our project, it became clear that small "patch-scale" fertilizations over limited regions of order 100 km diameter were much more likely than large scale fertilization, and we carried out a series of idealized patch fertilization simulations reported on in Gnanadesikan et al. (2003). Based on this paper and other results we had obtained by the end of our first three-year grant, we identified a number of important issues that needed to be addressed in the second three-year period of this grant. Section III on “patch fertilization” discusses the major findings of this phase of our research, which is described in two major manuscripts that will be submitted for publication in the near future. This research makes use of new more realistic ocean ecosystem and iron cycling models than our first paper on this topic. We have several major new insights into what controls the efficiency of iron fertilization in the ocean. Section IV on “model development” summarizes a set of papers describing the progress that we made on improving the ecosystem models we use for our iron fertilization simulations.

  11. REACTIVE FLOW IN VUGGY CARBONATES: METHODS AND MODELS APPLIED TO MATRIX ACIDIZING OF CARBONATES 

    E-Print Network [OSTI]

    Izgec, Omer

    2010-07-14T23:59:59.000Z

    their theoretical developments with CT monitored experimental results. Bartko et. al (1993) studied the use of CT scanning in the investigation of acid damage to sandstone cores. They used the dual energy method (Siddiqui and Khamees 2004) to determine...

  12. Accelerating the spin-up of the coupled carbon and nitrogen cycle model in CLM4

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fang, Yilin; Liu, Chongxuan; Leung, Lai-Yung R.

    2015-01-01T23:59:59.000Z

    The commonly adopted biogeochemistry spin-up process in an Earth system model (ESM) is to run the model for hundreds to thousands of years subject to periodic atmospheric forcing to reach dynamic steady state of the carbon–nitrogen (CN) models. A variety of approaches have been proposed to reduce the computation time of the spin-up process. Significant improvement in computational efficiency has been made recently. However, a long simulation time is still required to reach the common convergence criteria of the coupled carbon–nitrogen model. A gradient projection method was proposed and used to further reduce the computation time after examining the trendmore »of the dominant carbon pools. The Community Land Model version 4 (CLM4) with a carbon and nitrogen component was used in this study. From point-scale simulations, we found that the method can reduce the computation time by 20–69% compared to one of the fastest approaches in the literature. We also found that the cyclic stability of total carbon for some cases differs from that of the periodic atmospheric forcing, and some cases even showed instability. Close examination showed that one case has a carbon periodicity much longer than that of the atmospheric forcing due to the annual fire disturbance that is longer than half a year. The rest was caused by the instability of water table calculation in the hydrology model of CLM4. The instability issue is resolved after we replaced the hydrology scheme in CLM4 with a flow model for variably saturated porous media.« less

  13. North American Carbon Program (NACP) Regional Interim Synthesis: Terrestrial Biospheric Model Intercomparision

    SciTech Connect (OSTI)

    Huntzinger, Deborah [University of Michigan; Post, Wilfred M [ORNL; Michalak, Anna [University of Michigan; West, Tristram O. [Joint Global Change Research Institute, PNNL; Jacobson, Andrew [NOAA ESRL and CIRES; Baker, Ian [Colorado State University, Fort Collins; Chen, Jing M. [University of Toronto; Davis, Kenneth [Pennsylvania State University; Hayes, Daniel J [ORNL; Hoffman, Forrest M [ORNL; Jain, Atul [University of Illinois, Urbana-Champaign; Liu, Shuguang [United States Geological Survey, Center for Earth Resources Observation and Science (USGS EROS); Mcguire, David [University of Alaska; Neilson, Ronald [Oregon State University, Corvallis; Poulter, Ben [Potsdam Institute for Climate Impact Research, Potsdam, Germany; Tian, Hanqin [Auburn University, Auburn, Alabama; Thornton, Peter E [ORNL; Tomelleri, Enrico [Max Planck Institute for Biogeochemistry; Viovy, Nicolas [National Center for Scientific Research, Gif-sur-Yvette, France; Xiao, Jingfeng [Purdue University; Cook, Robert B [ORNL

    2012-01-01T23:59:59.000Z

    Understanding of carbon exchange between terrestrial ecosystems and the atmosphere can be improved through direct observations and experiments, as well as through modeling activities. Terrestrial biosphere models (TBMs) have become an integral tool for extrapolating local observations and understanding to much larger terrestrial regions. Although models vary in their specific goals and approaches, their central role within carbon cycle science is to provide a better understanding of the mechanisms currently controlling carbon exchange. Recently, the North American Carbon Program (NACP) organized several interim-synthesis activities to evaluate and inter-compare models and observations at local to continental scales for the years 2000-2005. Here, we compare the results from the TBMs collected as part of the regional and continental interim-synthesis (RCIS) activities. The primary objective of this work is to synthesize and compare the 19 participating TBMs to assess current understanding of the terrestrial carbon cycle in North America. Thus, the RCIS focuses on model simulations available from analyses that have been completed by ongoing NACP projects and other recently published studies. The TBM flux estimates are compared and evaluated over different spatial (1{sup o} x 1{sup o} and spatially aggregated to different regions) and temporal (monthly and annually) scales. The range in model estimates of net ecosystem productivity (NEP) for North America is much narrower than estimates of productivity or respiration, with estimates of NEP varying between -0.7 and 2.2 PgC yr{sup -1}, while gross primary productivity and heterotrophic respiration vary between 12.2 and 32.9 PgC yr{sup -1} and 5.6 and 13.2 PgC yr{sup -1}, respectively. The range in estimates from the models appears to be driven by a combination of factors, including the representation of photosynthesis, the source and of environmental driver data and the temporal variability of those data, as well as whether nutrient limitation is considered in soil carbon decomposition. The disagreement in current estimates of carbon flux across North America, including whether North America is a net biospheric carbon source or sink, highlights the need for further analysis through the use of model runs following a common simulation protocol, in order to isolate the influences of model formulation, structure, and assumptions on flux estimates.

  14. Nanostructure Determination by Co-Refining Models to Multiple Datasets

    SciTech Connect (OSTI)

    Billinge, Simon

    2011-05-31T23:59:59.000Z

    The results of the work are contained in the publications resulting from the grant (which are listed below). Here I summarize the main findings from the last period of the award, 2006-2007: • Published a paper in Science with Igor Levin outlining the “Nanostructure Problem”, our inability to solve structure at the nanoscale. • Published a paper in Nature demonstrating the first ever ab-initio structure determination of a nanoparticle from atomic pair distribution function (PDF) data. • Published one book and 3 overview articles on PDF methods and the nanostructure problem. • Completed a project that sought to find a structural response to the presence of the so-called “intermediate phase” in network glasses which appears close to the rigidity percolation threshold in these systems. The main result was that we did not see convincing evidence for this, which drew into doubt the idea that GexSe1-x glasses were a model system exhibiting rigidity percolation.

  15. The Impact of Carbon Pricing on Wholesale Electricity Prices, Carbon Pass-Through Rates and Retail Electricity Tariffs in Australia.1

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 The Impact of Carbon Pricing on Wholesale Electricity Prices, Carbon Pass-Through Rates that the introduction of a carbon price signal will have on wholesale electricity prices, carbon-pass-through rates is used to determine optimal dispatch of generation plant and wholesale prices within the ANEM model. We

  16. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    SciTech Connect (OSTI)

    Mahowald, Natalie [Cornell University; Rothenberg, D. [Cornell University; Lindsay, Keith [National Center for Atmospheric Research (NCAR); Doney, Scott C. [Woods Hole Oceanographic Institution; Moore, Jefferson Keith [University of California, Irvine; Randerson, James T. [University of California, Irvine; Thornton, Peter E [ORNL; Jones, C. D. [Hadley Center, Devon, England

    2011-02-01T23:59:59.000Z

    Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries) and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

  17. A Carbon Corrosion Model to Evaluate the Effect of Steady State and Transient Operation of a Polymer Electrolyte Membrane Fuel Cell

    E-Print Network [OSTI]

    Pandy, Arun; Gummalla, Mallika; Atrazhev, Vadim V; Kuzminyh, Nikolay Yu; Sultanov, Vadim I; Burlatsky, Sergei F

    2014-01-01T23:59:59.000Z

    A carbon corrosion model is developed based on the formation of surface oxides on carbon and platinum of the polymer electrolyte membrane fuel cell electrode. The model predicts the rate of carbon corrosion under potential hold and potential cycling conditions. The model includes the interaction of carbon surface oxides with transient species like OH radicals to explain observed carbon corrosion trends under normal PEM fuel cell operating conditions. The model prediction agrees qualitatively with the experimental data supporting the hypothesis that the interplay of surface oxide formation on carbon and platinum is the primary driver of carbon corrosion.

  18. On linking an Earth system model to the equilibrium carbon representation of an economically optimizing land use model

    SciTech Connect (OSTI)

    Bond-Lamberty, Benjamin; Calvin, Katherine V.; Jones, Andrew D.; Mao, Jiafu; Patel, Pralit L.; Shi, Xiaoying; Thomson, Allison M.; Thornton, Peter E.; Zhou, Yuyu

    2014-01-01T23:59:59.000Z

    Human activities are significantly altering biogeochemical cycles at the global scale, posing a significant problem for earth system models (ESMs), which may incorporate static land-use change inputs but do not actively simulate policy or economic forces. One option to address this problem is a to couple an ESM with an economically oriented integrated assessment model. Here we have implemented and tested a coupling mechanism between the carbon cycles of an ESM (CLM) and an integrated assessment (GCAM) model, examining the best proxy variables to share between the models, and quantifying our ability to distinguish climate- and land-use-driven flux changes. CLM’s net primary production and heterotrophic respiration outputs were found to be the most robust proxy variables by which to manipulate GCAM’s assumptions of long-term ecosystem steady state carbon, with short-term forest production strongly correlated with long-term biomass changes in climate-change model runs. By leveraging the fact that carbon-cycle effects of anthropogenic land-use change are short-term and spatially limited relative to widely distributed climate effects, we were able to distinguish these effects successfully in the model coupling, passing only the latter to GCAM. By allowing climate effects from a full earth system model to dynamically modulate the economic and policy decisions of an integrated assessment model, this work provides a foundation for linking these models in a robust and flexible framework capable of examining two-way interactions between human and earth system processes.

  19. REACTIVE FLOW IN VUGGY CARBONATES: METHODS AND MODELS APPLIED TO MATRIX ACIDIZING OF CARBONATES

    E-Print Network [OSTI]

    Izgec, Omer

    2010-07-14T23:59:59.000Z

    and its effect on fluid flow is numerical simulation. A 3D finite difference numerical model is developed based on Darcy-Brinkman formulation (DBF). Using the developed simulator a flow-based inversion approach is implemented to understand the connectivity...

  20. Determination of rate constants for the reaction between methyldiethanolamine and carbon dioxide 

    E-Print Network [OSTI]

    Brabson, Charles Meade

    1985-01-01T23:59:59.000Z

    a Nz atmosphere in the drums and also to agitate the amine solution. The feed pump was a Teel model 1P988 rated at 3 gpm (11. 5 lit/min) at 500 psia (35 atm). It was constructed of cast iron. The QS Sample Port QT Thermocouple 6 Pressure Gauge..., no welding or soldering was required which may have damaged the disc. A stainless steel plate was then welded onto the bottom of the reactor. This created a boxed enclosure. The feed gas entered this enclosure through 1/4" stainless steel tubing soldered...

  1. Development of a coupled thermo-hydro-mechanical model in discontinuous media for carbon sequestration

    SciTech Connect (OSTI)

    Fang, Yilin; Nguyen, Ba Nghiep; Carroll, Kenneth C.; Xu, Zhijie; Yabusaki, Steven B.; Scheibe, Timothy D.; Bonneville, Alain

    2013-09-12T23:59:59.000Z

    Geomechanical alteration of porous media is generally ignored for most shallow subsurface applications, whereas CO2 injection, migration, and trapping in deep saline aquifers will be controlled by coupled multifluid flow, energy transfer, and geomechanical processes. The accurate assessment of the risks associated with potential leakage of injected CO2 and the design of effective injection systems requires that we represent these coupled processes within numerical simulators. The objectives of this study were to develop a coupled thermal-hydro-mechanical model into a single software, and to examine the coupling of thermal, hydrological, and geomechanical processes for simulation of CO2 injection into the subsurface for carbon sequestration. A numerical model is developed to couple nonisothermal multiphase hydrological and geomechanical processes for prediction of multiple interconnected processes for carbon sequestration in deep saline aquifers. The geomechanics model was based on Rigid Body-Spring Model (RBSM), one of the discrete methods to model discontinuous rock system. Poisson’s effect that was often ignored by RBSM was considered in the model. The simulation of large-scale and long-term coupled processes in carbon capture and storage projects requires large memory and computational performance. Global Array Toolkit was used to build the model to permit the high performance simulations of the coupled processes. The model was used to simulate a case study with several scenarios to demonstrate the impacts of considering coupled processes and Poisson’s effect for the prediction of CO2 sequestration.

  2. Comparative Metabolism of Carbon Tetrachloride in Rats, Mice and Hamsters Using Gas Uptake and PBPK Modeling

    SciTech Connect (OSTI)

    Thrall, Karla D. (BATTELLE (PACIFIC NW LAB)); Vucelick, Mark E. (FLUOR HANFORD, INC); Gies, Richard A. (BATTELLE (PACIFIC NW LAB)); Zangar, Richard C. (BATTELLE (PACIFIC NW LAB)); Weitz, Karl K. (BATTELLE (PACIFIC NW LAB)); Poet, Torka S. (BATTELLE (PACIFIC NW LAB)); Springer, David L. (BATTELLE (PACIFIC NW LAB)); Grant, Donna M. (BATTELLE (PACIFIC NW LAB)); Benson, Janet M. (Inhalation Toxicology Research Institute)

    2000-08-25T23:59:59.000Z

    No study has comprehensively compared the rate of metabolism of carbon tetrachloride (CCl4) across species. Therefore, the in vivo metabolism of CCl4 was evaluated using groups of male animals (F344 rats, B6C3F1 mice, and Syrian hamsters) exposed to 40-1800 ppm CCl4 in a closed, recirculating gas-uptake system. For each species, an optimal fit of the family of uptake curves was obtained by adjusting Michaelis-Menten metabolic constants Km (affinity) and Vmax (capacity) using a physiologically based pharmacokinetic (PBPK) model. The results show that the mouse has a slightly higher capacity and lower affinity for metabolizing CCl4 compared to the rat, while the hamster has a higher capacity and lower affinity than either rat or mouse. A comparison of the Vmax to Km ratio, normalized for mg of liver protein (L/hr/mg) across species indicates that hamsters metabolize more CCl4 than either rats or mice, and should be more susceptible to CCl4-induced hepatotoxicity. These species comparisons were evaluated against toxicokinetic studies conducted in animals exposed by nose-only inhalation to 20 ppm 14C-labeled CCl4 for 4 hours. The toxicokinetic study results are consistent with the in vivo rates of metabolism, with rats eliminating less radioactivity associated with metabolism (14CO2 and urine/feces) and more radioactivity associated with the parent compound (radioactivity trapped on charcoal) compared to either hamsters or mice. The in vivo metabolic constants determined here, together with in vitro constants determined using rat, mouse, hamster and human liver microsomes, were used to estimate human in vivo metabolic rates of 1.49 mg/hr/kg body weight and 0.25 mg/L for Vmax and Km, respectively. Normalizing the rate of metabolism (Vmax/Km) by mg liver protein, the rate of metabolism of CCl4 differs across species, with hamster > mouse& > rat > human.

  3. Modeling to discern nitrogen fertilization impacts on carbon sequestration in a Pacific Northwest Douglas-fir

    E-Print Network [OSTI]

    Modeling to discern nitrogen fertilization impacts on carbon sequestration in a Pacific Northwest A R K J O H N S O N } *LREIS Institute of Geographic Sciences & Nature Resources Research, Chinese of Forestry, University of British Columbia, Vancouver, BC, Canada V6T 1Z4, zBiometeorology and Soil Physics

  4. TEOS 04 Carbon Flux and C Pipe: Integrating sensor outputs to models Team Members

    E-Print Network [OSTI]

    California at Los Angeles, University of

    , Staff · Thomas Unwin, Staff · Hai Vo, Undergrad * Primary Contact Overview Our goal is to integrate model [Katul et. al. 2003] to estimate carbon and water fluxes. System(s) Description and/or Experiments] where Cw is water capacity, h is water pressure head, t is time, z is depth, K(h) is hydraulic constant

  5. Shielding-Effectiveness Modeling of Carbon-Fiber/Nylon-6,6 Composites

    E-Print Network [OSTI]

    Perger, Warren F.

    - proving the electrical conductivity of a polymer is the addition of a conductive filler materialShielding-Effectiveness Modeling of Carbon-Fiber/Nylon- 6,6 Composites Nicholas B. Janda,1 Jason M a linear theory for the shielding effectiveness of composite matrix materials and have tested the theory

  6. MECHANICAL MODELING OF GLASS AND CARBON EPOXY COMPOSITES Barzin Mobasher 1

    E-Print Network [OSTI]

    Mobasher, Barzin

    MECHANICAL MODELING OF GLASS AND CARBON EPOXY COMPOSITES Barzin Mobasher 1 , Associate Member ASCE and flexural loading. INTRODUCTION In order to commercially utilize new composite materials in civil of composite laminates. The proposed methodology can be used as a new composite material or used

  7. Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates

    E-Print Network [OSTI]

    Ali, Mohammed

    Seismic modelling of a fractured carbonate reservoir in Abu Dhabi, United Arab Emirates Mohammed Y is required to optimize hydrocarbon production. A rock containing parallel fractures can be seismically to the seismic wavelength. Seismic anisotropy may be detectable from attributes of pre-stack 3-D seismic data

  8. Impact of emissions, chemistry, and climate on atmospheric carbon monoxide : 100-year predictions from a global chemistry-climate model

    E-Print Network [OSTI]

    Wang, Chien.; Prinn, Ronald G.

    The possible trends for atmospheric carbon monoxide in the next 100 yr have been illustrated using a coupled atmospheric chemistry and climate model driven by emissions predicted by a global economic development model. ...

  9. General Equilibrium, Electricity Generation Technologies and the Cost of Carbon Abatement

    E-Print Network [OSTI]

    Lanz, Bruno, 1980-

    Electricity generation is a major contributor to carbon dioxide emissions, and a key determinant of abatement costs. Ex-ante assessments of carbon policies mainly rely on either of two modeling paradigms: (i) partial ...

  10. A model-data intercomparison of CO2 exchange across North America: Results from the North American Carbon Program Site Synthesis

    SciTech Connect (OSTI)

    Schwalm, C.R.; Williams, C.A.; Schaefer, K.; Anderson, R.; Arain, M.A.; Baker, I.; Black, T.A.; Chen, G.; Ciais, P.; Davis, K. J.; Desai, A. R.; Dietze, M.; Dragoni, D.; Fischer, M.L.; Flanagan, L.B.; Grant, R.F.; Gu, L.; Hollinger, D.; Izaurralde, R.C.; Kucharik, C.; Lafleur, P.M.; Law, B.E.; Li, L.; Li, Z.; Liu, S.; Lokupitiya, E.; Luo, Y.; Ma, S.; Margolis, H.; Matamala, R.; McCaughey, H.; Monson, R. K.; Oechel, W. C.; Peng, C.; Poulter, B.; Price, D.T.; Riciutto, D.M.; Riley, W.J.; Sahoo, A.K.; Sprintsin, M.; Sun, J.; Tian, H.; Tonitto, C.; Verbeeck, H.; Verma, S.B.

    2011-06-01T23:59:59.000Z

    Our current understanding of terrestrial carbon processes is represented in various models used to integrate and scale measurements of CO{sub 2} exchange from remote sensing and other spatiotemporal data. Yet assessments are rarely conducted to determine how well models simulate carbon processes across vegetation types and environmental conditions. Using standardized data from the North American Carbon Program we compare observed and simulated monthly CO{sub 2} exchange from 44 eddy covariance flux towers in North America and 22 terrestrial biosphere models. The analysis period spans {approx}220 site-years, 10 biomes, and includes two large-scale drought events, providing a natural experiment to evaluate model skill as a function of drought and seasonality. We evaluate models' ability to simulate the seasonal cycle of CO{sub 2} exchange using multiple model skill metrics and analyze links between model characteristics, site history, and model skill. Overall model performance was poor; the difference between observations and simulations was {approx}10 times observational uncertainty, with forested ecosystems better predicted than nonforested. Model-data agreement was highest in summer and in temperate evergreen forests. In contrast, model performance declined in spring and fall, especially in ecosystems with large deciduous components, and in dry periods during the growing season. Models used across multiple biomes and sites, the mean model ensemble, and a model using assimilated parameter values showed high consistency with observations. Models with the highest skill across all biomes all used prescribed canopy phenology, calculated NEE as the difference between GPP and ecosystem respiration, and did not use a daily time step.

  11. Interfacial Characteristics of Propylene Carbonate and Validation of Simulation Models for Electrochemical Applications

    E-Print Network [OSTI]

    You, Xinli; Pratt, Lawrence R; Pesika, Noshir; Aritakula, Kalika M; Rick, Steven W

    2012-01-01T23:59:59.000Z

    Reported here are experimental and molecular dynamics simulation results for propylene carbonate as a solvent for electrochemical double-layer capacitors based on carbon nanotube forests. Propylene carbonate (PC) wets graphite with a contact angle of 31{\\deg}. Molecular dynamics results agree with this result after reduction of the strength of dispersion attractions to the graphite C atoms by 40%, relative to the models used initially. A simulated nano-scale PC droplet on graphite displays a pronounced layering tendency and an Aztex pyramid structure for the droplet. Computed surface tensions of the PC liquid-vapor interface permit an extrapolative estimate of the critical temperature of PC that is accurate to about 3%. Average PC molecule binding energies, and their variances, are evaluated, and the distribution of binding energies is closely Gaussian. Evaluation of the density of the coexisting vapor then permits estimation of the excluded volume contribution to the PC chemical potential, and that contribut...

  12. Comparative performance of six carbon footprint models for use in Ireland

    SciTech Connect (OSTI)

    Kenny, T. [Centre for the Environment, School of Natural Sciences, Trinity College, University of Dublin, Dublin 2 (Ireland); Gray, N.F. [Centre for the Environment, School of Natural Sciences, Trinity College, University of Dublin, Dublin 2 (Ireland)], E-mail: nfgray@tcd.ie

    2009-01-15T23:59:59.000Z

    Carbon footprint models are increasingly being used to manage personal and household carbon dioxide emissions. Six models were compared for their suitability for use in Ireland using typical data for a household of three people. The annual household energy and transportation emissions ranged from 10,540 to 17,361 kg CO{sub 2} yr{sup -1} (mean 12,886; sd 2135) rising to a total footprint of 12,053 to 27, 218 kg CO{sub 2} yr{sup -1} (mean 18,117; sd 5106) when aviation emissions were included. This represents a potential range for individual CO{sub 2} emissions of between 4018 and 9073 kg CO{sub 2}/person/annum, a variation of over 5 tonnes/person. The information provided by these models proved to be inconsistent and often contradictory. The high variability between models was due to a number of anomalies. When these were corrected mean household energy and transportation emissions fell to 12,130 kg CO{sub 2} yr{sup -1} (sd 805), with a total household footprint of 16,552 kg CO{sub 2} yr{sup -1} (sd 1101). Models vary in their complexity in terms of what is included in the overall estimation of emissions making a full analysis of the primary carbon footprint very difficult. When compared to current Irish conversion factors the corrected models either underestimated or overestimated CO{sub 2} emissions by approximately 10%. Current carbon footprint models excluded emissions from CH{sub 4} and N{sub 2}O underestimating CO{sub 2} emissions for the household by 1.8%.

  13. Low Cost Carbon Fibre: Applications, Performance and Cost Models - Chapter 17

    SciTech Connect (OSTI)

    Warren, Charles David [ORNL; Wheatley, Dr. Alan [University of Sunderland; Das, Sujit [ORNL

    2014-01-01T23:59:59.000Z

    Weight saving in automotive applications has a major bearing on fuel economy. It is generally accepted that, typically, a 10% weight reduction in an automobile will lead to a 6-8% improvement in fuel economy. In this respect, carbon fibre composites are extremely attractive in their ability to provide superlative mechanical performance per unit weight. That is why they are specified for high-end uses such as Formula 1 racing cars and the latest aircraft (e.g. Boeing 787, Airbus A350 and A380), where they comprise over 50% by weight of the structure However, carbon fibres are expensive and this renders their composites similarly expensive. Research has been carried out at Oak Ridge National Laboratories (ORNL), Tennessee, USA for over a decade with the aim of reducing the cost of carbon fibre such that it becomes a cost-effective option for the automotive industry. Aspects of this research relating to the development of low cost carbon fibre have been reported in Chapter 3 of this publication. In this chapter, the practical industrial applications of low-cost carbon fibre are presented, together with considerations of the performance and cost models which underpin the work.

  14. Incorporating carbon capture and storage technologies in integrated assessment models

    E-Print Network [OSTI]

    and storage of CO2 from electric power plants. The electric power sector accounts for a substant a methodology for incorporating technologies into computable general equilibrium economic models and demonstrate; Climate; Technology; General equilibrium; Diffusion 1. Introduction Over the past century, technological

  15. Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment

    E-Print Network [OSTI]

    Oldenburg, Curtis M.

    2009-01-01T23:59:59.000Z

    to two geologic carbon sequestration sites, Energy Procedia,for Geologic Carbon Sequestration Based on Effectivefor geologic carbon sequestration risk assessment, Energy

  16. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    E-Print Network [OSTI]

    Wu, Y.

    2012-01-01T23:59:59.000Z

    F. S. ; Smith, R. W. , Calcium Carbonate Precipitation byF. , Microbially Mediated Calcium Carbonate Precipitation:through mixing of calcium and carbonate solutions in a glass

  17. Calculating the Social Cost of Carbon

    E-Print Network [OSTI]

    Hope, Chris; Newbery, David

    The paper1 discusses the determination of the social cost of carbon (SCC) using the PAGE2002 model used in the Stern Review. The SCC depends sensitively on assumptions about future economic development, the range and likelihood of economic...

  18. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign: Potential Application to ARM MeasurementsDetermination of

  19. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    SciTech Connect (OSTI)

    Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.

    2011-07-15T23:59:59.000Z

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup +} production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface.

  20. Optimization of carbon capture systems using surrogate models of simulated processes.

    SciTech Connect (OSTI)

    Cozad, A.; Chang, Y.; Sahinidis, N.; Miller, D.

    2011-01-01T23:59:59.000Z

    With increasing demand placed on power generation plants to reduce carbon dioxide (CO2) emissions, processes to separate and capture CO2 for eventual sequestration are highly sought after. Carbon capture processes impart a parasitic load on the power plants; it is estimated that this would increase the cost of electricity from existing pulverized coal plants anywhere from 71-85 percent [1]. The National Energy and Technology Lab (NETL) is working to lower this to below a 30 percent increase. To reach this goal, work is being done not only to accurately simulate these processes, but also to leverage those accurate and detailed simulations to design optimal carbon capture processes. The major challenges include the lack of accurate algebraic models of the processes, computationally costly simulations, and insufficiently robust simulations. The first challenge bars the use of provable derivative-based optimization algorithms. The latter two can either lead to difficult or impossible direct derivative-free optimization. To overcome these difficulties, we take a more indirect method to solving this problem by, first, generating an accurate set of algebraic surrogate models from the simulation then using derivative-based solvers to optimize the surrogate models. We developed a method that uses derivative-based and derivative-free optimization alongside machine learning and statistical techniques to generate the set of low-complexity surrogate models using data sampled from detailed simulations. The models are validated and improved through the use of derivative-free solvers to adaptively sample new simulation points. The resulting surrogate models can then be used in a superstructure-based process synthesis and solved using derivative-based methods to optimize carbon capture processes.

  1. Soil metagenomics and carbon cycling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and carbon cycling Establishing a foundational understanding of the microbial and ecosystem factors that control carbon cycling to improve climate modeling and carbon...

  2. A Three-Dimensional Ocean-Seaice-Carbon Cycle Model and its Coupling to a Two-Dimensional Atmospheric Model: Uses in Climate Change Studies

    E-Print Network [OSTI]

    Dutkiewicz, Stephanie.

    We describe the coupling of a three-dimensional ocean circulation model, with explicit thermodynamic seaice and ocean carbon cycle representations, to a two-dimensional atmospheric/land model. This coupled system has been ...

  3. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-09-28T23:59:59.000Z

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ?fG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than approximately one-third of these compounds. Because the temperatures of host formations that will be used for CO2 injection and sequestration will be at tempera¬tures in the range of 50ºC to 100ºC or greater, the lack of high temperature thermodynamic values for key carbonate compounds especially minerals, will impact the accuracy of some modeling calculations.

  4. Integrated 3D Acid Fracturing Model for Carbonate Reservoir Stimulation

    E-Print Network [OSTI]

    Wu, Xi

    2014-06-23T23:59:59.000Z

    workflow is illustrated in Figure 3.3. The approach starts with a fracture simulator, which uses a geomechanical model, to calculate fracture width during the pad injection. A hydraulic fracture is created at the defined injection condition. Next, we... be directly found from the output of Fracpro. Table 3.1 shows an output file example from Fracpro for a fracture geometry at the end of a pad injection. The geometry data is restored in an “.fpx” file, named “PROJECT_NAME.fpx” and can be read using any text...

  5. The Carbon-Land Model Intercomparison Project (C-LAMP): A Model-Data Comparison System for Evaluation of Coupled Biosphere-Atmosphere Models

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL; Randerson, Jim [University of California, Irvine; Thornton, Peter E [ORNL; Mahowald, Natalie [Cornell University; Bonan, Gordon [National Center for Atmospheric Research (NCAR); Running, Steven [University of Montana, Missoula; Fung, Inez [University of California, Berkeley

    2009-01-01T23:59:59.000Z

    The need to capture important climate feebacks in general circulation models (GCMs) has resulted in new efforts to include atmospheric chemistry and land and ocean biogeochemistry into the next generation of production climate models, now often referred to as Earth System Models (ESMs). While many terrestrial and ocean carbon models have been coupled to GCMs, recent work has shown that such models can yield a wide range of results, suggesting that a more rigorous set of offline and partially coupled experiments, along with detailed analyses of processes and comparisons with measurements, are warranted. The Carbon-Land Model Intercomparison Project (C-LAMP) provides a simulation protocol and model performance metrics based upon comparisons against best-available satellite- and ground-based measurements (Hoffman et al., 2007). C-LAMP provides feedback to the modeling community regarding model improvements and to the measurement community by suggesting new observational campaigns. C-LAMP Experiment 1 consists of a set of uncoupled simulations of terrestrial carbon models specifically designed to examine the ability of the models to reproduce surface carbon and energy fluxes at multiple sites and to exhibit the influence of climate variability, prescribed atmospheric carbon dioxide (CO{sub 2}), nitrogen (N) deposition, and land cover change on projections of terrestrial carbon fluxes during the 20th century. Experiment 2 consists of partially coupled simulations of the terrestrial carbon model with an active atmosphere model exchanging energy and moisture fluxes. In all experiments, atmospheric CO{sub 2} follows the prescribed historical trajectory from C{sup 4}MIP. In Experiment 2, the atmosphere model is forced with prescribed sea surface temperatures (SSTs) and corresponding sea ice concentrations from the Hadley Centre; prescribed CO{sub 2} is radiatively active; and land, fossil fuel, and ocean CO{sub 2} fluxes are advected by the model. Both sets of experiments have been performed using two different terrestrial biogeochemistry modules coupled to the Community Land Model version 3 (CLM3) in the Community Climate System Model version 3 (CCSM3): The CASA model of Fung, et al., and the carbon-nitrogen (CN) model of Thornton. Comparisons against Ameriflus site measurements, MODIS satellite observations, NOAA flask records, TRANSCOM inversions, and Free Air CO{sub 2} Enrichment (FACE) site measurements, and other datasets have been performed and are described in Randerson et al. (2009). The C-LAMP diagnostics package was used to validate improvements to CASA and CN for use in the next generation model, CLM4. It is hoped that this effort will serve as a prototype for an international carbon-cycle model benchmarking activity for models being used for the Inter-governmental Panel on Climate Change (IPCC) Fifth Assessment Report. More information about C-LAMP, the experimental protocol, performance metrics, output standards, and model-data comparisons from the CLM3-CASA and CLM3-CN models are available at http://www.climatemodeling.org/c-lamp.

  6. Modeling of capillary pressure behavior using standard open hole wireline log data: Demonstrated on carbonates from the Middle East

    SciTech Connect (OSTI)

    Ross, C.M. [Rice Univ., Houston, TX (United States); Callender, C.A.; Turbeville, J.B. [and others

    1995-12-31T23:59:59.000Z

    A new technique was developed to model capillary pressure behavior from wireline log data and applied to carbonate reservoir rock from a Saudi Aramco field. The method utilizes image analysis of petrographic thin sections, capillary pressure measurements, and neural network analysis of standard open hole wireline log data. Twenty capillary pressure curves and their associated pore type proportions (identified in thin section) are the basis for the capillary pressure predictive model for the reservoir interval under study. Neural network analysis of the wireline log data was used to continuously predict pore type proportions downhole. The neural network-derived pore proportions were than applied in constructing wireline log-based capillary pressure curves using the capillary pressure predictive model. This method provides an accurate means of determining capillary pressure behavior from wireline log data and extends the applicability of the limited number of available capillary pressure curves. Once trained, the neural network may be applied to other wells in the field as long as the training set (both rock samples and wireline log types) is representative within the study area. The capillary pressure curves predicted from wireline log data can be used for the same purposes as capillary pressure curves measured on core samples, such as determining water saturation in intervals above and within the transition zone.

