National Library of Energy BETA

Sample records for determination m-area chemical

  1. Determination of transport parameters of coincident inorganic and organic plumes in the Savannah River Plant M-Area, Aiken, South Carolina 

    E-Print Network [OSTI]

    Cauffman, Toya Lyn

    1987-01-01

    River Plant (SRP) M-Area house the facilities for fabricating fuel and target elements to be irradiated in SRP reactors. Waste effluents from M-Area operations contain metal degreasers, nitric acid, sodium hydroxide, phosphoric acid and metals...-Area are (1) the A-14 sewer outfall, which drains to a small tributary of the Time Branch, (2) the M-Area settling basin, (3) the seepage area and Lost Lake, which receive overflow from the basin, and (4) the two main sewer lines which transport waste water...

  2. Chemical and isotopic determination from complex spectra

    SciTech Connect (OSTI)

    Zardecki, A.; Strittmatter, R.B.

    1995-07-01

    Challenges for proliferation detection include remote, high- sensitivity detection of chemical effluents from suspect facilities and enhanced detection sensitivity for nuclear material. Both the identification of chemical effluents with lidar and enhanced nuclear material detection from radiation sensors involve determining constituents from complex spectra. In this paper, we extend techniques used to analyze time series to the analysis of spectral data. Pattern identification methods are applied to spectral data for domains where standard matrix inversion may not be suitable because of detection statistics. We use a feed-forward, back-propagation neural network in which the nodes of the input layer are fed with the observed spectral data. The nodes of the output layer contain the identification and concentration of the isotope or chemical effluent the sensor is to identify. We will discuss the neural network architecture, together with preliminary results obtained from the training process.

  3. Determining Interconnections in Chemical Reaction Networks Antonis Papachristodoulou and Ben Recht

    E-Print Network [OSTI]

    Recht, Ben

    Determining Interconnections in Chemical Reaction Networks Antonis Papachristodoulou and Ben Recht Abstract-- We present a methodology for robust determina- tion of chemical reaction network' dynamics. We illustrate our methodology on a hypothetical chemical reaction network under various

  4. Determining the chemical composition of cloud condensation nuclei

    SciTech Connect (OSTI)

    Williams, A.L.; Rothert, J.E.; McClure, K.E. (Illinois State Water Survey, Champaign, IL (United States)); Alofs, D.J.; Hagen, D.E.; Schmitt, J.; White, D.R.; Hopkins, A.R.; Trueblood, M.B. (Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Science Lab.)

    1992-12-01

    This third progress report describes the status of our efforts to develop the instrumentation to collect cloud condensation nuclei (CCN) in amounts sufficient for chemical analysis. During the fall of 1992 we started collecting filter samples of CCN with the laboratory version of the apparatus at Rolla -MO. The mobile version of the apparatus is in the latter stages of construction. This report includes a fairly rigorous discussion of the operation of the CCN sampling system. A statistical model of the operation of the system is presented to show the ability of the system to collect CCN in the two different size ranges for which we plan to determine the chemical composition. A question is raised by the model results about the operation of one of the virtual impactors. It appears to pass a small percent of particles larger than its cut-point that has the potential of contaminating the smallest CCN sample with larger CCN material. Further tests are necessary, but it may be necessary to redesign that impactor. The appendices of the report show pictures of both the laboratory version and the mobile version of the CCN sampling system. The major hardware has been completed, and the mobile version will be in operation within a few weeks.

  5. Treatment of M-area mixed wastes at the Savannah River Site

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The Department of Energy has prepared this environmental assessment, DOE/EA-0918, to assess the potential environmental impacts of the treatment of mixed wastes currently stored in the M-Area at the Savannah River Site, near Aiken, South Carolina. DOE is proposing to treat and stabilize approximately 700,000 gallons of mixed waste currently stored in the Interim Treatment/Storage Facility (IT/SF) and Mixed Waste Storage Shed (MWSS). This waste material is proposed to be stabilized using a vitrification process and temporarily stored until final disposal is available by the year 2005. This document has been prepared to assess the potential environmental impacts attributable to the treatment and stabilization of M-area mixed wastes, the closure of the interim storage area, and storage of the vitrified waste until disposal in onsite RCRA vaults. Based on the analyses in the environmental assessment, the Department of Energy has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required, and the Department of Energy is issuing this finding of no significant impact.

  6. Accelerated screening methods for determining chemical and thermal stability of refrigerant-lubricant mixtures, Part II: Experimental comparison and verification of methods. Volume 2, In situ conductivity data

    SciTech Connect (OSTI)

    Kauffman, R.

    1995-09-01

    Data are presented for the accelerated screening methods for determining chemical and thermal stability of refrigerant-lubricant mixtures.

  7. Determining the chemical composition of cloud condensation nuclei. Third progress report

    SciTech Connect (OSTI)

    Williams, A.L.; Rothert, J.E.; McClure, K.E. [Illinois State Water Survey, Champaign, IL (United States); Alofs, D.J.; Hagen, D.E.; Schmitt, J.; White, D.R.; Hopkins, A.R.; Trueblood, M.B. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Science Lab.

    1992-12-01

    This third progress report describes the status of our efforts to develop the instrumentation to collect cloud condensation nuclei (CCN) in amounts sufficient for chemical analysis. During the fall of 1992 we started collecting filter samples of CCN with the laboratory version of the apparatus at Rolla -MO. The mobile version of the apparatus is in the latter stages of construction. This report includes a fairly rigorous discussion of the operation of the CCN sampling system. A statistical model of the operation of the system is presented to show the ability of the system to collect CCN in the two different size ranges for which we plan to determine the chemical composition. A question is raised by the model results about the operation of one of the virtual impactors. It appears to pass a small percent of particles larger than its cut-point that has the potential of contaminating the smallest CCN sample with larger CCN material. Further tests are necessary, but it may be necessary to redesign that impactor. The appendices of the report show pictures of both the laboratory version and the mobile version of the CCN sampling system. The major hardware has been completed, and the mobile version will be in operation within a few weeks.

  8. Determination of residual monomers resulting from the chemical polymerization process of dental materials

    SciTech Connect (OSTI)

    Boboia, S.; Moldovan, M.; Ardelean, I.

    2013-11-13

    The residual monomer present in post-polymerized dental materials encourages premature degradation of the reconstructed tooth. That is why the residual monomer should be quantified in a simple, fast, accurate and reproducible manner. In our work we propose such an approach for accurate determination of the residual monomer in dental materials which is based on low-field nuclear magnetic resonance (NMR) relaxometry. The results of the NMR approach are compared with those of the high performance liquid chromatography (HPLC) technique. The samples under study contain the main monomers (2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)phenyl]propane and triethylene glycol dimethacrylate) constituting the liquid phase of most dental materials and an initiator. Two samples were analyzed with different ratios of chemical initiation systems: N,N-dimethyl-p-toluide: benzoyl peroxide (1:2 and 0.7:1.2). The results obtained by both techniques highlight that by reducing the initiator the polymerization process slows down and the amount of residual monomer reduces. This prevents the premature degradation of the dental fillings and consequently the reduction of the biomaterial resistance.

  9. Analysis of Water Based Fracture Fluid Flowback to Determine Fluid/Shale Chemical Interaction 

    E-Print Network [OSTI]

    Agim, Kelechi N

    2014-12-18

    Concerns about the substantial amounts of water and chemicals pumped into the subsurface during hydraulic fracturing are valid because long term effects of these stimulation actions are unknown at the present time. Although ...

  10. Quantitative Determination of Chemical Processes by Dynamic Nuclear Polarization Enhanced Nuclear Magnetic Resonance Spectroscopy 

    E-Print Network [OSTI]

    Zeng, Haifeng

    2012-07-16

    of indirect spectral dimensions similarly to conventional 2D NMR. Additionally, small flip angle pulses can be used to obtain a succession of scans separated in time. A model describing the combined effects of the evolution of a chemical process and of spin...

  11. Using hyperheuristics to improve the determination of the kinetic constants of a chemical reaction in

    E-Print Network [OSTI]

    Giménez, Domingo

    carbonate occurs: By reaction with acetic acid. CaCO3 + H3O+ Ca2+ + HCO- 3 + H2O By reaction with carbonic methods. The processes occurring in the human stomach when neutralizing the acid with an antacid tablet contact with an acid solution. Solving the problem requires the calculation of the whole chemical system

  12. The importance of chemical potential in the determination of water slip in nanochannels

    E-Print Network [OSTI]

    Marcello Sega; Mauro Sbragaglia; Luca Biferale; Sauro Succi

    2015-07-28

    We investigate the slip properties of water confined in graphite-like nano-channels by non-equilibrium molecular dynamics simulations, with the aim of identifying and analyze separately the influence of different physical quantities on the slip length. In a system under confinement but connected to a reservoir of fluid, the chemical potential is the natural control parameter: we show that two nanochannels characterized by the same macroscopic contact angle -- but a different microscopic surface potential -- do not exhibit the same slip length unless the chemical potential of water in the two channels is matched. Some methodological issues related to the preparation of samples for the comparative analysis in confined geometries are also discussed.

  13. Determination of Electrochemical Performance and Thermo-Mechanical-Chemical Stability of SOFCs from Defect Modeling

    SciTech Connect (OSTI)

    Eric Wachsman; Keith L. Duncan

    2006-09-30

    This research was focused on two distinct but related issues. The first issue concerned using defect modeling to understand the relationship between point defect concentration and the electrochemical, thermo-chemical and mechano-chemical properties of typical solid oxide fuel cell (SOFC) materials. The second concerned developing relationships between the microstructural features of SOFC materials and their electrochemical performance. To understand the role point defects play in ceramics, a coherent analytical framework was used to develop expressions for the dependence of thermal expansion and elastic modulus on point defect concentration in ceramics. These models, collectively termed the continuum-level electrochemical model (CLEM), were validated through fits to experimental data from electrical conductivity, I-V characteristics, elastic modulus and thermo-chemical expansion experiments for (nominally pure) ceria, gadolinia-doped ceria (GDC) and yttria-stabilized zirconia (YSZ) with consistently good fits. The same values for the material constants were used in all of the fits, further validating our approach. As predicted by the continuum-level electrochemical model, the results reveal that the concentration of defects has a significant effect on the physical properties of ceramic materials and related devices. Specifically, for pure ceria and GDC, the elastic modulus decreased while the chemical expansion increased considerably in low partial pressures of oxygen. Conversely, the physical properties of YSZ remained insensitive to changes in oxygen partial pressure within the studied range. Again, the findings concurred exactly with the predictions of our analytical model. Indeed, further analysis of the results suggests that an increase in the point defect content weakens the attractive forces between atoms in fluorite-structured oxides. The reduction treatment effects on the flexural strength and the fracture toughness of pure ceria were also evaluated at room temperature. The results reveal that the flexural strength decreases significantly after heat treatment in very low oxygen partial pressure environments; however, in contrast, fracture toughness is increased by 30-40% when the oxygen partial pressure was decreased to 10{sup -20} to 10{sup -22} atm range. Fractographic studies show that microcracks developed at 800 oC upon hydrogen reduction are responsible for the decreased strength. To understand the role of microstructure on electrochemical performance, electrical impedance spectra from symmetric LSM/YSZ/LSM cells was de-convoluted to obtain the key electrochemical components of electrode performance, namely charge transfer resistance, surface diffusion of reactive species and bulk gas diffusion through the electrode pores. These properties were then related to microstructural features, such as triple-phase boundary length and tortuosity. From these experiments we found that the impedance due to oxygen adsorption obeys a power law with pore surface area, while the impedance due to charge transfer is found to obey a power-law with respect to triple phase boundary length. A model based on kinetic theory explaining the power-law relationships observed was then developed. Finally, during our EIS work on the symmetric LSM/YSZ/LSM cells a technique was developed to improve the quality of high-frequency impedance data and their subsequent de-convolution.

  14. I. Determination of chemical reaction rate constants by numerical nonlinear analysis: differential methods

    E-Print Network [OSTI]

    Christopher G. Jesudason

    2011-01-26

    The primary emphasis of this work on kinetics is to illustrate the a posteriori approach to applications, where focus on data leads to novel outcomes, rather than the a priori tendencies of applied analysis which imposes constructs on the nature of the observable. The secondary intention is the development of appropriate methods consonant with experimental definitions. By focusing on gradients, it is possible to determine both the average and instantaneous rate constants that can monitor changes in the rate constant with concentration changes as suggested by this theory. Here, methods are developed and discussed utilizing nonlinear analysis which does not require exact knowledge of initial concentrations. These methods are compared with those derived from standard methodology. These gradient methods are shown to be consistent with the ones from standard methods and could readily serve as alternatives for studies where there are limits or unknowns in the initial conditions, such as in the burgeoning fields of astrophysics and astrochemistry, forensics, archeology and biology . All four reactions studied exhibited semi sinusoidal-like change with reactant concentration change which standard methods cannot detect, which seems to constitute the observation of a new effect that is not predicted by current formulations, where the possibility that the observations are due to artifacts from instrumental errors or the optimization method is reasoned as unlikely since the experiments were conducted by different groups at very different times with different classes of reactions.

  15. M-Area and Metallurgical Laboratory Hazardous Waste Management Facilities groundwater monitoring and corrective-action report (U). Third and fourth quarters 1996, Vol. I

    SciTech Connect (OSTI)

    NONE

    1997-03-01

    This report describes the groundwater monitoring and corrective-action program at the M-Area Hazardous Waste Management Facility (HWMF) and the Metallurgical Laboratory (Met Lab) HWMF at the Savannah River Site (SRS) during 1996.

  16. Accelerated screening methods for determining chemical and thermal stability of refreigerant-lubricant mixtures. Part II: Experimental comparison and verification of methods. Final report, volume I

    SciTech Connect (OSTI)

    Kauffman, R.

    1995-09-01

    The research reported herein was performed to develop an accelerated screening method for determining the chemical and thermal stabilities of refrigerant/lubricant mixtures. The developed screening method was designed to be safe and to produce accelerated stability rankings that are in agreement with the rankings determined by the current test, Sealed Glass Tube Method to Test the Chemical Stability of Material for Use Within Refrigerant Systems, ANSI/ASHRAE Method 97-1989. The accelerated screening test developed was designed to be independent of refrigerant and lubricant compositions and to be used with a wide variety of construction materials. The studied refrigerants included CFC-11, CFC-12, HCFC-22, HFC-134a, and HFC-32/HFC-134a (zeotrope 30:70 by weight). The studied lubricants were selected from the chemical classes of mineral oil, alkylbenzene oil, polyglycols, and polyolesters. The work reported herein was performed in three phases. In the first phase, previously identified thermal analytical techniques were evaluated for development into an accelerated screening method for refrigerant/lubricant mixtures. The identified thermal analytical techniques used in situ measurements of color, temperature, or conductivity to monitor the degradation of the heated refrigerant/lubricant mixtures. The identified thermal analytical techniques also used catalysts such as ferric fluoride to accelerate the degradation of the heated refrigerant/lubricant mixtures. The thermal analytical technique employing in situ conductivity measurements was determined to be the most suitable for development into an accelerated screening method.

  17. THE JOURNAL OF CHEMICAL PHYSICS 134, 034703 (2011) Determination of the sticking coefficient and scattering dynamics of water

    E-Print Network [OSTI]

    Sibener, Steven

    2011-01-01

    and scattering dynamics of water on ice using molecular beam techniques K. D. Gibson, Daniel R. Killelea, Hanqiu on crystalline D2O ice was determined for incident trans- lational energies between 0.3 and 0.7 eV and for H2O for precise control of the incident angle and energy. Experiments were also performed to measure the intensity

  18. Interpretation of Geological Correlation Borings 1, 2, 3 in the A/M Area of the Savannah River Site, South Carolina

    SciTech Connect (OSTI)

    Wyatt, D.E. [Westinghouse Savannah River Company, AIKEN, SC (United States); Cumbest, R.J.; Aadland, R.K.; Syms, F.H.; Stephenson, D.E.; Sherrill, J.C.

    1997-06-01

    The Geophysical Correlation Boring (GCB) Program was organized to provide a comprehensive correlation capability between geological core and advanced borehole geophysical data, surface high resolution reflection seismic information and, when available, borehole geochemical and cone penetrometer data. This report provides results and initial geological interpretations of borings one, two, and three (GCB-1, GCB-2, GCB-3) located within the Upper Three Runs Watershed (A/M Area) of the Savannah River Site.

  19. Progress Update: M Area Closure

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A progress update of the Recovery Act at work at the Savannah River Site. The celebration of the first area cleanup completion with the help of the Recovery Act.

  20. PINS chemical identification software

    DOE Patents [OSTI]

    Caffrey, Augustine J.; Krebs, Kennth M.

    2004-09-14

    An apparatus and method for identifying a chemical compound. A neutron source delivers neutrons into the chemical compound. The nuclei of chemical elements constituting the chemical compound emit gamma rays upon interaction with the neutrons. The gamma rays are characteristic of the chemical elements constituting the chemical compound. A spectrum of the gamma rays is generated having a detection count and an energy scale. The energy scale is calibrated by comparing peaks in the spectrum to energies of pre-selected chemical elements in the spectrum. A least-squares fit completes the calibration. The chemical elements constituting the chemical compound can be readily determined, which then allows for identification of the chemical compound.

  1. Chemical leukoderma

    E-Print Network [OSTI]

    O'Reilly, Kathryn E; Patel, Utpal; Chu, Julie; Patel, Rishi; Machler, Brian C

    2011-01-01

    the first report, to date, of chemical leukoderma that wasreview on biological, chemical and clinical aspects. Pigment4. Briganti S, et al. Chemical and instrumental approaches

  2. An Innovative Approach to Balancing Chemical-Reaction Equations: A Simplified Matrix-Inversion Technique for Determining The Matrix Null Space

    E-Print Network [OSTI]

    Lawrence R. Thorne

    2011-10-18

    I propose a novel approach to balancing equations that is applicable to all chemical-reaction equations; it is readily accessible to students via scientific calculators and basic computer spreadsheets that have a matrix-inversion application. The new approach utilizes the familiar matrix-inversion operation in an unfamiliar and innovative way; its purpose is not to identify undetermined coefficients as usual, but, instead, to compute a matrix null space (or matrix kernel). The null space then provides the coefficients that balance the equation. Indeed, the null space contains everything there is to know about balancing any chemical-reaction equation!

  3. Method for quantitative determination and separation of trace amounts of chemical elements in the presence of large quantities of other elements having the same atomic mass

    DOE Patents [OSTI]

    Miller, C.M.; Nogar, N.S.

    1982-09-02

    Photoionization via autoionizing atomic levels combined with conventional mass spectroscopy provides a technique for quantitative analysis of trace quantities of chemical elements in the presence of much larger amounts of other elements with substantially the same atomic mass. Ytterbium samples smaller than 10 ng have been detected using an ArF* excimer laser which provides the atomic ions for a time-of-flight mass spectrometer. Elemental selectivity of greater than 5:1 with respect to lutetium impurity has been obtained. Autoionization via a single photon process permits greater photon utilization efficiency because of its greater absorption cross section than bound-free transitions, while maintaining sufficient spectroscopic structure to allow significant photoionization selectivity between different atomic species. Separation of atomic species from others of substantially the same atomic mass is also described.

  4. Devices for collecting chemical compounds

    SciTech Connect (OSTI)

    Scott, Jill R; Groenewold, Gary S

    2013-12-24

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from a fixed surface so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  5. Experimental determination of the speciation, partitioning, and release of perrhenate as a chemical surrogate for pertechnetate from a sodalite-bearing multiphase ceramic waste form

    SciTech Connect (OSTI)

    Pierce, Eric M.; Lukens, Wayne W.; Fitts, Jeff. P.; Jantzen, Carol. M.; Tang, G.

    2013-12-01

    A key component to closing the nuclear fuel cycle is the storage and disposition of nuclear waste in geologic systems. Multiphase ceramic waste forms have been studied extensively as a potential host matrix for nuclear waste. Understanding the speciation, partitioning, and release behavior of radionuclides immobilized in multiphase ceramic waste forms is a critical aspect of developing the scientific and technical basis for nuclear waste management. In this study, we evaluated a sodalite-bearing multiphase ceramic waste form (i.e., fluidized-bed steam reform sodium aluminosilicate [FBSR NAS] product) as a potential host matrix for long-lived radionuclides, such as technetium (99Tc). The FBSR NAS material consists primarily of nepheline (ideally NaAlSiO4), anion-bearing sodalites (ideally M8[Al6Si6O24]X2, where M refers to alkali and alkaline earth cations and X refers to monovalent anions), and nosean (ideally Na8[AlSiO4]6SO4). Bulk X-ray absorption fine structure analysis of the multiphase ceramic waste form, suggest rhenium (Re) is in the Re(VII) oxidation state and has partitioned to a Re-bearing sodalite phase (most likely a perrhenate sodalite Na8[Al6Si6O24](ReO4)2). Rhenium was added as a chemical surrogate for 99Tc during the FBSR NAS synthesis process. The weathering behavior of the FBSR NAS material was evaluated under hydraulically unsaturated conditions with deionized water at 90 ?C. The steady-state Al, Na, and Si concentrations suggests the weathering mechanisms are consistent with what has been observed for other aluminosilicate minerals and include a combination of ion exchange, network hydrolysis, and the formation of an enriched-silica surface layer or phase. The steady-state S and Re concentrations are within an order of magnitude of the nosean and perrhenate sodalite solubility, respectively. The order of magnitude difference between the observed and predicted concentration for Re and S may be associated with the fact that the anion-bearing sodalites contained in the multiphase ceramic matrix are present as mixed-anion sodalite phases. These results suggest the multiphase FBSR NAS material may be a viable host matrix for long-lived, highly mobilie radionuclides which is a critical aspect in the management of nuclear waste.

  6. Chemical Bonding and Structural Information of Black Carbon Reference Materials and Individual Carbonaceous Atmospheric Aerosols

    E-Print Network [OSTI]

    Hopkins, Rebecca J.; Tivanski, Alexei V.; Marten, Bryan D.; Gilles, Mary K.

    2007-01-01

    A. (1998), Determination of chemical- structural changes inOptical, physical, and chemical properties of tar ballsE. (2001), Study on the chemical character of water soluble

  7. CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING

    E-Print Network [OSTI]

    Provancher, William

    CHEMICAL ENGINEERING AND MANUFACTURING CHEMICAL ENGINEERING Objective Chemical Engineers of chemicals. This lesson introduces students to one component of chemical engineering: food processing, and a chemical engineer 2. How chemical engineers are involved in food production 3. That chemical engineers need

  8. Chemical sensors

    DOE Patents [OSTI]

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1991-07-02

    Sensors responsive to small changes in the concentration of chemical species are disclosed. The sensors comprise a mechanochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment. They are operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical response. 9 figures.

  9. Chemical process hazards analysis

    SciTech Connect (OSTI)

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  10. 2010sr29[M Area].doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.TheoryTuesday, August 10, 2010 james-r.giusti@srs.gov Paivi Nettamo,Friday,Wednesday,

  11. Chemical sensors

    DOE Patents [OSTI]

    Lowell, J.R. Jr.; Edlund, D.J.; Friesen, D.T.; Rayfield, G.W.

    1992-06-09

    Sensors responsive to small changes in the concentration of chemical species are disclosed, comprising a mechanicochemically responsive polymeric film capable of expansion or contraction in response to a change in its chemical environment, either operatively coupled to a transducer capable of directly converting the expansion or contraction to a measurable electrical or optical response, or adhered to a second inert polymeric strip, or doped with a conductive material. 12 figs.

  12. Chemical Occurrences

    Broader source: Energy.gov [DOE]

    Classification of Chemical Occurrence Reports into the following four classes: Occurrences characterized by serious energy release, injury or exposure requiring medical treatment, or severe environmental damage, Occurrences characterized by minor injury or exposure, or reportable environmental release, Occurrences that were near misses including notable safety violations and Minor occurrences.

  13. Chemical Evolution

    E-Print Network [OSTI]

    Francesca Matteucci

    2007-04-05

    In this series of lectures we first describe the basic ingredients of galactic chemical evolution and discuss both analytical and numerical models. Then we compare model results for the Milky Way, Dwarf Irregulars, Quasars and the Intra-Cluster- Medium with abundances derived from emission lines. These comparisons allow us to put strong constraints on the stellar nucleosynthesis and the mechanisms of galaxy formation.

  14. Chemical Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanning CareerNationalCNMSTHEmaterials |Chemical

  15. The TSCA interagency testing committee`s approaches to screening and scoring chemicals and chemical groups: 1977-1983

    SciTech Connect (OSTI)

    Walker, J.D.

    1990-12-31

    This paper describes the TSCA interagency testing committee`s (ITC) approaches to screening and scoring chemicals and chemical groups between 1977 and 1983. During this time the ITC conducted five scoring exercises to select chemicals and chemical groups for detailed review and to determine which of these chemicals and chemical groups should be added to the TSCA Section 4(e) Priority Testing List. 29 refs., 1 fig., 2 tabs.

  16. Chemical Accelerators The phrase "chemical accelerators"

    E-Print Network [OSTI]

    Meetings Chemical Accelerators The phrase "chemical accelerators" is scarcely older than for one or two dozen people grew to include nearly a hundred. Chemical accelerators is a name sug- gested by one of us for devices that produce beams of chemically interesting species at relative kinetic

  17. Chemical sensing flow probe

    DOE Patents [OSTI]

    Laguna, G.R.; Peter, F.J.; Butler, M.A.

    1999-02-16

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir. 7 figs.

  18. Chemical sensing flow probe

    DOE Patents [OSTI]

    Laguna, George R. (Albuquerque, NM); Peter, Frank J. (Albuquerque, NM); Butler, Michael A. (Albuquerque, NM)

    1999-01-01

    A new chemical probe determines the properties of an analyte using the light absorption of the products of a reagent/analyte reaction. The probe places a small reaction volume in contact with a large analyte volume. Analyte diffuses into the reaction volume. Reagent is selectively supplied to the reaction volume. The light absorption of the reaction in the reaction volume indicates properties of the original analyte. The probe is suitable for repeated use in remote or hostile environments. It does not require physical sampling of the analyte or result in significant regent contamination of the analyte reservoir.

  19. CHEMICAL ENGINEERING Curriculum Notes

    E-Print Network [OSTI]

    Mohan, Chilukuri K.

    CHEMICAL ENGINEERING Curriculum Notes 2013-2014 1. Chemical engineering students must complete not included in the required chemical engineering curriculum. All technical electives are subject to approval be in chemical engineering. 2. Chemical engineering students must complete a minimum of 18 credits in the Social

  20. Laser induced chemical reactions

    E-Print Network [OSTI]

    Orel, Ann E.

    2010-01-01

    the simplest prototype chemical reaction, and since it is soLASER ENHANCEMENT OF CHEMICAL REACTIONS A. B. C. D. E.Laser Inhibition of Chemical Reaction Effect of Isotopic

  1. Microfluidic chemical reaction circuits

    DOE Patents [OSTI]

    Lee, Chung-cheng (Irvine, CA); Sui, Guodong (Los Angeles, CA); Elizarov, Arkadij (Valley Village, CA); Kolb, Hartmuth C. (Playa del Rey, CA); Huang, Jiang (San Jose, CA); Heath, James R. (South Pasadena, CA); Phelps, Michael E. (Los Angeles, CA); Quake, Stephen R. (Stanford, CA); Tseng, Hsian-rong (Los Angeles, CA); Wyatt, Paul (Tipperary, IE); Daridon, Antoine (Mont-Sur-Rolle, CH)

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  2. Sandia Energy - Chemical Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Dynamics Home Transportation Energy Predictive Simulation of Engines Combustion Chemistry Chemical Dynamics Chemical DynamicsAshley Otero2015-10-28T02:45:37+00:00...

  3. Real time chemical exposure and risk monitor

    DOE Patents [OSTI]

    Thrall, Karla D. (3804 Alder Lake Ct., West Richland, WA 99353); Kenny, Donald V. (6947 Sparrow La., Worthington, OH 43235); Endres, George W. R. (2112 Briarwood Ct., Richland, WA 99352); Sisk, Daniel R. (1211 Marshall Ave., Richland, WA 99352)

    1997-01-01

    The apparatus of the present invention is a combination of a breath interface and an external exposure dosimeter interface to a chemical analysis device, all controlled by an electronic processor for quantitatively analyzing chemical analysis data from both the breath interface and the external exposure dosimeter for determining internal tissue dose. The method of the present invention is a combination of steps of measuring an external dose, measuring breath content, then analyzing the external dose and breath content and determining internal tissue dose.

  4. ITP Chemicals: Chemical Industry of the Future: New Biocatalysts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Industry of the Future: New Biocatalysts: Essential Tools for a Sustainable 21st Century Chemical Industry ITP Chemicals: Chemical Industry of the Future: New...

  5. Institute of Chemical Engineering and High Temperature Chemical...

    Open Energy Info (EERE)

    Institute of Chemical Engineering and High Temperature Chemical Processes ICEHT Jump to: navigation, search Name: Institute of Chemical Engineering and High Temperature Chemical...

