Powered by Deep Web Technologies
Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Evaluating DNAPL Source and Migration Zones: M-Area Settling Basin and the Western Sector of A/M Area, Savannah River Site  

SciTech Connect (OSTI)

The objective of this investigation is to critically evaluate previous characterization and remediation data to determine the current extent and distribution of DNAPL associated with releases at the M-Area Basin within A/M Area. The primary objective of the effort is to develop an approximate recommendation for the target treatment location and volume near the M Area Settling Basin. Through this analysis the final objective is to identify those subsurface regions having specific geometry and character necessary to cost-effectively deploy DNAPL specific remediation alternatives.

Jackson, D.G.

2001-09-11T23:59:59.000Z

2

M-Area Hazardous Waste Management Facility. Fourth Quarter 1994, Groundwater Monitoring Report  

SciTech Connect (OSTI)

The unlined settling basin operated from 1958 until 1985, receiving waste water that contained volatile organic solvents used for metal degreasing and chemical constituents and depleted uranium from fuel fabrication process in M Area. The underground process sewer line transported M-Area process waste waters to the basin. Water periodically overflowed from the basin through the ditch to the seepage area adjacent to the ditch and to Lost Lake.

Chase, J.A.

1995-04-20T23:59:59.000Z

3

M-Area basin closure, Savannah River Site  

SciTech Connect (OSTI)

M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

McMullin, S.R.; Horvath, J.G.

1991-12-31T23:59:59.000Z

4

M-Area basin closure, Savannah River Site  

SciTech Connect (OSTI)

M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

McMullin, S.R.; Horvath, J.G.

1991-01-01T23:59:59.000Z

5

FISHERY WASTE EFFLUENTS: A METHOD TO DETERMINE RELATIONSHIPS BETWEEN CHEMICAL OXYGEN DEMAND AND RESIDUE  

E-Print Network [OSTI]

FISHERY WASTE EFFLUENTS: A METHOD TO DETERMINE RELATIONSHIPS BETWEEN CHEMICAL OXYGEN DEMAND effluents, especially for total suspended and settleable solids, and oil and grease. The relationship between chemical oxygen demand and residue was determined on a limited number of samples from four types

6

Determination of chemical properties of a supported copper oxide catalyst  

E-Print Network [OSTI]

other between tho moroury oondensation pump and the adsorption system, ~~~o + QLQ]gJdi~ x The oathetometer was used for moasur1ng tho levels of mexoury in manomsters Ni and K, It had a soals of l00 aontimstors, 4 toles- oope and a vernier vere... of the requirements for the degree o NASTY OF SCIENCE Nay'p 1955 Ma)or Suhfeott Chemioal Engineering DETERPHEATION CF CHEMICAL PROPERTIES OP A SUPPORTED COPPER OXIDE CATALYST A Thesis Asok Bandyopadhyay Approved as to style and oontent by& Chairman...

Bandyopadhyay, Asok

2012-06-07T23:59:59.000Z

7

M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters.

Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

1994-05-01T23:59:59.000Z

8

Acute and chronic toxicity of municipal landfill leachate as determined with bioassays and chemical analysis  

E-Print Network [OSTI]

municipal landfill leachates were determined to have mean estimated cumulative cancer risks on the same order of magnitude (10 4) as leachates from co-disposal and hazardous waste landfills. The use of a battery of acute and chronic toxicity bioassays..., chemical analysis, and an estimated cancer risk calculation resulted in data providing evidence that municipal solid waste landfill leachates are as acutely and chronically toxic as co-disposal and hazardous waste landfill leachates. ACKNOWLEDGEMENTS...

Schrab, Gregory Ernst

1990-01-01T23:59:59.000Z

9

Determining chemical cleaning requirements for Detroit Edison Belle River Unit No. 1  

SciTech Connect (OSTI)

Detroit Edison's Belle river Power Plant is a two unit coal-fired installation. The drum type boilers are Carolina type and burn pulverized low sulfur western coal. Both units have a normal boiler operating pressure of 2700 psi, are rated at 650 MW net, with a boiler operating volume of 125,000 gallons. The boilers were pre-operationally chemically cleaned during start up in 1984 (Unit 1) and 1985 (Unit 2), to remove millscale and the preservative coatings. Following the vendor recommendation to chemically clean when the tube deposit weight reaches 25 g/ft{sup 2} (as determined by the solvent removal method). However, a review of tube deposit test results form Belle River Unit 1 indicated that the type of deposit found was markedly different in appearance and physical nature than deposits typically found in other Company boilers. This paper reports that based on this difference, and the conservatism of the published limit, a comprehensive evaluation of the need to chemically clean the Belle River boilers was undertaken.

Sonntag, D.J.; Palmer, R.E. (Technical and Engineering Services, Detroit Edison Co. (US))

1992-01-01T23:59:59.000Z

10

Chemical composition and RT[sub NDT] determinations for Midland weld WF-70  

SciTech Connect (OSTI)

The Heavy-Section Steal Irradiation Program Tenth Irradiation Series has the objective to investigate the affects of radiation on the fracture toughness of the low-upper-shelf submerged-arc welds (B W designation WF-70) in the reactor pressure vessel of the canceled Midland Unit 1 nuclear plant. This report discusses determination of variations in chemical composition And reference temperature (RT[sub NDT]) throughout the welds. Specimens were machined from different sections and through thickness locations in both the beltline and nozzle course welds. The nil-ductility transition temperatures ranged from [minus]40 to [minus]60[degrees]C ([minus]40 and [minus]76[degrees]F) while the RT[sub NDT]S, controlled by the Charpy behavior, varied from [minus]20 to 37[degrees]C ([minus]4 to 99[degrees]F). The upper-shelf energies varied from 77 to 108 J (57 to 80 ft-lb). The combined data revealed a mean 41-J (30-ft-lb) temperature of [minus]8[degrees]C (17[degrees]F) with a mean upper-shelf energy of 88 J (65 ft-lb). The copper contents range from 0.21 to 0.34 wt % in the beltline weld and from 0.37 to 0.46 wt % in the nozzle course weld. Atom probe field ion microscope analyses indicated substantial depletion of copper in the matrix but no evidence of copper clustering. Statistical analyses of the Charpy and chemical composition results as well as interpretation of the ASME procedures for RT[sub NDT] determination are discussed.

Nanstad, R.K.; McCabe, D.E.; Swain, R.L.; Miller, M.K. (Oak Ridge National Lab., TN (United States))

1992-12-01T23:59:59.000Z

11

Determination of residual monomers resulting from the chemical polymerization process of dental materials  

SciTech Connect (OSTI)

The residual monomer present in post-polymerized dental materials encourages premature degradation of the reconstructed tooth. That is why the residual monomer should be quantified in a simple, fast, accurate and reproducible manner. In our work we propose such an approach for accurate determination of the residual monomer in dental materials which is based on low-field nuclear magnetic resonance (NMR) relaxometry. The results of the NMR approach are compared with those of the high performance liquid chromatography (HPLC) technique. The samples under study contain the main monomers (2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]propane and triethylene glycol dimethacrylate) constituting the liquid phase of most dental materials and an initiator. Two samples were analyzed with different ratios of chemical initiation systems: N,N-dimethyl-p-toluide: benzoyl peroxide (1:2 and 0.7:1.2). The results obtained by both techniques highlight that by reducing the initiator the polymerization process slows down and the amount of residual monomer reduces. This prevents the premature degradation of the dental fillings and consequently the reduction of the biomaterial resistance.

Boboia, S. [Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca, Romania and Technical University of Cluj-Napoca, Physics and Chemistry Department, 400114 Cluj-Napoca (Romania)] [Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca, Romania and Technical University of Cluj-Napoca, Physics and Chemistry Department, 400114 Cluj-Napoca (Romania); Moldovan, M. [Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca (Romania)] [Babes Bolyai University, Raluca Ripan Chemistry Research Institute, Department of Polymer Composites, 400294 Cluj-Napoca (Romania); Ardelean, I. [Technical University of Cluj-Napoca, Physics and Chemistry Department, 400114 Cluj-Napoca (Romania)] [Technical University of Cluj-Napoca, Physics and Chemistry Department, 400114 Cluj-Napoca (Romania)

2013-11-13T23:59:59.000Z

12

Analysis of volatile organic compounds (VOCs) in A/M Area Crouch Branch (Cretaceous) Aquifer characterization samples: 1993  

SciTech Connect (OSTI)

Samples were collected during the A/M Area Crouch Branch (Cretaceous) Aquifer Characterization (Phase I) Program. The samples were analyzed for chlorinated VOCs by the Savannah River Technology Center (SRTC) and MicroSeeps Ltd. All samples were sealed in the field immediately upon retrieval of the core and subsampling. A total of 113 samples locations were selected for analysis. The Environmental Sciences Section (ESS) of SRTC analyzed all locations in duplicate (226 samples). MicroSeeps Ltd was selected as the quality assurance (QA) check laboratory. MicroSeeps Ltd analyzed 40 locations with 4 duplicates (44 samples). The samples were collected from seven boreholes in A/M Area in the interval from 200 feet deep to the total depth of the boring (360 feet deep nominal); samples were collected every 10 feet within this interval. The sampling zone corresponds approximately to the Crouch Branch Aquifer in A/M Area. The overall A/M Area Crouch Branch Aquifer characterization objectives, a brief description of A/M Area geology and hydrology, and the sample locations, field notes, driller lithologic logs, and required procedural documentation are presented in WSRC (1993).

Looney, B.B.; Haselow, J.S.; Keenan, M.A.; Van Pelt, R.; Eddy-Dilek, C.A.; Rossabi, J.; Simmons, J.L.

1993-12-06T23:59:59.000Z

13

M-Area Hazardous Waste Management Facility groundwater monitoring and corrective-action report. Second quarter 1995, Volume 1  

SciTech Connect (OSTI)

This report describes the corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site during second quarter 1995. Topics include: changes in sampling, analysis, and reporting; water levels; remedial action of groundwater; and hydrology of the affected aquifer zones.

NONE

1995-08-01T23:59:59.000Z

14

Determination of naphthenic acids in California crudes and refinery waste waters by fluoride ion chemical ionization mass spectrometry  

SciTech Connect (OSTI)

A method based on negative ion chemical ionization mass spectrometry using fluoride (F/sup -/) ions produced from NF/sub 3/ reagent gas has been applied to the analysis of naphthenic acids in California crude oils and refinery waste waters. Since complex mixtures of naphthenic acids cannot be separated into individual components, only the determination of relative distribution of acids classified by the hydrogen deficiency was possible. The identities and relative distribution of paraffinic and mono-, di-, tri, and higher polycyclic acids were obtained from the intensities of the carboxylate (RCOO/sup -/) ions.

Dzidic, I.; Somerville, A.C.; Raia, J.C.; Hart, H.V.

1988-07-01T23:59:59.000Z

15

Determination of Electrochemical Performance and Thermo-Mechanical-Chemical Stability of SOFCs from Defect Modeling  

SciTech Connect (OSTI)

This research was focused on two distinct but related issues. The first issue concerned using defect modeling to understand the relationship between point defect concentration and the electrochemical, thermo-chemical and mechano-chemical properties of typical solid oxide fuel cell (SOFC) materials. The second concerned developing relationships between the microstructural features of SOFC materials and their electrochemical performance. To understand the role point defects play in ceramics, a coherent analytical framework was used to develop expressions for the dependence of thermal expansion and elastic modulus on point defect concentration in ceramics. These models, collectively termed the continuum-level electrochemical model (CLEM), were validated through fits to experimental data from electrical conductivity, I-V characteristics, elastic modulus and thermo-chemical expansion experiments for (nominally pure) ceria, gadolinia-doped ceria (GDC) and yttria-stabilized zirconia (YSZ) with consistently good fits. The same values for the material constants were used in all of the fits, further validating our approach. As predicted by the continuum-level electrochemical model, the results reveal that the concentration of defects has a significant effect on the physical properties of ceramic materials and related devices. Specifically, for pure ceria and GDC, the elastic modulus decreased while the chemical expansion increased considerably in low partial pressures of oxygen. Conversely, the physical properties of YSZ remained insensitive to changes in oxygen partial pressure within the studied range. Again, the findings concurred exactly with the predictions of our analytical model. Indeed, further analysis of the results suggests that an increase in the point defect content weakens the attractive forces between atoms in fluorite-structured oxides. The reduction treatment effects on the flexural strength and the fracture toughness of pure ceria were also evaluated at room temperature. The results reveal that the flexural strength decreases significantly after heat treatment in very low oxygen partial pressure environments; however, in contrast, fracture toughness is increased by 30-40% when the oxygen partial pressure was decreased to 10{sup -20} to 10{sup -22} atm range. Fractographic studies show that microcracks developed at 800 oC upon hydrogen reduction are responsible for the decreased strength. To understand the role of microstructure on electrochemical performance, electrical impedance spectra from symmetric LSM/YSZ/LSM cells was de-convoluted to obtain the key electrochemical components of electrode performance, namely charge transfer resistance, surface diffusion of reactive species and bulk gas diffusion through the electrode pores. These properties were then related to microstructural features, such as triple-phase boundary length and tortuosity. From these experiments we found that the impedance due to oxygen adsorption obeys a power law with pore surface area, while the impedance due to charge transfer is found to obey a power-law with respect to triple phase boundary length. A model based on kinetic theory explaining the power-law relationships observed was then developed. Finally, during our EIS work on the symmetric LSM/YSZ/LSM cells a technique was developed to improve the quality of high-frequency impedance data and their subsequent de-convolution.

Eric Wachsman; Keith L. Duncan

2006-09-30T23:59:59.000Z

16

Chromatographic and chemical determination of pungency in onion, Allium cepa L.  

E-Print Network [OSTI]

acid concentration (PYR), and 3) thiosulfinate concentration (THIO). Production location and cold storage effects on pungency content were also evaluatetL The gas chromatogram test was specific in determining disulfide volatiles produced immediately... such as soil water availability, soil sulfur content and growing temperature. In this study, onions produced in location ST (Starr) showed higher pungency than those bulbs produced in location GB (Griffin and Brand). However, this experiment did not present...

Alcala Sainz, Josefina

1993-01-01T23:59:59.000Z

17

Noninvasive Biomonitoring Approaches to Determine Dosimetry and Risk Following Acute Chemical Exposure: Analysis of Lead or Organophosphate Insecticide in Saliva  

SciTech Connect (OSTI)

There is a need to develop approaches for assessing risk associated with acute exposures to a broad-range of chemical agents and to rapidly determine the potential implications to human health. Non-invasive biomonitoring approaches are being developed using reliable portable analytical systems to quantitate dosimetry utilizing readily obtainable body fluids, such as saliva. Saliva has been used to evaluate a broad range of biomarkers, drugs, and environmental contaminants including heavy metals and pesticides. To advance the application of non-invasive biomonitoring a microfluidic/ electrochemical device has also been developed for the analysis of lead (Pb), using square wave anodic stripping voltammetry. The system demonstrates a linear response over a broad concentration range (1 2000 ppb) and is capable of quantitating saliva Pb in rats orally administered acute doses of Pb-acetate. Appropriate pharmacokinetic analyses have been used to quantitate systemic dosimetry based on determination of saliva Pb concentrations. In addition, saliva has recently been used to quantitate dosimetry following exposure to the organophosphate insecticide chlorpyrifos in a rodent model system by measuring the major metabolite, trichloropyridinol, and saliva cholinesterase inhibition following acute exposures. These results suggest that technology developed for non-invasive biomonitoring can provide a sensitive, and portable analytical tool capable of assessing exposure and risk in real-time. By coupling these non-invasive technologies with pharmacokinetic modeling it is feasible to rapidly quantitate acute exposure to a broad range of chemical agents. In summary, it is envisioned that once fully developed, these monitoring and modeling approaches will be useful for accessing acute exposure and health risk.

Timchalk, Chuck; Poet, Torka S.; Kousba, Ahmed A.; Campbell, James A.; Lin, Yuehe

2004-04-01T23:59:59.000Z

18

M-area hazardous waste management facility groundwater monitoring and corrective-action report, First quarter 1995, Volume 1  

SciTech Connect (OSTI)

This report, in three volumes, describes the ground water monitoring and c corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during the fourth quarter 1994 and first quarter 1995. Concise description of the program and considerable data documenting the monitoring and remedial activities are included in the document. This is Volume 1 covering the following topics: sampling and results; hydrogeologic assessment; water quality assessment; effectiveness of the corrective-action program; corrective-action system operation and performance; monitoring and corrective-action program assessment; proposed monitoring and corrective-action program modifications. Also included are the following appendicies: A-standards; B-flagging criteria; C-figures; D-monitoring results tables; E-data quality/usability assessment.

NONE

1995-05-01T23:59:59.000Z

19

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

NONE

1997-03-01T23:59:59.000Z

20

M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwate Monitoring and Corrective-Action Report, First and Second Quarters 1998, Volumes I, II, & III  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah river Site (SRS) during first and second quarters 1998. This program is required by South Carolina Hazardous Waste Permit SC1-890-008-989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. Report requirements are described in the 1995 RCRA Renewal Permit, effective October 5, 1995, Section IIIB.H.11.b for the M-Area HWMF and Section IIIG.H.11.b for the Met Lab HWMF.

Chase, J.

1998-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Vadose Zone Remediation Assessment: M-Area Process Sewer Soil Vapor Extraction Units 782-5M, 782-7M, and 782-8M  

SciTech Connect (OSTI)

This study focuses on the status of the vadose zone remediation along 1600 ft of the process sewer line between the M-Area security fence and the M-Area settling basin. Three soil vapor extraction (SVE) units 782-5M, 782-7M, and 782-8M, connected to 4 vertical wells and 3 horizontal wells have been addressing the vadose zone volatile organic contamination (VOC) since 1995. The specific objectives of this study were to obtain soil gas and sediment samples, evaluate SVE units and vadose zone remediation, and make recommendations to address further remediation needs.

Riha, B.D.

2001-04-20T23:59:59.000Z

22

Accelerated screening methods for determining chemical and thermal stability of refrigerant-lubricant mixtures, Part 1: Method assessment. Final report  

SciTech Connect (OSTI)

This report presents results of a literature search performed to identify analytical techniques suitable for accelerated screening of chemical and thermal stabilities of different refrigerant/lubricant combinations. Search focused on three areas: Chemical stability data of HFC-134a and other non-chlorine containing refrigerant candidates; chemical stability data of CFC-12, HCFC-22, and other chlorine containing refrigerants; and accelerated thermal analytical techniques. Literature was catalogued and an abstract was written for each journal article or technical report. Several thermal analytical techniques were identified as candidates for development into accelerated screening tests. They are easy to operate, are common to most laboratories, and are expected to produce refrigerant/lubricant stability evaluations which agree with the current stability test ANSI/ASHRAE (American National Standards Institute/American Society of Heating, Refrigerating, and Air-Conditioning Engineers) Standard 97-1989, ``Sealed Glass Tube Method to Test the Chemical Stability of Material for Use Within Refrigerant Systems.`` Initial results of one accelerated thermal analytical candidate, DTA, are presented for CFC-12/mineral oil and HCFC-22/mineral oil combinations. Also described is research which will be performed in Part II to optimize the selected candidate.

Kauffman, R.

1993-04-01T23:59:59.000Z

23

Characterization Activities to Determine the Extent of DNAPL in the Vadose Zone at the A-014 Outfall of A/M Area  

SciTech Connect (OSTI)

The purpose of this investigation was to perform characterization activities necessary to confirm the presence and extent of DNAPL in the shallow vadose zone near the headwaters of the A-014 Outfall. Following the characterization, additional soil vapor extraction wells and vadose monitoring probes were installed to promote and monitor remediation activities in regions of identified DNAPL.

Jackson, D.G.

2000-09-05T23:59:59.000Z

24

Determination of transport parameters of coincident inorganic and organic plumes in the Savannah River Plant M-Area, Aiken, South Carolina  

E-Print Network [OSTI]

to chloride plumes in glacial outwash at Babylon, New York (Kelley, 1985) and in basalt flow-tops at the Hanford site in Washington state (LaVenue and Domenico, 1986). It has also been applied to chloride (Fryar, 1986) and sodium (Londergan, 1987) plumes... from the production buildings to the disposal sites. In addition, the solvent storage tank located behind production building 321-M is a source of contamination by metal degreasers. Sodium and l, l, l-trichloroethane plumes emanating from the M...

Cauffman, Toya Lyn

1987-01-01T23:59:59.000Z

25

Interpretation of Geological Correlation Borings 1, 2, 3 in the A/M Area of the Savannah River Site, South Carolina  

SciTech Connect (OSTI)

The Geophysical Correlation Boring (GCB) Program was organized to provide a comprehensive correlation capability between geological core and advanced borehole geophysical data, surface high resolution reflection seismic information and, when available, borehole geochemical and cone penetrometer data. This report provides results and initial geological interpretations of borings one, two, and three (GCB-1, GCB-2, GCB-3) located within the Upper Three Runs Watershed (A/M Area) of the Savannah River Site.

Wyatt, D.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Cumbest, R.J.; Aadland, R.K.; Syms, F.H.; Stephenson, D.E.; Sherrill, J.C.

1997-06-01T23:59:59.000Z

26

XAFS determination of the chemical form of lead in smelter-contaminated soils and mine tailings: Importance of adsorption processes  

SciTech Connect (OSTI)

The authors investigated smelter-contaminated soils from Evin-Malmaison, Nord-Pas-de-Calais, France, and mine tailings from Leadville, Colorado, U.S.A. Bulk Pb concentrations range from 460 to 1900 ppm in the topsoils at Evin-Malmaison site and from 6000 to 10,000 ppm in the tailings samples from the Leadville site. These concentrations necessarily raise human health and environmental concerns, but bioavailability and chemical lability of Pb in these materials vary dramatically and show little correlation with bulk concentrations. This study provides detailed information on the speciation of Pb in these materials. Emphasis is on the identification and characterization of poorly crystalline and/or fine-grained species, such as sorption complexes and poorly crystalline (co)precipitates, which are likely to control Pb bioavailability and mobility in these natural systems. In the Evin-Malmaison samples, direct spectroscopic evidence for Pb sorbed to humic acids was found, as well as to both manganese and iron (oxyhydr)oxides. In the Leadville samples, variations in Pb speciation with pH are consistent with predictions based on simplified model system studies of adsorption processes; specifically, the carbonate-buffered tailings with near-neutral pH contain up to 50% of total Pb as adsorption complexes on iron (oxyhydr)oxides, whereas Pb speciation in sulfide-rich low pH samples is dominated by Pb-bearing jarosites with no evidence for adsorbed Pb in these latter samples.

Morin, G.; Juillot, F.; Ildefonse, P.; Calas, G. [Univ. de Paris 6 et 7 (France). Lab. de Mineralogie-Cristallographie; Ostergren, J.D. [Stanford Univ., CA (United States). Dept. of Geological and Environmental Sciences; Brown, G.E. Jr. [Stanford Univ., CA (United States). Dept. of Geological and Environmental Sciences]|[Stanford Synchrotron Radiation Lab., CA (United States)

1999-03-01T23:59:59.000Z

27

Characterization Activities to Evaluate Chlorinated Solvent Discharges to Tims Branch from the A/M Area of the Savannah River Site  

SciTech Connect (OSTI)

The objective of this investigation was to identify those regions of plume outcrop along Tims Branch southeast of A/M Area and to establish fixed monitoring points along the seepline to evaluate proposed remediation needs and to support long-term monitoring activities in the vicinity of the seepline. The characterization approach employed in completing these tasks was dynamic and graded. Three stages of characterization were used to evaluate the outcrop region, with the results from each of the previous activities used to direct subsequent characterization.

Jackson, D.G.

2001-02-23T23:59:59.000Z

28

Progress Update: M Area Closure  

ScienceCinema (OSTI)

A progress update of the Recovery Act at work at the Savannah River Site. The celebration of the first area cleanup completion with the help of the Recovery Act.

Cody, Tom

2012-06-14T23:59:59.000Z

29

Using conversions of chemically reacting tracers for numerical determination of temperature profiles in flowing systems and temperature histories in batch systems  

SciTech Connect (OSTI)

This report presents the mathematical bases for measuring internal temperatures within batch and flowing systems using chemically reacting tracers. This approach can obtain temperature profiles of plug-flow systems and temperature histories within batch systems. The differential equations for reactant conversion can be converted into Fredholm integral equations of the first kind. The experimental variable is the tracer-reaction activation energy. When more than one tracer is used, the reactions must have different activation energies to gain information. In systems with temperature extrema, multiple solutions for the temperature profiles or histories can exist, When a single parameter in the temperature distribution is needed, a single-tracer test may furnish this information. For multi-reaction tracer tests, three Fredholm equations are developed. Effects of tracer-reaction activation energy, number of tracers used, and error in the data are evaluated. The methods can determine temperature histories and profiles for many existing systems, and can be a basis for analysis of the more complicated dispersed-flow systems. An alternative to using the Fredholm-equation approach is the use of an assumed temperature- distribution function and incorporation of this function into the basic integral equation describing tracer behavior. The function contains adjustable parameters which are optimized to give the temperature distribution. The iterative Fredholm equation method is tested to see what is required to discriminate between two models of the temperature behavior of Hot Dry Rock (HDR) geothermal reservoirs. Experimentally, ester and amide hydrolyses are valid HDR tracer reactions for measuring temperatures in the range 75-100{degrees}C. Hydrolyses of bromobenzene derivatives are valid HDR tracer reactions for measuring temperatures in the range 150-275{degrees}C.

Brown, L.F.; Chemburkar, R.M.; Robinson, B.A.; Travis, B.J.

1996-04-01T23:59:59.000Z

30

1Q/2Q00 M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - First and Second Quarters 2000 - Volumes I, II, and II  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River site (SRS) during first and second quarters of 2000.

Chase, J.

2000-10-24T23:59:59.000Z

31

Standard test methods for determining chemical durability of nuclear, hazardous, and mixed waste glasses and multiphase glass ceramics: The product consistency test (PCT)  

E-Print Network [OSTI]

1.1 These product consistency test methods A and B evaluate the chemical durability of homogeneous glasses, phase separated glasses, devitrified glasses, glass ceramics, and/or multiphase glass ceramic waste forms hereafter collectively referred to as “glass waste forms” by measuring the concentrations of the chemical species released to a test solution. 1.1.1 Test Method A is a seven-day chemical durability test performed at 90 ± 2°C in a leachant of ASTM-Type I water. The test method is static and conducted in stainless steel vessels. Test Method A can specifically be used to evaluate whether the chemical durability and elemental release characteristics of nuclear, hazardous, and mixed glass waste forms have been consistently controlled during production. This test method is applicable to radioactive and simulated glass waste forms as defined above. 1.1.2 Test Method B is a durability test that allows testing at various test durations, test temperatures, mesh size, mass of sample, leachant volume, a...

American Society for Testing and Materials. Philadelphia

2002-01-01T23:59:59.000Z

32

CX-001424: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-001424: Categorical Exclusion Determination Thermal-Hydrological-Mechanical-Chemical Modeling of Enhanced Geothermal System Reservoirs - Continuum through...

33

3Q/4Q00 Annual M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities Groundwater Monitoring and Corrective-Action Report - Third and Fourth Quarters 2000 - Volumes I, II, and II  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 2000. This program is required by South Carolina Resource Conservation and Recovery Act (RCRA) Hazardous Waste Permit SC1890008989 and Section 264.100(g) of the South Carolina Hazardous Waste Management Regulations.

Cole, C.M. Sr.

2001-04-17T23:59:59.000Z

34

Method for quantitative determination and separation of trace amounts of chemical elements in the presence of large quantities of other elements having the same atomic mass  

DOE Patents [OSTI]

Photoionization via autoionizing atomic levels combined with conventional mass spectroscopy provides a technique for quantitative analysis of trace quantities of chemical elements in the presence of much larger amounts of other elements with substantially the same atomic mass. Ytterbium samples smaller than 10 ng have been detected using an ArF* excimer laser which provides the atomic ions for a time-of-flight mass spectrometer. Elemental selectivity of greater than 5:1 with respect to lutetium impurity has been obtained. Autoionization via a single photon process permits greater photon utilization efficiency because of its greater absorption cross section than bound-free transitions, while maintaining sufficient spectroscopic structure to allow significant photoionization selectivity between different atomic species. Separation of atomic species from others of substantially the same atomic mass is also described.

Miller, C.M.; Nogar, N.S.

1982-09-02T23:59:59.000Z

35

Devices for collecting chemical compounds  

DOE Patents [OSTI]

A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

Scott, Jill R; Groenewold, Gary S

2013-12-24T23:59:59.000Z

36

CX-011104: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-011104: Categorical Exclusion Determination Coupled Thermo-Mechanical and Photo-Chemical Degradation Mechanisms that Determine the Reliability and...

37

Accelerated screening methods for determining chemical and thermal stability of refrigerant-lubricant mixtures part II: Experimental comparisons and verification of methods. Quarterly technical progress report, October 1, 1993--March 31, 1994  

SciTech Connect (OSTI)

The research reported herein continued to concentrate on in situ conductivity measurements for development into an accelerated screening method for determining the chemical and thermal stabilities of refrigerant/lubricant mixtures. The work reported herein was performed in two phases. In the first phase, sealed tubes were prepared with steel catalysts and mixtures of CFC-12, HCFC-22, HFC-134a, and HFC-32/HFC-134a (zeotrope 30:70) refrigerants with oils as described in ANSI/ASHRAE Method 97-1989. In the second phase of work, modified sealed tubes, with and without steel catalysts present, were used to perform in situ conductivity measurements on mixtures of CFC-12 refrigerant with oils. The isothermal in situ conductivity measurements were compared with conventional tests, e.g., color measurements, gas chromatography, and trace metals to evaluate the capabilities of in situ conductivity for determining the chemical and thermal stabilities of refrigerant/lubricant mixtures. Other sets of tests were performed using ramped temperature conditions from 175{degrees}C (347{degrees}F) to 205{degrees}C (401{degrees}F) to evaluate the capabilities of in situ conductivity for detecting the onset of rapid degradation in CFC-12, HCFC-22 and HFC-134a refrigerant mixtures with naphthenic oil aged with and without steel catalysts present.

Kauffman, R. [Dayton Univ., OH (United States). Research Inst.