  7. Soil Carbon Change and Net Energy Associated with Biofuel Production on Marginal Lands: A Regional Modeling Perspective

    SciTech Connect (OSTI)

    Bandaru, Varaprasad; Izaurralde, Roberto C.; Manowitz, David H.; Link, Robert P.; Zhang, Xuesong; Post, W. M.

    2013-12-01T23:59:59.000Z

    The use of marginal lands (MLs) for biofuel production has been contemplated as a promising solution for meeting biofuel demands. However, there have been concerns with spatial location of MLs, their inherent biofuel potential, and possible environmental consequences with the cultivation of energy crops. Here, we developed a new quantitative approach that integrates high-resolution land cover and land productivity maps and uses conditional probability density functions for analyzing land use patterns as a function of land productivity to classify the agricultural lands. We subsequently applied this method to determine available productive croplands (P-CLs) and non-crop marginal lands (NC-MLs) in a nine-county Southern Michigan. Furthermore, Spatially Explicit Integrated Modeling Framework (SEIMF) using EPIC (Environmental Policy Integrated Climate) was used to understand the net energy (NE) and soil organic carbon (SOC) implications of cultivating different annual and perennial production systems.

  8. Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries

    E-Print Network [OSTI]

    Leung, Kevin; Foster, Michael E; Ma, Yuguang; del la Hoz, Julibeth M Martinez; Sai, Na; Balbuena, Perla B

    2014-01-01T23:59:59.000Z

    Fluoroethylene carbonate (FEC) shows promise as an electrolyte additive for improving passivating solid-electrolyte interphase (SEI) films on silicon anodes used in lithium ion batteries (LIB). We apply density functional theory (DFT), ab initio molecular dynamics (AIMD), and quantum chemistry techniques to examine excess-electron-induced FEC molecular decomposition mechanisms that lead to FEC-modified SEI. We consider one- and two-electron reactions using cluster models and explicit interfaces between liquid electrolyte and model Li(x)Si(y) surfaces, respectively. FEC is found to exhibit more varied reaction pathways than unsubstituted ethylene carbonate. The initial bond-breaking events and products of one- and two-electron reactions are qualitatively similar, with a fluoride ion detached in both cases. However, most one-electron products are charge-neutral, not anionic, and may not coalesce to form effective Li+-conducting SEI unless they are further reduced or take part in other reactions. The implication...

  9. The surface carbon and nitrogen abundances in models of ultra metal-poor stars

    E-Print Network [OSTI]

    H. Schlattl; M. Salaris; S. Cassisi; A. Weiss

    2002-05-20T23:59:59.000Z

    We investigate whether the observed high number of carbon- and nitrogen-enhanced extremely metal-poor stars could be explained by peculiar evolutionary properties during the core He flash at the tip of the red giant branch. For this purpose we compute a series of detailed stellar models expanding upon our previous work; in particular, we investigate if during the major He flash the penetration of the helium convective zone into the overlying hydrogen-rich layers can produce carbon- and nitrogen-rich abundances in agreement with current spectroscopic observations. The dependence of this phenomenon on selected model input parameters, such as initial metallicity and treatment of convection is examined in detail.

  10. A comparison of alumina, carbon, and carbon-covered alumina as supports for Ni-Mo-F additives: Carbon deposition and model compound reaction studies

    SciTech Connect (OSTI)

    Boorman, P.M.; Chong, K.; Kydd, R.A.; Lewis, J.M. (Univ. of Calgary, Alberta (Canada))

    1991-04-01T23:59:59.000Z

    Fluoride-promoted Ni-Mo catalysts supported on alumina, carbon, and carbon-coveres alumina have been investigated for their activity in cumene cracking, hydrocracking (reduced and sulfided forms), and thiophene HDS. The carbon-covered alumina was prepared by pyrolysis of cyclohexene over either {gamma}-alumina or boehmite and the carbon deposition followed adsorption isotherm-type behavior. The cumene reaction studies indicate that the resulting support system successfully merges the properties of carbon and alumina, possessing improved dehydrogenation-hydrogenation functionality due to carbon and acidic properties due to alumina, such as the generation of Broensted acidity upon fluoride impregnation. In the thiophene HDS reaction the catalyst activities followed the order Al{sub 2} > C-Al{sub 2}O{sub 3} > C, suggesting that alumina, and not carbon, is the superior HDS support at atmospheric H{sub 2} pressure and at the metal loadings used in this study. Carbon deposition onto Ni-Mo-F/Al{sub 2}O{sub 3} catalysts revealed that cyclohexene polymerization is promoted by the metal centers, resulting in multilayer islands on these sites, and not by the fluoride-associated Broensted acid sites. However, the Broensted acid sites do promote coke formation when the polymerization reaction is easier such as for {alpha}-methylstyrene.

  11. Continuum limits of bistable spring models of carbon nanotube arrays accounting for material damage

    E-Print Network [OSTI]

    T. Blesgen; F. Fraternali; J. R. Raney; A. Amendola; C. Daraio

    2011-12-10T23:59:59.000Z

    Using chains of bistable springs, a model is derived to investigate the plastic behavior of carbon nanotube arrays with damage. We study the preconditioning effect due to the loading history by computing analytically the stress-strain pattern corresponding to a fatigue-type damage of the structure. We identify the convergence of the discrete response to the limiting case of infinitely many springs, both analytically in the framework of Gamma-convergence, as well as numerically.

  12. Development and application of the EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Mcgill, William B.; Williams, J.R.

    2012-06-01T23:59:59.000Z

    This chapter provides a comprehensive review of the EPIC model in relation to carbon cycle, greenhouse-gas mitigation, and biofuel applications. From its original capabilities and purpose (i.e., quantify the impacts or erosion on soil productivity), the EPIC model has evolved into a comprehensive terrestrial ecosystem model for simulating with more or less process-level detail many ecosystem processes such as weather, hydrology, plant growth and development, carbon cycle (including erosion), nutrient cycling, greenhouse-gas emissions, and the most complete set of manipulations that can be implemented on a parcel of land (e.g. tillage, harvest, fertilization, irrigation, drainage, liming, burning, pesticide application). The chapter also provides details and examples of the latest efforts in model development such as the coupled carbon-nitrogen model, a microbial denitrification model with feedback to the carbon decomposition model, updates on calculation of ecosystem carbon balances, and carbon emissions from fossil fuels. The chapter has included examples of applications of the EPIC model in soil carbon sequestration, net ecosystem carbon balance, and biofuel studies. Finally, the chapter provides the reader with an update on upcoming improvements in EPIC such as the additions of modules for simulating biochar amendments, sorption of soluble C in subsoil horizons, nitrification including the release of N2O, and the formation and consumption of methane in soils. Completion of these model development activities will render an EPIC model with one of the most complete representation of biogeochemical processes and capable of simulating the dynamic feedback of soils to climate and management in terms not only of transient processes (e.g., soil water content, heterotrophic respiration, N2O emissions) but also of fundamental soil properties (e.g. soil depth, soil organic matter, soil bulk density, water limits).

  13. Discrete Fracture Network Models for Risk Assessment of Carbon Sequestration in Coal

    SciTech Connect (OSTI)

    Jack Pashin; Guohai Jin; Chunmiao Zheng; Song Chen; Marcella McIntyre

    2008-07-01T23:59:59.000Z

    A software package called DFNModeler has been developed to assess the potential risks associated with carbon sequestration in coal. Natural fractures provide the principal conduits for fluid flow in coal-bearing strata, and these fractures present the most tangible risks for the leakage of injected carbon dioxide. The objectives of this study were to develop discrete fracture network (DFN) modeling tools for risk assessment and to use these tools to assess risks in the Black Warrior Basin of Alabama, where coal-bearing strata have high potential for carbon sequestration and enhanced coalbed methane recovery. DFNModeler provides a user-friendly interface for the construction, visualization, and analysis of DFN models. DFNModeler employs an OpenGL graphics engine that enables real-time manipulation of DFN models. Analytical capabilities in DFNModeler include display of structural and hydrologic parameters, compartmentalization analysis, and fluid pathways analysis. DFN models can be exported to third-party software packages for flow modeling. DFN models were constructed to simulate fracturing in coal-bearing strata of the upper Pottsville Formation in the Black Warrior Basin. Outcrops and wireline cores were used to characterize fracture systems, which include joint systems, cleat systems, and fault-related shear fractures. DFN models were constructed to simulate jointing, cleating, faulting, and hydraulic fracturing. Analysis of DFN models indicates that strata-bound jointing compartmentalizes the Pottsville hydrologic system and helps protect shallow aquifers from injection operations at reservoir depth. Analysis of fault zones, however, suggests that faulting can facilitate cross-formational flow. For this reason, faults should be avoided when siting injection wells. DFN-based flow models constructed in TOUGH2 indicate that fracture aperture and connectivity are critical variables affecting the leakage of injected CO{sub 2} from coal. Highly transmissive joints near an injection well have potential to divert a large percentage of an injected CO{sub 2} stream away from a target coal seam. However, the strata-bound nature of Pottsville fracture systems is a natural factor that mitigates the risk of long-range leakage and surface seepage. Flow models indicate that cross-formational flow in strata-bound joint networks is low and is dissipated by about an order of magnitude at each successive bedding contact. These models help confirm that strata-bound joint networks are self-compartmentalizing and that the thick successions of interbedded shale and sandstone separating the Pottsville coal zones are confining units that protect shallow aquifers from injection operations at reservoir depth. DFN models are powerful tools for the simulation and analysis of fracture networks and can play an important role in the assessment of risks associated with carbon sequestration and enhanced coalbed methane recovery. Importantly, the stochastic nature DFN models dictates that they cannot be used to precisely reproduce reservoir conditions in a specific field area. Rather, these models are most useful for simulating the fundamental geometric and statistical properties of fracture networks. Because the specifics of fracture architecture in a given area can be uncertain, multiple realizations of DFN models and DFN-based flow models can help define variability that may be encountered during field operations. Using this type of approach, modelers can inform the risk assessment process by characterizing the types and variability of fracture architecture that may exist in geologic carbon sinks containing natural fractures.

  14. Determining Identifiable Parameterizations for Large-scale Physical Models in

    E-Print Network [OSTI]

    Van den Hof, Paul

    /Novem (Dutch Government). ISAPP (Integrated Systems Approach to Petroleum Production) is a joint project as applied in the field of petroleum reservoir engineering. Starting from a large-scale, physics-based model models in petroleum reservoir engineering. Petroleum reservoir engineering is concerned with maximizing

  15. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL] [ORNL; Randerson, James T. [University of California, Irvine] [University of California, Irvine; Arora, Vivek K. [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada] [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada; Bao, Qing [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics] [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics; Cadule, Patricia [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment] [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment; Ji, Duoying [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing] [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing; Jones, Chris D. [Hadley Centre, U.K. Met Office] [Hadley Centre, U.K. Met Office; Kawamiya, Michio [Japan Agency for Marine-Earth Science and Technology (JAMSTEC)] [Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Khatiwala, Samar [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY] [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY; Lindsay, Keith [National Center for Atmospheric Research (NCAR)] [National Center for Atmospheric Research (NCAR); Obata, Atsushi [Meteorological Research Institute, Japan] [Meteorological Research Institute, Japan; Shevliakova, Elena [Princeton University] [Princeton University; Six, Katharina D. [Max Planck Institute for Meteorology, Hamburg, Germany] [Max Planck Institute for Meteorology, Hamburg, Germany; Tjiputra, Jerry F. [Uni Climate, Uni Research] [Uni Climate, Uni Research; Volodin, Evgeny M. [Institute of Numerical Mathematics, Russian Academy of Science, Moscow] [Institute of Numerical Mathematics, Russian Academy of Science, Moscow; Wu, Tongwen [China Meteorological Administration (CMA), Beijing] [China Meteorological Administration (CMA), Beijing

    2014-01-01T23:59:59.000Z

    The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in future climate projections can be reduced.

  16. Determining Sources of Dissolved Organic Carbon and Nutrients in an Urban Basin Using Novel and Traditional Methods

    E-Print Network [OSTI]

    Govil, Krittika

    2014-01-03T23:59:59.000Z

    Water quality in urban ecosystems is sensitive to localized disturbances potentially affecting those mechanisms which influence nutrient cycles. The Carters Creek Basin has been reported to have elevated concentrations of dissolved organic carbon...

  17. Model for corrosion of carbon steel in lithium bromide absorption refrigeration systems

    SciTech Connect (OSTI)

    Anderko, A.; Young, R.D.

    2000-05-01T23:59:59.000Z

    A comprehensive model has been developed for the computation of corrosion rates of carbon steels in the presence of lithium bromide (LiBr)-based brines that are used as working fluids for absorption refrigeration cycles. The model combines a thermophysical module that provides realistic speciation of aqueous systems with an electrochemical module for partial cathodic and anodic processes on the metal surface. The electrochemical module includes the absorption of halides, which strongly influences the corrosion process. Also, the model takes into account the formation of passive films and their interactions with solution species. The model has been verified by comparing calculated corrosion rates with laboratory data for carbon steels in LiBr solutions. Good agreement between calculated and experimental corrosion rates has been obtained. In particular, the model is capable of reproducing effects of pH-adjusting components and selected inhibitors on the rates of general corrosion. The model has been incorporated into a program that makes it possible to analyze effects of various conditions such as temperature, pressure, solution composition, or flow velocity on corrosion rates.

  18. Benchmarking GEANT4 nuclear models for hadron therapy with 95 MeV/nucleon carbon ions

    E-Print Network [OSTI]

    J. Dudouet; D. Cussol; D. Durand; M. Labalme

    2014-05-30T23:59:59.000Z

    In carbon-therapy, the interaction of the incoming beam with human tissues may lead to the production of a large amount of nuclear fragments and secondary light particles. An accurate estimation of the biological dose deposited into the tumor and the surrounding healthy tissues thus requires sophisticated simulation tools based on nuclear reaction models. The validity of such models requires intensive comparisons with as many sets of experimental data as possible. Up to now, a rather limited set of double di erential carbon fragmentation cross sections have been measured in the energy range used in hadrontherapy (up to 400 MeV/A). However, new data have been recently obtained at intermediate energy (95 MeV/A). The aim of this work is to compare the reaction models embedded in the GEANT4 Monte Carlo toolkit with these new data. The strengths and weaknesses of each tested model, i.e. G4BinaryLightIonReaction, G4QMDReaction and INCL++, coupled to two di fferent de-excitation models, i.e. the generalized evaporation model and the Fermi break-up are discussed.

  19. Motivating carbon dioxide | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motivating carbon dioxide Motivating carbon dioxide Released: April 17, 2013 Scientists show what it takes to get the potential fuel feedstock to a reactive spot on a model...

  20. Past and Future Effects of Ozone on Net Primary Production and Carbon Sequestration Using a Global Biogeochemical Model

    E-Print Network [OSTI]

    Felzer, Benjamin Seth.

    Exposure of plants to ozone inhibits photosynthesis and therefore reduces vegetation production and carbon sequestration. Simulations with the Terrestrial Ecosystem Model (TEM) for the historical period (1860-1995) show ...

  1. Stratigraphic forward modelling & synthetic seismic images of carbonate Prof. Peter Burgess & Dr. Dave Waltham, Royal Holloway, University of London

    E-Print Network [OSTI]

    Royal Holloway, University of London

    of reservoir heterogeneities, allowing the seismic interpreter to make better-informed interpretation of reservoir intervals imaged on seismic data. The project will assess Stratigraphic forward modelling & synthetic seismic images of carbonate

  2. Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe; Kumar, Navanit; Zhang, Yingqi; Jordan, Preston; Pan, Lehua; Granvold, Patrick; Chow, Fotini K.

    2009-06-01T23:59:59.000Z

    We have developed a framework for assessing the leakage risk of geologic carbon sequestration sites. This framework, known as the Certification Framework (CF), emphasizes wells and faults as the primary potential leakage conduits. Vulnerable resources are grouped into compartments, and impacts due to leakage are quantified by the leakage flux or concentrations that could potentially occur in compartments under various scenarios. The CF utilizes several model components to simulate leakage scenarios. One model component is a catalog of results of reservoir simulations that can be queried to estimate plume travel distances and times, rather than requiring CF users to run new reservoir simulations for each case. Other model components developed for the CF and described here include fault characterization using fault-population statistics; fault connection probability using fuzzy rules; well-flow modeling with a drift-flux model implemented in TOUGH2; and atmospheric dense-gas dispersion using a mesoscale weather prediction code.

  3. Climate Determinism Revisited: Multiple Equilibria in a Complex Climate Model

    E-Print Network [OSTI]

    Ferreira, David

    Multiple equilibria in a coupled ocean–atmosphere–sea ice general circulation model (GCM) of an aquaplanet with many degrees of freedom are studied. Three different stable states are found for exactly the same set of ...

  4. A parametric study of factors affecting oil recovery efficiency from carbon dioxide injection using a compositional reservoir model

    E-Print Network [OSTI]

    Barnes, Gregory Allen.

    1991-01-01T23:59:59.000Z

    Factors Affecting Oil Recovery Estimating Oil Recovery From Carbon Dioxide Flooding 15 33 CHAPTER III ? FIELD CASE ANALYSIS 38 3. 1 3. 2 3. 3 3. 4 Background Laboratory Analysis Reservoir Analysis Estimates of Injection Recovery and Project... to estimate the recovery of oil from continuous injection of carbon dioxide. Finally, the results of the sensitivity analysis were compared to published laboratory and theoretical models and documented field results to test the correlation model. CHAPTER...

  5. Can reductions in logging damage increase carbon storage over time? Evaluation of a simulation model for a pilot carbon offset project in Malaysia

    SciTech Connect (OSTI)

    Pinard, M.A. [Univ. of Florida, Gainesville, FL (United States)

    1995-09-01T23:59:59.000Z

    Selective timber harvesting operations, if uncontrolled, can severely degrade a forest. Although techniques for reducing logging damage are well-known and inexpensive to apply, incentives to adopt these techniques are generally lacking. Power companies and other emitters of {open_quotes}greenhouse{close_quotes} gases soon may be forced to reduce or otherwise offset their net emissions; one offset option is to fund programs aimed at reducing logging damage. To investigate the consequences of reductions in logging damage for ecosystem carbon storage, I constructed a model to simulate changes in biomass and carbon pools following logging of primary dipterocarp forests in southeast Asia. I adapted a physiologically-driven, tree-based model of natural forest gap dynamics (FORMIX) to simulate forest recovery following logging. Input variables included stand structure, volume extracted, stand damage (% stems), and soil disturbance (% area compacted). Output variables included total biomass, tree density, and total carbon storage over time. Assumptions of the model included the following: (1) areas with soil disturbances have elevated probabilities of vine colonization and reduced rates of tree establishment, (2) areas with broken canopy but no soil disturbance are colonized initially by pioneer tree species and 20 yr later by persistent forest species, (3) damaged trees have reduced growth and increased mortality rates. Simulation results for two logging techniques, conventional and reduced-impact logging, are compared with data from field studies conducted within a pilot carbon offset project in Sabah, Malaysia.

  6. Model Development Development of a system emulating the global carbon cycle in Earth system models

    E-Print Network [OSTI]

    K. Tachiiri; J. C. Hargreaves; J. D. Annan; A. Oka; A. Abe-ouchi; M. Kawamiya

    2010-01-01T23:59:59.000Z

    developed a loosely coupled model (LCM) which can represent the outputs of a GCMbased Earth system model

  7. Summary Gross canopy photosynthesis (Pg) can be simu-lated with canopy models or retrieved from turbulent carbon

    E-Print Network [OSTI]

    Summary Gross canopy photosynthesis (Pg) can be simu- lated with canopy models or retrieved from applications and model development. Keywords: canopy photosynthesis model, carbon dioxide flux- es, eddy in de- termining the balance between photosynthesis and respiration can lead to unexpected behavior

  8. A Finite-Element Model for Simulation of Carbon Dioxide Sequestration

    SciTech Connect (OSTI)

    Bao, Jie; Xu, Zhijie; Fang, Yilin

    2014-09-01T23:59:59.000Z

    Herein, we present a coupled thermal-hydro-mechanical model for geological sequestration of carbon dioxide followed by the stress, deformation, and shear-slip failure analysis. This fully coupled model considers the geomechanical response, fluid flow, and thermal transport relevant to geological sequestration. Both analytical solutions and numerical approach via finite element model are introduced for solving the thermal-hydro-mechanical model. Analytical solutions for pressure, temperature, deformation, and stress field were obtained for a simplified typical geological sequestration scenario. The finite element model is more general and can be used for arbitrary geometry. It was built on an open-source finite element code, Elmer, and was designed to simulate the entire period of CO2 injection (up to decades) both stably and accurately—even for large time steps. The shear-slip failure analysis was implemented based on the numerical results from the finite element model. The analysis reveals the potential failure zone caused by the fluid injection and thermal effect. From the simulation results, the thermal effect is shown to enhance well injectivity, especially at the early time of the injection. However, it also causes some side effects, such as the appearance of a small failure zone in the caprock. The coupled thermal-hydro-mechanical model improves prediction of displacement, stress distribution, and potential failure zone compared to the model that neglects non-isothermal effects, especially in an area with high geothermal gradient.

  9. Empirical model determines energy required to clean sand from well bore

    SciTech Connect (OSTI)

    Appah, D.; Ichara, M. (Univ. of Port Harcourt (Nigeria))

    1994-02-28T23:59:59.000Z

    An empirical hydraulic model has been developed for determining the energy required for cleaning a vertical and nearly vertical well bore plugged with sand particles. The model considers pressure losses and cleanout time and compares sand cleanout time during direct and reverse circulation of water. Good agreement was obtained between the model and experimental results.

  10. Categorical Exclusion Determination Form

    Broader source: Energy.gov (indexed) [DOE]

    carbon dioxide (C02), and concentrated solar energy to cost-effectively produce Syngas, a renewable, carbon-neutral fuel. Project activities will include: (1) modeling,...

  11. An analytical model to predict curvature effects of the carbon nanotube on the overall behavior of nanocomposites

    SciTech Connect (OSTI)

    Yang, B. J.; Souri, H.; Lee, H. K., E-mail: leeh@kaist.ac.kr [Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Sunghwan; Ryu, Seunghwa [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2014-07-21T23:59:59.000Z

    In this study, analytical expressions are introduced to provide a better understanding of carbon nanotubes (CNTs) curvature on the overall behavior of nanocomposites. The curviness of CNT is modeled as the wave geometries, and the transformed physical characteristics are applied to micromechanical framework. Since five independent elastic constants of CNTs are essential to derive the waviness effect, atomistic molecular statics simulations with varying nanotube radii are conducted. Influences of CNT curviness on the effective stiffness of the nanocomposites are analyzed, noting that the curvature effect is significantly influential on the effective stiffness of the nanocomposites, and it may improve or reduce the reinforcing effect depending on the orientation of CNTs. In addition, the predictions are compared with experimental data of the CNT-reinforced nanocomposites to assess the reliability of the proposed method. The developed constitutive model is expected to be used to determine the volume concentration of the reinforcing CNTs and mechanical responses of CNT-reinforced composites under various CNT curvature, radius, and orientation conditions.

  12. Modeling Electrochemical Decomposition of Fluoroethylene Carbonate on Silicon Anode Surfaces in Lithium Ion Batteries

    E-Print Network [OSTI]

    Kevin Leung; Susan B. Rempe; Michael E. Foster; Yuguang Ma; Julibeth M. Martinez del la Hoz; Na Sai; Perla B. Balbuena

    2014-01-17T23:59:59.000Z

    Fluoroethylene carbonate (FEC) shows promise as an electrolyte additive for improving passivating solid-electrolyte interphase (SEI) films on silicon anodes used in lithium ion batteries (LIB). We apply density functional theory (DFT), ab initio molecular dynamics (AIMD), and quantum chemistry techniques to examine excess-electron-induced FEC molecular decomposition mechanisms that lead to FEC-modified SEI. We consider one- and two-electron reactions using cluster models and explicit interfaces between liquid electrolyte and model Li(x)Si(y) surfaces, respectively. FEC is found to exhibit more varied reaction pathways than unsubstituted ethylene carbonate. The initial bond-breaking events and products of one- and two-electron reactions are qualitatively similar, with a fluoride ion detached in both cases. However, most one-electron products are charge-neutral, not anionic, and may not coalesce to form effective Li+-conducting SEI unless they are further reduced or take part in other reactions. The implications of these reactions to silicon-anode based LIB are discussed.

  13. A model for determining the fate of hazardous constituents in waste during in-vessel composting

    E-Print Network [OSTI]

    Bollineni, Prasanthi

    1994-01-01T23:59:59.000Z

    compound undergoes when subjected to composting. The purpose of this thesis is to define these processes and develop a model for determining the fate of organic compounds in waste during in-vessel composting Volatilization and biodegradation are found...

  14. Detection of long-term trends in carbon accumulation by forests in Northeastern U. S. and determination of causal factors: Final report

    SciTech Connect (OSTI)

    J. William Munger; Steven C. Wofsy; David R. Foster

    2012-01-31T23:59:59.000Z

    The overall project goal was to quantify the trends and variability for Net ecosystem exchange of CO{sub 2}, H{sub 2}O, and energy by northeastern forests, with particular attention to the role of succession, differences in species composition, legacies of past land use, and disturbances. Measurements included flux measurements and observations of biomass accumulation using ecosystem modeling as a framework for data interpretation. Continuation of the long-term record at the Environmental Measurement Site (EMS) Tower was a priority. The final quality-assured CO{sub 2}-flux data now extend through 2010. Data through 2011 are collected but not yet finalized. Biomass observations on the plot array centered on the tower are extended to 2011. Two additional towers in a hemlock stand (HEM) and a younger deciduous stand (LPH) complement the EMS tower by focusing on stands with different species composition or age distribution and disturbance history, but comparable climate and soil type. Over the period since 1993 the forest has added 24.4 Mg-C ha{sup -1} in the living trees. Annual net carbon uptake had been increasing from about 2 Mg-C ha{sup -1}y{sup -1} in the early 1990s to nearly 6 Mg-C ha{sup -1}y{sup -1} by 2008, but declined in 2009-2010. We attribute the increasing carbon uptake to a combination of warmer temperatures, increased photosynthetic efficiency, and increased influence by subcanopy hemlocks that are active in the early spring and late autumn when temperatures are above freezing but the deciduous canopy is bare. Not all of the increased carbon accumulation was found in woody biomass. Results from a study using data to optimize parameters in an ecosystem process model indicate that significant changes in model parameters for photosynthetic capacity and shifts in allocation to slow cycling soil organic matter are necessary for the model to match the observed trends. The emerging working hypothesis is that the pattern of increasing carbon uptake over the early 2000's represents a transient pulse that will eventually end as decomposition of the accumulated carbon catches up.

  15. Model-data Fusion Approaches for Retrospective and Predictive Assessment of the Pan-Arctic Scale Permafrost Carbon Feedback to Global Climate

    E-Print Network [OSTI]

    representation of the Arctic system carbon cycle in Earth System Modeling frameworks. This proposed study of permafrost carbon processes in terrestrial biogeochemistry models, to operate within coupled Earth system modeling frameworks. PROJECT SIGNIFICANCE This work will provide a critical bridge between the abundant

  16. EDGE2D-EIRENE Modelling of Divertor Detachment in JET High Triangularity L-mode Plasmas in Carbon and Be/W Environment

    E-Print Network [OSTI]

    EDGE2D-EIRENE Modelling of Divertor Detachment in JET High Triangularity L-mode Plasmas in Carbon and Be/W Environment

  17. Transport parameter determination and modeling of sodium and strontium plumes at the Idaho National Engineering Laboratory

    E-Print Network [OSTI]

    Londergan, John Thomas

    1987-01-01T23:59:59.000Z

    TRANSPORT PARAMETER DETERMINATION AND MODELING OF SODIUM AND STRONTIUM PLUMES AT THE IDAHO NATIONAL ENGINEERING LABORATORY A Thesis by JOHN THOMAS LONDERGAN Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 1987 Major Subject: Geophysics TRANSPORT PARAMETER DETERMINATION AND MODELING OF SODIUM AND STRONTIUM PLUMES AT THE IDAHO NATIONAL ENGINEERING LABORATORY A Thesis by JOHN THOMAS LONDERGAN Approved...

  18. A conceptual model for determining yield loss due to drought stress in sorghum

    E-Print Network [OSTI]

    Koch, Paul Robert

    1987-01-01T23:59:59.000Z

    A CONCEPTUAL MODEL FOR DETERMINING YIELD LOSS DUE TO DROUGHT STRESS IN SORGHUM A Thesis by PAUL ROBERT KOCH Submitted to the Graduate College of Texas AkM University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 1987 Major Subject: Agricultural Engineering A CONCEPTUAL MODEL FOR DETERMINING YIELD LOSS DUE TO DROUGHT STRESS IN SORGHUM A thesis by PAUL ROBERT KOCH Approved as to style and content by: Marshall J. McFarland (Chair of Committee...

  19. A Micromechanical Constitutive Model of Progressive Crushing in Random Carbon Fiber Polymer Matrix Composites

    SciTech Connect (OSTI)

    Lee, H.K.; Simunovic, S.

    1999-09-01T23:59:59.000Z

    A micromechanical damage constitutive model is presented to predict the overall elastoplastic behavior and damage evolution in random carbon fiber polymer matrix composites (RFPCs).To estimate the overall elastoplastic damage responses,an effective yield criterion is derived based on the ensemble-volume averaging process and first-order effects of eigenstrains due to the existence of spheroidal (prolate) fibers.The proposed effective yield criterion,to ether with the assumed overall associative plastic flow rule and hardening law, constitutes the analytical foundation for the estimation of effective elastoplastic behavior of ductile matrix composites.First,an effective elastoplastic constitutive dama e model for aligned fiber-reinforced composites is proposed.A micromechanical damage constitutive model for RFPCs is then developed.The average process over all orientations upon overning constitutive field equations and overall yield function for aligned fiber-reinforced composites i s performed to obtain the constitutive relations and effective yield function of RFPCs.The discrete numerical integration algorithms and the continuum tan ent operator are also presented to implement the proposed dama e constitutive model.The dama e constitutive model forms the basis for the pro ressive crushing in composite structures under impact loading.

  20. Processing, Characterization and Modeling Carbon Nanotube Modified Interfaces in Hybrid Polymer Matrix Composites

    E-Print Network [OSTI]

    Truong, Hieu 1990-

    2012-12-04T23:59:59.000Z

    Multifunctional hybrid composites are proposed as novel solutions to meet the demands in various industrial applications ranging from aerospace to biomedicine. The combination of carbon fibers and/or fabric, metal foil and carbon nanotubes...

  1. ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION EFFORTS

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    ISSUES IN EVALUATING CARBON SEQUESTRATION AND ATTRIBUTING CARBON CREDITS TO GRASSLAND RESTORATION examines biological carbon sequestration using a grassland restoration as a model system. Chapter 1 for biological carbon sequestration. In this analysis, we found that significantly greater soil carbon

  2. Recovery Boiler Modeling: An Improved Char Burning Model Including Sulfate Reduction and Carbon Removal

    E-Print Network [OSTI]

    Grace, T. M.; Wag, K. J.; Horton, R. R.; Frederick, W. J.

    gasification, reactions between oxygen and combustibles in the boundary layer, and integration of sulfate reduction and sulfide reoxidation into the char burning process. Simulations using the model show that for typical recovery boiler conditions, char burning...

  3. Calibration and validation of a simplified process-based model for the prediction of the carbon

    E-Print Network [OSTI]

    Mencuccini, Maurizio

    a low cost and robust means of climate change abatement through carbon sequestration and substitution to provide assess- ments of carbon sequestration of Sitka spruce (Picea sitchensis (Bong.) Carrie in differences between optimal rotation length for carbon sequestration and for timber production. Re´sume´ : Il

  4. Modifying the Soil and Water Assessment Tool to Simulate Cropland Carbon Flux: Model Development and Initial Evaluation

    SciTech Connect (OSTI)

    Zhang, Xuesong; Izaurralde, Roberto C.; Arnold, Jeffrey; Williams, Jimmy R.; Srinivasan, Raghavan

    2013-10-01T23:59:59.000Z

    Climate change is one of the most compelling modern issues and has important implications for almost every aspect of natural and human systems. The Soil and Water Assessment Tool (SWAT) model has been applied worldwide to support sustainable land and water management in a changing climate. However, the inadequacies of the existing carbon algorithm in SWAT limit its application in assessing impacts of human activities on CO2 emission, one important source of greenhouse gases (GHGs) that traps heat in the earth system and results in global warming. In this research, we incorporate a revised version of the CENTURY carbon model into SWAT to describe dynamics of soil organic matter (SOM)- residue and simulate land-atmosphere carbon exchange.

  5. Long-Term Climate Commitments Projected with ClimateCarbon Cycle Models G.-K. PLATTNER,a,n

    E-Print Network [OSTI]

    Stocker, Thomas

    Long-Term Climate Commitments Projected with Climate­Carbon Cycle Models G.-K. PLATTNER,a,n R IAC, ETH Zürich, Zürich, Switzerland c Potsdam Institute for Climate Impact Research, Potsdam, Germany of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada h The Open

  6. Impact of hydrological variations on modeling of peatland CO2 fluxes: Results from the North American Carbon Program

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    in ecosystem models due to differences in nutrients, peat properties, and plant communities. Citation: Sulman cycle due to large carbon pools resulting from the long-term accumulation of organic matter in peat of the water table exposes peat soils to oxygen, resulting in higher rates of ecosystem respiration (ER

  7. Multiphysics modeling of carbon gasification processes in a well-stirred reactor with detailed gas-phase chemistry

    E-Print Network [OSTI]

    Qiao, Li

    : Coal gasification Carbon gasification Detailed chemistry Heterogeneous surface reactions Radiation Multi-physics numerical modeling a b s t r a c t Fuel synthesis through coal and biomass gasification Fuel synthesis through coal gasification offers a potential solu- tion to the problem of increasing

  8. PHYSICAL REVIEW B 86, 165414 (2012) Acoustic energy dissipation and thermalization in carbon nanotubes: Atomistic modeling and

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    PHYSICAL REVIEW B 86, 165414 (2012) Acoustic energy dissipation and thermalization in carbon or bending buckling marks the transition from a regime of slow thermalization to a regime in which the energy bath" description of thermal energy in a mesoscopic model, which is capable of simulating systems

  9. Distant origins of Arctic black carbon: A Goddard Institute for Space Studies ModelE experiment

    E-Print Network [OSTI]

    [Wallace and Thompson, 2002]. The Arctic climate is especially sensitive to changes in the hydrological005296. 1. Introduction [2] The Arctic is a particularly sensitive region to global climate change. Observations and models indicate that as the climate warms, the Arctic warms most and fastest [e.g., Manabe et

  10. Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries

    E-Print Network [OSTI]

    Hoffman, Forrest M.

    Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation pathways (RCPs 4.5 and 8.5) using the Community Earth System Model­Biogeochemistry (CESM1- BGC). CO2

  11. Determination of structural characteristics of saturates from diesel and kerosene fuels by carbon-13 nuclear magnetic resonance spectrometry

    SciTech Connect (OSTI)

    Cookson, D.J.; Smith, B.E.

    1985-04-01T23:59:59.000Z

    Two saturated hydrocarbon fractions, one mainly consisting of n-alkanes and the other containing only branched plus cyclic saturates, have been separated from each of a variety of diesel fuels (approximate boiling range 230-320/sup 0/C) and kerosene fuels (approximately 190-230/sup 0/C) using silica chromatography and urea clathration. The n-alkane fractions have been simply characterized by using conventional /sup 13/C NMR spectrometry, yielding average carbon chain lengths. The branched plus cyclic saturates fractions have been characterized by using the gated spin echo (GASPE) /sup 13/C NMR subspectra for each CH/sub n/ group type (n = 0 to 3) and allows the fractional abundances of CH/sub n/ groups to be measured. These data have been employed in devising and calculating a number of novel average structure parameters which report on the extent of branching and occurrence of ring structures in the fractions investigated. Spectral data are also used to identify some specific submolecular structures. 29 references, 7 figures, 4 tables.

  12. Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity

    E-Print Network [OSTI]

    McCollum, David L; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    Ogden models use capital cost estimates from Skovholt’s 1993are below average but estimate capital costs that are abovediameter, it estimates capital cost below the average.

  13. Regional scale cropland carbon budgets: evaluating a geospatial agricultural modeling system using inventory data

    SciTech Connect (OSTI)

    Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; Sahajpal, Ritvik; West, Tristram O.; Thomson, Allison M.; Xu, Min; Zhao, Kaiguang; LeDuc, Stephen D.; Williams, Jimmy R.

    2015-01-01T23:59:59.000Z

    Accurate quantification and clear understanding of regional scale cropland carbon (C) cycling is critical for designing effective policies and management practices that can contribute toward stabilizing atmospheric CO2 concentrations. However, extrapolating site-scale observations to regional scales represents a major challenge confronting the agricultural modeling community. This study introduces a novel geospatial agricultural modeling system (GAMS) exploring the integration of the mechanistic Environmental Policy Integrated Climate model, spatially-resolved data, surveyed management data, and supercomputing functions for cropland C budgets estimates. This modeling system creates spatially-explicit modeling units at a spatial resolution consistent with remotely-sensed crop identification and assigns cropping systems to each of them by geo-referencing surveyed crop management information at the county or state level. A parallel computing algorithm was also developed to facilitate the computationally intensive model runs and output post-processing and visualization. We evaluated GAMS against National Agricultural Statistics Service (NASS) reported crop yields and inventory estimated county-scale cropland C budgets averaged over 2000–2008. We observed good overall agreement, with spatial correlation of 0.89, 0.90, 0.41, and 0.87, for crop yields, Net Primary Production (NPP), Soil Organic C (SOC) change, and Net Ecosystem Exchange (NEE), respectively. However, we also detected notable differences in the magnitude of NPP and NEE, as well as in the spatial pattern of SOC change. By performing crop-specific annual comparisons, we discuss possible explanations for the discrepancies between GAMS and the inventory method, such as data requirements, representation of agroecosystem processes, completeness and accuracy of crop management data, and accuracy of crop area representation. Based on these analyses, we further discuss strategies to improve GAMS by updating input data and by designing more efficient parallel computing capability to quantitatively assess errors associated with the simulation of C budget components. The modularized design of the GAMS makes it flexible to be updated and adapted for different agricultural models so long as they require similar input data, and to be linked with socio-economic models to understand the effectiveness and implications of diverse C management practices and policies.

  14. Predicting the oceanic input of organic carbon by continental erosion

    SciTech Connect (OSTI)

    Ludwig, W.; Probst, J.C. [Centre National de la Recherche Scientifique, Strasbourg (France)] [Centre National de la Recherche Scientifique, Strasbourg (France); Kempe, S. [Technische Hochschule Darmstadt (Germany)] [Technische Hochschule Darmstadt (Germany)

    1996-03-01T23:59:59.000Z

    Empirical models were developed to describe relationships between the climatic, biologic, and geomorphologic characteristics of major world rivers and the observed dissolved and particulate carbon fluxes. The main purpose of the study was to determine the best regression models to describe river carbon flux at a global scale. Model parameters were grouped in all possible combinations and in a way to minimize the effects of multicollinearity. All parameter combinations were then tested individually. A model was developed with parameters which corresponded well to field results and global carbon fluxes which were close to previous estimates. The model was also used to relate the variability of annual carbon fluxes to the environmental variability of river basins. The statistical approach allows only a general view, but is capable of identifying the principal factors controlling global organic carbon flux. 111 refs., 5 figs., 4 tabs.

  15. Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity

    E-Print Network [OSTI]

    McCollum, David L; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    Costs to Estimate Hydrogen Pipeline Costs,” UCD-ITS-RR-04-predict the costs of hydrogen pipelines, all of the modelspredict the costs of hydrogen pipelines, all of the models

  16. Techno-Economic Models for Carbon Dioxide Compression, Transport, and Storage & Correlations for Estimating Carbon Dioxide Density and Viscosity

    E-Print Network [OSTI]

    McCollum, David L; Ogden, Joan M

    2006-01-01T23:59:59.000Z

    as reported in the Oil & Gas Journal. From this data, theycost data from the Oil & Gas Journal. The Ecofys Models Theas reported in the Oil & Gas Journal. From this data, they

  17. Modeling the effects of topography and wind on atmospheric dispersion of CO2 surface leakage at geologic carbon sequestration sites

    E-Print Network [OSTI]

    Chow, Fotini K.

    2009-01-01T23:59:59.000Z

    CO 2 from geologic carbon sequestration sites, Vadose Zoneleakage at geologic carbon sequestration sites Fotini K.assessment for geologic carbon sequestration sites. We have

  18. An Ontology-based Model to Determine the Automation Level of an Automated Vehicle for

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    An Ontology-based Model to Determine the Automation Level of an Automated Vehicle for Co). In addition, an automated vehicle should also self-assess its own perception abilities, and not only perceive this idea, cybercars were designed as fully automated vehicles [3], thought since its inception as a new

  19. Determination of Peptide Amide Configuration in a Model Amyloid Fibril by Solid-State NMR

    E-Print Network [OSTI]

    Griffin, Robert G.

    -42, with sequence LMVGGVVIA) forms a structured aggregate which is classified as an amyloid fibril based primarilyDetermination of Peptide Amide Configuration in a Model Amyloid Fibril by Solid-State NMR P. R these aggregates form. The primary constituent of the amyloid plaques characteristic of AD are a family of 39

  20. CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite

    E-Print Network [OSTI]

    Rollins, Andrew M.

    materials. MATERIALS AND DESIRED DATA Carbon-Carbon Composites(T300 & SWB): Crush Resistance, Bend StrengthCARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite · C-C supplied in two forms · T300: C strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine

  1. Solvent dependence of the carbon kinetic isotope effect on the decarboxylation of 4-pyridylacetic acid. A model for enzymatic decarboxylations

    SciTech Connect (OSTI)

    Marlier, J.F.; O'Leary, M.H.

    1986-08-06T23:59:59.000Z

    Carbon kinetic isotope effects have been measured for the decarboxylation of 4-pyridylacetic acid in pure water and in water-dioxane mixtures at 25/sup 0/C. The isotope effects are k/sup 12//k/sup 13/ = 1.064 in 75% dioxane, 1.060 in 50% dioxane, 1.056 in 25% dioxane, and 1.057 in pure water. The decrease in kinetic isotope effect parallels a more dramatic 4000-fold decrease in the observed first-order rate constant on going from 75% dioxane to pure water. No solvent isotope effect is observed in 50% water/dioxane, and as expected, the carbon isotope effect is the same in 50% D/sub 2/O/dioxane as in 50% H/sub 2/O/dioxane. The reaction appears to occur in a single step, without appreciable proton movement. The variation in rate is attributed to variations in the degree of transition-state solvation with only very small changes in ground-state effects and in the degree of carbon-carbon bond breaking in the transition state. These results indicate that the magnitudes of isotope effects observed in model reactions in H/sub 2/O are an appropriate model for magnitudes of isotope effects in enzymatic decarboxylations.

  2. Modeling of Water-rock interaction in the Mackenzie Basin: competition between sulfuric and carbonic acids

    E-Print Network [OSTI]

    sulfuric and carbonic acids E. Beaulieu, Y. Godd´eris, D. Labat, C. Roelandt, D. Calmels, J. Gail- lardet of the resulting proof before it is published in its final form. Please note that during the production process in the Mackenzie Basin: competition between sulfuric and carbonic acids. E. Beaulieu1 , Y. Goddéris1 , D. Labat1

  3. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1

    SciTech Connect (OSTI)

    Bacon, Diana H.

    2013-03-31T23:59:59.000Z

    The National Risk Assessment Partnership (NRAP) consists of 5 U.S DOE national laboratories collaborating to develop a framework for predicting the risks associated with carbon sequestration. The approach taken by NRAP is to divide the system into components, including injection target reservoirs, wellbores, natural pathways including faults and fractures, groundwater and the atmosphere. Next, develop a detailed, physics and chemistry-based model of each component. Using the results of the detailed models, develop efficient, simplified models, termed reduced order models (ROM) for each component. Finally, integrate the component ROMs into a system model that calculates risk profiles for the site. This report details the development of the Groundwater Geochemistry ROM for the Edwards Aquifer at PNNL. The Groundwater Geochemistry ROM for the Edwards Aquifer uses a Wellbore Leakage ROM developed at LANL as input. The detailed model, using the STOMP simulator, covers a 5x8 km area of the Edwards Aquifer near San Antonio, Texas. The model includes heterogeneous hydraulic properties, and equilibrium, kinetic and sorption reactions between groundwater, leaked CO2 gas, brine, and the aquifer carbonate and clay minerals. Latin Hypercube sampling was used to generate 1024 samples of input parameters. For each of these input samples, the STOMP simulator was used to predict the flux of CO2 to the atmosphere, and the volume, length and width of the aquifer where pH was less than the MCL standard, and TDS, arsenic, cadmium and lead exceeded MCL standards. In order to decouple the Wellbore Leakage ROM from the Groundwater Geochemistry ROM, the response surface was transformed to replace Wellbore Leakage ROM input parameters with instantaneous and cumulative CO2 and brine leakage rates. The most sensitive parameters proved to be the CO2 and brine leakage rates from the well, with equilibrium coefficients for calcite and dolomite, as well as the number of illite and kaolinite sorption sites proving to be of secondary importance. The Groundwater Geochemistry ROM was developed using nonlinear regression to fit the response surface with a quadratic polynomial. The goodness of fit was excellent for the CO2 flux to the atmosphere, and very good for predicting the volumes of groundwater exceeding the pH, TDS, As, Cd and Pb threshold values.

  4. ATOMIC-LEVEL MODELING OF CO2 DISPOSAL AS A CARBONATE MINERAL: A SYNERGETIC APPROACH TO OPTIMIZING REACTION PROCESS DESIGN

    SciTech Connect (OSTI)

    A.V.G. Chizmeshya; M.J. McKelvy; J.B. Adams

    2001-11-01T23:59:59.000Z

    Fossil fuels, especially coal, can support the energy demands of the world for centuries to come, if the environmental problems associated with CO{sub 2} emissions can be overcome. Permanent and safe methods for CO{sub 2} capture and disposal/storage need to be developed. Mineralization of stationary-source CO{sub 2} emissions as carbonates can provide such safe capture and long-term sequestration. Mg-rich lamellar hydroxide mineral carbonation is a leading process candidate, which generates the stable naturally occurring mineral magnesite (MgCO{sub 3}) and water. Key to process cost and viability are the carbonation reaction rate and its degree of completion. This process, which involves simultaneous dehydroxylation and carbonation is very promising, but far from optimized. In order to optimize the dehydroxylation/carbonation process, an atomic-level understanding of the mechanisms involved is needed. In this investigation Mg(OH){sub 2} was selected as a model Mg-rich lamellar hydrocide carbonation feedstock material due to its chemical and structural simplicity. Since Mg(OH){sub 2} dehydroxylation is intimately associated with the carbonation process, its mechanisms are also of direct interest in understanding and optimizing the process. The aim of the current innovative concepts project is to develop a specialized advanced computational methodology to complement the ongoing experimental inquiry of the atomic level processes involved in CO{sub 2} mineral sequestration. The ultimate goal is to integrate the insights provided by detailed predictive simulations with the data obtained from optical microscopy, FESEM, ion beam analysis, SIMS, TGA, Raman, XRD, and C and H elemental analysis. The modeling studies are specifically designed to enhance the synergism with, and complement the analysis of, existing mineral-CO{sub 2} reaction process studies being carried out under DOE UCR Grant DE-FG2698-FT40112. Direct contact between the simulations and the experimental measurements is provided by computing, from first principles, the equilibrium structures, elastic, optical, and vibrational properties of Mg(OH){sub 2} (brucite), MgO (periclase), MgCO{sub 3} (magnesite), as well as the energetics of the dehydroxylation reaction (Mg(OH){sub 2} {yields} MgO + H{sub 2}O), and the reactivity of CO{sub 2} with MgO and Mg(OH){sub 2}. From these calculations, thermodynamic characteristics of the reaction conditions can be inferred. This kind of information, when integrated with the atomic level data obtained from experimental gas-solid dehydroxylation/carbonation studies, will be used to design optimized reaction processes leading to the practical and cost-effective sequestration of CO{sub 2} in mineral form.

  5. Carbon-nitrogen bond-forming reactions in supercritical and expanded-liquid carbon dioxide media : green synthetic chemistry with multiscale reaction and phase behavior modeling

    E-Print Network [OSTI]

    Ciccolini, Rocco P

    2008-01-01T23:59:59.000Z

    The goal of this work was to develop a detailed understanding of carbon-nitrogen (C-N) bond-forming reactions of amines carried out in supercritical and expanded-liquid carbon dioxide (CO2) media. Key motivations behind ...

  6. Kinetics of hydrogenation of aromatics determined by carbon-13 NMR for Athabasca bitumen-derived middle distillates

    SciTech Connect (OSTI)

    Yui, S.M.; Sanford, E.C. (Syncrude Canada Ltd., Edmonton, Alberta (Canada))

    1987-04-01T23:59:59.000Z

    High aromatics content in middle distillates is detrimental to fuel quality, as shown in such properties as smoke point of jet fuel and cetane number of diesel fuel. In the petroleum and petrochemical industries the yields from fluid catalytic cracking or steam cracking units are adversely affected by high aromatics content in the feedstock. Distillates obtained from oil sand bitumen, heavy oils, or coal liquefaction products are particularly high in aromatics. Reducing the concentration of this class of compounds is important. Aromatics hydrogenation (AHYD) is one option to achieve this result. In the current Syncrude operation a primary objective of hydrotreating is to reduce product sulfur and nitrogen contents; reducing aromatics content is an incidental result. However, the expansion plan currently under study by Syncrude includes further AHYD to improve cetane number. Predicting the product aromatics content is an important issue for this study. In the present study, hydrotreating of five Athabasca-bitumen-derived gas oils was conducted in pilot scale trickle-bed reactors using alumina-based commercial NiMo catalysts. Feedstocks originated from the distillation of virgin bitumen, and from distillates derived from treating bitumen in a fluid coker and hydrocracking pilot plant. Aromatics content was determined by the {sup 13}C NMR method. The previously developed rate equation for AHYD was modified by including power terms for space velocity and hydrogen partial pressure. The data were analyzed using the modified equation.

  7. High-precision determination of {sup 234}U/{sup 238}U activity ratios in natural waters and carbonates by ICPMS

    SciTech Connect (OSTI)

    Ketterer, M.E. [John Carroll Univ., University Heights, OH (United States). Dept. of Chemistry; Khourey, C.J. [Case Western Reserve Univ., Cleveland, OH (United States). Dept. of Geological Sciences

    1998-12-31T23:59:59.000Z

    A method has been developed for precise measurement of {sup 234}U/{sup 238}U activity ratios in natural waters and carbonates using quadrupole inductively coupled plasma mass spectrometry. A recovery of 80--85% of seawater U is achieved by Fe(III) coprecipitation followed by extraction chromatography with a supported dipentyl pentane phosphonate material; 90--95% of U is recovered from carbonates, which are dissolved in HNO{sub 3} and subjected to the same extraction chromatographic preparation. Isotopic measurements are made via recirculating pneumatic nebulization of small volumes of solutions containing 0.5--5 mg/L U. {sup 234}U/{sup 235}U is measured as a proxy for determination of {sup 234}U/{sup 238}U; iridium is added to sample solutions and the ion ratio {sup 191}Ir{sup 40}Ar{sup +}/{sup 193}Ir{sup 40}Ar{sup +} is measured for internal mass discrimination correction {sup 234}U/{sup 238}U activity ratios in the range 1.143--1.154 are observed for 13 seawater and contemporary corals, in agreement with the established marine {sup 234}U/{sup 238}U activity ratio. For samples sizes of 5--25 {micro}g U, ICPMS uncertainties of {+-} 0.2--0.5% relative, 2{theta} standard error, approach those obtained for < 0.1 {micro}g U by thermal ionization mass spectrometry. Measurements of {sup 234}U/{sup 238}U activity ratios in bottled waters, Lake Erie surface waters, mollusk fossils, and fertilizers are also demonstrated.

  8. Universal field-emission model for carbon nanotubes on a metal tip D. Y. Zhong, G. Y. Zhang, and S. Liu

    E-Print Network [OSTI]

    Zhang, Guangyu

    Universal field-emission model for carbon nanotubes on a metal tip D. Y. Zhong, G. Y. Zhang, and S Electron-field-emission properties have been investigated systematically for carbon nanotubes CNTs and the current density approaches 10 mA/cm2 at an electronic field of 1.0 V/ m. The emission current is quite

  9. Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100

    E-Print Network [OSTI]

    Historical and future black carbon deposition on the three ice caps: Ice core measurements black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 tends to enhance snow and ice melting due to the absorption caused by the increased BC deposition

  10. CX-001459: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-001459: Categorical Exclusion Determination Air Quality VIII: An International Conference on Carbon Management, Mercury, Trace Elements,...

  11. Deductive-reductive determination of the model of our observed Universe

    E-Print Network [OSTI]

    V. Skalsky

    2000-09-17T23:59:59.000Z

    According to the observations, in our expansive and isotropic relativistic Universe for the gravitational phenomena in a Newtonian approximation the Newtonian non-modified relations are valid. The Friedmann general equations of isotropic and homogeneous universe dynamics describe an infinite number of models of expansive and isotropic relativistic universe in the Newtonian approximation, but only in one of them the Newtonian non-modified relations are valid. These facts give - till now not considered - possibility for unambiguous deductive-reductive determination of the Friedmannian model, which describes our observed Universe.

  12. Integrated Analysis and Application of Reservoir Models to Early Permian Detrital Carbonate Deposits, Midland Basin, Texas 

    E-Print Network [OSTI]

    Johnston, Travis Wayne 1987-

    2012-11-01T23:59:59.000Z

    carbonate intervals and associated amplitude response. Eight lithofacies were identified in core and were subsequently classified into three main facies: debris flow, grain flow/turbidite, and basinal shale. A facies type log was then created, which...

  13. Electrical and Thermal Experimental Characterization and Modeling of Carbon Nanotube/Epoxy Composites 

    E-Print Network [OSTI]

    Gardea, Frank

    2012-10-19T23:59:59.000Z

    The present work investigates the effect of carbon nanotube (CNT) inclusions on the electrical and thermal conductivity of a thermoset epoxy resin. The characterization of electrical and thermal conductivity of CNT/epoxy composites is presented...

  14. Micromechanics modeling of the multifunctional nature of carbon nanotube-polymer nanocomposites 

    E-Print Network [OSTI]

    Seidel, Gary Don

    2009-06-02T23:59:59.000Z

    The present work provides a micromechanics approach based on the generalized self-consistent composite cylinders method as a non-Eshelby approach towards for assessing the impact of carbon nanotubes on the multi-functional nature of nanocom...

  15. Processing, Characterization and Modeling Carbon Nanotube Modified Interfaces in Hybrid Polymer Matrix Composites 

    E-Print Network [OSTI]

    Truong, Hieu 1990-

    2012-12-04T23:59:59.000Z

    Multifunctional hybrid composites are proposed as novel solutions to meet the demands in various industrial applications ranging from aerospace to biomedicine. The combination of carbon fibers and/or fabric, metal foil ...

  16. Micromechanics modeling of the multifunctional nature of carbon nanotube-polymer nanocomposites

    E-Print Network [OSTI]

    Seidel, Gary Don

    2009-06-02T23:59:59.000Z

    The present work provides a micromechanics approach based on the generalized self-consistent composite cylinders method as a non-Eshelby approach towards for assessing the impact of carbon nanotubes on the multi-functional nature of nanocom...

  17. Acoustic energy dissipation and thermalization in carbon nanotubes: Atomistic modeling and mesoscopic description

    E-Print Network [OSTI]

    Nicholson, David A.

    The exchange of energy between low-frequency mechanical oscillations and high-frequency vibrational modes in carbon nanotubes (CNTs) is a process that plays an important role in a range of dynamic phenomena involving the ...

  18. Visual representation of carbon dioxide adsorption in a low-volatile bituminous coal molecular model

    SciTech Connect (OSTI)

    Marielle R. Narkiewicz; Jonathan P. Mathews [Pennsylvania State University, University Park, PA (United States). Department of Energy and Minerals Engineering

    2009-09-15T23:59:59.000Z

    Carbon dioxide can be sequestered in unmineable coal seams to aid in mitigating global climate change, while concurrently CH{sub 4} can be desorbed from the coal seam and used as a domestic energy source. In this work, a previously constructed molecular representation was used to simulate several processes that occur during sequestration, such as sorption capacities of CO{sub 2} and CH{sub 4}, CO{sub 2}-induced swelling, contraction because of CH{sub 4} and water loss, and the pore-blocking role of moisture. This is carried out by calculating the energy minima of the molecular model with different amounts of CO{sub 2}, CH{sub 4}, and H{sub 2}O. The model used is large (>2000 atoms) and contains a molecular-weight distribution, so that it has the flexibility to be used by other researchers and for other purposes in the future. In the low-level molecular modeling presented here, it was anticipated that CO{sub 2} would be adsorbed more readily than CH{sub 4}, that swelling would be anisotropic, greater perpendicular to the bedding plane because of the rank of this coal, and finally, that, with the addition of moisture, CO{sub 2} capacity in the coal would be reduced. As expected with this high-rank coal, there was swelling when CO{sub 2} perturbed the structure of approximately 5%. It was found that, on the basis of the interconnected pore structure and molecular sizes, CO{sub 2} was able to access 12.4% more of the pore volume (as defined by helium) than CH{sub 4}, in the rigid molecular representation. With water as stationary molecules, mostly hydrogen bound to the coal oxygen functionality, pore access decreased by 5.1% of the pore volume for CO{sub 2} accessibility and 4.7% of the pore volume for CH{sub 4} accessibility. 36 refs., 12 figs., 1 tab.

  19. Enterprise Audit Modeling of Large-Scale Agencies' Energy and Carbon Dioxide Accounting

    E-Print Network [OSTI]

    Wade, Brigitta Alexandra Anne

    2011-12-31T23:59:59.000Z

    , and corporations as it has a broad impact on industries, societies, and global communities. The concept is extremely “catchy” and thus has been promoted and outside the research community. (Weidema et al, 2008) Even though carbon accounting frameworks has been... information. The economic method is more reasonable, but the cost is still limited by its planned cost savings. (Mishan & Quah, 2007) 1.3 ECA AND EEA IN DESIGN Tracking and understanding how each element in Figure 1 impacts the overall carbon total...

  20. Integrating Remote Sensing, Field Observations, and Models to Understand Disturbance and Climate Effects on the Carbon Balance of the West Coast U.S.

    SciTech Connect (OSTI)

    Cohen, Warren [USDA Forest Service] [USDA Forest Service

    2014-07-03T23:59:59.000Z

    As an element of NACP research, the proposed investigation is a two pronged approach that derives and evaluates a regional carbon (C) budget for Oregon, Washington, and California. Objectives are (1) Use multiple data sources, including AmeriFlux data, inventories, and multispectral remote sensing data to investigate trends in carbon storage and exchanges of CO2 and water with variation in climate and disturbance history; (2) Develop and apply regional modeling that relies on these multiple data sources to reduce uncertainty in spatial estimates of carbon storage and NEP, and relative contributions of terrestrial ecosystems and anthropogenic emissions to atmospheric CO2 in the region; (3) Model terrestrial carbon processes across the region, using the Biome-BGC terrestrial ecosystem model, and an atmospheric inverse modeling approach to estimate variation in rate and timing of terrestrial uptake and feedbacks to the atmosphere in response to climate and disturbance.

  1. Integrating Remote Sensing, Field Observations, and Models to Understand Disturbance and Climate Effects on the Carbon Balance of the West Coast U.S., Final Report

    SciTech Connect (OSTI)

    Beverly E. Law

    2011-10-05T23:59:59.000Z

    As an element of NACP research, the proposed investigation is a two pronged approach that derives and evaluates a regional carbon (C) budget for Oregon, Washington, and California. Objectives are (1) Use multiple data sources, including AmeriFlux data, inventories, and multispectral remote sensing data to investigate trends in carbon storage and exchanges of CO2 and water with variation in climate and disturbance history; (2) Develop and apply regional modeling that relies on these multiple data sources to reduce uncertainty in spatial estimates of carbon storage and NEP, and relative contributions of terrestrial ecosystems and anthropogenic emissions to atmospheric CO2 in the region; (3) Model terrestrial carbon processes across the region, using the Biome-BGC terrestrial ecosystem model, and an atmospheric inverse modeling approach to estimate variation in rate and timing of terrestrial uptake and feedbacks to the atmosphere in response to climate and disturbance.

  2. Stratigraphy and Reservoir-analog Modeling of Upper Miocene Shallow-water and Deep-water Carbonate Deposits: Agua Amarga Basin, Southeast Spain

    E-Print Network [OSTI]

    Dvoretsky, Rachel Ana

    2009-03-10T23:59:59.000Z

    This study documents the basin-wide stratigraphic characterization and 3-D reservoir-analog modeling of upper Miocene carbonate deposits in the Agua Amarga basin, southeast Spain. Paleotopography and relative fluctuations in sea level were primary...

  3. Modeling Coal Matrix Shrinkage and Differential Swelling with CO2 Injection for Enhanced Coalbed Methane Recovery and Carbon Sequestration Applications

    SciTech Connect (OSTI)

    L. J. Pekot; S. R. Reeves

    2002-03-31T23:59:59.000Z

    Matrix shrinkage and swelling can cause profound changes in porosity and permeability of coalbed methane reservoirs during depletion or when under CO{sub 2} injection processes, with significant implication for primary or enhanced methane recovery. Two models that are used to describe these effects are discussed. The first was developed by Advanced Resources International (ARI) and published in 1990 by Sawyer, et al. The second model was published by Palmer and Mansoori in 1996. This paper shows that the two provide equivalent results for most applications. However, their differences in formulation cause each to have relative advantages and disadvantages under certain circumstances. Specifically, the former appears superior for undersaturated coalbed methane reservoirs while the latter would be better if a case is found where matrix swelling is strongly disproportional to gas concentration. Since its presentation in 1996, the Palmer and Mansoori model has justifiably received much critical praise. However, the model developed by ARI for the COMET reservoir simulation program has been in use since 1990, and has significant advantages in certain settings. A review of data published by Levine in 1996 reveals that carbon dioxide causes a greater degree of coal matrix swelling compared to methane, even when measured on a unit of concentration basis. This effect is described in this report as differential swelling. Differential swelling may have important consequences for enhanced coalbed methane and carbon sequestration projects. To handle the effects of differential swelling, an extension to the matrix shrinkage and swelling model used by the COMET simulator is presented and shown to replicate the data of Levine. Preliminary field results from a carbon dioxide injection project are also presented in support of the extended model. The field evidence supports that considerable changes to coal permeability occur with CO{sub 2} injection, with significant implication for the design, implementation and performance of enhanced coalbed methane recovery and CO{sub 2} sequestration projects.

  4. EXPERIMENTAL DESIGN APPLICATIONS FOR MODELING AND ASSESSING CARBON DIOXIDE SEQUESTRATION IN SALINE AQUIFERS

    SciTech Connect (OSTI)

    Rogers, John

    2014-08-31T23:59:59.000Z

    This project was a computer modeling effort to couple reservoir simulation and ED/RSM using Sensitivity Analysis, Uncertainty Analysis, and Optimization Methods, to assess geologic, geochemical, geomechanical, and rock-fluid effects and factors on CO2 injectivity, capacity, and plume migration. The project objective was to develop proxy models to simplify the highly complex coupled geochemical and geomechanical models in the utilization and storage of CO2 in the subsurface. The goals were to investigate and prove the feasibility of the ED/RSM processes and engineering development, and bridge the gaps regarding the uncertainty and unknowns of the many geochemical and geomechanical interacting parameters in the development and operation of anthropogenic CO2 sequestration and storage sites. The bottleneck in this workflow is the high computational effort of reactive transport simulation models and large number of input variables to optimize with ED/RSM techniques. The project was not to develop the reactive transport, geomechanical, or ED/RSM software, but was to use what was commercially and/or publically available as a proof of concept to generate proxy or surrogate models. A detailed geologic and petrographic mineral assemblage and geologic structure of the doubly plunging anticline was defined using the USDOE RMOTC formations of interest data (e.g., Lower Sundance, Crow Mountain, Alcova Limestone, and Red Peak). The assemblage of 23 minerals was primarily developed from literature data and petrophysical (well log) analysis. The assemblage and structure was input into a commercial reactive transport simulator to predict the effects of CO2 injection and complex reactions with the reservoir rock. Significant impediments were encountered during the execution phase of the project. The only known commercial reactive transport simulator was incapable of simulating complex geochemistry modeled in this project. Significant effort and project funding was expended to determine the limitations of both the commercial simulator and the Lawrence Berkeley National Laboratory (LBNL) R&D simulator, TOUGHREACT available to the project. A simplified layer cake model approximating the volume of the RMOTC targeted reservoirs was defined with 1-3 minerals eventually modeled with limited success. Modeling reactive transport in porous media requires significant computational power. In this project, up to 24 processors were used to model a limited mineral set of 1-3 minerals. In addition, geomechanical aspects of injecting CO2 into closed, semi-open, and open systems in various well completion methods was simulated. Enhanced Oil Recovery (EOR) as a storage method was not modeled. A robust and stable simulation dataset or base case was developed and used to create a master dataset with embedded instructions for input to the ED/RSM software. Little success was achieved toward the objective of the project using the commercial simulator or the LBNL simulator versions available during the time of this project. Several hundred realizations were run with the commercial simulator and ED/RSM software, most having convergence problems and terminating prematurely. A proxy model for full field CO2 injection sequestration utilization and storage was not capable of being developed with software available for this project. Though the chemistry is reasonably known and understood, based on the amount of effort and huge computational time required, predicting CO2 sequestration storage capacity in geologic formations to within the program goals of ±30% proved unsuccessful.

  5. Combustion modeling of mono-carbon fuels using the rate-controlled constrained-equilibrium method

    SciTech Connect (OSTI)

    Janbozorgi, Mohammad; Ugarte, Sergio; Metghalchi, Hameed [Mechanical and Industrial Engineering Department, Northeastern University, Boston, MA 02115 (United States); Keck, James. C. [Mechanical Engineering Department, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2009-10-15T23:59:59.000Z

    The rate-controlled constrained-equilibrium (RCCE) method for simplifying the kinetics of complex reacting systems is reviewed. This method is based on the maximum entropy principle of thermodynamics and involves the assumption that the evolution of a system can be described using a relatively small set of slowly changing constraints imposed by the external and internal dynamics of the system. As a result, the number of differential and algebraic equations required to determine the constrained-equilibrium state of a system can be very much smaller than the number of species in the system. It follows that only reactions which change constraints are required to determine the dynamic evolution of the system and all other reactions are in equilibrium. The accuracy of the method depends on both the character and number of constraints employed and issues involved in the selection and transformation of the constraints are discussed. A method for determining the initial conditions for highly non-equilibrium systems is also presented. The method is illustrated by applying it to the oxidation of methane (CH{sub 4}), methanol (CH{sub 3}OH), and formaldehyde (CH{sub 2}O) in a constant volume adiabatic chamber over a wide range of initial temperatures, pressures, and equivalence ratios. The RCCE calculations were carried out using 8-12 constraints and 133 reactions. Good agreement with ''Detailed Kinetic Model'' (DMK) calculations using 29 species and 133 reactions was obtained. The number of reactions in the RCCE calculations could be reduced to 20 for CH{sub 4}, 16 for CH{sub 3}OH, and 12 for CH{sub 2}O without changing the results significantly affecting the agreement. It may be noted that a DKM with 29 species requires a minimum of 29 reactions. (author)

  6. anchored carbon fiber: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    material. It is important that a carbon fiber manufacturing cost model 4 Carbon Fiber Composite Cellular A Dissertation Materials Science Websites Summary: Carbon Fiber Composite...