  6. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  7. Enhanced Chemical Cleaning

    Office of Environmental Management (EM)

    Enhanced Chemical Cleaning Renee H. Spires Enhanced Chemical Cleaning Project Manager July 29, 2009 Tank Waste Corporate Board 2 Objective Provide an overview of the ECC process...

  8. Microbend fiber-optic chemical sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2002-01-01

    A microbend fiber-optic chemical sensor for detecting chemicals in a sample, and a method for its use, is disclosed. The sensor comprises at least one optical fiber having a microbend section (a section of small undulations in its axis), for transmitting and receiving light. In transmission, light guided through the microbend section scatters out of the fiber core and interacts, either directly or indirectly, with the chemical in the sample, inducing fluorescence radiation. Fluorescence radiation is scattered back into the microbend section and returned to an optical detector for determining characteristics of the fluorescence radiation quantifying the presence of a specific chemical.

  9. Uncoated microcantilevers as chemical sensors

    DOE Patents [OSTI]

    Thundat, Thomas G. (Knoxville, TN)

    2001-01-01

    A method and device are provided for chemical sensing using cantilevers that do not use chemically deposited, chemically specific layers. This novel device utilizes the adsorption-induced variation in the surfaces states on a cantilever. The methodology involves exciting charge carriers into or out of the surface states with photons having increasing discrete levels of energy. The excitation energy is provided as discrete levels of photon energy by scanning the wavelength of an exciting source that is illuminating the cantilever surface. When the charge carriers are excited into or out of the surface states, the cantilever bending changes due to changes in surface stress. The amount of cantilever bending with respect to an identical cantilever as a function of excitation energy is used to determine the energy levels associated with adsorbates.

  10. Chemical Management Contacts

    Broader source: Energy.gov [DOE]

    Contacts for additional information on Chemical Management and brief description on Energy Facility Contractors Group

  11. Systems analysis of past, present, and future chemical terrorism scenarios.

    SciTech Connect (OSTI)

    Hoette, Trisha Marie

    2012-03-01

    Throughout history, as new chemical threats arose, strategies for the defense against chemical attacks have also evolved. As a part of an Early Career Laboratory Directed Research and Development project, a systems analysis of past, present, and future chemical terrorism scenarios was performed to understand how the chemical threats and attack strategies change over time. For the analysis, the difficulty in executing chemical attack was evaluated within a framework of three major scenario elements. First, historical examples of chemical terrorism were examined to determine how the use of chemical threats, versus other weapons, contributed to the successful execution of the attack. Using the same framework, the future of chemical terrorism was assessed with respect to the impact of globalization and new technologies. Finally, the efficacy of the current defenses against contemporary chemical terrorism was considered briefly. The results of this analysis justify the need for continued diligence in chemical defense.

  12. Siphons in chemical reaction networks

    E-Print Network [OSTI]

    Shiu, Anne

    2009-01-01

    Siphons in a chemical reaction system are subsets of the species that have the potential of being absent in a steady state. We present a characterization of minimal siphons in terms of primary decomposition of binomial ideals, we explore the underlying geometry, and we demonstrate the effective computation of siphons using computer algebra software. This leads to a new method for determining whether given initial concentrations allow for various boundary steady states.

  13. Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 Identification of Hazardous Chemical Waste

    E-Print Network [OSTI]

    Ford, James

    Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 · Identification of Hazardous Chemical Waste OBJECTIVES Do you know how to do the following? If you do, skip ahead to Minimization of Hazardous Waste section. If you do not, continue on in this section. · Determine whether

  14. Device for collecting chemical compounds and related methods

    DOE Patents [OSTI]

    Scott, Jill R.; Groenewold, Gary S.; Rae, Catherine

    2013-01-01

    A device for sampling chemical compounds from fixed surfaces and related methods are disclosed. The device may include a vacuum source, a chamber and a sorbent material. The device may utilize vacuum extraction to volatilize the chemical compounds from the fixed surfaces so that they may be sorbed by the sorbent material. The sorbent material may then be analyzed using conventional thermal desorption/gas chromatography/mass spectrometry (TD/GC/MS) instrumentation to determine presence of the chemical compounds. The methods may include detecting release and presence of one or more chemical compounds and determining the efficacy of decontamination. The device may be useful in collection and analysis of a variety of chemical compounds, such as residual chemical warfare agents, chemical attribution signatures and toxic industrial chemicals.

  15. Chemical Industry Bandwidth Study

    SciTech Connect (OSTI)

    none,

    2006-12-01

    The Chemical Bandwidth Study provides a snapshot of potentially recoverable energy losses during chemical manufacturing. The advantage of this study is the use of "exergy" analysis as a tool for pinpointing inefficiencies.

  16. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  17. Capacitive chemical sensor

    DOE Patents [OSTI]

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  18. Chemical Sciences Division - CSD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSD Chemical Sciences Division CSD Organization Contact List Search Other Links Research Areas Research Highlights Organization Contacts Publications Awards Employment...

  19. MECS 2006- Chemicals

    Broader source: Energy.gov [DOE]

    Manufacturing Energy and Carbon Footprint for Chemicals Sector (NAICS 325) with Total Energy Input, October 2012 (MECS 2006)

  20. Chemical Zeolites Combinatorial . . .

    E-Print Network [OSTI]

    Servatius, Brigitte

    Chemical Zeolites Combinatorial . . . Realization 2d Zeolites Finite Zeolites The Layer . . . Holes University (Brigitte Servatius -- WPI) #12;Chemical Zeolites Combinatorial . . . Realization 2d Zeolites. Chemical Zeolites · crystalline solid · units: Si + 4O Si O O O O · two covalent bonds per oxygen #12

  1. Department of Chemical Engineering

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    Developing Leaders of Innovation Department of Chemical Engineering #12;At the University of Virginia, we educate students in traditional and nontraditional areas of chemical engineering, giving them.Va. Department of Chemical Engineering benefit from a modern academic curriculum and state

  2. Equilibrium Chemical Engines

    E-Print Network [OSTI]

    Tatsuo Shibata; Shin-ichi Sasa

    1997-10-30

    An equilibrium reversible cycle with a certain engine to transduce the energy of any chemical reaction into mechanical energy is proposed. The efficiency for chemical energy transduction is also defined so as to be compared with Carnot efficiency. Relevance to the study of protein motors is discussed. KEYWORDS: Chemical thermodynamics, Engine, Efficiency, Molecular machine.

  3. HARVARD UNIVERSITY CHEMICAL BIOLOGY

    E-Print Network [OSTI]

    Church, George M.

    HARVARD UNIVERSITY CHEMICAL BIOLOGY PHD PROGRAM 2013-2014 Student Handbook #12;Program Contacts at the beginning of each semester. Laboratory Rotations Students in the Chemical Biology Program are expected an interest in having Chemical Biology Program Students in their labs. Students may rotate in the labs

  4. Chemical Hygiene and Safety Plan

    E-Print Network [OSTI]

    Ricks Editor, R.

    2009-01-01

    V. , Ed. , Safety in the Chemical Laboratory. J. Chem.£d. Amer/can Chemical Society. Easlon. PA. 18042. Vol. Lof Laboratory Safety. the Chemical Rubber Company Cleveland.

  5. Siphons in Chemical Reaction Networks

    E-Print Network [OSTI]

    Shiu, Anne; Sturmfels, Bernd

    2010-01-01

    strongly-connected chemical reaction, and the compu- tationcredited. Siphons in Chemical Reaction Networks Referencesto persistence analysis in chemical reaction networks. In:

  6. Ash Determinations 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Germination of Ashe juniper seed were compared in a controlled environment at different levels of fruit maturation, lengths of storage, and seed stratification to determine potential germination. Annual mean germination varied by an order...

  7. Wyss Institute Chemical Hygiene Plan CHEMICAL HYGIENE PLAN

    E-Print Network [OSTI]

    Napp, Nils

    Wyss Institute Chemical Hygiene Plan CHEMICAL HYGIENE PLAN The Wyss Institute for Biologically Inspired Engineering June 2015 #12;Wyss Institute Chemical Hygiene Plan TABLE OF CONTENTS 1.0 POLICY..........................................................................................2 2.1 CHEMICAL HYGIENE OFFICER

  8. CX-008738: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Microstructure and Chemical State Changes in Ion-Irradiated Fuels and Structural Components with a High Kinetic Energy Electron Detector – Illinois Institute of Technology CX(s) Applied: B3.6 Date: 05/22/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  9. CX-010693: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-010693: Categorical Exclusion Determination Conversion of Waste Carbon Dioxide and Shale Gas to High Value Chemicals CX(s) Applied: A9, B3.6 Date: 07012013 Location(s): New...

  10. Geometric description of chemical reactions

    E-Print Network [OSTI]

    Hernando Quevedo; Diego Tapias

    2013-01-02

    We use the formalism of Geometrothermodynamics to describe chemical reactions in the context of equilibrium thermodynamics. Any chemical reaction in a closed system is shown to be described by a geodesic in a $2-$dimensional manifold that can be interpreted as the equilibrium space of the reaction. We first show this in the particular cases of a reaction with only two species corresponding to either two ideal gases or two van der Waals gases. We then consider the case of a reaction with an arbitrary number of species. The initial equilibrium state of the geodesic is determined by the initial conditions of the reaction. The final equilibrium state, which follows from a thermodynamic analysis of the reaction, is shown to correspond to a coordinate singularity of the thermodynamic metric which describes the equilibrium manifold.

  11. CX-010847: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Characterization of Methanotrophs at the Old Integrated Demonstration Site, M Area CX(s) Applied: B3.1 Date: 07/23/2013 Location(s): South Carolina Offices(s): Savannah River Operations Office

  12. CX-008625: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Abandonment of M-Area Oil Injection Wells CX(s) Applied: B3.1 Date: 06/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  13. Real time chemical exposure and risk monitor

    DOE Patents [OSTI]

    Thrall, K.D.; Kenny, D.V.; Endres, G.W.R.; Sisk, D.R.

    1997-07-08

    The apparatus of the present invention is a combination of a breath interface and an external exposure dosimeter interface to a chemical analysis device, all controlled by an electronic processor for quantitatively analyzing chemical analysis data from both the breath interface and the external exposure dosimeter for determining internal tissue dose. The method of the present invention is a combination of steps of measuring an external dose, measuring breath content, then analyzing the external dose and breath content and determining internal tissue dose. 7 figs.

  14. 5.0 Application of Chemical Reaction Codes 5.1. Background

    E-Print Network [OSTI]

    5.1 5.0 Application of Chemical Reaction Codes 5.1. Background Determination of species analyses of water compositions and a competent chemical reaction model. Computerized chemical reaction that may leach from waste, an understanding of the capabilities and application of chemical reaction models

  15. Field emission chemical sensor

    DOE Patents [OSTI]

    Panitz, J.A.

    1983-11-22

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  16. Chemical Cleaning Program Review

    Office of Environmental Management (EM)

    Chemical Cleaning Program Review Neil Davis Deputy Program Manager Waste Removal & Tank Closure July 29, 2009 SRR-STI-2009-00464 2 Contents Regulatory drivers Process overview...

  17. Apparatus for chemical synthesis

    DOE Patents [OSTI]

    Kong, Peter C. (Idaho Falls, ID); Herring, J. Stephen (Idaho Falls, ID); Grandy, Jon D. (Idaho Falls, ID)

    2011-05-10

    A method and apparatus for forming a chemical hydride is described and which includes a pseudo-plasma-electrolysis reactor which is operable to receive a solution capable of forming a chemical hydride and which further includes a cathode and a movable anode, and wherein the anode is moved into and out of fluidic, ohmic electrical contact with the solution capable of forming a chemical hydride and which further, when energized produces an oxygen plasma which facilitates the formation of a chemical hydride in the solution.

  18. Chemical sensor with oscillating cantilevered probe

    DOE Patents [OSTI]

    Adams, Jesse D

    2013-02-05

    The invention provides a method of detecting a chemical species with an oscillating cantilevered probe. A cantilevered beam is driven into oscillation with a drive mechanism coupled to the cantilevered beam. A free end of the oscillating cantilevered beam is tapped against a mechanical stop coupled to a base end of the cantilevered beam. An amplitude of the oscillating cantilevered beam is measured with a sense mechanism coupled to the cantilevered beam. A treated portion of the cantilevered beam is exposed to the chemical species, wherein the cantilevered beam bends when exposed to the chemical species. A second amplitude of the oscillating cantilevered beam is measured, and the chemical species is determined based on the measured amplitudes.

  19. Tortuous path chemical preconcentrator

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Lewis, Patrick R. (Albuquerque, NM); Adkins, Douglas R. (Albuquerque, NM); Wheeler, David R. (Albuquerque, NM); Simonson, Robert J. (Cedar Crest, NM)

    2010-09-21

    A non-planar, tortuous path chemical preconcentrator has a high internal surface area having a heatable sorptive coating that can be used to selectively collect and concentrate one or more chemical species of interest from a fluid stream that can be rapidly released as a concentrated plug into an analytical or microanalytical chain for separation and detection. The non-planar chemical preconcentrator comprises a sorptive support structure having a tortuous flow path. The tortuosity provides repeated twists, turns, and bends to the flow, thereby increasing the interfacial contact between sample fluid stream and the sorptive material. The tortuous path also provides more opportunities for desorption and readsorption of volatile species. Further, the thermal efficiency of the tortuous path chemical preconcentrator is comparable or superior to the prior non-planar chemical preconcentrator. Finally, the tortuosity can be varied in different directions to optimize flow rates during the adsorption and desorption phases of operation of the preconcentrator.

  20. The Hydrodynamics of Chemical Cues Among

    E-Print Network [OSTI]

    on the fluid velocity and flow regime, released chemicals are transported via dif- fusion, laminar advection mediated processes must consider fluid properties and flow because the fluid environment determines, Atlanta, Georgia 30332; email: dwebster@ce.gatech.edu Annu. Rev. Fluid Mech. 2009. 41:73­90 First

  1. The Sign Problem via Imaginary Chemical Potential

    E-Print Network [OSTI]

    K. Splittorff; B. Svetitsky

    2007-05-21

    We calculate an analogue of the average phase factor of the staggered fermion determinant at imaginary chemical potential. Our results from the lattice agree well with the analytical predictions in the microscopic regime for both quenched and phase-quenched QCD. We demonstrate that the average phase factor in the microscopic domain is dominated by the lowest-lying Dirac eigenvalues.

  2. PhD Chemical Engineering MS Chemical Engineering

    E-Print Network [OSTI]

    Collins, Gary S.

    1 PhD Chemical Engineering MS Chemical Engineering Bylaws Gene and Linda Voiland School of Chemical Engineering and Bioengineering College of Engineering and Architecture Approved by Voiland School facultyD Chemical Engineering, MS Chemical Engineering B. Discipline: Edgar, et al.1 provide a succinct description

  3. Determination of chemical properties of a supported copper oxide catalyst 

    E-Print Network [OSTI]

    Bandyopadhyay, Asok

    1955-01-01

    equilibrium slackly, and has a veleoity oharaoterised by a temperature oosffioient, It is generally rever- sible by the oomb1ned offsets of ohanges in temperature and pressure. Chcmd. sorption ooours at high velooities vhen a gas roasts with a solid... vas evaouated, then it was filled vith nitrogen of a high purity, The gas was oompressed by filling part of the oompression ohambsr with meroury, vh1ch oaused oondensa- tion in the temperature meal'ing element, whioh vas immersed in the liquid n1...

  4. Chemical Equilibrium in Heavy Ion Collisions: Rapidity Dependence

    E-Print Network [OSTI]

    F. Becattini; J. Cleymans

    2007-01-05

    Particle yields in heavy ion collisions show an overwhelming evidence for chemical or relative chemical equilibrium at all beam energies. The rapidity dependence of the thermal parameters $T$ and $\\mu_B$ can now be determined over a wide range of rapidities and show a systematic behavior towards an increase in $\\mu_B$ away from mid-rapidity.

  5. Decision support tools for environmentally conscious chemical process design

    E-Print Network [OSTI]

    Cano Ruiz, José Alejandro, 1969-

    1999-01-01

    The environment has emerged as an important determinant of the performance of the modern chemical industry. Process engineering in the 21st century needs to evolve to include environmental issues as part of the design ...

  6. Development of a chemical dosimeter for electron beam food irradiation 

    E-Print Network [OSTI]

    Rivadeneira, Ramiro Geovanny

    2006-08-16

    A chemical solution composed of paraffin wax, chloroform, and methyl yellow biological indicator was shaped into a solid 3-D apple phantom to determine absorbed dose from e-beams and X-rays. The purpose of this research ...

  7. ITP Chemicals: Chemical Bandwidth Study - Energy Analysis: A...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Bandwidth Study - Energy Analysis: A Powerful Tool for Identifying Process Inefficiencies in the U.S. Chemical Industry, Industrial Technologies Program, DRAFT Summary...

  8. Safety Issues Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Issues · Chemical Storage ·Store in compatible containers that are in good condition to store separately. #12;Safety Issues · Flammable liquid storage -Store bulk quantities in flammable storage cabinets -UL approved Flammable Storage Refrigerators are required for cold storage · Provide

  9. Fuzzy Chemical Abstract Machines

    E-Print Network [OSTI]

    Syropoulos, Apostolos

    2009-01-01

    Fuzzy set theory opens new vistas in computability theory and here I show this by defining a new computational metaphor--the fuzzy chemical metaphor. This metaphor is an extension of the chemical metaphor. In particular, I introduce the idea of a state of a system as a solution of fuzzy molecules, that is molecules that are not just different but rather similar, that react according to a set of fuzzy reaction rules. These notions become precise by introducing fuzzy labeled transition systems. Solutions of fuzzy molecules and fuzzy reaction rules are used to define the general notion of a fuzzy chemical abstract machine, which is a {\\em realization} of the fuzzy chemical metaphor. Based on the idea that these machines can be used to describe the operational semantics of process calculi and algebras that include fuzziness as a fundamental property, I present a toy calculus that is a fuzzy equivalent of the $\\pi$-calculus.

  10. Chemical Processing White Papers

    E-Print Network [OSTI]

    Nair, Sankar

    hydrogen from hydrocarbon mixtures, and propylene from propane, and if scaled up, could cut the cost fibers as a platform," says Sankar Nair, a professor in the School of Chemical & Biomolecular Engineering

  11. 219-S chemical compatibility

    SciTech Connect (OSTI)

    GOODWIN, L.D.

    1999-08-31

    This document consists of tables of the materials that make up the ''wetted'' parts of the 219-S waste handling facility and a combination of manufacturer lists of chemicals that are not recommended.

  12. Chemical Hygiene Michigan State University

    E-Print Network [OSTI]

    Isaacs, Rufus

    Chemical Hygiene Plan Michigan State University Environmental Health and Safety Engineering 2014 #12;ii Michigan State University Chemical Hygiene Plan Table of Contents 1.0 SCOPE.................................................................................................... 1 1.4 HAZARDOUS CHEMICAL DEFINITIONS

  13. Chemical Hygiene and Safety Plan

    E-Print Network [OSTI]

    Ricks Editor, R.

    2009-01-01

    IUPAC) or the Chemical Abstracts Service (CA,S} -'lee ofTerms CAS Number Chemical Abstract Service registry number,is indicated. CAS Number: Chemical Abstract Service registry

  14. CHEMICAL ENGINEERING Program of Study

    E-Print Network [OSTI]

    Thomas, Andrew

    CHEMICAL ENGINEERING Program of Study Research Facilities Financial Aid Applying Correspondence The Department of Chemical Engineering and Biological Engineering has well-established programs at both area of chemical engineering and include both fundamental and applied topics. The Department has

  15. Siphons in Chemical Reaction Networks

    E-Print Network [OSTI]

    Shiu, Anne; Sturmfels, Bernd

    2010-01-01

    source are credited. Siphons in Chemical Reaction Networksalgorithms for minimal siphons in Petri nets based on placewe characterize the minimal siphons of a chemical reaction

  16. Chemical Organization Theory as a Theoretical Base for Chemical Computing

    E-Print Network [OSTI]

    Dittrich, Peter

    Chemical Organization Theory as a Theoretical Base for Chemical Computing NAOKI MATSUMARU, FLORIAN-07743 Jena, Germany http://www.minet.uni-jena.de/csb/ Submitted 14 November 2005 In chemical computing- gramming chemical systems a theoretical method to cope with that emergent behavior is desired

  17. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    ) Principles of probability and statistics, random variables and random functions. Application to chemical) CHE 442 Chemical Reactor Analysis (3, Fa) Basic concepts of chemical kinetics and chemical reactor to Separation Pro- cesses (3, Sp) Use of equilibrium phase relations and principles of material and energy

  18. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    Introduction to Separation Processes (3, Sp) Use of equilibrium phase relations and principles of material by petition only. 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles Chemical Reactor Analysis (3, Fa) Basic concepts of chemical kinetics and chemical reactor design

  19. Chemical Engineering Is Chemical Engineering right for me?

    E-Print Network [OSTI]

    Martin, Ralph R.

    Chemical Engineering Is Chemical Engineering right for me? If you are interested in the uses and processes surrounding the engineering of new and raw materials, a degree in Chemical Engineering may be well suited to you. The Chemical Engineering degree programme will focus on the development of products

  20. Three Packets of Minerals of the Periodic Table of Chemical Elements and Chemical Compounds

    E-Print Network [OSTI]

    Mikhail M. Labushev

    2013-03-20

    The concepts of alpha- and beta-packets of the periodic table of chemical elements and chemical compounds are defined. The first of the 47 minerals alpha-packets is composed. In it all minerals are arranged in increasing Iav index of proportionality of atomic weights of composing chemical elements, the same way as chemical elements are located in increasing atomic weights in the Periodic table. The packet includes 93 known minerals and two compounds - N2O5 and CO2 - being actually minerals. Beta-packet of oxides and hydroxides minerals includes 88 known minerals and five chemical compounds - N2O5, CO2, CO, SO3 and SO2. Two minerals of the packet have not been determined yet. Besides, beta-packet of minerals with sulfur, selenium or arsenic is composed, with one mineral not defined yet. The results of the calculations can be used for further development of the Periodic Table of Chemical Elements and Chemical Compounds and their properties investigation.

  1. Three Packets of Minerals of the Periodic Table of Chemical Elements and Chemical Compounds

    E-Print Network [OSTI]

    Labushev, Mikhail M

    2013-01-01

    The concepts of alpha- and beta-packets of the periodic table of chemical elements and chemical compounds are defined. The first of the 47 minerals alpha-packets is composed. In it all minerals are arranged in increasing Iav index of proportionality of atomic weights of composing chemical elements, the same way as chemical elements are located in increasing atomic weights in the Periodic table. The packet includes 93 known minerals and two compounds - N2O5 and CO2 - being actually minerals. Beta-packet of oxides and hydroxides minerals includes 88 known minerals and five chemical compounds - N2O5, CO2, CO, SO3 and SO2. Two minerals of the packet have not been determined yet. Besides, beta-packet of minerals with sulfur, selenium or arsenic is composed, with one mineral not defined yet. The results of the calculations can be used for further development of the Periodic Table of Chemical Elements and Chemical Compounds and their properties investigation.

  2. Chemical dynamics in the gas phase: Time-dependent quantum mechanics of chemical reactions

    SciTech Connect (OSTI)

    Gray, S.K. [Argonne National Laboratory, IL (United States)

    1993-12-01

    A major goal of this research is to obtain an understanding of the molecular reaction dynamics of three and four atom chemical reactions using numerically accurate quantum dynamics. This work involves: (i) the development and/or improvement of accurate quantum mechanical methods for the calculation and analysis of the properties of chemical reactions (e.g., rate constants and product distributions), and (ii) the determination of accurate dynamical results for selected chemical systems, which allow one to compare directly with experiment, determine the reliability of the underlying potential energy surfaces, and test the validity of approximate theories. This research emphasizes the use of recently developed time-dependent quantum mechanical methods, i.e. wave packet methods.

  3. DOE contractor's meeting on chemical toxicity

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    The Office of Health and Environmental Research (OHER) is required to determine the potential health and environmental effects associated with energy production and use. To ensure appropriate communication among investigators and scientific disciplines that these research studies represent, OHER has sponsored workshops. This document provides a compilation of activities at the Third Annual DOE/OHER Workshop. This year's workshop was broadened to include all OHER activities identified as within the chemical effects area. The workshop consisted of eight sessions entitled Isolation and Detection of Toxic chemicals; Adduct Formation and Repair; Chemical Toxicity (Posters); Metabolism and Genotoxicity; Inhalation Toxicology; Gene Regulation; Metals Toxicity; and Biological Mechanisms. This document contains abstracts of the information presented by session.

  4. Micromachined chemical jet dispenser

    DOE Patents [OSTI]

    Swierkowski, S.P.

    1999-03-02

    A dispenser is disclosed for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 {micro}m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (ca. 200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments. 4 figs.

  5. Micromachined chemical jet dispenser

    DOE Patents [OSTI]

    Swierkowski, Steve P. (Livermore, CA)

    1999-03-02

    A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.

  6. Chemical Engineering and Materials Science

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Chemical Engineering and Materials Science COLLEGE of ENGINEERING DepartmentofChemicalEngineering-credit EDGE Engineering Entrepreneur Certificate Program is a great addition to a chemical engineering t engineering.wayne.edu/che #12;What is chemical engineering? Imagine saving the lives of pediatric patients

  7. NETL - Chemical Looping Reactor

    SciTech Connect (OSTI)

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  8. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  9. Simulation of the Chemical Potential and the Cavity Free Energy of Dense Hardsphere

    E-Print Network [OSTI]

    Attard, Phil

    , 2225­2231 (1993). Abstract The chemical potential of dense hard­sphere fluids, and also the workSimulation of the Chemical Potential and the Cavity Free Energy of Dense Hard­sphere Fluids Phil computer algorithm is also given. I. Introduction The chemical potential determines the number of molecules

  10. Chemical Engineering Science 63 (2008) 856861 www.elsevier.com/locate/ces

    E-Print Network [OSTI]

    2008-01-01

    Chemical Engineering Science 63 (2008) 856­861 www.elsevier.com/locate/ces Determination of mass Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA correlations have been used to predict gas and liquid mass transfer coefficients in chemical engineering

  11. CX-012384: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Eleven Soil Bores Along the M-Area Abandoned Process Sewer Line for Vadose Zone Characterization CX(s) Applied: B3.1 Date: 05/19/2014 Location(s): South Carolina Offices(s): Savannah River Operations Office

  12. CX-007673: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Edible Oil Deployment for Enhanced Chlorinated Volatile Organic Compounds Attenuation at the M Area Abandoned Process Sewer Line CX(s) Applied: B3.1 Date: 10/25/2011 Location(s): South Carolina Offices(s): Savannah River Operations Office

  13. CHEMICAL ENGINEERING Graduation Checklist Bachelor of Science in Chemical Engineering

    E-Print Network [OSTI]

    Zallen, Richard

    CHEMICAL ENGINEERING Graduation Checklist Bachelor of Science in Chemical Engineering College of Engineering For Students Graduating in Calendar Year 2014 (Co-op students graduating in Calendar Year 2015

  14. Appendix H. Chemicals Appendix H. Chemicals H-3

    E-Print Network [OSTI]

    Pennycook, Steve

    . Through the use of chemicals, we can increase food production, cure diseases, build more efficient houses for the construction of homes may contain chemicals such as formaldehyde (in some insulation materials), asbestos

  15. Appendix B: Chemicals Appendix B: Chemicals B-3

    E-Print Network [OSTI]

    Pennycook, Steve

    of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people materials used for the construction of homes may contain chemicals such as formaldehyde (in some insulation

  16. Appendix G. Chemicals Appendix G. Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    . Through the use of chemicals, we can increase food production, cure diseases, build more efficient houses for the construction of homes may contain chemicals such as formaldehyde (in some insulation materials), asbestos

  17. Chemical Reactions at Surfaces

    SciTech Connect (OSTI)

    Michael Henderson and Nancy Ryan Gray

    2010-04-14

    Chemical reactions at surfaces underlie some of the most important processes of today, including catalysis, energy conversion, microelectronics, human health and the environment. Understanding surface chemical reactions at a fundamental level is at the core of the field of surface science. The Gordon Research Conference on Chemical Reactions at Surfaces is one of the premiere meetings in the field. The program this year will cover a broad range of topics, including heterogeneous catalysis and surface chemistry, surfaces in environmental chemistry and energy conversion, reactions at the liquid-solid and liquid-gas interface, electronic materials growth and surface modification, biological interfaces, and electrons and photons at surfaces. An exciting program is planned, with contributions from outstanding speakers and discussion leaders from the international scientific community. The conference provides a dynamic environment with ample time for discussion and interaction. Attendees are encouraged to present posters; the poster sessions are historically well attended and stimulate additional discussions. The conference provides an excellent opportunity for junior researchers (e.g. graduate students or postdocs) to present their work and interact with established leaders in the field.

  18. Chemical Hygiene and Safety Plan

    E-Print Network [OSTI]

    Ricks Editor, R.

