Powered by Deep Web Technologies
Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Microhole High-Pressure Jet Drill for Coiled Tubing  

SciTech Connect (OSTI)

Tempress Small Mechanically-Assisted High-Pressure Waterjet Drilling Tool project centered on the development of a downhole intensifier (DHI) to boost the hydraulic pressure available from conventional coiled tubing to the level required for high-pressure jet erosion of rock. We reviewed two techniques for implementing this technology (1) pure high-pressure jet drilling and (2) mechanically-assisted jet drilling. Due to the difficulties associated with modifying a downhole motor for mechanically-assisted jet drilling, it was determined that the pure high-pressure jet drilling tool was the best candidate for development and commercialization. It was also determined that this tool needs to run on commingled nitrogen and water to provide adequate downhole differential pressure and to facilitate controlled pressure drilling and descaling applications in low pressure wells. The resulting Microhole jet drilling bottomhole assembly (BHA) drills a 3.625-inch diameter hole with 2-inch coil tubing. The BHA consists of a self-rotating multi-nozzle drilling head, a high-pressure rotary seal/bearing section, an intensifier and a gas separator. Commingled nitrogen and water are separated into two streams in the gas separator. The water stream is pressurized to 3 times the inlet pressure by the downhole intensifier and discharged through nozzles in the drilling head. The energy in the gas-rich stream is used to power the intensifier. Gas-rich exhaust from the intensifier is conducted to the nozzle head where it is used to shroud the jets, increasing their effective range. The prototype BHA was tested at operational pressures and flows in a test chamber and on the end of conventional coiled tubing in a test well. During instrumented runs at downhole conditions, the BHA developed downhole differential pressures of 74 MPa (11,000 psi, median) and 90 MPa (13,000 psi, peaks). The median output differential pressure was nearly 3 times the input differential pressure available from the coiled tubing. In a chamber test, the BHA delivered up to 50 kW (67 hhp) hydraulic power. The tool drilled uncertified class-G cement samples cast into casing at a rate of 0.04 to 0.17 m/min (8 to 33 ft/hr), within the range projected for this tool but slower than a conventional PDM. While the tool met most of the performance goals, reliability requires further improvement. It will be difficult for this tool, as currently configured, to compete with conventional positive displacement downhole motors for most coil tubing drill applications. Mechanical cutters on the rotating nozzle head would improve cutting. This tool can be easily adapted for well descaling operations. A variant of the Microhole jet drilling gas separator was further developed for use with positive displacement downhole motors (PDM) operating on commingled nitrogen and water. A fit-for-purpose motor gas separator was designed and yard tested within the Microhole program. Four commercial units of that design are currently involved in a 10-well field demonstration with Baker Oil Tools in Wyoming. Initial results indicate that the motor gas separators provide significant benefit.

Ken Theimer; Jack Kolle

2007-06-30T23:59:59.000Z

2

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology...  

Open Energy Info (EERE)

Arrays Drilled With Advanced Abrasive Slurry Jet Technology To Efficiently Exploit Enhanced Geothermal Systems Geothermal Project Jump to: navigation, search Last modified on July...

3

Method and apparatus for jet-assisted drilling or cutting  

DOE Patents [OSTI]

An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

2012-09-04T23:59:59.000Z

4

Method and apparatus for jet-assisted drilling or cutting  

DOE Patents [OSTI]

An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

2013-07-02T23:59:59.000Z

5

Feasibility study of tuned-resonator, pulsating cavitating water jet for deep-hole drilling  

SciTech Connect (OSTI)

This study presents the advantages of pulsing a submerged jet to increase its erosion capability (particularly as caused by cavitation) in augmenting deep-hole drill bits. Various methods of accomplishing the pulsation are presented and discussed. The most attractive systems uncovered are acoustic oscillators which passively accomplish pulsations in the flow at frequencies corresponding to a Strouhal number in the range of 0.2 to 1.0. Such passive oscillators are assessed to be feasible candidates for development into practical deep hole drill bit systems and a long range plan for this research and development is presented and discussed.

Johnson, V.E. Jr.; Lindenmuth, W.T.; Conn, A.F.; Frederick, G.S.

1981-08-01T23:59:59.000Z

6

Determining root causes of drilling problems by combining cases and general knowledge  

E-Print Network [OSTI]

Determining root causes of drilling problems by combining cases and general knowledge Samad well drilling is a complex process which frequently leads to operational problems. In order to deal. An important problem in drilling is hole cleaning, in which a high number of observed parameters and other

Aamodt, Agnar

7

Inclusive-jet photoproduction at HERA and determination of alphas  

E-Print Network [OSTI]

Inclusive-jet cross sections have been measured in the reaction ep->e+jet+X for photon virtuality Q2 energies in the region 142 energy, ETjet, and pseudorapidity, etajet, for jets with ETjet > 17 GeV and -1 energy-scale dependence of the coupling was determined. The value of alphas(Mz) extracted from the measurements based on the kT jet algorithm is alphas(Mz) = 0.1206 +0.0023 -0.0022 (exp.) +0.0042 -0.0035 (th.); the results from the anti-kT and SIScone algorithms are compatible with this value and have a similar precision.