  7. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    SciTech Connect (OSTI)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)

    2014-09-25T23:59:59.000Z

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave velocity of rock.

  8. Neutral carbon and CO in 76 (U)LIRGs and starburst galaxy centers A method to determine molecular gas properties in luminous galaxies

    E-Print Network [OSTI]

    Israel, F P; van der Werf, P

    2015-01-01T23:59:59.000Z

    We present fluxes in both neutral carbon [CI] lines at the centers of 76 galaxies with FIR luminosities between 10^{9} and 10^{12} L(o) obtained with Herschel-SPIRE and with ground-based facilities, along with the J=7-6, J=4-3, J=2-1 12CO and J=2-1 13CO line fluxes. We investigate whether these lines can be used to characterize the molecular ISM of the parent galaxies in simple ways and how the molecular gas properties define the model results. In most starburst galaxies, the [CI]/13CO flux ratio is much higher than in Galactic star-forming regions, and it is correlated to the total FIR luminosity. The [CI](1-0)/CO(4-3), the [CI](2-1) (2-1)/CO(7-6), and the [CI] (2-1)/(1-0) flux ratios are also correlated, and trace the excitation of the molecular gas. In the most luminous infrared galaxies (LIRGs), the ISM is fully dominated by dense and moderately warm gas clouds that appear to have low [C]/[CO] and [13CO]/[12CO] abundances. In less luminous galaxies, emission from gas clouds at lower densities becomes prog...

  9. CX-000591: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination 25A2936 - Carbon Nanotube Membranes for Energy-Efficient Carbon Sequestration CX(s) Applied: B3.6 Date: 12152009 Location(s): California...

  10. Finite Element Modelling and Molecular Dynamic Simulations of Carbon nanotubes/ Polymer Composites

    E-Print Network [OSTI]

    Gaddamanugu, Dhatri

    2010-07-14T23:59:59.000Z

    the velocities of carbon atoms in the nanotube. Results show that the Young's modulus increases with tube diameter in molecular mechanics whereas decreases in molecular dynamics since the inter-atomic potential due to chemical reactions between the atoms is taken...

  11. Intrashelf basins: A geologic model for source-bed and reservoir facies deposition within carbonate shelves

    SciTech Connect (OSTI)

    Grover, G. Jr. (Sauid Aramco, Dhahran (Saudi Arabia))

    1993-09-01T23:59:59.000Z

    Intrashelf basins (moats, inshore basins, shelf basins, differentiated shelf, and deep-water lagoons of others) are depressions of varying sizes and shapes that occur within tectonically passive and regionally extensive carbonate shelves. Intrashelf basins grade laterally and downdip (seaward) into shallow-water carbonates of the regional shelf, are separated from the open marine basin by the shelf margin, and are largely filled by fine-grained subtidal sediments having attributes of shallow- and deeper water sedimentation. These basins are commonly fringed or overlain by carbonate sands, reefs, or buildups. These facies may mimic those that occur along the regional shelf margin, and they can have trends that are at a high angle to that of the regional shelf. Intrashelf basins are not intracratonic basins. The history of most intrashelf basins is a few million to a few tens of million of years. Examples of intrashelf basins are known throughout the Phanerozoic; the southern portion of the Holocene Belize shelf is a modern example of an intrashelf basin. Two types of intrashelf basins are recognized. Coastal basins pass updip into coastal clastics of the craton with the basin primarily filled by fine clastics. Shelf basins occur on the outer part of the shelf, are surrounded by shallow-water carbonate facies, and are filled by peloidal lime mud, pelagics, and argillaceous carbonates. Intrashelf basins are commonly the site of organic-rich, source-bed deposition, resulting in the close proximity of source beds and reservoir facies that may fringe or overlie the basin. Examples of hydrocarbon-charged reservoirs that were sourced by an intrashelf basin include the Miocene Bombay High field, offshore India; the giant Jurassic (Arab-D) and Cretaceous (Shuaiba) reservoirs of the Arabian Shelf; the Lower Cretaceous Sunniland trend, South Florida basin; and the Permian-Pennsylvanian reservoirs surrounding the Tatum basin in southeastern New Mexico.

  12. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect (OSTI)

    Dr. Ralph E. White

    2000-09-30T23:59:59.000Z

    The dissolution of NiO cathodes during cell operation is a limiting factor to the successful commercialization of molten carbonate fuel cells (MCFCs). Microencapsulation of the NiO cathode has been adopted as a surface modification technique to increase the stability of NiO cathodes in the carbonate melt. The material used for surface modification should possess thermodynamic stability in the molten carbonate and also should be electro catalytically active for MCFC reactions. A simple first principles model was developed to understand the influence of exchange current density and conductivity of the electrode material on the polarization of MCFC cathodes. The model predictions suggest that cobalt can be used to improve the corrosion resistance of NiO cathode without affecting its performance. Cobalt was deposited on NiO cathode by electroless deposition. The morphology and thermal oxidation behavior of Co coated NiO was studied using scanning electron microscopy and thermal gravimetric analysis respectively. The electrochemical performance of cobalt encapsulated NiO cathodes were investigated with open circuit potential measurement and current-potential polarization studies. These results were compared to that of bare NiO. The electrochemical oxidation behavior of cobalt-coated electrodes is similar to that of the bare NiO cathode. Dissolution of nickel into the molten carbonate melt was less in case of cobalt encapsulated nickel cathodes. Co coated on the surface prevents the dissolution of Ni in the melt and thereby stabilizes the cathode. Finally, cobalt coated nickel shows similar polarization characteristics as nickel oxide. A similar surface modification technique has been used to improve the performance of the SS 304 current collectors used in MCFC cells. SS 304 was encapsulated with nanostructured layers of NiCo and NiMo by electroless deposition. The corrosion behavior of bare and surface modified SS 304 in molten carbonate under cathode gas atmosphere was investigated with cyclic voltammetry, open circuit potential studies, Tafel polarization, impedance analysis and atomic absorption spectroscopy. This study confirms that the presence of surface modification leads to the formation of complex scales with better barrier properties and electronic conductivity.

  13. Determination of the Controls on Permeability and Transport in Shale by Use of Percolation Models

    E-Print Network [OSTI]

    Chapman, Ian

    2012-10-19T23:59:59.000Z

    of pore scale connectivity simulations on lattice and in the continuum allow for understanding relationships between pore topology, system porosity and system permeability. Additionally, questions regarding the role of Total Organic Carbon as well...

  14. Method development for 234U and 230Th determination and application to fossil deep-water coral and authigenic carbonate dating from the Campos Basin - Brazil

    E-Print Network [OSTI]

    Vivone, Ronaldo J; Godoy, Maria Luiza D. P; Godoy, José Marcus; Santos, Guaciara M

    2012-01-01T23:59:59.000Z

    Petrobras) for the fossil coral and the authigenic carbonateto Fossil Deep- Water Coral and Authigenic Carbonate DatingFor the fossil deep-water corals samples from Campos Basin,

  15. Carbon taxes and India

    SciTech Connect (OSTI)

    Fisher-Vanden, K.A.; Pitcher, H.M.; Edmonds, J.A.; Kim, S.H. [Pacific Northwest Lab., Richland, WA (United States); Shukla, P.R. [Indian Institute of Management, Ahmedabad (India)

    1994-07-01T23:59:59.000Z

    Using the Indian module of the Second Generation Model 9SGM, we explore a reference case and three scenarios in which greenhouse gas emissions were controlled. Two alternative policy instruments (carbon taxes and tradable permits) were analyzed to determine comparative costs of stabilizing emissions at (1) 1990 levels (the 1 X case), (2) two times the 1990 levels (the 2X case), and (3) three times the 1990 levels (the 3X case). The analysis takes into account India`s rapidly growing population and the abundance of coal and biomass relative to other fuels. We also explore the impacts of a global tradable permits market to stabilize global carbon emissions on the Indian economy under the following two emissions allowance allocation methods: (1) {open_quotes}Grandfathered emissions{close_quotes}: emissions allowances are allocated based on 1990 emissions. (2) {open_quotes}Equal per capita emissions{close_quotes}: emissions allowances are allocated based on share of global population. Tradable permits represent a lower cost method to stabilize Indian emissions than carbon taxes, i.e., global action would benefit India more than independent actions.

  16. Device and circuit-level models for carbon nanotube and graphene nanoribbon transistors

    E-Print Network [OSTI]

    Tan, Michael Loong Peng

    2011-06-07T23:59:59.000Z

    industry. Circuit simulation time has been substantially reduced through algorithm improvement and hardware enhancement through high performance computing (HPC) platforms. Given its ‘industry standard’ status for computer aided design and analysis... performance computation with digital logic. When current Si transistor features cannot be scaled to smaller sizes to keep improving performance, alternative material based transistors come into focus. Carbon nanotubes are essentially a rolled-up sheet...

  17. Applications of Lagrangian Dispersion Modeling to the Analysis of Changes in the Specific Absorption of Elemental Carbon

    SciTech Connect (OSTI)

    Doran, J. C.; Fast, Jerome D.; Barnard, James C.; Laskin, Alexander; Desyaterik, Yury; Gilles, Marry K.; Hopkins, Rebecca J.

    2008-03-07T23:59:59.000Z

    We use a Lagrangian dispersion model driven by a mesoscale model with four-dimensional data assimilation to simulate the dispersion of elemental carbon (EC) over a region encompassing Mexico City and its surroundings, the study domain for the 2006 MAX-MEX experiment, which was a component of the MILAGRO campaign. The results are used to identify periods when biomass burning was likely to have had a significant impact on the concentrations of elemental carbon at two sites, T1 and T2, downwind of the city, and when emissions from the Mexico City Metropolitan Area (MCMA) were likely to have been more important. They are also used to estimate the median ages of EC affecting the specific absorption of light, aABS, at 870 nm as well as to identify periods when the urban plume from the MCMA was likely to have been advected over T1 and T2. Values of aABS at T1, the nearer of the two sites to Mexico City, were smaller at night and increased rapidly after mid-morning, peaking in the mid-afternoon. The behavior is attributed to the coating of aerosols with substances such as sulfate or organic carbon during daylight hours, but such coating appears to be limited or absent at night. Evidence for this is provided by scanning electron microscope images of aerosols collected at three sampling sites. During daylight hours the values of aABS did not increase with aerosol age for median ages in the range of 1-4 hours. There is some evidence for absorption increasing as aerosols were advected from T1 to T2 but the statistical significance of that result is not strong.

  18. A Thermodynamic Model for Predicting Mineral Reactivity in Supercritical Carbon Dioxide: I. Phase Behavior of Carbon Dioxide - Water - Chloride Salt Systems Across the H2O-Rich to the CO2-Rich Regions

    SciTech Connect (OSTI)

    Springer, Ronald D.; Wang, Zheming; Anderko, Andre; Wang, Peiming; Felmy, Andrew R.

    2012-09-05T23:59:59.000Z

    Phase equilibria in mixtures containing carbon dioxide, water, and chloride salts have been investigated using a combination of solubility measurements and thermodynamic modeling. The solubility of water in the CO2-rich phase of ternary mixtures of CO2, H2O and NaCl or CaCl2 was determined, using near infrared spectroscopy, at 90 atm and 40 to 100 °C. These measurements fill a gap in the experimental database for CO2 water salt systems, for which phase composition data have been available only for the H2O-rich phases. A thermodynamic model for CO2 water salt systems has been constructed on the basis of the previously developed Mixed-Solvent Electrolyte (MSE) framework, which is capable of modeling aqueous solutions over broad ranges of temperature and pressure, is valid to high electrolyte concentrations, treats mixed-phase systems (with both scCO2 and water present) and can predict the thermodynamic properties of dry and partially water-saturated supercritical CO2 over broad ranges of temperature and pressure. Within the MSE framework the standard-state properties are calculated from the Helgeson-Kirkham-Flowers equation of state whereas the excess Gibbs energy includes a long-range electrostatic interaction term expressed by a Pitzer-Debye-Hückel equation, a virial coefficient-type term for interactions between ions and a short-range term for interactions involving neutral molecules. The parameters of the MSE model have been evaluated using literature data for both the H2O-rich and CO2-rich phases in the CO2 - H2O binary and for the H2O-rich phase in the CO2 - H2O - NaCl / KCl / CaCl2 / MgCl2 ternary and multicompontent systems. The model accurately represents the properties of these systems at temperatures from 0°C to 300 °C and pressures up to ~4000 atm. Further, the solubilities of H2O in CO2-rich phases that are predicted by the model are in agreement with the new measurements for the CO2 - H2O - NaCl and CO2 - H2O - CaCl2 systems. Thus, the model can be used to predict the effect of various salts on the water content and water activity in CO2-rich phases on the basis of parameters determined from the properties of aqueous systems. Given the importance of water activity in CO2-rich phases for mineral reactivity, the model can be used as a foundation for predicting mineral transformations across the entire CO2/H2O composition range from aqueous solution to anhydrous scCO2. An example application using the model is presented which involves the transformation of forsterite to nesquehonite as a function of temperature and water content in the CO2-rich phase.

  19. A Classic Model in a Low Fertility Context: The Proximate Determinants of Fertility in South Korea and the United States

    E-Print Network [OSTI]

    Guarneri, Christine E.

    2011-08-08T23:59:59.000Z

    John Bongaarts' proximate determinants model of fertility has accounted for over 90 percent of variation in the total fertility rate (TFR) of primarily developing nations and historical populations. Recently, dramatically low fertility rates across...

  20. A chemo-poro-mechanical model of oilwell cement carbonation under CO2 geological storage A. Fabbri*, N. Jacquemet, D.M. Seyedi

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A chemo-poro-mechanical model of oilwell cement carbonation under CO2 geological storage conditions may impact the mechanical behaviour of wellbore cement in the context of CO2 storage. The model process. The major chemical reactions occurring within cement and their consequences on the volumes

  1. The p-Process in the Carbon Deflagration Model for Type Ia Supernovae and Chronology of the Solar System Formation

    SciTech Connect (OSTI)

    Kusakabe, Motohiko [Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Iwamoto, Nobuyuki [Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Nomoto, Ken'ichi [Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2006-07-12T23:59:59.000Z

    We study nucleosynthesis of p-nuclei in the carbon deflagration model for Type Ia supernovae (SNe Ia) by assuming that seed nuclei are produced by the s-process in accreting layers on a carbon-oxygen white dwarf during mass accretion from a binary companion. We find that about 50 % of the p-nuclides are synthesized in proportion to the solar abundance and that p-isotopes of Mo and Ru which are significantly underproduced in Type II supernovae (SNe II) are produced up to a level close to other p-nuclei. Comparing the yields of iron and p-nuclei in SNe Ia we find that SNe Ia can contribute to the galactic evolution of the p-nuclei. Next, we consider nucleochronology of the solar system formation by using four radioactive nuclides and apply the result of the p-process nucleosynthesis to simple galactic chemical evolution models. We find that when assumed three phases of interstellar medium are mixed by the interdiffusion with the timescale of about 40 Myr 53Mn/55Mn value in the early solar system is consistent with a meteoritic value. In addition, we put constraints to a scenario that SNe Ia induce the core collapse of the molecular cloud, which leads to the formation of the solar system.

  2. Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    2013), The Community Earth System Model: A framework forcycle in the CMIP5 Earth System Models, J. Clim. , 26(18),feedbacks in CMIP5 Earth System Models, J. Clim. , 26(15),

  3. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN COFIRING BIOMASS WITH COAL

    SciTech Connect (OSTI)

    Larry G. Felix; P. Vann Bush; Stephen Niksa

    2001-01-24T23:59:59.000Z

    This is the first Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. The project goals and detailed plans were presented in two project kickoff meetings; one at NETL in Pittsburgh and one in Birmingham, AL at Southern Research Institute. Progress has been made in developing a modeling approach to synthesize the reaction time and temperature distributions that will be produced by computational fluid dynamic models of the pilot-scale combustion furnace and the char burnout and chemical reaction kinetics that will predict NOx emissions and unburned carbon levels in the furnace exhaust. Preparations are under way for the initial pilot-scale combustion experiments.

  4. Carbonic Acid Pretreatment of Biomass

    SciTech Connect (OSTI)

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31T23:59:59.000Z

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. 6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high (~50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

  5. Dynamical coupled-channels model of $K^- p$ reactions (I): Determination of partial-wave amplitudes

    E-Print Network [OSTI]

    H. Kamano; S. X. Nakamura; T. -S. H. Lee; T. Sato

    2014-12-12T23:59:59.000Z

    We develop a dynamical coupled-channels model of K^- p reactions, aiming at extracting the parameters associated with hyperon resonances and providing the elementary antikaon-nucleon scattering amplitudes that can be used for investigating various phenomena in the strangeness sector such as the production of hypernuclei from kaon-nucleus reactions. The model consists of (a) meson-baryon (MB) potentials v_{M'B',MB} derived from the phenomenological SU(3) Lagrangian, and (b) vertex interactions Gamma_{MB,Y*} for describing the decays of the bare excited hyperon states (Y*) into MB states. The model is defined in a channel space spanned by the two-body barK N, pi Sigma, pi Lambda, eta Lambda, and K Xi states and also the three-body pi pi Lambda and pi barK N states that have the resonant pi Sigma* and barK* N components, respectively. The resulting coupled-channels scattering equations satisfy the multichannel unitarity conditions and account for the dynamical effects arising from the off-shell rescattering processes. The model parameters are determined by fitting the available data of the unpolarized and polarized observables of the K^- p --> barK N, pi Sigma, pi Lambda, eta Lambda, K Xi reactions in the energy region from the threshold to invariant mass W=2.1 GeV. Two models with equally good chi^2 fits to the data have been constructed. The partial-wave amplitudes obtained from the constructed models are compared with the results from a recent partial-wave analysis by the Kent State University group. We discuss the differences between these three analysis results. Our results at energies near the threshold suggest that the higher partial waves should be treated on the same footing as the S wave if one wants to understand the nature of Lambda(1405)1/2^- using the data below the barK N threshold, as will be provided by the J-PARC E31 experiment.

  6. Sandia National Laboratories: Carbon Management Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Systems Models Publications Questions WECSsim Model The Water, Energy and Carbon Sequestration Model (WECSsim): A Collaborative Systems Model The Water, Energy and...

  7. The use of stored carbon reserves in growth of temperate tree roots and leaf buds: Analyses using radiocarbon measurements and modeling

    SciTech Connect (OSTI)

    Gaudinski, J.B.; Torn, M.S.; Riley, W.J.; Swanston, C.; Trumbore, S.E.; Joslin, J.D.; Majdi, H.; Dawson, T.E.; Hanson, P.J.

    2009-02-01T23:59:59.000Z

    Characterizing the use of carbon (C) reserves in trees is important for understanding regional and global C cycles, stress responses, asynchrony between photosynthetic activity and growth demand, and isotopic exchanges in studies of tree physiology and ecosystem C cycling. Using an inadvertent, whole-ecosystem radiocarbon ({sup 14}C) release in a temperate deciduous oak forest and numerical modeling, we estimated that the mean age of stored C used to grow both leaf buds and new roots is 0.7 years and about 55% of new-root growth annually comes from stored C. Therefore, the calculated mean age of C used to grow new-root tissue is {approx}0.4 years. In short, new roots contain a lot of stored C but it is young in age. Additionally, the type of structure used to model stored C input is important. Model structures that did not include storage, or that assumed stored and new C mixed well (within root or shoot tissues) before being used for root growth, did not fit the data nearly as well as when a distinct storage pool was used. Consistent with these whole-ecosystem labeling results, the mean age of C in new-root tissues determined using 'bomb-{sup 14}C' in three additional forest sites in North America and Europe (one deciduous, two coniferous) was less than 1-2 years. The effect of stored reserves on estimated ages of fine roots is unlikely to be large in most natural abundance isotope studies. However, models of root C dynamics should take stored reserves into account, particularly for pulse-labeling studies and fast-cycling roots (<1 years).

  8. Belize-Low-Carbon Energy for Central America: Building a Regional Model |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation in Carbon CaptureAtriaPowerBeanBeijingEnergy

  9. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    SciTech Connect (OSTI)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30T23:59:59.000Z

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  10. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01T23:59:59.000Z

    demand: Comparison of models and results for marginal biofuels production from different feedstocks; EC Joint Research Centre - Institute for Energy:

  11. Fractal model for estimating fracture toughness of carbon nanotube reinforced aluminum oxide

    SciTech Connect (OSTI)

    Rishabh, Abhishek; Joshi, Milind R.; Balani, Kantesh [Department of Materials and Metallurgical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2010-06-15T23:59:59.000Z

    The current work focuses on predicting the fracture toughness of Al{sub 2}O{sub 3} ceramic matrix composites using a modified Mandelbrot's fractal approach. The first step confirms that the experimental fracture toughness values fluctuate within the fracture toughness range predicted as per the modified fractal approach. Additionally, the secondary reinforcements [such as carbon nanotubes (CNTs)] have shown to enhance the fracture toughness of Al{sub 2}O{sub 3}. Conventional fractural toughness evaluation via fractal approach underestimates the fracture toughness by considering the shortest crack path. Hence, the modified Mandelbrot's fractal approach considers the crack propagation along the CNT semicircumferential surface (three-dimensional crack path propagation) for achieving an improved fracture toughness estimation of Al{sub 2}O{sub 3}-CNT composite. The estimations obtained in the current approach range within 4% error regime of the experimentally measured fracture toughness values of the Al{sub 2}O{sub 3}-CNT composite.

  12. Continental Scale Comparisons of Terrestrial Carbon Sinks Estimated from Satellite Data and Ecosystem Modeling 1982-1998

    E-Print Network [OSTI]

    Kumar, Vipin

    ecosystem (tundra and boreal) sinks for atmospheric CO2. Key Words: carbon dioxide, ecosystems, remote "missing sink" for carbon dioxide emissions. Measured atmospheric CO2, 13 C, and O2/N2 distributionsContinental Scale Comparisons of Terrestrial Carbon Sinks Estimated from Satellite Data

  13. ReaxFF Study of the Oxidation of Lignin Model Compounds for the Most Common Linkages in Softwood in View of Carbon Fiber Production

    SciTech Connect (OSTI)

    Beste, Ariana [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Lignin is an underused but major component of biomass. One possible area of utilization is the production of carbon fiber. A necessary processing step is the stabilization of lignin fiber (typically in an oxygen environment) before high temperature treatment. We investigate oxidative, thermal conversion of lignin using computational methods. Dilignol model compounds for the most common (seven) linkages in softwood are chosen to represent the diverse structure of lignin. We perform molecular dynamics simulation where the potential energy surface is described by a reactive force field (ReaxFF). We calculate overall activation energies for model conversion and reveal initial mechanisms of formaldehyde formation. We record fragmentation patterns and average carbon oxidation numbers at various temperatures. Most importantly, we identify mechanisms for stabilizing reactions that result in cyclic, and rigid connections in softwood lignin fibers that are necessary for further processing into carbon fibers.

  14. TEXIN2: a model for predicting carbon monoxide concentrations near intersections

    E-Print Network [OSTI]

    Korpics, J. J

    1985-01-01T23:59:59.000Z

    , tampering effects and anti-tampering and inspection/maintenance programs. The TEXIN2 model was compared to experimental data near intersections and to corresponding simulations by TEXIN and other existing intersection models. The revised model also... several new capabilities such as T-intersections, one way streets, and four way stops. Other new options include inspection/maintenance capabilities, provision for anti-tampering programs, and a "short-cut" emissions estimate. Finally, the TEXIN...

  15. Model ecosystem determination of the metabolic and environmental fate of tetrachloro-DDT

    SciTech Connect (OSTI)

    Cole, R.B.; Metcalf, R.L.

    1987-01-01T23:59:59.000Z

    A potential hazardous waste site investigation was conducted by the Environmental Protection Agency to determine whether ground water, surface water, or area soils and sediments were contaminated as a result of waster water discharges or improper solid waste disposal practices of a pesticide manufacturer. One of the compounds discharged into the environment was 1,1,1,2-tetrachloro-2,2-bis(p-chlorophenyl)ethane, commonly referred to as tetrachloro-DDT. Unlike a great many of the DDT analogs, tetrachloro-DDT has come under only limited scrutiny, mainly because it was dismissed as having poor insecticidal properties relative to DDT and other analogs. Its metabolism in ingesting organisms, and degradative pathways in the environment have consequently been left uncertain. This model ecosystem study was undertaken to examine the unanswered questions concerning the metabolic and environmental fate of tetrachloro-DDT. The relevance of this study pertains to disposal practices of pesticide manufacturers who use tetrachloro-DDT as a product precursor.

  16. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect (OSTI)

    Hector Colonmer; Prabhu Ganesan; Nalini Subramanian; Dr. Bala Haran; Dr. Ralph E. White; Dr. Branko N. Popov

    2002-09-01T23:59:59.000Z

    This project focused on addressing the two main problems associated with state of art Molten Carbonate Fuel Cells, namely loss of cathode active material and stainless steel current collector deterioration due to corrosion. We followed a dual approach where in the first case we developed novel materials to replace the cathode and current collector currently used in molten carbonate fuel cells. In the second case we improved the performance of conventional cathode and current collectors through surface modification. States of art NiO cathode in MCFC undergo dissolution in the cathode melt thereby limiting the lifetime of the cell. To prevent this we deposited cobalt using an electroless deposition process. We also coated perovskite (La{sub 0.8}Sr{sub 0.2}CoO{sub 3}) in NiO thorough a sol-gel process. The electrochemical oxidation behavior of Co and perovskites coated electrodes is similar to that of the bare NiO cathode. Co and perovskite coatings on the surface decrease the dissolution of Ni into the melt and thereby stabilize the cathode. Both, cobalt and provskites coated nickel oxide, show a higher polarization compared to that of nickel oxide, which could be due to the reduced surface area. Cobalt substituted lithium nickel oxide (LiNi{sub 0.8}Co{sub 0.2}O{sub 2}) and lithium cobalt oxide were also studied. LiNi{sub x}Co{sub 1-x}O{sub 2} was synthesized by solid-state reaction procedure using lithium nitrate, nickel hydroxide and cobalt oxalate precursor. LiNi{sub x}Co{sub 1-x}O{sub 2} showed smaller dissolution of nickel than state of art nickel oxide cathode. The performance was comparable to that of nickel oxide. The corrosion of the current collector in the cathode side was also studied. The corrosion characteristics of both SS304 and SS304 coated with Co-Ni alloy were studied. This study confirms that surface modification of SS304 leads to the formation of complex scales with better barrier properties and better electronic conductivity at 650 C. A three phase homogeneous model was developed to simulate the performance of the molten carbonate fuel cell cathode and the complete fuel cell. The homogeneous model is based on volume averaging of different variables in the three phases over a small volume element. This approach can be used to model porous electrodes as it represents the real system much better than the conventional agglomerate model. Using the homogeneous model the polarization characteristics of the MCFC cathode and fuel cell were studied under different operating conditions. Both the cathode and the full cell model give good fits to the experimental data.

  17. Modelled Black Carbon Radiative Forcing and Atmospheric Lifetime in AeroCom Phase II Constrained by Aircraft Observations

    SciTech Connect (OSTI)

    Samset, B. H.; Myhre, G.; Herber, Andreas; Kondo, Yutaka; Li, Shao-Meng; Moteki, N.; Koike, Makoto; Oshima, N.; Schwarz, Joshua P.; Balkanski, Y.; Bauer, S.; Bellouin, N.; Berntsen, T.; Bian, Huisheng; Chin, M.; Diehl, Thomas; Easter, Richard C.; Ghan, Steven J.; Iversen, T.; Kirkevag, A.; Lamarque, Jean-Francois; Lin, Guang; Liu, Xiaohong; Penner, Joyce E.; Schulz, M.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, Kostas; Zhang, Kai

    2014-11-27T23:59:59.000Z

    Black carbon (BC) aerosols absorb solar radiation, and are generally held to exacerbate global warming through exerting a positive radiative forcing1. However, the total contribution of BC to the ongoing changes in global climate is presently under debate2-8. Both anthropogenic BC emissions and the resulting spatial and temporal distribution of BC concentration are highly uncertain2,9. In particular, long range transport and processes affecting BC atmospheric lifetime are poorly understood, leading to large estimated uncertainty in BC concentration at high altitudes and far from emission sources10. These uncertainties limit our ability to quantify both the historical, present and future anthropogenic climate impact of BC. Here we compare vertical profiles of BC concentration from four recent aircraft measurement campaigns with 13 state of the art aerosol models, and show that recent assessments may have overestimated present day BC radiative forcing. Further, an atmospheric lifetime of BC of less than 5 days is shown to be essential for reproducing observations in transport dominated remote regions. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in the multi-model median direct BC forcing from fossil fuel and biofuel burning over the industrial era.

  18. A Sensitivity Study on Modeling Black Carbon in Snow and its Radiative Forcing over the Arctic and Northern China

    SciTech Connect (OSTI)

    Qian, Yun; Wang, Hailong; Zhang, Rudong; Flanner, M. G.; Rasch, Philip J.

    2014-06-02T23:59:59.000Z

    Black carbon in snow (BCS) simulated in the Community Atmosphere Model (CAM5) is evaluated against measurements over Northern China and the Arctic, and its sensitivity to atmospheric deposition and two parameters that affect post-depositional enrichment is explored. The BCS concentration is overestimated (underestimated) by a factor of two in Northern China (Arctic) in the default model, but agreement with observations is good over both regions in the simulation with improvements in BC transport and deposition. Sensitivity studies indicate that uncertainty in the melt-water scavenging efficiency (MSE) parameter substantially affects BCS and its radiative forcing (by a factor of 2-7) in the Arctic through post-depositional enrichment. The MSE parameter has a relatively small effect on the magnitude of BCS seasonal cycle but can alter its phase in Northern China. The impact of the snow aging scaling factor (SAF) on BCS, partly through the post-depositional enrichment effect, shows more complex latitudinal and seasonal dependence. Similar to MSE, SAF affects more significantly the magnitude (phase) of BCS season cycle over the Arctic (Northern China). While uncertainty associated with the representation of BC transport and deposition processes in CAM5 is more important than that associated with the two snow model parameters in Northern China, the two uncertainties have comparable effect in the Arctic.

  19. Atmospheric Circulation Response to an Instantaneous Doubling of Carbon Dioxide. Part I: Model Experiments and Transient Thermal Response in the Troposphere*

    E-Print Network [OSTI]

    Atmospheric Circulation Response to an Instantaneous Doubling of Carbon Dioxide. Part I: Model Experiments and Transient Thermal Response in the Troposphere* YUTIAN WU Department of Applied Physics (CO2) by looking into the transient step-by-step adjustment of the circulation. The transient

  20. Economic and Physical Modeling of Land Use in GCAM 3.0 and an Application to Agricultural Productivity, Land, and Terrestrial Carbon

    SciTech Connect (OSTI)

    Wise, Marshall A.; Calvin, Katherine V.; Kyle, G. Page; Luckow, Patrick; Edmonds, James A.

    2014-09-01T23:59:59.000Z

    We explore the impact of changes in agricultural productivity on global land use and terrestrial carbon using the new agriculture and land use modeling approach developed for Global Change Assessment Model (GCAM) version 3.0. This approach models economic land use decisions with regional, physical, and technological specificity while maintaining economic and physical integration with the rest of the GCAM model. Physical land characteristics and quantities are tracked explicitly, and crop production practices are modeled discretely to facilitate coupling with physical models. Economic land allocation is modeled with non-linear functions in a market equilibrium rather than through a constrained optimization. In this paper, we explore three scenarios of future agriculture productivity in all regions of the globe over this century, ranging from a high growth to a zero growth level. The higher productivity growth scenario leads to lower crop prices, increased production of crops in developing nations, preservation of global forested lands and lower terrestrial carbon emissions. The scenario with no productivity improvement results in higher crop prices, an expansion of crop production in the developed world, loss of forested lands globally, and higher terrestrial carbon emissions.

  1. Modeled Interactive Effects of Precipitation, temperature, and [CO2] on Ecosystem Carbon and Water Dynamics in Different Climatic Zones

    SciTech Connect (OSTI)

    Luo, Yiqi [University of Oklahoma; Gerten, Dieter [Potsdam Institute for Climate Impact Research, Potsdam, Germany; Le Maire, Guerric [Laboratoire des Sciences du Climat et de l'Environement, France; Parton, William [University of Colorado, Fort Collins; Weng, Ensheng [University of Oklahoma, Norman; Zhou, Xuhuui [University of Oklahoma; Keough, Cindy [University of Colorado, Fort Collins; Beier, Claus [Riso National Laboratory, Roskilde, Denmark; Ciais, Philippe [Laboratoire des Sciences du Climat et de l'Environement, France; Cramer, Wolfgang [Potsdam Institute for Climate Impact Research, Potsdam, Germany; Dukes, Jeff [University of Massachusetts, Boston; Emmett, Bridget [Centre for Ecology and Hydrology, Bangor, Gwynedd, United Kingdom; Hanson, Paul J [ORNL; Knapp, Alan [Colorado State University, Fort Collins; Linder, Sune [Swedish University of Agricultural Sciences, Upsalla, Sweden; Nepstad, Daniel [Woods Hole Oceanographic Institution (WHOI), Woods Hole, MA; Rustad, Lindsey [USDA Forest Service

    2008-01-01T23:59:59.000Z

    Interactive effects of multiple global change factors on ecosystem processes are complex. It is relatively expensive to explore those interactions in manipulative experiments. We conducted a modeling analysis to identify potentially important interactions and to stimulate hypothesis formulation for experimental research. Four models were used to quantify interactive effects of climate warming (T), altered precipitation amounts [doubled (DP) and halved (HP)] and seasonality (SP, moving precipitation in July and August to January and February to create summer drought), and elevated [CO2] (C) on net primary production (NPP), heterotrophic respiration (Rh), net ecosystem production (NEP), transpiration, and runoff.We examined those responses in seven ecosystems, including forests, grasslands, and heathlands in different climate zones. The modeling analysis showed that none of the threeway interactions among T, C, and altered precipitation was substantial for either carbon or water processes, nor consistent among the seven ecosystems. However, two-way interactive effects on NPP, Rh, and NEP were generally positive (i.e. amplification of one factor s effect by the other factor) between T and C or between T and DP. A negative interaction (i.e. depression of one factor s effect by the other factor) occurred for simulated NPP between T and HP. The interactive effects on runoff were positive between T and HP. Four pairs of two-way interactive effects on plant transpiration were positive and two pairs negative. In addition, wet sites generally had smaller relative changes in NPP, Rh, runoff, and transpiration but larger absolute changes in NEP than dry sites in response to the treatments. The modeling results suggest new hypotheses to be tested in multifactor global change experiments. Likewise, more experimental evidence is needed for the further improvement of ecosystem models in order to adequately simulate complex interactive processes.