    2009-01-01

    Radioactive Hazardous or Other Location LBL On-Site Bldgs.hazardous chemicals usedin the laboratory: and (v} The locationhazardous chemicals are present: and. (irl}The location and

  19. LLNL Chemical Kinetics Modeling Group

    SciTech Connect (OSTI)

    Pitz, W J; Westbrook, C K; Mehl, M; Herbinet, O; Curran, H J; Silke, E J

    2008-09-24

    The LLNL chemical kinetics modeling group has been responsible for much progress in the development of chemical kinetic models for practical fuels. The group began its work in the early 1970s, developing chemical kinetic models for methane, ethane, ethanol and halogenated inhibitors. Most recently, it has been developing chemical kinetic models for large n-alkanes, cycloalkanes, hexenes, and large methyl esters. These component models are needed to represent gasoline, diesel, jet, and oil-sand-derived fuels.

  20. Programmability of Chemical Reaction Networks

    E-Print Network [OSTI]

    Winfree, Erik

    Programmability of Chemical Reaction Networks Matthew Cook1 , David Soloveichik2 , Erik Winfree2 Chemical Reaction Networks (SCRNs), a for- mal model that considers a set of chemical reactions acting Logic Circuits, Vector Addition Systems, Petri Nets, Gate Implementability, Primitive Recursive

  1. Nonlinear chemical dynamics Francesc Sagusa

    E-Print Network [OSTI]

    Epstein, Irving R.

    Nonlinear chemical dynamics Francesc Saguésa and Irving R. Epsteinb a Departament de Química Física March 2003 The interdisciplinary field of nonlinear chemical dynamics has grown significantly in breadth an overview of some of the key results of nonlinear chemical dynamics, with emphasis on those areas most

  2. CHEMICAL LABORATORY SAFETY AND METHODOLOGY

    E-Print Network [OSTI]

    Northern British Columbia, University of

    CHEMICAL LABORATORY SAFETY AND METHODOLOGY MANUAL August 2013 #12;ii Emergency Numbers UNBC Prince-Emergency Numbers UNBC Prince George Campus Chemstores 6472 Chemical Safety 6472 Radiation Safety 6472 Biological the safe use, storage, handling, waste and emergency management of chemicals on the University of Northern

  3. Qualitative Theory and Chemical Explanation

    E-Print Network [OSTI]

    Weisberg, Michael

    Abstract Roald Hoffmann and other theorists claim that we we ought to use highly idealized chemical modelsQualitative Theory and Chemical Explanation Michael Weisberg Stanford University February 15, 2003 ("qualitative models") in order to in- crease our understanding of chemical phenomena, even though other models

  4. 48 Chemical Engineering Education Incorporating

    E-Print Network [OSTI]

    Hesketh, Robert

    48 Chemical Engineering Education Incorporating GREEN ENGINEERING Into a Material and Energy prob- lems in chemical engineering. Problems of the type that can be used to motivate the student-mail: wilkes@umich.edu), Chemical Engineering Department, University of Michigan, Ann Arbor, MI 48109

  5. Ultrafast Laser Spectroscopyof Chemical Reactions

    E-Print Network [OSTI]

    Zewail, Ahmed

    Ultrafast Laser Spectroscopyof Chemical Reactions - Joseph L. Kneeand AhmedH. Zewail California of chemical physics is to understand how chemi- cal reactions complete their journey from reactants to prod at the molecular level. The making of new bonds (and the breaking of old ones) in elementary chemical reactions

  6. Methods in Industrial Biotechnology for Chemical Engineers

    E-Print Network [OSTI]

    W. B. Vasantha Kandasamy; Florentin Smarandache

    2008-07-13

    In keeping with the definition that biotechnology is really no more than a name given to a set of techniques and processes, the authors apply some set of fuzzy techniques to chemical industry problems such as finding the proper proportion of raw mix to control pollution, to study flow rates, to find out the better quality of products. We use fuzzy control theory, fuzzy neural networks, fuzzy relational equations, genetic algorithms to these problems for solutions. When the solution to the problem can have certain concepts or attributes as indeterminate, the only model that can tackle such a situation is the neutrosophic model. The authors have also used these models in this book to study the use of biotechnology in chemical industries. This book has six chapters. First chapter gives a brief description of biotechnology. Second chapter deals will proper proportion of mix of raw materials in cement industries to minimize pollution using fuzzy control theory. Chapter three gives the method of determination of temperature set point for crude oil in oil refineries. Chapter four studies the flow rates in chemical industries using fuzzy neutral networks. Chapter five gives the method of minimization of waste gas flow in chemical industries using fuzzy linear programming. The final chapter suggests when in these studies indeterminancy is an attribute or concept involved, the notion of neutrosophic methods can be adopted.

  7. Chemical kinetics modeling

    SciTech Connect (OSTI)

    Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Laboratory, CA (United States)

    1993-12-01

    This project emphasizes numerical modeling of chemical kinetics of combustion, including applications in both practical combustion systems and in controlled laboratory experiments. Elementary reaction rate parameters are combined into mechanisms which then describe the overall reaction of the fuels being studied. Detailed sensitivity analyses are used to identify those reaction rates and product species distributions to which the results are most sensitive and therefore warrant the greatest attention from other experimental and theoretical research programs. Experimental data from a variety of environments are combined together to validate the reaction mechanisms, including results from laminar flames, shock tubes, flow systems, detonations, and even internal combustion engines.

  8. Sandia Energy - Chemical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygen GenerationTechnologies |EducationChemical Sciences Home Energy

  9. Carbon Emissions: Chemicals Industry

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0ProvedDecade2,948California (MillionThousandChemicals Industry

  10. CHEMICAL SIGNATURES FOR SUPERHEAVY ELEMENTARY PARTICLES

    E-Print Network [OSTI]

    Cahn, Robert N.

    2014-01-01

    of the Elements, Journal of Chemical Education, publishers,1977). weights, these new chemicals might have undergoneisotopes up to 17 Gev CHEMICAL SIGNATURES FOR SUPERHEAVY

  11. Chemical & Engineering Materials | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical and Engineering Materials SHARE Chemical and Engineering Materials Neutron-based research at SNS and HFIR in Chemical and Engineering Materials strives to understand the...

  12. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate intallation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  13. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  14. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1984-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to faciliate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  15. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2853-A Hickory Pl., Costa Mesa, CA 92626)

    1981-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure, as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer.

  16. Gas phase chemical detection with an integrated chemical analysis system

    SciTech Connect (OSTI)

    CASALNUOVO,STEPHEN A.; FRYE-MASON,GREGORY CHARLES; KOTTENSTETTE,RICHARD; HELLER,EDWIN J.; MATZKE,CAROLYN M.; LEWIS,PATRICK R.; MANGINELL,RONALD P.; BACA,ALBERT G.; HIETALA,VINCENT M.

    2000-04-12

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample preconcentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described.

  17. 198 Chemical Engineering Education AN INTRODUCTION TO

    E-Print Network [OSTI]

    Hesketh, Robert

    198 Chemical Engineering Education AN INTRODUCTION TO DRUG DELIVERY FOR CHEMICAL ENGINEERS- maceutical sciences, engineering, and chemistry. Chemical en- gineers play an important role in this exciting- dergraduate chemical engineering students are rarely exposed to drug delivery through their coursework

  18. Gas Phase Chemical Detection with an Integrated Chemical Analysis System

    SciTech Connect (OSTI)

    Baca, Albert G.; Casalnuovo, Stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Susan L.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Manginell, Ronald P.; Matzke, Carloyn M.; Reno, John L.; Sasaki, Darryl Y.; Schubert, W. Kent

    1999-07-08

    Microfabrication technology has been applied to the development of a miniature, multi-channel gas phase chemical laboratory that provides fast response, small size, and enhanced versatility and chemical discrimination. Each analysis channel includes a sample concentrator followed by a gas chromatographic separator and a chemically selective surface acoustic wave detector array to achieve high sensitivity and selectivity. The performance of the components, individually and collectively, is described. The design and performance of novel micromachined acoustic wave devices, with the potential for improved chemical sensitivity, are also described.

  19. Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology to Identify Potential Reductions in Utility and Process Energy Consumption Solutia: Massachusetts Chemical...

  20. Chemical Burn Secondary to Propofol Extravasation

    E-Print Network [OSTI]

    Sharma, Rahul; Yoshikawa, Hana; Abisaab, Josyann

    2012-01-01

    IN E MERGENCY M EDICINE Chemical Burn Secondary to Propofolof Emergency Medicine Chemical Burn Secondary to Propofol

  1. Interdisciplinary: Chemical Engineer/Mechanical Engineer (Pathways...

    Energy Savers [EERE]

    Interdisciplinary: Chemical EngineerMechanical Engineer (Pathways Recent Graduate Program) Interdisciplinary: Chemical EngineerMechanical Engineer (Pathways Recent Graduate...

  2. Multidimensional simulation and chemical kinetics development...

    Energy Savers [EERE]

    Multidimensional simulation and chemical kinetics development for high efficiency clean combustion engines Multidimensional simulation and chemical kinetics development for high...

  3. Fluid properties determine flow line blockage potential

    SciTech Connect (OSTI)

    Hunt, A.

    1996-07-15

    A thorough understanding of fluid properties helps in determining the potential of hydrates, paraffins, or asphaltenes to block subsea flow lines. Thermal, chemical, and mechanical methods are the main ways for preventing deposition. Already in both the North Sea and the Gulf of Mexico, blockages have led to significant losses in production and reserves recovery. This first article in a two-part series discusses thermal and chemical methods in overcoming fluid behavior problems caused by hydrate and other fluid constituents in subsea multiphase flow. The paper discusses subsea production, possible problems, nucleation, growth, deposition, preventing deposition, hydrate predictions, multiphase flow, and hydrate inhibition.

  4. The unfought chemical war

    SciTech Connect (OSTI)

    Freeman, K. (Pennsylvania State Univ., University Park (United States))

    1991-12-01

    In December 1943, in the middle of the scorching northern Australia summer, a young Australian commando, Tom Mitchell, sweated in his respirator and gas-protective clothing as he got ready to take part in a mustard-gas experiment. He grimly watched six US aircraft, B-24 Liberators, drop bombs filled with mustard gas on Brook Island, near Innisfail in the state of Queensland. Ten minutes later, Mitchell was rushing around the island to tend sampling equipment. But a few hours later, he and another Australian soldier were ordered back onto the island - this time, stripped of their respirators and protective clothing. They were forced to camp on the island from dusk to dawn in ordinary clothing without any safety equipment. Mitchell now suffers from lung and heart disease. Last year, nearly 47 years after he was burned, Mitchell settled with the Australian government for $25,000 (Australian). Publicity over his lawsuit, filed in 1981, along with revelations made in a documentary film broadcast in Australia in 1989, has prompted thousands of other Australian survivors of chemical-warfare tests to ask the Australian Department of Veterans Affairs for disability benefits. Veterans of chemical-warfare tests are also breaking their silence in the United States and Canada, stepping forward to seek compensation for their injuries. The impetus behind the US revelations came from a campaign begun in 1989 by Cong. Porter Goss, a Florida Republican, to win benefits for four participants in US Navy mustard-gas tests. During a flurry of publicity in mid-June 1991, the Department of Veterans Affairs announced that it was relaxing its rules to make it easier for World War 2 mustard-gas victims to collect benefits. In Canada, an information hot line run by the Department of National Defense in 1988 and a 1989 book by John Bryden, Deadly Allies: Canada's Secret War 1937-1947, brought the tests to national attention.

  5. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard (2750-C Segerstrom Ave., Santa Ana, CA 92704)

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  6. The Periodic Table as a Part of the Periodic Table of Chemical Compounds

    E-Print Network [OSTI]

    Labushev, Mikhail M

    2011-01-01

    The numbers of natural chemical elements, minerals, inorganic and organic chemical compounds are determined by 1, 2, 3 and 4-combinations of a set 95 and are respectively equal to 95, 4,465, 138,415 and 3,183,545. To explain these relations it is suggested the concept of information coefficient of proportionality as mathematical generalization of the proportionality coefficient for any set of positive numbers. It is suggested a hypothesis that the unimodal distributions of the sets of information coefficients of proportionality for atomic weights of chemical elements of minerals and chemical compounds correspond to unimodal distributions of the above sets for combination of 2, 3 and 4 atomic weights of 95 natural chemical elements. The expected values of symmetrized distributions of information coefficients of proportionality sets for atomic weights of minerals and chemical compounds are proposed to be used to define chemical compounds, like atomic weights define chemical elements. Variational series of the e...

  7. Chemical Engineering | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical and Engineering Materials Clean Energy Nuclear Sciences Computer Science Earth and Atmospheric Sciences Materials Science and Engineering Mathematics Physics Environment...

  8. Chemical substructure analysis in toxicology

    SciTech Connect (OSTI)

    Beauchamp, R.O. Jr.

    1990-12-31

    A preliminary examination of chemical-substructure analysis (CSA) demonstrates the effective use of the Chemical Abstracts compound connectivity file in conjunction with the bibliographic file for relating chemical structures to biological activity. The importance of considering the role of metabolic intermediates under a variety of conditions is illustrated, suggesting structures that should be examined that may exhibit potential activity. This CSA technique, which utilizes existing large files accessible with online personal computers, is recommended for use as another tool in examining chemicals in drugs. 2 refs., 4 figs.

  9. Bioengineering/Chemical Engineering Building,

    E-Print Network [OSTI]

    Bogyo, Matthew

    BioE/ChemE Building Bioengineering/Chemical Engineering Building, Under Construction Lucile Packard Graduate Residences Sterling Quad Mirrielees Pearce Mitchell Houses Stanford Hospital Varsity Lot Jordan

  10. FAQS Reference Guide- Chemical Processing

    Office of Energy Efficiency and Renewable Energy (EERE)

    This reference guide addresses the competency statements in the February 2010 edition of DOE-STD-1176-2010, Chemical Processing Functional Area Qualification Standard.

  11. Markers of chemically induced cancer

    SciTech Connect (OSTI)

    Freeman, G.; Milman, H.A. (eds.)

    1984-01-01

    This book is a concise review and evaluation of available data for recognizing and measuring markers of cancer or oncogenesis provoked in vivo by chemicals using relatively short-term experiments in animals. This review focuses on biochemical and immunological changes that correlate with carcinogenicity. Such ''markers,'' if occurring early enough, may be used to predict the onset of cancer in experimental animals exposed to potential chemical carcinogens long before morphological changes are seen. It is by examining all the information available about the potential carcinogenicity of chemicals that proper decisions can be made towards limiting the risk of cancer due to exposure to chemical carcinogens.

  12. Process Intensification - Chemical Sector Focus

    Office of Environmental Management (EM)

    with opportunity space in 76 chemicals, petroleum refining, plastics, forest products, oil and gas production, and food industries 77 among others. PI innovation could deliver...

  13. Theoretical studies of chemical reaction dynamics

    SciTech Connect (OSTI)

    Schatz, G.C. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This collaborative program with the Theoretical Chemistry Group at Argonne involves theoretical studies of gas phase chemical reactions and related energy transfer and photodissociation processes. Many of the reactions studied are of direct relevance to combustion; others are selected they provide important examples of special dynamical processes, or are of relevance to experimental measurements. Both classical trajectory and quantum reactive scattering methods are used for these studies, and the types of information determined range from thermal rate constants to state to state differential cross sections.

  14. Chemical engineers design, control and optimize large-scale chemical,

    E-Print Network [OSTI]

    Rohs, Remo

    of equilibrium phase relations and principles of material and energy balance for design, operation of Probability and Statistics for Chemical Engineers (3, Fa) Principles of probability and statistics, random to Biomaterials and Tissue Engineering (3, Fa) (Enroll in BME 410) CHE 442 Chemical Reactor Analysis (3, Fa) Basic

  15. INCOMPATIBLE CHEMICAL LIST PRUDENT PRACTICES FOR HANDLING CHEMICALS IN LABORATORIES

    E-Print Network [OSTI]

    Zhang, Zhongfei "Mark"

    of Incompatible Chemicals CHEMICAL IS INCOMPATIBLE WITH Acetic Acid Chromic acid, nitric acid, hydroxyl compounds, finely divided organic or combustible materials Chromic acid and chromium trioxide Acetic acid Acetylene, fulminic acid, ammonia Nitrates Sulfuric acid Nitric acid (concentrated) Acetic acid, aniline

  16. UCI Chemical Hygiene Plan i August 2014 CHEMICAL HYGIENE PLAN

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    UCI Chemical Hygiene Plan i August 2014 CHEMICAL HYGIENE PLAN University of California, Irvine Environmental Health and Safety 4600 Health Sciences Road, Irvine, California 92697-2725 (949) 824-6200, Fax......................................................................................5-1 Chapter 6: Inventory, Labeling, Storage, , and Transport

  17. Clare Reimers Professor, Chemical Oceanography

    E-Print Network [OSTI]

    Kurapov, Alexander

    Clare Reimers Professor, Chemical Oceanography Clare Reimers, Professor of Chemical Oceanography research, education and outreach in fields including geology, oceanography, atmospheric sciences, volcanism in 1976 from the University of Virginia. She received an MS in Oceanography in 1978 and a PhD in 1982 from

  18. Chemical Evolution in Omega Centauri

    E-Print Network [OSTI]

    Verne V. Smith

    2003-10-22

    The globular cluster Omega Centauri displays evidence of a complex star formation history and peculiar internal chemical evolution, setting it apart from essentially all other globular clusters of the Milky Way. In this review we discuss the nature of the chemical evolution that has occurred within Omega Cen and attempt to construct a simple scenario to explain its chemistry.

  19. Method of forming a chemical composition

    DOE Patents [OSTI]

    Bingham, Dennis N. (Idaho Falls, ID); Wilding, Bruce M. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Zollinger, William T. (Idaho Falls, ID); Wendt, Kraig M. (Idaho Falls, ID)

    2007-10-09

    A method of forming a chemical composition such as a chemical hydride is described and which includes the steps of selecting a composition having chemical bonds and which is capable of forming a chemical hydride; providing a source of hydrogen; and exposing the selected composition to an amount of ionizing radiation to encourage the changing of the chemical bonds of the selected composition, and chemically reacting the selected composition with the source of hydrogen to facilitate the formation of a chemical hydride.

  20. Chemical analysis quality assurance at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Hand, R.L.; Anselmo, R.W.; Black, D.B.; Jacobson, J.J.; Lewis, L.C.; Marushia, P.C.; Spraktes, F.W.; Zack, N.R.

    1985-01-01

    The Idaho Chemical Processing Plant (ICPP) is a uranium reprocessing facility operated by Westinghouse Idaho Nuclear Company for the Department of Energy at the Idaho National Engineering Laboratory (INEL). The chemical analysis support required for the plant processes is provided by a chemical analysis staff of 67 chemists, analysts, and support personnel. The documentation and defense of the chemical analysis data at the ICPP has evolved into a complete chemical analysis quality assurance program with training/qualification and requalification, chemical analysis procedures, records management and chemical analysis methods quality control as major elements. The quality assurance procedures are implemented on a central analytical computer system. The individual features provided by the computer system are automatic method selection for process streams, automation of method calculations, automatic assignment of bias and precision estimates at analysis levels to all method results, analyst specific daily requalification or with-method-use requalification, untrained or unqualified analyst method lockout, statistical testing of process stream results for replicate agreement, automatic testing of process results against pre-established operating, safety, or failure limits at varying confidence levels, and automatic transfer and report of analysis data plus the results of all statistical testing to the Production Department.

  1. Chemical Peeling of Tomatoes. 

    E-Print Network [OSTI]

    Heddins, Gerald C.; Burns, E. E.

    1965-01-01

    percent NaOH (230" F.) for 20 seconds, 4> percetlt CaCI, (a6 F.) JW seconds and water (212" F.) for 90 seconds, respectively. The fruits were photographed immediately after scalding. bical Peeling of Tomatoes UNIVERSITY Summary I Tomato fruits... of the Chico and Homestead varieties were scalded in solutions of water, NaOH and CaC12 at various concentrations, times and tem- peratures. Fruits were weighed before and after ' peeling to determine percent weight loss and were. , visually rated...

  2. 7 April 2000 Z .Chemical Physics Letters 320 2000 339344

    E-Print Network [OSTI]

    Zare, Richard N.

    7 April 2000 Z .Chemical Physics Letters 320 2000 339­344 www.elsevier.nlrlocatercplett SpatialÕersity, Stanford CA 94305, USA Received 22 February 2000 Abstract Spatial concentration and temperature profiles x w xfilament the H r H ratio is determined to be 0.011"0.003. q 2000 Elsevier Science B.V. All

  3. Alternative, Renewable and Novel Feedstocks for Producing Chemicals

    SciTech Connect (OSTI)

    none,

    2007-07-01

    Vision2020 and ITP directed the Alternative, Renewable and Novel Feedstocks project to identify industrial options and to determine the work required to make alternative, renewable and novel feedstock options attractive to the U.S. chemicals industry. This report presents the Alternative, Renewable and Novel Feedstocks project findings which were based on a technology review and industry workshop.

  4. INTEGRATION OF OPTOELECTRONICS AND MICROFLUIDICS FOR BIOLOGICAL AND CHEMICAL SENSING

    E-Print Network [OSTI]

    Quake, Stephen R.

    INTEGRATION OF OPTOELECTRONICS AND MICROFLUIDICS FOR BIOLOGICAL AND CHEMICAL SENSING Thesis by Mark Over the past decade, rapid advances in microfluidics have led to the creation of valves, pumps, mixers of microfluidics is the need for a typically large interrogation setup to determine what is actually happening

  5. THE JOURNAL OF CHEMICAL PHYSICS 135, 084103 (2011) How accurate are the nonlinear chemical Fokker-Planck and chemical

    E-Print Network [OSTI]

    Straube, Arthur V.

    2011-01-01

    THE JOURNAL OF CHEMICAL PHYSICS 135, 084103 (2011) How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations? Ramon Grima,1,a) Philipp Thomas,1,2 and Arthur V. Straube2 1 School August 2011) The chemical Fokker-Planck equation and the corresponding chemical Langevin equation are com

  6. The breakthrough time and permeation rate of three organic chemicals for selected glove combinations 

    E-Print Network [OSTI]

    Binion, Pete Edwin

    1992-01-01

    rates and breakthrough times were determined for the five different glove combinations versus three test chemicals using the Miran-lA infrared analyzer in a closed loop system. The polymers tested were natural rubber (NR), polyvinyl chloride (PVC... time and permeation rate when tested against three different challenge chemicals. PVC gloves with nitrile liners appeared to provide the most protection time against breakthrough for all three chemicals. The PVC gloves showed excellent resistance...

  7. Experimental characterization and chemical kinetics study of chemical looping combustion

    E-Print Network [OSTI]

    Chen, Tianjiao, S.M. Massachusetts Institute of Technology

    2014-01-01

    Chemical looping combustion (CLC) is one of the most promising technologies to achieve carbon capture in fossil fuel power generation plants. A novel rotary-bed reactor concept was proposed by Zhao et. al. [1] in 2013. It ...

  8. Appendix G: Chemicals Appendix G: Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people such as formaldehyde (in some insulation materials), asbestos (formerly used in insulations and ceiling tiles

  9. Appendix H: Chemicals Appendix H: Chemicals H-3

    E-Print Network [OSTI]

    Pennycook, Steve

    of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people such as formaldehyde (in some insulation materials), asbestos (formerly used in insulations and ceiling tiles

  10. Appendix G. Chemicals Appendix G. Chemicals G-3

    E-Print Network [OSTI]

    Pennycook, Steve

    of chemicals, we can increase food production, cure diseases, build more efficient houses, and send people such as formaldehyde (in some insulation materials), asbestos (formerly used in insulations and ceiling tiles

  11. Coatings with controlled porosity and chemical properties

    DOE Patents [OSTI]

    Frye, G.C.; Brinker, C.J.; Doughty, D.H.; Bein, T.; Moller, K.

    1993-07-06

    Coatings and sensors are described having both steric and chemical selectivity. Controlled porosity provides the steric selectivity, whereas chemically tailored film properties, using controlled composition or modification by coupling agents, chemical species replacement, or chemical species within pores, provide the chemical selectivity. Single or multiple layers may be provided.

  12. Laser MicroChemical Shaping of Silicon

    E-Print Network [OSTI]

    Burns, Michael J.

    Laser MicroChemical Shaping of Silicon MURI Workshop Feb 28, 2005 Michael J. Burns, Ph.D. LMC Product Manager #12;FEI Copyright © 2005 Vectra LMC 9900 2 Laser Micro Chemical (LMC) ·Use of laser light to induce local chemical reactions. ·Both Laser Chemical Etching (LCE) and Laser Chemical Deposition (LCD

  13. Chemical Safety Why are you here

    E-Print Network [OSTI]

    Krovi, Venkat

    Chemical Safety in the Laboratory #12;Why are you here · Work with Chemicals · Generate Hazardous Wastes · May have to respond to Chemical Spills #12;Goals Reduce injuries and illnesses related to chemical use Protect the environment Safely manage chemical wastes Comply with local, state and federal

  14. Chemical Hydrogen Storage Center Center of Excellence

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    Chemical Hydrogen Storage Center Center of Excellence for Chemical Hydrogen Storage William Tumas proprietary or confidential information #12;2 Chemical Hydrogen Storage Center Overview Project Start Date: FY Barriers Addressed #12;3 Chemical Hydrogen Storage Center Chemical Hydrogen Storage Center National

  15. Tank 48 - Chemical Destruction

    SciTech Connect (OSTI)

    Simner, Steven P.; Aponte, Celia I.; Brass, Earl A.

    2013-01-09

    Small tank copper-catalyzed peroxide oxidation (CCPO) is a potentially viable technology to facilitate the destruction of tetraphenylborate (TPB) organic solids contained within the Tank 48H waste at the Savannah River Site (SRS). A maturation strategy was created that identified a number of near-term development activities required to determine the viability of the CCPO process, and subsequent disposition of the CCPO effluent. Critical activities included laboratory-scale validation of the process and identification of forward transfer paths for the CCPO effluent. The technical documentation and the successful application of the CCPO process on simulated Tank 48 waste confirm that the CCPO process is a viable process for the disposition of the Tank 48 contents.

  16. Solar Chemical Peculiarities?

    E-Print Network [OSTI]

    Carlos Allende Prieto

    2006-12-08

    Several investigations of FGK stars in the solar neighborhood have suggested that thin-disk stars with an iron abundance similar to the Sun appear to show higher abundances of other elements, such as silicon, titanium, or nickel. Offsets could arise if the samples contain stars with ages, mean galactocentric distances, or kinematics, that differ on average from the solar values. They could also arise due to systematic errors in the abundance determinations, if the samples contain stars that are different from the Sun regarding their atmospheric parameters. We re-examine this issue by studying a sample of 80 nearby stars with solar-like colors and luminosities. Among these solar "analogs", the objects with solar iron abundances exhibit solar abundances of carbon, silicon, calcium, titanium and nickel.

  17. Determining risks for hazardous material operations

    SciTech Connect (OSTI)

    Cournoyer, M. E.; Dare, J. H.

    2002-01-01

    Integrated Safety Management (ISM) is structured to manage and control work at the activity level. Fundamental to ISM is that all work will be performed safely while meeting the applicable institutional-, facility-, and activity-level expectations. High and medium initial risk activities require certain levels of independent peer and/or Environmental, Health & Safety subject matter expert reviews prior to authorization. A key responsibility of line management and chemical workers is to assign initial risk adequately, so that the proper reviews are obtained. Thus, the effectiveness of an ISM system is largely dependent upon the adequacy and accuracy of this initial risk determination. In the following presentation, a Risk Determination Model (RDM) is presented for physical, health and ecological hazards associated with materials. Magnitude of exposure (Le., dose or concentration), frequency, duration, and quantity are the four factors most difficult to capture in a research and development setting. They are factored into the determination, as a function of the quantity of material. Quantity and magnitude of exposure components are simplified by using boundary criteria. This RDM will promote conformity and consistency in the assignment of risk to hazardous material activities. In conclusion, the risk assessors (line manager and chemical worker) should be capable of more accurately assessing the risk of exposure to a specific chemical with regard to the employee, public, and the environment.

  18. Chemical microreactor and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D. (Martinez, CA); Jankowski, Alan (Livermore, CA)

    2011-08-09

    A method for forming a chemical microreactor includes forming at least one capillary microchannel in a substrate having at least one inlet and at least one outlet, integrating at least one heater into the chemical microreactor, interfacing the capillary microchannel with a liquid chemical reservoir at the inlet of the capillary microchannel, and interfacing the capillary microchannel with a porous membrane near the outlet of the capillary microchannel, the porous membrane being positioned beyond the outlet of the capillary microchannel, wherein the porous membrane has at least one catalyst material imbedded therein.