ZEUS Collaboration; H. Abramowicz; I. Abt; L. Adamczyk; M. Adamus; R. Aggarwal; S. Antonelli; P. Antonioli; A. Antonov; M. Arneodo; V. Aushev; Y. Aushev; O. Bachynska; A. Bamberger; A. N. Barakbaev; G. Barbagli; G. Bari; F. Barreiro; N. Bartosik; D. Bartsch; M. Basile; O. Behnke; J. Behr; U. Behrens; L. Bellagamba; A. Bertolin; S. Bhadra; M. Bindi; C. Blohm; V. Bokhonov; T. Bold; K. Bondarenko; E. G. Boos; K. Borras; D. Boscherini; D. Bot; I. Brock; E. Brownson; R. Brugnera; N. Brummer; A. Bruni; G. Bruni; B. Brzozowska; P. J. Bussey; B. Bylsma; A. Caldwell; M. Capua; R. Carlin; C. D. Catterall; S. Chekanov; J. Chwastowski; J. Ciborowski; R. Ciesielski; L. Cifarelli; F. Cindolo; A. Contin; A. M. Cooper-Sarkar; N. Coppola; M. Corradi; F. Corriveau; M. Costa; G. D'Agostini; F. Dal Corso; J. del Peso; R. K. Dementiev; S. De Pasquale; M. Derrick; R. C. E. Devenish; D. Dobur; B. A. Dolgoshein; G. Dolinska; A. T. Doyle; V. Drugakov; L. S. Durkin; S. Dusini; Y. Eisenberg; P. F. Ermolov; A. Eskreys; S. Fang; S. Fazio; J. Ferrando; M. I. Ferrero; J. Figiel; M. Forrest; B. Foster; G. Gach; A. Galas; E. Gallo; A. Garfagnini; A. Geiser; I. Gialas; A. Gizhko; L. K. Gladilin; D. Gladkov; C. Glasman; O. Gogota; Yu. A. Golubkov; P. Gottlicher; I. Grabowska-Bold; J. Grebenyuk; I. Gregor; G. Grigorescu; G. Grzelak; O. Gueta; M. Guzik; C. Gwenlan; T. Haas; W. Hain; R. Hamatsu; J. C. Hart; H. Hartmann; G. Hartner; E. Hilger; D. Hochman; R. Hori; K. Horton; A. Huttmann; Z. A. Ibrahim; Y. Iga; R. Ingbir; M. Ishitsuka; H. -P. Jakob; F. Januschek; T. W. Jones; M. Jungst; I. Kadenko; B. Kahle; S. Kananov; T. Kanno; U. Karshon; F. Karstens; I. I. Katkov; M. Kaur; P. Kaur; A. Keramidas; L. A. Khein; J. Y. Kim; D. Kisielewska; S. Kitamura; R. Klanner; U. Klein; E. Koffeman; N. Kondrashova; O. Kononeko; P. Kooijman; Ie. Korol; I. A. Korzhavina; A. Kotanski; U. Kotz; H. Kowalski; O. Kuprash; M. Kuze; A. Lee; B. B. Levchenko; A. Levy; V. Libov; S. Limentani; T. Y. Ling; M. Lisovyi; E. Lobodzinska; W. Lohmann; B. Lohr; E. Lohrmann; K. R. Long; A. Longhin; D. Lontkovskyi; O. Yu. Lukina; J. Maeda; S. Magill; I. Makarenko; J. Malka; R. Mankel; A. Margotti; G. Marini; J. F. Martin; A. Mastroberardino; M. C. K. Mattingly; I. -A. Melzer-Pellmann; S. Mergelmeyer; S. Miglioranzi; F. Mohamad Idris; V. Monaco; A. Montanari; J. D. Morris; K. Mujkic; B. Musgrave; K. Nagano; T. Namsoo; R. Nania; A. Nigro; Y. Ning; T. Nobe; U. Noor; D. Notz; R. J. Nowak; A. E. Nuncio-Quiroz; B. Y. Oh; N. Okazaki; K. Oliver; K. Olkiewicz; Yu. Onishchuk; K. Papageorgiu; A. Parenti; E. Paul; J. M. Pawlak; B. Pawlik; P. G. Pelfer; A. Pellegrino; W. Perlanski; H. Perrey; K. Piotrzkowski; P. Plucinski; N. S. Pokrovskiy; A. Polini; A. S. Proskuryakov; M. Przybycien; A. Raval; D. D. Reeder; B. Reisert; Z. Ren; J. Repond; Y. D. Ri; A. Robertson; P. Roloff; I. Rubinsky; M. Ruspa; R. Sacchi; U. Samson; G. Sartorelli; A. A. Savin; D. H. Saxon; M. Schioppa; S. Schlenstedt; P. Schleper; W. B. Schmidke; U. Schneekloth; V. Schonberg; T. Schorner-Sadenius; J. Schwartz; F. Sciulli; L. M. Shcheglova; R. Shehzadi; S. Shimizu; I. Singh; I. O. Skillicorn; W. Slominski; W. H. Smith; V. Sola; A. Solano; D. Son; V. Sosnovtsev; A. Spiridonov; H. Stadie; L. Stanco; N. Stefaniuk; A. Stern; T. P. Stewart; A. Stifutkin; P. Stopa; S. Suchkov; G. Susinno; L. Suszycki; J. Sztuk-Dambietz; D. Szuba; J. Szuba; A. D. Tapper; E. Tassi; J. Terron; T. Theedt; H. Tiecke; K. Tokushuku; J. Tomaszewska; V. Trusov; T. Tsurugai; M. Turcato; O. Turkot; T. Tymieniecka; M. Vazquez; A. Verbytskyi; O. Viazlo; N. N. Vlasov; R. Walczak; W. A. T. Wan Abdullah; J. J. Whitmore; L. Wiggers; M. Wing; M. Wlasenko; G. Wolf; H. Wolfe; K. Wrona; A. G. Yagues-Molina; S. Yamada; Y. Yamazaki; R. Yoshida; C. Youngman; O. Zabiegalov; A. F. Zarnecki; L. Zawiejski; O. Zenaiev; W. Zeuner; B. O. Zhautykov; N. Zhmak; C. Zhou; A. Zichichi; Z. Zolkapli; D. S. Zotkin

2012-05-28T23:59:59.000Z

8

Method for determining liquid recovery during a closed-chamber drill stem test  

SciTech Connect (OSTI)

This patent describes a method for determining a rate of production of well fluid produced during a closed chamber drill stem test of a subterranean formation. It comprises generating an acoustic signal capable of propagating down a well containing a drill stem test tubing; measuring a travel time of an acoustic signal reflected from an identifiable reference point in the drill stem test tubing; flowing the subterranean formation a predetermined length of time; measuring a travel time of an acoustic signal reflected from a liquid level in the drill stem test tubing during the flow interval; shutting in the flow of the subterranean formation; determining a volume of liquid produced during the flow interval based on the travel time of the reflected acoustic signal; determining a total amount of well fluid produced during the flow interval based on the volume of fluid produced and the surface pressure measurements during the flow period; and determining the rate of production from the subterranean formation during the flow period.