1994-07-01T23:59:59.000Z

38

Experimental determination of the speciation, partitioning, and release of perrhenate as a chemical surrogate for pertechnetate from a sodalite-bearing multiphase ceramic waste form  

SciTech Connect (OSTI)

A key component to closing the nuclear fuel cycle is the storage and disposition of nuclear waste in geologic systems. Multiphase ceramic waste forms have been studied extensively as a potential host matrix for nuclear waste. Understanding the speciation, partitioning, and release behavior of radionuclides immobilized in multiphase ceramic waste forms is a critical aspect of developing the scientific and technical basis for nuclear waste management. In this study, we evaluated a sodalite-bearing multiphase ceramic waste form (i.e., fluidized-bed steam reform sodium aluminosilicate [FBSR NAS] product) as a potential host matrix for long-lived radionuclides, such as technetium (99Tc). The FBSR NAS material consists primarily of nepheline (ideally NaAlSiO4), anion-bearing sodalites (ideally M8[Al6Si6O24]X2, where M refers to alkali and alkaline earth cations and X refers to monovalent anions), and nosean (ideally Na8[AlSiO4]6SO4). Bulk X-ray absorption fine structure analysis of the multiphase ceramic waste form, suggest rhenium (Re) is in the Re(VII) oxidation state and has partitioned to a Re-bearing sodalite phase (most likely a perrhenate sodalite Na8[Al6Si6O24](ReO4)2). Rhenium was added as a chemical surrogate for 99Tc during the FBSR NAS synthesis process. The weathering behavior of the FBSR NAS material was evaluated under hydraulically unsaturated conditions with deionized water at 90 ?C. The steady-state Al, Na, and Si concentrations suggests the weathering mechanisms are consistent with what has been observed for other aluminosilicate minerals and include a combination of ion exchange, network hydrolysis, and the formation of an enriched-silica surface layer or phase. The steady-state S and Re concentrations are within an order of magnitude of the nosean and perrhenate sodalite solubility, respectively. The order of magnitude difference between the observed and predicted concentration for Re and S may be associated with the fact that the anion-bearing sodalites contained in the multiphase ceramic matrix are present as mixed-anion sodalite phases. These results suggest the multiphase FBSR NAS material may be a viable host matrix for long-lived, highly mobilie radionuclides which is a critical aspect in the management of nuclear waste.

Pierce, Eric M.; Lukens, Wayne W.; Fitts, Jeff. P.; Jantzen, Carol. M.; Tang, G.

2013-12-01T23:59:59.000Z

39

Experimental Determination of the Speciation, Partitioning, and Release of Perrhenate as a Chemical Surrogate for Pertechnetate from a Sodalite-Bearing Multiphase Ceramic Waste Form  

SciTech Connect (OSTI)

A key component to closing the nuclear fuel cycle is the storage and disposition of nuclear waste in geologic systems. Multiphase ceramic waste forms have been studied extensively as a potential host matrix for nuclear waste. Understanding the speciation, partitioning, and release behavior of radionuclides immobilized in multiphase ceramic waste forms is a critical aspect of developing the scientific and technical basis for nuclear waste management. In this study, we evaluated a sodalite-bearing multiphase ceramic waste form (i.e., fluidized-bed steam reform sodium aluminosilicate [FBSR NAS] product) as a potential host matrix for long-lived radionuclides, such as technetium (99Tc). The FBSR NAS material consists primarily of nepheline (ideally NaAlSiO4), anion-bearing sodalites (ideally M8[Al6Si6O24]X2, where M refers to alkali and alkaline earth cations and X refers to monovalent anions), and nosean (ideally Na8[AlSiO4]6SO4). Bulk x-ray absorption fine structure analysis of the multiphase ceramic waste form, suggest rhenium (Re) is in the Re(VII) oxidation state and has partitioned to a Re-bearing sodalite phase (most likely a perrhenate sodalite Na8[Al6Si6O24](ReO4)2). Rhenium was added as a chemical surrogate for 99Tc during the FBSR NAS synthesis process. The weathering behavior of the FBSR NAS material was evaluated under hydraulically unsaturated conditions with deionized water at 90 C. The steady-state Al, Na, and Si concentrations suggests the weathering mechanisms are consistent with what has been observed for other aluminosilicate minerals and include a combination of ion exchange, network hydrolysis, and the formation of an enriched-silica surface layer or phase. The steady-state S and Re concentrations are within an order of magnitude of the nosean and perrhenate sodalite solubility, respectively. The order of magnitude difference between the observed and predicted concentration for Re and S may be associated with the fact that the anion-bearing sodalites contained in the multiphase ceramic matrix are present as mixed-anion sodalite phases. These results suggest the multiphase FBSR NAS material may be a viable host matrix for long-lived, highly mobilie radionuclides which is a critical aspect in the management of nuclear waste.

Pierce, Eric M [ORNL] [ORNL; Lukens, Wayne W [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); Fitts, Jeffrey P [Princeton University] [Princeton University; Tang, Guoping [ORNL] [ORNL; Jantzen, C M [Savannah River National Laboratory (SRNL)] [Savannah River National Laboratory (SRNL)

2013-01-01T23:59:59.000Z

40

Experiment-Based Model for the Chemical Interactions between...  

Broader source: Energy.gov (indexed) [DOE]

1) Determine what chemical interactions occur between relevant minerals and water-CO 2 fluids 2) Understand how the chemical interactions affect transition to and performance of a...

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

2010sr29[M Area].doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | BlandinePrincetonOPTFebruary89Tuesday, September 28,

42

Chemical process hazards analysis  

SciTech Connect (OSTI)

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

NONE

1996-02-01T23:59:59.000Z

43

Powerful new technique simultaneously determines nanomaterials' chemical  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoralKanareykin,U D G

44

CX-000803: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

3: Categorical Exclusion Determination CX-000803: Categorical Exclusion Determination Production of Hazardous Enhanced Chemical Cleaning Sludge Simulants CX(s) Applied: B3.6 Date:...

45

CX-010478: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010478: Categorical Exclusion Determination Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9,...

46

CX-010789: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010789: Categorical Exclusion Determination Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9...

47

CX-007653: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-007653: Categorical Exclusion Determination Install Purge Water Management Unit(s) at Chemicals, Metals, and Pesticides Pits Monitoring Well(s)...

48

CX-011510: Categorical Exclusion Determination | Department of...  

Office of Environmental Management (EM)

Categorical Exclusion Determination CX-011510: Categorical Exclusion Determination Thermal-Chemical Decomposition of Graphite CX(s) Applied: B3.6 Date: 10172013 Location(s):...

49

Chemical Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In &Chemical LabelChemical

50

Chemical Occurrences  

Broader source: Energy.gov [DOE]

Classification of Chemical Occurrence Reports into the following four classes: Occurrences characterized by serious energy release, injury or exposure requiring medical treatment, or severe environmental damage, Occurrences characterized by minor injury or exposure, or reportable environmental release, Occurrences that were near misses including notable safety violations and Minor occurrences.

51

Chemical Evolution  

E-Print Network [OSTI]

In this series of lectures we first describe the basic ingredients of galactic chemical evolution and discuss both analytical and numerical models. Then we compare model results for the Milky Way, Dwarf Irregulars, Quasars and the Intra-Cluster- Medium with abundances derived from emission lines. These comparisons allow us to put strong constraints on the stellar nucleosynthesis and the mechanisms of galaxy formation.

Francesca Matteucci

2007-04-05T23:59:59.000Z

52

SUPPORTING CHEMICALS  

E-Print Network [OSTI]

The High Production Volume (HPV) Challenge Program 1 was conceived as a voluntary initiative aimed at developing and making publicly available screening-level health and environmental effects information on chemicals manufactured in or imported into the United States in quantities greater than one million pounds per year. In the Challenge Program, producers and importers of HPV chemicals voluntarily sponsored chemicals; sponsorship entailed the identification and initial assessment of the adequacy of existing toxicity data/information, conducting new testing if adequate data did not exist, and making both new and existing data and information available to the public. Each complete data submission contains data on 18 internationally agreed to “SIDS” (Screening Information Data Set 1,2) endpoints that are screening-level indicators of potential hazards (toxicity) for humans or the environment. The Environmental Protection Agency’s Office of Pollution Prevention and Toxics (OPPT) is evaluating the data submitted in the HPV Challenge Program on approximately 1400 sponsored chemicals by developing hazard characterizations (HCs). These HCs consist of an evaluation of the quality and completeness of the data set provided in the Challenge Program submissions. They are not intended to be definitive statements regarding the possibility of unreasonable risk of

See Section

53

Chemical Spill Response Procedure Initial Response  

E-Print Network [OSTI]

Chemical Spill Response Procedure Initial Response 1. Advise lab occupants of the spill such as quantity spilled and chemical name. Risk Assessment 3. Conduct an initial risk assessment to determine if to the chemical spill. This link can be found at the bottom of the Campus Security homepage, http

54

Chemical Management  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical Kinetic Modeling of1 DOEKinetics

55

COOEE bitumen: chemical aging  

E-Print Network [OSTI]

We study chemical aging in "COOEE bitumen" using molecular dynamic simulations. The model bitumen is composed of four realistic molecule types: saturated hydrocarbon, resinous oil, resin, and asphaltene. The aging reaction is modelled by the chemical reaction: "2 resins $\\rightarrow$ 1 asphaltene". Molecular dynamic simulations of four bitumen compositions, obtained by a repeated application of the aging reaction, are performed. The stress autocorrelation function, the fluid structure, the rotational dynamics of the plane aromatic molecules, and the diffusivity of each molecule, are determined for the four different compositions. The aging reaction causes a significant dynamics slowdown, which is correlated to the aggregation of asphaltene molecules in larger and dynamically slower nanoaggregates. Finally, a detailed description of the role of each molecule types in the aggregation and aging processes is given.

Lemarchand, Claire A; Dyre, Jeppe C; Hansen, Jesper S

2013-01-01T23:59:59.000Z

56

The TSCA interagency testing committee`s approaches to screening and scoring chemicals and chemical groups: 1977-1983  

SciTech Connect (OSTI)

This paper describes the TSCA interagency testing committee`s (ITC) approaches to screening and scoring chemicals and chemical groups between 1977 and 1983. During this time the ITC conducted five scoring exercises to select chemicals and chemical groups for detailed review and to determine which of these chemicals and chemical groups should be added to the TSCA Section 4(e) Priority Testing List. 29 refs., 1 fig., 2 tabs.

Walker, J.D. [Environmental Protection Agency, Washington, DC (United States)

1990-12-31T23:59:59.000Z

57

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING  

E-Print Network [OSTI]

CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers manufacturing, etc. Now that students have a background on Chemical Engineers, it is time for the activity. Blue frosting e. Green frosting f. Pink frosting g. Purple frosting h. Sprinkle sorting i. Sprinkle

Provancher, William

58

Chemical sensing flow probe  

SciTech Connect (OSTI)

A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

Laguna, G.R.; Peter, F.J.; Butler, M.A.

1999-02-16T23:59:59.000Z

59

Chemical sensing flow probe  

DOE Patents [OSTI]

A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

Laguna, George R. (Albuquerque, NM); Peter, Frank J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

60

Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences from analysis of fluvial sediments  

E-Print Network [OSTI]

Chemical indices (CIA and WIP) as proxies for integrated chemical weathering in China: Inferences 2012 Editor: G.J. Weltje Keywords: Chemical weathering index River China Sediment Monsoon Geochemistry under variable climate regimes. How to quantitatively determine the chemical weathering intensity

Yang, Shouye

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Airborne chemical baseline evaluation of the 222-S laboratory complex  

SciTech Connect (OSTI)

The 222-S Laboratory complex stores and uses over 400 chemicals. Many of these chemicals are used in laboratory analysis and some are used for maintenance activities. The majority of laboratory analysis chemicals are only used inside of fume hoods or glove boxes to control both chemical and radionuclide airborne concentrations. This evaluation was designed to determine the potential for laboratory analysis chemicals at the 222-S Laboratory complex to cause elevated airborne chemical concentrations under normal conditions. This was done to identify conditions and activities that should be subject to airborne chemical monitoring in accordance with the Westinghouse Hanford Company Chemical Hygiene Plan.

Bartley, P., Fluor Daniel Hanford

1997-02-12T23:59:59.000Z

62

CX-000643: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Development of Advanced Thermal-Hydrological-Mechanical-Chemical Modeling Capabilities for Enhanced Geothermal Systems CX(s) Applied: A9,...

63

CX-005513: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-005513: Categorical Exclusion Determination Enhanced Chemical Cleaning of Waste Tanks to Improve Actinide Solubility CX(s) Applied: B3.6 Date: 02042011 Location(s):...

64

Microfluidic chemical reaction circuits  

SciTech Connect (OSTI)

New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

2012-06-26T23:59:59.000Z

65

Chemical and Biomolecular Engineering  

E-Print Network [OSTI]

Chemical and Biomolecular Engineering Combining theory and neutron scattering to understand molecular diffusion in porous materials David Sholl School of Chemical & Biomolecular Engineering Georgia Institute of Technology #12;Chemical and Biomolecular Engineering Porous materials www

Pennycook, Steve

66

chemical analysis | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemical analysis chemical analysis Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a...

67

Real time chemical exposure and risk monitor  

DOE Patents [OSTI]

The apparatus of the present invention is a combination of a breath interface and an external exposure dosimeter interface to a chemical analysis device, all controlled by an electronic processor for quantitatively analyzing chemical analysis data from both the breath interface and the external exposure dosimeter for determining internal tissue dose. The method of the present invention is a combination of steps of measuring an external dose, measuring breath content, then analyzing the external dose and breath content and determining internal tissue dose.

Thrall, Karla D. (3804 Alder Lake Ct., West Richland, WA 99353); Kenny, Donald V. (6947 Sparrow La., Worthington, OH 43235); Endres, George W. R. (2112 Briarwood Ct., Richland, WA 99352); Sisk, Daniel R. (1211 Marshall Ave., Richland, WA 99352)

1997-01-01T23:59:59.000Z

68

Microbend fiber-optic chemical sensor  

DOE Patents [OSTI]

A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

Weiss, Jonathan D. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

69

Guidance Document Reactive Chemicals  

E-Print Network [OSTI]

showers and chillers. Health Hazards: The reactive chemicals are grouped primarily because of the physical

70

Chemical Management Contacts  

Broader source: Energy.gov [DOE]

Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

71

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network [OSTI]

, Biochemical, Environmental, Petroleum Engineering and Nantoechnology. CHEMICAL&MATERIALSSCIENCE CHE OVERVIEW of Science 131 units · Chemical Engineering (Petroleum) Bachelor of Science 136 units · Chemical Engineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical

Rohs, Remo

72

Systems analysis of past, present, and future chemical terrorism scenarios.  

SciTech Connect (OSTI)

Throughout history, as new chemical threats arose, strategies for the defense against chemical attacks have also evolved. As a part of an Early Career Laboratory Directed Research and Development project, a systems analysis of past, present, and future chemical terrorism scenarios was performed to understand how the chemical threats and attack strategies change over time. For the analysis, the difficulty in executing chemical attack was evaluated within a framework of three major scenario elements. First, historical examples of chemical terrorism were examined to determine how the use of chemical threats, versus other weapons, contributed to the successful execution of the attack. Using the same framework, the future of chemical terrorism was assessed with respect to the impact of globalization and new technologies. Finally, the efficacy of the current defenses against contemporary chemical terrorism was considered briefly. The results of this analysis justify the need for continued diligence in chemical defense.

Hoette, Trisha Marie

2012-03-01T23:59:59.000Z

73

Device for collecting chemical compounds and related methods  

DOE Patents [OSTI]

A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

2013-01-01T23:59:59.000Z

74

Chemistry 455 Chemical Nanotechnology  

E-Print Network [OSTI]

Chemistry 455 Chemical Nanotechnology 4 units Prof. Richard Brutchey, Fall 2014 (Lecture = 12:00­12:50 pm MWF) CHEM 455 is an upper-division undergraduate course in Chemical Nanotechnology. The intent

Rohs, Remo

75

Capacitive chemical sensor  

DOE Patents [OSTI]

A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

2014-05-27T23:59:59.000Z

76

Institute of Chemical Engineering and High Temperature Chemical...  

Open Energy Info (EERE)

Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical Processes (ICEHT) Place: Hellas, Greece Zip:...

77

HARVARD UNIVERSITY CHEMICAL BIOLOGY  

E-Print Network [OSTI]

HARVARD UNIVERSITY CHEMICAL BIOLOGY PHD PROGRAM 2013-2014 Student Handbook #12;Program Contacts at the beginning of each semester. Laboratory Rotations Students in the Chemical Biology Program are expected an interest in having Chemical Biology Program Students in their labs. Students may rotate in the labs

Church, George M.

78

CHEMICAL SAFETY Emergency Numbers  

E-Print Network [OSTI]

- 1 - CHEMICAL SAFETY MANUAL 2010 #12;- 2 - Emergency Numbers UNBC Prince George Campus Security Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 5530 Biological Safety 5530 use, storage, handling, waste and emergency management of chemicals on the University of Northern

Bolch, Tobias

79

Department of Chemical Engineering  

E-Print Network [OSTI]

Developing Leaders of Innovation Department of Chemical Engineering #12;At the University of Virginia, we educate students in traditional and nontraditional areas of chemical engineering, giving them.Va. Department of Chemical Engineering benefit from a modern academic curriculum and state

Acton, Scott

80

Computational Chemical Materials Engineering  

E-Print Network [OSTI]

: Thermal barrier coatings, wear resistance coatings, radiation resistant materials · Materials for opticalHome Computational Chemical and Materials Engineering Tahir Cagin Chemical Engineering Department to understand behavior and properties of materials as a function of ­ Chemical constitution ­ Composition

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Chemical safety: asking the right questions  

SciTech Connect (OSTI)

Recent reports have shown that, despite efforts to the contrary, chemical accidents continue to occur at an unacceptable rate and there is no evidence that this rate is decreasing. Based on this observation, one can conclude that previous analyses have not accurately identified and implemented appropriate fixes to eliminate identified root causes for chemical events. Based on this, it is time to reevaluate chemical accident data with a fresh eye and determine (a) what corrective actions have already been identified but have not been implemented, (b) what other root causes may be involved, and (c) what new corrective actions should be taken to eliminate these newly identified root causes.

Whyte, Helena M [Los Alamos National Laboratory; Quigley, David [Y-12/NSC; Simmons, Fred [SRS; Freshwater, David [DOE/NNSA; Robertson, Janeen [LLNL

2008-01-01T23:59:59.000Z

82

CHEMICAL SAFETY: ASKING THE RIGHT QUESTIONS  

SciTech Connect (OSTI)

Recent reports have shown that, despite efforts to the contrary, chemical accidents continue to occur at an unacceptable rate and there is no evidence that this rate is decreasing. Based on this observation, one can conclude that previous analyses have not accurately identified and implemented appropriate fixes to eliminate identified root causes for chemical events. Based on this, it is time to reevaluate chemical accident data with a fresh eye and determine (a) what corrective actions have already been identified but have not been implemented, (b) what other root causes may be involved, and (c) what new corrective actions should be taken to eliminate these newly identified root causes.

Simmons, F

2008-08-05T23:59:59.000Z

83

Chemical Hygiene Plan i January 2013 Chemical Hygiene Plan  

E-Print Network [OSTI]

Chemical Hygiene Plan i January 2013 Chemical Hygiene Plan (CHP) (Appendix C in Lab Safety Manual........................................................................................................................1-1 Chapter 2: Chemical Hazard Communication....................................................................................2-1 Chapter 3: Classes of Hazardous Chemicals

Nizkorodov, Sergey

84

Chemical exchange program analysis.  

SciTech Connect (OSTI)

As part of its EMS, Sandia performs an annual environmental aspects/impacts analysis. The purpose of this analysis is to identify the environmental aspects associated with Sandia's activities, products, and services and the potential environmental impacts associated with those aspects. Division and environmental programs established objectives and targets based on the environmental aspects associated with their operations. In 2007 the most significant aspect identified was Hazardous Materials (Use and Storage). The objective for Hazardous Materials (Use and Storage) was to improve chemical handling, storage, and on-site movement of hazardous materials. One of the targets supporting this objective was to develop an effective chemical exchange program, making a business case for it in FY07, and fully implementing a comprehensive chemical exchange program in FY08. A Chemical Exchange Program (CEP) team was formed to implement this target. The team consists of representatives from the Chemical Information System (CIS), Pollution Prevention (P2), the HWMF, Procurement and the Environmental Management System (EMS). The CEP Team performed benchmarking and conducted a life-cycle analysis of the current management of chemicals at SNL/NM and compared it to Chemical Exchange alternatives. Those alternatives are as follows: (1) Revive the 'Virtual' Chemical Exchange Program; (2) Re-implement a 'Physical' Chemical Exchange Program using a Chemical Information System; and (3) Transition to a Chemical Management Services System. The analysis and benchmarking study shows that the present management of chemicals at SNL/NM is significantly disjointed and a life-cycle or 'Cradle-to-Grave' approach to chemical management is needed. This approach must consider the purchasing and maintenance costs as well as the cost of ultimate disposal of the chemicals and materials. A chemical exchange is needed as a mechanism to re-apply chemicals on site. This will not only reduce the quantity of unneeded chemicals and the amount spent on new purchases, but will also avoid disposal costs. If SNL/NM were to realize a 5 percent reduction in chemical inventory and a 10 percent reduction in disposal of unused chemicals the total savings would be $189, 200 per year.

Waffelaert, Pascale

2007-09-01T23:59:59.000Z

85

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network [OSTI]

Emphasis in Nanotechnology · ChemicalEngineering Emphasis in Petroleum Engineering · ChemicalEngineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, materials, energy

Rohs, Remo

86

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network [OSTI]

· ChemicalEngineering (Nanotechnology) Bachelor of Science 131 units · ChemicalEngineering(Petroleum38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, pharmaceutical

Rohs, Remo

87

Chemical engineers design, control and optimize large-scale chemical,  

E-Print Network [OSTI]

in Nanotechnology · ChemicalEngineering Emphasis in Petroleum Engineering · ChemicalEngineering Emphasis in Polymers38 Chemical engineers design, control and optimize large-scale chemical, physicochemical and electronics fields. Chemical Engineers are employed in areas as diverse as the chemical, pharmaceutical

Rohs, Remo

88

Appendix G. Chemicals Appendix G. Chemicals G-3  

E-Print Network [OSTI]

of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people with a chemical substance. Chemicals released to the air may remain suspended for long periods of timeAppendix G. Chemicals #12;#12;Appendix G. Chemicals G-3 Appendix G. Chemicals This appendix

Pennycook, Steve

89

Appendix G: Chemicals Appendix G: Chemicals G-3  

E-Print Network [OSTI]

of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people with a chemical substance. Chemicals released to the air may remain suspended for long periods of timeAppendix G: Chemicals #12;#12;Appendix G: Chemicals G-3 Appendix G: Chemicals This appendix

Pennycook, Steve

90

Appendix H: Chemicals Appendix H: Chemicals H-3  

E-Print Network [OSTI]

of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people with a chemical substance. Chemicals released to the air may remain suspended for long periods of timeAppendix H: Chemicals #12;#12;Appendix H: Chemicals H-3 Appendix H: Chemicals This appendix

Pennycook, Steve

91

Use and Misuse of Chemical Reactivity Spreadsheets  

SciTech Connect (OSTI)

Misidentifying chemical hazards can have serious deleterious effects. Consequences of not identifying a chemical are obvious and include fires, explosions, injury to workers, etc. Consequences of identifying hazards that are really not present can be equally as bad. Misidentifying hazards can result in increased work with loss of productivity, increased expenses, utilization/consumption of scarce resources, and the potential to modify the work to include chemicals or processes that are actually more hazardous than those originally proposed. For these reasons, accurate hazard identification is critical to any safety program. Hazard identification in the world of chemistry is, at best, a daunting task. The knowing or understanding, of the reactions between any of approximately twelve million known chemicals that may be hazardous, is the reason for this task being so arduous. Other variables, such as adding other reactants/contaminants or changing conditions (e.g., temperature, pressure, or concentration), make hazard determination something many would construe as being more than impossibly difficult. Despite these complexities, people who do not have an extensive background in the chemical sciences can be called upon to perform chemical hazard identification. Because hazard identification in the area of chemical safety is so burdensome and because people with a wide variety of training are called upon to perform this work, tools are required to aid in chemical hazard identification. Many tools have been developed. Unfortunately, many of these tools are not seen as the limited resource that they are and are used inappropriately.

Simmons, F

2005-09-20T23:59:59.000Z

92

Chemical evolution STRUCTURE OF GALAXIES  

E-Print Network [OSTI]

Outline Absorption Chemical evolution STRUCTURE OF GALAXIES 8. Absorption; chemical evolution Piet Piet van der Kruit, Kapteyn Astronomical Institute Absorption; chemical evolution #12;Outline Absorption Chemical evolution Outline Absorption Holmberg's analysis Analysis of Disney et al. Edge

Kruit, Piet van der

93

Real time chemical exposure and risk monitor  

DOE Patents [OSTI]

The apparatus of the present invention is a combination of a breath interface and an external exposure dosimeter interface to a chemical analysis device, all controlled by an electronic processor for quantitatively analyzing chemical analysis data from both the breath interface and the external exposure dosimeter for determining internal tissue dose. The method of the present invention is a combination of steps of measuring an external dose, measuring breath content, then analyzing the external dose and breath content and determining internal tissue dose. 7 figs.

Thrall, K.D.; Kenny, D.V.; Endres, G.W.R.; Sisk, D.R.

1997-07-08T23:59:59.000Z

94

CX-008738: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Determination of Microstructure and Chemical State Changes in Ion-Irradiated Fuels and Structural Components with a High Kinetic Energy Electron Detector – Illinois Institute of Technology CX(s) Applied: B3.6 Date: 05/22/2012 Location(s): Idaho Offices(s): Idaho Operations Office

95

CX-006440: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Development of an Integrated Biofuel and Chemical Refinery CX(s) Applied: A9, B3.6 Date: 08052011 Location(s): California Office(s): Energy...

96

CX-010825: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination High-Pressure Turbulent Flame Speeds and Chemical Kinetics of Syngas Blends With and Without Impurities CX(s) Applied: B3.6 Date: 07302013 Location(s):...

97

Siderite, oxidation, and neutralization potential determination  

E-Print Network [OSTI]

Due to the nature of native soils overlying lignite seams in Texas, mixed overburden is allowed as a topsoil substitute. Determination of suitable topsoil replacements is based on chemical analysis, including neutralization potential (NP), a...

Porter, Elizabeth Brooke

2001-01-01T23:59:59.000Z

98

Biomass pyrolysis for chemicals.  

E-Print Network [OSTI]

??Biomass Pyrolysis for Chemicals The problems associated with the use of fossil fuels demand a transition to renewable sources (sun, wind, water, geothermal, biomass) for… (more)

Wild, Paul de

2011-01-01T23:59:59.000Z

99

Chemically Reactive Working Fluids  

Broader source: Energy.gov (indexed) [DOE]

commercial application. Goal: Demonstrate feasibility of employing chemically reacting fluids (CRFW) as heat transfer fluids (HTF) for CSP systems operating at 650C-1200C....

100

EMSL - chemical analysis  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

chemical-analysis en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-...

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Apparatus for chemical synthesis  

DOE Patents [OSTI]

A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

Kong, Peter C. (Idaho Falls, ID); Herring, J. Stephen (Idaho Falls, ID); Grandy, Jon D. (Idaho Falls, ID)

2011-05-10T23:59:59.000Z

102

Chemical Accelerators The phrase "chemical accelerators"  

E-Print Network [OSTI]

bonds, 2 to 10 ev). The methods that have revealed this richness and order of medium- and high-energy, mass spectrometry. While hot-atom studies overcome the energy limitations of thermochemical methods energies of a few electron volts. Most studies of chemical kinetics made by traditional thermochemical

Zare, Richard N.

103

CHEMICAL ABBREVIATION KEY ABBREVIATION CHEMICAL NAME HAZARDS  

E-Print Network [OSTI]

Corrosive - base LiCl Lithium chloride Harmful MeOH Methanol Flammable #12;CHEMICAL ABBREVIATION KEY Irritant destain Methanol,acetic acid,H2O Flammable, Corrosive - acid DI H2O Deionized water DCM FeCl3 Iron(III) chloride Corrosive - acid FeSO4 Iron(II) sulfate Toxic H2O Water HCl Hydrochloric

Pawlowski, Wojtek

104

Chemical Engineering Andrew Zydney  

E-Print Network [OSTI]

;ChE Employment (2003 at PSU) Merck Dow ExxonMob Air Products Amgen PPG Sunoco Kraft Foods NRC Procter, microelectronics, consumer products, biotechnology, fuels / energy, environmental engineering, etc. ·Chemical Engineers focus on the processes involved in making new products, including chemical reactions

Maranas, Costas

105

Chemical and Biochemical  

E-Print Network [OSTI]

carrying out two experi- ments each semester. Graduates find careers at hospitals, nuclear plants, research how plastics, petrochemicals, or certain foods are made? Chemical engineers develop ways of converting to a variety of industries including the chemical and petrochemical fields and the pharmaceutical and biotech

Neimark, Alexander V.

106

Chemical sensor with oscillating cantilevered probe  

DOE Patents [OSTI]

The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

Adams, Jesse D

2013-02-05T23:59:59.000Z

107

Tortuous path chemical preconcentrator  

DOE Patents [OSTI]

A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

Manginell, Ronald P. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Simonson, Robert J. (Cedar Crest, NM)

2010-09-21T23:59:59.000Z

108

PhD Chemical Engineering MS Chemical Engineering  

E-Print Network [OSTI]

1 PhD Chemical Engineering MS Chemical Engineering Bylaws Gene and Linda Voiland School of Chemical Engineering and Bioengineering College of Engineering and Architecture Approved by Voiland School facultyD Chemical Engineering, MS Chemical Engineering B. Discipline: Edgar, et al.1 provide a succinct description

Collins, Gary S.

109

Appendix B: Chemicals Appendix B: Chemicals B-3  

E-Print Network [OSTI]

of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people are exposed to chemicals by inhalation (breathing air), ingestion (eating exposed plants and animalsAppendix B: Chemicals #12;Appendix B: Chemicals B-3 Appendix B: Chemicals This appendix presents

Pennycook, Steve

110

Chemical Reactor Analysis and Optimal Digestion  

E-Print Network [OSTI]

J 310 Chemical Reactor Analysis and Optimal Digestion An optimal digestion theory can be readily A . Jumars F oraging and digestion are two stages of a single process that determines an animal's net rate if digestion follows an optimal path constrained by the food items actually ingested . An animal feeding

Jumars, Pete

111

Helium in Chemically Peculiar Stars  

E-Print Network [OSTI]

For the purpose of deriving the helium abundances in chemically peculiar stars, the importance of assuming a correct helium abundance has been investigated for determining the effective temperature and gravity of main sequence B-type stars, making full use of the present capability of reproducing their helium lines. Even if the flux distribution of main sequence B-type stars appears to depend only on the effective temperature for any helium abundance, the effective temperature, gravity and helium abundance have to be determined simultaneously by matching the Balmer line profiles. New MULTI NLTE calculations, performed adopting ATLAS9 model atmospheres and updated helium atomic parameters, reproduce most of the observed equivalent widths of neutral helium lines for main sequence B-type stars and they make us confident of the possibility to correctly derive the helium abundance in chemically peculiar stars. An application of previous methods to the helium rich star HD 37017 shows that helium could be stratified in the magnetic pole regions, as expected in the framework of the diffusion theory in the presence of mass loss.

F. Leone

1998-05-05T23:59:59.000Z

112

Experimental Determination of Chemical Diffusion within Secondary Organic  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy and Assistance100Jefferson Lab Gwyn Williams

113

or ChemiCal engineering?  