  19. Integrated Chemical Complex and Cogeneration Analysis System: Energy Conservation and Greenhouse Gas Management Solutions

    E-Print Network [OSTI]

    Pike, Ralph W.

    to determine the best configuration of plants in a chemical complex based the AIChE Total Cost Assessment(TCA) for economic, energy, environmental and sustainable costs and incorporates EPA Pollution Index methodology (WAR19f Integrated Chemical Complex and Cogeneration Analysis System: Energy Conservation

  20. Effects of chemical additives on hydrocarbon disappearance and biodegradation in freshwater marsh microcosms

    E-Print Network [OSTI]

    Nyman, John

    determined the concentration of four total petroleum hydrocarbon (TPH) measures and 43 target hydro- carbonsEffects of chemical additives on hydrocarbon disappearance and biodegradation in freshwater marsh 2006 Hydrocarbon disappearance and biodegradation were insensitive to common commercial additives

  1. A method for using polyethylene passive samplers to measure polycyclic aromatic hydrocarbon chemical activity in sediments

    E-Print Network [OSTI]

    Fernandez, Loretta A. (Loretta Ana)

    2005-01-01

    In order to aid in the determination of the hazards posed by hydrophobic organic compounds (HOCs) in sediment beds, a method for the use of polyethylene (PE) sheets as passive sampling devices for measuring chemical ...

  2. Chemical characterization of dissolved organic matter (DOM) in seawater : structure, cycling, and the role of biology

    E-Print Network [OSTI]

    Quan, Tracy M. (Tracy Michelle), 1977-

    2005-01-01

    The goal of this thesis is to investigate three different areas relating to the characterization of dissolved organic matter (DOM): further determination of the chemical compounds present in high molecular weight DOM ...

  3. Improving liquid chemical intervention methods to control pathogens on fresh-cut fruits and vegetables 

    E-Print Network [OSTI]

    Troya, Maria Rosa

    2006-08-16

    effectiveness of liquid chemical treatment was studied. Experiments determined if sanitizer contact with bacteria could be improved through the use of surfactants and different application methods (drop application method, negative pressure differential...

  4. Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds

    E-Print Network [OSTI]

    Truhlar, Donald G

    Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds Science the hydroxyl oxygen and alcoholic hydrogen stabilizes the transition state. Chemical & Engineering News ISSN 0009-2347 Copyright © 2010 American Chemical Society #12;

  5. Chemical and Biological Engineering Department Code 1 Department of Chemical & Biological Engineering

    E-Print Network [OSTI]

    Dandy, David

    Chemical and Biological Engineering Department Code 1 CODE of the Department of Chemical of Chemical & Biological Engineering. For clarity of presentation, some passages are copied directly from shall offer an undergraduate chemical and biological engineering program of technological, scientific

  6. The chemical abundances of the Ap star HD94660

    SciTech Connect (OSTI)

    Giarrusso, M. [Università di Catania, Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Via S. Sofia 78, 95123 Catania (Italy); INAF - Osservatorio Astrofisico di Catania, via S. Sofia 78, 95123 Catania (Italy); INFN - Laboratori Nazionali del Sud (Italy)

    2014-05-09

    In this work I present the determination of chemical abundances of the Ap star HD94660, a possible rapid oscillating star. As all the magnetic chemically peculiar objects, it presents CNO underabundance and overabundance of iron peak elements of ?100 times and of rare earths up to 4 dex with respect to the Sun. The determination was based on the conversion of the observed equivalent widths into abundances simultaneously to the determination of effective temperature and gravity. Since the Balmer lines of early type stars are very sensitive to the surface gravity while the flux distribution is sensitive to the effective temperature, I have adopted an iterative procedure to match the H{sub ?} line profile and the observed UV-Vis-NIR magnitudes of HD94660 looking for a consistency between the metallicity of the atmosphere model and the derived abundances. From my spectroscopic analysis, this star belongs to the no-rapid oscillating class.

  7. Bioengineering/Chemical Engineering Building,

    E-Print Network [OSTI]

    Straight, Aaron

    BioE/ChemE Building S-3 Parking Struct. 3 Bioengineering/Chemical Engineering Building, Under Hall Cowell Houses Schwab Residential Center Lyman Graduate Residences Sterling Quad Mirrielees Pearce

  8. Nonlinear response theory in chemical kinetics

    E-Print Network [OSTI]

    Kryvohuz, M; Mukamel, S

    2014-01-01

    ?D(t) are D 0 (t) = (1) Chemical reactions, N h i ( x , t) iOF NONLINEAR RESPONSE THEORY TO CHEMICAL KINETICS Equation (non- linear responses of chemical systems to perturbations

  9. Status of Chemical Freeze-Out

    E-Print Network [OSTI]

    J. Cleymans; H. Oeschler; K. Redlich; S. Wheaton

    2006-07-14

    The status of the energy dependence of the chemical freeze-out temperature and chemical potential obtained in heavy ion collisions is presented. Recent proposals for chemical freeze-out conditions are compared.

  10. Tribo-Chemical Modeling of Copper CMP

    E-Print Network [OSTI]

    Tripathi, Shantanu; Doyle, Fiona; Dornfeld, David

    2006-01-01

    TRIBO-CHEMICAL MODELING OF COPPER CMP Shantanu Tripathi 1 ,an integrated tribo-chemical model of copper CMP thatThe role of glycine in the chemical mechanical planarization

  11. CHEMICAL ENGINEERING 2014-2016 CATALOG

    E-Print Network [OSTI]

    Lightsey, Glenn

    CHEMICAL ENGINEERING 2014-2016 CATALOG (catalog valid until August 2022) Suggested Arrangement ..............................1 CHE 317, Intro to Chemical Engineering Analysis...................3 CH 353, Physical Chemistry Hours Spring Semester Semester Hours CHE 264, Chemical Engineering Process & Projects Lab........2 CHE

  12. Department of Chemical and Petroleum Engineering

    E-Print Network [OSTI]

    Department of Chemical and Petroleum Engineering 2012 "Fueling Tomorrow's Economy" Presentation ENVIRONMENTALBIOMEDICAL OILANDGAS Department of Chemical & Petroleum Engineering 2 Presentation Outline Program Details ­ Chemical Engineering Petroleum Minor Biomedical Specialization Energy and the Environment Specialization

  13. Appendix G. Chemicals Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    chemicals. Through the use of chemicals, we can increase food production, cure diseases, build more for the construction of homes may contain chemicals such as formaldehyde (in some insulation materials), asbestos

  14. LABORATORY CHEMICAL WASTE DISPOSAL POSTER (Post Near Chemical Waste Storage Area)

    E-Print Network [OSTI]

    WSTPS.rtf LABORATORY CHEMICAL WASTE DISPOSAL POSTER (Post Near Chemical Waste Storage Area) Excess Chemicals and Chemical Wastes · Toxic and Flammable Chemicals - These cannot go down the drain. Call Environmental Health and Safety (EHSO) at x-2723 for collection. · Corrosive Chemicals (Acids & Bases) - When

  15. Determination of a mutational spectrum

    DOE Patents [OSTI]

    Thilly, William G. (Winchester, MA); Keohavong, Phouthone (Cambridge, MA)

    1991-01-01

    A method of resolving (physically separating) mutant DNA from nonmutant DNA and a method of defining or establishing a mutational spectrum or profile of alterations present in nucleic acid sequences from a sample to be analyzed, such as a tissue or body fluid. The present method is based on the fact that it is possible, through the use of DGGE, to separate nucleic acid sequences which differ by only a single base change and on the ability to detect the separate mutant molecules. The present invention, in another aspect, relates to a method for determining a mutational spectrum in a DNA sequence of interest present in a population of cells. The method of the present invention is useful as a diagnostic or analytical tool in forensic science in assessing environmental and/or occupational exposures to potentially genetically toxic materials (also referred to as potential mutagens); in biotechnology, particularly in the study of the relationship between the amino acid sequence of enzymes and other biologically-active proteins or protein-containing substances and their respective functions; and in determining the effects of drugs, cosmetics and other chemicals for which toxicity data must be obtained.

  16. Keeping Tabs on the World's Dangerous Chemicals

    Office of Energy Efficiency and Renewable Energy (EERE)

    Sandia chemical engineer Nancy Jackson has worked in laboratories around the world to help ensure that chemicals are used safely and kept secure.

  17. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of chemical processes. Watching Catalysts at Work Catalysts-substances that speed up chemical reactions without themselves being consumed-are essential to the production of...

  18. Chemical and Petroleum Engineering Enrollment Form for _______________________

    E-Print Network [OSTI]

    Chemical and Petroleum Engineering Enrollment Form for _______________________ Semester, Year Name _____________________________________ KUID _______________ Major: Chemical Petroleum (circle one) Degree Program: BS MS PhD Curriculum Option

  19. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Print The heterogeneous catalysts used in most chemical processes typically consist of nanoscale metal or metal oxide particles...

  20. Nanoscale Chemical Imaging of a Working Catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanoscale Chemical Imaging of a Working Catalyst Nanoscale Chemical Imaging of a Working Catalyst Print Wednesday, 28 January 2009 00:00 The heterogeneous catalysts used in most...

  1. Chemical Hydrides for Hydrogen Storage in Fuel Cell Applications

    SciTech Connect (OSTI)

    Devarakonda, Maruthi N.; Brooks, Kriston P.; Ronnebro, Ewa; Rassat, Scot D.; Holladay, Jamelyn D.

    2012-04-16

    Due to its high hydrogen storage capacity (up to 19.6% by weight for the release of 2.5 molar equivalents of hydrogen gas) and its stability under typical ambient conditions, ammonia borane (AB) is a promising material for chemical hydrogen storage for fuel cell applications in transportation sector. Several systems models for chemical hydride materials such as solid AB, liquid AB and alane were developed and evaluated at PNNL to determine an optimal configuration that would meet the 2010 and future DOE targets for hydrogen storage. This paper presents an overview of those systems models and discusses the simulation results for various transient drive cycle scenarios.

  2. Chemical Homogeneity in Collinder 261 and Implications for Chemical Tagging

    E-Print Network [OSTI]

    G. M. De Silva; K. C. Freeman; M. Asplund; J. Bland-Hawthorn; M. S. Bessell; R. Collet

    2006-11-28

    This paper presents abundances for 12 red giants of the old open cluster Collinder 261 based on spectra from VLT/UVES. Abundances were derived for Na, Mg, Si, Ca, Mn, Fe, Ni, Zr and Ba. We find the cluster has a solar-level metallicity of [Fe/H] = -0.03 dex. However some alpha elements were found to be enhanced. The star-to-star scatter was consistent with the expected measurement uncertainty for all elements. The observed rms scatter is as follows: Na = 0.07, Mg = 0.05, Si = 0.06, Ca = 0.05, Mn = 0.03, Fe = 0.02, Ni = 0.04, Zr = 0.12, and Ba = 0.03 dex. The intrinsic scatter was estimated to be less than 0.05 dex. Such high levels of homogeneity indicate that chemical information remains preserved in this old open cluster. We use the chemical homogeneity we have now established in Cr 261, Hyades and the HR1614 moving group to examine the uniqueness of the individual cluster abundance patterns, ie. chemical signatures. We demonstrate that the three studied clusters have unique chemical signatures, and discuss how other such signatures may be searched for in the future. Our findings support the prospect of chemically tagging disk stars to common formation sites in order to unravel the dissipative history of the Galactic disk.

  3. Organic chemical aging mechanisms: An annotated bibliography. Waste Tank Safety Program

    SciTech Connect (OSTI)

    Samuels, W.D.; Camaioni, D.M.; Nelson, D.A.

    1993-09-01

    An annotated bibliography has been compiled of the potential chemical and radiological aging mechanisms of the organic constituents (non-ferrocyanide) that would likely be found in the UST at Hanford. The majority of the work that has been conducted on the aging of organic chemicals used for extraction and processing of nuclear materials has been in conjunction with the acid or PUREX type processes. At Hanford the waste being stored in the UST has been stabilized with caustic. The aging factors that were used in this work were radiolysis, hydrolysis and nitrite/nitrate oxidation. The purpose of this work was two-fold: to determine whether or not research had been or is currently being conducted on the species associated with the Hanford UST waste, either as a mixture or as individual chemicals or chemical functionalities, and to determine what areas of chemical aging need to be addressed by further research.

  4. Chemical Hygiene and Safety Plan

    SciTech Connect (OSTI)

    Berkner, K.

    1992-08-01

    The objective of this Chemical Hygiene and Safety Plan (CHSP) is to provide specific guidance to all LBL employees and contractors who use hazardous chemicals. This Plan, when implemented, fulfills the requirements of both the Federal OSHA Laboratory Standard (29 CFR 1910.1450) for laboratory workers, and the Federal OSHA Hazard Communication Standard (29 CFR 1910.1200) for non-laboratory operations (e.g., shops). It sets forth safety procedures and describes how LBL employees are informed about the potential chemical hazards in their work areas so they can avoid harmful exposures and safeguard their health. Generally, communication of this Plan will occur through training and the Plan will serve as a the framework and reference guide for that training.

  5. Chemical sciences, annual report 1993

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The Chemical Sciences Division (CSD) is one of eleven research Divisions of the Lawrence Berkeley Laboratory, a DOE National Laboratory. In FY 1993, the Division made considerable progress on developing two end-stations and a beamline to advance combustion dynamics at the Advanced Light Source (ALS). In support of DOE`s national role in combustion research and chemical science, the beamline effort will enable researchers from around the world to make fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients, and in understanding the dynamics of elementary chemical reactions. The Division has continued to place a strong emphasis on full compliance with environmental health and safety guidelines and regulations and has made progress in technology transfer to industry. Finally, the Division has begun a new program in advanced battery research and development that should help strengthen industrial competitiveness both at home and abroad.

  6. Chemical Hygiene Plan For University of Florida

    E-Print Network [OSTI]

    Slatton, Clint

    Chemical Hygiene Plan For University of Florida Laboratories This is a site specific Chemical Reviewed August 2007 Revised August 2007 #12;2 I. Introduction This Chemical Hygiene Plan has been with UF laboratory chemical operations and is intended to meet the requirements of the OSHA Laboratory

  7. Chemical Hygiene Plan (The OSHA Laboratory Standard)

    E-Print Network [OSTI]

    Walker, Lawrence R.

    Chemical Hygiene Plan (The OSHA Laboratory Standard) Contact: Chemical Hygiene Safety Officer Risk Management & Safety University of Nevada Las Vegas (702) 895-4226 #12;Updated 4/27/2015 ii Chemical Hygiene of the Chemical Hygiene Plan .................................3 D. Permissible Exposure Limits and Threshold

  8. Chemical Hygiene Plan 1.0 Introduction

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    Chemical Hygiene Plan 1.0 Introduction Satisfying Cal-OSHA (Title 8 CCR 5191) and campus regulations, this Chemical Hygiene Plan includes safety information specific to the Center for Nano and Micro chemicals and gasses available. If you have any questions about this Chemical Hygiene Plan, please email

  9. 94 Chemical Engineering Education MICROMIXING EXPERIMENTS

    E-Print Network [OSTI]

    Hesketh, Robert

    94 Chemical Engineering Education MICROMIXING EXPERIMENTS In the Introductory Chemical Reaction aspects of chemical re- action engineering. A major priority in industrial reac- tors[1] is to optimize of the introductory undergraduate chemical reaction engineer- ing course, but the experiments described in this paper

  10. Celebrating Singularities: Mathematics and Chemical Engineering

    E-Print Network [OSTI]

    Chang, Hsueh-Chia

    Celebrating Singularities: Mathematics and Chemical Engineering Yunshan Wang, Xinguang Cheng, and Hsueh-Chia Chang Dept. of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame problems in chemical engineering. VC 2013 American Institute of Chemical Engineers AIChE J, 59: 1830

  11. Department of Chemical and Petroleum Engineering

    E-Print Network [OSTI]

    Habib, Ayman

    Methane, Tight Gas ­ Chemical & Petrochemical Industries ­ Growing Biomedical Industry Broad, Flexible

  12. THE CHEMICAL COMPOSITION OF PRAESEPE (M44)

    SciTech Connect (OSTI)

    Boesgaard, Ann Merchant; Roper, Brian W.; Lum, Michael G., E-mail: boes@ifa.hawaii.edu, E-mail: brianwroper@gmail.com, E-mail: mikelum@ifa.hawaii.edu [Visiting astronomer, W. M. Keck Observatory jointly operated by the California Institute of Technology and the University of California. (United States)

    2013-09-20

    Star clusters have long been used to illuminate both stellar evolution and Galactic evolution. They also hold clues to the chemical and nucleosynthetic processes throughout the history of the Galaxy. We have taken high signal-to-noise (S/N), high-resolution spectra of 11 solar-type stars in the Praesepe open cluster to determine the chemical abundances of 16 elements: Li, C, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Fe, Ni, Y, and Ba. We have determined Fe from Fe I and Fe II lines and find [Fe/H] = +0.12 ±0.04. We find that Li decreases with temperature due to increasing Li depletion in cooler stars; it matches the Li-temperature pattern found in the Hyades. The [C/Fe] and [O/Fe] abundances are below solar and lower than the field star samples due to the younger age of Praesepe (0.7 Gyr) than the field stars. The alpha-elements, Mg, Si, Ca, and Ti, have solar ratios with respect to Fe, and are also lower than the field star samples. The Fe-peak elements, Cr and Ni, track Fe and have solar values. The neutron capture element [Y/Fe] is found to be solar, but [Ba/Fe] is enhanced relative to solar and to the field stars. Three Praesepe giants were studied by Carrera and Pancino; they are apparently enhanced in Na, Mg, and Ba relative to the Praesepe dwarfs. The Na enhancement may indicate proton-capture nucleosynthesis in the Ne ? Na cycling with dredge-up into the atmospheres of the red giants.

  13. Institute of Chemical Engineering page 1 Chemical Process Engineering

    E-Print Network [OSTI]

    Auzinger, Winfried

    as well as catalytic tar removal from producer gas originating from thermo-chemical hydrocarbon conversion of hydrocarbons in secondary units · Research and development on novel of gas cleaning technologies #12;Institute at TU Wien: · Development and research on novel gasification processes · Measurement results and data

  14. Highly Hazardous Chemicals and Chemical Spills EPA Compliance Fact Sheet

    E-Print Network [OSTI]

    Wikswo, John

    will be the direct cost charged to VEHS by our disposal contractor. VEHS does not mark up the disposal charges chemicals in your laboratory, leave them alone and notify VEHS immediately to arrange for disposal. Highly spills must be disposed of as hazardous waste. · Clean up spills when they happen or contact VEHS

  15. Speeding chemical reactions by focusing

    E-Print Network [OSTI]

    A. M. Lacasta; L. Ramirez-Piscina; J. M. Sancho; K. Lindenberg

    2012-12-13

    We present numerical results for a chemical reaction of colloidal particles which are transported by a laminar fluid and are focused by periodic obstacles in such a way that the two components are well mixed and consequently the chemical reaction is speeded up. The roles of the various system parameters (diffusion coefficients, reaction rate, obstacles sizes) are studied. We show that focusing speeds up the reaction from the diffusion limited rate (t to the power -1/2) to very close to the perfect mixing rate, (t to the power -1).

  16. Method for producing chemical energy

    DOE Patents [OSTI]

    Jorgensen, Betty S.; Danen, Wayne C.

    2004-09-21

    Fluoroalkylsilane-coated metal particles having a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer are prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  17. What determines galactic evolution?

    E-Print Network [OSTI]

    Francesca Matteucci

    2002-10-24

    We are briefly introducing the most important ingredients to study galactic evolution. In particular the roles of star formation, nucleosynthesis and gas flows. Then we are discussing the two different approaches to galactic evolution: the stellar population approach (chemical evolution models) and the hierarchical clustering scenario for galaxy formation. It is shown that there are still some controversial points in the two approaches, as evident in the brief summary of the discussion.

  18. Apparatus and methods for detecting chemical permeation

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN)

    1994-01-01

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation.

  19. POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING

    SciTech Connect (OSTI)

    Douglas Arnell; Malcolm Pitts; Jie Qi

    2004-11-01

    A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals in these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical-rock compatibility, polymer injectivity, dynamic chemical retention by rock, and recommended injected polymer concentration. Average initial oil saturation was 0.796 Vp. Produced water injection recovered 53% OOIP leaving an average residual oil saturation of 0.375 Vp. Poison Spider rock was strongly water-wet with a mobility ratio for produced water displacing the 280 cp crude oil of 8.6. Core was not sensitive to either alkali or surfactant injection. Injectivity increased 60 to 80% with alkali plus surfactant injection. Low and medium molecular weight polyacrylamide polymers (Flopaam 3330S and Flopaam 3430S) dissolved in either an alkaline-surfactant solution or softened produced water injected and flowed through Poison Spider rock. Recommended injected polyacrylamide concentration is 2,100 mg/L for both polymers for a unit mobility ratio. Radial corefloods were performed to evaluate oil recovery efficiency of different chemical solutions. Waterflood oil recovery averaged 46.4 OOIP and alkaline-surfactant-polymer flood oil recovery averaged an additional 18.1% OIP for a total of 64.6% OOIP. Oil cut change due to injection of a 1.5 wt% Na{sub 2}CO{sub 3} plus 0.05 wt% Petrostep B-100 plus 0.05 wt% Stepantan AS1216 plus 2100 mg/L Flopaam 3430S was from 2% to a peak of 23.5%. Additional study might determine the impact on oil recovery of a lower polymer concentration. An alkaline-surfactant-polymer flood field implementation outline report was written.

  20. HD 80606: Searching the chemical signature of planet formation

    E-Print Network [OSTI]

    Saffe, C; Buccino, A

    2015-01-01

    (Abridged) Binary systems with similar components are ideal laboratories which allow several physical processes to be tested, such as the possible chemical pattern imprinted by the planet formation process. Aims. We explore the probable chemical signature of planet formation in the remarkable binary system HD 80606 - HD 80607. The star HD 80606 hosts a giant planet with 4 MJup detected by both transit and radial velocity techniques, being one of the most eccentric planets detected to date. We study condensation temperature Tc trends of volatile and refractory element abundances to determine whether there is a depletion of refractories that could be related to the terrestrial planet formation. Methods. We carried out a high-precision abundance determination in both components of the binary system, using a line-by-line strictly differential approach, using the Sun as a reference and then using HD 80606 as reference. We used an updated version of the program FUNDPAR, together with ATLAS9 model atmospheres and th...

  1. Oxalate Mass Balance During Chemical Cleaning in Tank 5F

    SciTech Connect (OSTI)

    Poirier, M.; Fink, S.

    2011-07-08

    The Savannah River Site (SRS) is preparing Tank 5F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRS personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 5F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate.

  2. OXALATE MASS BALANCE DURING CHEMICAL CLEANING IN TANK 6F

    SciTech Connect (OSTI)

    Poirier, M.; Fink, S.

    2011-07-22

    The Savannah River Remediation (SRR) is preparing Tank 6F for closure. The first step in preparing the tank for closure is mechanical sludge removal. Following mechanical sludge removal, SRS performed chemical cleaning with oxalic acid to remove the sludge heel. Personnel are currently assessing the effectiveness of the chemical cleaning to determine whether the tank is ready for closure. SRR personnel collected liquid samples during chemical cleaning and submitted them to Savannah River National Laboratory (SRNL) for analysis. Following chemical cleaning, they collected a solid sample (also known as 'process sample') and submitted it to SRNL for analysis. The authors analyzed these samples to assess the effectiveness of the chemical cleaning process. Analysis of the anions showed the measured oxalate removed from Tank 6F to be approximately 50% of the amount added in the oxalic acid. To close the oxalate mass balance, the author collected solid samples, leached them with nitric acid, and measured the concentration of cations and anions in the leachate. Some conclusions from this work are: (1) Approximately 65% of the oxalate added as oxalic acid was removed with the decanted liquid. (2) Approximately 1% of the oxalate (added to the tank as oxalic acid) formed precipitates with compounds such as nickel, manganese, sodium, and iron (II), and was dissolved with nitric acid. (3) As much as 30% of the oxalate may have decomposed forming carbon dioxide. The balance does not fully account for all the oxalate added. The offset represents the combined uncertainty in the analyses and sampling.

  3. Effects of chemical carcinogens on hemopoiesis, immunopoiesis and viral oncogenesis

    SciTech Connect (OSTI)

    OKunewick, J.P.; Raikow, R.B.; Buffo, M.J.; Kociban, D.L.; Meredith, R.F.

    1983-06-01

    Studies were undertaken to evaluate the effects of various selected carcinogenic hydrocarbon derivatives on the hematopoietic stem cell, on the immune response, and on viral induced leukemogenesis. The hydrocarbons chosen were recognized by-products of fossil fuel production and usage and all had been shown to induce cancer in animals given multiple exposure to them. This study concentrated on the effects of a single exposure to these agents. Significant effects were found in all aspects of the study. Depression of hematopoietic activity was seen with every chemical. Immune response was depressed by some, but not all, of the chemicals. A single exposure to most (but not all) of these chemicals also resulted in an increased incidence of leukemia in mice later given a leukemia causing virus. However, the amount of enhancement of leukemogenesis that was seen was dependent upon several factors, which included: (A) the natural genetically determined sensitivity of the test mouse to virus; (B) the action of the chemical itself; and (C) the time between chemical and virus exposure. In a particularly notable instance, one of the hydrocarbons actually had a protective effect against development of the viral leukemia, delaying it and reducing the incidence.

  4. Homeostasis in Chemical Reaction Pathways

    E-Print Network [OSTI]

    V. A. Malyshev; A. D. Manita; A. A. Zamyatin

    2011-12-25

    We consider stochastic models of chemical reaction networks with time dependent input rates and several types of molecules. We prove that, in despite of strong time dependence of input rates, there is a kind of homeostasis phenomenon: far away from input nodes the mean numbers of molecules of each type become approximately constant (do not depend on time).

  5. Extended range chemical sensing apparatus

    DOE Patents [OSTI]

    Hughes, R.C.; Schubert, W.K.

    1994-01-18

    An apparatus is described for sensing chemicals over extended range of concentrations. In particular, first and second sensors each having separate, but overlapping ranges for sensing concentrations of hydrogen are provided. Preferably, the first sensor is a MOS solid state device wherein the metal electrode or gate is a nickel alloy. The second sensor is a chemiresistor comprising a nickel alloy. 6 figures.

  6. CompositionsCHEMICAL Mallet Library

    E-Print Network [OSTI]

    CompositionsCHEMICAL Mallet Library Chairman's Corner Computer facility opens West wing renovation fall 1996 chemistry & biochemistry departmental newsletter The Chemistry Library has existed almost- istry Department and of the General Libraries, from modest beginnings in the late 19th century

  7. UB DEPARTMENT OF CHEMICAL AND BIOLOGICAL ENGINEERING BS in Chemical and Biological Engineering

    E-Print Network [OSTI]

    Krovi, Venkat

    UB DEPARTMENT OF CHEMICAL AND BIOLOGICAL ENGINEERING BS in Chemical and Biological EngineeringD (all in Chemical Engineering) · Average ChE starting salary: $66,000 (BS) · A five-year BS in Chemical by teaching assistants: 0 What Do Chemical and Biological Engineers Do? CBE graduates apply chemistry to make

  8. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G. (Albuquerque, NM); Gurary, Alexander I. (Bridgewater, NJ); Boguslavskiy, Vadim (Princeton, NJ)

    2002-01-01

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  9. Calibration-free optical chemical sensors

    DOE Patents [OSTI]

    DeGrandpre, Michael D.

    2006-04-11

    An apparatus and method for taking absorbance-based chemical measurements are described. In a specific embodiment, an indicator-based pCO2 (partial pressure of CO2) sensor displays sensor-to-sensor reproducibility and measurement stability. These qualities are achieved by: 1) renewing the sensing solution, 2) allowing the sensing solution to reach equilibrium with the analyte, and 3) calculating the response from a ratio of the indicator solution absorbances which are determined relative to a blank solution. Careful solution preparation, wavelength calibration, and stray light rejection also contribute to this calibration-free system. Three pCO2 sensors were calibrated and each had response curves which were essentially identical within the uncertainty of the calibration. Long-term laboratory and field studies showed the response had no drift over extended periods (months). The theoretical response, determined from thermodynamic characterization of the indicator solution, also predicted the observed calibration-free performance.

  10. FUNDAMENTAL PARAMETERS AND CHEMICAL COMPOSITION OF ARCTURUS

    SciTech Connect (OSTI)

    Ramirez, I. [Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Allende Prieto, C., E-mail: ivan@obs.carnegiescience.edu, E-mail: callende@iac.es [Instituto de Astrofisica de Canarias, 38205 La Laguna, Tenerife (Spain)

    2011-12-20

    We derive a self-consistent set of atmospheric parameters and abundances of 17 elements for the red giant star Arcturus: T{sub eff} = 4286 {+-} 30 K, log g = 1.66 {+-} 0.05, and [Fe/H] = -0.52 {+-} 0.04. The effective temperature was determined using model atmosphere fits to the observed spectral energy distribution from the blue to the mid-infrared (0.44 to 10 {mu}m). The surface gravity was calculated using the trigonometric parallax of the star and stellar evolution models. A differential abundance analysis relative to the solar spectrum allowed us to derive iron abundances from equivalent width measurements of 37 Fe I and 9 Fe II lines, unblended in the spectra of both Arcturus and the Sun; the [Fe/H] value adopted is derived from Fe I lines. We also determine the mass, radius, and age of Arcturus: M = 1.08 {+-} 0.06 M{sub Sun }, R = 25.4 {+-} 0.2 R{sub Sun }, and {tau} = 7.1{sup +1.5}{sub -1.2} Gyr. Finally, abundances of the following elements are measured from an equivalent width analysis of atomic features: C, O, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Co, Ni, and Zn. We find the chemical composition of Arcturus typical of that of a local thick-disk star, consistent with its kinematics.