Finley, D.B.; Bass, A.O.

1992-03-03T23:59:59.000Z

9

Core Drilling Demonstration  

Broader source: Energy.gov [DOE]

Tank Farms workers demonstrate core drilling capabilities for Hanford single-shell tanks. Core drilling is used to determine the current condition of each tank to assist in the overall assessment...

10

Methods and systems for determining angular orientation of a drill string  

DOE Patents [OSTI]

Preferred methods and systems generate a control input based on a periodically-varying characteristic associated with the rotation of a drill string. The periodically varying characteristic can be correlated with the magnetic tool face and gravity tool face of a rotating component of the drill string, so that the control input can be used to initiate a response in the rotating component as a function of gravity tool face.

Cobern, Martin E. (Cheshire, CT)

2010-03-23T23:59:59.000Z

11

On the Use of Non-Additive Entropy to Determine the Presence of Vibrations in the Videos of JET Cameras  

E-Print Network [OSTI]

On the Use of Non-Additive Entropy to Determine the Presence of Vibrations in the Videos of JET Cameras

12

Jet Production in ep Collisions at High $Q^2$ and Determination of $\\alpha_s$  

E-Print Network [OSTI]

The production of jets is studied in deep-inelastic ep scattering at large negative four momentum transfer squared 150jet, 2-jet and 3-jet cross sections, normalised to the neutral current deep-inelastic scattering cross sections, are measured as functions of Q^2, jet transverse momentum and proton momentum fraction. The measurements are well described by perturbative QCD calculations at next-to-leading order corrected for hadronisation effects. The strong coupling as determined from these measurements is alpha_s(M_Z) = 0.1168 +/-0.0007 (exp.) +0.0046/-0.0030 (th.) +/-0.0016(pdf).

Aaron, FD; Alimujiang, K; Andreev, V; Antunovic, B; Asmone, A; Backovic, S; Baghdasaryan, A; Barrelet, E; Bartel, W; Begzsuren, K; Belousov, A; Bizot, J C; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Bruncko, D; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Cassol-Brunner, F; Cerny, K; Cerny, V; Chekelian, V; Cholewa, A; Contreras, J G; Coughlan, J A; Cozzika, G; Cvach, J; Dainton, J B; Daum, K; Deak, M; de Boer, Y; Delcourt, B; Del Degan, M; Delvax, J; De Roeck, A; De Wolf, E A; Diaconu, C; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eliseev, A; Elsen, E; Falkiewicz, A; Faulkner, P J W; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Fischer, D -J; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, Samvel; Glazov, A; Glushkov, I; Goerlich, L; Gogitidze, N; Gouzevitch, M; Grab, C; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Helebrant, C; Henderson, R C W; Hennekemper, E; Henschel, H; Herbst, M; Herrera, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hreus, T; Jacquet, M; Janssen, M E; Janssen, X; Jemanov, V; Jonsson, L; Jung, Andreas Werner; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knutsson, A; Kogler, R; Korbel, V; Kostka, P; Kraemer, M; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Kruger, K; Kutak, K; Landon, M P J; Lange, W; Lastovicka-Medin, G; Laycock, P; Lebedev, A; Leibenguth, G; Lendermann, V; Levonian, S; Li, G; Lipka, K; Liptaj, A; List, B; List, J; Loktionova, N; Lopez-Fernandez, R; Lubimov, V; Lytkin, L; Makankine, A; Malinovski, E; Marage, P; Marti, Ll; Martyn, H -U; Maxfield, S J; Mehta, A; Meyer, A B; Meyer, H; Meyer, H; Meyer, J; Michels, V; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mozer, Matthias Ulrich; Mudrinic, M; Muller, K; Murin, P; Naroska, B; Naumann, Th; Newman, P R; Niebuhr, C; Nikiforov, A; Nowak, G; Nowak, K; Nozicka, M; Olivier, B; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagoulias, I; Pandurovic, M; Papadopoulou, Th; Pascaud, C; Patel, G D; Pejchal, O; Perez, E; Petrukhin, A; Picuric, I; Piec, S; Pitzl, D; Placakyte, R; Pokorny, B; Polifka, R; Povh, B; Preda, T; Radescu, V; Rahmat, A J; Raicevic, N; Raspiareza, A; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rotaru, M; Ruiz Tabasco, J E; Rurikova, Z; Rusakov, S; Salek, D; Sankey, D P C; Sauter, M; Sauvan, E; Schmitt, S; Schmitz, C; Schoeffel, L; Schoning, A; Schultz-Coulon, H -C; Sefkow, F; Shaw-West, R N; Sheviakov, I; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, Ivan; Soloviev, Y; Sopicki, P; South, D; Spaskov, V; Specka, Arnd E; Staykova, Z; Steder, M; Stella, B; Stoicea, G; Straumann, U; Sunar, D; Sykora, T; Tchoulakov, V; Thompson, G; Thompson, P D; Toll, T; Tomasz, F; Tran, T H; Traynor, D; Trinh, T N; Truol, P; Tsakov, I; Tseepeldorj, B; Turnau, J; Urban, K; Valkarova, A; Vallee, C; Van Mechelen, P; Vargas Trevino, A; Vazdik, Y; Vinokurova, S; Volchinski, V; von den Driesch, M; Wegener, D; Wissing, Ch; Wunsch, E; Zacek, J; Zalesak, J; Zhang, Z; Zhokin, A; Zimmermann, T; Zohrabyan, H; Zomer, F; Zus, R