E-Print Network [OSTI]

Chemistry or ChemiCal engineering? Do both at Wits! www.wits.ac.za #12;Chemistry or ChemiCal by a BScEng (Chem Eng)! Which should I choose: Chemistry or Chemical Engineering? Because the chemist and the chemical engineer work so closely in industry, there is little doubt that the chemical engineer who has

Wagner, Stephan

114

Specimen Curriculum for Chemical Engineering Focus Area: Chemical Engineering  

E-Print Network [OSTI]

Chemistry Chem 220B 3 hours Physical Chemistry Chem 230 3 hours Chemical Reactor Engineering ChBE 225 3Specimen Curriculum for Chemical Engineering Focus Area: Chemical Engineering Semester hours SOPHOMORE YEAR FALL SPRING Chem 219A

Bordenstein, Seth

115

Chemical Sciences Project Description  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In &Chemical LabelChemicalChemicalModeling

116

ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary...

117

Chemical Equilibrium in Heavy Ion Collisions: Rapidity Dependence  

E-Print Network [OSTI]

Particle yields in heavy ion collisions show an overwhelming evidence for chemical or relative chemical equilibrium at all beam energies. The rapidity dependence of the thermal parameters $T$ and $\\mu_B$ can now be determined over a wide range of rapidities and show a systematic behavior towards an increase in $\\mu_B$ away from mid-rapidity.

F. Becattini; J. Cleymans

2007-01-05T23:59:59.000Z

118

CHEMICAL ENGINEERING Program of Study  

E-Print Network [OSTI]

CHEMICAL ENGINEERING Program of Study Research Facilities Financial Aid Applying Correspondence The Department of Chemical Engineering and Biological Engineering has well-established programs at both area of chemical engineering and include both fundamental and applied topics. The Department has

Thomas, Andrew

119

Decision support tools for environmentally conscious chemical process design  

E-Print Network [OSTI]

The environment has emerged as an important determinant of the performance of the modern chemical industry. Process engineering in the 21st century needs to evolve to include environmental issues as part of the design ...

Cano Ruiz, José Alejandro, 1969-

1999-01-01T23:59:59.000Z

120

Ultratrace determination of curium  

SciTech Connect (OSTI)

Development of a method for detection of curium at near single atom levels is being undertaken as a part of the Advanced Concepts Project at Argonne National Laboratory with funding from the US Department of Energy, Office of Arms Control and Nonproliferation. Ultratrace determination of curium, with the ability to quantify the fraction that is curium-242, provides a signature method of detecting clandestine reprocessing of recently irradiated uranium targets. Curium initially present in any of a variety of materials such as air filters, solid or liquid process waste, soil, flora, or fauna can be recovered via current chemical separations processing techniques. Using the ultratrace method being developed, such recovered curium will be quantified with thousand-fold higher sensitivity than the best currently available method which is alpha counting. This high sensitivity arises because, on average, a given trivalent curium (Cm{sup 3+}) ion can emit a very large number of fluorescence photons before alpha decay occurs.

Beitz, J.V.

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Chemical Engineering Is Chemical Engineering right for me?  

E-Print Network [OSTI]

Chemical Engineering Is Chemical Engineering right for me? If you are interested in the uses and processes surrounding the engineering of new and raw materials, a degree in Chemical Engineering may be well suited to you. The Chemical Engineering degree programme will focus on the development of products

Harman, Neal.A.

122

Chemical Organization Theory as a Theoretical Base for Chemical Computing  

E-Print Network [OSTI]

Chemical Organization Theory as a Theoretical Base for Chemical Computing NAOKI MATSUMARU, FLORIAN-07743 Jena, Germany http://www.minet.uni-jena.de/csb/ Submitted 14 November 2005 In chemical computing- gramming chemical systems a theoretical method to cope with that emergent behavior is desired

Dittrich, Peter

123

Appendix G. Chemicals Appendix G. Chemicals G-3  

E-Print Network [OSTI]

. Through the use of chemicals, we can increase food production, cure diseases, build more efficient houses or way in which a person can come in contact with a chemical substance. Chemicals released to the air may are exposed to chemicals by inhalation (breathing air), ingestion (eating exposed plants and animals

Pennycook, Steve

124

Appendix H. Chemicals Appendix H. Chemicals H-3  

E-Print Network [OSTI]

. Through the use of chemicals, we can increase food production, cure diseases, build more efficient houses or way in which a person can come in contact with a chemical substance. Chemicals released to the air may are exposed to chemicals by inhalation (breathing air), ingestion (eating exposed plants and animals

Pennycook, Steve

125

Appendix G. Chemicals Appendix G. Chemicals G-3  

E-Print Network [OSTI]

of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people with a chemical substance. Chemicals released to the air may remain suspended for long periods, or they may effluents, which can enter streams and rivers. People are exposed to chemicals by inhalation (breathing air

Pennycook, Steve

126

Micromachined chemical jet dispenser  

DOE Patents [OSTI]

A dispenser is disclosed for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 {micro}m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (ca. 200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments. 4 figs.

Swierkowski, S.P.

1999-03-02T23:59:59.000Z

127

Micromachined chemical jet dispenser  

DOE Patents [OSTI]

A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.

Swierkowski, Steve P. (Livermore, CA)

1999-03-02T23:59:59.000Z

128

Three Packets of Minerals of the Periodic Table of Chemical Elements and Chemical Compounds  

E-Print Network [OSTI]

The concepts of alpha- and beta-packets of the periodic table of chemical elements and chemical compounds are defined. The first of the 47 minerals alpha-packets is composed. In it all minerals are arranged in increasing Iav index of proportionality of atomic weights of composing chemical elements, the same way as chemical elements are located in increasing atomic weights in the Periodic table. The packet includes 93 known minerals and two compounds - N2O5 and CO2 - being actually minerals. Beta-packet of oxides and hydroxides minerals includes 88 known minerals and five chemical compounds - N2O5, CO2, CO, SO3 and SO2. Two minerals of the packet have not been determined yet. Besides, beta-packet of minerals with sulfur, selenium or arsenic is composed, with one mineral not defined yet. The results of the calculations can be used for further development of the Periodic Table of Chemical Elements and Chemical Compounds and their properties investigation.

Labushev, Mikhail M

2013-01-01T23:59:59.000Z

129

Three Packets of Minerals of the Periodic Table of Chemical Elements and Chemical Compounds  

E-Print Network [OSTI]

The concepts of alpha- and beta-packets of the periodic table of chemical elements and chemical compounds are defined. The first of the 47 minerals alpha-packets is composed. In it all minerals are arranged in increasing Iav index of proportionality of atomic weights of composing chemical elements, the same way as chemical elements are located in increasing atomic weights in the Periodic table. The packet includes 93 known minerals and two compounds - N2O5 and CO2 - being actually minerals. Beta-packet of oxides and hydroxides minerals includes 88 known minerals and five chemical compounds - N2O5, CO2, CO, SO3 and SO2. Two minerals of the packet have not been determined yet. Besides, beta-packet of minerals with sulfur, selenium or arsenic is composed, with one mineral not defined yet. The results of the calculations can be used for further development of the Periodic Table of Chemical Elements and Chemical Compounds and their properties investigation.

Mikhail M. Labushev

2013-03-20T23:59:59.000Z

130

November 2006 CHEMICAL HYGIENE PLAN  

E-Print Network [OSTI]

.0 DEPARTMENTAL SAFETY MANAGEMENT 4.1 CHEMISTRY SAFETY COMMITTEE 4.2 TRAINING 4.3 CHEMICAL SAFETY PROTOCOLS 4.2 CHEMICAL HAZARD INFORMATION 6.3 CHEMICAL STORAGE IN LABORATORIES 6.4 WORKING WITH PARTICULARLY HAZARDOUS PROCEDURES 6.8 CHEMICAL WASTE DISPOSAL 6.9 COMPRESSED GASES 6.10 CRYOGENIC LIQUIDS #12;November 2006 3 6

Bordenstein, Seth

131

New Science for Chemicals Policy  

E-Print Network [OSTI]

Disease Control and Prevention, Third National Report on Human Exposure to Environmental Chemicals (

2009-01-01T23:59:59.000Z

132

Process Intensification - Chemical Sector Focus  

Office of Environmental Management (EM)

Process Intensification - Chemical Sector Focus 1 Technology Assessment 2 Contents 3 1. Introduction ......

133

Chemical Hygiene and Safety Plan  

E-Print Network [OSTI]

G-31 Fluorocarbonhydrocarbons, and (3) fluorocarbon solvents. However, aHigh Hazard Chemicals Fluorocarbon Solvents Fluorocarbon

Ricks Editor, R.

2009-01-01T23:59:59.000Z

134

DOE contractor's meeting on chemical toxicity  

SciTech Connect (OSTI)

The Office of Health and Environmental Research (OHER) is required to determine the potential health and environmental effects associated with energy production and use. To ensure appropriate communication among investigators and scientific disciplines that these research studies represent, OHER has sponsored workshops. This document provides a compilation of activities at the Third Annual DOE/OHER Workshop. This year's workshop was broadened to include all OHER activities identified as within the chemical effects area. The workshop consisted of eight sessions entitled Isolation and Detection of Toxic chemicals; Adduct Formation and Repair; Chemical Toxicity (Posters); Metabolism and Genotoxicity; Inhalation Toxicology; Gene Regulation; Metals Toxicity; and Biological Mechanisms. This document contains abstracts of the information presented by session.

Not Available

1987-01-01T23:59:59.000Z

135

Chemical Label Information  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In &Chemical Label Information Chemical

136

Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions  

SciTech Connect (OSTI)

A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

Gray, S.K. [Argonne National Laboratory, IL (United States)

1993-12-01T23:59:59.000Z

137

CX-012384: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Eleven Soil Bores Along the M-Area Abandoned Process Sewer Line for Vadose Zone Characterization CX(s) Applied: B3.1 Date: 05/19/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

138

NETL - Chemical Looping Reactor  

ScienceCinema (OSTI)

NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

None

2014-06-26T23:59:59.000Z

139

Application of Chemically Accelerated Biotreatment to Reduce Risk in Oil-Impacted Soils  

SciTech Connect (OSTI)

Research was conducted in six major focus areas: (1) Evaluation of the process using 6 test soils with full chemical and physical characteristics to determine controlling factors for biodegradation and chemical oxidation; (2) Determination of the sequestration time on chemical treatment suspectability; (3) Risk factors, i.e. toxicity after chemical and biological treatment; (4) Impact of chemical treatment (Fenton's Reagent) on the agents of biodegradation; (5) Description of a new genus and its type species that degrades hydrocarbons; and (6) Intermediates generate from Fenton's reagent treatment of various polynuclear aromatic hydrocarbons.

Paterek, J.R.; Bogan, W.W.; Sirivedhin; Tanita

2003-03-06T23:59:59.000Z

140

Flow method and apparatus for screening chemicals using micro x-ray fluorescence  

DOE Patents [OSTI]

Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.

Warner, Benjamin P. (Los Alamos, NM); Havrilla, George J. (Los Alamos, NM); Miller, Thomasin C. (Bartlesville, OK); Lewis, Cris (Los Alamos, NM); Mahan, Cynthia A. (Los Alamos, NM); Wells, Cyndi A. (Los Alamos, NM)

2011-04-26T23:59:59.000Z

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Flow method and apparatus for screening chemicals using micro x-ray fluorescence  

DOE Patents [OSTI]

Method and apparatus for screening chemicals using micro x-ray fluorescence. A method for screening a mixture of potential pharmaceutical chemicals for binding to at least one target binder involves flow-separating a solution of chemicals and target binders into separated components, exposing them to an x-ray excitation beam, detecting x-ray fluorescence signals from the components, and determining from the signals whether or not a binding event between a chemical and target binder has occurred.

Warner, Benjamin P. (Los Alamos, NM); Havrilla, George J. (Los Alamos, NM); Miller, Thomasin C. (Bartlesville, OK); Lewis, Cris (Los Alamos, NM); Mahan, Cynthia A. (Los Alamos, NM); Wells, Cyndi A. (Los Alamos, NM)

2009-04-14T23:59:59.000Z

142

Cotton Harvest-Aid Chemicals.  

E-Print Network [OSTI]

of Application Managing Harvest-Aid Program Secondary Growth Insect Control Care of Equipment Safety with Chemicals Guide for Using Cotton Harvest Aids Defoliants Desiccants Mixtures Plant Regulators-Conditioners 3 3 4 4 4 4 5 5 6 7 7 COTTON... HARVEST-AID CHEMICALS Robert B. Metzer and James Supak* As the name implies, harvest-aid chemicals pre pare the cotton crop for harvest by reducing foliage and plant moisture that interfere with harvesting operations. Harvest-aid chemicals...

Metzer, Robert B.; Supak, James

1987-01-01T23:59:59.000Z

143

LLNL Chemical Kinetics Modeling Group  

SciTech Connect (OSTI)

The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

2008-09-24T23:59:59.000Z

144

CHEMICAL LABORATORY SAFETY AND METHODOLOGY  

E-Print Network [OSTI]

CHEMICAL LABORATORY SAFETY AND METHODOLOGY MANUAL August 2013 #12;ii Emergency Numbers UNBC Prince-Emergency Numbers UNBC Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 6472 Biological the safe use, storage, handling, waste and emergency management of chemicals on the University of Northern

Northern British Columbia, University of

145

ANALYTICAL METHODS in CHEMICAL ECOLOGY  

E-Print Network [OSTI]

ANALYTICAL METHODS in CHEMICAL ECOLOGY a post graduate course (doktorandkurs) when: February 10 ­ 28, 2014 where: Chemical Ecology, Plant Protection Biology, Swedish University of Agriculture (SLU to modern analytical methods used in Chemical Ecological and Ecotoxicological research, such as: methods

146

Chemical engineering approach to the biotransformation of aflatoxin B?  

E-Print Network [OSTI]

relatively small number of metabolites and the abundant data existent regarding its metabolism. Also, because of its characteristic chemical structure and metabolic activation AFB& and its metabolites provide an interesting set of structural homologues... of the Characteristic Length, Determination of the Effective Diffusivity, Des. Estimation of the Molecular Diffusivity of AFB& in Blood Plasma, D&&. Determination of the Knudsen Diffusivity, D~ . Determination of the Observed Rate, rot s, from Time Course Data...

Rodriguez, Mayra Elena

2012-06-07T23:59:59.000Z

147

Chemical kinetics modeling  

SciTech Connect (OSTI)

This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)

1993-12-01T23:59:59.000Z

148

Chemical Sciences Division - CSD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistant navalChemCam laser ChemicalCSD

149

Chemical Processing Qualification Standard  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical Kinetic Modeling of16-2010 February

150

CAMD Cleanroom Chemical List  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route Segments (notCAMD Cleanroom Chemical List

151

Chemical & Engineering Materials | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical & Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the...

152

Methods in Industrial Biotechnology for Chemical Engineers  

E-Print Network [OSTI]

In keeping with the definition that biotechnology is really no more than a name given to a set of techniques and processes, the authors apply some set of fuzzy techniques to chemical industry problems such as finding the proper proportion of raw mix to control pollution, to study flow rates, to find out the better quality of products. We use fuzzy control theory, fuzzy neural networks, fuzzy relational equations, genetic algorithms to these problems for solutions. When the solution to the problem can have certain concepts or attributes as indeterminate, the only model that can tackle such a situation is the neutrosophic model. The authors have also used these models in this book to study the use of biotechnology in chemical industries. This book has six chapters. First chapter gives a brief description of biotechnology. Second chapter deals will proper proportion of mix of raw materials in cement industries to minimize pollution using fuzzy control theory. Chapter three gives the method of determination of temperature set point for crude oil in oil refineries. Chapter four studies the flow rates in chemical industries using fuzzy neutral networks. Chapter five gives the method of minimization of waste gas flow in chemical industries using fuzzy linear programming. The final chapter suggests when in these studies indeterminancy is an attribute or concept involved, the notion of neutrosophic methods can be adopted.

W. B. Vasantha Kandasamy; Florentin Smarandache

2008-07-13T23:59:59.000Z

153

Correlation method for chemical communication of coal  

SciTech Connect (OSTI)

In spite of many experimental studies of the chemical comminution of coal, there have been only a few reported attempts to correlate experimental data and mathematically model the process. This paper presents a strain energy model based on the thermodynamic analysis. The capillary-imbibition number is proposed as an important parameter for characterization of chemicals used in comminution. The authors discuss the development of a phenomenological model for chemical comminution to study the relative effects of the governing process. Sensitivity studies carried out with this model indicated that the mechanism of chemical transfer into bedding planes and comminution of coal is dominantly a capillary-imbibition-induced flow phenomenon and to a lesser extent a diffusion-controlled process. The authors also tested this hypothesis using experimental data. As reported, the maximum comminution rates for the middle Pennsylvania Cherokee C-bituminous coal with NaOH solutions were within the range of 6-8% caustic concentration. Hence, it is concluded that this contradicts the author's earlier work (1988), which reported that capillary-imbibition number (reciprocal of the surface-tension number) decreases with increasing caustic concentration. This conclusion is misleading because the authors simply present a set of data on capillary-imbibition number vs NaOH concentration, and it alone cannot determine the caustic concentration for the maximum comminution rate.

Civan, F.; Knapp, R.M. (School of Petroleum and Geological Engineering, Univ. of Oklahoma, Norman, OK (US))

1991-06-01T23:59:59.000Z

154

Chemical Reactions in DSMC  

SciTech Connect (OSTI)

DSMC simulations of chemically reacting gas flows have generally employed procedures that convert the macroscopic chemical rate equations to reaction cross-sections at the microscopic level. They therefore depend on the availability of experimental data that has been fitted to equations of the Arrhenius form. This paper presents a physical model for dissociation and recombination reactions and a phenomenological model for exchange and chain reactions. These are based on the vibrational states of the colliding molecules and do not require any experimentally-based data. The simplicity of the models allows the corresponding rate equations to be written down and, while these are not required for the implementation of the models, they facilitate their validation. The model is applied to a typical hypersonic atmospheric entry problem and the results are compared with the corresponding results from the traditional method. It is also used to investigate both spontaneous and forced ignition as well as the structure of a deflagration wave in an oxygen-hydrogen mixture.

Bird, G. A. [GAB Consulting Pty Ltd, 144/110 Sussex Street, Sydney NSW 2000 (Australia)

2011-05-20T23:59:59.000Z

155

Chemical Looping Combustion Kinetics  

SciTech Connect (OSTI)

One of the most promising methods of capturing CO{sub 2} emitted by coal-fired power plants for subsequent sequestration is chemical looping combustion (CLC). A powdered metal oxide such as NiO transfers oxygen directly to a fuel in a fuel reactor at high temperatures with no air present. Heat, water, and CO{sub 2} are released, and after H{sub 2}O condensation the CO{sub 2} (undiluted by N{sub 2}) is ready for sequestration, whereas the nickel metal is ready for reoxidation in the air reactor. In principle, these processes can be repeated endlessly with the original nickel metal/nickel oxide participating in a loop that admits fuel and rejects ash, heat, and water. Our project accumulated kinetic rate data at high temperatures and elevated pressures for the metal oxide reduction step and for the metal reoxidation step. These data will be used in computational modeling of CLC on the laboratory scale and presumably later on the plant scale. The oxygen carrier on which the research at Utah is focused is CuO/Cu{sub 2}O rather than nickel oxide because the copper system lends itself to use with solid fuels in an alternative to CLC called 'chemical looping with oxygen uncoupling' (CLOU).

Edward Eyring; Gabor Konya

2009-03-31T23:59:59.000Z

156

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1981-01-01T23:59:59.000Z

157

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

158

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

159

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

1984-01-01T23:59:59.000Z

160

Determination of Selenium in Seleno Compounds and Marine  

E-Print Network [OSTI]

Atomization Atomic Absorption Spectrometry Journalof Analytical I Atomic I Spectrometry M. DEAKER AND W. MAHER determination; electrothermal atomization atomic absorption spectrometry; seleno compounds; marine biological tissues; chemical modijcation Electrothermal (graphite furnace) atomic absorption spec- trometry (ETAAS

Canberra, University of

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

E-Print Network 3.0 - anaerobic aggregates determined Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Environment & Resources Online monitoring and control Summary: determines the biogas yield. Anaerobic substrate input is often measured in term of total chemical oxygen......

162

Sensitive Chemical Compass Assisted by Quantum Criticality  

E-Print Network [OSTI]

The radical-pair-based chemical reaction could be used by birds for the navigation via the geomagnetic direction. An inherent physical mechanism is that the quantum coherent transition from a singlet state to triplet states of the radical pair could response to the weak magnetic field and be sensitive to the direction of such a field and then results in different photopigments in the avian eyes to be sensed. Here, we propose a quantum bionic setup for the ultra-sensitive probe of a weak magnetic field based on the quantum phase transition of the environments of the two electrons in the radical pair. We prove that the yield of the chemical products via the recombination from the singlet state is determined by the Loschmidt echo of the environments with interacting nuclear spins. Thus quantum criticality of environments could enhance the sensitivity of the detection of the weak magnetic field.

C. Y. Cai; Qing Ai; H. T. Quan; C. P. Sun

2011-05-12T23:59:59.000Z

163

Chemical Hazards and Safety Issues in Fusion Safety Design  

SciTech Connect (OSTI)

Radiological inventory releases have dominated accident consequences for fusion; these consequences are important to analyze and are generally the most severe result of a fusion facility accident event. However, the advent of, or plan for, large-scale usage of some toxic materials poses the additional hazard of chemical exposure from an accident event. Examples of toxic chemicals are beryllium for magnetic fusion and fluorine for laser fusion. Therefore, chemical exposure consequences must also be addressed in fusion safety assessment. This paper provides guidance for fusion safety analysis. US Department of Energy (DOE) chemical safety assessment practices for workers and the public are reviewed. The US Environmental Protection Agency (EPA) has published some guidance on public exposure to releases of mixtures of chemicals, this guidance has been used to create an initial guideline for treating mixed radiological and toxicological releases in fusion; for example, tritiated hazardous dust from a tokamak vacuum vessel. There is no convenient means to judge the hazard severity of exposure to mixed materials. The chemical fate of mixed material constituents must be reviewed to determine if there is a separate or combined radiological and toxicological carcinogenesis, or if other health threats exist with radiological carcinogenesis. Recommendations are made for fusion facility chemical safety evaluation and safety guidance for protecting the public from chemical releases, since such levels are not specifically identified in the DOE fusion safety standard.

Cadwallader, L.C. [Idaho National Engineering and Environmental Laboratory (United States)

2003-09-15T23:59:59.000Z

164

CHEMICAL ENGINEERING 2012-2014 CATALOG  

E-Print Network [OSTI]

CHEMICAL ENGINEERING 2012-2014 CATALOG (catalog valid until August 2020) Suggested Arrangement 204, Introduction to Chemical Practice............................2 CHE 102, Introduction to Chemical ..............................1 CHE 317, Intro to Chemical Engineering Analysis...................3 CH 353, Physical Chemistry

Texas at Austin, University of

165

CHEMICAL SENSORS School of Chemistry and Biochemistry  

E-Print Network [OSTI]

CHEMICAL SENSORS CHEM 6282 School of Chemistry and Biochemistry Chemical sensors physics and electronics or a chemical instrumentation course. The topics covered will include general theory of chemical recognition, electrochemical, optical, mass sensors and data reduction. Text: J

Sherrill, David

166

Chemical engineers design, control and optimize large-scale chemical, physicochemical and  

E-Print Network [OSTI]

, Biochemical, Environmental, Petroleum Engineering and Nantoechnology. CHEMICAL&MATERIALSSCIENCE CHE OVERVIEW of Science 131 units · Chemical Engineering (Petroleum) Bachelor of Science 136 units · Chemical Engineering38 Chemical engineers design, control and optimize large-scale chemical, physicochemical

Rohs, Remo

167

Chemical comminution of coal  

SciTech Connect (OSTI)

The objective of the present research is to study the chemical reactivity of a mixture of methyl alcohol and aqueous sodium hydroxide solution in the temperature range 298 to 363 K, and a caustic concentration of 0 to 10 wt. %, on an Iowa bituminous coal. The sample studied was collected from coal zone 4, equivalent to most historical references to Laddsdale coal. The coals in this zone are typical high-sulfur, high-ash middle Pennsylvania Cherokee group coals. The apparent rank is high-volatile C bituminous coal. The relatively high content of sulfur and 23 other elements in these coals is related to near neutral (6-8) pH conditions in the depositional and early diagenetic environments, and to postdepositional sphalerite/calcite/pyrite/kaolinite/barite mineralization.

Mamaghani, A.H.; Beddow, J.K.; Vetter, A.F.

1987-02-01T23:59:59.000Z

168

Chemical heat pump  

DOE Patents [OSTI]

A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

1980-01-01T23:59:59.000Z

169

Appendix G. Chemicals Annual Site Environmental Report  

E-Print Network [OSTI]

Appendix G. Chemicals #12;Annual Site Environmental Report Appendix G. Chemicals G-3 Appendix G chemicals. Through the use of chemicals, we can increase food production, cure diseases, build more. Chemicals This appendix presents basic facts about chemicals. The information is intended to be a basis

Pennycook, Steve

170

The Periodic Table as a Part of the Periodic Table of Chemical Compounds  

E-Print Network [OSTI]

The numbers of natural chemical elements, minerals, inorganic and organic chemical compounds are determined by 1, 2, 3 and 4-combinations of a set 95 and are respectively equal to 95, 4,465, 138,415 and 3,183,545. To explain these relations it is suggested the concept of information coefficient of proportionality as mathematical generalization of the proportionality coefficient for any set of positive numbers. It is suggested a hypothesis that the unimodal distributions of the sets of information coefficients of proportionality for atomic weights of chemical elements of minerals and chemical compounds correspond to unimodal distributions of the above sets for combination of 2, 3 and 4 atomic weights of 95 natural chemical elements. The expected values of symmetrized distributions of information coefficients of proportionality sets for atomic weights of minerals and chemical compounds are proposed to be used to define chemical compounds, like atomic weights define chemical elements. Variational series of the e...

Labushev, Mikhail M

2011-01-01T23:59:59.000Z

171

FAQS Reference Guide- Chemical Processing  

Broader source: Energy.gov [DOE]

This reference guide addresses the competency statements in the February 2010 edition of DOE-STD-1176-2010, Chemical Processing Functional Area Qualification Standard.

172

Chemical substructure analysis in toxicology  

SciTech Connect (OSTI)

A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

Beauchamp, R.O. Jr. [Center for Information on Toxicology and Environment, Raleigh, NC (United States)

1990-12-31T23:59:59.000Z

173

ChemicalChemical StratigraphyStratigraphy Oxygen, Carbon, Strontium,  

E-Print Network [OSTI]

2/25/2009 1 ChemicalChemical StratigraphyStratigraphy Oxygen, Carbon, Strontium, Sulphur Isotopes Change. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department evolves over time, with the geological time line running from right to left in this graph. The increased

Miami, University of

174

Chemical Biology Chemical Screening for Hair Cell Loss and Protection  

E-Print Network [OSTI]

Chemical Biology Chemical Screening for Hair Cell Loss and Protection in the Zebrafish Lateral Line Rubel,1,2 and David W. Raible1,4 Abstract In humans, most hearing loss results from death of hair cells, the mechanosensory receptors of the inner ear. Two goals of current hearing research are to protect hair cells from

Rubel, Edwin

175

Theoretical studies of chemical reaction dynamics  

SciTech Connect (OSTI)

This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

Schatz, G.C. [Argonne National Laboratory, IL (United States)

1993-12-01T23:59:59.000Z

176

Concrete Chemical Evolution  

SciTech Connect (OSTI)

The objectives of this analysis are to discuss and evaluate testing results that were performed for the M&O by the Pennsylvania State University (PSU) to evaluate the potential long-term evolution of organic admixtures in cementitious materials at elevated temperatures. The testing was designed to help provide a basis for a determination by the Performance Assessment group (PA) of the long-term acceptability and longevity of cementitious materials for repository use. The main purpose of the testing was to assess the evolution of gases (especially CO{sub 2}) from hydrated cement paste at elevated temperatures and to determine the impact on alkalinity, i.e., the pH value of cement paste pore solution. This information in turn can be used as scoping information to determine if further tests of this nature are needed to support PA. As part of this discussion and evaluation of the PSU results, an assessment of alkalinity in a ''cementitious repository'' and an evaluation of organic materials are presented.

D.H. Tang

1998-07-31T23:59:59.000Z

177

MATLAB Applications in Chemical Engineering  

E-Print Network [OSTI]

MATLAB® Applications in Chemical Engineering James A. Carnell North Carolina State University MATLAB is a powerful code-based mathematical and engineering calculation program. It performs all introduction to MATLAB in chemical engineering, and in no way attempts to be a comprehensive MATLAB learning

Al-Juhani, Abdulhadi A.

178

Chemical Evolution in Omega Centauri  

E-Print Network [OSTI]

The globular cluster Omega Centauri displays evidence of a complex star formation history and peculiar internal chemical evolution, setting it apart from essentially all other globular clusters of the Milky Way. In this review we discuss the nature of the chemical evolution that has occurred within Omega Cen and attempt to construct a simple scenario to explain its chemistry.

Verne V. Smith

2003-10-22T23:59:59.000Z

179

Method of forming a chemical composition  

DOE Patents [OSTI]

A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.

Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Zollinger, William T. (Idaho Falls, ID); Wendt, Kraig M. (Idaho Falls, ID)

2007-10-09T23:59:59.000Z

180

Chemical analysis quality assurance at the Idaho Chemical Processing Plant  

SciTech Connect (OSTI)

The Idaho Chemical Processing Plant (ICPP) is a uranium reprocessing facility operated by Westinghouse Idaho Nuclear Company for the Department of Energy at the Idaho National Engineering Laboratory (INEL). The chemical analysis support required for the plant processes is provided by a chemical analysis staff of 67 chemists, analysts, and support personnel. The documentation and defense of the chemical analysis data at the ICPP has evolved into a complete chemical analysis quality assurance program with training/qualification and requalification, chemical analysis procedures, records management and chemical analysis methods quality control as major elements. The quality assurance procedures are implemented on a central analytical computer system. The individual features provided by the computer system are automatic method selection for process streams, automation of method calculations, automatic assignment of bias and precision estimates at analysis levels to all method results, analyst specific daily requalification or with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of process stream results for replicate agreement, automatic testing of process results against pre-established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of analysis data plus the results of all statistical testing to the Production Department.

Hand, R.L.; Anselmo, R.W.; Black, D.B.; Jacobson, J.J.; Lewis, L.C.; Marushia, P.C.; Spraktes, F.W.; Zack, N.R.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Environmental effects of oilfield chemicals on composite  

SciTech Connect (OSTI)

This paper presents a feasibility study of the effects of oilfield chemicals on composite materials. In this initial study only hydrochloric acid is considered. Initial attempts were made to test stressed specimens, but results were very poor. Subsequent testing was performed to determine how the composite material constituents reacted to the hydrochloric acid. The initial testing was performed on tubular specimens with axial and essentially hoop wound fibers of different materials with different resins. The specimens were loaded in bending to induce representative strains in the tubing. All specimens failed. The second tests consisted of only an environmental soak to determine the amount of mass uptake as well as the reduction in strength. The strength reduction results will be presented at a later time. Testing was performed on S-2 glass, carbon and Kevlar 49 as well as three different resins.