  2. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01T23:59:59.000Z

    and W. Tyner (2011). Validating energy-oriented CGE models.Energy Eco- nomics 33 (5), 799–806. Beckman, J. , R. Keeney,Centre - Institute for Energy: Ispra, 2010; p 150. USEPA

  3. Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

  4. CX-012261: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-012261: Categorical Exclusion Determination An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois CX(s)...

  5. CX-001159: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001159: Categorical Exclusion Determination An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and...

  6. CX-001161: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001161: Categorical Exclusion Determination An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and...

  7. CX-008507: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008507: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Phase Three CX(s) Applied: B3.1, B5.3 Date: 07162012...

  8. CX-007111: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007111: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project (Iatan Generating Station) CX(s) Applied: B3.1...

  9. CX-001163: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-001163: Categorical Exclusion Determination An Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and...

  10. CX-007118: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-007118: Categorical Exclusion Determination Shallow Carbon Sequestration Demonstration Project CX(s) Applied: B3.1 Date: 10042011...

  11. CX-009326: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-009326: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Subtask 1.7 CX(s) Applied: B3.1 Date: 09282012...

  12. CX-011434: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011434: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Phase III (Categorical Exclusion (CX)-A Tasks) CX(s)...

  13. CX-006395: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006395: Categorical Exclusion Determination Corrosion Tests on Carbon Steel Exposed to Oxalic Acid and a Sludge Simulant CX(s) Applied:...

  14. CX-000586: Categorical Exclusion Determination | Department of...

    Energy Savers [EERE]

    Exclusion Determination CX-000586: Categorical Exclusion Determination 25A1455 - Carbon Dioxide Capture with Enzyme Synthetic Analogue Date: 12152009 Location(s):...

  15. CX-003877: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003877: Categorical Exclusion Determination Hybrid MembraneAbsorption Process for Post-Combustion Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 0910...

  16. CX-010910: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-010910: Categorical Exclusion Determination Hybrid Membrane-Absorption Carbon Dioxide (CO2) Capture Process CX(s) Applied: B3.6 Date: 09252013...

  17. CX-003876: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-003876: Categorical Exclusion Determination Hybrid MembraneAbsorption Process for Post-Combustion Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 0910...

  18. CX-004394: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-004394: Categorical Exclusion Determination Hybrid MembraneAbsorption Process for Post-Combustion Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 1105...

  19. CX-010911: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-010911: Categorical Exclusion Determination Hybrid Membrane-Absorption Carbon Dioxide (CO2) Capture Process CX(s) Applied: B3.6 Date: 09252013...

  20. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...

    Open Energy Info (EERE)

    Task 3: Mechanical behaviors of carbonated minerals. - Task 4: Modeling of CO2- reservoir rock interactions. - Task 5: Preparation of report covering the four tasks previous task,...

  1. Carbon Smackdown: Carbon Capture

    ScienceCinema (OSTI)

    Jeffrey Long

    2010-09-01T23:59:59.000Z

    In this July 9, 2010 Berkeley Lab summer lecture, Lab scientists Jeff Long of the Materials Sciences and Nancy Brown of the Environmental Energy Technologies Division discuss their efforts to fight climate change by capturing carbon from the flue gas of power plants, as well as directly from the air

  2. Review of models used for determining consequences of UF{sub 6} release: Development of model evaluation criteria. Volume 1

    SciTech Connect (OSTI)

    Nair, S.K.; Chambers, D.B.; Park, S.H.; Hoffman, F.O. [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis

    1997-11-01T23:59:59.000Z

    The objective of this study is to examine the usefulness and effectiveness of currently existing models that simulate the release of uranium hexafluoride from UF{sub 6}-handling facilities, subsequent reactions of UF{sub 6} with atmospheric moisture, and the dispersion of UF{sub 6} and reaction products in the atmosphere. The study evaluates screening-level and detailed public-domain models that were specifically developed for UF{sub 6} and models that were originally developed for the treatment of dense gases but are applicable to UF{sub 6} release, reaction, and dispersion. The model evaluation process is divided into three specific tasks: model-component evaluation; applicability evaluation; and user interface and quality assurance and quality control (QA/QC) evaluation. Within the model-component evaluation process, a model`s treatment of source term, thermodynamics, and atmospheric dispersion are considered and model predictions are compared with actual observations. Within the applicability evaluation process, a model`s applicability to Integrated Safety Analysis, Emergency Response Planning, and Post-Accident Analysis, and to site-specific considerations are assessed. Finally, within the user interface and QA/QC evaluation process, a model`s user-friendliness, presence and clarity of documentation, ease of use, etc. are assessed, along with its handling of QA/QC. This document presents the complete methodology used in the evaluation process.

  3. A model for matrix acidizing of long horizontal well in carbonate reservoirs

    E-Print Network [OSTI]

    Mishra, Varun

    2009-06-02T23:59:59.000Z

    distribution along wellbore is required to analyze that the zones needing stimulation are receiving enough acid. It is even more important in cases where the reservoir properties are varying along the length of the wellbore. A model is developed in this study...

  4. Edinburgh Research Explorer Modelling Urban scale Retrofit, Pathways to 2050 Low Carbon

    E-Print Network [OSTI]

    Millar, Andrew J.

    electricity consumption in Wales with power generated from renewable sources by 2025 (WAG, 2009) which would to engage with the modelling process. INTRODUCTION The UK government has set an ambitious target of 80 retrofit design process need to be researched further. The Welsh Government have committed to achieving

  5. Carbon pools in Mediterranean forests: comparing eddy covariance and GOTILWA+ model results.

    E-Print Network [OSTI]

    Gracia, Carlos

    , FLUXNET, Modelling, drought-stress, Mediterranean climate Introduction Changes in regional and global of climate change, where it becomes essential to have an understanding of the future role of terrestrial climate have already been observed, and projections of climate change suggest that higher temperatures

  6. Carbon Capture and Storage, 2008

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  7. Carbon Capture and Storage, 2008

    SciTech Connect (OSTI)

    2009-03-19T23:59:59.000Z

    The U.S. Department of Energy is researching the safe implementation of a technology called carbon sequestration, also known as carbon capture and storage, or CCS. Based on an oilfield practice, this approach stores carbon dioxide, or CO2 generated from human activities for millennia as a means to mitigate global climate change. In 2003, the Department of Energys National Energy Technology Laboratory formed seven Regional Carbon Sequestration Partnerships to assess geologic formations suitable for storage and to determine the best approaches to implement carbon sequestration in each region. This video describes the work of these partnerships.

  8. Geosynchronous orbit determination using space surveillance network observations and improved radiative force modeling

    E-Print Network [OSTI]

    Lyon, Richard Harry, 1981-

    2004-01-01T23:59:59.000Z

    Correct modeling of the space environment, including radiative forces, is an important aspect of space situational awareness for geostationary (GEO) spacecraft. Solar radiation pressure has traditionally been modeled using ...

  9. Study of behavior and determination of customer lifetime value(CLV) using Markov chain model

    SciTech Connect (OSTI)

    Permana, Dony, E-mail: donypermana@students.itb.ac.id [Statistics Research Division, Faculty of Mathematics and Natural Science, Bandung Institute of Technology, Indonesia and Statistics Study Program, Faculty of Mathematics and Natural Sciences, Padang State University (Indonesia); Indratno, Sapto Wahyu; Pasaribu, Udjianna S. [Statistics Research Division, Faculty of Mathematics and Natural Science, Bandung Institute of Technology (Indonesia)

    2014-03-24T23:59:59.000Z

    Customer Lifetime Value or CLV is a restriction on interactive marketing to help a company in arranging financial for the marketing of new customer acquisition and customer retention. Additionally CLV can be able to segment customers for financial arrangements. Stochastic models for the fairly new CLV used a Markov chain. In this model customer retention probability and new customer acquisition probability play an important role. This model is originally introduced by Pfeifer and Carraway in 2000 [1]. They introduced several CLV models, one of them only involves customer and former customer. In this paper we expand the model by adding the assumption of the transition from former customer to customer. In the proposed model, the CLV value is higher than the CLV value obtained by Pfeifer and Caraway model. But our model still requires a longer convergence time.

  10. Carbon sequestration with enhanced gas recovery: Identifying candidate sites for pilot study

    E-Print Network [OSTI]

    Oldenburg, C.M.; Benson, S.M.

    2001-01-01T23:59:59.000Z

    Process modeling of carbon sequestration with enhanced gas2001. Reichle, D. et al.. Carbon sequestration research andCarbon Sequestration with Enhanced Gas Recovery: Identifying

  11. The role that Carbon Conversations, as a model of deliberative workshops, can play in increasing carbon literacy with a group of low-income social housing tenants living in Glasgow 

    E-Print Network [OSTI]

    Fifield, Shivali

    2014-10-13T23:59:59.000Z

    This paper considers the role that Carbon Conversations, as an example of deliberative workshops, can play in increasing carbon literacy among a group of low-income social housing tenants living in Glasgow. With some adaptations, Carbon...

  12. Method of and apparatus for determining the similarity of a biological analyte from a model constructed from known biological fluids

    DOE Patents [OSTI]

    Robinson, Mark R. (Albuquerque, NM); Ward, Kenneth J. (Albuquerque, NM); Eaton, Robert P. (Albuquerque, NM); Haaland, David M. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    The characteristics of a biological fluid sample having an analyte are determined from a model constructed from plural known biological fluid samples. The model is a function of the concentration of materials in the known fluid samples as a function of absorption of wideband infrared energy. The wideband infrared energy is coupled to the analyte containing sample so there is differential absorption of the infrared energy as a function of the wavelength of the wideband infrared energy incident on the analyte containing sample. The differential absorption causes intensity variations of the infrared energy incident on the analyte containing sample as a function of sample wavelength of the energy, and concentration of the unknown analyte is determined from the thus-derived intensity variations of the infrared energy as a function of wavelength from the model absorption versus wavelength function.

  13. A continuum model with a percolation threshold and tunneling-assisted interfacial conductivity for carbon nanotube-based nanocomposites

    SciTech Connect (OSTI)

    Wang, Yang; Weng, George J., E-mail: weng@jove.rutgers.edu [Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, New Jersey 08903 (United States); Meguid, Shaker A. [Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8 (Canada); Hamouda, Abdel Magid [Department of Mechanical and Industrial Engineering, Qatar University, Doha (Qatar)

    2014-05-21T23:59:59.000Z

    A continuum model that possesses several desirable features of the electrical conduction process in carbon-nanotube (CNT) based nanocomposites is developed. Three basic elements are included: (i) percolation threshold, (ii) interface effects, and (iii) tunneling-assisted interfacial conductivity. We approach the first one through the selection of an effective medium theory. We approach the second one by the introduction of a diminishing layer of interface with an interfacial conductivity to build a 'thinly coated' CNT. The third one is introduced through the observation that interface conductivity can be enhanced by electron tunneling which in turn can be facilitated with the formation of CNT networks. We treat this last issue in a continuum fashion by taking the network formation as a statistical process that can be represented by Cauchy's probability density function. The outcome is a simple and yet widely useful model that can simultaneously capture all these fundamental characteristics. It is demonstrated that, without considering the interface effect, the predicted conductivity would be too high, and that, without accounting for the additional contribution from the tunneling-assisted interfacial conductivity, the predicted conductivity beyond the percolation threshold would be too low. It is with the consideration of all three elements that the theory can fully account for the experimentally measured data. We further use the developed model to demonstrate that, despite the anisotropy of the intrinsic CNT conductivity, it is its axial component along the CNT direction that dominates the overall conductivity. This theory is also proved that, even with a totally insulating matrix, it is still capable of delivering non-zero conductivity beyond the percolation threshold.

  14. Determination of fluid viscosities from biconical annular geometries: Experimental and modeling studies

    E-Print Network [OSTI]

    Rondon, Nolys Javier

    2009-05-15T23:59:59.000Z

    Knowledge of viscosity of flow streams is essential for the design and operation of production facilities, drilling operations and reservoir engineering calculations. The determination of the viscosity of a reservoir fluid at downhole conditions...

  15. Determination of Retrofit Savings Using a Calibrated Building Energy Simulation Model

    E-Print Network [OSTI]

    Reddy, S. N.; Hunn, B. D.; Hood, D. B.

    1994-01-01T23:59:59.000Z

    This paper presents the development of a methodology to determine retrofit energy savings in buildings when few measured preretrofit data are available. Calibration of the DOE-2 building energy analysis computer program for a 250,000 ft2 building...

  16. Determination of Retrofit Savings Using a Calibrated Building Energy Simulation Model 

    E-Print Network [OSTI]

    Reddy, S. N.; Hunn, B. D.; Hood, D. B.

    1994-01-01T23:59:59.000Z

    This paper presents the development of a methodology to determine retrofit energy savings in buildings when few measured preretrofit data are available. Calibration of the DOE-2 building energy analysis computer program for a 250,000 ft2 building...

  17. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    SciTech Connect (OSTI)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01T23:59:59.000Z

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are represented, in addition to the extensive data compiled from recent studies on bottom-up representation of efficiency measures for the sector. We also defined various mitigation scenarios including long-term production trends to project country-specific production, energy use, trading, carbon emissions, and costs of mitigation. Such analyses can provide useful information to assist policy-makers when considering and shaping future emissions mitigation strategies and policies. The technical objective is to analyze the costs of production and CO{sub 2} emission reduction in the U.S, China, and India’s iron and steel sectors under different emission reduction scenarios, using the ISEEM-IS as a cost optimization model. The scenarios included in this project correspond to various CO{sub 2} emission reduction targets for the iron and steel sector under different strategies such as simple CO{sub 2} emission caps (e.g., specific reduction goals), emission reduction via commodity trading, and emission reduction via carbon trading.

  18. Review of models used for determining consequences of UF{sub 6} release: Model evaluation report. Volume 2

    SciTech Connect (OSTI)

    Nair, S.K.; Chambers, D.B.; Park, S.H.; Radonjic, Z.R.; Coutts, P.T.; Lewis, C.J.; Hammonds, J.S.; Hoffman, F.O. [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis

    1997-11-01T23:59:59.000Z

    Three uranium hexafluoride-(UF{sub 6}-) specific models--HGSYSTEM/UF{sub 6}, Science Application International Corporation, and RTM-96; three dense-gas models--DEGADIS, SLAB, and the Chlorine Institute methodology; and one toxic chemical model--AFTOX--are evaluated on their capabilities to simulate the chemical reactions, thermodynamics, and atmospheric dispersion of UF{sub 6} released from accidents at nuclear fuel-cycle facilities, to support Integrated Safety Analysis, Emergency Response Planning, and Post-Accident Analysis. These models are also evaluated for user-friendliness and for quality assurance and quality control features, to ensure the validity and credibility of the results. Model performance evaluations are conducted for the three UF{sub 6}-specific models, using field data on releases of UF{sub 6} and other heavy gases. Predictions from the HGSYSTEM/UF{sub 6} and SAIC models are within an order of magnitude of the field data, but the SAIC model overpredicts beyond an order of magnitude for a few UF{sub 6}-specific data points. The RTM-96 model provides overpredictions within a factor of 3 for all data points beyond 400 m from the source. For one data set, however, the RTM-96 model severely underpredicts the observations within 200 m of the source. Outputs of the models are most sensitive to the meteorological parameters at large distances from the source and to certain source-specific and meteorological parameters at distances close to the source. Specific recommendations are being made to improve the applicability and usefulness of the three models and to choose a specific model to support the intended analyses. Guidance is also provided on the choice of input parameters for initial dilution, building wake effects, and distance to completion of UF{sub 6} reaction with water.

  19. Tuning Chirality of Single-Wall Carbon Nanotubes by Selective Etching with Carbon Dioxide

    E-Print Network [OSTI]

    Kim, Bongsoo

    Tuning Chirality of Single-Wall Carbon Nanotubes by Selective Etching with Carbon Dioxide Kwanyong properties that are determined by the chirality1 and diameter of carbon nanotubes. One way to overcome@skku.ac.kr Application of carbon nanotubes (CNTs) to various electronic devices such as field emission displays, gas

  20. Mar., 1955 GASIFICATIONOF CARBONRODSWITH CARBONDIOXIDE 241 GASIFICATION OF CARBON RODS WITH CARBON DIOXIDE1*2

    E-Print Network [OSTI]

    commercial carbons and their gasification rates with carbon dioxide at a series of temperatures between 900 and 1300" has been investigated. The following properties of the carbons have been determined: yantitative. No general correlation between these properties and the carbon gasification rates was found. Introduction

  1. VAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE FROM

    E-Print Network [OSTI]

    ) and their binary mixtures (between 348 and 393 K). The properties of supercritical carbon dioxide were determinedVAPOR + LIQUID EQUILIBRIUM OF WATER, CARBON DIOXIDE, AND THE BINARY SYSTEM WATER + CARBON DIOXIDE the vapor-liquid equilibrium of water (between 323 and 573 K), carbon dioxide (between 230 and 290 K

  2. A Complete Transport Validated Model on a Zeolite Membrane for Carbon Dioxide Permeance and Capture

    E-Print Network [OSTI]

    Gkanas, Evangelos I; Stubos, Athanasios K; Makridis, Sofoklis S

    2013-01-01T23:59:59.000Z

    The CO2 emissions from major industries cause serious global environment problems and their mitigation is urgently needed. The use of zeolite membranes is a very efficient way in order to capture CO2 from some flue gases. The dominant transport mechanism at low temperature andor high pressure is the diffusion through the membrane. This procedure can be divided in three steps: Adsorption of the molecules of the species in the surface of the membrane, then a driving force gives a path where the species follow inside the membrane and finally the species desorbed from the surface of the membrane. The current work is aimed at developing a simulation model for the CO2 transport through a zeolite membrane and estimate the diffusion phenomenon through a very thin membrane of 150 nm in a Wicke-Kallenbach cell. The cell is cylindrical in shape with diameter of 19 mm and consists of a retentate gas chamber, a permeate gas chamber which are separated by a cylindrical zeolite membrane. This apparatus have been modeled wit...

  3. 9, 1443714473, 2012 Soil carbon drivers

    E-Print Network [OSTI]

    Ickert-Bond, Steffi

    BGD 9, 14437­14473, 2012 Soil carbon drivers and benchmarks in Earth system models K. E. O. Todd if available. Causes of variation in soil carbon predictions from CMIP5 Earth system models and comparison #12;BGD 9, 14437­14473, 2012 Soil carbon drivers and benchmarks in Earth system models K. E. O. Todd

  4. DETERMINATION OF ELECTROCHEMICAL PERFORMANCE, AND THERMO-MECHANICALCHEMICAL STABILITY OF SOFCS FROM DEFECT MODELING

    SciTech Connect (OSTI)

    Wachsman, E.D.; Duncan, K.L.; Ebrahimi, F.

    2005-01-27T23:59:59.000Z

    The objectives of this project were to: provide fundamental relationships between SOFC performance and operating conditions and transient (time dependent) transport properties; extend models to thermo-mechanical stability, thermo-chemical stability, and multilayer structures; incorporate microstructural effects such as grain boundaries and grain-size distribution; experimentally verify models and devise strategies to obtain relevant material constants; and assemble software package for integration into SECA failure analysis models.

  5. Determining Wind Turbine Gearbox Model Complexity Using Measurement Validation and Cost Comparison: Preprint

    SciTech Connect (OSTI)

    LaCava, W.; Xing, Y.; Guo, Y.; Moan, T.

    2012-04-01T23:59:59.000Z

    The Gearbox Reliability Collaborative (GRC) has conducted extensive field and dynamometer test campaigns on two heavily instrumented wind turbine gearboxes. In this paper, data from the planetary stage is used to evaluate the accuracy and computation time of numerical models of the gearbox. First, planet-bearing load and motion data is analyzed to characterize planetary stage behavior in different environments and to derive requirements for gearbox models and life calculations. Second, a set of models are constructed that represent different levels of fidelity. Simulations of the test conditions are compared to the test data and the computational cost of the models are compared. The test data suggests that the planet-bearing life calculations should be made separately for each bearing on a row due to unequal load distribution. It also shows that tilting of the gear axes is related to planet load share. The modeling study concluded that fully flexible models were needed to predict planet-bearing loading in some cases, although less complex models were able to achieve good correlation in the field-loading case. Significant differences in planet load share were found in simulation and were dependent on the scope of the model and the bearing stiffness model used.

  6. Multi-scale geospatial agroecosystem modeling: a case study on the influence of soil data resolution on carbon budget estimates

    SciTech Connect (OSTI)

    Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, D.; Zhao, Kaiguang; LeDuc, Stephen D.; Xu, Min; Xiong, Wei; Zhang, Aiping; Izaurralde, Roberto C.; Thomson, Allison M.; West, Tristram O.; Post, W. M.

    2014-05-01T23:59:59.000Z

    The development of effective measures to stabilize atmospheric CO2 concentration and mitigate negative impacts of climate change requires accurate quantification of the spatial variation and magnitude of the terrestrial carbon (C) flux. However, the spatial pattern and strength of terrestrial C sinks and sources remain uncertain. In this study, we designed a spatially-explicit agroecosystem modeling system by integrating the Environmental Policy Integrated Climate (EPIC) model with multiple sources of geospatial and surveyed datasets (including crop type map, elevation, climate forcing, fertilizer application, tillage type and distribution, and crop planting and harvesting date), and applied it to examine the sensitivity of cropland C flux simulations to two widely used soil databases (i.e. State Soil Geographic-STATSGO of a scale of 1:250,000 and Soil Survey Geographic-SSURGO of a scale of 1:24,000) in Iowa, USA. To efficiently execute numerous EPIC runs resulting from the use of high resolution spatial data (56m), we developed a parallelized version of EPIC. Both STATSGO and SSURGO led to similar simulations of crop yields and Net Ecosystem Production (NEP) estimates at the State level. However, substantial differences were observed at the county and sub-county (grid) levels. In general, the fine resolution SSURGO data outperformed the coarse resolution STATSGO data for county-scale crop-yield simulation, and within STATSGO, the area-weighted approach provided more accurate results. Further analysis showed that spatial distribution and magnitude of simulated NEP were more sensitive to the resolution difference between SSURGO and STATSGO at the county or grid scale. For over 60% of the cropland areas in Iowa, the deviations between STATSGO- and SSURGO-derived NEP were larger than 1MgCha(-1)yr(-1), or about half of the average cropland NEP, highlighting the significant uncertainty in spatial distribution and magnitude of simulated C fluxes resulting from differences in soil data resolution.

  7. A comparison of polar cap ionospheric velocity determined from a digital ionosonde model and the DICM

    E-Print Network [OSTI]

    Michigan, University of

    , and the IZMEM/DMSP model was constructed using ground-magnetometer measurements and calibrated against DMSP ion. These convection models must accommodate a raft of geo- physical conditions, particularly IMF orientation, solar and Maynard, 1987; Rich and Maynard, 1989) and sup- ported the two cell convection pattern predicted

  8. Models for evaluation of energy technology and policy options to maximize low carbon source penetration in the United States energy supply.

    SciTech Connect (OSTI)

    Pickard, Paul S.; Kataoka, Dawn; Reno, Marissa Devan; Malczynski, Leonard A.; Peplinski, William J.; Roach, Jesse D.; Brainard, James Robert; West, Todd H.; Schoenwald, David Alan

    2009-12-01T23:59:59.000Z

    An initial version of a Systems Dynamics (SD) modeling framework was developed for the analysis of a broad range of energy technology and policy questions. The specific question selected to demonstrate this process was 'what would be the carbon and import implications of expanding nuclear electric capacity to provide power for plug in hybrid vehicles?' Fifteen SNL SD energy models were reviewed and the US Energy and Greenhouse gas model (USEGM) and the Global Nuclear Futures model (GEFM) were identified as the basis for an initial modeling framework. A basic U.S. Transportation model was created to model U.S. fleet changes. The results of the rapid adoption scenario result in almost 40% of light duty vehicles being PHEV by 2040 which requires about 37 GWy/y of additional electricity demand, equivalent to about 25 new 1.4 GWe nuclear plants. The adoption rate of PHEVs would likely be the controlling factor in achieving the associated reduction in carbon emissions and imports.

  9. Determination of the effects caused by different polymers on coal fluidity during carbonization using high-temperature {sup 1}H NMR and rheometry

    SciTech Connect (OSTI)

    Miguel Castro Diaz; Lucky Edecki; Karen M. Steel; John W. Patrick; Colin E. Snape [Nottingham University, Nottingham (United Kingdom). Nottingham Fuel and Energy Centre, School of Chemical, Environmental and Mining Engineering

    2008-01-15T23:59:59.000Z

    The effects of blending polyethylene (PE), polystyrene (PS), poly(ethyleneterephthalate) (PET), a flexible polyurethane (FPU), and a car shredded fluff waste (CSF) on fluidity development of a bituminous coal during carbonization have been studied by means of high-torque, small-amplitude controlled-strain rheometry and in situ high-temperature {sup 1}H NMR spectroscopy. The most detrimental effects were caused by PET and PS, which completely destroyed the fluidity of the coal. The CSF had a deleterious effect on coal fluidity similar to that of PET, although the deleterious effect on the viscoelastic properties of the coal were less pronounced than those of PET and PS. On the contrary, the addition of 10 wt % PE caused a slight reduction in the concentration of fluid hydrogen and an increase in the minimum complex viscosity, and the addition of 10 wt % FPU reduced the concentration of fluid hydrogen without changing the viscoelastic properties of the coal. Although these results suggest that these two plastics could potentially be used as additives in coking blends without compromising coke porosity, it was found that the semicoke strengths were reduced by adding 2 wt % FPU and 5 wt % PE. Therefore, it is unlikely that more than 2 wt % of a plastic waste could be added to a coal blend without deterioration in coke quality. 35 refs., 11 figs., 3 tabs.

  10. Determination of the proper operating range for the CAFCA IIB fuel cycle model

    E-Print Network [OSTI]

    Warburton, Jamie (Jamie L.)

    2007-01-01T23:59:59.000Z

    The fuel cycle simulation tool, CAFCA II was previously modified to produce the most recent version, CAFCA IIB. The code tracks the mass distribution of transuranics in the fuel cycle in one model and also projects costs ...

  11. Technosocial Modeling for Determining the Status and Nature of a State’s Nuclear Activities

    SciTech Connect (OSTI)

    Gastelum, Zoe N.; Harvey, Julia B.

    2009-09-25T23:59:59.000Z

    The International Atomic Energy Agency State Evaluation Process: The Role of Information Analysis in Reaching Safeguards Conclusions (Mathews et al. 2008), several examples of nonproliferation models using analytical software were developed that may assist the IAEA with collecting, visualizing, analyzing, and reporting information in support of the State Evaluation Process. This paper focuses on one of the examples a set of models developed in the Proactive Scenario Production, Evidence Collection, and Testing (ProSPECT) software that evaluates the status and nature of a state’s nuclear activities. The models use three distinct subject areas to perform this assessment: the presence of nuclear activities, the consistency of those nuclear activities with national nuclear energy goals, and the geopolitical context in which those nuclear activities are taking place. As a proof-of-concept for the models, a crude case study was performed. The study, which attempted to evaluate the nuclear activities taking place in Syria prior to September 2007, yielded illustrative, yet inconclusive, results. Due to the inconclusive nature of the case study results, changes that may improve the model’s efficiency and accuracy are proposed.

  12. Estimation of methane and carbon dioxide surface fluxes using a 3-D global atmospheric chemical transport model

    E-Print Network [OSTI]

    Chen, Yu-Han, 1973-

    2004-01-01T23:59:59.000Z

    Methane (CH?) and carbon dioxide (CO?) are the two most radiatively important greenhouse gases attributable to human activity. Large uncertainties in their source and sink magnitudes currently exist. We estimate global ...

  13. Atmospheric three-dimensional inverse modeling of regional industrial emissions and global oceanic uptake of carbon tetrachloride

    E-Print Network [OSTI]

    Xiao, X.

    Carbon tetrachloride (CCl4) has substantial stratospheric ozone depletion potential and its consumption is controlled under the Montreal Protocol and its amendments. We implement a Kalman filter using atmospheric CCl4 ...

  14. Assessment of carbon sequestration and timber production of Scots pine across Scotland using the process-based model 3-PGN 

    E-Print Network [OSTI]

    Xenakis, Georgios

    2007-11-27T23:59:59.000Z

    detailed eco-physiological interpretation of the environmental factors affecting Scots pine growth and it provided an assessment of carbon sequestration under the scenario of sustainable, normal production and its effects from the environment. Finally...

  15. Ozone effects on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model

    E-Print Network [OSTI]

    Felzer, Benjamin Seth.; Kicklighter, David W.; Melillo, Jerry M.; Wang, Chien.; Zhuang, Qianlai.; Prinn, Ronald G.

    The effects of air pollution on vegetation may provide an important control on the carbon cycle that has not yet been widely considered. Prolonged exposure to high levels of ozone, in particular, has been observed to inhibit ...

  16. aeration carbon source: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    model to quantify the primary Zheng, Mei 28 CALMIT Remote-Sensing Research Relating to Carbon Sequestration There is considerable interest in assessing the magnitude of carbon...

  17. activated carbon manufacture: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of carbon fibers themselves as well as their composites. Traditional to bond with composite matrix material. It is important that a carbon fiber manufacturing cost model 2...

  18. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2002-09-25T23:59:59.000Z

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been essentially completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The model represents an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic model served as the framework for the simulations. A technology workshop on reservoir characterization and modeling at Appleton and Vocation Fields was conducted to transfer the results of the project to the petroleum industry.

  19. Field Demonstration of Horizontal Infill Drilling Using Cost-effective Integrated Reservoir Modeling--Mississippian Carbonates, Central Kansas

    SciTech Connect (OSTI)

    Saibal Bhattacharya

    2005-08-31T23:59:59.000Z

    Mississippian carbonate reservoirs have produced in excess of 1 billion barrels of oil in Kansas accounting for over 16% of the state's production. With declining production from other age reservoirs, the contribution of Mississippian reservoirs to Kansas's oil production has risen to 43% as of 2004. However, solution-enhanced features such as vertical shale intervals extending from the karst erosional surface at the top introduce complexities/compartmentalizations in Mississippian carbonate reservoirs. Coupled with this, strong water drives charge many of these reservoirs resulting in limited drainage from vertical wells due to high water cuts after an initial period of low water production. Moreover, most of these fields are operated by small independent operators without access to the knowledge bank of modern research in field characterization and exploitation/development practices. Thus, despite increasing importance of Mississippian fields to Kansas production, these fields are beset with low recovery factors and high abandonment rates leaving significant resources in the ground. Worldwide, horizontal infill wells have been successful in draining compartmentalized reservoirs with limited pressure depletion. The intent of this project was to demonstrate the application of horizontal wells to successfully exploit the remaining potential in mature Mississippian fields of the mid-continent. However, it is of critical importance that for horizontal wells to be economically successful, they must be selectively targeted. This project demonstrated the application of initial and secondary screening methods, based on publicly available data, to quickly shortlist fields in a target area for detailed studies to evaluate their potential to infill horizontal well applications. Advanced decline curve analyses were used to estimate missing well-level production data and to verify if the well produced under unchanging bottom-hole conditions--two commonly occurring data constraints afflicting mature Mississippian fields. A publicly accessible databank of representative petrophysical properties and relationships was developed to overcome the paucity of such data that is critical to modeling the storage and flow in these reservoirs. Studies in 3 Mississippian fields demonstrated that traditional reservoir models built by integrating log, core, DST, and production data from existing wells on 40-acre spacings are unable to delineate karst-induced compartments, thus making 3D-seismic data critical to characterize these fields. Special attribute analyses on 3D data were shown to delineate reservoir compartments and predict those with pay porosities. Further testing of these techniques is required to validate their applicability in other Mississippian reservoirs. This study shows that detailed reservoir characterization and simulation on geomodels developed by integrating wireline log, core, petrophysical, production and pressure, and 3D-seismic data enables better evaluation of a candidate field for horizontal infill applications. In addition to reservoir compartmentalization, two factors were found to control the economic viability of a horizontal infill well in a mature Mississippian field: (a) adequate reservoir pressure support, and (b) an average well spacing greater than 40-acres.