2010-01-01T23:59:59.000Z

13

Drilling operations change gear  

SciTech Connect (OSTI)

Predicts that several technological developments (e.g. measurement-while-drilling tools, computer data-gathering systems, improved drill bits, muds, downhole mud motors, and more efficient rigs) will have a major effect on drilling operations in the not-too-distant future. While several companies manufacture MWD systems and most can boast of successful runs, the major problem with the MWD system is cost. Manufacturers continue to make advances in both turbine and positive displacement mud motors. As the life span of downhole mud motors improves, these motors can economically compete with a rotary rig in drilling certain straight-hole intervals. Prototype bit designs include the use of lasers, electronic beams, flames, sparks, explosives, rocket exhaust, chains, projectiles, abrasive jets, and high-pressure erosion. Because drilling fluids are taking a large share of the drilling budget, mud engineers are trying to optimize costs, while maintaining well bore stability and increasing penetration rates. Many companies are taking the strategy of designing the simplest mud program possible and increasing additives only as needed. Air and foam drilling techniques are gaining attention. Concludes that as crude oil prices increase and the rig count begins to rebound, attention will once again turn to drilling technology and methodology.

Moore, S.D.

1982-08-01T23:59:59.000Z

14

Determination of $\\alpha_{s}$ using Jet Rates at LEP with the OPAL detector  

E-Print Network [OSTI]

Hadronic events produced in e+e- collisions by the LEP collider and recorded by the OPAL detector were used to form distributions based on the number of reconstructed jets. The data were collected between 1995 and 2000 and correspond to energies of 91 GeV, 130-136 GeV and 161-209 GeV. The jet rates were determined using four different jet-finding algorithms (Cone, JADE, Durham and Cambridge). The differential two-jet rate and the average jet rate with the Durham and Cambridge algorithms were used to measure alpha(s) in the LEP energy range by fitting an expression in which order alpah_2s calculations were matched to a NLLA prediction and fitted to the data. Combining the measurements at different centre-of-mass energies, the value of alpha_s (Mz) was determined to be alpha(s)(Mz)=0.1177+-0.0006(stat.)+-0.0012$(expt.)+-0.0010(had.)+-0.0032

Abbiendi, G; Åkesson, P F; Alexander, G; Anagnostou, G; Anderson, K J; Asai, S; Axen, D; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brown, R M; Burckhart, H J; Campana, S; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, A; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, F L; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, R J; Herten, G; Heuer, R D; Hill, J C; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanzaki, J; Karlen, D; Kawagoe, K; Kawamoto, T; Keeler, R K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krasznahorkay, A; Krieger, P; Von Krogh, J; Kühl, T; Kupper, M; Lafferty, G D; Landsman, H; Lanske, D; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Mashimo, T; Mättig, P; McKenna, J A; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, A; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rossi, A M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L

2006-01-01T23:59:59.000Z

15

Determining circulating fluid temperature in drilling, workover, and well-control operations  

SciTech Connect (OSTI)

Estimation of fluid temperature in both flow conduits (drillpipe or tubing and the annulus) is required to ascertain the fluid density and viscosity and, in turn, to calculate the pressure drop or the maximum allowable pumping rate for a number of operations. These operations include drilling, workover, and well control. The fluid temperature estimation becomes critical for high-temperature or geothermal reservoirs where significant heat exchange occurs or when fluid properties are temperature sensitive, such as for a non-Newtonian fluid. In this work, the authors present an analytical model for the flowing fluid temperature in the drillpipe/tubing and in the annulus as a function of well depth and circulation time. The model is based on an energy balance between the formation and the fluid in the drillpipe.tubing and annulus. Steady-state heat transfer is assumed in the wellbore while transient heat transfer takes place in the formation. solutions are obtained for two possible scenarios: (1) the fluid flows down the annulus and up the drillpipe/tubing, and (2) the fluid flows down the tubing and up the annulus. The analytic model developed is cast in a set of simple algebraic equations for rapid implementation. The authors also show that the maximum temperature occurs not at the well bottom, but at some distance higher from the bottom for flow up the annulus.

Kabir, C.S. [Chevron Overseas Petroleum Technology Co. (Kuwait); Hasan, A.R.; Ameen, M.M. [Univ. of North Dakota, Grand Forks, ND (United States); Kouba, G.E.

1996-06-01T23:59:59.000Z

16

Porosity, permeability, and petroleum: Determining the three P's by integrating mud logs with wireline logs and drill-stem tests in central and western Kansas  

SciTech Connect (OSTI)

Mud logging has long been a part of the complete formation evaluation picture in most oil and gas producing provinces of the US. In Kansas, however, mud logging has often been omitted from this picture. Typically, a well in central and western Kansas is drill-stem tested and then logged. Although this technique is often successful, there are also times when drill-stem tests and logs conflict with one another. Mud-logging techniques, especially hydrocarbon ratio analysis, could provide this necessary third aspect of formation evaluation to be integrated with drill-stem tests and wireline logs. Generally, the most important characteristics of a reservoir are porosity, permeability, and petroleum saturation. All three styles of formation evaluation (mud logs, wireline logs, and drill-stem tests) can determine most of these characteristics either qualitatively or quantitatively. The mud log, through hydrocarbon ratio analysis in conjunction with the drilling time log, can contribute at least ballpark estimates on porosity, permeability, and type of reservoir fluid. Wireline logs and drill-stem tests provide the more direct or quantitative measure of these formation characteristics. The central/western Kansas wells chosen for this study show that no single formation evaluation method is more important than the others. Each method must be weighed or calibrated to each specific study area as to its particular track record in that area. The difficulty in answering the question, Should I set pipe therefore can be minimized by integrating the mud log, the wireline log, and drill-stem test information.