Sorem, R.M. [Univ. of Kansas, Lawrence, KS (United States). Dept. of Mechanical Engineering

1998-12-31T23:59:59.000Z

182

Chemical Peeling of Tomatoes.  

E-Print Network [OSTI]

Frrrzts 41CkFw calded m 21 percent NaOH (230" F.) for 20 seconds, 4> percetlt CaCI, (a6 F.) JW seconds and water (212" F.) for 90 seconds, respectively. The fruits were photographed immediately after scalding. bical Peeling of Tomatoes... UNIVERSITY Summary I Tomato fruits of the Chico and Homestead varieties were scalded in solutions of water, NaOH and CaC12 at various concentrations, times and tem- peratures. Fruits were weighed before and after ' peeling to determine percent weight...

Heddins, Gerald C.; Burns, E. E.

1965-01-01T23:59:59.000Z

183

THE JOURNAL OF CHEMICAL PHYSICS 135, 084103 (2011) How accurate are the nonlinear chemical Fokker-Planck and chemical  

E-Print Network [OSTI]

THE JOURNAL OF CHEMICAL PHYSICS 135, 084103 (2011) How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Ramon Grima,1,a) Philipp Thomas,1,2 and Arthur V. Straube2 1 School August 2011) The chemical Fokker-Planck equation and the corresponding chemical Langevin equation are com

Straube, Arthur V.

184

ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical...  

Broader source: Energy.gov (indexed) [DOE]

Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A Powerful Tool...

185

Air Quality: Asbestos Notification Procedure Department: Chemical and General Safety  

E-Print Network [OSTI]

Air Quality: Asbestos Notification Procedure Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 The Bay Area Air Quality) and air quality program manager Determine if the project is classified as a demolition or renovation

Wechsler, Risa H.

186

19 September 1997 Z .Chemical Physics Letters 276 1997 269273  

E-Print Network [OSTI]

19 September 1997 Z .Chemical Physics Letters 276 1997 269­273 On the threshold behavior in laser 8 April 1997; in final form 17 June 1997 Abstract The microscopic mechanisms of the fluence that determine the dynamics of laser ablation. q 1997 Elsevier Science B.V. The interaction of laser pulses

Zhigilei, Leonid V.

187

INTEGRATION OF OPTOELECTRONICS AND MICROFLUIDICS FOR BIOLOGICAL AND CHEMICAL SENSING  

E-Print Network [OSTI]

INTEGRATION OF OPTOELECTRONICS AND MICROFLUIDICS FOR BIOLOGICAL AND CHEMICAL SENSING Thesis by Mark Over the past decade, rapid advances in microfluidics have led to the creation of valves, pumps, mixers of microfluidics is the need for a typically large interrogation setup to determine what is actually happening

Quake, Stephen R.

188

Experimental characterization and chemical kinetics study of chemical looping combustion  

E-Print Network [OSTI]

Chemical looping combustion (CLC) is one of the most promising technologies to achieve carbon capture in fossil fuel power generation plants. A novel rotary-bed reactor concept was proposed by Zhao et. al. [1] in 2013. It ...

Chen, Tianjiao, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

189

Coatings with controlled porosity and chemical properties  

DOE Patents [OSTI]

Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

1993-07-06T23:59:59.000Z

190

Coatings with controlled porosity and chemical properties  

DOE Patents [OSTI]

Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

Frye, Gregory C. (P.O. Box 763, Cedar Crest, NM 87008); Brinker, C. Jeffrey (14 Eagle Nest Dr., NE., Albuquerque, NM 87122); Doughty, Daniel H. (11724 Woodmar La., NE., Albuquerque, NM 87111); Bein, Thomas (1114 Princeton Dr., NE., Albuquerque, NM 87106); Moller, Karin (1114 Princeton Dr., NE., Albuquerque, NM 87106)

1993-01-01T23:59:59.000Z

191

Coatings with controlled porosity and chemical properties  

DOE Patents [OSTI]

Coatings and sensors having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

Frye, Gregory C. (Bernalillo County, NM); Brinker, C. Jeffrey (Albuquerque, NM); Doughty, Daniel H. (Albuquerque, NM); Bein, Thomas (Albuquerque, NM); Moller, Karin (Albuquerque, NM)

1996-01-01T23:59:59.000Z

192

Coatings with controlled porosity and chemical properties  

DOE Patents [OSTI]

Coatings and sensors are disclosed having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided. 7 figs.

Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

1996-12-31T23:59:59.000Z

193

Chemical microreactor and method thereof  

DOE Patents [OSTI]

A method for forming a chemical microreactor includes forming at least one capillary microchannel in a substrate having at least one inlet and at least one outlet, integrating at least one heater into the chemical microreactor, interfacing the capillary microchannel with a liquid chemical reservoir at the inlet of the capillary microchannel, and interfacing the capillary microchannel with a porous membrane near the outlet of the capillary microchannel, the porous membrane being positioned beyond the outlet of the capillary microchannel, wherein the porous membrane has at least one catalyst material imbedded therein.

Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan (Livermore, CA)

2011-08-09T23:59:59.000Z

194

Non-planar chemical preconcentrator  

DOE Patents [OSTI]

A non-planar chemical preconcentrator comprises a high-surface area, low mass, three-dimensional, flow-through sorption support structure that can be coated or packed with a sorptive material. The sorptive material can collect and concentrate a chemical analyte from a fluid stream and rapidly release it as a very narrow temporal plug for improved separations in a microanalytical system. The non-planar chemical preconcentrator retains most of the thermal and fabrication benefits of a planar preconcentrator, but has improved ruggedness and uptake, while reducing sorptive coating concerns and extending the range of collectible analytes.

Manginell, Ronald P. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Sokolowski, Sara S. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM)

2006-10-10T23:59:59.000Z

195

The chemical industry, by country  

SciTech Connect (OSTI)

As part of its ACHEMA coverage, Hydrocarbon Processing contacted executives of petrochemical/chemical industry trade associations in 11 countries, seeking views of on the state of the industry. These reports thus provide an added dimension to feature articles in this issue that focus on petrochemical/chemical-product supply/demand trends, economic forecasts, etc. The nations represented here were chosen for commentary because collectively they contain most of the world's petrochemical capacity. Space limitations prohibit the publishing of commentaries from all countries that have petrochemical/chemical capacity. The countries are: Belgium, China, France, Germany, India, Italy, Japan, Korea, The Netherlands, United Kingdom, and the United States.

Not Available

1994-05-01T23:59:59.000Z

196

Solar Chemical Peculiarities?  

E-Print Network [OSTI]

Several investigations of FGK stars in the solar neighborhood have suggested that thin-disk stars with an iron abundance similar to the Sun appear to show higher abundances of other elements, such as silicon, titanium, or nickel. Offsets could arise if the samples contain stars with ages, mean galactocentric distances, or kinematics, that differ on average from the solar values. They could also arise due to systematic errors in the abundance determinations, if the samples contain stars that are different from the Sun regarding their atmospheric parameters. We re-examine this issue by studying a sample of 80 nearby stars with solar-like colors and luminosities. Among these solar "analogs", the objects with solar iron abundances exhibit solar abundances of carbon, silicon, calcium, titanium and nickel.

Carlos Allende Prieto

2006-12-08T23:59:59.000Z

197

Tank 48 - Chemical Destruction  

SciTech Connect (OSTI)

Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

2013-01-09T23:59:59.000Z

198

Chemical and Biological Engineering Department Code 1 Department of Chemical & Biological Engineering  

E-Print Network [OSTI]

Chemical and Biological Engineering Department Code 1 CODE of the Department of Chemical of Chemical & Biological Engineering. For clarity of presentation, some passages are copied directly from shall offer an undergraduate chemical and biological engineering program of technological, scientific

199

Biomedical | Chemical & Biomolecular | Civil & Environmental | Electrical & Computer | Industrial | Mechanical | Petroleum Careers in Chemical Engineering  

E-Print Network [OSTI]

| Mechanical | Petroleum Careers in Chemical Engineering Career opportunities in chemical engineering that new chemical engineering graduates have an average starting salary of $67,600. The University from industry professionals and participate in activities that promote engineering. Chemical

Azevedo, Ricardo

200

New Science for Chemicals Policy  

E-Print Network [OSTI]

of the State-of-the-Science of Endocrine Disruptors (WHO,461, 472 (2009). 17. NRC, Science and Decisions: AdvancingPOLICYFORUM SCIENCE AND REGULATION New Science for Chemicals

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Genotoxicity of complex chemical mixtures  

E-Print Network [OSTI]

studies, specifically on carbon monoxide. Schmiedeberg focused on liver and its detoxification mechanisms. Lewin?s work included chronic toxicity of narcotics, along with toxicity of chemicals such as methanol, glycerol, acrolein and chloroform...

Phillips, Tracie Denise

2009-05-15T23:59:59.000Z

202

Mass-sensitive chemical preconcentrator  

DOE Patents [OSTI]

A microfabricated mass-sensitive chemical preconcentrator actively measures the mass of a sample on an acoustic microbalance during the collection process. The microbalance comprises a chemically sensitive interface for collecting the sample thereon and an acoustic-based physical transducer that provides an electrical output that is proportional to the mass of the collected sample. The acoustic microbalance preferably comprises a pivot plate resonator. A resistive heating element can be disposed on the chemically sensitive interface to rapidly heat and release the collected sample for further analysis. Therefore, the mass-sensitive chemical preconcentrator can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

Manginell, Ronald P. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM)

2007-01-30T23:59:59.000Z

203

Chemical Evolution of CNO abundances  

E-Print Network [OSTI]

New low and intermediate star yields calculated by Buell (1997) are evaluated by using them in a Galactic Chemical Evolution model. We analyze their effects on CNO elemental abundances

M. Gavilan; M. Molla

2003-02-05T23:59:59.000Z

204

Antarctic glaciers and rock weathering: Exploring chemical and mineralogy processes within the blue ice fields  

E-Print Network [OSTI]

Antarctic glaciers and rock weathering: Exploring chemical and mineralogy processes within the blue of Geographical and Earth Sciences, we will determine the mineralogy and chemical composition of a suite mineralogy, porosity & permeability)? · Does the volume of weathering products and their mineralogy

Guo, Zaoyang

205

CHEMICAL ENGINEERING Fall 2013-Winter 2014  

E-Print Network [OSTI]

ADVANCED CHEMICAL ENGINEERING Fall 2013-Winter 2014 Certificate Program CONTINUING AND PROFESSIONAL EDUCATIONCONTINUING AND PROFESSIONAL EDUCATION #12;About the Advanced Chemical Engineering Certificate Program The new Advanced Chemical Engineering Certificate Program offers professionals in chemi- cal engineering

California at Davis, University of

206

chemical (CHE) CHE overview programs available  

E-Print Network [OSTI]

, Environmental, Manufacturing and Petroleum En- gineering. Programs Available · Chemical Engineering Bachelor Engineering (Environmental) Bachelor of Science 135 units · Chemical Engineering (Petroleum) Bachelor of Science 136 units · Chemical Engineering (Polymer Science) Bachelor of Science 136 units · Petroleum

Rohs, Remo

207

Chemical characterization of dissolved organic matter (DOM) in seawater : structure, cycling, and the role of biology  

E-Print Network [OSTI]

The goal of this thesis is to investigate three different areas relating to the characterization of dissolved organic matter (DOM): further determination of the chemical compounds present in high molecular weight DOM ...

Quan, Tracy M. (Tracy Michelle), 1977-

2005-01-01T23:59:59.000Z

208

A method for using polyethylene passive samplers to measure polycyclic aromatic hydrocarbon chemical activity in sediments  

E-Print Network [OSTI]

In order to aid in the determination of the hazards posed by hydrophobic organic compounds (HOCs) in sediment beds, a method for the use of polyethylene (PE) sheets as passive sampling devices for measuring chemical ...

Fernandez, Loretta A. (Loretta Ana)

2005-01-01T23:59:59.000Z

209

Analyzing Aqueous Solution Imbibition into Shale and the Effects of Optimizing Critical Chemical Additives  

E-Print Network [OSTI]

of pertinent chemical additives on fluid imbibition and intercalation into shale samples. We do this with the hope that we will eventually be able to determine how natural phenomena and additives affect long term resource production from unconventional oil...

Wiese, Matthew Michael

2013-09-29T23:59:59.000Z

210

The chemical abundances of the Ap star HD94660  

SciTech Connect (OSTI)

In this work I present the determination of chemical abundances of the Ap star HD94660, a possible rapid oscillating star. As all the magnetic chemically peculiar objects, it presents CNO underabundance and overabundance of iron peak elements of ?100 times and of rare earths up to 4 dex with respect to the Sun. The determination was based on the conversion of the observed equivalent widths into abundances simultaneously to the determination of effective temperature and gravity. Since the Balmer lines of early type stars are very sensitive to the surface gravity while the flux distribution is sensitive to the effective temperature, I have adopted an iterative procedure to match the H{sub ?} line profile and the observed UV-Vis-NIR magnitudes of HD94660 looking for a consistency between the metallicity of the atmosphere model and the derived abundances. From my spectroscopic analysis, this star belongs to the no-rapid oscillating class.

Giarrusso, M. [Università di Catania, Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Via S. Sofia 78, 95123 Catania (Italy); INAF - Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania (Italy); INFN - Laboratori Nazionali del Sud (Italy)

2014-05-09T23:59:59.000Z

211

LABORATORY CHEMICAL WASTE DISPOSAL POSTER (Post Near Chemical Waste Storage Area)  

E-Print Network [OSTI]

WSTPS.rtf LABORATORY CHEMICAL WASTE DISPOSAL POSTER (Post Near Chemical Waste Storage Area) Excess Chemicals and Chemical Wastes · Toxic and Flammable Chemicals - These cannot go down the drain. Call Environmental Health and Safety (EHSO) at x-2723 for collection. · Corrosive Chemicals (Acids & Bases) - When

Oliver, Douglas L.

212

Multidimensional simulation and chemical kinetics development...  

Broader source: Energy.gov (indexed) [DOE]

processes. deer09aceves.pdf More Documents & Publications Chemical Kinetic Research on HCCI & Diesel Fuels Chemical Kinetic Research on HCCI & Diesel Fuels Simulation of High...

213

Correlations Between Optical, Chemical and Physical Properties...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols. Correlations Between Optical, Chemical and Physical Properties of Biomass Burn Aerosols....

214

Chemical Safety Program - Library | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Library Chemical Safety Program - Library Operating Experience Level 3 OSHA's Revised Hazard Communication Standard Safe Management of Mercury DOE Documents & Guidelines Chemical...

215

Sandia Researchers Develop Promising Chemical Technology for...  

Energy Savers [EERE]

Sandia Researchers Develop Promising Chemical Technology for Energy Storage Sandia Researchers Develop Promising Chemical Technology for Energy Storage March 7, 2012 - 9:50am...

216

Tribo-Chemical Modeling of Copper CMP  

E-Print Network [OSTI]

TRIBO-CHEMICAL MODELING OF COPPER CMP Shantanu Tripathi 1 ,Technical Area: CMP (Copper) Abstract We are developing antribo-chemical model of copper CMP that considers abrasive

Tripathi, Shantanu; Doyle, Fiona; Dornfeld, David

2006-01-01T23:59:59.000Z

217

Correlation Between Optical Properties And Chemical Composition...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Between Optical Properties And Chemical Composition Of Sputter-deposited Germanium Cxide (GeOx) Films . Correlation Between Optical Properties And Chemical Composition Of...

218

Chemical Homogeneity in Collinder 261 and Implications for Chemical Tagging  

E-Print Network [OSTI]

This paper presents abundances for 12 red giants of the old open cluster Collinder 261 based on spectra from VLT/UVES. Abundances were derived for Na, Mg, Si, Ca, Mn, Fe, Ni, Zr and Ba. We find the cluster has a solar-level metallicity of [Fe/H] = -0.03 dex. However some alpha elements were found to be enhanced. The star-to-star scatter was consistent with the expected measurement uncertainty for all elements. The observed rms scatter is as follows: Na = 0.07, Mg = 0.05, Si = 0.06, Ca = 0.05, Mn = 0.03, Fe = 0.02, Ni = 0.04, Zr = 0.12, and Ba = 0.03 dex. The intrinsic scatter was estimated to be less than 0.05 dex. Such high levels of homogeneity indicate that chemical information remains preserved in this old open cluster. We use the chemical homogeneity we have now established in Cr 261, Hyades and the HR1614 moving group to examine the uniqueness of the individual cluster abundance patterns, ie. chemical signatures. We demonstrate that the three studied clusters have unique chemical signatures, and discuss how other such signatures may be searched for in the future. Our findings support the prospect of chemically tagging disk stars to common formation sites in order to unravel the dissipative history of the Galactic disk.

G. M. De Silva; K. C. Freeman; M. Asplund; J. Bland-Hawthorn; M. S. Bessell; R. Collet

2006-11-28T23:59:59.000Z

219

Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications  

SciTech Connect (OSTI)

Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

2012-04-16T23:59:59.000Z

220

Determination of a mutational spectrum  

DOE Patents [OSTI]

A method of resolving (physically separating) mutant DNA from nonmutant DNA and a method of defining or establishing a mutational spectrum or profile of alterations present in nucleic acid sequences from a sample to be analyzed, such as a tissue or body fluid. The present method is based on the fact that it is possible, through the use of DGGE, to separate nucleic acid sequences which differ by only a single base change and on the ability to detect the separate mutant molecules. The present invention, in another aspect, relates to a method for determining a mutational spectrum in a DNA sequence of interest present in a population of cells. The method of the present invention is useful as a diagnostic or analytical tool in forensic science in assessing environmental and/or occupational exposures to potentially genetically toxic materials (also referred to as potential mutagens); in biotechnology, particularly in the study of the relationship between the amino acid sequence of enzymes and other biologically-active proteins or protein-containing substances and their respective functions; and in determining the effects of drugs, cosmetics and other chemicals for which toxicity data must be obtained.

Thilly, William G. (Winchester, MA); Keohavong, Phouthone (Cambridge, MA)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

The chemical industry, by country  

SciTech Connect (OSTI)

Beijing will be the site for the third ACHEMASIA, international petrochemical and chemical exhibition and conference, May 15--20, 1995. In preparation for this conference, Hydrocarbon Processing contacted executives of petrochemical/chemical industries and trade associations, seeking views on the state of the industry. The Asia-Pacific region is the center of new construction and expanded capacity and also a mixture of mature, developing and emerging petrochemical industries. Established countries must mold and grow with emerging economies as the newcomers access natural resources and develop their own petrochemical infrastructures. The following nation reports focus on product supply/demand trends, economic forecasts, new construction, etc. Space limitations prohibit publishing commentaries from all countries that have petrochemical/chemical capacity. Reports are published from the following countries: Australia, China, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam.

Not Available

1995-03-01T23:59:59.000Z

222

HPI's role in chemicals' future  

SciTech Connect (OSTI)

The hydrocarbon processing industry (HPI) concerns manufacturing of products from natural gas and crude petroleum oils. Also included are those other natural raw materials such as coal, kerogen and shale oil that are sources of fuels called ''synfuels,'' denoting these products are made from raw materials other than natural gas or crude petroleum oil. So the HPI is a major producer and consumer of thousands of different chemicals. Gathering supporting statistics remains largely a problem of definition and convention. Whether one chemical or another is included in a specific list often depends on the way its manufacturer is classified. To judge HPI's potential impact on worldwide chemical manufacturing, the authors reviewed all listings of petrochemical projects included in the ''HPI Construction Boxscore'' during the past few years. From the total, they selected those that had been announced in 1986 or later. Once the list was established, they added 1985 counts to help establish trends. This article discusses the resulting list.

Hoffman, H.L.; Riddle, L.

1988-02-01T23:59:59.000Z

223

Chemical Evolution of the Galaxy  

E-Print Network [OSTI]

Standard models for the chemical evolution of the Galaxy are reviewed with particular emphasis on the history of the abundance gradients in the disk. The effects on the disk structure and metallicity of gas accretion are discussed, showing that a significant fraction of the current disk mass has been accreted in the last Gyrs and that the chemical abundances of the infalling gas can be non primordial but should not exceed 0.3 Z(sun). The distributions with time and with galactocentric distance of chemical elements are discussed, comparing the observational data with the corresponding theoretical predictions by standard models, which reproduce very well the ISM abundances at various epochs, but not equally well all the features derived from observations of old stellar objects.

M. Tosi

1994-11-15T23:59:59.000Z

224

Chemical Hygiene and Safety Plan  

SciTech Connect (OSTI)

The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

Berkner, K.

1992-08-01T23:59:59.000Z

225

Chemical analysis of distribution and marketing (D and M) municipal sludges  

SciTech Connect (OSTI)

The land application of municipal wastewater treatment sludges is widely practiced both as an economic treatment or disposal method and to provide an economic soil nutrient amendment for agricultural use. Recent studies have shown that municipal sewage sludge effluents derived from both domestic and industrial wastewater elicited mutagenic activity as determined by the Ames test. Biological treatment processes remove some degradable organic chemicals but many persistent chemicals remain in the sludge and are hence applied to soils. This study was conducted to determine the occurrence of chemicals in D and M sludges to provide a data base of priority pollutant trace metals and organics from sludges produced at facilities in 26 cities across the US. In addition to priority pollutant analysis, efforts were made to characterize non-target organic chemicals that predominated in sample extracts from each city using GC/MS. A total of 67 composite samples were analyzed. This paper discusses the results of chemical analyses of the sludge products.

Coleman, W.E. (Environmental Protection Agency, Cincinnati, OH (USA)); Baird, R.; Gabrielian, S.M. (County Sanitation Districts of Los Angeles County, Whittier, CA (USA))

1988-09-01T23:59:59.000Z

226

Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program  

SciTech Connect (OSTI)

An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: to determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.

Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.

1993-09-01T23:59:59.000Z

227

Chemical Hygiene Plan For University of Florida  

E-Print Network [OSTI]

Chemical Hygiene Plan For University of Florida Laboratories This is a site specific Chemical Reviewed August 2007 Revised August 2007 #12;2 I. Introduction This Chemical Hygiene Plan has been with UF laboratory chemical operations and is intended to meet the requirements of the OSHA Laboratory

Slatton, Clint

228

Chemical Hygiene Plan 1.0 Introduction  

E-Print Network [OSTI]

Chemical Hygiene Plan 1.0 Introduction Satisfying Cal-OSHA (Title 8 CCR 5191) and campus regulations, this Chemical Hygiene Plan includes safety information specific to the Center for Nano and Micro chemicals and gasses available. If you have any questions about this Chemical Hygiene Plan, please email

Yoo, S. J. Ben

229

Chemical Inventory | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In & RegistrationChemicalDropletsChemical

230

POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING  

SciTech Connect (OSTI)

A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals in these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical-rock compatibility, polymer injectivity, dynamic chemical retention by rock, and recommended injected polymer concentration. Average initial oil saturation was 0.796 Vp. Produced water injection recovered 53% OOIP leaving an average residual oil saturation of 0.375 Vp. Poison Spider rock was strongly water-wet with a mobility ratio for produced water displacing the 280 cp crude oil of 8.6. Core was not sensitive to either alkali or surfactant injection. Injectivity increased 60 to 80% with alkali plus surfactant injection. Low and medium molecular weight polyacrylamide polymers (Flopaam 3330S and Flopaam 3430S) dissolved in either an alkaline-surfactant solution or softened produced water injected and flowed through Poison Spider rock. Recommended injected polyacrylamide concentration is 2,100 mg/L for both polymers for a unit mobility ratio. Radial corefloods were performed to evaluate oil recovery efficiency of different chemical solutions. Waterflood oil recovery averaged 46.4 OOIP and alkaline-surfactant-polymer flood oil recovery averaged an additional 18.1% OIP for a total of 64.6% OOIP. Oil cut change due to injection of a 1.5 wt% Na{sub 2}CO{sub 3} plus 0.05 wt% Petrostep B-100 plus 0.05 wt% Stepantan AS1216 plus 2100 mg/L Flopaam 3430S was from 2% to a peak of 23.5%. Additional study might determine the impact on oil recovery of a lower polymer concentration. An alkaline-surfactant-polymer flood field implementation outline report was written.

Douglas Arnell; Malcolm Pitts; Jie Qi

2004-11-01T23:59:59.000Z

231

Qualitative Theory and Chemical Explanation  

E-Print Network [OSTI]

Abstract Roald Hoffmann and other theorists claim that we we ought to use highly idealized chemical models defend Hoffmann's norm for modelling. Many thanks to Michael Friedman, Robin Hendry, Ben Kerr, Deena to thank Roald Hoffmann who has been an in- spiring mentor and who's reflections on the philosophical

Weisberg, Michael

232

Biological and Chemical Engineering Building,  

E-Print Network [OSTI]

BioE/ChemE Building West ampus creation enter, Under struction Biological and Chemical Engineering Building, Under Construction Lucile Packard Children's Hospital, Under Construction Arrillaga Sports Center. Eng. Paul G. Allen Building Roble Pool Roble Modulars Godzilla Thornton Center Bambi Roble Gym orsythe

Kay, Mark A.

233

Extended range chemical sensing apparatus  

DOE Patents [OSTI]

An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

Hughes, R.C.; Schubert, W.K.

1994-01-18T23:59:59.000Z

234

Chemical Engineering and Chemical Technology 1 Faculty of Engineering, Department of  

E-Print Network [OSTI]

Chemical Engineering and Chemical Technology 1 Faculty of Engineering, Department of --Chemical Engineering and Chemical Technology This publication refers to the session 2009­10. The information given opportunities go to www.imperial.ac.uk/pgprospectus. #12;2 Undergraduate syllabuses Chemical Engineering

235

Chemical Disposal The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program  

E-Print Network [OSTI]

Chemical Disposal Dec, 2011 Chemicals: The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program where all University chemical waste is picked up and sent out for proper disposal. (There are some chemicals that they will not take because of their extreme hazards

Machel, Hans

236

OXALATE MASS BALANCE DURING CHEMICAL CLEANING IN TANK 6F  

SciTech Connect (OSTI)

The Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRR personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 6F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate. Some conclusions from this work are: (1) Approximately 65% of the oxalate added as oxalic acid was removed with the decanted liquid. (2) Approximately 1% of the oxalate (added to the tank as oxalic acid) formed precipitates with compounds such as nickel, manganese, sodium, and iron (II), and was dissolved with nitric acid. (3) As much as 30% of the oxalate may have decomposed forming carbon dioxide. The balance does not fully account for all the oxalate added. The offset represents the combined uncertainty in the analyses and sampling.

Poirier, M.; Fink, S.

2011-07-22T23:59:59.000Z

237

Oxalate Mass Balance During Chemical Cleaning in Tank 5F  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 5F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate.

Poirier, M.; Fink, S.

2011-07-08T23:59:59.000Z

238

What determines galactic evolution?  

E-Print Network [OSTI]

We are briefly introducing the most important ingredients to study galactic evolution. In particular the roles of star formation, nucleosynthesis and gas flows. Then we are discussing the two different approaches to galactic evolution: the stellar population approach (chemical evolution models) and the hierarchical clustering scenario for galaxy formation. It is shown that there are still some controversial points in the two approaches, as evident in the brief summary of the discussion.

Francesca Matteucci

2002-10-24T23:59:59.000Z

239

Extraction efficiency and quantification of mutagenic chemicals in soils  

E-Print Network [OSTI]

: Dr. K. W. Brown Lack of established extraction procedures for quantification of mutagenic compounds in soil is a major technical limitation to monitoring and assessing the performance of a hazardous waste land treatment facility. In this study... for extracting organic mutagens from the waste or soil/waste mixture. The use of combined biological and chemical testing protocol provided the most practical means of determining extraction efficiency. The bioassay detected additive, synergistic...

Maggard, Lea Ann

1986-01-01T23:59:59.000Z

240

Automated analysis and validation of open chemical data  

E-Print Network [OSTI]

Description Framework attributes REST Representational State Transfer RHF Restricted Hartree-Fock RMS Root Mean Squared RSC Royal Society of Chemistry RSS Rich Site Summary RTECS Registry of Toxic Effects of Chemical Substances SAX Simple API for XML SMILES... .14 Calculated vs. observed shifts for HSR1 for those structures with spectra determined at a field of over 25Hz . . . . . . . . 243 xiv 7.1 Screenshot of the C3DE application. . . . . . . . . . . . . . . 250 xv Glossary API Applicaton Programming Interface ACS...

Day, Nicholas E

2009-01-13T23:59:59.000Z

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EMPOWERING DIGITAL SELF DETERMINATION  

E-Print Network [OSTI]

: Communication and Digital Media 2. Data Context and Digital Personas 3. Personal Data: Use, ReuseEMPOWERING DIGITAL SELF DETERMINATION Symposium Summary Stanford University, Summer 2012 #12;#12;EMPOWERING DIGITAL SELF DETERMINATION Symposium, Stanford University, CA Summer, 2012 210 Panama Street

Das, Rhiju

242

Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds  

E-Print Network [OSTI]

Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds Awards Home of Catalysis Science & Technology (Probationary). Chemical & Engineering Or Petroleum Chemistry February 1, 2010 Volume 88, Number 5 p. 42 Sponsored by the George A. Olah Endowment

243

Chemical engineers design, control and optimize large-scale chemical, physicochemical and  

E-Print Network [OSTI]

Science, Biochemical, Environmental and Petroleum Engineering. CHEMICAL & MATERIALS SCIENCE CHE OVERVIEW (Environmental) Bachelor of Science 135 units Chemical Engineering (Petroleum) Bachelor of Science 136 units Chemical Engineering (Polymer Science) Bachelor of Science 136 units Petroleum Engineering minor

Rohs, Remo

244

FUNDAMENTAL PARAMETERS AND CHEMICAL COMPOSITION OF ARCTURUS  

SciTech Connect (OSTI)

We derive a self-consistent set of atmospheric parameters and abundances of 17 elements for the red giant star Arcturus: T{sub eff} = 4286 {+-} 30 K, log g = 1.66 {+-} 0.05, and [Fe/H] = -0.52 {+-} 0.04. The effective temperature was determined using model atmosphere fits to the observed spectral energy distribution from the blue to the mid-infrared (0.44 to 10 {mu}m). The surface gravity was calculated using the trigonometric parallax of the star and stellar evolution models. A differential abundance analysis relative to the solar spectrum allowed us to derive iron abundances from equivalent width measurements of 37 Fe I and 9 Fe II lines, unblended in the spectra of both Arcturus and the Sun; the [Fe/H] value adopted is derived from Fe I lines. We also determine the mass, radius, and age of Arcturus: M = 1.08 {+-} 0.06 M{sub Sun }, R = 25.4 {+-} 0.2 R{sub Sun }, and {tau} = 7.1{sup +1.5}{sub -1.2} Gyr. Finally, abundances of the following elements are measured from an equivalent width analysis of atomic features: C, O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn. We find the chemical composition of Arcturus typical of that of a local thick-disk star, consistent with its kinematics.