  20. Simplified model for determining local heat flux boundary conditions for slagging wall

    SciTech Connect (OSTI)

    Bingzhi Li; Anders Brink; Mikko Hupa [Aabo Akademi University, Turku (Finland). Process Chemistry Centre

    2009-07-15T23:59:59.000Z

    In this work, two models for calculating heat transfer through a cooled vertical wall covered with a running slag layer are investigated. The first one relies on a discretization of the velocity equation, and the second one relies on an analytical solution. The aim is to find a model that can be used for calculating local heat flux boundary conditions in computational fluid dynamics (CFD) analysis of such processes. Two different cases where molten deposits exist are investigated: the black liquor recovery boiler and the coal gasifier. The results show that a model relying on discretization of the velocity equation is more flexible in handling different temperature-viscosity relations. Nevertheless, a model relying on an analytical solution is the one fast enough for a potential use as a CFD submodel. Furthermore, the influence of simplifications to the heat balance in the model is investigated. It is found that simplification of the heat balance can be applied when the radiation heat flux is dominant in the balance. 9 refs., 7 figs., 10 tabs.

  1. High-Temperature Co-electrolysis of Steam and Carbon Dioxide for Direct Production of Syngas; Equilibrium Model and Single-Cell Tests

    SciTech Connect (OSTI)

    O'Brien, J. E.; Stoots, C. M.; Herring, J. S.; Hartvigsen, J. J.

    2007-07-01T23:59:59.000Z

    An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850ºC in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Cell area-specific resistance values were similar for steam electrolysis and coelectrolysis.

  2. High-Temperature Co-electrolysis of Carbon Dioxide and Steam for the Production of Syngas; Equilibrium Model and Single-Cell Tests

    SciTech Connect (OSTI)

    J. E. O'Brien; C. M. Stoots; G. L. Hawkes; J. S. Herring; J. J. Hartvigsen

    2007-06-01T23:59:59.000Z

    An experimental study has been completed to assess the performance of single solid-oxide electrolysis cells operating over a temperature range of 800 to 850ºC in the coelectrolysis mode, simultaneously electrolyzing steam and carbon dioxide for the direct production of syngas. The experiments were performed over a range of inlet flow rates of steam, carbon dioxide, hydrogen and nitrogen and over a range of current densities (-0.1 to 0.25 A/cm2) using single electrolyte-supported button electrolysis cells. Steam and carbon dioxide consumption rates associated with electrolysis were measured directly using inlet and outlet dewpoint instrumentation and a gas chromatograph, respectively. Cell operating potentials and cell current were varied using a programmable power supply. Measured values of open-cell potential and outlet gas composition are compared to predictions obtained from a chemical equilibrium coelectrolysis model. Model predictions of outlet gas composition based on an effective equilibrium temperature are shown to agree well with measurements. Area-specific resistance values were similar for steam electrolysis and coelectrolysis.

  3. Carbon and Nitrogen Dynamics in Agricultural Soils

    E-Print Network [OSTI]

    Carbon and Nitrogen Dynamics in Agricultural Soils Model Applications at Different Scales in Time Print: SLU Service/Repro, Uppsala 2012 #12;Carbon and Nitrogen Dynamics in Agricultural Soils. Model Applications at Different Scales in Time and Space Abstract An understanding of soil organic carbon (C

  4. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2001-09-14T23:59:59.000Z

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization is progressing. Data on reservoir production rate and pressure history at Appleton and Vocation Fields have been tabulated, and porosity data from core analysis has been correlated with porosity as observed from well log response. Data integration is on schedule, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database for reservoir characterization, modeling and simulation for the reef and carbonate shoal reservoirs for each of these fields.

  5. Determination of the Controls on Permeability and Transport in Shale by Use of Percolation Models 

    E-Print Network [OSTI]

    Chapman, Ian

    2012-10-19T23:59:59.000Z

    : (Wolfram, 2012) We look again at the 2D set of overlapping spheres and recognize that each set of overlapping spheres has the individual pore geometry show above in Figure 3.2. By using the basic Poiseuille equation governing pressure drop through a... ............. 6 3.1 Model Example Showing Uniform, Overlapping Spheres .................................... 13 3.2 Pipe Flow Geometry Between Two Overlapping Spheres .................................... 14 3.3 Path Connecting Pipes from Sphere to Sphere...

  6. Quantum method of determination of penetrability in FRW model with radiation

    E-Print Network [OSTI]

    Sergei P. Maydanyuk

    2014-07-18T23:59:59.000Z

    In paper the closed Friedmann-Robertson-Walker model with quantization in presence of the positive cosmological constant, radiation and Chaplygin gas is studied. For analysis of tunneling probability for birth of an asymptotically deSitter, inflationary Universe as a function of the radiation energy a new definition of a "free" wave propagating inside strong fields is introduced. Vilenkin's tunneling boundary condition is corrected, penetrability and reflection are calculated in fully quantum stationary approach.

  7. Lithium in LMC carbon stars

    E-Print Network [OSTI]

    D. Hatzidimitriou; D. H. Morgan; R. D. Cannon; B. F. W. Croke

    2003-04-16T23:59:59.000Z

    Nineteen carbon stars that show lithium enrichment in their atmospheres have been discovered among a sample of 674 carbon stars in the Large Magellanic Cloud. Six of the Li-rich carbon stars are of J-type, i.e. with strong 13C isotopic features. No super-Li-rich carbon stars were found. The incidence of lithium enrichment among carbon stars in the LMC is much rarer than in the Galaxy, and about five times more frequent among J-type than among N-type carbon stars. The bolometric magnitudes of the Li-rich carbon stars range between -3.3 and -5.7. Existing models of Li-enrichment via the hot bottom burning process fail to account for all of the observed properties of the Li-enriched stars studied here.

  8. tice sites of calcium carbonate and affect Mars' soil geochemistry, and calcium carbonate can

    E-Print Network [OSTI]

    Kounaves, Samuel P.

    tice sites of calcium carbonate and affect Mars' soil geochemistry, and calcium carbonate can sample. 18. Estimation of the concentration of calcium carbonate in the sample is uncertain because qualification model (17). Other carbonates have decomposition temperatures that are lower than that of calcite

  9. Soil Carbon Accumulation During Temperate Forest Succession

    E-Print Network [OSTI]

    Grogan, Paul

    K7L 3N6, Canada ABSTRACT Carbon sequestration in soils that have previously beendepletedoforganic the soil carbon sequestration potential of such lands by sampling adjacent mature forest and agricultural abandonment is more important than soil type in determining the potential magnitude of carbon sequestration

  10. Carbon Footprinting for the Food Industry

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    174-1 Carbon Footprinting for the Food Industry Tim Bowser FAPC Food Process Engineer FAPC-174 and Natural Resources Carbon footprinting in the food industry is an activity that determines the greenhouse.g. tons) of carbon dioxide (CO2) equivalent per functional unit (e.g. kg or liter of goods sold) (PAS2050

  11. Resistivity changes in carbon-implanted Teflon 

    E-Print Network [OSTI]

    Jackson, Matthew R.

    2013-02-22T23:59:59.000Z

    . e Figure 10: Carbon Distribution vs Depth for 50 kV/140 kV Dual Implantation Based on the simulation results above, it was determined that using dual energies would maximize the concentration of carbon in the implanted area. Consequently carbon...

  12. Bond length and electric current oscillation of long linear carbon chains: Density functional theory, MpB model, and quantum spin transport studies

    SciTech Connect (OSTI)

    Oeiras, R. Y.; Silva, E. Z. da [Institute of Physics “Gleb Wataghin”, University of Campinas-Unicamp, 13083-859 Campinas, SP (Brazil)] [Institute of Physics “Gleb Wataghin”, University of Campinas-Unicamp, 13083-859 Campinas, SP (Brazil)

    2014-04-07T23:59:59.000Z

    Carbon linear atomic chains attached to graphene have experimentally been produced. Motivated by these results, we study the nature of the carbon bonds in these nanowires and how it affects their electrical properties. In the present study we investigate chains with different numbers of atoms and we observe that nanowires with odd number of atoms present a distinct behavior than the ones with even numbers. Using graphene nanoribbons as leads, we identify differences in the quantum transport of the chains with the consequence that even and odd numbered chains have low and high electrical conduction, respectively. We also noted a dependence of current with the wire size. We study this unexpected behavior using a combination of first principles calculations and simple models based on chemical bond theory. From our studies, the electrons of carbon nanowires present a quasi-free electron behavior and this explains qualitatively the high electrical conduction and the bond lengths with unexpected values for the case of odd nanowires. Our study also allows the understanding of the electric conduction dependence with the number of atoms and their parity in the chain. In the case of odd number chains a proposed ?-bond (MpB) model describes unsaturated carbons that introduce a mobile ?-bond that changes dramatically the structure and transport properties of these wires. Our results indicate that the nature of bonds plays the main role in the oscillation of quantum electrical conduction for chains with even and odd number of atoms and also that nanowires bonded to graphene nanoribbons behave as a quasi-free electron system, suggesting that this behavior is general and it could also remain if the chains are bonded to other materials.

  13. Determination of Electrochemical Performance and Thermo-Mechanical-Chemical Stability of SOFCs from Defect Modeling

    SciTech Connect (OSTI)

    Eric Wachsman; Keith L. Duncan

    2006-09-30T23:59:59.000Z

    This research was focused on two distinct but related issues. The first issue concerned using defect modeling to understand the relationship between point defect concentration and the electrochemical, thermo-chemical and mechano-chemical properties of typical solid oxide fuel cell (SOFC) materials. The second concerned developing relationships between the microstructural features of SOFC materials and their electrochemical performance. To understand the role point defects play in ceramics, a coherent analytical framework was used to develop expressions for the dependence of thermal expansion and elastic modulus on point defect concentration in ceramics. These models, collectively termed the continuum-level electrochemical model (CLEM), were validated through fits to experimental data from electrical conductivity, I-V characteristics, elastic modulus and thermo-chemical expansion experiments for (nominally pure) ceria, gadolinia-doped ceria (GDC) and yttria-stabilized zirconia (YSZ) with consistently good fits. The same values for the material constants were used in all of the fits, further validating our approach. As predicted by the continuum-level electrochemical model, the results reveal that the concentration of defects has a significant effect on the physical properties of ceramic materials and related devices. Specifically, for pure ceria and GDC, the elastic modulus decreased while the chemical expansion increased considerably in low partial pressures of oxygen. Conversely, the physical properties of YSZ remained insensitive to changes in oxygen partial pressure within the studied range. Again, the findings concurred exactly with the predictions of our analytical model. Indeed, further analysis of the results suggests that an increase in the point defect content weakens the attractive forces between atoms in fluorite-structured oxides. The reduction treatment effects on the flexural strength and the fracture toughness of pure ceria were also evaluated at room temperature. The results reveal that the flexural strength decreases significantly after heat treatment in very low oxygen partial pressure environments; however, in contrast, fracture toughness is increased by 30-40% when the oxygen partial pressure was decreased to 10{sup -20} to 10{sup -22} atm range. Fractographic studies show that microcracks developed at 800 oC upon hydrogen reduction are responsible for the decreased strength. To understand the role of microstructure on electrochemical performance, electrical impedance spectra from symmetric LSM/YSZ/LSM cells was de-convoluted to obtain the key electrochemical components of electrode performance, namely charge transfer resistance, surface diffusion of reactive species and bulk gas diffusion through the electrode pores. These properties were then related to microstructural features, such as triple-phase boundary length and tortuosity. From these experiments we found that the impedance due to oxygen adsorption obeys a power law with pore surface area, while the impedance due to charge transfer is found to obey a power-law with respect to triple phase boundary length. A model based on kinetic theory explaining the power-law relationships observed was then developed. Finally, during our EIS work on the symmetric LSM/YSZ/LSM cells a technique was developed to improve the quality of high-frequency impedance data and their subsequent de-convolution.

  14. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine

    E-Print Network [OSTI]

    Myint, P C; Firoozabadi, A

    2015-01-01T23:59:59.000Z

    Thermodynamic property calculations of mixtures containing carbon dioxide (CO$_2$) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi, and the CO$_2$ activity coefficient model by Duan and Sun. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO$_2$, pure water, and both CO$_2$-rich and aqueous (H$_2$O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spy...

  15. Ambiguity in the Determination of the Free Energy for a Model of the Circle Map

    E-Print Network [OSTI]

    Brian G. Kenny; Tony W. Dixon

    2006-08-09T23:59:59.000Z

    We consider a simple model to describe the widths of the mode locked intervals for the critical circle map. Using two different partitions of the rational numbers, based on Farey series and Farey tree levels respectively, we calculate the free energy analytically at selected points for each partition. It is found that the result of the calculation depends on the method of partition. An implication of this is that the generalized dimensions $D_q$ are different for each partition except when $q=0$, i.e. only the Hausdorff dimension is the same in each case.

  16. A model for determining body composition of steers fed in a variety of nutritional management programs

    E-Print Network [OSTI]

    Regmund, John William

    1986-01-01T23:59:59.000Z

    to a period of time instead of a given point in time. A steer's mean weight was calculated by adding the starting and ending EBW and dividing by two. The growing phase OPG model was as follows: DPG (kg)= . 7414 ? . 1157(lnMWT) + . 0766(lnDEBG) + 2... across levels of the second factor. Figure 2 is a representation of the effects of OPG interacting with IC across rates of OEBG. Byers (1980c) and Lemieux et al. (1984) demonstrated that anabolic implants repartition energy from fat storage to lean...

  17. Determining SUSY model parameters and masses at the LHC using cross-sections, kinematic edges and other observables.

    E-Print Network [OSTI]

    Lester, Christopher G; Parker, Michael A; White, Martin J

    ar X iv :h ep -p h/ 05 08 14 3v 2 3 0 A ug 2 00 5 Preprint typeset in JHEP style - HYPER VERSION CAV-HEP-2005-15 ATL-PHYS-PUB-2005-013 ATL-COM-PHYS-2005-033 Determining SUSY model parameters and masses at the LHC using cross-sections, kinematic... edges and other observables. Christopher G. Lester, Michael A. Parker and Martin J. White Cavendish Laboratory. Madingley Road. Cambridge CB3 0HE, UK Abstract: We address the problem of mass measurements of supersymmetric par- ticles at the Large Hadron...

  18. A model for determining shelf life, estimating terminal body composition, yield grade and quality grade of feedlot cattle 

    E-Print Network [OSTI]

    Perry, Richard Jay

    1985-01-01T23:59:59.000Z

    4. 5 percentage units less fat (21. 64% vs 26, 1% carcass fat) than non-implanted steers of the same carcass weight and rate of gain (350 kg and ADG of 1. 0 kg/d). Fat as a percentage of gain averaged 67. 85, 52. 05 and 39. 59 for non... model which can be used for projecting changes in yield grade and quality grade with performance of cattle in the feedlot over time. The primary objectives of this research were: 1) To determine the "shelf life" of a steer in the feedlot. 2...

  19. Determining SUSY model parameters and masses at the LHC using cross-sections, kinematic edges and other observables.

    E-Print Network [OSTI]

    Lester, Christopher G; Parker, Michael A; White, Martin J

    ar X iv :h ep -p h/ 05 08 14 3v 2 3 0 A ug 2 00 5 Preprint typeset in JHEP style - HYPER VERSION CAV-HEP-2005-15 ATL-PHYS-PUB-2005-013 ATL-COM-PHYS-2005-033 Determining SUSY model parameters and masses at the LHC using cross-sections, kinematic... been used to map the interesting region of the parameter space with fewer points than would be required in a scan in order to obtain similar performance. To demonstrate this, consider the following. There are four and a half parameters – 14 – in the m...

  20. Coupled Flow and Deformation Modeling of Carbon Dioxide Migration in the Presence of a Caprock Fracture during Injection

    SciTech Connect (OSTI)

    Siriwardane, Hema J.; Gondle, Raj K.; Bromhal, Grant S.

    2013-08-01T23:59:59.000Z

    Understanding the transport of carbon dioxide (CO{sub 2}) during long-term CO{sub 2} injection into a typical geologic reservoir, such as a saline aquifer, could be complicated because of changes in geochemical, hydrogeological, and hydromechanical behavior. While the caprock layer overlying the target aquifer is intended to provide a tight, impermeable seal in securing injected CO{sub 2}, the presence of geologic uncertainties, such as a caprock fracture or fault, may provide a channel for CO{sub 2} leakage. There could also be a possibility of the activation of a new or existing dormant fault or fracture, which could act as a leakage pathway. Such a leakage event during CO{sub 2} injection may lead to a different pressure and ground response over a period of time. In the present study, multiphase fluid flow simulations in porous media coupled with geomechanics were used to investigate the overburden geologic response and plume behavior during CO{sub 2} injection in the presence of a hypothetical permeable fractured zone in a caprock, existing or activated. Both single-phase and multiphase fluid flow simulations were performed. The CO{sub 2} migration through an existing fractured zone leads to changes in the fluid pressure in the overburden geologic layers and could have a significant impact on ground deformation behavior. Results of the study show that pressure signatures and displacement patterns are significantly different in the presence of a fractured zone in the caprock layer. The variation in pressure and displacement signatures because of the presence of a fractured zone in the caprock at different locations may be useful in identifying the presence of a fault/fractured zone in the caprock. The pressure signatures can also serve as a mechanism to identify the activation of leakage pathways through the caprock during CO{sub 2} injection. Pressure response and ground deformation behavior from sequestration modeling could be useful in the development of smart technologies to monitor safe CO{sub 2} storage and understand CO{sub 2} transport, with limited field instrumentation.

  1. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2003-09-25T23:59:59.000Z

    The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The models represent an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic models served as the framework for the simulations. The geologic-engineering models of the Appleton and Vocation Field reservoirs have been developed. These models are being tested. The geophysical interpretation for the paleotopographic feature being tested has been made, and the study of the data resulting from drilling of a well on this paleohigh is in progress. Numerous presentations on reservoir characterization and modeling at Appleton and Vocation Fields have been made at professional meetings and conferences and a short course on microbial reservoir characterization and modeling based on these fields has been prepared.

  2. Optical absorption parameters of amorphous carbon films from Forouhi-Bloomer and Tauc-Lorentz models: a comparative study

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    for incorporation of nanocrystalline metals. These nanocomposites, with carbon-based matrices instead of transparent-based nanocomposites exhibit interesting properties like surface plasmon resonance and field emission properties to a structure formed by atoms with different degrees of electron hybridization and affected by different kinds

  3. INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini

    2004-02-25T23:59:59.000Z

    The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on reservoir architecture and geographic distribution of Smackover reservoirs is the fabric and texture of the depositional lithofacies, diagenesis (chiefly dolomitization) is a significant factor that preserves and enhances reservoir quality. The evaporative pumping mechanism is favored to explain the dolomitization of the thrombolite doloboundstone and dolostone reservoir flow units at Appleton and Vocation Fields. Geologic modeling, reservoir simulation, and the testing and applying the resulting integrated geologic-engineering models have shown that little oil remains to be recovered at Appleton Field and a significant amount of oil remains to be recovered at Vocation Field through a strategic infill drilling program. The drive mechanisms for primary production in Appleton and Vocation Fields remain effective; therefore, the initiation of a pressure maintenance program or enhanced recovery project is not required at this time. The integrated geologic-engineering model developed for a low-relief paleohigh (Appleton Field) was tested for three scenarios involving the variables of present-day structural elevation and the presence/absence of potential reef thrombolite lithofacies. In each case, the predictions based upon the model were correct. From this modeling, the characteristics of the ideal prospect in the basement ridge play include a low-relief paleohigh associated with dendroidal/chaotic thrombolite doloboundstone and dolostone that has sufficient present-day structural relief so that these carbonates rest above the oil-water contact. Such a prospect was identified from the modeling, and it is located northwest of well Permit No. 3854B (Appleton Field) and south of well No. Permit No.11030B (Northwest Appleton Field).

  4. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    and benchmarks in Earth system models sitivity of the Amazonand benchmarks in Earth system models Thornton, P. E. ,simulations from CMIP5 Earth system models and comparison

  5. Determining the Effect of Concerted Elimination Reactions in the Pyrolysis of Lignin Using Model Compounds

    SciTech Connect (OSTI)

    Robichaud, D.; Clark, J.; Nimlos, M.

    2012-01-01T23:59:59.000Z

    Lignin pyrolysis is a significant impediment in forming liquid fuel from biomass. Lignin pyrolyzes at a higher temperature than other biomass components (ie cellulose, hemicellulose) and tends to form radicals which lead to cross linking and ultimately char formation. A primary step in advances biomass-to-fuel technology will be to discover mechanisms that can disassemble lignin at lower temperatures and depolymerize lignin into more stable products. We have investigated the thermochemistry of the various inter-linkage units found in lignin ({beta}-O4, {alpha}-O4, {beta}-{beta}, {beta}-O5, etc) using electronic structure calculations at the M06-2x/6-311++G(d,p) on a series of dimer model compounds. In addition to the usually-assumed bond homolysis reactions, we have investigated a variety of concerted elimination pathways that will tend to produce closed-shell stable products. Such a bottom-up approach could aid in the targeted development of catalysts that produce more desirable products under less severe reactor conditions.

  6. Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide

    Broader source: Energy.gov [DOE]

    Project Objectives: Elucidate comprehensively the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and non-aqueous environments at temperatures of up to 250ºC, and to develop chemical modeling of CO2-reservior rock interactions.

  7. Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models: FINAL REPORT of grant Grant No. DE-FG02-04ER63726

    SciTech Connect (OSTI)

    Sarmiento, Jorge L; Gnanadesikan, Anand; Gruber, Nicolas

    2007-06-21T23:59:59.000Z

    This final report summarizes research undertaken collaboratively between Princeton University, the NOAA Geophysical Fluid Dynamics Laboratory on the Princeton University campus, the State University of New York at Stony Brook, and the University of California, Los Angeles between September 1, 2000, and November 30, 2006, to do fundamental research on ocean iron fertilization as a means to enhance the net oceanic uptake of CO2 from the atmosphere. The approach we proposed was to develop and apply a suite of coupled physical-ecologicalbiogeochemical models in order to (i) determine to what extent enhanced carbon fixation from iron fertilization will lead to an increase in the oceanic uptake of atmospheric CO2 and how long this carbon will remain sequestered (efficiency), and (ii) examine the changes in ocean ecology and natural biogeochemical cycles resulting from iron fertilization (consequences). The award was funded in two separate three-year installments: • September 1, 2000 to November 30, 2003, for a project entitled “Ocean carbon sequestration by fertilization: An integrated biogeochemical assessment.” A final report was submitted for this at the end of 2003 and is included here as Appendix 1. • December 1, 2003 to November 30, 2006, for a follow-on project under the same grant number entitled “Carbon sequestration by patch fertilization: A comprehensive assessment using coupled physical-ecological-biogeochemical models.” This report focuses primarily on the progress we made during the second period of funding subsequent to the work reported on in Appendix 1. When we began this project, we were thinking almost exclusively in terms of long-term fertilization over large regions of the ocean such as the Southern Ocean, with much of our focus being on how ocean circulation and biogeochemical cycling would interact to control the response to a given fertilization scenario. Our research on these types of scenarios, which was carried out largely during the first three years of our project, led to several major new insights on the interaction between ocean biogeochemistry and circulation. This work, which is described in 2 the following Section II on “Large scale fertilization,” has continued to appear in the literature over the past few years, including two high visibility papers in Nature. Early on in the first three years of our project, it became clear that small "patch-scale" fertilizations over limited regions of order 100 km diameter were much more likely than large scale fertilization, and we carried out a series of idealized patch fertilization simulations reported on in Gnanadesikan et al. (2003). Based on this paper and other results we had obtained by the end of our first three-year grant, we identified a number of important issues that needed to be addressed in the second three-year period of this grant. Section III on “patch fertilization” discusses the major findings of this phase of our research, which is described in two major manuscripts that will be submitted for publication in the near future. This research makes use of new more realistic ocean ecosystem and iron cycling models than our first paper on this topic. We have several major new insights into what controls the efficiency of iron fertilization in the ocean. Section IV on “model development” summarizes a set of papers describing the progress that we made on improving the ecosystem models we use for our iron fertilization simulations.

  8. CX-002605: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002605: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s)...

  9. CX-000413: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000413: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s)...

  10. CX-000416: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000416: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s)...

  11. CX-008476: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008476: Categorical Exclusion Determination Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: A9, B1.15,...

  12. CX-000415: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-000415: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s)...

  13. CX-002604: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-002604: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s)...

  14. CX-011005: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-011005: Categorical Exclusion Determination Scalable, Automated, Semi permanent Seismic Method for Detecting Carbon Dioxide Plume Extent During Geological... CX(s) Applied:...

  15. CX-011006: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-011006: Categorical Exclusion Determination Scalable, Automated, Semi Permanent Seismic Method for Detecting Carbon Dioxide Plume Extent During Geological... CX(s) Applied:...

  16. CX-011013: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Distributed Fiber Optic Arrays: Integrated Temperature and Seismic Sensing for Detection of Carbon Dioxide Flow.. CX(s) Applied: A1, A9 Date: 09112013...

  17. CX-012136: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Distributed Fiber Optic Arrays: Integrated Temperature and Seismic Sensing for Detection of Carbon Dioxide Flow.. CX(s) Applied: B3.11 Date: 05272014...

  18. Carbon nanotube IR detectors (SV)

    SciTech Connect (OSTI)

    Leonard, F. L.

    2012-03-01T23:59:59.000Z

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  19. SOIL CARBON: POLICY AND ECONOMICS GREGG MARLAND1

    E-Print Network [OSTI]

    McCarl, Bruce A.

    SOIL CARBON: POLICY AND ECONOMICS GREGG MARLAND1 , BRUCE A. MCCARL2 , UWE SCHNEIDER3 1 Oak Ridge the accumulation of additional soil carbon and early indications are that some might sequester carbon at relatively and economic issues that will determine whether programs for sequestration of carbon in agricultural soils can

  20. Numerical modeling of carbon dioxide sequestration on the rate of pressure solution creep in limestone: Preliminary results

    E-Print Network [OSTI]

    Renard, Francois; Hellmann, Roland; Collombet, Marielle; Guen, Yvi Le

    2008-01-01T23:59:59.000Z

    When carbon dioxide (CO2) is injected into an aquifer or a depleted geological reservoir, its dissolution into solution results in acidification of the pore waters. As a consequence, the pore waters become more reactive, which leads to enhanced dissolution-precipitation processes and a modification of the mechanical and hydrological properties of the rock. This effect is especially important for limestones given that the solubility and reactivity of carbonates is strongly dependent on pH and the partial pressure of CO2. The main mechanism that couples dissolution, precipitation and rock matrix deformation is commonly referred to as intergranular pressure solution creep (IPS) or pervasive pressure solution creep (PSC). This process involves dissolution at intergranular grain contacts subject to elevated stress, diffusion of dissolved material in an intergranular fluid, and precipitation in pore spaces subject to lower stress. This leads to an overall and pervasive reduction in porosity due to both grain indent...

  1. The CPA Equation of State and an Activity Coefficient Model for Accurate Molar Enthalpy Calculations of Mixtures with Carbon Dioxide and Water/Brine

    E-Print Network [OSTI]

    P. C. Myint; Y. Hao; A. Firoozabadi

    2015-04-20T23:59:59.000Z

    Thermodynamic property calculations of mixtures containing carbon dioxide (CO$_2$) and water, including brines, are essential in theoretical models of many natural and industrial processes. The properties of greatest practical interest are density, solubility, and enthalpy. Many models for density and solubility calculations have been presented in the literature, but there exists only one study, by Spycher and Pruess, that has compared theoretical molar enthalpy predictions with experimental data. In this report, we recommend two different models for enthalpy calculations: the CPA equation of state by Li and Firoozabadi, and the CO$_2$ activity coefficient model by Duan and Sun. We show that the CPA equation of state, which has been demonstrated to provide good agreement with density and solubility data, also accurately calculates molar enthalpies of pure CO$_2$, pure water, and both CO$_2$-rich and aqueous (H$_2$O-rich) mixtures of the two species. It is applicable to a wider range of conditions than the Spycher and Pruess model. In aqueous sodium chloride (NaCl) mixtures, we show that Duan and Sun's model yields accurate results for the partial molar enthalpy of CO$_2$. It can be combined with another model for the brine enthalpy to calculate the molar enthalpy of H$_2$O-CO$_2$-NaCl mixtures. We conclude by explaining how the CPA equation of state may be modified to further improve agreement with experiments. This generalized CPA is the basis of our future work on this topic.

  2. SCENARIOS FOR DEEP CARBON EMISSION REDUCTIONS FROM ELECTRICITY BY 2050 IN WESTERN NORTH AMERICA USING THE SWITCH ELECTRIC POWER SECTOR PLANNING MODEL California's Carbon Challenge Phase II Volume II

    SciTech Connect (OSTI)

    Collaboration / University of California, Berkeley; Nelson, James; Mileva, Ana; Johnston, Josiah; Kammen, Daniel; Wei, Max; Greenblatt, Jeffrey

    2014-01-01T23:59:59.000Z

    This study used a state-of-the-art planning model called SWITCH for the electric power system to investigate the evolution of the power systems of California and western North America from present-day to 2050 in the context of deep decarbonization of the economy. Researchers concluded that drastic power system carbon emission reductions were feasible by 2050 under a wide range of possible futures. The average cost of power in 2050 would range between $149 to $232 per megawatt hour across scenarios, a 21 to 88 percent increase relative to a business-as-usual scenario, and a 38 to 115 percent increase relative to the present-day cost of power. The power system would need to undergo sweeping change to rapidly decarbonize. Between present-day and 2030 the evolution of the Western Electricity Coordinating Council power system was dominated by implementing aggressive energy efficiency measures, installing renewable energy and gas-fired generation facilities and retiring coal-fired generation. Deploying wind, solar and geothermal power in the 2040 timeframe reduced power system emissions by displacing gas-fired generation. This trend continued for wind and solar in the 2050 timeframe but was accompanied by large amounts of new storage and long-distance high-voltage transmission capacity. Electricity storage was used primarily to move solar energy from the daytime into the night to charge electric vehicles and meet demand from electrified heating. Transmission capacity over the California border increased by 40 - 220 percent by 2050, implying that transmission siting, permitting, and regional cooperation will become increasingly important. California remained a net electricity importer in all scenarios investigated. Wind and solar power were key elements in power system decarbonization in 2050 if no new nuclear capacity was built. The amount of installed gas capacity remained relatively constant between present-day and 2050, although carbon capture and sequestration was installed on some gas plants by 2050.

  3. CX-008905: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Optimizing Accuracy of Determinations of Carbon Dioxide Storage Capacity and Permanence CX(s) Applied: A1, A9, B3.6 Date: 08/29/2012 Location(s): Wyoming Offices(s): National Energy Technology Laboratory

  4. Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle

    E-Print Network [OSTI]

    McGuire, A. David

    Regional carbon dynamics in monsoon Asia and its implications for the global carbon cycle Hanqin of Sciences, Beijing 100101, China c The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543 Accepted 25 July 2002 Abstract Data on three major determinants of the carbon storage in terrestrial

  5. Nonlinearity of Carbon Cycle Feedbacks KIRSTEN ZICKFELD

    E-Print Network [OSTI]

    Schmittner, Andreas

    properties and anthropogenic CO2. These findings suggest that metrics of carbon cycle feedback that pos, human activities have emitted large amounts of carbon dioxide (CO2) into the atmosphere (490 PgC fromNonlinearity of Carbon Cycle Feedbacks KIRSTEN ZICKFELD Canadian Centre for Climate Modelling

  6. Use of ARM observations and numerical models to determine radiative and latent heating profiles of mesoscale convective systems for general circulation models

    SciTech Connect (OSTI)

    Houze, Jr., Robert A. [University of Washington Dept. of Atmospheric Sciences

    2013-11-13T23:59:59.000Z

    We examined cloud radar data in monsoon climates, using cloud radars at Darwin in the Australian monsoon, on a ship in the Bay of Bengal in the South Asian monsoon, and at Niamey in the West African monsoon. We followed on with a more in-depth study of the continental MCSs over West Africa. We investigated whether the West African anvil clouds connected with squall line MCSs passing over the Niamey ARM site could be simulated in a numerical model by comparing the observed anvil clouds to anvil structures generated by the Weather Research and Forecasting (WRF) mesoscale model at high resolution using six different ice-phase microphysical schemes. We carried out further simulations with a cloud-resolving model forced by sounding network budgets over the Niamey region and over the northern Australian region. We have devoted some of the effort of this project to examining how well satellite data can determine the global breadth of the anvil cloud measurements obtained at the ARM ground sites. We next considered whether satellite data could be objectively analyzed to so that their large global measurement sets can be systematically related to the ARM measurements. Further differences were detailed between the land and ocean MCS anvil clouds by examining the interior structure of the anvils with the satellite-detected the CloudSat Cloud Profiling Radar (CPR). The satellite survey of anvil clouds in the Indo-Pacific region was continued to determine the role of MCSs in producing the cloud pattern associated with the MJO.

  7. Carbon Fiber

    ScienceCinema (OSTI)

    McGetrick, Lee

    2014-07-23T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  8. Carbon Sequestration

    SciTech Connect (OSTI)

    None

    2013-05-06T23:59:59.000Z

    Carbon Sequestration- the process of capturing the CO2 released by the burning of fossil fuels and storing it deep withing the Earth, trapped by a non-porous layer of rock.

  9. Carbon Fiber

    SciTech Connect (OSTI)

    McGetrick, Lee

    2014-04-17T23:59:59.000Z

    Lee McGetrick leads ORNL's effort to produce light, durable carbon fiber at lower cost -- a key to improvements in manufacturing that will produce more fuel-efficient vehicles and other advances.

  10. Determining Columbia and Snake River Project Tailrace and Forebay Zones of Hydraulic Influence using MASS2 Modeling

    SciTech Connect (OSTI)

    Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Perkins, William A.