  11. On the galactic chemical evolution of sulfur

    E-Print Network [OSTI]

    N. Ryde; D. L. Lambert

    2003-12-02

    Sulfur abundances have been determined for ten stars to resolve a debate in the literature on the Galactic chemical evolution of sulfur in the halo phase of the Milky Way. Our analysis is based on observations of the S I lines at 9212.9, 9228.1, and 9237.5 A for stars for which the S abundance was obtained previously from much weaker S I lines at 8694.0 and 8694.6 A. In contrast to the previous results showing [S/Fe] to rise steadily with decreasing [Fe/H], our results show that [S/Fe] is approximately constant for metal-poor stars ([Fe/H] < -1) at [S/Fe] = +0.3. Thus, sulfur behaves in a similar way to the other alpha elements, with an approximately constant [S/Fe] for metallicities lower than [Fe/H] = -1. We suggest that the reason for the earlier claims of a rise of [S/Fe] is partly due to the use of the weak S I 8694.0 and 8694.6 A lines and partly uncertainties in the determination of the metallicity when using Fe I lines. The S I 9212.9, 9228.1, and 9237.5 A lines are preferred for an abundance analysis of sulfur for metal-poor stars.

  12. Chemical compositions, methods of making the chemical compositions, and structures made from the chemical compositions

    DOE Patents [OSTI]

    Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin

    2015-01-13

    Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.

  13. NEPA Determination Complete

    Broader source: Energy.gov [DOE]

    DOE has determined that this proposed project is a major Federal action that may significantly affect the quality of the human environment. To comply with the National Environmental Policy Act ...

  14. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E. (Hempfield Township, Westmoreland County, PA)

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  15. Passive in-situ chemical sensor

    DOE Patents [OSTI]

    Morrell, Jonathan S. (Farragut, TN); Ripley, Edward B. (Knoxville, TN)

    2012-02-14

    A chemical sensor for assessing a chemical of interest. In typical embodiments the chemical sensor includes a first thermocouple and second thermocouple. A reactive component is typically disposed proximal to the second thermal couple, and is selected to react with the chemical of interest and generate a temperature variation that may be detected by a comparison of a temperature sensed by the second thermocouple compared with a concurrent temperature detected by the first thermocouple. Further disclosed is a method for assessing a chemical of interest and a method for identifying a reaction temperature for a chemical of interest in a system.

  16. Olefin recovery via chemical absorption

    SciTech Connect (OSTI)

    Barchas, R.

    1998-06-01

    The recovery of fight olefins in petrochemical plants has generally been accomplished through cryogenic distillation, a process which is very capital and energy intensive. In an effort to simplify the recovery process and reduce its cost, BP Chemicals has developed a chemical absorption technology based on an aqueous silver nitrate solution. Stone & Webster is now marketing, licensing, and engineering the technology. The process is commercially ready for recovering olefins from olefin derivative plant vent gases, such as vents from polyethylene, polypropylene, ethylene oxide, and synthetic ethanol units. The process can also be used to debottleneck C{sub 2} or C{sub 3} splinters, or to improve olefin product purity. This paper presents the olefin recovery imp technology, discusses its applications, and presents economics for the recovery of ethylene and propylene.

  17. Chemical logging of geothermal wells

    DOE Patents [OSTI]

    Allen, Charles A. (Idaho Falls, ID); McAtee, Richard E. (Idaho Falls, ID)

    1981-01-01

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  18. THERMAL AND CHEMICAL EVOLUTION OF COLLAPSING FILAMENTS

    SciTech Connect (OSTI)

    Gray, William J.; Scannapieco, Evan

    2013-05-10

    Intergalactic filaments form the foundation of the cosmic web that connect galaxies together, and provide an important reservoir of gas for galaxy growth and accretion. Here we present very high resolution two-dimensional simulations of the thermal and chemical evolution of such filaments, making use of a 32 species chemistry network that tracks the evolution of key molecules formed from hydrogen, oxygen, and carbon. We study the evolution of filaments over a wide range of parameters including the initial density, initial temperature, strength of the dissociating UV background, and metallicity. In low-redshift, Z Almost-Equal-To 0.1 Z{sub Sun} filaments, the evolution is determined completely by the initial cooling time. If this is sufficiently short, the center of the filament always collapses to form a dense, cold core containing a substantial fraction of molecules. In high-redshift, Z = 10{sup -3} Z{sub Sun} filaments, the collapse proceeds much more slowly. This is mostly due to the lower initial temperatures, which lead to a much more modest increase in density before the atomic cooling limit is reached, making subsequent molecular cooling much less efficient. Finally, we study how the gravitational potential from a nearby dwarf galaxy affects the collapse of the filament and compare this to NGC 5253, a nearby starbursting dwarf galaxy thought to be fueled by the accretion of filament gas. In contrast to our fiducial case, a substantial density peak forms at the center of the potential. This peak evolves faster than the rest of the filament due to the increased rate at which chemical species form and cooling occurs. We find that we achieve similar accretion rates as NGC 5253 but our two-dimensional simulations do not recover the formation of the giant molecular clouds that are seen in radio observations.

  19. Theoretical and Experimental Evaluation of Chemical Reactivity 

    E-Print Network [OSTI]

    Wang, Qingsheng

    2011-10-21

    theoretical and experimental methods. Methylcyclopentadiene (MCP) and Hydroxylamine (HA) are selected as representatives of unsaturated hydrocarbons and self-reacting chemicals, respectively. Chemical reactivity of MCP, including isomerization, dimerization...

  20. Alternative Energy Department of Chemical Engineering

    E-Print Network [OSTI]

    Mahon, Bradford Z.

    Alternative Energy Department of Chemical Engineering Graduate Handbook 2013-2014 Gina Eagan, Graduate Program Coordinator Professor Matthew Yates, Director of Alternative Energy #12;University of Rochester Graduate Handbook Alternative Energy updated August, 2013 Department of Chemical Engineering Page

  1. Alternative Energy Department of Chemical Engineering

    E-Print Network [OSTI]

    Cantlon, Jessica F.

    Alternative Energy Department of Chemical Engineering Graduate Handbook 2014-2015 Victoria Heberling, Graduate Program Coordinator Professor Matthew Yates, Director of Alternative Energy #12;University of Rochester Graduate Handbook Alternative Energy updated August, 2013 Department of Chemical

  2. Future scenarios for green chemical supply chains

    E-Print Network [OSTI]

    Arora, Vibhu, M. Eng. Massachusetts Institute of Technology

    2013-01-01

    We live in an age where industrial chemicals are central to the modem economy serving as the basis for all man-made fibers, life-science chemicals and consumer products. Owing to globalization, the industry has grown to ...

  3. SPOTLIGHT on: Lindsay Freeman Chemical Engineering (Nanotechnology)

    E-Print Network [OSTI]

    Wang, Hai

    SPOTLIGHT on: Lindsay Freeman Chemical Engineering (Nanotechnology) Undergraduate Hometown.D. in chemical engineering with an emphasis in nanotechnology. Lindsay stands out as a very well-balanced student

  4. GENERALIZED TOPOLOGIES: HYPERGRAPHS, CHEMICAL REACTIONS, AND

    E-Print Network [OSTI]

    Flamm, Christoph

    topological spaces have applications in various applied domains of computer science, including digital image types or chemical species. A chemical reaction is a transformation rule of the form xX s- ,xx xX s

  5. Chemical and Petroleum Engineering Petroleum Engineering Minor

    E-Print Network [OSTI]

    Chemical and Petroleum Engineering Petroleum Engineering Minor Students pursuing a BSc in Mechanical Engineering or Chemical Engineering can broaden their skills by taking a minor in petroleum engineering. Energy is the largest

  6. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Studying the Solar System's Chemical Recipe Print Tuesday, 26 March 2013 00:00 To study the origins of different isotope ratios among...

  7. Systematic approach for chemical reactivity evaluation 

    E-Print Network [OSTI]

    Aldeeb, Abdulrehman Ahmed

    2004-09-30

    incidents, and have harmed people, property, and the environment. Evaluation of reactive chemical hazards is critical to design and operate safer chemical plant processes. Much effort is needed for experimental techniques, mainly calorimetric analysis...

  8. Department of Energy, Environmental & Chemical Engineering

    E-Print Network [OSTI]

    Subramanian, Venkat

    . R. Chen and Dr. P. Biswas. summer 2010 : india-- international experience in energy, environmentalDepartment of Energy, Environmental & Chemical Engineering Opportunities for Undergraduate Students laboratory is a good way to expand your classroom experience. department of energy, environmental & chemical

  9. CHEMICAL SENSORS School of Chemistry and Biochemistry

    E-Print Network [OSTI]

    Sherrill, David

    students. Prerequisites include an introductory course in physical or analytical chemistry, undergraduateCHEMICAL SENSORS CHEM 6282 School of Chemistry and Biochemistry Chemical sensors is an interdisciplinary topic covering area of science and engineering that lies between chemistry, physics, materials

  10. Chemical vapor deposition of functionalized isobenzofuran polymers

    E-Print Network [OSTI]

    Olsson, Ylva Kristina

    2007-01-01

    This thesis develops a platform for deposition of polymer thin films that can be further tailored by chemical surface modification. First, we explore chemical vapor deposition of functionalized isobenzofuran films using ...

  11. Searching for the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Searching for the Solar System's Chemical Recipe Searching for the Solar System's Chemical Recipe Print Wednesday, 20 February 2013 00:00 The ratio of isotopes in elements like...

  12. ITP Chemicals: Industrial Feedstock Flexibility Workshop Results...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Feedstock Flexibility Workshop Results, December 2009 ITP Chemicals: Industrial Feedstock Flexibility Workshop Results, December 2009 feedstockworkshopreport.pdf More...

  13. Chemical Free Water Analysis with Nanoelectrode Arrays

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2013-06-05

    Electrochemical analysis is a highly sensitive, chemically selective method for identifying and quantifying many different chemicals in water.  Previous art required  field samples be transported to a laboratory where additional chemicals would be added before the analysis could be performed.  Sandia National Laboratories has invented an electrochemical analysis method that has eliminated the need to add chemicals to the testing process while increasing the...

  14. CHEMICAL BIODYNAMICS DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Authors, Various

    2011-01-01

    chemical Conversion and Storage of Solar Energy. Cambridge,Conversion and Storage of Solar Energy. Cambridge, England.

  15. Proceedings of the Combustion Institute, Volume 29, 2002/pp. 711718 MODELING OF CHEMICAL AND MIXING EFFECTS ON METHANE

    E-Print Network [OSTI]

    Wooldridge, Margaret S.

    in which reaction rates are determined based on interaction between chemical reaction rates and mixing711 Proceedings of the Combustion Institute, Volume 29, 2002/pp. 711­718 MODELING OF CHEMICAL AND MIXING EFFECTS ON METHANE AUTOIGNITION UNDER DIRECT-INJECTION, STRATIFIED CHARGED CONDITIONS S. HONG,1 M

  16. 7, 1009710129, 2007 Chemical ozone loss

    E-Print Network [OSTI]

    ACPD 7, 10097­10129, 2007 Chemical ozone loss in the Arctic winter 1991­1992 S. Tilmes et al. Title Chemistry and Physics Discussions Chemical ozone loss in the Arctic winter 1991­1992 S. Tilmes 1 , R. M Chemical ozone loss in the Arctic winter 1991­1992 S. Tilmes et al. Title Page Abstract Introduction

  17. Chemical Oceanography MSCI/GEOL 782

    E-Print Network [OSTI]

    1 Chemical Oceanography MSCI/GEOL 782 Instructor: Dr. Claudia Benitez-Nelson Email: cbnelson: Tues/Thurs from 8:30 to 9:45 in EWSC 209 Website: http://blackboard.sc.edu/ Text: Chemical Oceanography by Emerson and Hedges (PDF's online) Non-required , but useful texts: Chemical Oceanography by Frank Millero

  18. A Chemical Edcation Leo P. Kadanoff1

    E-Print Network [OSTI]

    Kadanoff, Leo P.

    A Chemical Edcation by Leo P. Kadanoff1 Uncle Tungsten by Oliver Sacks Alfred A. Knopf, New York Oliver's extensive and foolhardy chemical experiments. In a home basement laboratory, he acquaints himself with the properties of the different chemical elements by the classic process of mixing

  19. Chemical Hygiene Policy Procedure: 6.05

    E-Print Network [OSTI]

    Jia, Songtao

    Chemical Hygiene Policy Procedure: 6.05 Version: 1.0 Created: 6/15/2013 1 A. Purpose: The Chemical Hygiene policy establishes Columbia University's position for the protection of laboratory workers Chemicals in Laboratories, also referred to as the Laboratory Standard. This policy provides current general

  20. Montana State University 1 Department of Chemical

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Montana State University 1 Department of Chemical and Biological Engineering Department of Science in Chemical Engineering degree and a Master of Science degree in Environmental Engineering, with options available in Chemical Engineering and Environmental Engineering. Admission (M.S. and Ph

  1. Basic Chemical Safety and Laboratory Survival Skills

    E-Print Network [OSTI]

    Sherrill, David

    1 Basic Chemical Safety and Laboratory Survival Skills For anyone working in Georgia Tech Laboratories Deborah Wolfe-Lopez Laboratory and Chemical Safety Manager Georgia Tech EHS 404-382-2964 2010 #12 Hazardous Chemical Protection and Right to Know Law (RTK) RTK is the Georgia State Equivalent of the Federal

  2. Geophysics of Chemical Heterogeneity in the Mantle

    E-Print Network [OSTI]

    Stixrude, Lars

    , transition zone Abstract Chemical heterogeneity, produced by the near-surface rock cycle and dom- inatedGeophysics of Chemical Heterogeneity in the Mantle Lars Stixrude and Carolina Lithgow. This lithologic-scale chemical het- erogeneity may survive in the mantle for as long as the age of Earth because

  3. Classical Coordination Mechanisms in the Chemical Model

    E-Print Network [OSTI]

    Fradet, Pascal

    great souvenir! Abstract Originally, the chemical model of computation has been proposed as a sim- pleClassical Coordination Mechanisms in the Chemical Model J.-P. Ban^atre P. Fradet Y. Radenac-Pierre Ban^atre) had with Gilles on topics related with programming in general and chemical programming

  4. A Topological Approach to Chemical Organizations

    E-Print Network [OSTI]

    Stadler, Peter F.

    The Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe NM 87501 Abstract Large chemical reaction networks. This abstract representation in turn suggest to explore the chemical meaning of well-established topological.g. in the Chemical Abstract Machine [7]. A wide variety of different computa- tional paradigms has been used

  5. Chemical Evolution of Galaxies: a problem of

    E-Print Network [OSTI]

    ?umer, Slobodan

    Chemical Evolution of Galaxies: a problem of Astroarchaelogy Francesca Matteucci, Trieste University Lubljana, February 24, 2014 #12;Chemical Evolution of Galaxies Beatrice Tinsley (27 January 1941- 23 March 1981) She started the field of galactic chemical evolution #12;Collaborators: #12;Outline

  6. Chemical Reactor Analysis and Optimal Digestion

    E-Print Network [OSTI]

    Jumars, Pete

    derived from basic principles o f chemical reactor analysis and design Deborah L. Penry and Peter in terms of chemical reactor components and then use principles of reactor design to identify variablesJ 310 Chemical Reactor Analysis and Optimal Digestion An optimal digestion theory can be readily

  7. QANU Research Review Chemical Engineering 3TU

    E-Print Network [OSTI]

    Theune, Mariët

    QANU Research Review Chemical Engineering 3TU QANU, November 2009 #12;2 QANU / Research Review Chemical Engineering 3TU Quality Assurance Netherlands Universities (QANU) Catharijnesingel 56 PO Box 8035 / Research Review Chemical Engineering 3TU Contents Foreword 5 Preface 7 1. The review Committee

  8. 138 Chemical Engineering Education FLUIDIZED BED

    E-Print Network [OSTI]

    Hesketh, Robert

    138 Chemical Engineering Education FLUIDIZED BED POLYMER COATING EXPERIMENT ROBERT P. HESKETH, C,2] and is a highly visual experiment in chemical engineering pro- cesses and experimentation. In addition for the chemical engineering profession. The field encom- passes many technologies, ranging from polymerization

  9. Third International Symposium ENGINEERING OF CHEMICAL COMPLEXITY

    E-Print Network [OSTI]

    Rudzick, Oliver

    Third International Symposium ENGINEERING OF CHEMICAL COMPLEXITY Program 4 May, Tuesday 16:00 ­ 20:45 ­ 11:15 Coffee break Session chair: R. Kapral 11:15 M. Britton "Probing chemical waves and patterns "Anomalous dispersion in chemical reaction-diffusion systems" 15:10 S. Müller "Hydrodynamic instability

  10. Chemical and Biological Engineering Summary of Actions

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Chemical and Biological Engineering Summary of Actions 2014-2015 Concern Recommendation Action Follow-up 1. The department name is Chemical and Biological Engineering. An analysis of student Biological Engineering programs. 4. The second semester of the senior capstone sequence in Chemical

  11. Vanderbilt Department of Chemical and Biomolecular Engineering

    E-Print Network [OSTI]

    Vanderbilt Department of Chemical and Biomolecular Engineering #12;2 Plasmonics and Nanophotonics Graduate work in chemical and biomolecular engineering provides an opportunity for study and research at the cutting edge--to contribute to shaping a new model of what chemical engineers do. All faculty members

  12. 192 Chemical Engineering Education IS PROCESS SIMULATION

    E-Print Network [OSTI]

    Hesketh, Robert

    192 Chemical Engineering Education IS PROCESS SIMULATION USED EFFECTIVELY IN ChE COURSES? KEVIN D of specific methods of effective use of these tools in chemical engineering courses, both from the literature and from the authors' experience. DISCUSSION In the past, most chemical engineering programs viewed process

  13. Computing Resources at Chemical and Biochemical Engineering

    E-Print Network [OSTI]

    Muzzio, Fernando J.

    Computing Resources at Chemical and Biochemical Engineering Note that use of all Rutgers University) consists of 18 Windows NT Workstations and is primarily reserved for classroom use for Chemical Engineering at Chemical and Biochemical Engineering. DSV Lab. The DSV lab consists of 60 Sun UltraSparc 10 computers. Each

  14. Chemical Engineering at McMaster University

    E-Print Network [OSTI]

    Thompson, Michael

    Chemical Engineering at McMaster University The Formative Years: A Brief History 1958-1982 Cameron. Woods #12;Copyright 2011 © Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L. Photographs are reproduced by courtesy of the Faculty of Engineering and the Department of Chemical

  15. Chemical Engineering BEng (Hons) Key details

    E-Print Network [OSTI]

    Painter, Kevin

    Chemical Engineering BEng (Hons) Key details Duration: Full-time: 3 years (BEng) / 4 years (BEng Hons) Delivery type: Day Intake date: September Fees: 58000 AED per year Overview Chemical engineering successful and thriving types of business in the world. Chemical engineers play a vital role in achieving

  16. THEORY OF CHEMICAL REACTION ANTONIO LAGANA

    E-Print Network [OSTI]

    Auzinsh, Marcis

    THEORY OF CHEMICAL REACTION DYNAMICS Edited by: ANTONIO LAGANA Department of Chemistry University Theoretical treatment of the dynamics of chemical reactions has undergone a spectacular development during the NATO Advanced Research Work- shop on the Theory of the Dynamics of Chemical Reactions in Balatonf

  17. Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium metal

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 These test methods cover procedures for the chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade plutonium metal to determine compliance with specifications.

  18. Rapid determination of actinides in seawater samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used tomore »separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.« less

  19. Listed waste determination report. Environmental characterization

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    On September 23, 1988, the US Environmental Protection Agency (EPA) published a notice clarifying interim status requirements for the management of radioactive mixed waste thereby subjecting the Idaho National Engineering Laboratory (INEL) and other applicable Department of Energy (DOE) sites to regulation under the Resource Conservation and Recovery Act (RCRA). Therefore, the DOE was required to submit a Part A Permit application for each treatment, storage, and disposal (TSD) unit within the INEL, defining the waste codes and processes to be regulated under RCRA. The September 1990 revised Part A Permit application, that was approved by the State of Idaho identified 101 potential acute and toxic hazardous waste codes (F-, P-, and U- listed wastes according to 40 CFR 261.31 and 40 CFR 261.33) for some TSD units at the Idaho Chemical Processing Plant. Most of these waste were assumed to have been introduced into the High-level Liquid Waste TSD units via laboratory drains connected to the Process Equipment Waste (PEW) evaporator (PEW system). At that time, a detailed and systematic evaluation of hazardous chemical use and disposal practices had not been conducted to determine if F-, P-, or Unlisted waste had been disposed to the PEW system. The purpose of this investigation was to perform a systematic and detailed evaluation of the use and disposal of the 101 F-, P-, and Unlisted chemicals found in the approved September 1990 Part A Permit application. This investigation was aimed at determining which listed wastes, as defined in 40 CFR 261.31 (F-listed) and 261.33 (P & Unlisted) were discharged to the PEW system. Results of this investigation will be used to support revisions to the RCRA Part A Permit application.

  20. X-ray Microspectroscopy and Chemical Reactions in Soil Microsites

    SciTech Connect (OSTI)

    D Hesterberg; M Duff; J Dixon; M Vepraskas

    2011-12-31

    Soils provide long-term storage of environmental contaminants, which helps to protect water and air quality and diminishes negative impacts of contaminants on human and ecosystem health. Characterizing solid-phase chemical species in highly complex matrices is essential for developing principles that can be broadly applied to the wide range of notoriously heterogeneous soils occurring at the earth's surface. In the context of historical developments in soil analytical techniques, we describe applications of bulk-sample and spatially resolved synchrotron X-ray absorption spectroscopy (XAS) for characterizing chemical species of contaminants in soils, and for determining the uniqueness of trace-element reactivity in different soil microsites. Spatially resolved X-ray techniques provide opportunities for following chemical changes within soil microsites that serve as highly localized chemical micro- (or nano-)reactors of unique composition. An example of this microreactor concept is shown for micro-X-ray absorption near edge structure analysis of metal sulfide oxidation in a contaminated soil. One research challenge is to use information and principles developed from microscale soil chemistry for predicting macroscale and field-scale behavior of soil contaminants.

  1. CHEMICAL REMOVAL OF BIOMASS FROM WASTE AIR BIOTRICKLING FILTERS: SCREENING OF CHEMICALS

    E-Print Network [OSTI]

    CHEMICAL REMOVAL OF BIOMASS FROM WASTE AIR BIOTRICKLING FILTERS: SCREENING OF CHEMICALS OF POTENTIAL INTEREST H. H. J. COX and M. A. DESHUSSES* Department of Chemical and Environmental Engineering October 1998) AbstractÐA protocol was developed to rapidly assess the eciency of chemical washing

  2. Z .Chemical Geology 145 1998 325394 The chemical composition of subducting sediment and its

    E-Print Network [OSTI]

    Langmuir, Charles H.

    Z .Chemical Geology 145 1998 325­394 The chemical composition of subducting sediment and its heterogeneity all require a better understanding of the mass and chemical fluxes associated with subducting sediments. We have evaluated subducting sediments on a global basis in order to better define their chemical

  3. Using chemical tracers in hillslope soils to estimate the importance of chemical denudation under

    E-Print Network [OSTI]

    Mudd, Simon Marius

    Using chemical tracers in hillslope soils to estimate the importance of chemical denudation under mass. The model includes both sediment transport and chemical denudation. A simplified two-phase model is developed; the two phases are a chemically immobile phase, which has far lower solubility than the bulk soil

  4. Chemical engineers design, control and optimize large-scale chemical, physicochemical and

    E-Print Network [OSTI]

    Rohs, Remo

    Introduction to Separation Processes (3, Sp) Use of equilibrium phase relations and principles of material by petition only. 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles Chemical Reactor Analysis (4, Fa) Basic concepts of chemical kinetics and chemical reactor design

  5. The Chemical Engineering Ph.D. Program Department of Chemical Engineering

    E-Print Network [OSTI]

    Firestone, Jeremy

    The Chemical Engineering Ph.D. Program Department of Chemical Engineering University of Delaware of chemical engineering fundamentals and their application. The requirements set out below represent a foundation of technical knowledge in chemical engineering. This knowledge should be obtained in a way

  6. Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds

    E-Print Network [OSTI]

    Zare, Richard N.

    Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds Latest News News | Chemical & Engineering News http://pubs.acs.org/cen/news/87/i24/8724news1.html 1 of 2 6 for the Advancement of Science, and the Association for Women in Science. Chemical & Engineering News ISSN 0009

  7. 8 Chemical Engineering Education first met Robert Hesketh at the 1992 Chemical Engineering Sum-

    E-Print Network [OSTI]

    Hesketh, Robert

    #12;8 Chemical Engineering Education I first met Robert Hesketh at the 1992 Chemical Engineering the opportunity to hire him as one of the found- ing members of the Rowan Chemical Engineering Department! During sources. As one of the founding faculty members of the College of Engineer- ing and Chemical Engineering

  8. Open Innovation in Chemical Engineering The technological and business principles of Open Innovation in the chemical

    E-Print Network [OSTI]

    Engineering The technological and business principles of Open Innovation in the chemical industry: inventions in Closed and Open Innovation Open innovation business models in the chemical engineering. Open innovation companies working in the neighborhood of chemical engineering. Examples of open innovation in the chemical

  9. Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds

    E-Print Network [OSTI]

    Zare, Richard N.

    Chemical & Engineering News Serving the chemical, life sciences and laboratory worlds Cover Story | Chemical & Engineering News http://pubs.acs.org/cen/coverstory/88/8812cover2.html 1 of 5 3/22/2010 09 fail. Fostering Creativity | Cover Story | Chemical & Engineering News http

  10. M. Bahrami ENSC 461 (S 11) Chemical Reactions 1 Chemical Reactions

    E-Print Network [OSTI]

    Bahrami, Majid

    M. Bahrami ENSC 461 (S 11) Chemical Reactions 1 Chemical Reactions When analyzing reacting systemsHm. For example octane is C8H18. Combustion: is a chemical reaction during which a fuel is oxidized and a large.28 #12;M. Bahrami ENSC 461 (S 11) Chemical Reactions 2 Where N is the number of moles and M is the molar

  11. Apparatus and methods for detecting chemical permeation

    DOE Patents [OSTI]

    Vo-Dinh, T.

    1994-12-27

    Apparatus and methods for detecting the permeation of hazardous or toxic chemicals through protective clothing are disclosed. The hazardous or toxic chemicals of interest do not possess the spectral characteristic of luminescence. The apparatus and methods utilize a spectrochemical modification technique to detect the luminescence quenching of an indicator compound which upon permeation of the chemical through the protective clothing, the indicator is exposed to the chemical, thus indicating chemical permeation. The invention also relates to the fabrication of protective clothing materials. 13 figures.

  12. Chemical kinetics and combustion modeling

    SciTech Connect (OSTI)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  13. Microcomponent chemical process sheet architecture

    DOE Patents [OSTI]

    Wegeng, Robert S. (Richland, WA); Drost, M. Kevin (Richland, WA); Call, Charles J. (Pasco, WA); Birmingham, Joseph G. (Richland, WA); McDonald, Carolyn Evans (Richland, WA); Kurath, Dean E. (Benton County, WA); Friedrich, Michele (Prosser, WA)

    1998-01-01

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation.

  14. Microcomponent chemical process sheet architecture

    DOE Patents [OSTI]

    Wegeng, R.S.; Drost, M.K.; Call, C.J.; Birmingham, J.G.; McDonald, C.E.; Kurath, D.E.; Friedrich, M.

    1998-09-22

    The invention is a microcomponent sheet architecture wherein macroscale unit processes are performed by microscale components. The sheet architecture may be a single laminate with a plurality of separate microcomponent sections or the sheet architecture may be a plurality of laminates with one or more microcomponent sections on each laminate. Each microcomponent or plurality of like microcomponents perform at least one chemical process unit operation. A first laminate having a plurality of like first microcomponents is combined with at least a second laminate having a plurality of like second microcomponents thereby combining at least two unit operations to achieve a system operation. 26 figs.