Ramirez, I. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Allende Prieto, C., E-mail: ivan@obs.carnegiescience.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, 38205 La Laguna, Tenerife (Spain)

2011-12-20T23:59:59.000Z

245

Chemical tracking at the Rocky Flats Plant  

SciTech Connect (OSTI)

EG&G Rocky Flats, Inc., has developed a chemical tracking system to support compliance with the Emergency Planning and community Right-to-Know Act (EPCRA) at the Rocky Flats Plant. This system, referred to as the EPCRA Chemical Control system (ECCS), uses bar code technology to uniquely identify and track the receipt, distribution, and use of chemicals. Chemical inventories are conducted using hand-held electronic scanners to update a site wide chemical database on a VAX 6000 computer. Information from the ECCS supports preparation of the EPCRA Tier II and Form R reports on chemical storage and use.

Costain, D.B.

1994-04-01T23:59:59.000Z

246

Passive in-situ chemical sensor  

DOE Patents [OSTI]

A chemical sensor for assessing a chemical of interest. In typical embodiments the chemical sensor includes a first thermocouple and second thermocouple. A reactive component is typically disposed proximal to the second thermal couple, and is selected to react with the chemical of interest and generate a temperature variation that may be detected by a comparison of a temperature sensed by the second thermocouple compared with a concurrent temperature detected by the first thermocouple. Further disclosed is a method for assessing a chemical of interest and a method for identifying a reaction temperature for a chemical of interest in a system.

Morrell, Jonathan S. (Farragut, TN); Ripley, Edward B. (Knoxville, TN)

2012-02-14T23:59:59.000Z

247

Biotreatment techniques get chemical help  

SciTech Connect (OSTI)

Biological treatment methods for contaminated soils and groundwater, including landfarming, pump-and-treat bioreactors and in situ bioremediation, are using hydrogen peroxide (H[sub 2]O[sub 2]) as an oxidant to reduce cleanup time and save money. Some examples of how the chemical is being used include the following: recent studies indicate peroxygen compounds, such as calcium peroxide, can be used to chemically aerate soils in landfarming applications. Pump-and-treat bioreactor systems for treating halogenated aliphatics can use an H[sub 2]O[sub 2] solution to deliver oxygen to oxygen-deficient systems. The solution has proven effective for improving bioreactor efficiency during limited oxygen solubility; in situ peroxidation can be used to partially oxidize soil contaminants to reduce their toxicity and enhance their biodegradability in the unsaturated zone prior to in situ bioremediation.

Elizardo, K. (Solvay Interox, Houston, TX (United States))

1993-11-01T23:59:59.000Z

248

Olefin recovery via chemical absorption  

SciTech Connect (OSTI)

The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

Barchas, R. [Stone & Webster Engineering Corporation, Houston, TX (United States)

1998-06-01T23:59:59.000Z

249

Chemical logging of geothermal wells  

DOE Patents [OSTI]

The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

Allen, Charles A. (Idaho Falls, ID); McAtee, Richard E. (Idaho Falls, ID)

1981-01-01T23:59:59.000Z

250

Determination of plate efficiencies for conventional distillation columns  

E-Print Network [OSTI]

DETERMINATION OF PLATE EFFICIENCIES FOR CONVENTIONAL DISTILLATION COIUMNS A Thesis By Thomas Raymond Harris Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE May 1962 Ma)or Sub)ect t Chemical Engineering DETERMINATION OF PLATE EFFICIENCIES FOR CONVENTIONAL DISTILLATION COLUMNS A Thesis Thomas Raymond Harris Approred as to style and content bye Chairman of ommittee Head...

Harris, Thomas Raymond

2012-06-07T23:59:59.000Z

251

CHEMICAL ENGINEERING 2014-2016 CATALOG  

E-Print Network [OSTI]

..............................1 CHE 317, Intro to Chemical Engineering Analysis...................3 CH 353, Physical ChemistryCHEMICAL ENGINEERING 2014-2016 CATALOG (catalog valid until August 2022) Suggested Arrangement Semester Semester Hours CH 302, Principles of Chemistry II ...........................................3 CH

Lightsey, Glenn

252

Chemical vapor deposition of functionalized isobenzofuran polymers  

E-Print Network [OSTI]

This thesis develops a platform for deposition of polymer thin films that can be further tailored by chemical surface modification. First, we explore chemical vapor deposition of functionalized isobenzofuran films using ...

Olsson, Ylva Kristina

2007-01-01T23:59:59.000Z

253

Basic Chemical Safety and Laboratory Survival Skills  

E-Print Network [OSTI]

: Reagent bottles, Squirt bottles, spray bottles Label must have name of chemical and hazard information (s handling chemicals Lab coat must cover the wearer to the knees Plastic aprons are allowed only

Gallivan, Martha A.

254

Harvard Department of Chemistry and Chemical Biology  

E-Print Network [OSTI]

Spill Response 14 Hazardous Waste 17 Chemical Handling and Storage 22 Plastic-coated solvent bottles A lightweight, patented plastic laminate that protects against many chemicals. Good dexterity. Taken from

Heller, Eric

255

SPOTLIGHT on: Lindsay Freeman Chemical Engineering (Nanotechnology)  

E-Print Network [OSTI]

SPOTLIGHT on: Lindsay Freeman Chemical Engineering (Nanotechnology) Undergraduate Hometown.D. in chemical engineering with an emphasis in nanotechnology. Lindsay stands out as a very well-balanced student

Wang, Hai

256

Alternative Energy Department of Chemical Engineering  

E-Print Network [OSTI]

Alternative Energy Department of Chemical Engineering Graduate Handbook 2013-2014 Gina Eagan, Graduate Program Coordinator Professor Matthew Yates, Director of Alternative Energy #12;University of Rochester Graduate Handbook Alternative Energy updated August, 2013 Department of Chemical Engineering Page

Mahon, Bradford Z.

257

Alternative Energy Department of Chemical Engineering  

E-Print Network [OSTI]

Alternative Energy Department of Chemical Engineering Graduate Handbook 2014-2015 Victoria Heberling, Graduate Program Coordinator Professor Matthew Yates, Director of Alternative Energy #12;University of Rochester Graduate Handbook Alternative Energy updated August, 2013 Department of Chemical

Cantlon, Jessica F.

258

PHYSICAL OCEANOGRAPHIC, BIOLOGICAL, AND CHEMICAL DATA-  

E-Print Network [OSTI]

PHYSICAL OCEANOGRAPHIC, BIOLOGICAL, AND CHEMICAL DATA- SOUTH ATLANTIC COA- Fish and Wildlife Service, Arnie J. Suomela, Commissioner PHYSICAL OCEANOGRAFHTC, BIOLOGICAL- LIST OF TABLES Table #12;Physical Oceanographic , Biological, and Chemical Data South Atlantic Coast

259

Future scenarios for green chemical supply chains  

E-Print Network [OSTI]

We live in an age where industrial chemicals are central to the modem economy serving as the basis for all man-made fibers, life-science chemicals and consumer products. Owing to globalization, the industry has grown to ...

Arora, Vibhu, M. Eng. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

260

Temperature determination from the lattice gas model  

E-Print Network [OSTI]

Determination of temperature from experimental data has become important in searches for critical phenomena in heavy ion collisions. Widely used methods are ratios of isotopes (which rely on chemical and thermal equilibrium), population ratios of excited states etc. Using the lattice gas model we propose a new observable: $n_{ch}/Z$ where $n_{ch}$ is the charge multiplicity and $Z$ is the charge of the fragmenting system. We show that the reduced multiplicity is a good measure of the average temperature of the fragmenting system.

S. Das Gupta; J. Pan; M. B. Tsang

1996-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Development of a Universal Method Based on Ionic Liquids for Determination of  

E-Print Network [OSTI]

at room temperature. They have unique chemical and physical properties, including being air and moisture of Enantiomeric Compositions of Pharmaceutical Products Chieu D. Tran* Department of Chemistry, Marquette with either new anions and/or cations and determining © 2010 American Chemical Society Downloadedby

Reid, Scott A.

262

Integrated Chemical Geothermometry System for Geothermal Exploration...  

Broader source: Energy.gov (indexed) [DOE]

geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids. tracersspycherintegratedchemical.pdf More Documents & Publications Integrated...

263

The Mork Family Department of Chemical  

E-Print Network [OSTI]

in automotive and space-related industries to materials used in the biomedical and electronics elds. Chemical

Zhou, Chongwu

264

Integrated Chemical Geothermometry System for Geothermal Exploration  

Broader source: Energy.gov (indexed) [DOE]

interpretations) * Reduce exploration and development costs Innovation * Numerical optimization of multicomponent chemical geothermometry at multiple locations * Integration with...

265

CHEMICAL SIGNATURES FOR SUPERHEAVY ELEMENTARY PARTICLES  

E-Print Network [OSTI]

searches for technetium, promethium and and expresses hisoccurring technetium, promethium, natural constituents ofany technetium or promethium found by chemical separation

Cahn, Robert N.

2014-01-01T23:59:59.000Z

266

Chemical Container and Glassware Disposal Policy  

E-Print Network [OSTI]

Chemical Container and Glassware Disposal Policy If a barcoded bottle breaks, remove the barcode or take note of the number after safely cleaning up any chemical release. Provide the number to EH be obtained at Chemstores or Biostores. Grossly contaminated glassware (with chemical residue that can

Jia, Songtao

267

Chemical Innovation in Drug Dr Matthew Fuchter  

E-Print Network [OSTI]

Chemical Innovation in Drug Discovery Dr Matthew Fuchter Lecturer in Synthetic and Medicinal&D Spending and Output #12;Chemical Innovation Impact Discovery Development Basic research: years 0-3 Pre 3, File DRUG Chemical start point Hit to lead Preclinical Assessment Synthetic Chemistry Chemistry

268

Chemical Hygiene Policy Procedure: 6.05  

E-Print Network [OSTI]

Chemical Hygiene Policy Procedure: 6.05 Version: 1.0 Created: 6/15/2013 1 A. Purpose: The Chemical Hygiene policy establishes Columbia University's position for the protection of laboratory workers Chemicals in Laboratories, also referred to as the Laboratory Standard. This policy provides current general

Jia, Songtao

269

Chemical Imaging Initiative Delivering New Capabilities for  

E-Print Network [OSTI]

Chemical Imaging Initiative Delivering New Capabilities for In Situ, Molecular-Scale Imaging A complete, precise and realistic view of chemical, materials and biochemical processes and an understanding sources and mathematical models. At Pacific Northwest National Laboratory, the Chemical Imaging Initiative

270

Chemical Evolution of Galaxies: a problem of  

E-Print Network [OSTI]

Chemical Evolution of Galaxies: a problem of Astroarchaelogy Francesca Matteucci, Trieste University Lubljana, February 24, 2014 #12;Chemical Evolution of Galaxies Beatrice Tinsley (27 January 1941- 23 March 1981) She started the field of galactic chemical evolution #12;Collaborators: #12;Outline

Â?umer, Slobodan

271

Chemical Transport Policy Virginia Tech Chemistry Department  

E-Print Network [OSTI]

Chemical Transport Policy Virginia Tech Chemistry Department This policy was enacted. The purpose of this policy is to ensure the safety of personnel transporting chemicals and anyone who might from undue liability. No exceptions to this policy will be tolerated. 2. All chemicals transported

Crawford, T. Daniel

272

CHEMICAL ENGINEERING Fall Term Spring Term  

E-Print Network [OSTI]

CHEMICAL ENGINEERING CURRICULUM FALL 2010 Fall Term Spring Term EGGG 101 Introduction to Chemical Engineering 3 MATH 242 Analytic Geometry & Calculus B 4 MATH 243 Analytic Geometry & Calculus C 4 Critical Reading and Writing 3 Breadth Requirement Elective 1 3 15 17 CHEG 231 Chemical Engineering

Lee, Kelvin H.

273

CHEMICAL ENGINEERING Fall Term Spring Term  

E-Print Network [OSTI]

CHEG 332 Chemical Engineering Kinetics 3 CHEG 342 Heat and Mass Transfer 3 CHEG 341 Fluid Mechanics 3CHEMICAL ENGINEERING CURRICULUM Fall Term Spring Term EGGG 101 Introduction to Engineering (FYE) 2 CHEG 112 Introduction to Chemical Engineering 3 CHEM 111 General Chemistry 3 CHEM 112 General Chemistry

Lee, Kelvin H.

274

Chemical Storage -Ali T-Raissi, FSEC  

E-Print Network [OSTI]

23(12) 1998) · Reactions are irreversible & by- products needs recycling or disposal #12;Chemical air #12;Chemical Hydrides ­ H2 Generation by Hydrolysis (cont.) · More difficult issue is the controlChemical Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National

275

Chemical Hydrogen Storage Center Center of Excellence  

E-Print Network [OSTI]

alternatives and assess economics and life cycle analysis of borohydride/water to hydrogen · Millennium CellChemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY

Carver, Jeffrey C.

276

442013-14 Suggested Course Plan CHEMICAL (PETROLEUM)  

E-Print Network [OSTI]

442013-14 Suggested Course Plan CHEMICAL (PETROLEUM) FIRST YEAR FALL: 18 units SPRING: 18 units. to Chemical Engineering CHE 205: Numerical Methods in Chemical Engineering CHE 330: Chemical Engr: Chemical Reactor Analysis CHE 443: Viscous Flow CHE 444AL: Chemical Engineering Lab CHE 444bL: Chemical

Zhou, Chongwu

277

482012-13SuggestedCoursePlan CHEMICAL (PETROLEUM)  

E-Print Network [OSTI]

482012-13SuggestedCoursePlan CHEMICAL (PETROLEUM) FIRST YEAR FALL: 18 units SPRING: 18 units SECOND. to Chemical Engineering CHE 205: Numerical Methods in Chemical Engineering CHE 330: Chemical Engr: Chemical Reactor Analysis CHE 443: Viscous Flow CHE 444AL: Chemical Engineering Lab CHE 444BL: Chemical

Zhou, Chongwu

278

Chemical Hygiene Plan The purpose of the Chemical Hygiene Plan (CHP) is to outline laboratory work  

E-Print Network [OSTI]

Chemical Hygiene Plan I. Policy The purpose of the Chemical Hygiene Plan (CHP) is to outline community are protected from health hazards associated with chemicals with which they work. II. Authority The Chemical Hygiene Plan, required to comply with provisions of CCR Title 8 §5191 et al: A. Standard Operating

de Lijser, Peter

279

IS CHEMICAL INDEX OF ALTERATION (CIA) A RELIABLE PROXY FOR CHEMICAL WEATHERING IN GLOBAL DRAINAGE BASINS?  

E-Print Network [OSTI]

IS CHEMICAL INDEX OF ALTERATION (CIA) A RELIABLE PROXY FOR CHEMICAL WEATHERING IN GLOBAL DRAINAGE Road, Shanghai 200092 China; Tel: 86-21-6598 9130; Fax: 86-21-6598 6278 ABSTRACT. The chemical as the most important carrier of terrigenous materials into the sea. The chemical index of alteration (CIA

Yang, Shouye

280

Chemical enterprise model and decision-making framework for sustainable chemical product design  

E-Print Network [OSTI]

Chemical enterprise model and decision-making framework for sustainable chemical product design, LGC (Laboratoire de Ge´nie Chimique), F-31432 Toulouse Cedex 04, France 1. Introduction The chemical often strongly impact the environment and people's health and safety. Indeed chemical industries

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Chemical Master versus Chemical Langevin for First-Order Reaction Networks  

E-Print Network [OSTI]

Chemical Master versus Chemical Langevin for First-Order Reaction Networks Desmond J. Higham Raya in computational cell biology, and in this case, the interactions are typically first-order. The Chemical Langevin effectively. In this work, we obtain expressions for the first and second moments of the Chemical Langevin

Mottram, Nigel

282

Journal of California and Great Basin Anthropology | Vol. 32, No. 1 (2012) | pp. 4764 Chemical Composition, Mineralogy,  

E-Print Network [OSTI]

Composition, Mineralogy, and Physical Structure of Pigments on Arrow and Dart Fragments from Gypsum Cave), and electron microprobe (EM) to determine their chemical composition, mineralogy, and physical structure pigments. Although variation in composition and mineralogy suggests some degree of experimentation

2012-01-01T23:59:59.000Z

283

Chemical kinetics and combustion modeling  

SciTech Connect (OSTI)

The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

1993-12-01T23:59:59.000Z

284

Microcomponent chemical process sheet architecture  

DOE Patents [OSTI]

The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 26 figs.

Wegeng, R.S.; Drost, M.K.; Call, C.J.; Birmingham, J.G.; McDonald, C.E.; Kurath, D.E.; Friedrich, M.

1998-09-22T23:59:59.000Z

285

Microcomponent chemical process sheet architecture  

DOE Patents [OSTI]

The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

Wegeng, Robert S. (Richland, WA); Drost, M. Kevin (Richland, WA); Call, Charles J. (Pasco, WA); Birmingham, Joseph G. (Richland, WA); McDonald, Carolyn Evans (Richland, WA); Kurath, Dean E. (Benton County, WA); Friedrich, Michele (Prosser, WA)

1998-01-01T23:59:59.000Z

286

Overview of chemical vapor infiltration  

SciTech Connect (OSTI)

Chemical vapor infiltration (CVI) is developing into a commercially important method for the fabrication of continuous filament ceramic composites. Current efforts are focused on the development of an improved understanding of the various processes in CVI and its modeling. New approaches to CVI are being explored, including pressure pulse infiltration and microwave heating. Material development is also proceeding with emphasis on improving the oxidation resistance of the interfacial layer between the fiber and matrix. This paper briefly reviews these subjects, indicating the current state of the science and technology.

Besmann, T.M.; Stinton, D.P.; Lowden, R.A.

1993-06-01T23:59:59.000Z

287

Chemical Engineering | More Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistant navalChemCam laser Chemical and

288

Chemical Resources | Sample Preparation Laboratories  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to User Group and Userof a blast-resistant navalChemCam laser Chemical

289

Chemical Physics | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In &Chemical Label Information

290

Dissection of Plant Defense Mechanisms Using Chemical and Molecular Genomics  

E-Print Network [OSTI]

of auxins by a chemical genomics approach." Journal ofadvances in chemical genomics." Current Medicinal Chemistrymolecular and chemical genomics." Phytopathology 97(7): S58-

Rodriguez-Salus, Melinda Sue

2012-01-01T23:59:59.000Z

291

Chemical Hygiene Planh UNIVERSITY OF AlASKA  

E-Print Network [OSTI]

Chemical Hygiene Planh · UNIVERSITY OF AlASKA · · FAIRBANKS INTRODUCTION.....................................................................................................3 C Chemical Hygiene Officer (CHO........................................................................................................ 8 F Reactive Chemicals

Hartman, Chris

292

CRAD, Chemical Management Implementation - June 30, 2011 | Department...  

Broader source: Energy.gov (indexed) [DOE]

Chemical Management Implementation - June 30, 2011 CRAD, Chemical Management Implementation - June 30, 2011 June 30, 2011 Chemical Management Implementation Inspection Criteria,...

293

Analysis of chemical coal cleaning processes. Final report  

SciTech Connect (OSTI)

Six chemical coal cleaning processes were examined. Conceptual designs and costs were prepared for these processes and coal preparation facilities, including physical cleaning and size reduction. Transportation of fine coal in agglomerated and unagglomerated forms was also discussed. Chemical cleaning processes were: Pittsburgh Energy Technology Center, Ledgemont, Ames Laboratory, Jet Propulsion Laboratory (two versions), and Guth Process (KVB). Three of the chemical cleaning processes are similar in concept: PETC, Ledgemont, and Ames. Each of these is based on the reaction of sulfur with pressurized oxygen, with the controlling factor being the partial pressure of oxygen in the reactor. All of the processes appear technically feasible. Economic feasibility is less certain. The recovery of process chemicals is vital to the JPL and Guth processes. All of the processes consume significant amounts of energy in the form of electric power and coal. Energy recovery and increased efficiency are potential areas for study in future more detailed designs. The Guth process (formally designed KVB) appears to be the simplest of the systems evaluated. All of the processes require future engineering to better determine methods for scaling laboratory designs/results to commercial-scale operations. A major area for future engineering is to resolve problems related to handling, feeding, and flow control of the fine and often hot coal.

Not Available

1980-06-01T23:59:59.000Z

294

Chemical reaction model for oil and gas generation from type 1 and type 2 kerogen  

SciTech Connect (OSTI)

A global model for the generation of oil and gas from petroleum source rocks is presented. The model consists of 13 chemical species and 10 reactions, including an alternate-pathway mechanism for kerogen pyrolysis. Reaction rate parameters and stoichiometry coefficients determined from a variety of pyrolysis data are given for both type I and type II kerogen. Use of the chemical reaction model is illustrated for typical geologic conditions.

Braun, R.L.; Burnham, A.K.

1993-06-01T23:59:59.000Z

295

Chemical and nuclear properties of lawrencium (element 103) and hahnium (element 105)  

SciTech Connect (OSTI)

The chemical and nuclear properties of Lr and Ha have been studied, using 3-minute {sup 260}Lr and 35-second {sup 262}Ha. The crystal ionic radius of Lr{sup 3+} was determined by comparing its elution position from a cation-exchange resin column with those of lanthanide elements having known ionic radii. Comparisons are made to the ionic radii of the heavy actinides, Am{sup 3+} through Es{sup 3+}, obtained by x-ray diffraction methods, and to Md{sup 3+} and Fm{sup 3+} which were determined in the same manner as Lr{sup 3+}. The hydration enthalpy of {minus}3622 kJ/mol was calculated from the crystal ionic radius using an empirical form of the Born equation. Comparisons to the spacings between the ionic radii of the heaviest members of the lanthanide series show that the 2Z spacing between Lr{sup 3+} and Md{sup 3+} is anomalously small, as the ionic radius of Lr{sup 3+} of 0.0886 nm is significantly smaller than had been expected. The chemical properties of Ha were determined relative to the lighter homologs in group 5, Nb and Ta. Group 4 and group 5 tracer activities, as well as Ha, were absorbed onto glass surfaces as a first step toward the determination of the chemical properties of Ha. Ha was found to adsorb on surfaces, a chemical property unique to the group 5 elements, and as such demonstrates that Ha has the chemical properties of a group 5 element. A solvent extraction procedure was adapted for use as a micro-scale chemical procedure to examine whether or not Ha displays eka-Ta-like chemical under conditions where Ta will be extracted into the organic phase and Nb will not. Under the conditions of this experiment Ha did not extract, and does not show eka-Ta-like chemical properties.

Henderson, R.A.

1990-09-10T23:59:59.000Z

296

Determining Reactor Neutrino Flux  

E-Print Network [OSTI]

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Jun Cao

2012-03-08T23:59:59.000Z

297

Chemical and physicochemial properties of submicron aerosol agglomerates  

SciTech Connect (OSTI)

This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory. The formation of nanometer-sized aerosol particles in a premixed methane flame from both solid-phase aerosol precursors and gas-phase precursors was investigated. Techniques were developed to determine the distribution of the individual chemical species as a function of agglomerate size by using inductively coupled plasma atomic emission spectroscopy (ICP-AES). To determine the distribution of chemical species both from particle to particle and within the particles on a nanometer scale, we used the analytical electron microscopy techniques of energy dispersive x-ray spectrometry (EDS) and electron energy loss spectrometry (EELS) coupled with transmission electron microscopy (TEM). The observed distribution of individual chemical species as a function of agglomerate size was linked to the material properties of the solid-phase precursors. For aerosol formed from gas-phase precursors by gas-to-particle conversion, the distribution of species on a manometer scale was found to correspond to the equilibrium phase distribution expected from equilibrium for the system at the flame temperatures.

Scripsick, R.C. [Los Alamos National Lab., NM (United States); Ehrman, S.; Friedlander, S.K. [Univ. of California, Los Angeles, CA (United States). Dept. of Chemical Engineering

1998-12-31T23:59:59.000Z

298

Testing of a model to estimate vapor concentration of various organic chemicals. Master's thesis  

SciTech Connect (OSTI)

A model developed by Dr. Parker C. Reist to predict the build-up and decay rates of vapor concentrations following a chemical spill and clean-up was tested. The chemicals tested were: acetone, butyl acetate, ethyl acetate, hexane, methylene chloride, methyl ethyl ketone, and toluene. The evaporation rates of these chemicals were determined both by prediction, using a model developed by I. Kawamura and D. Mackay, and empirically and these rates were used in the Reist model. Chamber experiments were done to measure actual building-up and decay of vapor concentrations for simulated spills and simulated clean-up.

Bakalyar, S.M.

1990-01-01T23:59:59.000Z

299

Quarterly progress report for the Chemical and Energy Research Section of the Chemical Technology Division: October-December 1997  

SciTech Connect (OSTI)

This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period October--December 1997. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications. The report describes the various tasks performed within six major areas of research: Hot Cell Operations, Process Chemistry and Thermodynamics, Separations and Materials Synthesis, Fluid Structure and Properties, Biotechnology Research, and Molecular Studies. The name of a technical contact is included with each task described, and readers are encouraged to contact these individuals if they need additional information. Activities conducted within the area of Hot Cell Operations included efforts to optimize the processing conditions for Enhanced Sludge Washing of Hanford tank sludge, the testing of candidate absorbers and ion exchangers under continuous-flow conditions using actual supernatant from the Melton Valley Storage Tanks, and attempts to develop a cesium-specific spherical inorganic sorbent for the treatment of acidic high-salt waste solutions. Within the area of Process Chemistry and Thermodynamics, the problem of solids formation in process solutions from caustic treatment of Hanford sludge was addressed and experimental collaborative efforts with Russian scientists to determine the solidification conditions of yttrium barium, and copper oxides from their melts were completed.

Jubin, R.T.

1999-02-01T23:59:59.000Z

300

Winding expansion techniques for lattice QCD with chemical potential  

E-Print Network [OSTI]

We analytically derive a decomposition of the lattice fermion determinant for Wilson's Dirac operator with chemical potential into winding sectors, i.e., factors with a fixed number of quarks. Dividing the lattice into four domains, the determinant is factorized into terms which can be classified with respect to the winding number of the closed loops they consist of. The individual factors are expressed in terms of subdeterminants and propagators on the domains of the lattice. We numerically analyze properties of the factorization formula and discuss two applications for the determination of canonical partition functions with a fixed quark number: A speedup for the Fourier transformation technique through a dimensional reduction, and a power series expansion.

Julia Danzer; Christof Gattringer

2008-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Chemical heat pump and chemical energy storage system  

DOE Patents [OSTI]

A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

1985-08-06T23:59:59.000Z

302

Gender determination in populus  

SciTech Connect (OSTI)

Gender, the expression of maleness or femaleness, in dioecious plants has been associated with changes in morphology, physiology, ecological position, and commercial importance of several species, including members of the Salicaceae family. Various mechanisms have been proposed to explain the expression of gender in Salicaceae, including sex chromosomes, simple Mendelian genes, quantitative genes, environment, and genotype-by-environment interactions. Published reports would favor a genetic basis for gender. The objective of this study was to identify molecular markers associated with gender in a segregating family of hybrid poplars. Bulked segregant analysis and chi-squared analysis were used to test for the occurrence of sex chromosomes, individual loci, and chromosome ratios (i.e., ploidy levels) as the mechanisms for gender determination. Examination of 2488 PCR based RAPD markers from 1219 primers revealed nine polymorphic bands between male and female bulked samples. However, linkage analysis indicated that none of these markers were significantly associated with gender. Chisquared results for difference in male-to-female ratios between diploid and triploid genotypes also revealed no significant differences. These findings suggest gender is not controlled via sex chromosomes, simple Mendelian loci or ratios of autosome to gender-determining loci. It is possible that gender is determined genetically by regions of the genome not sampled by the tested markers or by a complex of loci operating in an additive threshold manner or in an epistatic manner. It is also possible that gender is determined environmentally at an early zygote stage, canalizing gender expression.

McLetchie, D.N. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Biological Sciences; Tuskan, G.A. [Oak Ridge National Lab., TN (United States)

1994-12-31T23:59:59.000Z

303

CHEMICAL ABUNDANCES IN CLUSTERS OF GALAXIES  

E-Print Network [OSTI]

We study the origin of iron and alpha-elements (O, Mg, Si) in clusters of galaxies. In particular, we discuss the [O/Fe] ratio and the iron mass-to-luminosity ratio in the intracluster medium (ICM) and their link to the chemical and dynamical evolution of elliptical and lenticular galaxies. We adopt a detailed model of galactic evolution incorporating the development of supernovae- driven galactic winds which pollute the ICM with enriched ejecta. We demonstrate \\it quantitatively \\rm the crucial dependence upon the assumed stellar initial mass function in determining the evolution of the mass and abundances ratios of heavy elements in typical model ICMs. We show that completely opposite behaviours of [alpha/Fe] ratios (\\ie positive versus negative ratios) can be obtained by varying the initial mass function without altering the classic assumptions regarding type Ia supernovae progenitors or their nucleosynthesis. Our results indicate that models incorporating somewhat flatter-than-Salpeter initial mass functions (ie x approx 1, as opposed to x=1.35) are preferred, provided the intracluster medium iron mass-to-luminosity ratio, preliminary [alpha/Fe]>0 ASCA results, and present-day type Ia supernovae rates, are to be matched. A simple Virgo cluster simulation which adheres to these constraints shows that approx 70% of the measured ICM iron mass has its origin in type II supernovae, with the remainder being synthesized in type Ia systems.

Francesca Matteucci; Brad K. Gibson

1995-03-14T23:59:59.000Z

304

Chemical Elements at High and Low Redshifts  

E-Print Network [OSTI]

The past few years have seen a steady progress in the determination of element abundances at high redshifts, with new and more accurate measures of metallicities in star-forming galaxies, in QSO absorbers, and in the intergalactic medium. We have also become more aware of the limitations of the tools at our disposal in such endeavours. I summarise these recent developments and--in tune with the theme of this meeting--consider the clues which chemical abundance studies offer to the links between the high redshift galaxy populations and today's galaxies. The new data are `fleshing out' the overall picture of element abundances at redshifts z = 2 - 3 which has been gradually coming into focus over the last decade. In particular, we can now account for at least 40% of the metals produced by the global star formation activity in the universe from the Big Bang to z = 2.5, and we have strong indications of where the remainder are likely to be found.

Max Pettini

2006-03-02T23:59:59.000Z

305

Chemical Science and Technology Laboratory Page 1 Technical Activities Report  

E-Print Network [OSTI]

Chemical Science and Technology Laboratory Page 1 Technical Activities Report Physical & Chemical Properties Division TABLE OF CONTENTS I. PHYSICAL & CHEMICAL PROPERTIES DIVISION (838.................................................................................................9 1. The NIST WebBook: NIST Chemical Reference Data for Industry

Magee, Joseph W.

306

DEPARTMENT OF CHEMICAL & PETROLEUM ENGINEERING UNIVERSITY OF CALGARY  

E-Print Network [OSTI]

DEPARTMENT OF CHEMICAL & PETROLEUM ENGINEERING UNIVERSITY OF CALGARY SCHULICH.UCALGARY.CA/CHEMICAL/ (403) 220-5751 Department Of Chemical & Petroleum Engineering ZANDMER DISTINGUISHED LECTURE SERIES 2014 Lecture Series in Chemical & Petroleum Engineering is designed to attract internationally renowned

Sinnamon, Gordon J.