Deboer, D.A. (Oil Production Systems, Inc., Cushing, OK (USA))

1989-08-01T23:59:59.000Z

17

Coiled tubing drilling with supercritical carbon dioxide  

DOE Patents [OSTI]

A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

Kolle , Jack J. (Seattle, WA)

2002-01-01T23:59:59.000Z

18

Comprehensive Ocean Drilling  

E-Print Network [OSTI]

Comprehensive Ocean Drilling Bibliography containing citations related to the Deep Sea Drilling Project, Ocean Drilling Program, Integrated Ocean Drilling Program, and International Ocean Discovery Program Last updated: May 2014 #12;Comprehensive Bibliography Comprehensive Ocean Drilling Bibliography

19

Jet Production in ep Collisions at Low Q^2 and Determination of $\\alpha_{s}$  

E-Print Network [OSTI]

The production of jets is studied in deep-inelastic e+p scattering at low negative four momentum transfer squared 5jet, 2-jet and 3-jet cross sections as well as the ratio of 3-jet to 2-jet cross sections are measured as a function of Q^2 and jet transverse momentum. The 2-jet cross section is also measured as a function of the proton momentum fraction xi. The measurements are well described by perturbative quantum chromodynamics at next-to-leading order corrected for hadronisation effects and are subsequently used to extract the strong coupling alpha_s.

Aaron, FD; Alexa, C; Andreev, V; Antunovic, B; Backovic, S; Baghdasaryan, A; Barrelet, E; Bartel, W; Begzsuren, K; Belousov, A; Bizot, J C; Boudry, V; Bozovic-Jelisavcic, I; Bracinik, J; Brandt, G; Brinkmann, M; Brisson, V; Bruncko, D; Bunyatyan, A; Buschhorn, G; Bystritskaya, L; Campbell, A J; Cantun Avila, K B; Cerny, K; Cerny, V; Chekelian, V; Cholewa, A; Contreras, J G; Coughlan, J A; Cozzika, G; Cvach, J; Dainton, J B; Daum, K; Deak, M; Delcourt, B; Delvax, J; De Wolf, E A; Diaconu, C; Dodonov, V; Dossanov, A; Dubak, A; Eckerlin, G; Efremenko, V; Egli, S; Eliseev, A; Elsen, E; Falkiewicz, A; Favart, L; Fedotov, A; Felst, R; Feltesse, J; Ferencei, J; Fischer, D J; Fleischer, M; Fomenko, A; Gabathuler, E; Gayler, J; Ghazaryan, Samvel; Glazov, A; Glushkov, I; Goerlich, L; Gogitidze, N; Gouzevitch, M; Grab, C; Greenshaw, T; Grell, B R; Grindhammer, G; Habib, S; Haidt, D; Helebrant, C; Henderson, R C W; Hennekemper, E; Henschel, H; Herbst, M; Herrera, G; Hildebrandt, M; Hiller, K H; Hoffmann, D; Horisberger, R; Hreus, T; Jacquet, M; Janssen, X; Jonsson, L; Jung, A W; Jung, H; Kapichine, M; Katzy, J; Kenyon, I R; Kiesling, C; Klein, M; Kleinwort, C; Kluge, T; Knutsson, A; Kogler, R; Kosior, E; Kostka, P; Kraemer, M; Krastev, K; Kretzschmar, J; Kropivnitskaya, A; Kruger, K; Kutak, K; Landon, M P J; Lange, W; Lastovicka-Medin, G; Laycock, P; Lebedev, A; Lendermann, V; Levonian, S; Li, G; Lipka, K; Liptaj, A; List, B; List, J; Loktionova, N; Lopez-Fernandez, R; Lubimov, V; Makankine, A; Malinovski, E; Marage, P; Marti, Ll; Martyn, H U; Maxfield, S J; Mehta, A; Meyer, A B; Meyer, H; Meyer, H; Meyer, J; Mikocki, S; Milcewicz-Mika, I; Moreau, F; Morozov, A; Morris, J V; Mozer, M U; Mudrinic, M; Muller, K; Murin, P; Naumann, Th; Newman, P R; Niebuhr, C; Nikiforov, A; Nikitin, D; Nowak, G; Nowak, K; Olsson, J E; Osman, S; Ozerov, D; Palichik, V; Panagoulias, I; Pandurovic, M; Papadopoulou, Th; Pascaud, C; Patel, G D; Pejchal, O; Perez, E; Petrukhin, A; Picuric, I; Piec, S; Pitzl, D; Placakyte, R; Pokorny, B; Polifka, R; Povh, B; Radescu, V; Rahmat, A J; Raicevic, N; Raspiareza, A; Ravdandorj, T; Reimer, P; Rizvi, E; Robmann, P; Roland, B; Roosen, R; Rostovtsev, A; Rotaru, M; Tabasco, J E Ruiz; Rusakov, S; Salek, D; Sankey, D P C; Sauter, M; Sauvan, E; Schmitt, S; Schoeffel, L; Schoning, A; Schultz-Coulon, H C; Sefkow, F; Shaw-West, R N; Shtarkov, L N; Shushkevich, S; Sloan, T; Smiljanic, Ivan; Soloviev, Y; Sopicki, P; South, D; Spaskov, V; Specka, A; Staykova, Z; Steder, M; Stella, B; Stoicea, G; Straumann, U; Sunar, D; Sykora, T; Tchoulakov, V; Thompson, G; Thompson, P D; Toll, T; Tomasz, F; Tran, T H; Traynor, D; Trinh, T N; Truol, P; Tsakov, I; Tseepeldorj, B; Turnau, J; Urban, K; Valkarova, A; Vallee, C; Van Mechelen, P; Trevino, A Vargas; Vazdik, Y; Vinokurova, S; Volchinski, V; von den Driesch, M; Wegener, D; Wissing, Ch; Wunsch, E; Zacek, J; Zalesak, J; Zhang, Z; Zhokin, A; Zimmermann, T; Zohrabyan, H; Zomer, F

2010-01-01T23:59:59.000Z

20

http://www.ogj.com/articles/print/volume-111/issue-9/drilling-production/barnett-study-determines-full-field-reserves.html BARNETT SHALE MODEL-2 (Conclusion): Barnett study  

E-Print Network [OSTI]

ogj.com http://www.ogj.com/articles/print/volume-111/issue-9/drilling, 45 tcf in drilled blocks and 22 tcf in undrilled blocks. --45 tcf TRFG in the 4,172-square mile drilled-block area exceeds estimates of 23.81 tcf by EIA in July 2011 (4,000 square miles) and 26 tcf

Patzek, Tadeusz W.