    2010-12-01T23:59:59.000Z

    Although fisheries biology studies are frequently performed at US Army Corps of Engineers (USACE) projects along the Columbia and Snake Rivers, there is currently no consistent definition of the ``forebay'' and ``tailrace'' regions for these studies. At this time, each study may use somewhat arbitrary lines (e.g., the Boat Restriction Zone) to define the upstream and downstream limits of the study, which may be significantly different at each project. Fisheries researchers are interested in establishing a consistent definition of project forebay and tailrace regions for the hydroelectric projects on the lower Columbia and Snake rivers. The Hydraulic Extent of a project was defined by USACE (Brad Eppard, USACE-CENWP) as follows: The river reach directly upstream (forebay) and downstream (tailrace) of a project that is influenced by the normal range of dam operations. Outside this reach, for a particular river discharge, changes in dam operations cannot be detected by hydraulic measurement. The purpose of this study was to, in consultation with USACE and regional representatives, develop and apply a consistent set of criteria for determining the hydraulic extent of each of the projects in the lower Columbia and Snake rivers. A 2D depth-averaged river model, MASS2, was applied to the Snake and Columbia Rivers. New computational meshes were developed most reaches and the underlying bathymetric data updated to the most current survey data. The computational meshes resolved each spillway bay and turbine unit at each project and extended from project to project. MASS2 was run for a range of total river flows and each flow for a range of project operations at each project. The modeled flow was analyzed to determine the range of velocity magnitude differences and the range of flow direction differences at each location in the computational mesh for each total river flow. Maps of the differences in flow direction and velocity magnitude were created. USACE fishery biologists requested data analysis to determine the project hydraulic extent based on the following criteria: 1) For areas where the mean velocities are less than 4 ft/s, the water velocity differences between operations are not greater than 0.5 ft/sec and /or the differences in water flow direction are not greater than 10 degrees, 2) If mean water velocity is 4.0 ft/second or greater the boundary is determined using the differences in water flow direction (i.e., not greater than 10 degrees). Based on these criteria, and excluding areas with a mean velocity of less than 0.1 ft/s (within the error of the model), a final set of graphics were developed that included data from all flows and all operations. Although each hydroelectric project has a different physical setting, there were some common results. The downstream hydraulic extent tended to be greater than the hydraulic extent in the forebay. The hydraulic extent of the projects tended to be larger at the mid-range flows. At higher flows, the channel geometry tends to reduce the impact of project operations.

  11. Sandia Energy - Systems Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulation Model Energy, Power & Water Simulation Model SunCity Model Water, Energy and Carbon Sequestration Model Gila Basin-Az Water Settlement Model Electrical Grid Storage...

  12. Climate Modeling using High-Performance Computing The Center for Applied Scientific Computing (CASC) and the LLNL Climate and Carbon

    E-Print Network [OSTI]

    and NCAR in the development of a comprehensive, earth systems model. This model incorporates the most-performance climate models. Through the addition of relevant physical processes, we are developing an earth systems modeling capability as well. Our collaborators in climate research include the National Center

  13. Determining the Mechanical Constitutive Properties of Metals as Function of Strain Rate and temperature: A Combined Experimental and Modeling Approach

    SciTech Connect (OSTI)

    Ian Robertson

    2007-04-28T23:59:59.000Z

    Development and validation of constitutive models for polycrystalline materials subjected to high strain-rate loading over a range of temperatures are needed to predict the response of engineering materials to in-service type conditions. To account accurately for the complex effects that can occur during extreme and variable loading conditions, requires significant and detailed computational and modeling efforts. These efforts must be integrated fully with precise and targeted experimental measurements that not only verify the predictions of the models, but also provide input about the fundamental processes responsible for the macroscopic response. Achieving this coupling between modeling and experiment is the guiding principle of this program. Specifically, this program seeks to bridge the length scale between discrete dislocation interactions with grain boundaries and continuum models for polycrystalline plasticity. Achieving this goal requires incorporating these complex dislocation-interface interactions into the well-defined behavior of single crystals. Despite the widespread study of metal plasticity, this aspect is not well understood for simple loading conditions, let alone extreme ones. Our experimental approach includes determining the high-strain rate response as a function of strain and temperature with post-mortem characterization of the microstructure, quasi-static testing of pre-deformed material, and direct observation of the dislocation behavior during reloading by using the in situ transmission electron microscope deformation technique. These experiments will provide the basis for development and validation of physically-based constitutive models. One aspect of the program involves the direct observation of specific mechanisms of micro-plasticity, as these indicate the boundary value problem that should be addressed. This focus on the pre-yield region in the quasi-static effort (the elasto-plastic transition) is also a tractable one from an experimental and modeling viewpoint. In addition, our approach will minimize the need to fit model parameters to experimental data to obtain convergence. These are critical steps to reach the primary objective of simulating and modeling material performance under extreme loading conditions. During this project, the following achievements have been obtained: 1. Twins have been observed to act as barriers to dislocation propagation and as sources of and sinks to dislocations. 2. Nucleation of deformation twins in nitrogen strengthened steel is observed to be closely associated with planar slip bands. The appearance of long twins through heavily dislocated microstructures occurs by short twins nucleating at one slip band, propagating through the dislocation-free region, and terminating at the next slip band. This process is repeated throughout the entire grain. 3. A tamped-laser ablation loading technique has been developed to introduce high strain rate, high stress and low strains. 4. Both dislocation slip and twinning are present in high strain-rate deformed zirconium, with the relative contribution of each mode to the deformation depending on the initial texture. 5. In situ IR thermal measurements have been used to show that the majority of plastic work is dissipated as heat even under conditions in which twinning is the dominant deformation mode.

  14. Determining Greenland Ice Sheet sensitivity to regional climate change: one-way coupling of a 3-D thermo-mechanical ice sheet model with a mesoscale climate model

    E-Print Network [OSTI]

    Schlegel, Nicole-Jeanne

    2011-01-01T23:59:59.000Z

    ice sheet model with a mesoscale climate model By Nicole-ice sheet model with a mesoscale climate model Copyrightice sheet model with a mesoscale climate model by Nicole-

  15. OPTIMIZATION OF THE CATHODE LONG-TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect (OSTI)

    Dr. Ralph E. White

    2001-03-31T23:59:59.000Z

    SS 304 was encapsulated with thin layers of Co-Ni by an electroless deposition process. The corrosion behavior of SS304 and Co-Ni-SS304 was investigated in molten carbonate under cathode gas atmosphere with electrochemical and surface characterization tools. Surface modification of SS304 reduced the dissolution of chromium and nickel into the molten carbonate melt. Composition of the corrosion scale formed in case of Co-Ni-SS304 is different from SS304 and shows the presence of Co and Ni oxides while the latter shows the presence of lithium ferrite. Polarization resistance for oxygen reduction reaction and conductivity of corrosion values for the corrosion scales were obtained using impedance analysis and current-potential plots. The results indicated lower polarization resistance for oxygen reduction reaction in the case of Co-Ni-SS304 when compared to SS304. Also, the conductivity of the corrosion scales was considerably higher in case of Co-Ni-SS304 than the SS304. This study shows that modifying the current collector surface with Co-Ni coatings leads to the formation of oxide scales with improved barrier properties and electronic conductivity.

  16. Marine transportation for Carbon Capture and Sequestration (CCS)

    E-Print Network [OSTI]

    Alexandrakis, Mary-Irene

    2010-01-01T23:59:59.000Z

    The objective of this report is to determine whether opportunities to use liquefied carbon dioxide carriers as part of a carbon capture and storage system will exist over the next twenty years. Factors that encourage or ...

  17. CX-011810: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011810: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership Phase III - Subtask 1.7 CX(s) Applied: B3.1, B3.7 Date:...

  18. CX-008508: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008508: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Phase Three CX(s) Applied: B3.1, B5.3, B5.13 Date: 07...

  19. CX-008505: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-008505: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Phase Three CX(s) Applied: B3.1, B5.3, B1.3 Date: 07...

  20. CX-011464: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-011464: Categorical Exclusion Determination Midwest Regional Carbon Sequestration Partnership - Subtask 1.7 CX(s) Applied: B3.1, B3.7 Date: 10312013...

  1. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. Forenergy and could capture and sequester carbon emissions.

  2. Capturing carbon | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carbon Released: October 02, 2011 New technology enables molecular-level insight into carbon sequestration Carbon sequestration is a potential solution for reducing greenhouse...

  3. Experimental investigation and thermodynamic modeling of extraction of heavy metal ions from aqueous solutions by chelation in supercritical carbon dioxide 

    E-Print Network [OSTI]

    Uyansoy, Hakki

    1995-01-01T23:59:59.000Z

    thermodynamic model has been developed. This model predicts the system pH which is a important factor in design of metal extraction units. With the model the efficiency of the extraction with different chelating agents at different temperatures and pressures...

  4. CX-002610: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate Regional Carbon Dioxide Sequestration Potential of Ozark Plateau Aquifer System, South-Central KansasCX(s) Applied: B3.1, A9Date: 12/11/2009Location(s): Sumner County, KansasOffice(s): Fossil Energy, National Energy Technology Laboratory

  5. CX-002613: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir to Evaluate Regional Carbon Dioxide Sequestration Potential of Ozark Plateau Aquifer System, South-Central KansasCX(s) Applied: B3.1, A9Date: 12/11/2009Location(s): Sumner County, KansasOffice(s): Fossil Energy, National Energy Technology Laboratory

  6. Control of carbon balance in a silicon smelting furnace

    DOE Patents [OSTI]

    Dosaj, V.D.; Haines, C.M.; May, J.B.; Oleson, J.D.

    1992-12-29T23:59:59.000Z

    The present invention is a process for the carbothermic reduction of silicon dioxide to form elemental silicon. Carbon balance of the process is assessed by measuring the amount of carbon monoxide evolved in offgas exiting the furnace. A ratio of the amount of carbon monoxide evolved and the amount of silicon dioxide added to the furnace is determined. Based on this ratio, the carbon balance of the furnace can be determined and carbon feed can be adjusted to maintain the furnace in carbon balance.

  7. Adsorption of carbon dioxide and methane and their mixtures on an activated carbon: Simulation and experiment

    SciTech Connect (OSTI)

    Heuchel, M.; Davies, G.M.; Buss, E.; Seaton, N.A.

    1999-12-07T23:59:59.000Z

    The aim of this work is to predict the adsorption of pure-component and binary mixtures of methane and carbon dioxide in a specific activated carbon, A35/4, using grand canonical Monte Carlo (GCMC) simulation. Methane is modeled as one-center Lennard-Jones (LJ) fluid and carbon dioxide as a two-center LJ plus point quadrupole fluids. Experimental adsorption data for the system have been obtained with a new flow desorption apparatus. The pore size distribution (PSD) for the carbon was determined from both of the experimental CH{sub 4} and CO{sub 2} isotherms at 293 K. To extract numerically the PSD, GCMC-simulated isotherms for both pure components in slit-shaped pores ranging from 5.7 to 72.2 {angstrom} were used. Using only pure experimental CO{sub 2} isotherm data, it was not possible to determine a PSD that allowed a reasonable prediction of the pure methane adsorption. However, with both experimental data sets for the pure components, it was possible to derive a PSD that allowed both experimental pure-component isotherms to be fitted. With this PSD and the simulated adsorption densities in single pores, it was possible to predict in good agreement with experiment (1) the adsorption of binary mixtures of CO{sub 2} and CH{sub 4} and (2) the adsorption of both pure components at higher temperatures. However, the model was unable to reproduce precisely the experimental pressure dependence of the CO{sub 2} selectivity.

  8. Carbon supercapacitors

    SciTech Connect (OSTI)

    Delnick, F.M.

    1993-11-01T23:59:59.000Z

    Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

  9. OPTIMIZATION OF THE CATHODE LONG TERM STABILITY IN MOLTEN CARBONATE FUEL CELLS: EXPERIMENTAL STUDY AND MATHEMATICAL MODELING

    SciTech Connect (OSTI)

    Anand Durairajan; Bala Haran; Branko N. Popov; Ralph E. White

    2000-05-01T23:59:59.000Z

    The cathode materials for molten carbonate fuel cells (MCFCs) must have low dissolution rate, high structural strength and good electrical conductivity. Currently available cathodes are made of lithiated NiO which have acceptable structural strength and conductivity. However a study carried out by Orfeld et al. and Shores et al. indicated that the nickel cathodes dissolved, then precipitated and reformed as dendrites across the electrolyte matrix. This results in a decrease in cell utilization and eventually leads to shorting of the cell. The solubility of NiO was found to depend upon the acidity/basicity of the melt (basicity is directly proportional to log P{sub CO2}), carbonate composition, H{sub 2}O partial pressure and temperature. Urushibata et al. found that the dissolution of the cathode is a primary life limiting constraint of MCFCs, particularly in pressurized operation. With currently available NiO cathodes, the goal of 40,000 hours for the lifetime of MCFC appears achievable with cell operation at atmospheric pressure. However, the cell life at 10 atm and higher cell pressures is in the range between 5,000 to 10,000 hours. The overall objective of this research is to develop a superior cathode for MCFC's with improved catalytic ability, enhanced corrosion resistance with low ohmic losses, improved electronic conductivity. We also plan to understand the corrosion processes occurring at the cathode/molten carbonate interface. The following cathode materials will be subjected to detailed electrochemical, performance, structural and corrosion studies. (i) Passivated NiO alloys using chemical treatment with yttrium ion implantation and anodic yttrium molybdate treatment; (ii) Novel composite materials based on NiO and nanosized Ce, Yt, Mo; (iii) Co doped LiNiO{sub 2} LiNiO{sub 2} doped with 10 to 20% Co (LiCo{sub 0.2}NiO{sub 2}) and NiO cathodes; and (iv) CoO as a replacement for NiO. Passivation treatments will inhibit corrosion and increase the stability of the cathode at high temperatures. Deposition of refractory metals (Mo, W, Li{sub 2}NiCrO{sub 4}) will impart stability to the cathode at high temperatures. Further it will also increase the electrocatalytic activity and corrosion resistance of the cathode. Doping with Co will decrease the alloy dissolution and increase the cycle life of the cathode. In the reporting period the oxidation behavior of Ni and Co in Li + Na carbonate eutectic was investigated under oxidizing environment using cyclic voltammetry, electrochemical impedance spectroscopy and potentiodynamic technique. The open circuit potential was monitored as a function of time in order to evaluate the material's reactivity in the melt.

  10. Carbon microtubes

    DOE Patents [OSTI]

    Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

    2011-06-14T23:59:59.000Z

    A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

  11. Natural materials for carbon capture.

    SciTech Connect (OSTI)

    Myshakin, Evgeniy M. (National Energy Technology Laboratory, Pittsburgh, PA); Romanov, Vyacheslav N. (National Energy Technology Laboratory, Pittsburgh, PA); Cygan, Randall Timothy

    2010-11-01T23:59:59.000Z

    Naturally occurring clay minerals provide a distinctive material for carbon capture and carbon dioxide sequestration. Swelling clay minerals, such as the smectite variety, possess an aluminosilicate structure that is controlled by low-charge layers that readily expand to accommodate water molecules and, potentially, carbon dioxide. Recent experimental studies have demonstrated the efficacy of intercalating carbon dioxide in the interlayer of layered clays but little is known about the molecular mechanisms of the process and the extent of carbon capture as a function of clay charge and structure. A series of molecular dynamics simulations and vibrational analyses have been completed to assess the molecular interactions associated with incorporation of CO2 in the interlayer of montmorillonite clay and to help validate the models with experimental observation.

  12. Refined conceptual model for the Volatile Organic Compounds-Arid Integrated Demonstration and 200 West Area Carbon Tetrachloride Expedited Response Action

    SciTech Connect (OSTI)

    Last, G.V. [Pacific Northwest Lab., Richland, WA (United States); Rohay, V.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1993-03-01T23:59:59.000Z

    This report presents a refined geohydrologic and geochemical conceptual model of the host site (Hanford Reservation) for the Volatile Organic Compounds -- Arid Integrated Demonstration (VOC-Arid ID) and 200 West Area Carbon Tetrachloride (CCl{sub 4}) Expedited Response Action (ERA), based on the results from fiscal year 1992 site characterization activities. The ERA was initiated in December 1990 to minimize or stabilize CCl{sub 4} migration within the unsaturated (vadose) zone in the vicinity of three CCl{sub 4} disposal sites in the 200 West Area (216-Z-1A tile field, 216-Z-9 trench, and 216-Z-18 crib). Implementation of this ERA was based on concerns that CCl{sub 4} residing in the soils was continuing to spread to the groundwater and, if left unchecked, would significantly increase the area of groundwater contamination. A soil-vapor-extraction system began operating at the site in February 1992.

  13. Source Term Modeling for Evaluating the Potential Impacts to Groundwater of Fluids Escaping from a Depleted Oil Reservoir Used for Carbon Sequestration

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Brown, Christopher F.

    2014-06-13T23:59:59.000Z

    In recent years depleted oil reservoirs have received special interest as carbon storage reservoirs because of their potential to offset costs through collaboration with enhanced oil recovery projects. Modeling is currently being conducted to evaluate potential risks to groundwater associated with leakage of fluids from depleted oil reservoirs used for storage of CO2. Modeling results reported here focused on understanding how toxic organic compounds found in oil will distribute between the various phases within a storage reservoir after introduction of CO2, understanding the migration potential of these compounds, and assessing potential groundwater impacts should leakage occur. Two model scenarios were conducted to evaluate how organic components in oil will distribute among the phases of interest (oil, CO2, and brine). The first case consisted of 50 wt.% oil and 50 wt.% water; the second case was 90 wt.% CO2 and 10 wt.% oil. Several key organic compounds were selected for special attention in this study based upon their occurrence in oil at significant concentrations, relative toxicity, or because they can serve as surrogate compounds for other more highly toxic compounds for which required input data are not available. The organic contaminants of interest (COI) selected for this study were benzene, toluene, naphthalene, phenanthrene, and anthracene. Partitioning of organic compounds between crude oil and supercritical CO2 was modeled using the Peng-Robinson equation of state over temperature and pressure conditions that represent the entire subsurface system (from those relevant to deep geologic carbon storage environments to near surface conditions). Results indicate that for a typical set of oil reservoir conditions (75°C, and 21,520 kPa) negligible amounts of the COI dissolve into the aqueous phase. When CO2 is introduced into the reservoir such that the final composition of the reservoir is 90 wt.% CO2 and 10 wt.% oil, a significant fraction of the oil dissolves into the vapor phase. As the vapor phase moves up through the stratigraphic column, pressures and temperatures decrease, resulting in significant condensation of oil components. The heaviest organic components condense early in this process (at higher pressures and temperatures), while the lighter components tend to remain in the vapor phase until much lower pressures and temperatures are reached. Based on the model assumptions, the final concentrations of COI to reach an aquifer at 1,520 kPa and 25°C were quite significant for benzene and toluene, whereas the concentrations of polynuclear aromatic hydrocarbons that reach the aquifer were very small. This work demonstrates a methodology that can provide COI source term concentrations in CO2 leaking from a reservoir and entering an overlying aquifer for use in risk assessments.

  14. Carbon Storage Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carbon Sequestration Partnership MSU . . . . . . . . . . . . . . . . . . . . . . . Montana State University MVA . . . . . . . . . . . . . . . . . . . . . . . Monitoring,...

  15. Thermodynamics of carbon dioxide in aqueous piperazine/potassium carbonate systems at stripper conditions

    E-Print Network [OSTI]

    Rochelle, Gary T.

    GHGT-8 1 Thermodynamics of carbon dioxide in aqueous piperazine/potassium carbonate systems thermodynamic models. The range in CO2 solubility measured from 100 ­ 120 o C for K+ /PZ mixtures was from (0 and Technology to expand the thermodynamic data of for potassium carbonate/piperazine/CO2 with measurements of CO

  16. Low Carbon Fuel Standards

    E-Print Network [OSTI]

    Sperling, Dan; Yeh, Sonia

    2009-01-01T23:59:59.000Z

    gas, or even coal with carbon capture and sequestration. Afuels that facilitate carbon capture and sequestration. For

  17. Methanation of Carbon Dioxide

    E-Print Network [OSTI]

    Goodman, Daniel Jacob

    2013-01-01T23:59:59.000Z

    cycle plants, possibly with carbon capture and storage (CCS)natural gas plant with carbon capture and storage technology

  18. Methanation of Carbon Dioxide

    E-Print Network [OSTI]

    Goodman, Daniel Jacob

    2013-01-01T23:59:59.000Z

    gas plant with carbon capture and storage technology werewith carbon capture and storage (CCS) technology, to replace

  19. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    SciTech Connect (OSTI)

    Larry G. Felix; P. Vann Bush; Stephen Niksa

    2003-04-30T23:59:59.000Z

    In full-scale boilers, the effect of biomass cofiring on NO{sub x} and unburned carbon (UBC) emissions has been found to be site-specific. Few sets of field data are comparable and no consistent database of information exists upon which cofiring fuel choice or injection system design can be based to assure that NOX emissions will be minimized and UBC be reduced. This report presents the results of a comprehensive project that generated an extensive set of pilot-scale test data that were used to validate a new predictive model for the cofiring of biomass and coal. All testing was performed at the 3.6 MMBtu/hr (1.75 MW{sub t}) Southern Company Services/Southern Research Institute Combustion Research Facility where a variety of burner configurations, coals, biomasses, and biomass injection schemes were utilized to generate a database of consistent, scalable, experimental results (422 separate test conditions). This database was then used to validate a new model for predicting NO{sub x} and UBC emissions from the cofiring of biomass and coal. This model is based on an Advanced Post-Processing (APP) technique that generates an equivalent network of idealized reactor elements from a conventional CFD simulation. The APP reactor network is a computational environment that allows for the incorporation of all relevant chemical reaction mechanisms and provides a new tool to quantify NOx and UBC emissions for any cofired combination of coal and biomass.

  20. High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures

    E-Print Network [OSTI]

    Kammen, Daniel M.

    electric power system models primarily address either day-to-day operation or long-term capacity planningHigh-resolution modeling of the western North American power system demonstrates low-cost and low greenhouse gas emissions. Exploiting intermittent renewable energy resources demands power system planning

  1. Carbon Additionality: Discussion Paper

    E-Print Network [OSTI]

    Carbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 CarbonFix Standard (CFS) 28 Climate, Community and Biodiversity Standard (CCBS) 28 Forest Carbon Standard (FCS) 28

  2. Multiscale Methods for Modeling Fluid Flow Through Naturally Fractured Carbonate Karst P. Popov, G. Qin, L. Bi, Y. Efendiev, R. Ewing, Institute for Scientific Computation, Texas A&M University; Z. Kang, J. Li,

    E-Print Network [OSTI]

    Ewing, Richard E.

    reservoir conditions, such as partially filled fractures. Introduction Naturally fractured karst reservoirsSPE 110778 Multiscale Methods for Modeling Fluid Flow Through Naturally Fractured Carbonate Karst Reservoirs P. Popov, G. Qin, L. Bi, Y. Efendiev, R. Ewing, Institute for Scientific Computation, Texas A

  3. Metal Carbonation of Forsterite in Supercritical CO2 and H2O...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    study fundamental mineral carbonation processes and reaction extent relevant to geologic carbon sequestration (GCS) using a model silicate mineral forsterite (Mg2SiO4)+supercritic...

  4. Carbon Markets and Technological Innovation

    E-Print Network [OSTI]

    Weber, T A; Neuhoff, Karsten

    www.eprg.group.cam.ac.uk E P R G W O R K IN G P A P E R N O N -T E C H N IC A L S U M M A R Y Carbon Markets and Technological Innovation EPRG Working Paper 0917 Cambridge Working Paper in Economics 0932 Thomas A. Weber... and Karsten Neuhoff This paper examines how considering firm-level innovation in carbon-abatement technologies influences the optimal design choice for carbon pricing. It builds on Weitzman’s model (1974) that shows in what instances cap and trade...

  5. CX-011119: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Physics-Based Reliability Models for Supercritical-Carbon Dioxide Turbomachinery Components CX(s) Applied: A9, B3.6 Date: 08/30/2013 Location(s): New York Offices(s): Golden Field Office

  6. CX-008441: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir (Task 17 - Office Work) CX(s) Applied: A9, A11 Date: 06/26/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  7. CX-008440: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Modeling Carbon Dioxide Sequestration in Saline Aquifer and Depleted Oil Reservoir (Task 17 - Seismic Survey) CX(s) Applied: B3.1 Date: 06/26/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory

  8. The Role of Circulation Features on Black Carbon Transport into the Arctic in the Community Atmosphere Model Version 5 (CAM5)

    SciTech Connect (OSTI)

    Ma, Po-Lun; Rasch, Philip J.; Wang, Hailong; Zhang, Kai; Easter, Richard C.; Tilmes, S.; Fast, Jerome D.; Liu, Xiaohong; Yoon, Jin-Ho; Lamarque, Jean-Francois

    2013-05-28T23:59:59.000Z

    Current climate models generally under-predict the surface concentration of black carbon (BC) in the Arctic due to the uncertainties associated with emissions, transport, and removal. This bias is also present in the Community Atmosphere Model Version 5.1 (CAM5). In this study, we investigate the uncertainty of Arctic BC due to transport processes simulated by CAM5 by configuring the model to run in an “offline mode” in which the large-scale circulations are prescribed. We compare the simulated BC transport when the offline model is driven by the meteorology predicted by the standard free-running CAM5 with simulations where the meteorology is constrained to agree with reanalysis products. Some circulation biases are apparent: the free-running CAM5 produces about 50% less transient eddy transport of BC than the reanalysis-driven simulations, which may be attributed to the coarse model resolution insufficient to represent eddies. Our analysis shows that the free-running CAM5 reasonably captures the essence of the Arctic Oscillation (AO), but some discernable differences in the spatial pattern of the AO between the free-running CAM5 and the reanalysis-driven simulations result in significantly different AO modulation of BC transport over Northeast Asia and Eastern Europe. Nevertheless, we find that the overall climatological circulation patterns simulated by the free-running CAM5 generally resembles those from the reanalysis products, and BC transport is very similar in both simulation sets. Therefore, the simulated circulation features regulating the long-range BC transport is unlikely the most important cause of the large under-prediction of surface BC concentration in the Arctic.

  9. CX-002608: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    and Accounting of Carbon Dioxide Sequestered in Geologic Systems with Multicomponent Seismic Technology and Rock Physics Modeling CX(s) Applied: A9 Date: 12112009 Location(s):...

  10. Saturn's internal structure and carbon enrichment

    E-Print Network [OSTI]

    Olivier Mousis; Yann Alibert; Willy Benz

    2005-11-14T23:59:59.000Z

    We use the clathrate hydrate trapping theory to calculate the enrichments in O, N, S, Xe, Ar and Kr compared to solar in Saturn's atmosphere. For this, we calibrate our calculations using two different carbon abundance determinations that cover the domain of measurements published in the last decades: one derived from the NASA $Kuiper$ Airborne Observatory measurements and the other obtained from the Cassini spacecraft observations. We show that these two different carbon abundances imply quite a different minimum heavy element content for Saturn. Using the Kuiper Airborne Observatory measurement for calibration, the amount of ices accreted by Saturn is found to be consistent with current interior models of this planet. On the other hand, using the Cassini measurement for calibration leads to an ice content in the planet's envelope which is higher than the one derived from the interior models. In this latter case, reconciling the interior models with the amount of C measured by the Cassini spacecraft requires that significant differential sedimentation of water and volatile species have taken place in Saturn's interior during its lifetime.

  11. Scale Up of Novel, Low-Cost Carbon Fibers Leading to High-Volume...

    Broader source: Energy.gov (indexed) [DOE]

    low-costcarbonfibersfactsheet.pdf More Documents & Publications CX-009154: Categorical Exclusion Determination Lower Cost Carbon Fiber Precursors Development and...

  12. Carbon isotope fractionation in plants. Final technical report, June 1, 1983-May 31, 1986

    SciTech Connect (OSTI)

    O'Leary, M.H.

    1986-09-01T23:59:59.000Z

    Plants fractionate carbon isotopes during photosynthesis in ways which reflect photosynthetic pathway and environment. The object of our work is to develop methods for using this isotope fractionation to give information about how the components of the carbon fixation process (diffusion, carboxylation, etc.) vary with species, environment, and other variables. These studies provide important information regarding environmental control of the efficiency of photosynthesis as well as information regarding changes in photosynthesis which can be expected in coming years as atmospheric carbon dioxide levels increase. To this end, we have developed quantitative models for carbon isotope fractionation which describe this process in terms of rates of diffusion, carboxylation, and other steps. We have developed experimental approaches which focus on the initial events in carbon dioxide fixation and enable us to determine the relative rates of the various individual processes involved. Our approaches are unique in that they provide a view of the carbon isotope fractionation process over a period of a few hours, whereas combustion methods used by previous investigators provide only a long-term view of the carbon isotope fractionation process. We have also developed other methods using stable isotopes which rely on NMR and mass spectral measurements to study plant metabolism. 61 refs., 5 figs., 4 tabs.

  13. Semi-analytical model of brine and CO2 leakage through an abandoned plugged well. Applications for determining an Area of Review and CO2 leakage rate

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Semi-analytical model of brine and CO2 leakage through an abandoned plugged well. Applications for determining an Area of Review and CO2 leakage rate Arnaud Réveillère, Jérémy Rohmer, Frédéric Wertz / contact the leak, and of CO2,g as a first approach. Compared to the state of the art, it adds the possibility

  14. State-Of-The-Art in Permeability Determination From Well Log Data: Part 2-Verifiable, Accurate Permeability Predictions, the Touch-Stone of All Models

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    SPE 30979 State-Of-The-Art in Permeability Determination From Well Log Data: Part 2- Verifiable prediction from well log data, is accurate and verifiable prediction of permeability for wells from which only the well log data is available. So far all the available models and techniques have been tried

  15. be explained by the indirect aerosol cloud effect. The use of a parcel model to determine the cloud droplet number concentration

    E-Print Network [OSTI]

    Reiners, Peter W.

    cloud properties and their effect on the surface radiation budget: selected cases from FIRE ACE. Jbe explained by the indirect aerosol cloud effect. The use of a parcel model to determine the cloud droplet number concentration enables us to separate the effects of the cloud LWP and cloud droplet number

  16. Carbon Trading, Carbon Taxes and Social Discounting

    E-Print Network [OSTI]

    Weiblen, George D

    Carbon Trading, Carbon Taxes and Social Discounting Elisa Belfiori belf0018@umn.edu University of Minnesota Abstract This paper considers the optimal design of policies to carbon emissions in an economy, such as price or quantity controls on the net emissions of carbon, are insufficient to achieve the social

  17. Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration

    E-Print Network [OSTI]

    Bau, Domenico A.

    Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration of Geological Carbon Sequestration Article Type: Manuscript Keywords: Semi-Analytical Modeling; Iterative Methods; Geological Carbon Sequestration; Injection Site Assessment Corresponding Author: Brent Cody

  18. Public Review Draft: A Method for Assessing Carbon Stocks, Carbon

    E-Print Network [OSTI]

    Public Review Draft: A Method for Assessing Carbon Stocks, Carbon Sequestration, and Greenhouse, and Zhu, Zhiliang, 2010, Public review draft; A method for assessing carbon stocks, carbon sequestration

  19. Carbon-Optimal and Carbon-Neutral Supply Chains

    E-Print Network [OSTI]

    Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

    2011-01-01T23:59:59.000Z

    Li, M. Daskin. 2009. Carbon Footprint and the Management ofThe Importance of Carbon Footprint Estimation Boundaries.Carbon accounting and carbon footprint - more than just

  20. A Model for Parent-Teacher Collaboration to Promote Self-Determination in Young Children With Disabilities

    E-Print Network [OSTI]

    Lee, Suk-Hyang; Palmer, Susan B.; Turnbull, Ann P.; Wehmeyer, Michael L.

    2006-01-01T23:59:59.000Z

    (Powers et al., 1996; Warger, 2001). Provide parents with opportuni- ties to examine their behefs about self-determination and cultural values for their children (Luft, 2001). Many parents want their children to become more self-determined, so teach- ers...-determination of students with disdhilities. Korean Journal of Special Education, 38(4], 369-390. Luft, P. (2001). Multicultural competence in transition planning processes. In R- W. Flexer, T. J. Simmons, P. Luft, & R. M. Baer (Eds.), TYansition planning for sec- ondary...

  1. Enhanced Performance Assessment System (EPAS) for carbon sequestration.

    SciTech Connect (OSTI)

    Wang, Yifeng; Sun, Amy Cha-Tien; McNeish, Jerry A. (Sandia National Laboratories, Livermore, CA); Dewers, Thomas A.; Hadgu, Teklu; Jove-Colon, Carlos F.

    2010-09-01T23:59:59.000Z

    Carbon capture and sequestration (CCS) is an option to mitigate impacts of atmospheric carbon emission. Numerous factors are important in determining the overall effectiveness of long-term geologic storage of carbon, including leakage rates, volume of storage available, and system costs. Recent efforts have been made to apply an existing probabilistic performance assessment (PA) methodology developed for deep nuclear waste geologic repositories to evaluate the effectiveness of subsurface carbon storage (Viswanathan et al., 2008; Stauffer et al., 2009). However, to address the most pressing management, regulatory, and scientific concerns with subsurface carbon storage (CS), the existing PA methodology and tools must be enhanced and upgraded. For example, in the evaluation of a nuclear waste repository, a PA model is essentially a forward model that samples input parameters and runs multiple realizations to estimate future consequences and determine important parameters driving the system performance. In the CS evaluation, however, a PA model must be able to run both forward and inverse calculations to support optimization of CO{sub 2} injection and real-time site monitoring as an integral part of the system design and operation. The monitoring data must be continually fused into the PA model through model inversion and parameter estimation. Model calculations will in turn guide the design of optimal monitoring and carbon-injection strategies (e.g., in terms of monitoring techniques, locations, and time intervals). Under the support of Laboratory-Directed Research & Development (LDRD), a late-start LDRD project was initiated in June of Fiscal Year 2010 to explore the concept of an enhanced performance assessment system (EPAS) for carbon sequestration and storage. In spite of the tight time constraints, significant progress has been made on the project: (1) Following the general PA methodology, a preliminary Feature, Event, and Process (FEP) analysis was performed for a hypothetical CS system. Through this FEP analysis, relevant scenarios for CO{sub 2} release were defined. (2) A prototype of EPAS was developed by wrapping an existing multi-phase, multi-component reservoir simulator (TOUGH2) with an uncertainty quantification and optimization code (DAKOTA). (3) For demonstration, a probabilistic PA analysis was successfully performed for a hypothetical CS system based on an existing project in a brine-bearing sandstone. The work lays the foundation for the development of a new generation of PA tools for effective management of CS activities. At a top-level, the work supports energy security and climate change/adaptation by furthering the capability to effectively manage proposed carbon capture and sequestration activities (both research and development as well as operational), and it greatly enhances the technical capability to address this national problem. The next phase of the work will include (1) full capability demonstration of the EPAS, especially for data fusion, carbon storage system optimization, and process optimization of CO{sub 2} injection, and (2) application of the EPAS to actual carbon storage systems.