307

Undergraduate Bulletin 2014-15 Energy, Environmental and Chemical Engineering  

E-Print Network [OSTI]

Undergraduate Bulletin 2014-15 Energy, Environmental and Chemical Engineering (09/02/14) 1 Energy, Environmental and Chemical Engineering About Energy, Environmental and Chemical Engineering Our department focuses on environmental engineering, energy systems engineering and chemical engineering. We provide

Subramanian, Venkat

308

Vertical flow chemical detection portal  

DOE Patents [OSTI]

A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.

Linker, K.L.; Hannum, D.W.; Conrad, F.J.

1999-06-22T23:59:59.000Z

309

Chemically assisted mechanical refrigeration process  

DOE Patents [OSTI]

There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

Vobach, A.R.

1987-11-24T23:59:59.000Z

310

Chemically assisted mechanical refrigeration process  

DOE Patents [OSTI]

There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

Vobach, A.R.

1987-06-23T23:59:59.000Z

311

Chemical microreactor and method thereof  

DOE Patents [OSTI]

A chemical microreactor suitable for generation of hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. One such microreactor employs a packed catalyst capillary microchannel and at least one porous membrane. Another employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2 /cm.sup.3. The packed catalyst capillary microchannels, porous membranes and porous membrane support structures may be formed by a variety of methods.

Morse, Jeffrey D.; Jankowski, Alan

2005-11-01T23:59:59.000Z

312

Electrostatic thin film chemical and biological sensor  

DOE Patents [OSTI]

A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

2010-01-19T23:59:59.000Z

313

UCR Chemical Hygiene Plan, ver 2012.09.10 page 1 of 55 UCR Chemistry Department Chemical Hygiene Plan  

E-Print Network [OSTI]

UCR Chemical Hygiene Plan, ver 2012.09.10 page 1 of 55 UCR Chemistry Department Chemical Hygiene Plan UCR CHEMISTRY DEPARTMENT CHEMICAL HYGIENE PLAN.................................... 4 Responsibilities of All Personnel Who Handle Hazardous Chemicals

Reed, Christopher A.

314

The Chemical Composition of Some Texas Soils.  

E-Print Network [OSTI]

TEXAS AGRICULTURAL ESPERlMENT STATIONS. ______-_________- _-__---- - -. - _ _._ __ BULLETlN NO. 100. Chemical Section, Dec., 1907. The Chemical Composition of Some Texas Soils BY G. S. FRAPS, 'Ph. D., Chemist. POSTOFFICE COLLEGE STATION.... The postoffice address is College, Station, Texas. Reports and bulletins are sent free upon application to the Director. THE CHEMICAL COMPOSITION OF SOME TEXAS SOILS. BY G. S. FRAPS. This bulletin is a popular account of a study of a nnmber of Texas soils...

Fraps, G. S. (George Stronach)

1907-01-01T23:59:59.000Z

315

Chemical Kinetic Research on HCCI & Diesel Fuels  

Broader source: Energy.gov (indexed) [DOE]

improved gasoline surrogate fuels for HCCI engines * Development of very efficient software to reduce the size of detailed chemical kinetic models for transportation fuels...

316

Methods and compounds for chemical ligation  

DOE Patents [OSTI]

Compositions and methods for chemical ligation are provided. Methods for nucleic acid sequencing, nucleic acid assembly and nucleic acid synthesis are also provided.

Church, George M.; Sismour, A. Michael

2013-07-09T23:59:59.000Z

317

ORISE: Chemical Stockpile Emergency Preparedness Program Exercise...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Stockpile Emergency Preparedness Program Exercise Training and Analysis Tool Training Tool Improves Information Sharing Between CSEPP and its Response Partners In 2006,...

318

Rejuvenating Permeable Reactive Barriers by Chemical Flushing  

Broader source: Energy.gov [DOE]

Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

319

Chemical and Microstructural Effects in Electrode Polarization  

SciTech Connect (OSTI)

This presentation discusses the chemical and microstructural effects in electrode polarization and a relative comparison of contributions of the various polarizations in anode-supported cells.

Virkar, A.; Armstrong, T.; Radhakrishman, R.; Ramanan, G.; Zhao, F.; Singhal, S.

2005-01-28T23:59:59.000Z

320

Chemically stabilized ionomers containing inorganic fillers  

DOE Patents [OSTI]

Ionomeric polymers that are chemically stabilized and contain inorganic fillers are prepared, and show reduced degradation. The ionomers care useful in membranes and electrochemical cells.

Roelofs, Mark Gerrit

2013-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

BASF The Chemical Company Dr. Franca Tiarks  

E-Print Network [OSTI]

's segments Chemicals Plastics Performance Products Functional Solutions Agricultural Solutions Oil & Gas Multifunctional seat Infrared-reflective coating Infrared-reflective film High-performance foams Lightweight

Schöne, Bernd R.

322

Integrated Chemical Geothermometry System for Geothermal Exploration  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

323

Chemical Characterization of Individual Particles and Residuals...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Individual Particles and Residuals of Cloud Droplets and Ice Crystals Collected On Board Research Chemical Characterization of Individual Particles and Residuals of Cloud Droplets...

324

Northwest National Laboratory's Chemical Imaging Initiative is...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of chemicals and radionuclides underground or precipitation reactions that influence the sequestration of carbon. To study biofilms, researchers must first obtain detailed...

325

Chemical Magnetism Shouheng Sun, Chairman Semiconductivity,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Magnetism Shouheng Sun, Chairman Semiconductivity, spin delocalization, and excited states of the single molecule magnets Fe 8 Br 8 and Mn 12 -acetate "invited... D....

326

CX-007504: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

and thin films for selective chemical and physical properties 2) nanoscience and nanotechnology, including condensed phase and interfacial chemical physics, oxide surface...

327

An internship in the agricultural chemical industry: Miles Inc.  

E-Print Network [OSTI]

?' Mslonekg city 310 A Den? Dawso Aquise 6 ( Hubbard West, Mount 31 ~ Cal r Cocllda Elm MO Xv +PI iep iab 7886'% , CreSt ' Cc nea& art. parker I 0 knn Bkyrcr mT, uQ, Reer d Mart 4 ~ ~ C I 0 Ao er 148 Grays I 47 198 ? I M 3 72 Co I la I ttonwccd... B APPENDIX C APPENDIX D Daily Log of Activities . Territory Map . Internship Manual Outline Functional Linkages . . 10 21 22 24 . 25 DEFINITION OF TERMS SCOUTING: To examine a field for insects to determine the need for chemical...

Adams, Sharla K

1994-01-01T23:59:59.000Z

328

Chemical Looping Combustion Reactions and Systems  

SciTech Connect (OSTI)

Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore, they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

2014-03-01T23:59:59.000Z

329

Developing and Integrating Sustainable Chemical Processes into Existing Petro-Chemical Plant Complexes  

E-Print Network [OSTI]

Developing and Integrating Sustainable Chemical Processes into Existing Petro-Chemical Plant Complexes #12;Outline · Introduction to Sustainable Development · Research Vision · Biomass conversion of biotechnology in existing plant complex · Conclusions #12;Sustainability Sustainability refers to integrating

Pike, Ralph W.

330

CH E 2421 Chemical Engineering Thermodynamics I CH E 3322 Chemical Engineering Thermodynamics II  

E-Print Network [OSTI]

Physics PHYS 4312 Nuclear and Particle Physics Other Engineering Electives #12;CH E 2421 Chemical Engineering Thermodynamics I CH E 3322 Chemical Engineering Thermodynamics II CH E 3330 Engineering Materials Science CH E 4342 Polymer Physics

Zhang, Yuanlin

331

CX-012553: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Corrosion Testing in Support of Alternative Chemical Cleaning for Sludge Heel Removal CX(s) Applied: B3.6Date: 41879 Location(s): South CarolinaOffices(s): Savannah River Operations Office

332

CX-010626: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Investigate Production of Commodity Chemicals using Carbon Dioxide and Carbon Feedstocks Including Methane CX(s) Applied: A9, B3.6 Date: 07/12/2013 Location(s): North Carolina Offices(s): National Energy Technology Laboratory

333

CX-010960: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ Carbon Dioxide (CO2) Capture CX(s) Applied: A9 Date: 09/16/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

334

CX-009344: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Intrinsic Fiber Optic Chemical Sensors for Subsurface Detection of carbon dioxide CX(s) Applied: B3.6 Date: 09/21/2012 Location(s): California Offices(s): National Energy Technology Laboratory

335

CX-009343: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Intrinsic Fiber Optic Chemical Sensors for Subsurface Detection of carbon dioxide CX(s) Applied: B3.6 Date: 09/21/2012 Location(s): California Offices(s): National Energy Technology Laboratory

336

CX-009345: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Intrinsic Fiber Optic Chemical Sensors for Subsurface Detection of carbon dioxide CX(s) Applied: B3.6 Date: 09/21/2012 Location(s): California Offices(s): National Energy Technology Laboratory

337

CX-010901: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters CX(s) Applied: B3.6 Date: 06/26/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

338

CX-010902: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Fuel-Flexible Combustion System for Refinery and Chemical Plant Process CX(s) Applied: A1 Date: 06/26/2013 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory

339

CX-010903: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters CX(s) Applied: B3.6 Date: 06/26/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

340

CX-010646: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters CX(s) Applied: B3.6 Date: 06/26/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

CX-010647: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Fuel-Flexible Combustion System for Refinery and Chemical Plant Process CX(s) Applied: A1 Date: 06/26/2013 Location(s): Massachusetts Offices(s): National Energy Technology Laboratory

342

CX-010477: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9, A11 Date: 05/31/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

343

CX-011031: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9, A11 Date: 09/10/2013 Location(s): Other Location Offices(s): National Energy Technology Laboratory

344

CX-011030: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9, A11, B3.6 Date: 09/10/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

345

CX-010475: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9, A11 Date: 05/31/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

346

CX-010476: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9, A11 Date: 05/31/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

347

CX-006990: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Synthesis and Characterization of Coatings by Chemical Solution Deposition MethodsCX(s) Applied: B3.6Date: 09/13/2011Location(s): Aiken, South CarolinaOffice(s): Environmental Management, National Energy Technology Laboratory

348

CX-002206: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Real-Waste Testing of Enhanced Chemical Cleaning for Sludge Heel RemovalCX(s) Applied: B3.6Date: 04/16/2010Location(s): Aiken, South CarolinaOffice(s): Environmental Management, Savannah River Operations Office

349

CX-005776: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Enhanced Chemical Cleaning Real Waste TestCX(s) Applied: B3.6Date: 04/06/2011Location(s): Aiken, South CarolinaOffice(s): Environmental Management, Savannah River Operations Office

350

CX-000435: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Novel Oxygen Carriers for Coal-fueled Chemical Looping CombustionCX(s) Applied: A9, A11Date: 11/16/2009Location(s): Bowling Green, KentuckyOffice(s): Fossil Energy, National Energy Technology Laboratory

351

CX-005947: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Develop and Test an Optical Temperature Sensor at Eastman Chemical's Coal GasifierCX(s) Applied: B3.6Date: 06/04/2011Location(s): Kingsport, TennesseeOffice(s): Fossil Energy, National Energy Technology Laboratory

352

Quantitative Determination of Chemical Processes by Dynamic Nuclear Polarization Enhanced Nuclear Magnetic Resonance Spectroscopy  

E-Print Network [OSTI]

Dissolution dynamic nuclear polarization (DNP) provides several orders of magnitude of NMR signal enhancement by converting the much larger electron spin polarization to nuclear spin polarization. Polarization occurs at low temperature (1.4K...

Zeng, Haifeng

2012-07-16T23:59:59.000Z

353

Determination of the elemental distribution and chemical speciation in highly heterogeneous cementitious materials using  

E-Print Network [OSTI]

-barrier concepts developed worldwide for the safe disposal of hazardous and radioactive waste [e.g., 1 and to construct the engineered barrier systems (container, backfill and liner materials) of repositories for radioactive waste. Thus, hardened cement paste (HCP) is an important component of the engineered barrier

354

Supplementary material for ACP manuscripts "A chemical probe technique for the determination of reactive halogen  

E-Print Network [OSTI]

and the sample was saturated with sodium sulfate and extracted twice with 5.0 mL of ethyl acetate. The extracts-linear inverse plots and the influence of allyl alcohol in bromide solutions The kinetic derivation that describes the non-linear inverse plots (e.g., Figure 2 in Part 1), and the effect that allyl alcohol has

Meskhidze, Nicholas

355

ORNL/CDIAC-150 DETERMINATION OF CARBON DIOXIDE, HYDROGRAPHIC, AND CHEMICAL  

E-Print Network [OSTI]

Center Oak Ridge National Laboratory Oak Ridge, Tennessee, USA Date Published: March 2006 Prepared by the Carbon Dioxide Information Analysis Center OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831

356

Determination and interpretation of chemical adsorption data for an oxide catalyst  

E-Print Network [OSTI]

.C AA7 aoyyHbeBhor loy B(j7 etnoydBhor ol dyod:bHrH g: aeBeb:nB necdbH rop A eB feyhoCn tHEyHHn ol ovhteBhor pppppppppppp 181 Ai aoyyHbeBhor loy B(H etnoydBhor ol ov:EHr lobbo:UhrE dyod:bHrH etnoy2Bhor or ADiserti tDaoen rop C eB feyhoCn tHEyHHn ol...; :e 1 JBONT VIEW OF APPARATUS.................................. J8 2 RIGHT SIDE VIEW OF APPARATUS....................... 3 LEFT SIDE VIEW OF APPARATUS........................... eaNro*fbHtEHh puBHrB n B;jJ 2TJTG2W; ?GJ J????2?T? j? ?G2? ?? ?;T BT...

Holland, Charles Donald

1953-01-01T23:59:59.000Z

357

Determination of kinetic parameters in laminar flow reactors. I. Theoretical aspects  

E-Print Network [OSTI]

is the numerical evaluation of kinetic data, obtained from controlled experiments in a flow reactorDetermination of kinetic parameters in laminar flow reactors. I. Theoretical aspects T. Carraro1- mization of chemical flow reactors. The goal is the reliable determination of unknown kinetic parameters

358

Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds  

E-Print Network [OSTI]

fail. Fostering Creativity | Cover Story | Chemical & Engineering News httpChemical & Engineering News Serving the chemical, life sciences and laboratory worlds Cover Story Home » March 22, 2010 Issue » Cover Story » Bubbling With Enthusiasm » Fostering Creativity March 22

Zare, Richard N.

359

Using chemical tracers in hillslope soils to estimate the importance of chemical denudation under  

E-Print Network [OSTI]

also examine relationships between transient mechanical and chemical denudation rates. Soil particle, burrowing by mammals, or freeze-thaw mechanisms [e.g., see Birkeland, 1999]. Once created, mobile soilUsing chemical tracers in hillslope soils to estimate the importance of chemical denudation under

360

Department of Chemical and Biochemical Engineering Institute for Chemicals and Fuels from Alternative Resources  

E-Print Network [OSTI]

. The successful candidate will be an important member of the Institute for Chemicals and Fuels from AlternativeDepartment of Chemical and Biochemical Engineering Institute for Chemicals and Fuels from Alternative Resources The University of Western Ontario Applications are invited for a junior faculty position

Sinnamon, Gordon J.

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof. Mikael Nilsson)(Prof. Mikael Nilsson)  

E-Print Network [OSTI]

Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof. Mikael Nilsson)(Prof. Mikael in nuclear engineering. Current work involves validation of computer codes for composition and toxicity for future nuclear waste reprocessing. Projects include new methods and chemicals used in solvent extraction

Mease, Kenneth D.

362

Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof.(Prof. MikaelMikael Nilsson)Nilsson)  

E-Print Network [OSTI]

Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof.(Prof. MikaelMikael Nilsson in nuclear engineering. Current work involves validation of computer codes for composition and toxicity for future nuclear waste reprocessing. Projects include new methods and chemicals used in solvent extraction

Mease, Kenneth D.

363

GULF OF MEXICO PHYSICAL AND CHEMICAL DATA  

E-Print Network [OSTI]

-^ ^ / GULF OF MEXICO PHYSICAL AND CHEMICAL DATA FROM ALASKA CRUISES Marine Biological Laboratory, Commissioner GULF OF MEXICO PHYSICAL AND CHEMICAL DATA FROM ALASKA CRUISES Compiled by Albert Collier Fishery OF THE GULF OF MEXICO By Kenneth H. Driimmond and George B. Austin, Jr. Department of Oceanography The A. & M

364

Chemical & Biomolecular Engineering Undergraduate Curriculum First Semester  

E-Print Network [OSTI]

Name Hours CHEM 113 Fundamental Chemistry I 1 4 CHME 113 Intro to Chemical Engineering I 2 ENGR 010 Quantitative Chemistry Lab 1 2 CHME 114 Intro to Chemical Engineering II 2 MATH 107 Analytic Geometry Chemistry Lab 1 CHME 202 Mass & Energy Balances 3 ENGM 223 Engineering Statics 3 ENGR 020 Sophomore

Farritor, Shane

365

Computing Resources at Chemical and Biochemical Engineering  

E-Print Network [OSTI]

Main Site Dept. of Chemical and Biochemical Engineering, 98 Brett Road Piscataway, NJ 08854-8058 PhoneComputing Resources at Chemical and Biochemical Engineering Note that use of all Rutgers University at: http://rucs.rutgers.edu/acceptable- use.html. Microlab. The PC Microlab (Engineering Room C233

366

Department of Chemical and Petroleum Engineering  

E-Print Network [OSTI]

Real World Process from Inception to Pre-construction ­ Apply Concepts Learned in Class to Industrial Quality and Air Pollution Control Chemical Engineering Energy & Env. Specialization #12;CHEMICAL World-Class Industry ­ Oil and Gas Exploration & Recovery ­ Heavy Oil & Bitumen ­ Natural Gas, Coal Bed

Habib, Ayman

367

Excellence in biotechnology for fuels and chemicals  

SciTech Connect (OSTI)

The Biotechnology Center for Fuels and Chemicals (BCFC) leads a national effort, in cooperation with industry, to develop innovative, market-driven biotechnologies for producing fuels and chemicals from renewable resources. The BCFC researchers focus on using bioprocesses to convert renewable biomass feedstocks into valuable products.

Neufeld, S.

1999-04-23T23:59:59.000Z

368

CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings  

E-Print Network [OSTI]

CHEM 6471 CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings 9:35 ­ 10:55 am, Tuesday and Thursday of October 22-26 Textbooks Molecular Thermodynamics by D.A McQuarrie and J.D. Simon, University Science Books the laws of classical thermodynamics and some of their chemical applications. It also covers basic

Sherrill, David

369

CHEMICAL ENGINEERING DEPARTMENT AND GRADUATE SCHOOL  

E-Print Network [OSTI]

Thermodynamics (ChE 2164) d. Chemical Reactor Analysis and Design (ChE 3184) e. Separation Processes (ChE 3134) f1 CHEMICAL ENGINEERING DEPARTMENT AND GRADUATE SCHOOL POLICIES AND PROCEDURES MANUAL REQUIREMENTS by concurrent registration if necessary. Departmental Core Graduate Courses The following five courses

Lu, Chang

370

Chemical Safety Vulnerability Working Group Report  

SciTech Connect (OSTI)

This report marks the culmination of a 4-month review conducted to identify chemical safety vulnerabilities existing at DOE facilities. This review is an integral part of DOE's efforts to raise its commitment to chemical safety to the same level as that for nuclear safety.

Not Available

1994-09-01T23:59:59.000Z

371

Level MSc 2013/14 Chemical Engineering  

E-Print Network [OSTI]

Level MSc 2013/14 Chemical Engineering MSc Chemical Engineering Coordinator: Dr. P Douglas Semester 1 Modules Semester 2 Modules EG-M01 Complex Fluids and Flows 10 Credits Dr. MS Barrow EGDM01 Colloid and Interface Science 10 Credits Dr. CM Mcfarlane EG-M47 Entrepreneurship for Engineers 10 Credits Professor K

Martin, Ralph R.

372

Level M 2013/14 Chemical Engineering  

E-Print Network [OSTI]

for the characterisation of complex fluids and associated engineering calculations for pipeline transport and other flowLevel M 2013/14 Chemical Engineering MEng Chemical Engineering[H801,H890] Coordinator: Dr. PM Williams Semester 1 Modules Semester 2 Modules EG-M01 Complex Fluids and Flows 10 Credits Dr. MS Barrow EG

Harman, Neal.A.

373

Chemical Reactor Models of Digestion Modulation  

E-Print Network [OSTI]

Chemical Reactor Models of Digestion Modulation William Wolesensky & J. David Logan Department give an overview of the application of chemical reactor theory to models of digestion processes and indicate how those models extend to eco-physiological questions of modulation of digestion and feeding

Logan, David

374

The effect of chemical additives on the synthesis of ethanol  

SciTech Connect (OSTI)

The objective of this research is to elucidate the role of various chemical additives on ethanol synthesis over Rh- and Ni-based catalysts. Chemical additives used will include S, P, Ag, Cu, Mn, and Na. The effect of additives on the surface state of the catalysts, heat of adsorption of reactant molecules, reaction intermediates, reaction pathways, reaction kinetics, and product distributions is/will be investigated by a series of studies including temperature programmed desorption, infrared study of NO adsorption, reactive probing, steady state rate measurement, and transient kinetic study. A better understanding of the role of additive may allow us to use chemical additives to manipulate the catalytic properties of Rh- and Ni-based catalysts for producing high yields of ethanol from syngas. CO insertion is known to be a key step to the formation of acetaldehyde and ethanol from CO hydrogenation over Rh catalysts. Ethylene hydroformylation has often served as a probe to determine CO insertion capabilities of Rh catalysts. The mechanism of CO insertion in ethylene hydroformylation over Rh/SiO{sub 2} was investigated.

Chuang, S.S.C.

1989-02-04T23:59:59.000Z

375

Self-consistent chemical model of partially ionized plasmas  

SciTech Connect (OSTI)

A simple renormalization theory of plasma particle interactions is proposed. It primarily stems from generic properties of equilibrium distribution functions and allows one to obtain the so-called generalized Poisson-Boltzmann equation for an effective interaction potential of two chosen particles in the presence of a third one. The same equation is then strictly derived from the Bogolyubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for equilibrium distribution functions in the pair correlation approximation. This enables one to construct a self-consistent chemical model of partially ionized plasmas, correctly accounting for the close interrelation of charged and neutral components thereof. Minimization of the system free energy provides ionization equilibrium and, thus, permits one to study the plasma composition in a wide range of its parameters. Unlike standard chemical models, the proposed one allows one to study the system correlation functions and thereby to obtain an equation of state which agrees well with exact results of quantum-mechanical activity expansions. It is shown that the plasma and neutral components are strongly interrelated, which results in the short-range order formation in the corresponding subsystem. The mathematical form of the results obtained enables one to both firmly establish this fact and to determine a characteristic length of the structure formation. Since the cornerstone of the proposed self-consistent chemical model of partially ionized plasmas is an effective pairwise interaction potential, it immediately provides quite an efficient calculation scheme not only for thermodynamical functions but for transport coefficients as well.

Arkhipov, Yu. V.; Baimbetov, F. B.; Davletov, A. E. [Department of Physics, Kazakh National University, Tole Bi 96, Almaty 050012 (Kazakhstan)

2011-01-15T23:59:59.000Z

376

Chemically assisted in situ recovery of oil shale  

SciTech Connect (OSTI)

The purpose of the research project was to investigate the feasibility of the chemically assisted in situ retort method for recovering shale oil from Colorado oil shale. The chemically assisted in situ procedure uses hydrogen chloride (HCl), steam (H{sub 2}O), and carbon dioxide (CO{sub 2}) at moderate pressure to recovery shale oil from Colorado oil shale at temperatures substantially lower than those required for the thermal decomposition of kerogen. The process had been previously examined under static, reaction-equilibrium conditions, and had been shown to achieve significant shale oil recoveries from powdered oil shale. The purpose of this research project was to determine if these results were applicable to a dynamic experiment, and achieve penetration into and recovery of shale oil from solid oil shale. Much was learned about how to perform these experiments. Corrosion, chemical stability, and temperature stability problems were discovered and overcome. Engineering and design problems were discovered and overcome. High recovery (90% of estimated Fischer Assay) was observed in one experiment. Significant recovery (30% of estimated Fischer Assay) was also observed in another experiment. Minor amounts of freed organics were observed in two more experiments. Penetration and breakthrough of solid cores was observed in six experiments.

Ramierz, W.F.

1993-12-31T23:59:59.000Z

377

Surface wave chemical detector using optical radiation  

DOE Patents [OSTI]

A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

Thundat, Thomas G.; Warmack, Robert J.

2007-07-17T23:59:59.000Z

378

Chemical composition of Earth-like planets  

E-Print Network [OSTI]

Models of planet formation are mainly focused on the accretion and dynamical processes of the planets, neglecting their chemical composition. In this work, we calculate the condensation sequence of the different chemical elements for a low-mass protoplanetary disk around a solar-type star. We incorporate this sequence of chemical elements (refractory and volatile elements) in our semi-analytical model of planet formation which calculates the formation of a planetary system during its gaseous phase. The results of the semi-analytical model (final distributions of embryos and planetesimals) are used as initial conditions to develope N-body simulations that compute the post-oligarchic formation of terrestrial-type planets. The results of our simulations show that the chemical composition of the planets that remain in the habitable zone has similar characteristics to the chemical composition of the Earth. However, exist differences that can be associated to the dynamical environment in which they were formed.

Ronco, M P; Marboeuf, U; Alibert, Y; de Elía, G C; Guilera, O M

2015-01-01T23:59:59.000Z

379

Green alternatives to toxic release inventory (TRI) chemicals in the process industry  

SciTech Connect (OSTI)

Driven by TRI reporting requirements, the chemical process industry is searching for innovative ways to reduce pollution at the source. Distinct environmental advantages of biobased green chemicals (biochemicals) mean are attractive alternatives to petrochemicals. Biochemicals are made from renewable raw materials in biological processes, such as aerobic and anaerobic fermentation, that operate at ambient temperatures and pressures, and produce only nontoxic waste products. Key TRI chemicals and several classes of commodity and intermediate compounds, used on consumer end-products manufacturing, are examined and alternatives are suggested. Specific substitution options for chlorofluorocarbons, industrial solvents, and commodity organic and inorganic chemicals are reviewed. Currently encouraged pollution prevention alternatives in the manufacturing sector are briefly examined for their long-term feasibility such as bioalternatives to bleaching in the pulp & paper industry, solvent cleaning in the electronics and dry cleaning industries, and using petroleum-based feedstocks in the plastics industry. Total life cycle and cost/benefit analyses are employed to determine whether biochemicals are environmentally feasible and commercially viable as pollution prevention tools. Currently available green chemicals along with present and projected costs and premiums are also presented. Functional compatibility of biochemicals with petrochemicals and bioprocessing systems with conventional chemical processing methods are explored. This review demonstrates that biochemicals can be used cost effectively in certain industrial chemical operations due to their added environmental benefits.

Ahmed, I.; Baron, J.; Hamilton, C. [Booz-Allen & Hamilton Inc., McLean, VA (United States)

1995-12-01T23:59:59.000Z

380

Significant Radionuclides Determination  

SciTech Connect (OSTI)

The purpose of this calculation is to identify radionuclides that are significant to offsite doses from potential preclosure events for spent nuclear fuel (SNF) and high-level radioactive waste expected to be received at the potential Monitored Geologic Repository (MGR). In this calculation, high-level radioactive waste is included in references to DOE SNF. A previous document, ''DOE SNF DBE Offsite Dose Calculations'' (CRWMS M&O 1999b), calculated the source terms and offsite doses for Department of Energy (DOE) and Naval SNF for use in design basis event analyses. This calculation reproduces only DOE SNF work (i.e., no naval SNF work is included in this calculation) created in ''DOE SNF DBE Offsite Dose Calculations'' and expands the calculation to include DOE SNF expected to produce a high dose consequence (even though the quantity of the SNF is expected to be small) and SNF owned by commercial nuclear power producers. The calculation does not address any specific off-normal/DBE event scenarios for receiving, handling, or packaging of SNF. The results of this calculation are developed for comparative analysis to establish the important radionuclides and do not represent the final source terms to be used for license application. This calculation will be used as input to preclosure safety analyses and is performed in accordance with procedure AP-3.12Q, ''Calculations'', and is subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (DOE 2000) as determined by the activity evaluation contained in ''Technical Work Plan for: Preclosure Safety Analysis, TWP-MGR-SE-000010'' (CRWMS M&O 2000b) in accordance with procedure AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''.

Jo A. Ziegler

2001-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

2008 Toxic Chemical Release Inventory 2008 Toxic Chemical Release Inventory Community Right-to-Know Act of 1986, Title III, Section 313  

SciTech Connect (OSTI)

For reporting year 2008, Los Alamos National Laboratory (LANL) submitted a Form R report for lead as required under the Emergency Planning and Community Right-to- Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2008 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2008, as well as to provide background information about data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999, EPA promulgated a final rule on persistent bioaccumulative toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.

Ecology and Air Quality Group

2009-10-01T23:59:59.000Z

382

Chemical factors influencing selenium atomization  

E-Print Network [OSTI]

Atomization. (August 1980) Mary Sue Buren, B, S. , Angelo State University Chairman of Advisory Comm1ttee: Dr. Thomas M. Vickrey Selenium in an acid1c matrix was analyzed using graphite furnace atom1c absorption with Zeeman-effect background correct1on.... Nickel(II} and lanthanum( III) were introduced as matrix modifiers to determine their effect on interferences 1n selenium atom1zation. In add1tion to matr1x mod1ficat1on, surface coating the graphite furnace with z1rconium and tantalum salts was also...

Buren, Mary Sue

1980-01-01T23:59:59.000Z

383

Results from modeling and simulation of chemical downstream etch systems  

SciTech Connect (OSTI)

This report summarizes modeling work performed at Sandia in support of Chemical Downstream Etch (CDE) benchmark and tool development programs under a Cooperative Research and Development Agreement (CRADA) with SEMATECH. The Chemical Downstream Etch (CDE) Modeling Project supports SEMATECH Joint Development Projects (JDPs) with Matrix Integrated Systems, Applied Materials, and Astex Corporation in the development of new CDE reactors for wafer cleaning and stripping processes. These dry-etch reactors replace wet-etch steps in microelectronics fabrication, enabling compatibility with other process steps and reducing the use of hazardous chemicals. Models were developed at Sandia to simulate the gas flow, chemistry and transport in CDE reactors. These models address the essential components of the CDE system: a microwave source, a transport tube, a showerhead/gas inlet, and a downstream etch chamber. The models have been used in tandem to determine the evolution of reactive species throughout the system, and to make recommendations for process and tool optimization. A significant part of this task has been in the assembly of a reasonable set of chemical rate constants and species data necessary for successful use of the models. Often the kinetic parameters were uncertain or unknown. For this reason, a significant effort was placed on model validation to obtain industry confidence in the model predictions. Data for model validation were obtained from the Sandia Molecular Beam Mass Spectrometry (MBMS) experiments, from the literature, from the CDE Benchmark Project (also part of the Sandia/SEMATECH CRADA), and from the JDP partners. The validated models were used to evaluate process behavior as a function of microwave-source operating parameters, transport-tube geometry, system pressure, and downstream chamber geometry. In addition, quantitative correlations were developed between CDE tool performance and operation set points.