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Drill stem test method and apparatus  

SciTech Connect (OSTI)

This patent describes an apparatus for causing formation fluid to flow upwardly during a drill stem test of a fluid well. The apparatus consists of: a drill string positioned in the bore of the fluid well and seated with a packer seal; the drill string containing a first opening below the packer through which formation fluid can flow into the drill string; means for creating a second opening in the drill string above the packer through which treatment fluid can flow; and jet pump means including a fluid crossover, the jet pump means being mounted within the drill string for increasing the rate of flow of the treatment fluid near the second opening a substantial amount such that the upward flow of the treatment fluid draws the formation fluid upwardly therewith, the means for creating the second opening including a sleeve initially surrounding and covering the fluid crossover, and means for moving the sleeve in response to fluid pressure from within the drill string to uncover the second opening.

Snider, P.M.

1989-07-11T23:59:59.000Z

22

An analytical and numerical model to determine stresses in a Rock Melt Drill produced glass liner for potential use on Mars  

E-Print Network [OSTI]

information on the history of Mars. To access the hydrosphere some device must be used to penetrate the surface to depths of 3-5 kilometers. On Earth these depths are routinely achieved in petroleum and natural gas applications by drilling rigs. By far... the most common type of drilling employed on Earth is rotary drilling. Rotary drilling involves the uses of a rotating drill bit, attached to the surface by a long string of steel pipe, that grinds or cuts the rock, and forms a hole in the formation...

McConnell, Joshua B

2000-01-01T23:59:59.000Z

23

Drill string enclosure  

DOE Patents [OSTI]

The drill string enclosure consists of six component parts, including; a top bracket, an upper acrylic cylinder, an acrylic drill casing guide, a lower acrylic cylinder, a bottom bracket, and three flexible ducts. The upper acrylic cylinder is optional based upon the drill string length. The drill string enclosure allows for an efficient drill and sight operation at a hazardous waste site.

Jorgensen, D.K.; Kuhns, D.J.; Wiersholm, O.; Miller, T.A.

1993-03-02T23:59:59.000Z

24

DETERMINATION OF SUB-RESOLUTION STRUCTURE OF A JET BY SOLAR MAGNETOSEISMOLOGY  

SciTech Connect (OSTI)

A thin dark thread is observed in a UV/EUV solar jet in the 171 A, 193 A, and 211 A, and partially in 304 A. The dark thread appears to originate in the chromosphere but its temperature does not appear to lie within the passbands of the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. We therefore implement solar magnetoseismology to estimate the plasma parameters of the dark thread. A propagating kink (transverse) wave is observed to travel along the dark thread. The wave is tracked over a range of {approx}7000 km by placing multiple slits along the axis of the dark thread. The phase speed and amplitude of the wave are estimated and magnetoseismological theory is employed to determine the plasma parameters. We are able to estimate the plasma temperature, density gradient, magnetic field gradient, and sub-resolution expansion of the dark thread. The dark thread is found to be cool, T {approx}< 3 Multiplication-Sign 10{sup 4}, with both strong density and magnetic field gradients. The expansion of the flux tube along its length is {approx}300-400 km.

Morton, R. J.; Erdelyi, R. [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Verth, G.; McLaughlin, J. A., E-mail: r.j.morton@sheffield.ac.uk, E-mail: gary.verth@northumbria.ac.uk [School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST (United Kingdom)

2012-01-01T23:59:59.000Z

25

Inclusive Jets in PHP  

E-Print Network [OSTI]

Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

Roloff, Philipp

2013-01-01T23:59:59.000Z

26

Inclusive Jets in PHP  

E-Print Network [OSTI]

Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

Philipp Roloff

2013-10-23T23:59:59.000Z

27

Ice Drilling Gallonmilkjugs  

E-Print Network [OSTI]

Ice Drilling Materials · Gallonmilkjugs · Syringes,largeand small · Pitchers · Spraybottles · 13x9? ·Isitbettertosquirtthewaterslowlyorasquicklyaspossible? ·Doestherateatwhichyousquirtthewaterchangethediameteroftheholes? ·Doesthetypeof`drill

Saffman, Mark

28

DRILLED HYDROTHERMAL ENERGY Drilling for seawater  

E-Print Network [OSTI]

Energy Hydrothermal Cooling 90% saving over Mechanical cooling Coordination With Offshore OTEC Plant to seep in #12;DRILLED HYDROTHERMAL ENERGY BACKGROUND Not BOTH From the SAME Conduit Investment OFFSHORE Facilities Drilled Hydrothermal Energy Plant Cooling Power Biofuel / H2 Fresh Water DRILLED HYDROTHERMAL

29

Optimizing drilling performance using a selected drilling fluid  

DOE Patents [OSTI]

To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

Judzis, Arnis (Salt Lake City, UT); Black, Alan D. (Coral Springs, FL); Green, Sidney J. (Salt Lake City, UT); Robertson, Homer A. (West Jordan, UT); Bland, Ronald G. (Houston, TX); Curry, David Alexander (The Woodlands, TX); Ledgerwood, III, Leroy W. (Cypress, TX)