  2. Robust Growth Determinants

    E-Print Network [OSTI]

    Doppelhofer, Gernot; Weeks, Melvyn

    2011-01-31T23:59:59.000Z

    This paper investigates the robustness of determinants of economic growth in the presence of model uncertainty, parameter heterogeneity and outliers. The robust model averaging approach introduced in the paper uses a flexible and parsimonious...

  3. High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures

    E-Print Network [OSTI]

    Kammen, Daniel M.

    of existing generation technologies. Under a range of resource cost scenarios, most coal power plants would. We use a mixed-integer linear programming model ­ SWITCH ­ to analyze least- cost generation, storage be replaced by solar, wind, gas, and/or nuclear generation, with intermittent renewable sources providing

  4. A modelling approach to carbon, water and energy feedbacks and interactions across the land-atmosphere interface. 

    E-Print Network [OSTI]

    Hill, Timothy C

    2007-01-01T23:59:59.000Z

    The climate is changing and the rate of this change is expected to increase. In the 20th century global surface temperatures rose by 0.6 (±0.2) K. Based on current model predictions, and economic forecasts, global temperature ...

  5. DEVELOPING A SET OF REGULATORY ANALOGS FOR CARBON SEQUESTRATION

    E-Print Network [OSTI]

    DEVELOPING A SET OF REGULATORY ANALOGS FOR CARBON SEQUESTRATION D.M. Reiner1 , H.J. Herzog2 1 Judge Avenue, Cambridge, MA 02139, USA, email: hjherzog@mit.edu ABSTRACT Carbon capture and sequestration variables critical for determining the success of carbon sequestration as a viable climate policy option

  6. A SEARCH FOR REGULATORY ANALOGS TO CARBON SEQUESTRATION

    E-Print Network [OSTI]

    A SEARCH FOR REGULATORY ANALOGS TO CARBON SEQUESTRATION D.M. Reiner and H.J. Herzog1 1 Laboratory for Energy and the Environment, M.I.T., Cambridge, MA. 02139, USA ABSTRACT Carbon capture and sequestration for determining the success of carbon sequestration as a viable climate policy option. INTRODUCTION To date

  7. Belowground Carbon Cycling Processes at the Molecular Scale: An EMSL Science Theme Advisory Panel Workshop

    SciTech Connect (OSTI)

    Hess, Nancy J.; Brown, Gordon E.; Plata, Charity

    2014-02-21T23:59:59.000Z

    As part of the Belowground Carbon Cycling Processes at the Molecular Scale workshop, an EMSL Science Theme Advisory Panel meeting held in February 2013, attendees discussed critical biogeochemical processes that regulate carbon cycling in soil. The meeting attendees determined that as a national scientific user facility, EMSL can provide the tools and expertise needed to elucidate the molecular foundation that underlies mechanistic descriptions of biogeochemical processes that control carbon allocation and fluxes at the terrestrial/atmospheric interface in landscape and regional climate models. Consequently, the workshop's goal was to identify the science gaps that hinder either development of mechanistic description of critical processes or their accurate representation in climate models. In part, this report offers recommendations for future EMSL activities in this research area. The workshop was co-chaired by Dr. Nancy Hess (EMSL) and Dr. Gordon Brown (Stanford University).

  8. A Risk-Based System Analysis Framework for Geological Carbon Sequestration.

    SciTech Connect (OSTI)

    Kobos, Peter H.; Klotz, Richard

    2006-10-01T23:59:59.000Z

    The purpose of this project was to characterize existing carbon capture and sequestration technologies at a high level, develop an analytical framework to help assess the technologies, and implement the framework in a system dynamics model. The first year of this project succeeded in characterizing existing technologies to help focus the analysis on power plants. The assessment also helped determine which technologies are largely accepted by the carbon capture research community as relatively proven technologies, discuss the salient performance metrics, and assess the associated economics. With this information, an analytical framework was developed to assess the technologies from a systems view perspective. With this framework, the Carbon Sequestration and Risk Model (CSR) was developed to assess performance and economic risk issues as they relate to global atmospheric CO2 concentration goals and single plant scale projects to characterize the economics of these systems.

  9. THE GALACTIC R CORONAE BOREALIS STARS: THE C{sub 2} SWAN BANDS, THE CARBON PROBLEM, AND THE {sup 12}C/{sup 13}C RATIO

    SciTech Connect (OSTI)

    Hema, B. P.; Pandey, Gajendra [Indian Institute of Astrophysics, Bangalore Karnataka 560034 (India); Lambert, David L., E-mail: hema@iiap.res.in, E-mail: pandey@iiap.res.in, E-mail: dll@astro.as.utexas.edu [W.J. McDonald Observatory, University of Texas at Austin, Austin, TX 78712-1083 (United States)

    2012-03-10T23:59:59.000Z

    Observed spectra of R Coronae Borealis (RCB) and hydrogen-deficient carbon (HdC) stars are analyzed by synthesizing the C{sub 2} Swan bands (1, 0), (0, 0), and (0, 1) using our detailed line list and the Uppsala model atmospheres. The (0, 1) and (0, 0) C{sub 2} bands are used to derive the {sup 12}C abundance, and the (1, 0) {sup 12}C{sup 13}C band to determine the {sup 12}C/{sup 13}C ratios. The carbon abundance derived from the C{sub 2} Swan bands is about the same for the adopted models constructed with different carbon abundances over the range 8.5 (C/He = 0.1%) to 10.5 (C/He = 10%). Carbon abundances derived from C I lines are about a factor of four lower than the carbon abundance of the adopted model atmosphere over the same C/He interval, as reported by Asplund et al., who dubbed the mismatch between adopted and derived C abundance as the 'carbon problem'. In principle, the carbon abundances obtained from C{sub 2} Swan bands and that assumed for the model atmosphere can be equated for a particular choice of C/He that varies from star to star. Then, the carbon problem for C{sub 2} bands is eliminated. However, such C/He ratios are in general less than those of the extreme helium stars, the seemingly natural relatives to the RCB and HdC stars. A more likely solution to the C{sub 2} carbon problem may lie in a modification of the model atmosphere's temperature structure. The derived carbon abundances and the {sup 12}C/{sup 13}C ratios are discussed in light of the double degenerate and the final flash scenarios.

  10. Analysis of Strategies of Companies under Carbon Constraint: Relationship between Profit Structure of Companies and Carbon/Fuel Price Uncertainty

    E-Print Network [OSTI]

    Hashimoto, Susumu

    This paper examines the relationship between future carbon prices and the expected profit of companies by case studies with model companies. As the future carbon price will vary significantly in accordance with the political ...

  11. QUANTIFYING FOREST ABOVEGROUND CARBON POOLS AND FLUXES USING MULTI-TEMPORAL LIDAR A report on field monitoring, remote sensing MMV, GIS integration, and modeling results for forestry field validation test to quantify aboveground tree biomass and carbon

    SciTech Connect (OSTI)

    Lee Spangler; Lee A. Vierling; Eva K. Stand; Andrew T. Hudak; Jan U.H. Eitel; Sebastian Martinuzzi

    2012-04-01T23:59:59.000Z

    Sound policy recommendations relating to the role of forest management in mitigating atmospheric carbon dioxide (CO{sub 2}) depend upon establishing accurate methodologies for quantifying forest carbon pools for large tracts of land that can be dynamically updated over time. Light Detection and Ranging (LiDAR) remote sensing is a promising technology for achieving accurate estimates of aboveground biomass and thereby carbon pools; however, not much is known about the accuracy of estimating biomass change and carbon flux from repeat LiDAR acquisitions containing different data sampling characteristics. In this study, discrete return airborne LiDAR data was collected in 2003 and 2009 across {approx}20,000 hectares (ha) of an actively managed, mixed conifer forest landscape in northern Idaho, USA. Forest inventory plots, established via a random stratified sampling design, were established and sampled in 2003 and 2009. The Random Forest machine learning algorithm was used to establish statistical relationships between inventory data and forest structural metrics derived from the LiDAR acquisitions. Aboveground biomass maps were created for the study area based on statistical relationships developed at the plot level. Over this 6-year period, we found that the mean increase in biomass due to forest growth across the non-harvested portions of the study area was 4.8 metric ton/hectare (Mg/ha). In these non-harvested areas, we found a significant difference in biomass increase among forest successional stages, with a higher biomass increase in mature and old forest compared to stand initiation and young forest. Approximately 20% of the landscape had been disturbed by harvest activities during the six-year time period, representing a biomass loss of >70 Mg/ha in these areas. During the study period, these harvest activities outweighed growth at the landscape scale, resulting in an overall loss in aboveground carbon at this site. The 30-fold increase in sampling density between the 2003 and 2009 did not affect the biomass estimates. Overall, LiDAR data coupled with field reference data offer a powerful method for calculating pools and changes in aboveground carbon in forested systems. The results of our study suggest that multitemporal LiDAR-based approaches are likely to be useful for high quality estimates of aboveground carbon change in conifer forest systems.

  12. PUBLISHED ONLINE: XX MONTH XXXX | DOI: 10.1038/NCLIMATE1951 Global soil carbon projections are improved by

    E-Print Network [OSTI]

    German, Donovan P.

    Society relies on Earth system models (ESMs) to project future climate and carbon cycle feedbacks. However

  13. PUBLISHED ONLINE: 28 JULY 2013 | DOI: 10.1038/NCLIMATE1951 Global soil carbon projections are improved by

    E-Print Network [OSTI]

    Saleska, Scott

    Society relies on Earth system models (ESMs) to project future climate and carbon (C) cycle feedbacks

  14. The determination of regionalised wind roses for the UK, for use with the HARM acid depositional model.

    E-Print Network [OSTI]

    Metcalfe Dr. Claire Jarvis & Dr. Jim Nicholson #12;Abstract- The Hull acid rain (HARM) depositional model of Geography) is not permitted. #12;1 INTRODUCTION The Hull acid rain (HARM) Lagrangian receptor depositional, 2002, p1 & 6). Other acid rain models that use the Lagrangian receptor technique such as the original

  15. Risk-Informed Monitoring, Verification and Accounting (RI-MVA). An NRAP White Paper Documenting Methods and a Demonstration Model for Risk-Informed MVA System Design and Operations in Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Sadovsky, Artyom; Sullivan, E. C.; Anderson, Richard M.

    2011-09-30T23:59:59.000Z

    This white paper accompanies a demonstration model that implements methods for the risk-informed design of monitoring, verification and accounting (RI-MVA) systems in geologic carbon sequestration projects. The intent is that this model will ultimately be integrated with, or interfaced with, the National Risk Assessment Partnership (NRAP) integrated assessment model (IAM). The RI-MVA methods described here apply optimization techniques in the analytical environment of NRAP risk profiles to allow systematic identification and comparison of the risk and cost attributes of MVA design options.

  16. CALIFORNIA CARBON SEQUESTRATION THROUGH

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN WASHINGTON. Carbon Sequestration Through Changes in Land Use in Washington: Costs and Opportunities. California for Terrestrial Carbon Sequestration in Oregon. Report to Winrock International. #12;ii #12;iii Preface

  17. Photophysics of carbon nanotubes

    E-Print Network [OSTI]

    Samsonidze, Georgii G

    2007-01-01T23:59:59.000Z

    This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in ...

  18. Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production

    E-Print Network [OSTI]

    Narasayya, Vivek

    #12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

  19. Carbon Code Requirements for voluntary carbon sequestration projects

    E-Print Network [OSTI]

    Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon leakage 12 3.4 Project carbon sequestration 12 3.5 Net carbon sequestration 13 4. Environmental quality 14

  20. area determines forest: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    has been inadequate to accurately determine forest carbon stocks, much less the effects logging is known to be widespread, the exact areas of tropical forest subject to logging...

  1. Implementation and Evaluation of the Virtual Fields Method: Determining Constitutive Model Parameters From Full-Field Deformation Data.

    SciTech Connect (OSTI)

    Kramer, Sharlotte Lorraine Bolyard; Scherzinger, William M.

    2014-09-01T23:59:59.000Z

    The Virtual Fields Method (VFM) is an inverse method for constitutive model parameter identication that relies on full-eld experimental measurements of displacements. VFM is an alternative to standard approaches that require several experiments of simple geometries to calibrate a constitutive model. VFM is one of several techniques that use full-eld exper- imental data, including Finite Element Method Updating (FEMU) techniques, but VFM is computationally fast, not requiring iterative FEM analyses. This report describes the im- plementation and evaluation of VFM primarily for nite-deformation plasticity constitutive models. VFM was successfully implemented in MATLAB and evaluated using simulated FEM data that included representative experimental noise found in the Digital Image Cor- relation (DIC) optical technique that provides full-eld displacement measurements. VFM was able to identify constitutive model parameters for the BCJ plasticity model even in the presence of simulated DIC noise, demonstrating VFM as a viable alternative inverse method. Further research is required before VFM can be adopted as a standard method for constitu- tive model parameter identication, but this study is a foundation for ongoing research at Sandia for improving constitutive model calibration.

  2. Method of making carbon-carbon composites

    DOE Patents [OSTI]

    Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

    1993-01-01T23:59:59.000Z

    A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

  3. Carbon Fiber Technology Facility

    Broader source: Energy.gov (indexed) [DOE]

    The Carbon Fiber Technology Facility is relevant in proving the scale- up of low-cost carbon fiber precursor materials and advanced manufacturing technologies * Significant...

  4. A multiconductor model for determining the response of power transmission and distribution lines to a high altitude electromagnetic pulse (HEMP)

    SciTech Connect (OSTI)

    Tesche, F.M.; Barnes, P.R.

    1988-01-01T23:59:59.000Z

    A calculation model for electromagnetic pulse coupling to transmission and transmission line is discussed. Sample calculations for a 345 kV transmission line are given. 3 refs., 8 figs.

  5. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    SciTech Connect (OSTI)

    Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

    2009-04-15T23:59:59.000Z

    The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

  6. Carbon Capture (Carbon Cycle 2.0)

    ScienceCinema (OSTI)

    Smit, Berend

    2011-06-08T23:59:59.000Z

    Berend Smit speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 3, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

  7. Managing Commercial Tree Species for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns

    SciTech Connect (OSTI)

    Gary D. Kronrad

    2006-09-19T23:59:59.000Z

    A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the tree species, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each species, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.

  8. CX-008478: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008478: Categorical Exclusion Determination Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: A9, B3.1, B5.3...

  9. CX-008477: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008477: Categorical Exclusion Determination Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: A9, B3.1, B3.7,...

  10. CX-008474: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008474: Categorical Exclusion Determination Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: B1.15, B3.6,...

  11. CX-008475: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    CX-008475: Categorical Exclusion Determination Small Scale Field Test Demonstrating Carbon Dioxide Sequestration in the Arbuckle Saline Aquifer CX(s) Applied: A9, B3.1, B3.7,...

  12. CX-011805: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination Carbon Dioxide Capture By Cold Membrane Operation with Actual Coal-Fired Power Plant Flue Gas CX(s) Applied: A1, A9, B3.6, B5.5 Date: 01282014...

  13. CX-011017: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Distributed Fiber Optic Arrays: Integrated Temperature and Seismic Sensing for Detection of Carbon Dioxide Flow.. CX(s) Applied: B3.6, B3.11 Date: 09...

  14. CX-011016: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination Distributed Fiber Optic Arrays: Integrated Temperature and Seismic Sensing for Detection of Carbon Dioxide Flow.. CX(s) Applied: B3.6, B3.11 Date: 09...

  15. Determining Greenland Ice Sheet sensitivity to regional climate change: one-way coupling of a 3-D thermo-mechanical ice sheet model with a mesoscale climate model

    E-Print Network [OSTI]

    Schlegel, Nicole-Jeanne

    2011-01-01T23:59:59.000Z

    in running RCM’s over Greenland to produce high-qualityoutlet glaciers. For Greenland, this detail is specificallyCurrently, no coupled Greenland Ice Sheet model experiment

  16. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

    1997-05-06T23:59:59.000Z

    Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

  17. Composite carbon foam electrode

    DOE Patents [OSTI]

    Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

    1997-01-01T23:59:59.000Z

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  18. Structural response of oxidation resistant carbon-carbon composites

    E-Print Network [OSTI]

    Ashley, Timothy Harold

    1996-01-01T23:59:59.000Z

    subjected to thermo-mechanical loading. The analytical models are compared to test data to verify the predictions of the lamina response. The material system studied is HITCO 2D CC137EH, highly inhibited, eight harness satin weave, RT42 CVD SiC coated carbon...

  19. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    independent budgeting of fossil fuel CO 2 over Europe by (CO2008), Where do fossil fuel carbon dioxide emissions from2004), Estimates of annual fossil-fuel CO 2 emitted for each

  20. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    independent budgeting of fossil fuel CO 2 over Europe by (CO2008 Where do fossil fuel carbon dioxide emissions frompatterns and mixing of fossil fuel-derived CO 2 is important

  1. Total organic carbon as an indicator of wood delignification

    SciTech Connect (OSTI)

    Genco, J.M.; Hassler, J.C.; Busayasakul, N.

    1984-07-01T23:59:59.000Z

    Kraft pulping experiments were performed in a 12-liter electrically heated laboratory digester to determine pulp yields and residual lignin content (kappa number) as a function of time. Samples of the pulp and the black liquor were analyzed for total organic carbon (TOC) content by oxidizing the samples in a combustion furnace and measuring the released CO/sub 2/ gravimetrically. The experimental data on TOC were correlated with kappa number and yield. Results can be explained satisfactorily using a mathematical model based upon the principle of conservation of mass. The TOC content of black liquor appears to be a useful parameter for batch digester control. 17 references.

  2. A Model of Transient Thermal Transport Phenomena Applied to the Carbonation and Calcination of a Sorbent Particle for Calcium Oxide Looping CO2 Capture

    E-Print Network [OSTI]

    to form calcium carbonate (CaCO3) in the exothermic, non-solar carbonation reaction, CaO + CO2 CaCO3, ¯h0 CO2 and regener- ated CaO sorbent in the endothermic, solar-driven calcination reaction, CaCO3 Ca consists of two solid-phase species, CaCO3 and CaO, and two fluid-phase species, CO2 and air. The numerical

  3. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation

    SciTech Connect (OSTI)

    Deo, M.D.

    2001-01-12T23:59:59.000Z

    The objective of this project was to identify conditions at which carbon dioxide induced precipitation occurred in crude oils. Establishing compositions of the relevant liquid and solid phases was planned. Other goals of the project were to determine if precipitation occurred in cores and to implement thermodynamic and compositional models to examine the phenomenon. Exploring kinetics of precipitation was also one of the project goals. Crude oil from the Rangely Field (eastern Colorado) was used as a prototype.

  4. Quantitative laboratory measurements of biogeochemical processes controlling biogenic calcite carbon sequestration.

    SciTech Connect (OSTI)

    Zendejas, Frank; Lane, Todd W.; Lane, Pamela D.

    2011-01-01T23:59:59.000Z

    The purpose of this LDRD was to generate data that could be used to populate and thereby reduce the uncertainty in global carbon cycle models. These efforts were focused on developing a system for determining the dissolution rate of biogenic calcite under oceanic pressure and temperature conditions and on carrying out a digital transcriptomic analysis of gene expression in response to changes in pCO2, and the consequent acidification of the growth medium.

  5. A model for determining shelf life, estimating terminal body composition, yield grade and quality grade of feedlot cattle

    E-Print Network [OSTI]

    Perry, Richard Jay

    1985-01-01T23:59:59.000Z

    ) To determine the influence of time on feed, rate of gain, sex, breed, nature size ~ iaplanting scheaes and dietary energy levels on shelf life. 3) To evaluate the changes in body coaposition and yield and quality grades with the above i'actors. 4... industry needs a method of predicting yield and quality grade of cattle and how they change as time on feed and weight increase. The basis for this research is to evaluate the effect of these factors and develop such a method. In this way, feeders...

  6. Carbon and Nitrogen Dynamics of Temperate and Subarctic Heath

    E-Print Network [OSTI]

    Carbon and Nitrogen Dynamics of Temperate and Subarctic Heath Ecosystems with Emphasis on Cold-season cycling of carbon and nitrogen in temperate and subarctic heath ecosystems. Over the last three years, I spend many hours introducing me to modeling carbon exchange, thank you. Also thanks to Karina Clemmensen

  7. Research Summary Carbon Additionality

    E-Print Network [OSTI]

    of the quality assurance of emissions reduction and carbon sequestration activities, but remains a source of muchResearch Summary Carbon Additionality Additionality is widely considered to be a core aspect controversy in national carbon accounting, international regulatory frameworks and carbon markets. A review

  8. Acetylenic carbon allotrope

    DOE Patents [OSTI]

    Lagow, R.J.

    1998-02-10T23:59:59.000Z

    A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

  9. Carbon Monoxide Environmental Public

    E-Print Network [OSTI]

    The National Workgroup on Carbon Monoxide Surveillance Formed in April 2005 Membership: EPHT grantees Academic

  10. The Woodland Carbon Code

    E-Print Network [OSTI]

    The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

  11. A novel method to develop an otolith microchemistry model to determine striped bass habitat use in the San Francisco Estuary

    SciTech Connect (OSTI)

    Phillis, C C; Ostrach, D J; Gras, M; Yin, Q; Ingram, B L; Zinkl, J G; Weber, P K

    2006-06-14T23:59:59.000Z

    Otolith Sr/Ca has become a popular tool for hind casting habitat utilization and migration histories of euryhaline fish. It can readily identify habitat shifts of diadromous fish in most systems. Inferring movements of fish within estuarine habitat, however, requires a model of that accounts of the local water chemistry and the response of individual species to that water chemistry, which is poorly understood. Modeling is further complicated by the fact that high marine Sr and Ca concentrations results in a rapid, nonlinear increase in water Sr/Ca and {sup 87}Sr/{sup 86}Sr between fresh and marine waters. Here we demonstrate a novel method for developing a salinity-otolith Sr/Ca model for the purpose of reconstructing striped bass (Morone saxatilis) habitat use in the San Francisco Bay estuary. We used correlated Sr/Ca and {sup 87}Sr/{sup 86}Sr ratios measurements from adult otoliths from striped bass that experienced a range of salinities to infer striped bass otolith Sr/Ca response to changes in salinity and water Sr/Ca ratio. Otolith {sup 87}Sr/{sup 86}Sr can be assumed to accurately record water {sup 87}Sr/{sup 86}Sr because there is no biological fractionation of Sr isotopes. Water {sup 87}Sr/{sup 86}Sr can in turn be used to estimate water salinity based on the mixing of fresh and marine water with known {sup 87}Sr/{sup 86}Sr ratios. The relationship between adjacent analyses on otoliths of Sr/Ca and {sup 87}Sr/{sup 86}Sr by LA-ICP-MS and MC-ICP-MS (r{sup 2} = 0.65, n = 66) is used to predict water salinity from a measured Sr/Ca ratio. The nature of this non-linear model lends itself well to identifying residence in the Delta and to a lesser extent Suisun Bay, but does not do well locating residence within the more saline bays west of Carquinez Strait. An increase in the number of analyses would improve model confidence, but ultimately the precision of the model is limited by the variability in the response of individual fish to water Sr/Ca.

  12. Mesoporous carbon materials

    SciTech Connect (OSTI)

    Dai, Sheng; Fulvio, Pasquale Fernando; Mayes, Richard T.; Wang, Xiqing; Sun, Xiao-Guang; Guo, Bingkun

    2014-09-09T23:59:59.000Z

    A conductive mesoporous carbon composite comprising conductive carbon nanoparticles contained within a mesoporous carbon matrix, wherein the conductive mesoporous carbon composite possesses at least a portion of mesopores having a pore size of at least 10 nm and up to 50 nm, and wherein the mesopores are either within the mesoporous carbon matrix, or are spacings delineated by surfaces of said conductive carbon nanoparticles when said conductive carbon nanoparticles are fused with each other, or both. Methods for producing the above-described composite, devices incorporating them (e.g., lithium batteries), and methods of using them, are also described.

  13. Effect of a Legume Cover Crop on Carbon Storage and Erosion in an Ultisol under Maize

    E-Print Network [OSTI]

    143 CHAPTER 10 Effect of a Legume Cover Crop on Carbon Storage and Erosion in an Ultisol under...........................................................................................145 10.2.3 Carbon and Nitrogen Determination, and Other Analyses......................................145 10.2.4 Determinations of Runoff, Soil Losses, and Eroded Carbon

  14. Carbon stars in local group dwarf galaxies: C and O abundances

    E-Print Network [OSTI]

    R. Wahlin; K. Eriksson; B. Gustafsson; K. H. Hinkle; D. L. Lambert; N. Ryde; B. Westerlund

    2006-05-10T23:59:59.000Z

    We present abundances of carbon and oxygen as well as abundance ratios 12C/13C for a sample of carbon stars in the LMC, SMC, Carina, Sculptor and Fornax dwarf galaxies. The overall metallicities in these dwarf galaxies are lower than in the galactic disc. The observations cover most of the AGB and we discuss the abundance patterns in different regions along the AGB. The abundances are determined from infrared spectra obtained with the ISAAC spectrometer on VLT (R=1500) and the Phoenix Spectrometer on Gemini South (R=50000). The synthetic spectra used in the analysis were computed with MARCS model atmospheres. We find that the oxygen abundance is decreasing with decreasing overall metallicity of the system while the C/O ratio at a given evolutionary phase is increasing with decreasing oxygen abundance. keywords Stars: abundances -- Stars: carbon -- Stars: AGB and post-AGB -- Galaxies: dwarf -- Local Group -- Infrared: stars

  15. Modeling of the Phase behavior of light (C2 & C3) olefins in liquid phase epoxidation systems and experimental determination of gas/liquid mass transfer coefficients

    E-Print Network [OSTI]

    Ghanta, Madhav

    2008-01-01T23:59:59.000Z

    -methanol at 40 o C 79 Figure 4.5: Dew and Bubble Point curve of ethylene (1) and carbon dioxide (2) 82 Figure 4.6: Solubility of ethylene (1) in water (2) at 35 o C 83 Figure 4...) 76 vi 4.3.2 Ethylene (1) and Carbon dioxide (2) 81 4.3.3 Ethylene (1) and Water (2) 82...

  16. Mathematical transport modeling for determination of effectiveness of Kepone clean up activities in the James River estuary

    SciTech Connect (OSTI)

    Onishi, Y.

    1980-01-01T23:59:59.000Z

    During the period of 1966-1975, a highly chlorinated pesticide, Kepone, was discharged to the environment around Hopewell, Virginia. Much of the Kepone that reached the James River estuary was adsorbed by river sediment, becoming a long-term source of pollution. In order to identify an optimal location to remove Kepone from the river bed and to assess the effectiveness of the clean up activities to reduce the Kepone level in the river, the mathematical simulation of sediment and Kepone transport in the James River estuary was performed by applying the sediment-containment transport model, FETRA, to an 86-km river reach between Bailey and Burwell Bays. The FETRA code is an unsteady, two-dimensional, finite element interactions. The submodels are: (1) a sediment transport submodel, (2) a dissolved contaminant transport submodel, and (3) a particulate contaminant (contaminant adsorbed by sediment) transport submodel. FETRA also predicts changes in river bed conditions of sediment and contaminant. The value of applying models to dredging activity goes beyond this specific example. Through the sensitivity analysis, one can employ models to predict the most cost effective strategy for dredging. Properly constructed strategies will take advantage of river and coastal water dynamics to reduce the total volume of sediments to be dredged. Results of the simulation can also be used to predict subsequent environmental impacts.

  17. Activated carbon adsorbents from waste tires for air quality control

    SciTech Connect (OSTI)

    Lehmann, C.M.B.; Rostam-Abadi, M.; Rood, M.J.; Hsi, H.C.

    1999-07-01T23:59:59.000Z

    This study evaluates methodologies for utilizing waste tire rubber to produce carbonaceous adsorbents for use in air quality control operations. Such an approach provides a two-fold environmental and economic benefit. A recycling path is developed for waste tire rubber and new adsorbents are produced from a low cost feedstock for use in environmentally-related operations. Bench-scale and pilot-scale quantities of tire-derived activated carbon (TDAC) were produced from waste tire rubber. Raw tire rubber samples and devolatilized tire char were obtained from several US vendors. The raw samples were analyzed using proximate, ultimate, and elemental analyses. Batches of activated carbon samples were prepared using a bench-scale fixed-tubular reactor to prepare {approximately}10 g samples and a fluidized-bed reactor to prepare {approximately}100 g quantities. About 25 kg of activated carbon was also produced at a pilot-scale commercial facility. The resulting TDACs were then characterized by nitrogen adsorption at 77K. The sample surface areas were determined by the BET method, and the pore size distribution (PSD) was evaluated using the BJH model, and a 3-D PSD model. Performance of the TDACs was evaluated in their ability to remove gaseous mercury species from simulated power-plant flue-gas streams, and for the removal of organic compounds (e.g., acetone and 1,1,1-trichloroethane) from flowing gas streams.

  18. Scale-up of Carbon/Carbon Bipolar Plates

    SciTech Connect (OSTI)

    David P. Haack

    2009-04-08T23:59:59.000Z

    This project was focused upon developing a unique material technology for use in PEM fuel cell bipolar plates. The carbon/carbon composite material developed in this program is uniquely suited for use in fuel cell systems, as it is lightweight, highly conductive and corrosion resistant. The project further focused upon developing the manufacturing methodology to cost-effectively produce this material for use in commercial fuel cell systems. United Technology Fuel Cells Corp., a leading fuel cell developer was a subcontractor to the project was interested in the performance and low-cost potential of the material. The accomplishments of the program included the development and testing of a low-cost, fully molded, net-shape carbon-carbon bipolar plate. The process to cost-effectively manufacture these carbon-carbon bipolar plates was focused on extensively in this program. Key areas for cost-reduction that received attention in this program was net-shape molding of the detailed flow structures according to end-user design. Correlations between feature detail and process parameters were formed so that mold tooling could be accurately designed to meet a variety of flow field dimensions. A cost model was developed that predicted the cost of manufacture for the product in near-term volumes and long-term volumes (10+ million units per year). Because the roduct uses lowcost raw materials in quantities that are less than competitive tech, it was found that the cost of the product in high volume can be less than with other plate echnologies, and can meet the DOE goal of $4/kW for transportation applications. The excellent performance of the all-carbon plate in net shape was verified in fuel cell testing. Performance equivalent to much higher cost, fully machined graphite plates was found.

  19. Dynamics of carbon concentrating mechanism induction and protein re-localisation during the dark to light transition in synchronised Chlamydomonas

    E-Print Network [OSTI]

    MItchell, Madeline C.; Meyer, Moritz T.; Griffiths, Howard

    2014-08-08T23:59:59.000Z

    In the model green alga Chlamydomonas reinhardtii, a carbon concentrating mechanism (CCM) is induced under low CO2 in the light and comprises: active inorganic carbon transport components, carbonic anhydrases and aggregation of Rubisco...

  20. DEVELOPMENT OF A VALIDATED MODEL FOR USE IN MINIMIZING NOx EMISSIONS AND MAXIMIZING CARBON UTILIZATION WHEN CO-FIRING BIOMASS WITH COAL

    SciTech Connect (OSTI)

    Larry G. Felix; P. Vann Bush

    2002-07-01T23:59:59.000Z

    This is the seventh Quarterly Technical Report for DOE Cooperative Agreement No. DE-FC26-00NT40895. A statement of the project objectives is included in the Introduction of this report. Two additional biomass co-firing test burns were conducted during this quarter. In the first test (Test 12), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Galatia coal and injected through the single-register burner. Liquid ammonia was intermittently added to the primary air stream to increase fuel-bound nitrogen and simulate cofiring with chicken litter. Galatia coal is a medium-sulfur ({approx} 1.2% S), high chlorine ({approx}0.5%) Illinois Basin coal. In the second test (Test 13), up to 20% by weight dry hardwood sawdust and switchgrass was comilled with Jim Walters No.7 mine coal and injected through the single-register burner. Jim Walters No.7 coal is a low-volatility, low-sulfur ({approx} 0.7% S) Eastern bituminous coal. The results of these tests are presented in this quarterly report. Progress has continued to be made in implementing a modeling approach to combine reaction times and temperature distributions from computational fluid dynamic models of the pilot-scale combustion furnace with char burnout and chemical reaction kinetics to predict NO{sub x} emissions and unburned carbon levels in the furnace exhaust. The Configurable Fireside Simulator has been delivered from REI, Inc. and is being tested with exiting CFD solutions. Preparations are under way for a final pilot-scale combustion experiment using the single-register burner fired with comilled mixtures of Jim Walters No.7 low-volatility bituminous coal and switchgrass. Because of the delayed delivery of the Configurable Fireside Simulator, it is planned to ask for a no-cost time extension for the project until the end of this calendar year. Finally, a paper describing this project that included preliminary results from the first four cofiring tests was presented at the 12th European Conference and Technology Exhibition on Biomass for Energy, Industry and Climate Protection in Amsterdam, The Netherlands, in June, 2002.