  15. Chemical Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclear SecurityChattan ooga Eag le ForChemCamChemical

  16. Chemical Physics | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclear SecurityChattan ooga Eag leChemical

  17. Chemical Resources | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMayARM-0501 Marine StratusChemCamChemical Resources

  18. Inventure Chemicals | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA JumpDuimenMakingBiofuelsInformationSocietyInvensysChemicals Jump

  19. Chemical Looping | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine: EnergyEnergy InformationChemical Looping Jump

  20. Chemical Science | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStatesA CaseNovemberto3:2:8:Chemical Science

  1. Isomer-Specific Biodegradation and Chemical Oxidation of Nonylphenol

    E-Print Network [OSTI]

    Lu, Zhijiang

    2014-01-01

    in U.S. sewage sludges and chemical fate in outdoor soilendocrine disrupting chemicals by potassium permanganate inconfidential 2006 IUR company/chemical records." Retrieved

  2. Chemical burn caused by topical application of garlic under occlusion

    E-Print Network [OSTI]

    Xu, Shuai; Heller, Marissa; Wu, Peggy A; Nambudiri, Vinod E

    2014-01-01

    Number 1 January 2014 Letter Chemical burn caused by topicalan unusually severe case of chemical burn following garlicirritant contact dermatitis, chemical burn, allium sativum

  3. Controlled Chemical Doping of Semiconductor Nanocrystals Using Redox Buffers

    E-Print Network [OSTI]

    Engel, Jesse H.

    2014-01-01

    Controlled Chemical Doping of Semiconductor Nanocrys- talsHerein, we demonstrate a chemical strategy for the con-dope the nanocrystal solid. Chemical doping methods reported

  4. Chemical Dynamics, Molecular Energetics, and Kinetics at the Synchrotron

    E-Print Network [OSTI]

    Leone, Stephen R.

    2010-01-01

    novel measurements of chemical dynamics for clusters, Chemical Dynamics, Molecular Energetics, and Kinetics at theUniversity of California Chemical Sciences Division,

  5. Dissection of Plant Defense Mechanisms Using Chemical and Molecular Genomics

    E-Print Network [OSTI]

    Rodriguez-Salus, Melinda Sue

    2012-01-01

    of auxins by a chemical genomics approach." Journal ofadvances in chemical genomics." Current Medicinal Chemistrymolecular and chemical genomics." Phytopathology 97(7): S58-

  6. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    E-Print Network [OSTI]

    Cowan-Ellsberry, Christina E.

    2010-01-01

    Chemicals in Hazard and Risk Assessment Christina E. Cowan-implications for chemical risk assessment. J Environ MonitJM. 2006. Screening level risk assessment model for chemical

  7. Testing of a model to estimate vapor concentration of various organic chemicals. Master's thesis

    SciTech Connect (OSTI)

    Bakalyar, S.M.

    1990-01-01

    A model developed by Dr. Parker C. Reist to predict the build-up and decay rates of vapor concentrations following a chemical spill and clean-up was tested. The chemicals tested were: acetone, butyl acetate, ethyl acetate, hexane, methylene chloride, methyl ethyl ketone, and toluene. The evaporation rates of these chemicals were determined both by prediction, using a model developed by I. Kawamura and D. Mackay, and empirically and these rates were used in the Reist model. Chamber experiments were done to measure actual building-up and decay of vapor concentrations for simulated spills and simulated clean-up.

  8. Production of Chemical Derivatives from Renewables

    SciTech Connect (OSTI)

    Davison, Brian; Nghiem, John; Donnelly, Mark; Tsai, Shih-Perng; Frye, John; Landucci, Ron; Griffin, Michael

    1996-06-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Lockheed Martin Energy Research Corp., (LMER), Argonne National Laboratory (ANL), National Renewable Energy Laboratory (NREL), and Battelle Memorial Institute, operator of Pacific Northwest National Laboratory (PNNL), (collectively referred to as the 'Contractor'), and Applied Carbochemicals, Inc. (Participant) was to scale-up from bench results an economically promising and competitive process for the production of chemical derivatives from biologically produced succinic acid. The products that were under consideration for production from the succinic acid platform included 1,4-butanediol, {gamma}y-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Preliminary economic analyses indicated that this platform was competitive with the most recent petrochemical routes. The Contractors and participant are hereinafter jointly referred to as the 'Parties.' Research to date in succinic acid fermentation, separation and genetic engineering resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on preliminary laboratory findings and predicted catalytic parameters. At the time, the current need was to provide the necessary laboratory follow-up information to properly optimize, design and operate a pilot scale process. The purpose of the pilot work was to validate the integrated process, assure 'robustness' of the process, define operating conditions, and provide samples for potential customer evaluation. The data from the pilot scale process was used in design and development of a full scale production facility. A new strain, AFP111 (patented), discovered at ANL was tested and developed for process use at the Oak Ridge National Laboratory (ORNL) and ANL. The operability and product formation are attractive for this strain and effort was being directed at process development and optimization. Key to the transition from the fermentative production unit operation to the chemical catalysis is the 'clean-up' of fermentation broth, succinic acid formation from the salt, and succinic acid concentration. These steps are accomplished by a two-stage membrane ED separation process developed at AWL. Although the current process is well developed, possible modifications and optimization may be called for as development work continues in both the fermentation and catalysis areas. Research to date performed at PNNL has demonstrated that succinic acid can be converted to value added chemicals such as 1,4-butanediol, {gamma}-butyrolactone, N-methyl pyrrolidinone, and 2 pyrrolidinone with high conversion and selectivities. Continued research will be performed in catalyst development and reaction condition optimization to move this work from the bench scale to the pilot scale. All development of the process was guided by the NREL technoeconomic model. The model showed that direct aqueous phase catalysis of succinic acid to 1,4-butanediol, {gamma}-butyrolactone, and N-methyl pyrrolidinone provided significant economical advantages in the market, the margin, and the return on capital investment over existing petrochemical processes for production of these compounds. The model also provided the baseline for evaluating current laboratory research. As data from the bench and pilot work were made available the model was modified and appropriate sensitivities ran to determine impact of the process changes and optimization. The report will present the planned CRADA tasks followed by the results. The results section has an overall project summary follwed by more detailed reports from the participants. This is a nonproprietary report; additional proprietary information may be made available subject to acceptance of the appropriate proprietary information agreements.

  9. CHEMICAL ABUNDANCES IN CLUSTERS OF GALAXIES

    E-Print Network [OSTI]

    Francesca Matteucci; Brad K. Gibson

    1995-03-14

    We study the origin of iron and alpha-elements (O, Mg, Si) in clusters of galaxies. In particular, we discuss the [O/Fe] ratio and the iron mass-to-luminosity ratio in the intracluster medium (ICM) and their link to the chemical and dynamical evolution of elliptical and lenticular galaxies. We adopt a detailed model of galactic evolution incorporating the development of supernovae- driven galactic winds which pollute the ICM with enriched ejecta. We demonstrate \\it quantitatively \\rm the crucial dependence upon the assumed stellar initial mass function in determining the evolution of the mass and abundances ratios of heavy elements in typical model ICMs. We show that completely opposite behaviours of [alpha/Fe] ratios (\\ie positive versus negative ratios) can be obtained by varying the initial mass function without altering the classic assumptions regarding type Ia supernovae progenitors or their nucleosynthesis. Our results indicate that models incorporating somewhat flatter-than-Salpeter initial mass functions (ie x approx 1, as opposed to x=1.35) are preferred, provided the intracluster medium iron mass-to-luminosity ratio, preliminary [alpha/Fe]>0 ASCA results, and present-day type Ia supernovae rates, are to be matched. A simple Virgo cluster simulation which adheres to these constraints shows that approx 70% of the measured ICM iron mass has its origin in type II supernovae, with the remainder being synthesized in type Ia systems.

  10. Chemical Elements at High and Low Redshifts

    E-Print Network [OSTI]

    Max Pettini

    2006-03-02

    The past few years have seen a steady progress in the determination of element abundances at high redshifts, with new and more accurate measures of metallicities in star-forming galaxies, in QSO absorbers, and in the intergalactic medium. We have also become more aware of the limitations of the tools at our disposal in such endeavours. I summarise these recent developments and--in tune with the theme of this meeting--consider the clues which chemical abundance studies offer to the links between the high redshift galaxy populations and today's galaxies. The new data are `fleshing out' the overall picture of element abundances at redshifts z = 2 - 3 which has been gradually coming into focus over the last decade. In particular, we can now account for at least 40% of the metals produced by the global star formation activity in the universe from the Big Bang to z = 2.5, and we have strong indications of where the remainder are likely to be found.

  11. ASPCAP: The Apogee Stellar Parameter and Chemical Abundances Pipeline

    E-Print Network [OSTI]

    Pérez, Ana E García; Holtzman, Jon A; Shetrone, Matthew; Mészáros, Szabolcs; Bizyaev, Dmitry; Carrera, Ricardo; Cunha, Katia; García-Hernández, D A; Johnson, Jennifer A; Majewski, Steven R; Nidever, David L; Schiavon, Ricardo P; Shane, Neville; Smith, Verne V; Sobeck, Jennifer; Troup, Nicholas; Zamora, Olga; Bovy, Jo; Eisenstein, Daniel J; Feuillet, Diane; Frinchaboy, Peter M; Hayden, Michael R; Hearty, Fred R; Nguyen, Duy C; O'Connell, Robert W; Pinsonneault, Marc H; Weinberg, David H; Wilson, John C; Zasowski, Gail

    2015-01-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) has built the largest moderately high-resolution (R=22, 500) spectroscopic map of the stars across the Milky Way, and including dust-obscured areas. The APOGEE Stellar Parameter and Chemical Abundances Pipeline (ASPCAP) is the software developed for the automated analysis of these spectra. ASPCAP determines atmospheric parameters and chemical abundances from observed spectra by comparing observed spectra to libraries of theoretical spectra, using chi-2 minimization in a multidimensional parameter space. The package consists of a fortran90 code that does the actual minimization, and a wrapper IDL code for book-keeping and data handling. This paper explains in detail the ASPCAP components and functionality, and presents results from a number of tests designed to check its performance. ASPCAP provides stellar effective temperatures, surface gravities, and metallicities precise to 2%, 0.1 dex, and 0.05 dex, respectively, for most APOGEE stars, wh...

  12. Chemical heat pump and chemical energy storage system

    DOE Patents [OSTI]

    Clark, Edward C. (Woodinville, WA); Huxtable, Douglas D. (Bothell, WA)

    1985-08-06

    A chemical heat pump and storage system employs sulfuric acid and water. In one form, the system includes a generator and condenser, an evaporator and absorber, aqueous acid solution storage and water storage. During a charging cycle, heat is provided to the generator from a heat source to concentrate the acid solution while heat is removed from the condenser to condense the water vapor produced in the generator. Water is then stored in the storage tank. Heat is thus stored in the form of chemical energy in the concentrated acid. The heat removed from the water vapor can be supplied to a heat load of proper temperature or can be rejected. During a discharge cycle, water in the evaporator is supplied with heat to generate water vapor, which is transmitted to the absorber where it is condensed and absorbed into the concentrated acid. Both heats of dilution and condensation of water are removed from the thus diluted acid. During the discharge cycle the system functions as a heat pump in which heat is added to the system at a low temperature and removed from the system at a high temperature. The diluted acid is stored in an acid storage tank or is routed directly to the generator for reconcentration. The generator, condenser, evaporator, and absorber all are operated under pressure conditions specified by the desired temperature levels for a given application. The storage tanks, however, can be maintained at or near ambient pressure conditions. In another form, the heat pump system is employed to provide usable heat from waste process heat by upgrading the temperature of the waste heat.

  13. 10 Questions for a Chemical Engineer: Alan Zacher | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 Questions for a Chemical Engineer: Alan Zacher 10 Questions for a Chemical Engineer: Alan Zacher March 24, 2011 - 1:39pm Addthis Chemical engineer Alan Zacher Chemical engineer...

  14. Heterodyne lidar for chemical sensing

    SciTech Connect (OSTI)

    Oldenborg, R. C. (Richard C.); Tiee, J. J. (Joe J.); Shimada, T. (Tsutomu); Wilson, C. W. (Carl W.); Remelius, D. K. (Dennis K.); Fox, Jay; Swim, Cynthia

    2004-01-01

    The overall objective is to assess the detection performance of LWIR (long wavelength infrared) coherent Lidar systems that potentially possess enhanced effluent detection capabilities. Previous work conducted by Los Alamos has demonstrated that infrared DIfferential Absorption Lidar (DIAL) is capable of detecting chemicals in plumes from long standoff ranges. Our DIAL approach relied on the reflectivity of topographical targets to provide a strong return signal. With the inherent advantage of applying heterodyne transceivers to approach single-photon detection in LWIR, it is projected that marked improvements in detection range or in spatial coverage can be attained. In some cases, the added photon detection sensitivity could be utilized for sensing 'soft targets', such as atmospheric and threat aerosols where return signal strength is drastically reduced, as opposed to topographical targets. This would allow range resolved measurements and could lead to the mitigation of the limiting source of noise due to spectral/spatial/temporal variability of the ground scene. The ability to distinguish normal variations in the background from true chemical signatures is crucial to the further development of sensitive remote chemical sensing technologies. One main difficulty in demonstrating coherent DIAL detection is the development of suitable heterodyne transceivers that can achieve rapid multi-wavelength tuning required for obtaining spectral signature information. LANL has recently devised a novel multi-wavelength heterodyne transceiver concept that addresses this issue. A 5-KHz prototype coherent CO{sub 2} transceiver has been constructed and is being now used to help address important issues in remote CBW agent standoff detection. Laboratory measurements of signal-to-noise ratio (SNR) will be reported. Since the heterodyne detection scheme fundamentally has poor shot-to-shot signal statistics, in order to achieve sensitive detection limits, favorable averaging statistics have to be validated. The baseline coherent DIAL detection sensitivity that can be achieved averaging multiple laser pulses and by comparisons of different wavelengths will be demonstrated. Factors that are presently limiting performance and attempts to circumvent these issues will be discussed.

  15. Chemical microreactor and method thereof

    DOE Patents [OSTI]

    Morse, Jeffrey D.; Jankowski, Alan

    2005-11-01

    A chemical microreactor suitable for generation of hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. One such microreactor employs a packed catalyst capillary microchannel and at least one porous membrane. Another employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2 /cm.sup.3. The packed catalyst capillary microchannels, porous membranes and porous membrane support structures may be formed by a variety of methods.

  16. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, Kevin L. (Albuquerque, NM); Hannum, David W. (Albuquerque, NM); Conrad, Frank James (Russellville, SC)

    1999-01-01

    A portal apparatus for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow.

  17. Vertical flow chemical detection portal

    DOE Patents [OSTI]

    Linker, K.L.; Hannum, D.W.; Conrad, F.J.

    1999-06-22

    A portal apparatus is described for screening objects or persons for the presence of trace amounts of chemical substances such as illicit drugs or explosives. The apparatus has a test space, in which a person may stand, defined by two generally upright sides spanned by a horizontal transom. One or more fans in the transom generate a downward air flow (uni-directional) within the test space. The air flows downwardly from a high pressure upper zone, past the object or person to be screened. Air moving past the object dislodges from the surface thereof both volatile and nonvolatile particles of the target substance. The particles are entrained into the air flow which continues flowing downward to a lower zone of reduced pressure, where the particle-bearing air stream is directed out of the test space and toward preconcentrator and detection components. The sides of the portal are specially configured to partially contain and maintain the air flow. 3 figs.

  18. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  19. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  20. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R. (6006 Allentown Dr., Spring, TX 77379)

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  1. Chemically assisted mechanical refrigeration process

    DOE Patents [OSTI]

    Vobach, Arnold R. (6006 Allentown Dr., Spring, TX 77389)

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  2. CX-009166: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Waste Heat Recovery, Waste-to-Energy Conversion, and Waste-to-Chemical Conversion with Industrial Gas and Chemical Manufacturing Processes CX(s) Applied:...

  3. Do open clusters have distinguishable chemical signatures?

    E-Print Network [OSTI]

    Blanco-Cuaresma, S; Heiter, U

    2015-01-01

    Past studies have already shown that stars in open clusters are chemically homogeneous (e.g. De Silva et al. 2006, 2007 and 2009). These results support the idea that stars born from the same giant molecular cloud should have the same chemical composition. In this context, the chemical tagging technique was proposed by Freeman et al. 2002. The principle is to recover disrupted stellar clusters by looking only to the stellar chemical composition. In order to evaluate the feasibility of this approach, it is necessary to test if we can distinguish between stars born from different molecular clouds. For this purpose, we studied the chemical composition of stars in 32 old and intermediate-age open clusters, and we applied machine learning algorithms to recover the original cluster by only considering the chemical signatures.

  4. Electrostatic thin film chemical and biological sensor

    DOE Patents [OSTI]

    Prelas, Mark A. (Columbia, MO); Ghosh, Tushar K. (Columbia, MO); Tompson, Jr., Robert V. (Columbia, MO); Viswanath, Dabir (Columbia, MO); Loyalka, Sudarshan K. (Columbia, MO)

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  5. CX-009345: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Intrinsic Fiber Optic Chemical Sensors for Subsurface Detection of carbon dioxide CX(s) Applied: B3.6 Date: 09/21/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  6. CX-009344: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Intrinsic Fiber Optic Chemical Sensors for Subsurface Detection of carbon dioxide CX(s) Applied: B3.6 Date: 09/21/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  7. CX-009343: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Intrinsic Fiber Optic Chemical Sensors for Subsurface Detection of carbon dioxide CX(s) Applied: B3.6 Date: 09/21/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  8. CX-007533: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Chemical Vapor Deposition - Based Valence-Mending Passivation for Crystalline-Silicon Solar Cells CX(s) Applied: A9, B3.6 Date: 01/10/2012 Location(s): Arizona Offices(s): Golden Field Office

  9. CX-009374: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Development of a Carbon Dioxide Chemical Sensor for Downhole Carbon Dioxide Monitoring in Carbon Sequestration CX(s) Applied: B3.6 Date: 09/17/2012 Location(s): New Mexico Offices(s): National Energy Technology Laboratory

  10. CX-010903: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters CX(s) Applied: B3.6 Date: 06/26/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

  11. CX-012598: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replace ETP Reverse Osmosis (RO) Cooling Towers (CTWs) and Add a Chemical Addition System CX(s) Applied: B1.5Date: 41827 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  12. CX-010478: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9, A11 Date: 05/31/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

  13. CX-010477: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9, A11 Date: 05/31/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

  14. CX-010789: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9 Date: 08/14/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

  15. CX-010476: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9, A11 Date: 05/31/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

  16. CX-010475: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9, A11 Date: 05/31/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

  17. CX-011030: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9, A11, B3.6 Date: 09/10/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  18. CX-011031: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Permanent Subsea Pressure Compensated Chemical Reservoir Construction and Testing CX(s) Applied: A9, A11 Date: 09/10/2013 Location(s): Other Location Offices(s): National Energy Technology Laboratory

  19. CX-005947: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Develop and Test an Optical Temperature Sensor at Eastman Chemical's Coal GasifierCX(s) Applied: B3.6Date: 06/04/2011Location(s): Kingsport, TennesseeOffice(s): Fossil Energy, National Energy Technology Laboratory

  20. CX-012568: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alternative Chemical Cleaning for Sludge Heel Removal and MCU Oxalate and Aluminate Solubility - Simulant Nonrad Testing CX(s) Applied: B3.6Date: 41863 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  1. CX-012556: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Alternative Chemical Cleaning for Sludge Heel Removal and MCU Oxalate and Aluminate Solubility - Radioactive Testing CX(s) Applied: B3.6Date: 41877 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  2. CX-012553: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Corrosion Testing in Support of Alternative Chemical Cleaning for Sludge Heel Removal CX(s) Applied: B3.6Date: 41879 Location(s): South CarolinaOffices(s): Savannah River Operations Office

  3. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    published work, the group performed VUV experiments on sulfur, using the results to build a model of chemical evolution in the primitive solar nebula that could yield the...

  4. Solutia: Massachusetts Chemical Manufacturer Uses SECURE Methodology...

    Broader source: Energy.gov (indexed) [DOE]

    plant-wide energy assessment conducted at the Solutia Inc. chemical production facility in Springfield, Massachusetts. The assessment focused on finding ways to reduce the plant's...

  5. Chemical Sciences Division | Advanced Materials |ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analysis, chemical imaging, neutron science, polymer science, and interfacial science. Theory is closely integrated with materials synthesis and characterization to gain new...

  6. Chemical Sciences, Geosciences, & Biosciences Program | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences, Geosciences, and Biosciences Program The Department of Energy's Office of Basic Energy Sciences' Chemical Sciences, Geosciences and Biosciences (CSGB) activities at...

  7. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Kim, Duck O.

    Biological Safety Officer Ergonomic Specialist 2723 Radiation Safety 2250 Facilities Management Office 2125. ANNUAL REVIEW AND EVALUATION OF EFFECTIVENESS OF THE CHEMICAL HYGIENE PLAN 9. HAZARD COMMUNICATION PLAN

  8. Alumni & Industry Magazine Chemical Engineering & Applied Chemistry

    E-Print Network [OSTI]

    Prodiæ, Aleksandar

    grease, waste animal fats, recycled veg- etable oils and agricultural seed oils into biodiesel. BioxAlumni & Industry Magazine Chemical Engineering & Applied Chemistry University of Toronto Volume 10

  9. CHEMICAL ENGINEERING 2012-2014 CATALOG

    E-Print Network [OSTI]

    Texas at Austin, University of

    Semester Semester Hours CH 302, Principles of Chemistry II ...........................................3 CH...........................4 CHE 372, Chemical Reactor Analysis and Design....................3 American History

  10. Rejuvenating Permeable Reactive Barriers by Chemical Flushing

    Broader source: Energy.gov [DOE]

    Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

  11. Workshop: Synchrotron Applications in Chemical Catalysis | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applications in Chemical Catalysis Tuesday, October 25, 2011 - 8:00am 2011 SSRLLCLS Annual Users Conference This workshop, part of the 2011 SSRLLCLS Annual Users...

  12. Integrated Chemical Geothermometry System for Geothermal Exploration

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

  13. Chemical and Materials Sciences Building | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    modern laboratory and office space for ORNL researchers who are studying and developing materials and chemical processes for energy-related technologies, including advanced...

  14. Studying the Solar System's Chemical Recipe

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying the Solar System's Chemical Recipe Print To study the origins of different isotope ratios among the elements that make up today's smorgasbord of planets, moons, comets,...

  15. Department of Chemical and Biological Engineering

    E-Print Network [OSTI]

    Torquato, Salvatore

    Department of Chemical and Biological Engineering Undergraduate Handbook Academic Year 2014, pharmaceuticals, semiconductors, adhesives, biopolymers, artificial kidneys, oil refineries, solar panels

  16. Chemically stabilized ionomers containing inorganic fillers

    DOE Patents [OSTI]

    Roelofs, Mark Gerrit

    2013-12-31

    Ionomeric polymers that are chemically stabilized and contain inorganic fillers are prepared, and show reduced degradation. The ionomers care useful in membranes and electrochemical cells.

  17. ORISE: Chemical Stockpile Emergency Preparedness Program Exercise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exercise Trending Tool ORISE-developed tool improves information sharing between Chemical Stockpile Emergency Preparedness Program partners The Oak Ridge Institute for Science and...

  18. ORISE: Chemical Stockpile Emergency Preparedness Program Exercise...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Stockpile Emergency Preparedness Program Exercise Training and Analysis Tool Training Tool Improves Information Sharing Between CSEPP and its Response Partners In 2006,...

  19. Evaluation Of Chemical Geothermometers For Calculating Reservoir...

    Open Energy Info (EERE)

    Evaluation Of Chemical Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  20. Methods and compounds for chemical ligation

    DOE Patents [OSTI]

    Church, George M.; Sismour, A. Michael

    2013-07-09

    Compositions and methods for chemical ligation are provided. Methods for nucleic acid sequencing, nucleic acid assembly and nucleic acid synthesis are also provided.

  1. High Efficiency Modular Chemical Processes (HEMCP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - ADVANCED MANUFACTURING OFFICE High Efficiency Modular Chemical Processes (HEMCP) Modular Process Intensification Framework for R&D Targets Advanced Manufacturing Office...

  2. Bio-butanol: Combustion properties and detailed chemical kinetic model

    SciTech Connect (OSTI)

    Black, G.; Curran, H.J.; Pichon, S.; Simmie, J.M.; Zhukov, V.

    2010-02-15

    Autoignition delay time measurements were performed at equivalence ratios of 0.5, 1 and 2 for butan-1-ol at reflected shock pressures of 1, 2.6 and 8 atm at temperatures from 1100 to 1800 K. High-level ab initio calculations were used to determine enthalpies of formation and consequently bond dissociation energies for each bond in the alcohol. A detailed chemical kinetic model consisting of 1399 reactions involving 234 species was constructed and tested against the delay times and also against recent jet-stirred reactor speciation data with encouraging results. The importance of enol chemistry is highlighted. (author)

  3. Thermal and Chemical Freeze-out in Spectator Fragmentation

    E-Print Network [OSTI]

    W. Trautmann; R. Bassini; M. Begemann-Blaich; A. Ferrero; S. Fritz; S. J. Gaff-Ejakov; C. Gross; G. Imme; I. Iori; U. Kleinevoss

    2007-12-17

    Isotope temperatures from double ratios of hydrogen, helium, lithium, beryllium, and carbon isotopic yields, and excited-state temperatures from yield ratios of particle-unstable resonances in 4He, 5Li, and 8Be, were determined for spectator fragmentation, following collisions of 197Au with targets ranging from C to Au at incident energies of 600 and 1000 MeV per nucleon. A deviation of the isotopic from the excited-state temperatures is observed which coincides with the transition from residue formation to multi-fragment production, suggesting a chemical freeze-out prior to thermal freeze-out in bulk disintegrations.

  4. Chemical Looping Combustion Reactions and Systems

    SciTech Connect (OSTI)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore, they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  5. Determination and interpretation of chemical adsorption data for an oxide catalyst 

    E-Print Network [OSTI]

    Holland, Charles Donald

    1953-01-01

    Bhorn ol dyod:bHrH ppppppppppppppppppp Asi 9 nCccey: ol ov:EHr etnoydBhorn lobbo5BrE dyod:bHrH etnoydBhorn or aeBeb:nB nehGdbH rop D eB feyhoCn tHEyHHn ol ovhteBhorpppppppppppppppppppppppppppppppppppppppppppp IC2 AO nCccey: ol ov:E1 r etnoydBhorn ert....C AA7 aoyyHbeBhor loy B(j7 etnoydBhor ol dyod:bHrH g: aeBeb:nB necdbH rop A eB feyhoCn tHEyHHn ol ovhteBhor pppppppppppp 181 Ai aoyyHbeBhor loy B(H etnoydBhor ol ov:EHr lobbo:UhrE dyod:bHrH etnoy2Bhor or ADiserti tDaoen rop C eB feyhoCn tHEyHHn ol...

  6. Acute and chronic toxicity of municipal landfill leachate as determined with bioassays and chemical analysis 

    E-Print Network [OSTI]

    Schrab, Gregory Ernst

    1990-01-01

    , 18 million tons of construction or demolition wastes, 9 million tons of industrial wastes, and 4 million tons of sewage sludge. Also, wastes including asbestos, incinerator ash, small quantity generator hazardous wastes, and infectious wastes... testing by Maron and Ames (1983). Strains TA 97, TA 100, TA 102, and TA 1538 did not appear to be more sensitive in detecting mutagenicity than the TA 98 strain with the Danville 001 and Delaware 001 samples; thus, the more commonly used TA 98 strain...

  7. Journal of Chemical Ecology, Vol. 23, No. 12, 1997 PREMATING ISOLATION IS DETERMINED BY LARVAL

    E-Print Network [OSTI]

    Etges, William J.

    cactus substrates and a synthetic laboratory growth medium in order to assess the degree to which natural rearing substrates influence adult hydro- carbon composition. Twenty epicuticular hydrocarbon components, ranging from C29 to C41, were recovered by gas chromatography that represented major classes of alkanes

  8. FISHERY WASTE EFFLUENTS: A METHOD TO DETERMINE RELATIONSHIPS BETWEEN CHEMICAL OXYGEN DEMAND AND RESIDUE

    E-Print Network [OSTI]

    1638, Kodiak, AK 99615. 2Tenney, R. D. 1972. COD for Industrial Waste Water, Tech. Rep. 97, 5 p.; 1972

  9. On coaxial minors of determinants

    E-Print Network [OSTI]

    Babcock, Wealthy Consuelo

    1922-01-01

    . Approved by: ROOlOb SlSb^ Contents Page I. Introduction 1 II. Independence of Coaxial Minors of Special Determinants 9 A. Symmetric Determinant 9 B. Skew-symmetric Determinant ...14 C. Circulant 17 D. Hankel's Determinant 19 III... Introduction The work on coaxial minors of a deter­ minant has centered about the problems of deter­ mining the number of independent coaxial minors, of finding independent sets, and of expressing the determinant in terms of the minors of an independent set...

  10. Standard Practice for Corrosion of Aircraft Metals by Total Immersion in Maintenance Chemicals

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice covers the determination of the corrosiveness of tank-type aircraft maintenance chemicals on aircraft metals and the corrodibility of metals in these maintenance chemicals with time. The determination is made under conditions of total immersion by a combination of weight change measurements and visual qualitative determinations of change. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific precautions, see Section 6.