2011-04-19T23:59:59.000Z

30

Deuterium density profile determination at JET using a neutron camera and a neutron spectrometer  

SciTech Connect (OSTI)

In this work we estimate the fuel ion density profile in deuterium plasmas at JET, using the JET neutron camera, the neutron time-of-flight spectrometer TOFOR, and fusion reactivities modeled by the transport code TRANSP. The framework has been tested using synthetic data, which showed that the density profile could be reconstructed with an average accuracy of the order of 10 %. The method has also been applied to neutron measurements from a neutral beam heated JET discharge, which gave n{sub d}/n{sub e} ? 0.6 ± 0.3 in the plasma core and n{sub d}/n{sub e} ? 0.4 ± 0.3 towards the edge. Correction factors for detector efficiencies, neutron attenuation, and back-scattering are not yet included in the analysis; future work will aim at refining the estimated density.

Eriksson, J., E-mail: jacob.eriksson@physics.uu.se; Castegnetti, G.; Conroy, S.; Ericsson, G.; Hellesen, C. [EURATOM-VR, Department of Physics and Astronomy, Uppsala University (Sweden); Giacomelli, L. [Department of Physics, Università degli Studi di Milano-Bicocca, Milano (Italy); EURATOM-CCFE Fusion Association, Culham Science Centre, Abingdon (United Kingdom)

2014-11-15T23:59:59.000Z

31

Experimental Assessment of Water Based Drilling Fluids in High Pressure and High Temperature Conditions  

E-Print Network [OSTI]

Proper selection of drilling fluids plays a major role in determining the efficient completion of any drilling operation. With the increasing number of ultra-deep offshore wells being drilled and ever stringent environmental and safety regulations...

Ravi, Ashwin

2012-10-19T23:59:59.000Z

32

DRILLING MACHINES GENERAL INFORMATION  

E-Print Network [OSTI]

TC 9-524 Chapter 4 DRILLING MACHINES GENERAL INFORMATION PURPOSE This chapter contains basic information pertaining to drilling machines. A drilling machine comes in many shapes and sizes, from small hand-held power drills to bench mounted and finally floor-mounted models. They can perform operations

Gellman, Andrew J.

33

Rotary blasthole drilling update  

SciTech Connect (OSTI)

Blasthole drilling rigs are the unsung heroes of open-pit mining. Recently manufacturers have announced new tools. Original equipment manufactures (OEMs) are making safer and more efficient drills. Technology and GPS navigation systems are increasing drilling accuracy. The article describes features of new pieces of equipment: Sandvik's DR460 rotary blasthole drill, P & H's C-Series drills and Atlas Copco's Pit Viper PV275 multiphase rotary blasthole drill rig. DrillNav Plus is a blasthole navigation system developed by Leica Geosystems. 5 photos.

Fiscor, S.

2008-02-15T23:59:59.000Z

34

INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM 2011 OCEAN DRILLING CITATION REPORT covering citations related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from Geo Drilling Program Publication Services September 2011 #12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE

35

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

36

Acid Placement in Acid Jetting Treatments in Long Horizontal Wells  

E-Print Network [OSTI]

In the Middle East, extended reach horizontal wells (on the order of 25,000 feet of horizontal displacement) are commonly acid stimulated by jetting acid out of drill pipe. The acid is jetted onto the face of the openhole wellbore as the drill pipe...

Sasongko, Hari

2012-07-16T23:59:59.000Z

37

PDM vs. Turbodrill: A drilling comparison  

SciTech Connect (OSTI)

This study was undertaken to investigate and compare the two most prevalent down-hole motor types, Positive-Displacement and Turbodrill. The intent of this comparison was to evaluate the technical and operational performance characteristics and present them in a manner to aid the drilling contractor or drilling engineer in determining the best down-hole motor for a specific drilling application. Each type of drilling tool utilizing either power source possesses unique characteristics which can be tailored to the overall system to optimize the target objective; increase ROP at less cost.

De Lucia, F.; Herbert, P.

1984-09-01T23:59:59.000Z

38

Ultrasonic drilling apparatus  

DOE Patents [OSTI]

Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation. 3 figs.

Duran, E.L.; Lundin, R.L.

1988-06-20T23:59:59.000Z

39

Ultrasonic drilling apparatus  

DOE Patents [OSTI]

Apparatus attachable to an ultrasonic drilling machine for drilling deep holes in very hard materials, such as boron carbide, is provided. The apparatus utilizes a hollow spindle attached to the output horn of the ultrasonic drilling machine. The spindle has a hollow drill bit attached at the opposite end. A housing surrounds the spindle, forming a cavity for holding slurry. In operation, slurry is provided into the housing, and into the spindle through inlets while the spindle is rotating and ultrasonically reciprocating. Slurry flows through the spindle and through the hollow drill bit to cleanse the cutting edge of the bit during a drilling operation.

Duran, Edward L. (Santa Fe, NM); Lundin, Ralph L. (Los Alamos, NM)

1989-01-01T23:59:59.000Z

40

Well drilling apparatus  

SciTech Connect (OSTI)

A drill rig for drilling wells having a derrick adapted to hold and lower a conductor string and drill pipe string. A support frame is fixed to the derrick to extend over the well to be drilled, and a rotary table, for holding and rotating drill pipe strings, is movably mounted thereon. The table is displaceable between an active position in alignment with the axis of the well and an inactive position laterally spaced therefrom. A drill pipe holder is movably mounted on the frame below the rotary table for displacement between a first position laterally of the axis of the well and a second position in alignment with the axis of the well. The rotary table and said drill pipe holder are displaced in opposition to each other, so that the rotary table may be removed from alignment with the axis of the well and said drill pipe string simultaneously held without removal from said well.

Prins, K.; Prins, R.K.