Meeks, E.; Vosen, S.R.; Shon, J.W.; Larson, R.S.; Fox, C.A.; Buchenauer

1996-05-01T23:59:59.000Z

384

/, _(_ ,. 2:1 SIMS CHEMICAL AND ISOTOPIC ANALYSIS OF IMPACT FEATURES  

E-Print Network [OSTI]

impacts based on the chemical composition of projectile residues. The same measurement technique has now the origins of projectiles that left deposits too thin to be analyzed by conventional energy-dispersive x of impact deposits on a variety of sample surfaces. SIMS was also used to determine the isotopic

385

Potential for Energy Efficient Motors and Variable Speed Drives in the Petroleum and Chemical Industry  

E-Print Network [OSTI]

This paper presents an in-depth survey of motors in a refinery and a chemical plant. The potential for energy and demand savings is then determined and hence the dollar savings using a sliding rate structure currently applicable to the petrochemical...

Fendley, K. A.; Pillay, P.

386

K Basin sludge treatment project chemical procesing baseline time diagram study  

SciTech Connect (OSTI)

This document provides an initial basis for determining the duration of operating steps and the required resources for chemically treating K Basin sludge before transporting it to Tank Farms. It was assumed that all operations would take place within a TPA specified 13-month timeframe.

KLIMPER, S.C.

1999-06-07T23:59:59.000Z

387

Chemical reactor models of optimal digestion efficiency with constant foraging costs  

E-Print Network [OSTI]

Chemical reactor models of optimal digestion efficiency with constant foraging costs J. David Logan-batch reactor or plug flow reactor. Specifically, we determine the residence time that optimizes the average net , Anthony Joern , & William Wolesensky January 24, 2003 Abstract We develop quantitative optimization

Logan, David

388

Platform Chemicals from an Oilseed Biorefinery  

SciTech Connect (OSTI)

The US chemical industry is $460 billion in size where a $150 billion segment of which is non-oxygenated chemicals that is sourced today via petroleum but is addressable by a renewable feedstock if one considers a more chemically reduced feedstock such as vegetable oils. Vegetable oil, due to its chemical functionality, provides a largely untapped opportunity as a renewable chemical source to replace petroleum-derived chemicals and produce platform chemicals unavailable today. This project examined the fertile intersection between the rich building blocks provided by vegetable oils and the enhanced chemical modification capability provided by metathesis chemistry. The technology advanced in this study is the process of ethylene cross-metathesis (referred to as ethenolysis) with vegetable oil and vegetable oil derivatives to manufacture the platform-chemical 9-decenoic acid (or 9DA) and olefin co-products. The project team meet its goals of demonstrating improved catalyst efficiencies of several multiples, deepening the mechanistic understanding of metathesis, synthesis and screening of dozens of new catalysts, designing and modeling commercial processes, and estimating production costs. One demonstrable result of the study was a step change improvement in catalyst turnover number in the ethenolysis of methyl oleate as reported here. We met our key measurable of producing 100 lbs of 9DA at the pilot-scale, which demonstrated ability to scale-up ethenolysis. DOE Project funding had significant positive impact on development of metathetically modified vegetable oils more broadly as the Cargill/Materia partnership, that was able to initiate primarily due to DOE funding, has succeeded in commercializing products, validating metathesis as a platform technology, and expanding a diverse products portfolio in high value and in large volume markets. Opportunities have expanded and business development has gained considerable momentum and enabled further expansion of the Materia/Cargill relationship. This project exceeded expectations and is having immediate impact on DOE success by replacing petroleum products with renewables in a large volume application today.

Tupy, Mike; Schrodi Yann

2006-11-06T23:59:59.000Z

389

Appendix F. Chemicals Annual Site Environmental Report--2011  

E-Print Network [OSTI]

, pesticides, and industrial chemicals. Through the use of chemicals, we can increase food production, cure are exposed to chemicals by inhalation (breathing air), ingestion (eating exposed plants and animalsAppendix F. Chemicals #12;#12;Annual Site Environmental Report--2011 Appendix F. Chemicals F-3

Pennycook, Steve

390

Chemical preconcentrator with integral thermal flow sensor  

DOE Patents [OSTI]

A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2003-01-01T23:59:59.000Z

391

Chemical Sciences Division | Advanced Materials |ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In &Chemical LabelChemicalChemical

392

Chemical and Engineering Materials | Neutron Science | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In &ChemicalAnalysis ofChemicalChemical

393

Chemical inventory control program for mixed and hazardous waste facilities at SRS  

SciTech Connect (OSTI)

Mixed Waste (MW) and Hazardous Waste (HW) are being stored at the Savannah River Site (SRS) pending onsite and/or offsite treatment and disposal. The inventory control for these wastes has recently been brought under Technical Safety Requirements (TSR) in accordance with DOE Order 5480.22. With the TSRs was the question of the degree of rigor with which the inventory is to be tracked, considering that the variety of chemicals present, or that could be present, numbers in the hundreds. This paper describes the graded approach program to track Solid Waste (SW) inventories relative to TSRs. The approach uses a ratio of the maximum anticipated chemical inventory to the permissible inventory in accordance with Emergency Response Planning Guideline (ERPG) limits for on- and off-site receptors. A specific threshold ratio can then be determined. The chemicals above this threshold ratio are to be included in the chemical inventory control program. The chemicals that fall below the threshold ratio are managed in accordance with existing practice per State and RCRA hazardous materials requirements. Additionally, the facilities are managed in accordance with process safety management principles, specifically using process hazards analyses, which provides safety assurance for even the small quantities that may be excluded from the formal inventory control program. The method yields a practical approach to chemical inventory control, while maintaining appropriate chemical safety margins. The resulting number of specific chemicals that require inclusion in a rigorous inventory control program is greatly reduced by about 80%, thereby resulting in significant reduction in chemical data management while preserving appropriate safety margins.

Ades, M.J.; Vincent, A.M. III

1997-07-01T23:59:59.000Z

394

Chemical Methods for Ugnu Viscous Oils  

SciTech Connect (OSTI)

The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (<2 psi/ft) and depended mainly on the viscosity of the polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was p

Kishore Mohanty

2012-03-31T23:59:59.000Z

395

Photon level chemical classification using digital compressive ...  

E-Print Network [OSTI]

Oct 12, 2012 ... dynamic chemical processes, is the time required to collect and analyze hyperspectral ..... Section 3.2 for more information) using functions from Matlab 7.13 ..... ically simulated score plot for the n-hexane/methylcyclohexane.

David S. Wilcox

2012-11-09T23:59:59.000Z

396

Chemical structure and dynamics: Annual report 1996  

SciTech Connect (OSTI)

The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

Colson, S.D.; McDowell, R.S.

1997-03-01T23:59:59.000Z

397

Chemical structure and dynamics. Annual report 1995  

SciTech Connect (OSTI)

The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.

Colson, S.D.; McDowell, R.S.

1996-05-01T23:59:59.000Z

398

Collaborating for Multi-Scale Chemical Science  

SciTech Connect (OSTI)

Advanced model reduction methods were developed and integrated into the CMCS multiscale chemical science simulation software. The new technologies were used to simulate HCCI engines and burner flames with exceptional fidelity.

William H. Green

2006-07-14T23:59:59.000Z

399

Annual Report 2000. Chemical Structure and Dynamics  

SciTech Connect (OSTI)

This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

Colson, Steven D.; McDowell, Robin S.

2001-04-15T23:59:59.000Z

400

Frontiers in Chemical Imaging Seminar Series  

E-Print Network [OSTI]

Frontiers in Chemical Imaging Seminar Series On the trail of the Chimera The Atom the Chimera is still elusive. 1. Thomas F. Kelly and David J. Larson. Ann Rev. Materials Res 42 (2012) 1. 2

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

BIOMEDICAL ENGINEERING CHEMICAL AND BIOLOGICAL ENGINEERING  

E-Print Network [OSTI]

BIOMEDICAL ENGINEERING CHEMICAL AND BIOLOGICAL ENGINEERING CIVIL, ARCHITECTURAL, AND ENVIRONMENTAL ENGINEERING ELECTRICAL AND COMPUTER ENGINEERING MECHANICAL, MATERIALS, AND AEROSPACE ENGINEERING COLLEGE OF ENGINEERING IIT ARMOUR #12;WHY ENGINEERINGAT IIT ARMOUR? Five Departments. One Distinctive Educational

Heller, Barbara

402

Sensor for detecting and differentiating chemical analytes  

DOE Patents [OSTI]

A sensor for detecting and differentiating chemical analytes includes a microscale body having a first end and a second end and a surface between the ends for adsorbing a chemical analyte. The surface includes at least one conductive heating track for heating the chemical analyte and also a conductive response track, which is electrically isolated from the heating track, for producing a thermal response signal from the chemical analyte. The heating track is electrically connected with a voltage source and the response track is electrically connected with a signal recorder. The microscale body is restrained at the first end and the second end and is substantially isolated from its surroundings therebetween, thus having a bridge configuration.

Yi, Dechang (Metuchen, NJ); Senesac, Lawrence R. (Knoxville, TN); Thundat, Thomas G. (Knoxville, TN)

2011-07-05T23:59:59.000Z

403

Chemical vapor deposition of antimicrobial polymer coatings  

E-Print Network [OSTI]

There is large and growing interest in making a wide variety of materials and surfaces antimicrobial. Initiated chemical vapor deposition (iCVD), a solventless low-temperature process, is used to form thin films of polymers ...

Martin, Tyler Philip, 1977-

2007-01-01T23:59:59.000Z

404

Method and apparatus for detecting chemical binding  

DOE Patents [OSTI]

The method for screening binding between a target binder and potential pharmaceutical chemicals involves sending a solution (preferably an aqueous solution) of the target binder through a conduit to a size exclusion filter, the target binder being too large to pass through the size exclusion filter, and then sending a solution of one or more potential pharmaceutical chemicals (preferably an aqueous solution) through the same conduit to the size exclusion filter after target binder has collected on the filter. The potential pharmaceutical chemicals are small enough to pass through the filter. Afterwards, x-rays are sent from an x-ray source to the size exclusion filter, and if the potential pharmaceutical chemicals form a complex with the target binder, the complex produces an x-ray fluorescence signal having an intensity that indicates that a complex has formed.

Warner, Benjamin P. (Los Alamos, NM); Havrilla, George J. (Los Alamos, NM); Miller, Thomasin C. (Los Alamos, NM); Wells, Cyndi A. (Los Alamos, NM)

2007-07-10T23:59:59.000Z

405

Tools for chemical synthesis in microsystems  

E-Print Network [OSTI]

Chemical synthesis in microsystems has evolved from simple proof-of-principle examples to become a general technique in academia and industry. Numerous such “flow chemistry” applications are now found in pharmaceutical and ...

Jensen, Klavs F.

406

TCD-IISc Symposium "Chemistry & Chemical Biology"  

E-Print Network [OSTI]

actinide chemistry, with a focus on coordination and organometallic uranium chemistry. Paula ColavitaTCD-IISc Symposium "Chemistry & Chemical Biology" Trinity College Clive Williams, Dean of Chemistry. Research areas include supramolecular organic and inorganic chemistry and medicinal chemistry

O'Mahony, Donal E.

407

The 30th Annual Chemical Physics  

E-Print Network [OSTI]

of Waterloo Department of Chemistry, University of Waterloo AB SCIEX #12;Symposium on Chemical PhysicsMaster University) Ab Initio Modeling of Excited States of Uranium Compounds: Dissecting the Interplay of Electron

Le Roy, Robert J.

408

Acoustic cavitation and its chemical consequences  

E-Print Network [OSTI]

Acoustic cavitation and its chemical consequences By Kenneth S. Suslick, Yuri Didenko, Ming M. Fang Acoustic cavitation is responsible for both sonochemistry and sonoluminescence. Bubble collapse in liquids, sonochemistry and sonoluminescence derive principally from acoustic cavitation: the formation, growth

Suslick, Kenneth S.

409

Chemical and Petroleum Engineering Petroleum Engineering Minor  

E-Print Network [OSTI]

Chemical and Petroleum Engineering Petroleum Engineering Minor Students their skills by taking a minor in petroleum engineering. Energy is the largest global industry at $3 trillion annually, and petroleum supplies 60 percent

Calgary, University of

410

Environmental toxicity of complex chemical mixtures  

E-Print Network [OSTI]

and wildlife tissues were collected from four National Priority List Superfund sites within the United States. In general, chemical analysis was not always predictive of mixture toxicity. Although biodegradation reduced the concentration of total...

Gillespie, Annika Margaret

2009-05-15T23:59:59.000Z

411

Chemical Additive Selection in Matrix Acidizing  

E-Print Network [OSTI]

This work proposes to survey new chemical knowledge, developed since 1984, on fluid additives used in matrix stimulation treatments of carbonate and sandstone petroleum reservoirs and describes one method of organizing this new knowledge in a...

Weidner, Jason 1981-

2011-05-09T23:59:59.000Z

412

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network [OSTI]

Risk Manager 2687 Hospital Quality Assurance 3153 Hospital Clinical Engineering 2954 Human Resources #12;5. CHEMICAL HYGIENE PLAN 5.1 General Standard Operating Procedures 5.1.1 General Rules 5

Oliver, Douglas L.

413

CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN  

E-Print Network [OSTI]

Department 2588 Hospital Risk Manager 2687 Hospital Quality Assurance 3153 Hospital Clinical Engineering 2954 #12;5. CHEMICAL HYGIENE PLAN 5.1 General Standard Operating Procedures 5.1.1 General Rules 5

Kim, Duck O.

414

CHEMICAL USE AND POLLUTION PREVENTION PRACTICES  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...65 4.3 Best Management Practices#12;CHEMICAL USE AND POLLUTION PREVENTION PRACTICES FOR COMMERCIAL CAR AND TRUCK WASH FACILITIES FINAL REPORT DOE FMP 1995-06 Prepared for: Environment Canada Environmental Protection Fraser Pollution

415

Polymer Reaction Engineering Laboratory Chemical and Biomolecular Engineering  

E-Print Network [OSTI]

Transporting chemicals Fume hoods and ventilation Refrigerators Incompatible chemicals The followingPolymer Reaction Engineering Laboratory Chemical and Biomolecular Engineering University are general guidelines for all laboratory workers: Follow all safety instructions carefully. Become

Choi, Kyu Yong

416

Chemical Hydrogen Storage R & D | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hydrogen Storage Chemical Hydrogen Storage R & D Chemical Hydrogen Storage R & D DOE's chemical hydrogen storage R&D is focused on developing low-cost energy-efficient...

417

Process safety management for highly hazardous chemicals  

SciTech Connect (OSTI)

Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

NONE

1996-02-01T23:59:59.000Z

418

Silicon Sheets By Redox Assisted Chemical Exfoliation  

E-Print Network [OSTI]

In this paper, we report the direct chemical synthesis of silicon sheets in gram-scale quantities by chemical exfoliation of pre-processed calcium di-silicide (CaSi2). We have used a combination of X-ray photoelectron spectroscopy, transmission electron microscopy and Energy-dispersive X-ray spectroscopy to characterize the obtained silicon sheets. We found that the clean and crystalline silicon sheets show a 2-dimensional hexagonal graphitic structure.

Tchalala, Mohamed Rachid; Enriquez, Hanna; Kara, Abdelkader; Lachgar, Abdessadek; Yagoubi, Said; Foy, Eddy; Vega, Enrique; Bendounan, Azzedine; Silly, Mathieu G; Sirotti, Fausto; Nitshe, Serge; Chaudanson, Damien; Jamgotchian, Haik; Aufray, Bernard; Mayne, Andrew J; Dujardin, Gérald; Oughaddou, Hamid

2013-01-01T23:59:59.000Z

419

On the Chemical Potential of Dark Energy  

E-Print Network [OSTI]

It is widely assumed that the observed universe is accelerating due to the existence of a new fluid component called dark energy. In this article, the thermodynamics consequences of a nonzero chemical potential on the dark energy component is discussed with special emphasis to the phantom fluid case. It is found that if the dark energy fluid is endowed with a negative chemical potential, the phantom field hypothesis becomes thermodynamically consistent with no need of negative temperatures as recently assumed in the literature.

S. H. Pereira

2008-06-23T23:59:59.000Z

420

Determining the Overpotential for a Molecular Electrocatalyst  

SciTech Connect (OSTI)

“The additional potential (beyond the thermodynamic requirement) needed to drive a reaction at a certain rate is called the overpotential.”1 Over the last decade there has been considerable interest in the design and testing of molecular electrocatalysis for the interconversion of renewable energy and chemical fuels.2-5 One of the primary motivations for such research is the replacement of expensive and rare precious metal catalysts, such as platinum, with cheaper, more abundant metals.2,6-8 To become competitive with current electrocatalytic energy conversion technologies, new catalysts must be robust, fast, and energy-efficient. This last feature, the energy-efficiency, is dependent upon the overpotential. For molecular catalysts, the determination and reporting of overpotentials can be complicated by the frequent dependence on assumptions, especially when working in nonaqueous solvents. As overpotentials become lower, the meaningful comparison of molecular catalysts will require improved accuracy and precision. The intended purpose of this viewpoint is to provide a clear and concise description of overpotential and recommendation for its determination in molecular electrocatalysis. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.

Appel, Aaron M.; Helm, Monte L.

2014-02-07T23:59:59.000Z

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Virtual Center of Excellence for Hydrogen Storage - Chemical...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Presentation from the Hydrogen Storage...

422

STATEMENT OF CONSIDERATIONS REQUEST BY CHEMICAL INDUSTRY ENVIRONMENTAL...  

Broader source: Energy.gov (indexed) [DOE]

up the Petitioner's company are major chemical manufacturing companies, and includes Air Products and Chemicals, Akzo Nobel, Battelle, DuPont, NL Industries, OxyChem, and...

423

Frontiers, Opportunities, and Challenges in Biochemical and Chemical...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2. Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2....

424

activated carbon chemically: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A: Chemical 118 (1997) 215-222 Chemical activities of graphitic carbon spheres Materials Science Websites Summary: the MVOCC process 8. Transition-metal oxides andor rare...

425

Chemical Safety Program - Related Links | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

of incidents. American Chemical Society (ACS) American Conference of Government Industrial Hygienists (ACGIH) American Institute of Chemical Engineers (AIChE) American...

426

Testimonials - Partnerships in R&D - Air Products and Chemicals...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Air Products and Chemicals Incorporated Testimonials - Partnerships in R&D - Air Products and Chemicals Incorporated Addthis Text Version The words "Office of Energy Efficiency &...

427

Materials Down Select Decisions Made Within DOE's Chemical Hydrogen...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials Down Select Decisions Made Within DOE's Chemical Hydrogen Storage Center of Excellence Materials Down Select Decisions Made Within DOE's Chemical Hydrogen Storage Center...

428

Integrated Approach to Use Natural Chemical and Isotopic Tracers...  

Broader source: Energy.gov (indexed) [DOE]

Integrated Approach to Use Natural Chemical and Isotopic Tracers to Estimate Fracture Spacing and Surface Area in EGS Systems Integrated Approach to Use Natural Chemical and...

429

Global Optimization of Chemical Reactors and Kinetic Optimization  

E-Print Network [OSTI]

Model; 3-D; Monolith; Reactor; Optimization Introduction TheAngeles Global Optimization of Chemical Reactors and KineticGlobal Optimization of Chemical Reactors and Kinetic

ALHUSSEINI, ZAYNA ISHAQ

2013-01-01T23:59:59.000Z

430

Chemical Energy Carriers (CEC) for the Utilization of Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Chemical Energy Carriers (CEC) for the Utilization of Geothermal Energy Chemical Energy Carriers (CEC) for the Utilization of Geothermal Energy DOE Geothermal Peer Review 2010 -...

431

Final Report for the DOE Chemical Hydrogen Storage Center of...  

Office of Environmental Management (EM)

Final Report for the DOE Chemical Hydrogen Storage Center of Excellence Final Report for the DOE Chemical Hydrogen Storage Center of Excellence This technical report describes the...

432

Integrated Tribo-Chemical Modeling of Copper CMP  

E-Print Network [OSTI]

Tribochemical Mechanisms of Copper Chemical MechanicalEli, D. Starosvetsky, "Review on copper chemical–mechanicalY. Li, "Investigation of Copper Removal Mechanisms d uring

Shantanu Tripathi; Choi, Seungchoun; Doyle, Fiona M; Dornfeld, David

2009-01-01T23:59:59.000Z

433

Optical, physical, and chemical properties of springtime aerosol...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in 2008. Optical, physical, and chemical properties of springtime aerosol over Barrow Alaska in...

434

Improving Combustion Software to Solve Detailed Chemical Kinetics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combustion Software to Solve Detailed Chemical Kinetics for HECC Improving Combustion Software to Solve Detailed Chemical Kinetics for HECC 2012 DOE Hydrogen and Fuel Cells Program...

435

Dow Chemical Company: Assessment Leads to Steam System Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a...

436

Three-dimensional Chemical Imaging of Embedded Nanoparticles...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

dimensional Chemical Imaging of Embedded Nanoparticles using Atom Probe Tomography. Three-dimensional Chemical Imaging of Embedded Nanoparticles using Atom Probe Tomography....

437

CX-003343: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Recovery Act: Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and WaterCX(s) Applied: A9, B3.6Date: 08/05/2010Location(s): Palo Alto, CaliforniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

438

CX-010959: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Chemical Looping Gasification for Hydrogen Enhanced Syngas Production with In-Situ Carbon Dioxide (CO2) Capture CX(s) Applied: B3.6 Date: 09/16/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

439

CX-010977: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Thermal-Hydrological-Chemical-Mechanical (THCM) Coupled Model for Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments CX(s) Applied: A9 Date: 09/16/2013 Location(s): Georgia Offices(s): National Energy Technology Laboratory

440

CX-010976: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Thermal-Hydrological-Chemical-Mechanical (THCM) Coupled Model for Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments CX(s) Applied: A9 Date: 09/16/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

CX-011763: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Mogene Green Chemicals, LLC - Biotransformation of Methane to n-butanol by a Methanotrophic Cyanobacterium CX(s) Applied: B3.6 Date: 11/14/2013 Location(s): Missouri, California Offices(s): Advanced Research Projects Agency-Energy

442

CX-012473: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Commercialization of Iron-Based Coal Direct Chemical Looping for Power Prod-Lab & Pilot-Scale Testing CX(s) Applied: A9, B3.6Date: 41870 Location(s): OhioOffices(s): National Energy Technology Laboratory

443

CX-011806: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Commercialization of an Atmospheric Iron-Based Coal Direct Chemical Looping (CDCL) Process for Power… CX(s) Applied: A9, B3.6 Date: 01/27/2014 Location(s): Ohio Offices(s): National Energy Technology Laboratory

444

CX-009367: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Field Demonstration of Chemical Flooding of the Trembly Oilfield, Reno County, Kansas - Phase I CX(s) Applied: A9, A11, B3.1 Date: 09/18/2012 Location(s): Kansas Offices(s): National Energy Technology Laboratory

445

CX-010459: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Metal Oxides for Chemical Looping Combustion of Coal via Coupled Computational-Experimental Study CX(s) Applied: A9, B3.6 Date: 06/12/2013 Location(s): North Carolina Offices(s): National Energy Technology Laboratory

446

CX-009388: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Chemical Looping Combustion Technology with carbon dioxide Capture for New and Existing Coal-Fired Power Plants - Phase One CX(s) Applied: A9, B3.6 Date: 09/13/2012 Location(s): Connecticut Offices(s): National Energy Technology Laboratory

447

CX-011444: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Chemical Looping Combustion with Carbon Dioxide (CO2) Capture for New and Retrofit Coal-Fired Power Plants – Phase II CX(s) Applied: B3.6 Date: 11/13/2013 Location(s): Connecticut Offices(s): National Energy Technology Laboratory

448

CX-009387: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Chemical Looping Combustion Technology with carbon dioxide Capture for New and Existing Coal-Fired Power Plants - Phase One CX(s) Applied: B3.6 Date: 09/13/2012 Location(s): Tennessee Offices(s): National Energy Technology Laboratory

449

CX-011577: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

The Impacts of Pore-Scale Physical and Chemical Heterogeneities on the Transport of Radionuclide-Carrying Colloids CX(s) Applied: B3.6 Date: 11/14/2013 Location(s): Colorado Offices(s): Idaho Operations Office

450

CX-011365: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Innovative Coating of Nanostructured Vanadium Carbide on the F/M Cladding Tube Inner Surface for Mitigating the Fuel Cladding Chemical Interactions CX(s) Applied: B3.6 Date: 10/29/2013 Location(s): Idaho Offices(s): Idaho Operations Office

451

Decommissioning samples from the Ft. Lewis, WA, solvent refined coal pilot plant: chemical analysis and biological testing  

SciTech Connect (OSTI)

This report presents the results from chemical analyses and limited biological assays of three sets of samples from the Ft. Lewis, WA solvent refined coal (SRC) pilot plant. The samples were collected during the process of decommissioning this facility. Chemical composition was determined for chemical class fractions of the samples by using high-resolution gas chromatography (GC), high-resolution GC/mass spectrometry (MS) and high-resolution MS. Biological activity was measuring using both the histidine reversion microbial mutagenicity assay with Salmonella typhimurium, TA98 and an initiation/promotion mouse-skin tumorigenicity assay. 19 refs., 7 figs., 27 tabs.

Weimer, W.C.; Wright, C.W.

1985-10-01T23:59:59.000Z

452

Chemical probes of metal cluster structure--Fe, Co, Ni, and Cu  

SciTech Connect (OSTI)

Chemical reactivity is one of the few methods currently available for investigating the geometrical structure of isolated transition metal clusters. In this paper we summarize what is currently known about the structures of clusters of four transition metals, Fe, Co, Ni, and Cu, in the size range from 13 to 180 atoms. Chemical probes used to determine structural information include reactions with H{sub 2}(D{sub 2}), H{sub 2}0, NH{sub 3} and N{sub 2}. Measurements at both low coverage and at saturation are discussed.

Parks, E.K.; Zhu, L.; Ho, J.; Riley, S.J.

1992-09-01T23:59:59.000Z

453

Chemical probes of metal cluster structure--Fe, Co, Ni, and Cu  

SciTech Connect (OSTI)

Chemical reactivity is one of the few methods currently available for investigating the geometrical structure of isolated transition metal clusters. In this paper we summarize what is currently known about the structures of clusters of four transition metals, Fe, Co, Ni, and Cu, in the size range from 13 to 180 atoms. Chemical probes used to determine structural information include reactions with H{sub 2}(D{sub 2}), H{sub 2}0, NH{sub 3} and N{sub 2}. Measurements at both low coverage and at saturation are discussed.

Parks, E.K.; Zhu, L.; Ho, J.; Riley, S.J.

1992-01-01T23:59:59.000Z

454

Structural-chemical modeling of transition of coals to the plastic state  

SciTech Connect (OSTI)

The structural-chemical simulation of the formation of plastic state during the thermal treatment (pyrolysis, coking) of coals is based on allowance for intermolecular interactions in the organic matter. The feasibility of transition of coals to the plastic state is determined by the ratio between the onset plastic state (softening) and runaway degradation temperatures, values that depend on the petrographic composition and the degree of metamorphism of coals and the distribution of structural and chemical characteristics of organic matter. 33 refs., 8 figs., 2 tabs.

A.M. Gyul'maliev; S.G. Gagarin [FGUP Institute for Fossil Fuels, Moscow (Russian Federation)

2007-02-15T23:59:59.000Z

455

High-resolution chemical imaging of gold nanoparticles using hard x-ray ptychography  

SciTech Connect (OSTI)

We combine resonant scattering with (ptychographic) scanning coherent diffraction microscopy to determine the chemical state of gold nanoparticles with high spatial resolution. Ptychographic images of the sample are recorded for a series of energies around the gold L{sub 3} absorption edge. From these data, chemical information in the form of absorption and resonant scattering spectra is reconstructed at each location in the sample. For gold nanoparticles of about 100 nm diameter, a spatial resolution of about 20-30 nm is obtained. In the future, this microscopy approach will open the way to operando studies of heterogeneous catalysts on the nanometer scale.

Hoppe, R.; Patommel, J.; Schroer, C. G. [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany)] [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany); Reinhardt, J. [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany) [Institute of Structural Physics, Technische Universitaet Dresden, D-01062 Dresden (Germany); Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)] [Germany; Hofmann, G.; Grunwaldt, J.-D. [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany)] [Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology, D-76131 Karlsruhe (Germany); Damsgaard, C. D. [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark)] [Center for Electron Nanoscopy and Department of Physics, Technical University of Denmark, DK-2800 Lyngby (Denmark); Wellenreuther, G.; Falkenberg, G. [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)] [Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg (Germany)

2013-05-20T23:59:59.000Z

456

Increasing the chemical content of turbulent flame models through the use of parallel computing  

SciTech Connect (OSTI)

This report outlines the effort to model a time-dependent, 2- dimensional, turbulent, nonpremixed flame with full chemistry with the aid of parallel computing tools. In this study, the mixing process and the chemical reactions occurring in the flow field are described in terms of the single-point probability density function (PDF), while the turbulent viscosity is determined by the standard kappa-epsilon model. The initial problem solved is a H[sub 2]/Air flame whose chemistry is described by 28 elementary reactions involving 9 chemical species.

Yam, C.G.; Armstrong, R.; Koszykowski, M.L. [Sandia National Labs., Livermore, CA (United States); Chen, J.Y. [California Univ., Berkeley, CA (United States); Bui-Pham, M.N. [Lawrence Berkeley National Lab., CA (United States)

1996-10-01T23:59:59.000Z

457

DuPont Chemical Vapor Technical Report  

SciTech Connect (OSTI)

DuPont Safety Resources was tasked with reviewing the current chemical vapor control practices and providing preventive recommendations on best commercial techniques to control worker exposures. The increased focus of the tank closure project to meet the 2024 Tri-Party Agreement (TPA) milestones has surfaced concerns among some CH2MHill employees and other interested parties. CH2MHill is committed to providing a safe working environment for employees and desires to safely manage the tank farm operations using appropriate control measures. To address worker concerns, CH2MHill has chartered a ''Chemical Vapors Project'' to integrate the activities of multiple CH2MHill project teams, and solicit the expertise of external resources, including an independent Industrial Hygiene expert panel, a communications consultant, and DuPont Safety Resources. Over a three-month time period, DuPont worked with CH2MHill ESH&Q, Industrial Hygiene, Engineering, and the independent expert panel to perform the assessment. The process included overview presentations, formal interviews, informal discussions, documentation review, and literature review. DuPont Safety Resources concluded that it is highly unlikely that workers in the tank farms are exposed to chemicals above established standards. Additionally, the conventional and radiological chemistry is understood, the inherent chemical hazards are known, and the risk associated with chemical vapor exposure is properly managed. The assessment highlighted management's commitment to addressing chemical vapor hazards and controlling the associated risks. Additionally, we found the Industrial Hygiene staff to be technically competent and well motivated. The tank characterization data resides in a comprehensive database containing the tank chemical compositions and relevant airborne concentrations.