  11. Savannah River Site - A/M Area Groundwater | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummaryDIST OFMEAG, Dalton2Program SanEnergy1998 This

  12. Chemical Engineering and Chemical Technology 1 Faculty of Engineering, Department of

    E-Print Network [OSTI]

    for planning, design and control of processes. The department offers world-class facilities for both research chemical synthesis and production. MEng in Chemical Engineering with a Year Abroad1 The MEng course

  13. Origin of Cosmic Chemical Abundances

    E-Print Network [OSTI]

    Maio, Umberto

    2015-01-01

    Cosmological N-body hydrodynamic computations following atomic and molecular chemistry (e$^-$, H, H$^+$, H$^-$, He, He$^+$, He$^{++}$, D, D$^+$, H$_2$, H$_2^+$, HD, HeH$^+$), gas cooling, star formation and production of heavy elements (C, N, O, Ne, Mg, Si, S, Ca, Fe, etc.) from stars covering a range of mass and metallicity are used to explore the origin of several chemical abundance patterns and to study both the metal and molecular content during simulated galaxy assembly. The resulting trends show a remarkable similarity to up-to-date observations of the most metal-poor damped Lyman-$\\alpha$ absorbers at redshift $z\\gtrsim 2$. These exhibit a transient nature and represent collapsing gaseous structures captured while cooling is becoming effective in lowering the temperature below $\\sim 10^4\\,\\rm K$, before they are disrupted by episodes of star formation or tidal effects. Our theoretical results agree with the available data for typical elemental ratios, such as [C/O], [Si/Fe], [O/Fe], [Si/O], [Fe/H], [O/...

  14. 2005 Chemical Reactions at Surfaces

    SciTech Connect (OSTI)

    Cynthia M. Friend

    2006-03-14

    The Gordon Research Conference (GRC) on 2005 Chemical Reactions at Surfaces was held at Ventura Beach Marriott, Ventura California from February 13, 2005 through February 18, 2005. The Conference was well-attended with 124 participants (attendees list attached). The attendees represented the spectrum of endeavor in this field coming from academia, industry, and government laboratories, both U.S. and foreign scientists, senior researchers, young investigators, and students. In designing the formal speakers program, emphasis was placed on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions. In order that more scientists could communicate their most recent results, poster presentation time was scheduled. Attached is a copy of the formal schedule and speaker program and the poster program. In addition to these formal interactions, 'free time' was scheduled to allow informal discussions. Such discussions are fostering new collaborations and joint efforts in the field.

  15. Method of determining interwell oil field fluid saturation distribution

    DOE Patents [OSTI]

    Donaldson, Erle C. (Bartlesville, OK); Sutterfield, F. Dexter (Bartlesville, OK)

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  16. A study of the sign problem for lattice QCD with chemical potential

    E-Print Network [OSTI]

    Danzer, Julia; Liptak, Ludovit; Marinkovic, Marina

    2009-01-01

    We study the expectation value of the phase of the fermion determinant for Wilson lattice fermions with chemical potential. We use quenched SU(3) ensembles and implement a recently proposed exact dimensional reduction of the fermion determinant. Ensembles at several temperatures below and above the phase transition are studied and we analyze the role of the quark mass, the temperature, the volume and the topological sectors. We compare our numerical results to predictions from chiral perturbation theory.

  17. A study of the sign problem for lattice QCD with chemical potential

    E-Print Network [OSTI]

    Julia Danzer; Christof Gattringer; Ludovit Liptak; Marina Marinkovic

    2009-11-03

    We study the expectation value of the phase of the fermion determinant for Wilson lattice fermions with chemical potential. We use quenched SU(3) ensembles and implement a recently proposed exact dimensional reduction of the fermion determinant. Ensembles at several temperatures below and above the phase transition are studied and we analyze the role of the quark mass, the temperature, the volume and the topological sectors. We compare our numerical results to predictions from chiral perturbation theory.

  18. Recent Advances in Detailed Chemical Kinetic Models for Large Hydrocarbon and Biodiesel Transportation Fuels

    SciTech Connect (OSTI)

    Westbrook, C K; Pitz, W J; Curran, H J; Herbinet, O; Mehl, M

    2009-03-30

    n-Hexadecane and 2,2,4,4,6,8,8-heptamethylnonane represent the primary reference fuels for diesel that are used to determine cetane number, a measure of the ignition property of diesel fuel. With the development of chemical kinetics models for these two primary reference fuels for diesel, a new capability is now available to model diesel fuel ignition. Also, we have developed chemical kinetic models for a whole series of large n-alkanes and a large iso-alkane to represent these chemical classes in fuel surrogates for conventional and future fuels. Methyl decanoate and methyl stearate are large methyl esters that are closely related to biodiesel fuels, and kinetic models for these molecules have also been developed. These chemical kinetic models are used to predict the effect of the fuel molecule size and structure on ignition characteristics under conditions found in internal combustion engines.

  19. Method For Chemical Sensing Using A Microfabricated Teeter-Totter Resonator

    DOE Patents [OSTI]

    Adkins, Douglas Ray (Albuquerque, NM); Heller, Edwin J. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM)

    2004-11-30

    A method for sensing a chemical analyte in a fluid stream comprises providing a microfabricated teeter-totter resonator that relies upon a Lorentz force to cause oscillation in a paddle, applying a static magnetic field substantially aligned in-plane with the paddle, energizing a current conductor line on a surface of the paddle with an alternating electrical current to generate the Lorentz force, exposing the resonator to the analyte, and detecting the response of the oscillatory motion of the paddle to the chemical analyte. Preferably, a chemically sensitive coating is disposed on at least one surface of the paddle to enhance the sorption of the analyte by the paddle. The concentration of the analyte in a fluid stream can be determined by measuring the change in the resonant frequency or phase of the teeter-totter resonator as the chemical analyte is added to or removed from the paddle.

  20. Safety Topic Chemical Hood General purpose: prevent exposure to toxic, irritating, or noxious chemical

    E-Print Network [OSTI]

    Cohen, Robert E.

    Safety Topic ­ Chemical Hood General purpose: prevent exposure to toxic, irritating, or noxious chemical vapors and gases. A face velocity of 100 feet per minute (fpm) provides efficient vapor capture the better. (T) (F) A chemical hood can be used for storage of volatile, flammable, or odiferous materials

  1. Chemical engineers design, control and optimize large-scale chemical, physicochemical and

    E-Print Network [OSTI]

    Rohs, Remo

    Introduction to Separation Processes (3, Sp) Use of equilibrium phase relations and principles of material by petition only. 405 Applications of Probability and Statistics for Chemical Engineers (3, Fa) Principles 226. #12;41 CHEMICAL & MATERIALS SCIENCE 442 Chemical Reactor Analysis (4, Fa) Basic concepts

  2. Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof. Mikael Nilsson)(Prof. Mikael Nilsson)

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof. Mikael Nilsson)(Prof. Mikael for future nuclear waste reprocessing. Projects include new methods and chemicals used in solvent extraction knowledge for separation of different elements in spent nuclear fuel. Radioanalytical techniques and online

  3. Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof.(Prof. MikaelMikael Nilsson)Nilsson)

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Nuclear Chemical EngineeringNuclear Chemical Engineering (Prof.(Prof. MikaelMikael Nilsson for future nuclear waste reprocessing. Projects include new methods and chemicals used in solvent extraction knowledge for separation of different elements in spent nuclear fuel. Radioanalytical techniques and online

  4. The Chemical Engineering Ph.D. Program Department of Chemical Engineering

    E-Print Network [OSTI]

    Firestone, Jeremy

    and engineering knowledge in a particular area of scholarship. The conduct of this research, as well a foundation of technical knowledge in chemical engineering. This knowledge should be obtained in a wayThe Chemical Engineering Ph.D. Program Department of Chemical Engineering University of Delaware

  5. Single Cells as Biosensors for Chemical Separations

    E-Print Network [OSTI]

    Single Cells as Biosensors for Chemical Separations Jason B. Shear,* Harvey A. Fishman, Nancy L. Allbritton,t Delia Garigan, Richard N. Zare,t Richard H. Scheller A biosensor system based on the response sensitivity and selectivity. Biosensors detect chemical species with high selectivity on the basis

  6. hz.genium.com Proper Chemical Storage

    E-Print Network [OSTI]

    Cohen, Robert E.

    Lab Safety 1 hz.genium.com #12;Proper Chemical Storage · Store in compatible groups. Consult above flammables and reactives. · Label storage areas, and label all chemicals being stored. · Store hazardous with contents. · Lids should be tightly closed. · Secondary containment for floor storage. · Do not store

  7. COLLEGE OF ENGINEERING DEPARTMENT OF CHEMICAL ENGINEERING

    E-Print Network [OSTI]

    Zallen, Richard

    COLLEGE OF ENGINEERING DEPARTMENT OF CHEMICAL ENGINEERING BACHELOR OF SCIENCE IN CHEMICAL ENGINEERING FOR STUDENTS GRADUATING IN CALENDAR YEAR 2018 (CO-OP STUDENTS GRADUATING IN CALENDAR YEAR 2019 Credits CHEM 1035 General Chemistry Pre: None 3 CHEM 1036 General Chemistry Pre: None 3 CHEM 1045 General

  8. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING

    E-Print Network [OSTI]

    Palanki, Srinivas

    methane to generate hydrogen, are analyzed. In particular, basic chemical engineering principles with oxygen to generate electrical power which drives an electric motor. A brief description of the two main for automotive ap- plications, using methane as a fuel, are analyzed. Basic chemical engineering principles

  9. GULF OF MEXICO PHYSICAL AND CHEMICAL DATA

    E-Print Network [OSTI]

    -^ ^ / GULF OF MEXICO PHYSICAL AND CHEMICAL DATA FROM ALASKA CRUISES Marine Biological Laboratory, Commissioner GULF OF MEXICO PHYSICAL AND CHEMICAL DATA FROM ALASKA CRUISES Compiled by Albert Collier Fishery OF THE GULF OF MEXICO By Kenneth H. Driimmond and George B. Austin, Jr. Department of Oceanography The A. & M

  10. Frontiers in Chemical Imaging Seminar Series

    E-Print Network [OSTI]

    Frontiers in Chemical Imaging Seminar Series Presented by Kannan M. Krishnan, Ph.D. Departments of Materials Science and Physics University of Washington Abstract There has been a renaissance in magnetism. Central to this work are innovations in chemical synthesis of nanoparticles, their size-dependent magnetic

  11. GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE

    E-Print Network [OSTI]

    Tennessee, University of

    GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE The proper management of hazardous waste and regulatory compliance are achieved: 1. Make sure that no hazardous materials are placed into regular solid in the departmental chemical hygiene plan (CHP) before you begin to use hazardous substances. 3. Make sure you know

  12. Chemical Imaging Initiative Delivering New Capabilities for

    E-Print Network [OSTI]

    or with light-source capabilities to image materials of importance to the nation's energy and environmentalChemical Imaging Initiative Delivering New Capabilities for In Situ, Molecular-Scale Imaging A complete, precise and realistic view of chemical, materials and biochemical processes and an understanding

  13. chemical (CHE) CHE overview programs available

    E-Print Network [OSTI]

    Rohs, Remo

    phase relations and principles of material and energy balance for design, operation, and optimization) Principles of probability and statis- tics, random variables and random functions. Application to chemical- ments in the rubber industry. Recom- mended preparation: CHEM 322bL. 442 Chemical Reactor Analysis (4

  14. December 2013 Department of Chemical Engineering

    E-Print Network [OSTI]

    Zevenhoven, Ron

    December 2013 Department of Chemical Engineering Thermal and Flow Engineering Laboratory Ron / Chemical Engineering course 424514 "Fluid and Particulate Systems" 4 sp, as presented during 9x3 hours in second-year course 424101 "Processteknikens grunder" ("Introduction to process engineering") it also

  15. Excellence in biotechnology for fuels and chemicals

    SciTech Connect (OSTI)

    Neufeld, S.

    1999-04-23

    The Biotechnology Center for Fuels and Chemicals (BCFC) leads a national effort, in cooperation with industry, to develop innovative, market-driven biotechnologies for producing fuels and chemicals from renewable resources. The BCFC researchers focus on using bioprocesses to convert renewable biomass feedstocks into valuable products.

  16. CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings

    E-Print Network [OSTI]

    Sherrill, David

    CHEM 6471 CHEMICAL THERMODYNAMICS AND KINETICS Class Meetings 9:35 ­ 10:55 am, Tuesday and Thursday of October 22-26 Textbooks Molecular Thermodynamics by D.A McQuarrie and J.D. Simon, University Science Books the laws of classical thermodynamics and some of their chemical applications. It also covers basic

  17. LABORATORY GUIDE FOR MANAGING CHEMICAL WASTE

    E-Print Network [OSTI]

    Wikswo, John

    LABORATORY GUIDE FOR MANAGING CHEMICAL WASTE VANDERBILT UNIVERSITY Vanderbilt Environmental Health-4951 After hours pager: 835-4965 www.safety.vanderbilt.edu TABLE OF CONTENTS CHEMICAL WASTE MANAGEMENT and Safety (VEHS) 322-2057 www.safety.vanderbilt.edu Revision 1: 3/03 #12;Laboratory Guide for Managing

  18. College of Engineering CME Chemical Engineering

    E-Print Network [OSTI]

    MacAdam, Keith

    College of Engineering CME Chemical Engineering KEY: # = new course * = course changed = course dropped University of Kentucky 2013-2014 Undergraduate Bulletin 1 CME 006 THE ENGINEERING PROFESSION (JUNIOR AND SENIOR). (0) Activities of the Student Chapter of the American Institute of Chemical Engineers

  19. Department of Energy, Environmental & Chemical Engineering

    E-Print Network [OSTI]

    Subramanian, Venkat

    Department of Energy, Environmental & Chemical Engineering Opportunities for Undergraduate Students laboratory is a good way to expand your classroom experience. department of energy, environmental & chemicalIndustryPlantTour.Thedepartmentoffers twoplanttourseachfall. Cover: International Experience Brazil 2012 in sugar can mill, Usina Ester, Campina, Brazil #12

  20. Deciding which chemical mixtures risk assessment methods work best for what mixtures

    SciTech Connect (OSTI)

    Teuschler, Linda K.

    2007-09-01

    The most commonly used chemical mixtures risk assessment methods involve simple notions of additivity and toxicological similarity. Newer methods are emerging in response to the complexities of chemical mixture exposures and effects. Factors based on both science and policy drive decisions regarding whether to conduct a chemical mixtures risk assessment and, if so, which methods to employ. Scientific considerations are based on positive evidence of joint toxic action, elevated human exposure conditions or the potential for significant impacts on human health. Policy issues include legislative drivers that may mandate action even though adequate toxicity data on a specific mixture may not be available and risk assessment goals that impact the choice of risk assessment method to obtain the amount of health protection desired. This paper discusses three important concepts used to choose among available approaches for conducting a chemical mixtures risk assessment: (1) additive joint toxic action of mixture components; (2) toxicological interactions of mixture components; and (3) chemical composition of complex mixtures. It is proposed that scientific support for basic assumptions used in chemical mixtures risk assessment should be developed by expert panels, risk assessment methods experts, and laboratory toxicologists. This is imperative to further develop and refine quantitative methods and provide guidance on their appropriate applications. Risk assessors need scientific support for chemical mixtures risk assessment methods in the form of toxicological data on joint toxic action for high priority mixtures, statistical methods for analyzing dose-response for mixtures, and toxicological and statistical criteria for determining sufficient similarity of complex mixtures.

  1. Chemical composition of Earth-like planets

    E-Print Network [OSTI]

    Ronco, M P; Marboeuf, U; Alibert, Y; de Elía, G C; Guilera, O M

    2015-01-01

    Models of planet formation are mainly focused on the accretion and dynamical processes of the planets, neglecting their chemical composition. In this work, we calculate the condensation sequence of the different chemical elements for a low-mass protoplanetary disk around a solar-type star. We incorporate this sequence of chemical elements (refractory and volatile elements) in our semi-analytical model of planet formation which calculates the formation of a planetary system during its gaseous phase. The results of the semi-analytical model (final distributions of embryos and planetesimals) are used as initial conditions to develope N-body simulations that compute the post-oligarchic formation of terrestrial-type planets. The results of our simulations show that the chemical composition of the planets that remain in the habitable zone has similar characteristics to the chemical composition of the Earth. However, exist differences that can be associated to the dynamical environment in which they were formed.

  2. Surface wave chemical detector using optical radiation

    DOE Patents [OSTI]

    Thundat, Thomas G.; Warmack, Robert J.

    2007-07-17

    A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.

  3. 2008 Toxic Chemical Release Inventory 2008 Toxic Chemical Release Inventory Community Right-to-Know Act of 1986, Title III, Section 313

    SciTech Connect (OSTI)

    Ecology and Air Quality Group

    2009-10-01

    For reporting year 2008, Los Alamos National Laboratory (LANL) submitted a Form R report for lead as required under the Emergency Planning and Community Right-to- Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2008 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2008, as well as to provide background information about data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999, EPA promulgated a final rule on persistent bioaccumulative toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.

  4. Chemical factors influencing selenium atomization 

    E-Print Network [OSTI]

    Buren, Mary Sue

    1980-01-01

    Atomization. (August 1980) Mary Sue Buren, B, S. , Angelo State University Chairman of Advisory Comm1ttee: Dr. Thomas M. Vickrey Selenium in an acid1c matrix was analyzed using graphite furnace atom1c absorption with Zeeman-effect background correct1on.... Nickel(II} and lanthanum( III) were introduced as matrix modifiers to determine their effect on interferences 1n selenium atom1zation. In add1tion to matr1x mod1ficat1on, surface coating the graphite furnace with z1rconium and tantalum salts was also...

  5. New Thermodynamic Paradigm of Chemical Equilibria

    E-Print Network [OSTI]

    B. Zilbergleyt

    2011-10-28

    The paper presents new thermodynamic paradigm of chemical equilibrium, setting forth comprehensive basics of Discrete Thermodynamics of Chemical Equilibria (DTd). Along with previous results by the author during the last decade, this work contains also some new developments of DTd. Based on the Onsager's constitutive equations, reformulated by the author thermodynamic affinity and reaction extent, and Le Chatelier's principle, DTd brings forward a notion of chemical equilibrium as a balance of internal and external thermodynamic forces (TdF), acting against a chemical system. Basic expression of DTd is the chemical system logistic map of thermodynamic states that ties together energetic characteristics of chemical reaction, occurring in the system, the system shift from "true" thermodynamic equilibrium (TdE), and causing that shift external thermodynamic forces. Solutions to the basic map are pitchfork bifurcation diagrams in coordinates "shift from TdE - growth factor (or TdF)"; points, corresponding to the system thermodynamic states, are dwelling on its branches. The diagrams feature three typical areas: true thermodynamic equilibrium and open equilibrium along the thermodynamic branch before the threshold of its stability, i.e. bifurcation point, and bifurcation area with bistability and chaotic oscillations after the point. The set of solutions makes up the chemical system domain of states. The new paradigm complies with the correspondence principle: in isolated chemical system external TdF vanish, and the basic map turns into traditional expression of chemical equilibrium via thermodynamic affinity. The theory binds together classical and contemporary thermodynamics of chemical equilibria on a unique conceptual basis. The paper is essentially reworked and refocused version of the earlier preprint on the DTd basics, supplemented with new results.

  6. Potential for Energy Efficient Motors and Variable Speed Drives in the Petroleum and Chemical Industry 

    E-Print Network [OSTI]

    Fendley, K. A.; Pillay, P.

    1994-01-01

    This paper presents an in-depth survey of motors in a refinery and a chemical plant. The potential for energy and demand savings is then determined and hence the dollar savings using a sliding rate structure currently applicable to the petrochemical...

  7. Basics of Chemical Kinetics -1 Rate of reaction = rate of disappearance of A =

    E-Print Network [OSTI]

    Albert, Réka

    reactions: Forward Reaction Backward Reaction CBA + 2 CBA + 2 CBA + 2 CBA + 2 #12;Basics of Chemical], [C] CBA + #12;Ex. 1 Determine the relation between the reaction rates and the reaction flux. Assume conservation. Hint: think of the reaction as a complex formation CBA + ]B][A[k dt ]C[d =]B][A[k dt ]B[d dt ]A

  8. Application of Thin-Film Amorphous Silicon to Chemical Imaging Tatsuo Yoshinobu1

    E-Print Network [OSTI]

    Moritz, Werner

    silicon (a-Si) deposited on a glass substrate was employed as a semiconductor material for the chemical is determined by the thickness of the semiconductor layer as well as by the material parameters properties and the spatial resolution of the a-Si sensors were investigated. Nearly-Nernstian p

  9. Academy of Sciences of the Czech Republic Institute of Chemical Process

    E-Print Network [OSTI]

    Cirkva, Vladimir

    ; determination of organic pollutants in water · Supercritical fluid extraction of essential oils; enzymatic engineering. Besides these activities, the Institute acts as a graduate school for PhD studies in the field of chemical engineering, physical chemistry, industrial chemistry, and biotechnology. MANAGEMENT Director Jií

  10. Subscriber access provided by MIT Analytical Chemistry is published by the American Chemical Society. 1155

    E-Print Network [OSTI]

    Voldman, Joel

    Subscriber access provided by MIT Analytical Chemistry is published by the American Chemical of a sample from a complex mixture, or analytic, where the goal is to determine and quantify the contents, isodielectric sepa- ration (IDS), to a range of analytic separations involving cells and particles spanning

  11. Ages and Chemical Abundances in Dwarf Spheroidal Galaxies

    E-Print Network [OSTI]

    Tammy Smecker-Hane; Andrew McWilliam

    1999-10-12

    The dwarf spheroidal galaxies (dSphs) in the Local Group are excellent systems on which we can test theories of galaxy formation and evolution. Color-magnitude diagrams (CMDs) containing many thousands of stars from the asymptotic giant branch to well below the oldest main-sequence turnoff are being used to infer their star-formation histories, and surprisingly complex evolutionary histories have been deduced. Spectroscopy of individual red giant stars in the dSphs is being used to determine the distribution of chemical abundances in them. By combining photometry and spectroscopy, we can overcome the age-metallicity degeneracy inherent in CMDs and determine the evolution of dSphs with unprecedented accuracy. We report on recent progress and discuss a new and exciting avenue of research, high-dispersion spectroscopy that yields abundances for numerous chemical elements. The later allows us to estimate the enrichment from both Type Ia and Type II supernovae (SNe) and places new limits on how much of the Galaxy could have been accreted in the form of dSph-sized fragments and when such mergers could have taken place.

  12. Determining the neutrino mass hierarchy

    SciTech Connect (OSTI)

    Parke, Stephen J.; /Fermilab

    2006-07-01

    In this proceedings I review the physics that future experiments will use to determine the neutrino mass hierarchy.

  13. Chemical Methods for Ugnu Viscous Oils

    SciTech Connect (OSTI)

    Kishore Mohanty

    2012-03-31

    The North Slope of Alaska has large (about 20 billion barrels) deposits of viscous oil in Ugnu, West Sak and Shraeder Bluff reservoirs. These shallow reservoirs overlie existing productive reservoirs such as Kuparuk and Milne Point. The viscosity of the Ugnu reservoir on top of Milne Point varies from 200 cp to 10,000 cp and the depth is about 3300 ft. The same reservoir extends to the west on the top of the Kuparuk River Unit and onto the Beaufort Sea. The depth of the reservoir decreases and the viscosity increases towards the west. Currently, the operators are testing cold heavy oil production with sand (CHOPS) in Ugnu, but oil recovery is expected to be low (< 10%). Improved oil recovery techniques must be developed for these reservoirs. The proximity to the permafrost is an issue for thermal methods; thus nonthermal methods must be considered. The objective of this project is to develop chemical methods for the Ugnu reservoir on the top of Milne Point. An alkaline-surfactant-polymer (ASP) formulation was developed for a viscous oil (330 cp) where as an alkaline-surfactant formulation was developed for a heavy oil (10,000 cp). These formulations were tested in one-dimensional and quarter five-spot Ugnu sand packs. Micromodel studies were conducted to determine the mechanisms of high viscosity ratio displacements. Laboratory displacements were modeled and transport parameters (such as relative permeability) were determined that can be used in reservoir simulations. Ugnu oil is suitable for chemical flooding because it is biodegraded and contains some organic acids. The acids react with injected alkali to produce soap. This soap helps in lowering interfacial tension between water and oil which in turn helps in the formation of macro and micro emulsions. A lower amount of synthetic surfactant is needed because of the presence of organic acids in the oil. Tertiary ASP flooding is very effective for the 330 cp viscous oil in 1D sand pack. This chemical formulation includes 1.5% of an alkali, 0.4% of a nonionic surfactant, and 0.48% of a polymer. The secondary waterflood in a 1D sand pack had a cumulative recovery of 0.61 PV in about 3 PV injection. The residual oil saturation to waterflood was 0.26. Injection of tertiary alkaline-surfactant-polymer slug followed by tapered polymer slugs could recover almost 100% of the remaining oil. The tertiary alkali-surfactant-polymer flood of the 330 cp oil is stable in three-dimensions; it was verified by a flood in a transparent 5-spot model. A secondary polymer flood is also effective for the 330 cp viscous oil in 1D sand pack. The secondary polymer flood recovered about 0.78 PV of oil in about 1 PV injection. The remaining oil saturation was 0.09. The pressure drops were reasonable (<2 psi/ft) and depended mainly on the viscosity of the polymer slug injected. For the heavy crude oil (of viscosity 10,000 cp), low viscosity (10-100 cp) oil-in-water emulsions can be obtained at salinity up to 20,000 ppm by using a hydrophilic surfactant along with an alkali at a high water-to-oil ratio of 9:1. Very dilute surfactant concentrations (~0.1 wt%) of the synthetic surfactant are required to generate the emulsions. It is much easier to flow the low viscosity emulsion than the original oil of viscosity 10,000 cp. Decreasing the WOR reverses the type of emulsion to water-in-oil type. For a low salinity of 0 ppm NaCl, the emulsion remained O/W even when the WOR was decreased. Hence a low salinity injection water is preferred if an oil-in-water emulsion is to be formed. Secondary waterflood of the 10,000 cp heavy oil followed by tertiary injection of alkaline-surfactants is very effective. Waterflood has early water breakthrough, but recovers a substantial amount of oil beyond breakthrough. Waterflood recovers 20-37% PV of the oil in 1D sand pack in about 3 PV injection. Tertiary alkali-surfactant injection increases the heavy oil recovery to 50-70% PV in 1D sand packs. As the salinity increased, the oil recovery due to alkaline surfactant flood increased, but water-in-oil emulsion was p

  14. Production of chemicals and fuels from biomass

    DOE Patents [OSTI]

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  15. Chemical preconcentrator with integral thermal flow sensor

    DOE Patents [OSTI]

    Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

    2003-01-01

    A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

  16. Chemical Sciences Division annual report 1994

    SciTech Connect (OSTI)

    1995-06-01

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  17. Chemical Storage Information Request Form If you do not find the chemicalyou are looking for in the current data base, please

    E-Print Network [OSTI]

    Firestone, Jeremy

    Chemical Storage Information Request Form If you do not find the chemicalyou are looking (831- 1528) or email(dehsafety@udel.edu). I will review the informationand forward a storage the followingchemicalcharacteristics informationthat willaid in the accurate determination of the storage requirements. Chemical IUPAC

  18. Hazard Communication Standard Pictogram As of June 1, 2015, the Hazard Communication Standard (HCS) will require pictograms on labels to alert users of the chemical

    E-Print Network [OSTI]

    Hazard Communication Standard Pictogram As of June 1, 2015, the Hazard Communication Standard (HCS) will require pictograms on labels to alert users of the chemical hazards to which they may be exposed. Each hazard(s). The pictogram on the label is determined by the chemical hazard classification. HCS Pictograms

  19. SECTION 13-CHEMICAL SAFETY NOTE: Much of the information contained in this Chemical Safety section is duplicated from the

    E-Print Network [OSTI]

    Selmic, Sandra

    164 SECTION 13- CHEMICAL SAFETY NOTE: Much of the information contained in this Chemical Safety section is duplicated from the "Chemical Hygiene Plan for Laboratories" in the Louisiana Tech University ( Section 12) when working with chemicals. REQULATORY BASIS FOR RULES GOVERNING THE SAFE USE OF CHEMICALS

  20. CX-001618: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Congressionally Directed Project (CDP) Award. Next Generation Surfactants for Improved Chemical Flooding TechnologyCX(s) Applied: B3.6, A1Date: 04/12/2010Location(s): OklahomaOffice(s): Fossil Energy, National Energy Technology Laboratory

  1. CX-005769: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Dismantle and Removal (D&R) and Enhance Chemical Cleaning (ECC) on Waste Tank 8F (General)CX(s) Applied: B1.28Date: 04/19/2011Location(s): Aiken, South CarolinaOffice(s): Environmental Management, Savannah River Operations Office

  2. CX-011763: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Mogene Green Chemicals, LLC - Biotransformation of Methane to n-butanol by a Methanotrophic Cyanobacterium CX(s) Applied: B3.6 Date: 11/14/2013 Location(s): Missouri, California Offices(s): Advanced Research Projects Agency-Energy

  3. CX-010976: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Thermal-Hydrological-Chemical-Mechanical (THCM) Coupled Model for Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments CX(s) Applied: A9 Date: 09/16/2013 Location(s): Texas Offices(s): National Energy Technology Laboratory

  4. CX-010977: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Thermal-Hydrological-Chemical-Mechanical (THCM) Coupled Model for Hydrate-Bearing Sediments: Data Analysis and Design of New Field Experiments CX(s) Applied: A9 Date: 09/16/2013 Location(s): Georgia Offices(s): National Energy Technology Laboratory

  5. CX-011577: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    The Impacts of Pore-Scale Physical and Chemical Heterogeneities on the Transport of Radionuclide-Carrying Colloids CX(s) Applied: B3.6 Date: 11/14/2013 Location(s): Colorado Offices(s): Idaho Operations Office

  6. CX-001424: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Thermal-Hydrological-Mechanical-Chemical Modeling of Enhanced Geothermal System Reservoirs - Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced SeismicityCX(s) Applied: A9Date: 03/29/2010Location(s): PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  7. CX-012473: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Commercialization of Iron-Based Coal Direct Chemical Looping for Power Prod-Lab & Pilot-Scale Testing CX(s) Applied: A9, B3.6Date: 41870 Location(s): OhioOffices(s): National Energy Technology Laboratory

  8. CX-001190: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    An Integrated Experimental and Numerical Study: Developing a Reaction Transport Model that Couples Chemical Reactions of Mineral Dissolution/Precipitation with Spatial and Temporal Flow Variations in Carbon Dioxide/Brine/Rock SystemsCX(s) Applied: A9, B3.6Date: 03/21/2010Location(s): Minneapolis, MinnesotaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  9. Annual Report 2000. Chemical Structure and Dynamics

    SciTech Connect (OSTI)

    Colson, Steven D.; McDowell, Robin S.

    2001-04-15

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

  10. Chemical Sciences, Geosciences, and Biosciences Strategic Planning...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences, Geosciences, and Biosciences Strategic Planning Process September 21, 2015 1:00PM to 2:00PM Presenter Tanja Pietrass, Director, CSGB Division, DOE Office of...

  11. Chemical vapor deposition of antimicrobial polymer coatings

    E-Print Network [OSTI]

    Martin, Tyler Philip, 1977-

    2007-01-01

    There is large and growing interest in making a wide variety of materials and surfaces antimicrobial. Initiated chemical vapor deposition (iCVD), a solventless low-temperature process, is used to form thin films of polymers ...

  12. Reporting Conservation Results in the Chemical Industry 

    E-Print Network [OSTI]

    Doerr, R. E.

    1979-01-01

    In 1974, the Manufacturing Chemists Association (MCA) developed an energy rate method for reporting the energy conservation results of the chemical industry to the Federal Energy Administration. The MCA Energy Rate Method has served as a model...

  13. Collaborating for Multi-Scale Chemical Science

    SciTech Connect (OSTI)

    William H. Green

    2006-07-14

    Advanced model reduction methods were developed and integrated into the CMCS multiscale chemical science simulation software. The new technologies were used to simulate HCCI engines and burner flames with exceptional fidelity.

  14. How Do I Work with Chemicals?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the bottom of the chemical safety page of the ESS (example). If you will be using hazardous materials, this work will usually be restricted to a special bench at the...

  15. Laboratory Safety Survey Chemical Hygiene Plan

    E-Print Network [OSTI]

    Ishida, Yuko

    Laboratory Safety Survey Chemical Hygiene Plan OFFICE OF ENVIRONMENTAL HEALTH AND SAFETY UNIVERSITY and charged? (if not, call UC Davis Fire Department). 17. Are sinks labeled "Industrial Water - Do Not Drink

  16. Biomedical Engineering Biomedical engineering integrates physical, chemical,

    E-Print Network [OSTI]

    Biomedical Engineering Biomedical engineering integrates physical, chemical, mathematical sciences and engineering principles for the study of biology, medicine, behavior, or health. Biomedical engineering, and for improving health. Biomedical engineers design and develop devices and procedures that solve medical

  17. Chemical vapor infiltration using microwave energy

    DOE Patents [OSTI]

    Devlin, David J. (Los Alamos, NM); Currier, Robert P. (Los Alamos, NM); Laia, Jr., Joseph R. (Los Alamos, NM); Barbero, Robert S. (Santa Cruz, NM)

    1993-01-01

    A method for producing reinforced ceramic composite articles by means of chemical vapor infiltration and deposition in which an inverted temperature gradient is utilized. Microwave energy is the source of heat for the process.

  18. Acceleration of chemical reaction by chaotic mixing

    E-Print Network [OSTI]

    M. Chertkov; V. Lebedev

    2003-01-27

    Theory of fast binary chemical reaction, ${\\cal A}+{\\cal B}\\to{\\cal C}$, in a statistically stationary chaotic flow at large Schmidt number ${Sc}$ and large Damk\\"ohler number ${Da}$ is developed. For stoichiometric condition we identify subsequent stages of the chemical reaction. The first stage corresponds to the exponential decay, $\\propto\\exp(-\\lambda t)$ (where $\\lambda$ is the Lyapunov exponent of the flow), of the chemicals in the bulk part of the flow. The second and the third stages are related to the chemicals remaining in the boundary region. During the second stage the amounts of ${\\cal A}$ and ${\\cal B}$ decay $\\propto 1/\\sqrt{t}$, whereas the decay law during the third stage is exponential, $\\propto\\exp(-\\gamma t)$, where $\\gamma\\sim\\lambda/\\sqrt{Sc}$.

  19. Sandia Researchers Develop Promising Chemical Technology for...

    Energy Savers [EERE]

    - 9:50am Addthis DOE-funded researchers at Sandia National Laboratories have developed new chemical technology that could lead to batteries able to cost-effectively store three...

  20. Chemical structure and dynamics: Annual report 1996

    SciTech Connect (OSTI)

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

  1. BIOMEDICAL ENGINEERING CHEMICAL AND BIOLOGICAL ENGINEERING

    E-Print Network [OSTI]

    Heller, Barbara

    BIOMEDICAL ENGINEERING CHEMICAL AND BIOLOGICAL ENGINEERING CIVIL, ARCHITECTURAL, AND ENVIRONMENTAL ENGINEERING ELECTRICAL AND COMPUTER ENGINEERING MECHANICAL, MATERIALS, AND AEROSPACE ENGINEERING COLLEGE OF ENGINEERING IIT ARMOUR #12;WHY ENGINEERINGAT IIT ARMOUR? Five Departments. One Distinctive Educational

  2. TCD-IISc Symposium "Chemistry & Chemical Biology"

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    actinide chemistry, with a focus on coordination and organometallic uranium chemistry. Paula ColavitaTCD-IISc Symposium "Chemistry & Chemical Biology" Trinity College Clive Williams, Dean of Chemistry. Research areas include supramolecular organic and inorganic chemistry and medicinal chemistry

  3. The 30th Annual Chemical Physics

    E-Print Network [OSTI]

    Le Roy, Robert J.

    of Waterloo Department of Chemistry, University of Waterloo AB SCIEX #12;Symposium on Chemical PhysicsMaster University) Ab Initio Modeling of Excited States of Uranium Compounds: Dissecting the Interplay of Electron

  4. Chemical Hydrogen Storage Research and Development

    Broader source: Energy.gov [DOE]

    DOE's chemical hydrogen storage R&D is focused on developing low-cost energy-efficient regeneration systems for these irreversible hydrogen storage systems. Significant technical issues remain...

  5. Photon level chemical classification using digital compressive ...

    E-Print Network [OSTI]

    David S. Wilcox

    2012-11-09

    Oct 12, 2012 ... programmable binary optical filters designed to minimize the error in the chemical classification (or con- ...... troscopy, thus highlighting the power of compressive detection. ... Since the mirror switching time of our DMD.

  6. Chemical structure and dynamics. Annual report 1995

    SciTech Connect (OSTI)

    Colson, S.D.; McDowell, R.S.

    1996-05-01

    The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.

  7. Tools for chemical synthesis in microsystems

    E-Print Network [OSTI]

    Jensen, Klavs F.

    Chemical synthesis in microsystems has evolved from simple proof-of-principle examples to become a general technique in academia and industry. Numerous such “flow chemistry” applications are now found in pharmaceutical and ...

  8. Sensor for detecting and differentiating chemical analytes

    DOE Patents [OSTI]

    Yi, Dechang (Metuchen, NJ); Senesac, Lawrence R. (Knoxville, TN); Thundat, Thomas G. (Knoxville, TN)

    2011-07-05

    A sensor for detecting and differentiating chemical analytes includes a microscale body having a first end and a second end and a surface between the ends for adsorbing a chemical analyte. The surface includes at least one conductive heating track for heating the chemical analyte and also a conductive response track, which is electrically isolated from the heating track, for producing a thermal response signal from the chemical analyte. The heating track is electrically connected with a voltage source and the response track is electrically connected with a signal recorder. The microscale body is restrained at the first end and the second end and is substantially isolated from its surroundings therebetween, thus having a bridge configuration.

  9. Standard Practice for Total Immersion Corrosion Test for Aircraft Maintenance Chemicals

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice covers the determination of the corrosiveness of aircraft maintenance chemicals on aircraft metals with time under conditions of total immersion by a combination of weight change measurements and visual qualitative determination of change. 1.2 The values stated in SI units are to be regarded as standard. The values in parentheses are for information only. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Graphene Electronic Device Based Biosensors and Chemical Sensors

    E-Print Network [OSTI]

    Jiang, Shan

    2014-01-01

    116] Perkins, F.K. et al. Chemical Vapor Sensing with Monoof Monolayer MoS 2 via Chemical Doping, Nano Letters 13,of axial ligands on the surface chemical bonds of adsorbed

  11. Control structure design for complete chemical plants Sigurd Skogestad +

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control structure design for complete chemical plants Sigurd Skogestad + Department of Chemical Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway Abstract Control for complete chemical plants (plantwide control) is presented. It starts with carefully defining

  12. New Frontiers for Encapsulation in the Chemical Industry Brenda Andrade,,

    E-Print Network [OSTI]

    Cheng, Jianjun

    Chemical Company, Collegeville, Pennsylvania 19426, United States ABSTRACT: Encapsulation of activesNew Frontiers for Encapsulation in the Chemical Industry Brenda Andrade,, Ziyuan Song,, Jun Li, United States § Formulation Science, Corporate Research and Development, The Dow Chemical Company

  13. THE UNIVERSITY OF ALABAMA Department of Chemical and Biological Engineering

    E-Print Network [OSTI]

    Carver, Jeffrey C.

    THE UNIVERSITY OF ALABAMA Department of Chemical and Biological Engineering Laboratory Manager chemical engineering laboratory courses, working alongside faculty, including teaching Position A laboratory manager is sought at The University of Alabama's Department of Chemical

  14. 389Department of Chemical and Petroleum Engineering Undergraduate Catalogue 201516

    E-Print Network [OSTI]

    389Department of Chemical and Petroleum Engineering Undergraduate Catalogue 2015­16 Department of Chemical and Petroleum Engineering Chairperson: Ahmad, Mohammad Professor: Ahmad, Mohammad Assistant, Fatima The Department of Chemical and Petroleum Engineering offers two undergraduate degree programs

  15. UNIVERSITY OF Department of Chemical Engineering Seminar Schedule: Fall 2013

    E-Print Network [OSTI]

    Zapletal, Jindrich

    UNIVERSITY OF FLORIDA Department of Chemical Engineering Seminar Schedule: Fall 2013 26 August Mr (Host: ) Dept. of Chemical Engineering, University of Florida "Spatial-Temporal Instability (Host: Butler) Dept. Chemical & Biomolecular Engineering, University of Illinois "New Frontiers

  16. DEPARTMENT OF CHEMICAL ENGINEERING DEPARTMENT OF MECHANICAL AND INDUSTRIAL ENGINEERING

    E-Print Network [OSTI]

    Mountziaris, T. J.

    DEPARTMENT OF CHEMICAL ENGINEERING DEPARTMENT OF MECHANICAL AND INDUSTRIAL ENGINEERING University review of kinetic processes in engineering materials that control the materials' structural and chemical in engineering materials that control the materials' structural and chemical characteristics in relation

  17. 304 Department of Chemical and Petroleum Engineering Graduate Catalogue 201516

    E-Print Network [OSTI]

    304 Department of Chemical and Petroleum Engineering Graduate Catalogue 2015­16 Department of Chemical and Petroleum Engineering Chairperson: Ahmad, Mohammad Professor: Ahmad, Mohamad Assistant, Fatima General Information The Chemical Engineering Program offers two graduate master's programs, one

  18. Probability 1 computation with chemical reaction networks Rachel Cummings

    E-Print Network [OSTI]

    Probability 1 computation with chemical reaction networks Rachel Cummings David Doty David Soloveichik§ Abstract The computational power of stochastic chemical reaction networks (CRNs) varies signifi computation. How can chemical reactions process information, make decisions, and solve problems? A natural

  19. An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions

    E-Print Network [OSTI]

    Troina, Angelo

    An Alternative to Gillespie's Algorithm for Simulating Chemical Reactions Roberto Barbuti, Andrea introduce a probabilistic algorithm for the simulation of chemical reactions, which can be used evolution of chemical reactive systems described by Gillespie. Moreover, we use our algorithm

  20. Appendix F. Chemicals Annual Site Environmental Report--2011

    E-Print Network [OSTI]

    Pennycook, Steve

    , pesticides, and industrial chemicals. Through the use of chemicals, we can increase food production, cure materials used for the construction of homes may contain chemicals such as formaldehyde (in some insulation

  1. Process safety management for highly hazardous chemicals

    SciTech Connect (OSTI)

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  2. On the Chemical Potential of Dark Energy

    E-Print Network [OSTI]

    S. H. Pereira

    2008-06-23

    It is widely assumed that the observed universe is accelerating due to the existence of a new fluid component called dark energy. In this article, the thermodynamics consequences of a nonzero chemical potential on the dark energy component is discussed with special emphasis to the phantom fluid case. It is found that if the dark energy fluid is endowed with a negative chemical potential, the phantom field hypothesis becomes thermodynamically consistent with no need of negative temperatures as recently assumed in the literature.

  3. Annular gel reactor for chemical pattern formation

    DOE Patents [OSTI]

    Nosticzius, Zoltan (Budapest, HU); Horsthemke, Werner (Austin, TX); McCormick, William D. (Austin, TX); Swinney, Harry L. (Austin, TX); Tam, Wing Y. (Austin, TX)

    1990-01-01

    The present invention is directed to an annular gel reactor suitable for the production and observation of spatiotemporal patterns created during a chemical reaction. The apparatus comprises a vessel having at least a first and second chamber separated one from the other by an annular polymer gel layer (or other fine porous medium) which is inert to the materials to be reacted but capable of allowing diffusion of the chemicals into it.

  4. A new chemical scheme to study carbon-rich exoplanet atmospheres

    E-Print Network [OSTI]

    Venot, Olivia; Agúndez, Marcelino; Decin, Leen; Bounaceur, Roda

    2015-01-01

    Atmospheres with a high C/O ratio are expected to contain an important quantity of hydrocarbons, including heavy molecules (with more than 2 carbon atoms). To study correctly these C-rich atmospheres, a chemical scheme adapted to this composition is necessary. We have implemented a chemical scheme that can describe the kinetics of species with up to 6 carbon atoms. This chemical scheme has been developed with specialists of combustion and validated through experiments on a wide range of T and P. This chemical network is available on the online database KIDA. We have created a grid of 12 models to explore different thermal profiles and C/O ratios. For each of them, we have compared the chemical composition determined with a C0-C2 chemical scheme (species with up to 2 carbon atoms) and with the C0-C6 scheme. We found no difference in the results obtained with the two schemes when photolyses are not included in the model, whatever the temperature of the atmosphere. In contrast, when there is photochemistry, diff...

  5. Radiological and chemical source terms for Solid Waste Operations Complex. Revision 1

    SciTech Connect (OSTI)

    Boothe, G.F.

    1994-06-03

    The purpose of this document is to describe the radiological and chemical source terms for the major projects of the Solid Waste Operations Complex (SWOC), including Project W-112, Project W-133 and Project W-100 (WRAP 2A). For purposes of this document, the term ``source term`` means the design basis inventory. All of the SWOC source terms involve the estimation of the radiological and chemical contents of various waste packages from different waste streams, and the inventories of these packages within facilities or within a scope of operations. The composition of some of the waste is not known precisely; consequently, conservative assumptions were made to ensure that the source term represents a bounding case (i.e., it is expected that the source term would not be exceeded). As better information is obtained on the radiological and chemical contents of waste packages and more accurate facility specific models are developed, this document should be revised as appropriate. Radiological source terms are needed to perform shielding and external dose calculations, to estimate routine airborne releases, to perform release calculations and dose estimates for safety documentation, to calculate the maximum possible fire loss and specific source terms for individual fire areas, etc. Chemical source terms (i.e., inventories of combustible, flammable, explosive or hazardous chemicals) are used to determine combustible loading, fire protection requirements, personnel exposures to hazardous chemicals from routine and accident conditions, and a wide variety of other safety and environmental requirements.

  6. Proceedings of the EPA workshop on the environmental scoring of chemicals

    SciTech Connect (OSTI)

    Ross, R.H.; Welch, J. (comps.)

    1980-05-01

    The environmental scoring of chemicals is viewed by the US Environmental Protection Agency as a tool to assist in the ranking or ordering of the universe of chemicals that are under the jurisdiction of the Toxic Substances Control Act. The purpose of scoring is to identify most of the chemicals that have a high probability for requiring review for regulation or testing. This report describes a three-day workshop held in Washington, DC, August 13 to 15, 1979, to develop an environmental scoring system. Initial discussions centered on the determination of a safety factor (calculated as the concentration at which an effect is observed divided by environmental concentration) that would allow a numerical score to be assigned to a chemical to reflect its potential hazard. Further discussion, however, indicated that the environmental concentration of a chemical is usually not available and that the estimation of an environmental concentration is not readily accomplished; therefore, a scoring system was developed that does not require environmental concentrations. This system relates environmental exposure to toxicity by using a multiplier (3x, 2x, or 1x) which is assigned on the basis of the concentration xt which an effect is observed. The applicability of the scoring system is demonstrated by scoring selected chemicals.

  7. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    SciTech Connect (OSTI)

    Cowan-Ellsberry, Christina E.; McLachlan, Michael S.; Arnot, Jon A.; MacLeod, Matthew; McKone, Thomas E.; Wania, Frank

    2008-11-01

    Fate and exposure modeling has not thus far been explicitly used in the risk profile documents prepared to evaluate significant adverse effect of candidate chemicals for either the Stockholm Convention or the Convention on Long-Range Transboundary Air Pollution. However, we believe models have considerable potential to improve the risk profiles. Fate and exposure models are already used routinely in other similar regulatory applications to inform decisions, and they have been instrumental in building our current understanding of the fate of POP and PBT chemicals in the environment. The goal of this paper is to motivate the use of fate and exposure models in preparing risk profiles in the POP assessment procedure by providing strategies for incorporating and using models. The ways that fate and exposure models can be used to improve and inform the development of risk profiles include: (1) Benchmarking the ratio of exposure and emissions of candidate chemicals to the same ratio for known POPs, thereby opening the possibility of combining this ratio with the relative emissions and relative toxicity to arrive at a measure of relative risk. (2) Directly estimating the exposure of the environment, biota and humans to provide information to complement measurements, or where measurements are not available or are limited. (3) To identify the key processes and chemical and/or environmental parameters that determine the exposure; thereby allowing the effective prioritization of research or measurements to improve the risk profile. (4) Predicting future time trends including how quickly exposure levels in remote areas would respond to reductions in emissions. Currently there is no standardized consensus model for use in the risk profile context. Therefore, to choose the appropriate model the risk profile developer must evaluate how appropriate an existing model is for a specific setting and whether the assumptions and input data are relevant in the context of the application. It is possible to have confidence in the predictions of many of the existing models because of their fundamental physical and chemical mechanistic underpinnings and the extensive work already done to compare model predictions and empirical observations. The working group recommends that modeling tools be applied for benchmarking PBT/POPs according to exposure-to-emissions relationships, and that modeling tools be used to interpret emissions and monitoring data. The further development of models that couple fate, long-range transport, and bioaccumulation should be fostered, especially models that will allow time trends to be scientifically addressed in the risk profile.

  8. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium

    E-Print Network [OSTI]

    Horowitz, Jordan M

    2015-01-01

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically-reacting species is built on the stochastic trajectories of reaction events obtained from the Chemical Master Equation. However, when the molecular populations are large, the discrete Chemical Master Equation can be approximated with a continuous diffusion process, like the Chemical Langevin Equation or Low Noise Approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the Chemical Master Equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the Chemical Master Equation.

  9. Chemical Kinetic Research on HCCI & Diesel Fuels | Department...

    Office of Environmental Management (EM)

    alternative fuel utilization: detailed kinetic combustion modeling & experimental testing Chemical Kinetic Modeling of Fuels Chemical Kinetic Research on HCCI & Diesel Fuels...

  10. Dow Chemical Company: Assessment Leads to Steam System Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a Petrochemical Plant Dow Chemical Company: Assessment Leads to Steam System Energy Savings in a...

  11. Fuel-Flexible Combustion System for Refinery and Chemical Plant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact Sheet 2014 Fuel-Flexible Combustion System for Refinery and Chemical Plant Process Heaters - Fact...

  12. Virtual Center of Excellence for Hydrogen Storage - Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Virtual Center of Excellence for Hydrogen Storage - Chemical Hydrides Presentation from the Hydrogen Storage...

  13. Testimonials - Partnerships in R&D - Air Products and Chemicals...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Products and Chemicals Incorporated Testimonials - Partnerships in R&D - Air Products and Chemicals Incorporated Addthis An error occurred. Try watching this video on...

  14. Model simplification of chemical kinetic systems under uncertainty

    E-Print Network [OSTI]

    Coles, Thomas Michael Kyte

    2011-01-01

    This thesis investigates the impact of uncertainty on the reduction and simplification of chemical kinetics mechanisms. Chemical kinetics simulations of complex fuels are very computationally expensive, especially when ...

  15. Steam System Opportunity Assessment for the Pulp and Paper, Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Steam System Opportunity Assessment for the Pulp and Paper, Chemical...

  16. Lynden Archer receives chemical engineering award > EMC2 News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lynden Archer receives chemical engineering award August 6th, 2014 Lynden Archer, the William C. Hooey Director and Professor of Chemical and Biomolecular Engineering, has...

  17. Final Report for the DOE Chemical Hydrogen Storage Center of...

    Energy Savers [EERE]

    Final Report for the DOE Chemical Hydrogen Storage Center of Excellence Final Report for the DOE Chemical Hydrogen Storage Center of Excellence This technical report describes the...

  18. Chemical and Morphological Evolution of Nanoporous Pd/Rh Alloy...

    Office of Scientific and Technical Information (OSTI)

    Chemical and Morphological Evolution of Nanoporous PdRh Alloy Particles for Hydrogen Storage. Citation Details In-Document Search Title: Chemical and Morphological Evolution of...

  19. Development of Advanced Thermal-Hydrological-Mechanical-Chemical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC)...

  20. Overview of Detailed Chemical Speciation and Particle Sizing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Detailed Chemical Speciation and Particle Sizing for Diesel Exhaust, Both Real Time and Filter Based Measurements Overview of Detailed Chemical Speciation and Particle Sizing for...

  1. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Print Scientists have developed a robust and label-free method to probe the chemical underpinnings of developing...

  2. Unraveling DPF Degradation using Chemical Tracers and Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unraveling DPF Degradation using Chemical Tracers and Opportunities for Extending Filter Life Unraveling DPF Degradation using Chemical Tracers and Opportunities for Extending...

  3. Experiment-Based Model for the Chemical Interactions between...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water Experiment-Based Model for the Chemical Interactions between...

  4. Brookhaven National Laboratory - Sr90 - Chemical Holes | Department...

    Office of Environmental Management (EM)

    - Chemical Holes Brookhaven National Laboratory - Sr90 - Chemical Holes January 1, 2014 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report...

  5. Enabling Low Temperature Combustion Through Thermo-Chemical Recuperati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Through Thermo-Chemical Recuperation Enabling Low Temperature Combustion Through Thermo-Chemical Recuperation Poster presentation from the 2007 Diesel...

  6. Institute for Atom-Efficient Chemical Transformations Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Atom-Efficient Chemical Transformations - an Energy Frontier Research Center The Institute for Atom-Efficient Chemical Transformations (IACT) employs a...

  7. Conical Nanopores Fabricated via a Pressured-Biased Chemical...

    Office of Scientific and Technical Information (OSTI)

    Conical Nanopores Fabricated via a Pressured-Biased Chemical Etch. Citation Details In-Document Search Title: Conical Nanopores Fabricated via a Pressured-Biased Chemical Etch....

  8. Improving Combustion Software to Solve Detailed Chemical Kinetics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Software to Solve Detailed Chemical Kinetics for HECC Improving Combustion Software to Solve Detailed Chemical Kinetics for HECC 2012 DOE Hydrogen and Fuel Cells Program...

  9. Advanced polychromator systems for remote chemical sensing (LDRD...

    Office of Scientific and Technical Information (OSTI)

    polychromator systems for remote chemical sensing (LDRD project 52575). Citation Details In-Document Search Title: Advanced polychromator systems for remote chemical sensing (LDRD...

  10. Low Temperature Combustion with Thermo-chemical Recuperation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion with Thermo-chemical Recuperation to Maximize In-use Engine Efficiency Low Temperature Combustion with Thermo-chemical Recuperation to Maximize In-use...

  11. Chemical Scientist Hendrik Bluhm Receives Bessel Research Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Scientist Hendrik Bluhm Receives Bessel Research Award Chemical Scientist Hendrik Bluhm Receives Bessel Research Award Print Friday, 24 May 2013 00:00 Hendrik Bluhm of the...

  12. MEMS-based chemical analysis systems development at Sandia National...

    Office of Scientific and Technical Information (OSTI)

    Conference: MEMS-based chemical analysis systems development at Sandia National Labs. Citation Details In-Document Search Title: MEMS-based chemical analysis systems development at...

  13. Real-Time Chemical Imaging of Bacterial Biofilm Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real-Time Chemical Imaging of Bacterial Biofilm Development Real-Time Chemical Imaging of Bacterial Biofilm Development Print Wednesday, 25 August 2010 00:00 Scientists have...

  14. Institute for Atom-Efficient Chemical Transformations Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific roadblocks to U.S. energy security. Institute for Atom-Efficient Chemical Transformations The Institute for Atom-Efficient Chemical Transformations (IACT)...

  15. Structural-chemical modeling of transition of coals to the plastic state

    SciTech Connect (OSTI)

    A.M. Gyul'maliev; S.G. Gagarin [FGUP Institute for Fossil Fuels, Moscow (Russian Federation)

    2007-02-15

    The structural-chemical simulation of the formation of plastic state during the thermal treatment (pyrolysis, coking) of coals is based on allowance for intermolecular interactions in the organic matter. The feasibility of transition of coals to the plastic state is determined by the ratio between the onset plastic state (softening) and runaway degradation temperatures, values that depend on the petrographic composition and the degree of metamorphism of coals and the distribution of structural and chemical characteristics of organic matter. 33 refs., 8 figs., 2 tabs.

  16. BS in Chemical Engineering ABET Accreditation The Bachelor of Science program in Chemical Engineering at Syracuse University is accredited by

    E-Print Network [OSTI]

    Mohan, Chilukuri K.

    BS in Chemical Engineering ABET Accreditation The Bachelor of Science program in Chemical Educational Objectives: I. Graduates will have mastered the chemical engineering fundamentals necessary Engineering at Syracuse University is accredited by the Engineering Accreditation Commission of ABET, http

  17. ITP Chemicals: Energy and Environmental Profile of the U.S. Chemical...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Steam System Opportunity Assessment for the Pulp and Paper, Chemical Manufacturing, and Petroleum Refining Industries Bandwidth Study U.S....

  18. Developing and Integrating Sustainable Chemical Processes into Existing Petro-Chemical Plant Complexes

    E-Print Network [OSTI]

    Pike, Ralph W.

    for integration into the chemical complex superstructure: ­ Fermentation ­ Anaerobic digestion,3 propanediol Propylene glycolPropylene glycol Polyurethane polyols Polyurethane polyols GlycerolGlycerol FAME

  19. SURFACE RECONSTRUCTION AND CHEMICAL EVOLUTION OF STOICHIOMETRIC LAYERED CATHODE MATERIALS FOR LITHIUM-ION BATTERIES

    E-Print Network [OSTI]

    Lin, Feng

    2014-01-01

    RECONSTRUCTION AND CHEMICAL EVOLUTION OF STOICHIOMETRICreconstruction and chemical evolution in NMC materials andsurface reconstruction and chemical evolution herein refer

  20. Structural determination of intact proteins using mass spectrometry

    DOE Patents [OSTI]

    Kruppa, Gary (San Francisco, CA); Schoeniger, Joseph S. (Oakland, CA); Young, Malin M. (Livermore, CA)

    2008-05-06

    The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.