MOORE, T.L.

2003-10-03T23:59:59.000Z

458

Chemical Safety Vulnerability Working Group report. Volume 1  

SciTech Connect (OSTI)

The Chemical Safety Vulnerability (CSV) Working Group was established to identify adverse conditions involving hazardous chemicals at DOE facilities that might result in fires or explosions, release of hazardous chemicals to the environment, or exposure of workers or the public to chemicals. A CSV Review was conducted in 148 facilities at 29 sites. Eight generic vulnerabilities were documented related to: abandoned chemicals and chemical residuals; past chemical spills and ground releases; characterization of legacy chemicals and wastes; disposition of legacy chemicals; storage facilities and conditions; condition of facilities and support systems; unanalyzed and unaddressed hazards; and inventory control and tracking. Weaknesses in five programmatic areas were also identified related to: management commitment and planning; chemical safety management programs; aging facilities that continue to operate; nonoperating facilities awaiting deactivation; and resource allocations. Volume 1 contains the Executive summary; Introduction; Summary of vulnerabilities; Management systems weaknesses; Commendable practices; Summary of management response plan; Conclusions; and a Glossary of chemical terms.

Not Available

1994-09-01T23:59:59.000Z

459

Chemical Structure and Dynamics annual report 1997  

SciTech Connect (OSTI)

The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE`s environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous.

Colson, S.D.; McDowell, R.S.

1998-03-01T23:59:59.000Z

460

Chemical Kinetic Modeling of Advanced Transportation Fuels  

SciTech Connect (OSTI)

Development of detailed chemical kinetic models for advanced petroleum-based and nonpetroleum based fuels is a difficult challenge because of the hundreds to thousands of different components in these fuels and because some of these fuels contain components that have not been considered in the past. It is important to develop detailed chemical kinetic models for these fuels since the models can be put into engine simulation codes used for optimizing engine design for maximum efficiency and minimal pollutant emissions. For example, these chemistry-enabled engine codes can be used to optimize combustion chamber shape and fuel injection timing. They also allow insight into how the composition of advanced petroleum-based and non-petroleum based fuels affect engine performance characteristics. Additionally, chemical kinetic models can be used separately to interpret important in-cylinder experimental data and gain insight into advanced engine combustion processes such as HCCI and lean burn engines. The objectives are: (1) Develop detailed chemical kinetic reaction models for components of advanced petroleum-based and non-petroleum based fuels. These fuels models include components from vegetable-oil-derived biodiesel, oil-sand derived fuel, alcohol fuels and other advanced bio-based and alternative fuels. (2) Develop detailed chemical kinetic reaction models for mixtures of non-petroleum and petroleum-based components to represent real fuels and lead to efficient reduced combustion models needed for engine modeling codes. (3) Characterize the role of fuel composition on efficiency and pollutant emissions from practical automotive engines.

PItz, W J; Westbrook, C K; Herbinet, O

2009-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Engineered Barrier System: Physical and Chemical Environment  

SciTech Connect (OSTI)

The conceptual and predictive models documented in this Engineered Barrier System: Physical and Chemical Environment Model report describe the evolution of the physical and chemical conditions within the waste emplacement drifts of the repository. The modeling approaches and model output data will be used in the total system performance assessment (TSPA-LA) to assess the performance of the engineered barrier system and the waste form. These models evaluate the range of potential water compositions within the emplacement drifts, resulting from the interaction of introduced materials and minerals in dust with water seeping into the drifts and with aqueous solutions forming by deliquescence of dust (as influenced by atmospheric conditions), and from thermal-hydrological-chemical (THC) processes in the drift. These models also consider the uncertainty and variability in water chemistry inside the drift and the compositions of introduced materials within the drift. This report develops and documents a set of process- and abstraction-level models that constitute the engineered barrier system: physical and chemical environment model. Where possible, these models use information directly from other process model reports as input, which promotes integration among process models used for total system performance assessment. Specific tasks and activities of modeling the physical and chemical environment are included in the technical work plan ''Technical Work Plan for: In-Drift Geochemistry Modeling'' (BSC 2004 [DIRS 166519]). As described in the technical work plan, the development of this report is coordinated with the development of other engineered barrier system analysis model reports.

P. Dixon

2004-04-26T23:59:59.000Z

462

Chemical structure and dynamics: Annual report 1993  

SciTech Connect (OSTI)

The Chemical Structure and Dynamics program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally-important interfaces. The research program is built around the established relationship between structure, thermodynamics, and kinetics. This research effort continues to evolve into a program of rigorous studies of fundamental molecular processes in model systems (e.g., well-characterized surfaces, single-component solutions, clusters, and biological molecules), and studies of complex systems found in the environment. Experimental studies of molecular and supramolecular structures and thermodynamics are key to understanding the nature of matter, and lead to direct comparison with computational results. Kinetic and mechanistic measurements, combined with real-time dynamics measurements of atomic and molecular motions during chemical reactions, provide for a molecular-level description of chemical reactions. The anticipated results of this work are the achievement of a quantitative understanding of chemical processes at complex interfaces, the development of new techniques for the detection and measurement of species at such interfaces, and the interpretation and extrapolation of the observations in terms of models of interfacial chemistry. The Chemical Structure and Dynamics research program includes five areas described in detail in this report: Reaction mechanisms at solid interfaces; Solution and solution interfaces; Structure and dynamics of biological systems; Analytical methods development; and atmospheric chemistry. Extended abstracts are presented for 23 studies.

Colson, S.D.

1994-07-01T23:59:59.000Z

463

Next Generation Surfactants for Improved Chemical Flooding Technology  

SciTech Connect (OSTI)

The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.

Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

2012-05-31T23:59:59.000Z

464

AEROSOL CHEMICAL COMPOSITION CHARACTERIZATION AT THE ARM SOUTHERN GREAT PLAINS (SGP) SITE USING AN AEROSOL CHEMICAL  

E-Print Network [OSTI]

AEROSOL CHEMICAL COMPOSITION CHARACTERIZATION AT THE ARM SOUTHERN GREAT PLAINS (SGP) SITE USING AN AEROSOL CHEMICAL SPECIATION MONITOR Yin-Nan Lee1 , Fan Mei1 , Stephanie DeJong1 , Anne Jefferson2 1 Atmospheric Sciences Division, Brookhaven National Lab, Upton, NY 2 CIRES, University of Colorado, Boulder, CO

465

Standards for publication of isotope ratio and chemical data in Chemical Geology  

E-Print Network [OSTI]

Editorial Standards for publication of isotope ratio and chemical data in Chemical Geology Abstract reporting data for internation- al standards that were analyzed in the same laboratory, using the same and trace elements, there are a large number of reasonably well-characterized whole rock standards from

Rudnick, Roberta L.

466

Computers and Chemical Engineering 26 (2002) 10771085 Backstepping control of chemical tubular reactors  

E-Print Network [OSTI]

of the system using boundary control of temperature and concentration on the inlet side of the reactor. We that globally stabi- lizes an unstable steady state is designed for a chemical tubular reactor. The control industrial applications for chemical tubular reactors, the problem of monitoring and controlling them

Krstic, Miroslav

467

14February 1997 CHEMICAL ELSEVIER Chemical PhysicsLetters265 (1997) 667-672  

E-Print Network [OSTI]

14February 1997 CHEMICAL PHYSICS LETTERS ELSEVIER Chemical PhysicsLetters265 (1997) 667-672 Field by a covalent bond. @ 1997 Published by Elsevier Science B.V. Carbon nanotubes [ 1-4] have recently been estab-freegraphiticstructure,sincetheydo not disintegrateunderthe experimentalconditionsof Ref. [5]. 0009-2614/97/$17.00 Copyright(~) 1997 Publishedby Elsevier

468

Endocrine Active Chemicals, Pharmaceuticals, and Other Chemicals of Concern in Surface Water, Wastewater-  

E-Print Network [OSTI]

, Wastewater- Treatment Plant Effluent, and Bed Sediment, and Biological Characteristics in Selected Streams Chemicals, Pharmaceuticals, and Other Chemicals of Concern in Surface Water, Wastewater- Treatment Plant, and Data, 2009 #12;Front cover. Industrial wastewater-treatment plant outflow in Worthington, Minnesota

469

CHEMICAL HYGIENE PLAN (rev. 7/03/2012) Page 1 CHEMICAL HYGIENE PROGRAM  

E-Print Network [OSTI]

employers covered by the standard develop a Chemical Hygiene Plan (CHP). A CHP is a written program which, the CHP must include standard operating procedures, criteria for the implementation of chemical control for the interpretation and enforcement of policies described in this CHP. The Environmental Health & Safety staff

470

Structural determination of intact proteins using mass spectrometry  

DOE Patents [OSTI]

The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.

Kruppa, Gary (San Francisco, CA); Schoeniger, Joseph S. (Oakland, CA); Young, Malin M. (Livermore, CA)

2008-05-06T23:59:59.000Z

471

Chemical production from industrial by-product gases: Final report  

SciTech Connect (OSTI)

The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

Lyke, S.E.; Moore, R.H.

1981-04-01T23:59:59.000Z

472

Modeling thermal/chemical/mechanical response of energetic materials  

SciTech Connect (OSTI)

An overview of modeling at Sandia National Laboratories is presented which describes coupled thermal, chemical and mechanical response of energetic materials. This modeling addresses cookoff scenarios for safety assessment studies in systems containing energetic materials. Foundation work is discussed which establishes a method for incorporating chemistry and mechanics into multidimensional analysis. Finite element analysis offers the capabilities to simultaneously resolve reactive heat transfer and structural mechanics in complex geometries. Nonlinear conduction heat transfer, with multiple step finite-rate chemistry, is resolved using a thermal finite element code. Rate equations are solved element-by-element using a modified matrix-free stiff solver This finite element software was developed for the simulation of systems requiring large numbers of finite elements. An iterative implicit scheme, based on the conjugate gradient method, is used and a hemi-cube algorithm is employed for the determination of view factors in surface-to-surface radiation transfer The critical link between the reactive heat transfer and mechanics is the introduction of an appropriate constitutive material model providing a stress-strain relationship for quasi-static mechanics analysis. This model is formally derived from bubble nucleation theory, and parameter variations of critical model parameters indicate that a small degree of decomposition leads to significant mechanical response. Coupled thermal/chemical/mechanical analysis is presented which simulates experiments designed to probe cookoff thermal-mechanical response of energetic materials.

Baer, M.R.; Hobbs, M.L.; Gross, R.J. [and others

1995-07-01T23:59:59.000Z

473

Chemical treatment of mixed waste at the FEMP  

SciTech Connect (OSTI)

The Chemical Treatment Project is one in a series of projects implemented by the Fernald Environmental Management Project (FEMP) to treat mixed waste. The projects were initiated to address concerns regarding treatment capacity for mixed waste and to comply with requirements established by the Federal Facility Compliance Act. The Chemical Treatment Project is designed to utilize commercially available mobile technologies to perform treatment at the FEMP site. The waste in the Project consists of a variety of waste types with a wide range of hazards and physical characteristics. The treatment processes to be established for the waste types will be developed by a systematic approach including waste streams evaluation, projectization of the waste streams, and categorization of the stream. This information is utilized to determine the proper train of treatment which will be required to lead the waste to its final destination (i.e., disposal). This approach allows flexibility to manage a wide variety of waste in a cheaper, faster manner than designing a single treatment technology diverse enough to manage all the waste streams.

Honigford, L.; Sattler, J.; Dilday, D.; Cook, D.

1996-05-01T23:59:59.000Z

474

Chemical treatment of mixed waste can be done.....Today!  

SciTech Connect (OSTI)

The Chemical Treatment Project is one in a series of projects implemented by the FEMP to treat mixed waste. The projects were initiated to address concerns regarding treatment capacity for mixed waste and to comply with requirements established by the Federal Facility Compliance Act. The Chemical Treatment Project is designed to utilize commercially available mobile technologies to perform treatment at the FEMP site. The waste in the Project consists of a variety of waste types with a wide range of hazards and physical characteristics. The treatment processes to be established for the waste types will be developed by a systematic approach including waste streams evaluation, projectization of the waste streams, and categorization of the stream. This information is utilized to determine the proper train of treatment which will be required to lead the waste to its final destination (i.e., disposal). This approach allows flexibility to manage a wide variety of waste in a cheaper, faster manner than designing a single treatment technology diverse enough to manage all the waste streams.

Honigford, L.; Dilday, D.; Cook, D. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Sattler, J. [USDOE, Washington, DC (United States)

1996-02-01T23:59:59.000Z

475

Galaxy formation with radiative and chemical feedback  

E-Print Network [OSTI]

Here we introduce GAMESH, a novel pipeline which implements self-consistent radiative and chemical feedback in a computational model of galaxy formation. By combining the cosmological chemical-evolution model GAMETE with the radiative transfer code CRASH, GAMESH can post process realistic outputs of a N-body simulation describing the redshift evolution of the forming galaxy. After introducing the GAMESH implementation and its features, we apply the code to a low-resolution N-body simulation of the Milky Way formation and we investigate the combined effects of self-consistent radiative and chemical feedback. Many physical properties, which can be directly compared with observations in the Galaxy and its surrounding satellites, are predicted by the code along the merger-tree assembly. The resulting redshift evolution of the Local Group star formation rates, reionisation and metal enrichment along with the predicted Metallicity Distribution Function of halo stars are critically compared with observations. We dis...

Graziani, L; Schneider, R; Kawata, D; de Bennassuti, M; Maselli, A

2015-01-01T23:59:59.000Z

476

Quarkonium Dissociation at Finite Chemical Potential  

E-Print Network [OSTI]

We have studied the dissociation of quarkonia states in a deconfined medium of quarks and gluons at large baryon chemical potential and small temperature region. The aim of this study is to probe the dense baryonic medium expected to be produced at FAIR facility, GSI Darmstadt. This is done by correcting both the short and long-distance terms of the Cornell potential by a dielectric function, embodying the effects of deconfined quarks and gluons, at finite baryon chemical potential and temperature. It is found that $J/\\psi$ is dissociated approximately at 2 $\\mu_c$ in the temperature range 20-50 MeV, which can indirectly help to locate the point on QCD phase diagram at large chemical potential and low temperature zone.

Kakade, Uttam

2015-01-01T23:59:59.000Z

477

Compact chemical energy system for seismic applications  

DOE Patents [OSTI]

A chemical energy system is formed for producing detonations in a confined environment. An explosive mixture is formed from nitromethane (NM) and diethylenetriamine (DETA). A slapper detonator is arranged adjacent to the explosive mixture to initiate detonation of the mixture. NM and DETA are not classified as explosives when handled separately and can be safely transported and handled by workers in the field. In one aspect of the present invention, the chemicals are mixed at a location where an explosion is to occur. For application in a confined environment, the chemicals are mixed in an inflatable container to minimize storage space until it is desired to initiate an explosion. To enable an inflatable container to be used, at least 2.5 wt % DETA is used in the explosive mixture. A barrier is utilized that is formed of a carbon composite material to provide the appropriate barrel geometry and energy transmission to the explosive mixture from the slapper detonator system.

Engelke, Raymond P. (Los Alamos, NM); Hedges, Robert O. (Los Alamos, NM); Kammerman, Alan B. (Los Alamos, NM); Albright, James N. (Los Alamos, NM)

1998-01-01T23:59:59.000Z

478

Boson stars: Chemical potential and quark condensates  

E-Print Network [OSTI]

We study the properties of a star made of self-gravitating bosons gas in a mean-field approximation. A generalized set of Tolman-Oppenheimer-Volkov(TOV) equations is derived to incorporate the effect of chemical-potential in the general relativistic frame work. The metric-dependence of the chemical-potential gives a new class of solutions for the boson stars. It is demonstrated that the maximum mass and radius of the star change in a significant way when the effect of finite chemical-potential is considered. We also discuss the case of a boson star made of quark-condensates. It is found that when the self-interaction between the condensates is small as compared to their mass, the typical density is too high to form a diquark-boson star. Our results indicate that the star of quark-condensate may be formed in a low-density and high-pressure regime.

Jitesh R. Bhatt; V. Sreekanth

2010-05-06T23:59:59.000Z

479

Chemical and Biological Engineering Student Learning Outcome Assessment Report  

E-Print Network [OSTI]

1 Chemical and Biological Engineering Student Learning Outcome Assessment Report 1. Department/Program Mission The mission of the Department of Chemical and Biological is to prepare chemical engineers for successful careers of leadership and innovation in chemical engineering and related fields; expands

Missouri-Rolla, University of

480

Chemical cytometry on a picoliter-scale integrated microfluidic chip  

E-Print Network [OSTI]

Chemical cytometry on a picoliter-scale integrated microfluidic chip Hongkai Wu, Aaron Wheeler the chemical contents of a single cell (chemical cytometry). The device is designed to accomplish four different functions: (i) cell handling, (ii) metering and delivering of chemical reagents, (iii) cell lysis

Zare, Richard N.

Note: This page contains sample records for the topic "determination m-area chemical" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Mork Family Department of Chemical Engineering and Materials Science  

E-Print Network [OSTI]

, materials science, and petroleum engineering. The reputation of the MFD for excellence in chemical Engineering MS in Materials Science MS in Petroleum Engineering PhD in Chemical Engineering PhD in Materials buildings: HEDCO Petroleum and Chemical Engineering Building Neely Petroleum and Chemical Engineering

Southern California, University of

482

FEASIBILITY OF A STACK INTEGRATED SOFC OPTICAL CHEMICAL SENSOR  

SciTech Connect (OSTI)

The work performed during the UCR Innovative Concepts phase I program was designed to demonstrate the chemical sensing capabilities of nano-cermet SPR bands at solid oxide fuel cell operating conditions. Key to this proposal is that the materials choice used a YSZ ceramic matrix which upon successful demonstration of this concept, will allow integration directly onto the SOFC stack. Under the Innovative Concepts Program the University at Albany Institute for Materials (UAIM)/UAlbany School of NanoSciences and NanoEngineering synthesized, analyzed and tested Pa, and Au doped YSZ nano-cermets as a function of operating temperature and target gas exposure (hydrogen, carbon monoxide and 1-dodecanethiol). During the aforementioned testing procedure the optical characteristics of the nano-cermets were monitored to determine the sensor selectivity and sensitivity.

Michael A. Carpenter

2004-03-30T23:59:59.000Z

483

Concepts pertaining to reservoir pretreatment for chemical flooding  

SciTech Connect (OSTI)

In this paper, a model is proposed which details how preflush chemicals in the aqueous phase are transported through an oil-containing porous media. The example preflush process chosen is monovalent/divalent, cation-exchange. Initially, the chemistry of ion exchange is summarized. This is followed by a careful system of core characterization designed to determine as many of the ion-exchange characteristics of the chosen porous media as possible, independent from specific preflush experiments. A series of preflush experiments, run with zero and waterflood residual oil saturations are then described. Finally, a mathematical model is proposed to describe the preflush process. This model is solved numerically and compared with the experimental results. The model is shown to be successful in both a matching and predicting mode over a wide variety of conditions. This success verifies many of the ion-exchange and flow concepts used in formulating the model.

Meyers, K.O.; Salter, S.J.

1984-04-01T23:59:59.000Z

484

On the chemical composition of Titan's dry lakebed evaporites  

E-Print Network [OSTI]

Titan, the main satellite of Saturn, has an active cycle of methane in its troposphere. Among other evidence for a mechanism of evaporation at work on the ground, dry lakebeds have been discovered. Recent Cassini infrared observations of these empty lakes have revealed a surface composition poor in water ice compared to that of the surrounding terrains --- suggesting the existence of organic evaporites deposits. The chemical composition of these possible evaporites is unknown. In this paper, we study evaporite composition using a model that treats both organic solids dissolution and solvent evaporation. Our results suggest the possibility of large abundances of butane and acetylene in the lake evaporites. However, due to uncertainties of the employed theory, these determinations have to be confirmed by laboratory experiments.

Cordier, Daniel; Ferreira, Abel

2013-01-01T23:59:59.000Z

485

HANFORD CHEMICAL VAPORS WORKER CONCERNS & EXPOSURE EVALUATION  

SciTech Connect (OSTI)

Chemical vapor emissions from underground hazardous waste storage tanks on the Hanford site in eastern Washington State are a potential concern because workers enter the tank farms on a regular basis for waste retrievals, equipment maintenance, and surveillance. Tank farm contractors are in the process of retrieving all remaining waste from aging single-shell tanks, some of which date to World War II, and transferring it to newer double-shell tanks. During the waste retrieval process, tank farm workers are potentially exposed to fugitive chemical vapors that can escape from tank headspaces and other emission points. The tanks are known to hold more than 1,500 different species of chemicals, in addition to radionuclides. Exposure assessments have fully characterized the hazards from chemical vapors in half of the tank farms. Extensive sampling and analysis has been done to characterize the chemical properties of hazardous waste and to evaluate potential health hazards of vapors at the ground surface, where workers perform maintenance and waste transfer activities. Worker concerns. risk communication, and exposure assessment are discussed, including evaluation of the potential hazards of complex mixtures of chemical vapors. Concentrations of vapors above occupational exposure limits-(OEL) were detected only at exhaust stacks and passive breather filter outlets. Beyond five feet from the sources, vapors disperse rapidly. No vapors have been measured above 50% of their OELs more than five feet from the source. Vapor controls are focused on limited hazard zones around sources. Further evaluations of vapors include analysis of routes of exposure and thorough analysis of nuisance odors.

ANDERSON, T.J.

2006-12-20T23:59:59.000Z

486

Annual Report 1998: Chemical Structure and Dynamics  

SciTech Connect (OSTI)

The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).

SD Colson; RS McDowell

1999-05-10T23:59:59.000Z

487

Chemical structure and dynamics. Annual report 1994  

SciTech Connect (OSTI)

The Chemical Structure and Dynamics program was organized as a major component of Pacific Northwest Laboratory`s Environmental and Molecular Sciences Laboratory (EMSL), a state-of-the-art collaborative facility for studies of chemical structure and dynamics. Our program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces, and (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage. This research effort was initiated in 1989 and will continue to evolve over the next few years into a program of rigorous studies of fundamental molecular processes in model systems, such as well-characterized surfaces, single-component solutions, clusters, and biological molecules; and studies of complex systems found in the environment (multispecies, multiphase solutions; solid/liquid, liquid/liquid, and gas/surface interfaces; colloidal dispersions; ultrafine aerosols; and functioning biological systems). The success of this program will result in the achievement of a quantitative understanding of chemical reactions at interfaces, and more generally in condensed media, that is comparable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for predictions of macroscopic chemical behavior in condensed and heterogeneous media, adding significantly to the value of field-scale environmental models, the prediction of short- and long-term nuclear waste storage stabilities, and other problems related to the primary missions of the DOE.

Colson, S.D.

1995-07-01T23:59:59.000Z

488

Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride  

E-Print Network [OSTI]

1.1 These test methods cover procedures for subsampling and for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of uranium hexafluoride UF6. Most of these test methods are in routine use to determine conformance to UF6 specifications in the Enrichment and Conversion Facilities. 1.2 The analytical procedures in this document appear in the following order: Note 1—Subcommittee C26.05 will confer with C26.02 concerning the renumbered section in Test Methods C761 to determine how concerns with renumbering these sections, as analytical methods are replaced with stand-alone analytical methods, are best addressed in subsequent publications. Sections Subsampling of Uranium Hexafluoride 7 - 10 Gravimetric Determination of Uranium 11 - 19 Titrimetric Determination of Uranium 20 Preparation of High-Purity U3O 8 21 Isotopic Analysis 22 Isotopic Analysis by Double-Standard Mass-Spectrometer Method 23 - 29 Determination of Hydrocarbons, Chlorocarbons, and Partially Substitut...

American Society for Testing and Materials. Philadelphia

2011-01-01T23:59:59.000Z

489

Fiber optic detector and method for using same for detecting chemical species  

DOE Patents [OSTI]

An optical sensing device for uranyl and other substances, a method for making an optical sensing device and a method for chemically binding uranyl and other indicators to glass, quartz, cellulose and similar substrates. The indicator, such as arsenazo III, is immobilized on the substrate using a chemical binding process. The immobilized arsenazo III causes uranyl from a fluid sample to bind irreversibly to the substrate at its active sites, thus causing absorption of a portion of light transmitted through the substrate. Determination of the amount of light absorbed, using conventional means, yields the concentration of uranyl present in the sample fluid. The binding of uranyl on the substrate can be reversed by subsequent exposure of the substrate to a solution of 2,6-pyridinedicarboxylic acid. The chemical binding process is suitable for similarly binding other indicators, such as bromocresol green.

Baylor, Lewis C. (North Augusta, SC); Buchanan, Bruce R. (Perkiomenville, PA)

1995-01-01T23:59:59.000Z

490

Condensation phenomena in two-flavor scalar QED at finite chemical potential  

E-Print Network [OSTI]

We study condensation in two-flavored, scalar QED with non-degenerate masses at finite chemical potential. The conventional formulation of the theory has a sign problem at finite density which can be solved using an exact reformulation of the theory in terms of dual variables. We perform a Monte Carlo simulation in the dual representation and observe a condensation at a critical chemical potential $\\mu_c$. After determining the low-energy spectrum of the theory we try to establish a connection between $\\mu_c$ and the mass of the lightest excitation of the system, which are naively expected to be equal. It turns out, however, that the relation of the critical chemical potential to the mass spectrum in this case is non-trivial: Taking into account the form of the condensate and making some simplifying assumptions we suggest an adequate explanation which is supported by numerical results.

Schmidt, Alexander; Gattringer, Christof

2015-01-01T23:59:59.000Z

491

Condensation phenomena in two-flavor scalar QED at finite chemical potential  

E-Print Network [OSTI]

We study condensation in two-flavored, scalar QED with non-degenerate masses at finite chemical potential. The conventional formulation of the theory has a sign problem at finite density which can be solved using an exact reformulation of the theory in terms of dual variables. We perform a Monte Carlo simulation in the dual representation and observe a condensation at a critical chemical potential $\\mu_c$. After determining the low-energy spectrum of the theory we try to establish a connection between $\\mu_c$ and the mass of the lightest excitation of the system, which are naively expected to be equal. It turns out, however, that the relation of the critical chemical potential to the mass spectrum in this case is non-trivial: Taking into account the form of the condensate and making some simplifying assumptions we suggest an adequate explanation which is supported by numerical results.

Alexander Schmidt; Philippe de Forcrand; Christof Gattringer

2015-01-26T23:59:59.000Z

492

Chemical vapor deposition of epitaxial silicon  

DOE Patents [OSTI]

A single chamber continuous chemical vapor deposition (CVD) reactor is described for depositing continuously on flat substrates, for example, epitaxial layers of semiconductor materials. The single chamber reactor is formed into three separate zones by baffles or tubes carrying chemical source material and a carrier gas in one gas stream and hydrogen gas in the other stream without interaction while the wafers are heated to deposition temperature. Diffusion of the two gas streams on heated wafers effects the epitaxial deposition in the intermediate zone and the wafers are cooled in the final zone by coolant gases. A CVD reactor for batch processing is also described embodying the deposition principles of the continuous reactor.

Berkman, Samuel (Florham Park, NJ)

1984-01-01T23:59:59.000Z

493

Pressurized molten ferrous metal chemical reactor  

SciTech Connect (OSTI)

Research is in progress to develop a liquid ferrous metal chemical reactor to produce valuable products from petroleum refining waste and to achieve totally contained destruction of toxic chemicals. The work is an extension of the Hymelt{trademark} Process (patent pending) developed by the Ashland Petroleum Company. Materials to be processed, such as hydrocarbons, are fed into a crucible of molten iron at 1,600 C. The material decomposes, evolving hydrogen gas and combining carbon with the iron to form molten steel. Research is being pursued as a collaborative effort to Ashland Petroleum Company, Westinghouse Savannah River Company, Houston Advanced Research Center, and others.

Randolph, H.W.; Malone, D.P.; Margrave, J.L. [Westinghouse Savannah River Technology Center, Aiken, SC (United States)]|[Ashland Petroleum Co., Houston, TX (United States)]|[Rice Univ., Houston, TX (United States). Dept. of Chemistry

1995-04-01T23:59:59.000Z

494

Laser Induced Chemical Liquid Phase Deposition (LCLD)  

SciTech Connect (OSTI)

Laser induced chemical deposition (LCLD) of metals onto different substrates attracts growing attention during the last decade. Deposition of metals onto the surface of dielectrics and semiconductors with help of laser beam allows the creation of conducting metal of very complex architecture even in 3D. In the processes examined the deposition occurs from solutions containing metal ions and reducing agents. The deposition happens in the region of surface irradiated by laser beam (micro reactors). Physics -chemical reactions driven by laser beam will be discussed for different metal-substrate systems. The electrical, optical, mechanical properties of created interfaces will be demonstrated also including some practical-industrial applications.

Nanai, Laszlo; Balint, Agneta M. [University of Szeged, JGYPK, Department of General and Environmental Physics H-6725 Szeged, Boldogasszony sgt. 6 (Hungary); West University of Timisoara, Faculty of Physics, Department of Physics, Bulv. V. Parvan 4, Timisoara 300223 (Romania)

2012-08-17T23:59:59.000Z

495

Detection of electrophilic and nucleophilic chemical agents  

DOE Patents [OSTI]

A "real time" method for detecting chemical agents generally and particularly electrophilic and nucleophilic species by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species. By bonding or otherwise attaching these precursor molecules to a surface or substrate they can be used in numerous applications.

McElhanon, James R.; Shepodd, Timothy J.

2014-08-12T23:59:59.000Z

496

Chemical analysis of biomass fast pyrolysis oils  

SciTech Connect (OSTI)

This paper reviews the development of the field of chemical analysis of biomass fast pyrolysis oils. The techniques applied to pyrolysis oil analysis are reviewed including proximate and ultimate analysis, water (moisture) analysis, and chemical component analysis by various forms of chromatography, solvent separations, and spectrophotometric analyses, like infrared and ultraviolet. Advanced analytical techniques such as nuclear magnetic resonance and molecular beam -- mass spectrometry are also discussed. This paper reviews and compares the methods and the results of the analyses. The advantages and shortcomings of the various methods applied are identified. Comparisons derived from the IEA Round Robin are incorporated.

Elliott, D.C.

1994-09-01T23:59:59.000Z

497

Chemical Sciences at ORNL | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical Kinetic Modeling of16-2010Chemical

498

Chemicals Industry Profile | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth DayFuels Chemical Kinetic ModelingChemicals Industry

499

Chemical Recycling | Y-12 National Security Complex  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In &Chemical LabelChemical Recycling

500

Chemicals (2010 MECS) | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheirCheck In &ChemicalAnalysisphenols withChemicals