1982-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project-  

E-Print Network [OSTI]

2007 OCEAN DRILLING CITATION REPORT Covering Deep Sea Drilling Project- and Ocean Drilling Program Services on behalf of the Integrated Ocean Drilling Program September 2007 #12;#12;OVERVIEW OF THE OCEAN DRILLING CITATION DATABASE The Ocean Drilling Citation Database, which in February 2007 contained

42

HydroPulse Drilling  

SciTech Connect (OSTI)

Tempress HydroPulse{trademark} tool increases overbalanced drilling rates by generating intense suction pulses at the drill bit. This report describes the operation of the tool; results of pressure drilling tests, wear tests and downhole drilling tests; and the business case for field applications. The HydroPulse{trademark} tool is designed to operate on weighted drilling mud at conventional flow rates and pressures. Pressure drilling tests confirm that the HydroPulse{trademark} tool provides 33% to 200% increased rate of penetration. Field tests demonstrated conventional rotary and mud motor drilling operations. The tool has been operated continuous for 50 hours on weighted mud in a wear test stand. This level of reliability is the threshold for commercial application. A seismic-while-drilling version of the tool was also developed and tested. This tool was used to demonstrate reverse vertical seismic profiling while drilling an inclined test well with a PDC bit. The primary applications for the HydroPulse{trademark} tool are deep onshore and offshore drilling where rate of penetration drives costs. The application of the seismic tool is vertical seismic profiling-while-drilling and look-ahead seismic imaging while drilling.

J.J. Kolle

2004-04-01T23:59:59.000Z

43

Method of deep drilling  

DOE Patents [OSTI]

Deep drilling is facilitated by the following steps practiced separately or in any combination: (1) Periodically and sequentially fracturing zones adjacent the bottom of the bore hole with a thixotropic fastsetting fluid that is accepted into the fracture to overstress the zone, such fracturing and injection being periodic as a function of the progression of the drill. (2) Casing the bore hole with ductile, pre-annealed casing sections, each of which is run down through the previously set casing and swaged in situ to a diameter large enough to allow the next section to run down through it. (3) Drilling the bore hole using a drill string of a low density alloy and a high density drilling mud so that the drill string is partially floated.

Colgate, Stirling A. (4616 Ridgeway, Los Alamos, NM 87544)

1984-01-01T23:59:59.000Z

44

Remote drill bit loader  

SciTech Connect (OSTI)

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. In typical remote drilling operations, whether in hot cells or water pits, drill bits have been held using a collet or end mill type holder with set screws. In either case, to load or change a drill bit required the use master-slave manipulators to position the bits and tighten the collet or set screws. This requirement eliminated many otherwise useful work areas because they were not equipped with slaves, particularly in water pits.

Dokos, J.A.

1996-12-31T23:59:59.000Z

45

Remote drill bit loader  

DOE Patents [OSTI]

A drill bit loader for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned.

Dokos, James A. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

46

Training and Drills  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The volume offers a framework for effective management of emergency response training and drills. Canceled by DOE G 151.1-3.

1997-08-21T23:59:59.000Z

47

Remote drill bit loader  

DOE Patents [OSTI]

A drill bit loader is described for loading a tapered shank of a drill bit into a similarly tapered recess in the end of a drill spindle. The spindle has a transverse slot at the inner end of the recess. The end of the tapered shank of the drill bit has a transverse tang adapted to engage in the slot so that the drill bit will be rotated by the spindle. The loader is in the form of a cylinder adapted to receive the drill bit with the shank projecting out of the outer end of the cylinder. Retainer pins prevent rotation of the drill bit in the cylinder. The spindle is lowered to extend the shank of the drill bit into the recess in the spindle and the spindle is rotated to align the slot in the spindle with the tang on the shank. A spring unit in the cylinder is compressed by the drill bit during its entry into the recess of the spindle and resiliently drives the tang into the slot in the spindle when the tang and slot are aligned. 5 figs.

Dokos, J.A.

1997-12-30T23:59:59.000Z

48

Earth drill rig  

SciTech Connect (OSTI)

This patent describes an earth drill rig wherein an upwardly and downwardly moving drill-string-turning rotary table is rotated by a kelly bar connected at its lower end to a vertical drive shaft, the kelly bar being journalled for rotation in and fixed against axial movement with respect to a drill frame assembly and the rotary table being mounted for axial movement on and along the drill frame assembly. The drill frame assembly is pivotally mounted on a vehicle on a substantially horizontal axis for pivoting between an upright position and a substantially horizontal position for transportation. The improvement described here comprises the drill frame assembly pivot axis positioned below the lower end of the kelly bar and above the upper end of the vertical drive shaft, and a universal coupling connecting the lower end of the kelly bar and the vertical drive shaft the universal coupling comprising universal joints at opposite ends of an elongated slip joint connector and connected there-by for relative axial movement but driving coupling between the universal joints. The universal joints lie generally on a circle of which the drill frame assembly pivot axis is the center. The drill frame assembly can be moved between the upright and the substantially horizontal positions without disconnecting the kelly bar from the vertical drive shaft, the kelly bar being revolvable by the drive shaft through substantially the entire range of movement of the drill frame assembly.

Rassieur, C.L.

1987-01-27T23:59:59.000Z

49

Drilling optimization using drilling simulator software  

E-Print Network [OSTI]

equipment is being used on some rigs, adding more overall costs to the drilling operation. Other industries facing a similar dilemma-aerospace, airlines, utilities, and the military- have all resorted to sophisticated training and technology... and Gaebler3). Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs Rotary Speed, RPM Weight on Bit, Klbs ROP,m/h 10 20 7 Fig. 3 shows the five basic processes encountered during the drilling of a well that account for more...

Salas Safe, Jose Gregorio

2004-09-30T23:59:59.000Z

50

Drilling continues upward momentum  

SciTech Connect (OSTI)

This paper discusses how the drilling recovery that began during the second half of 1989 is continuing into 1990. On top of this, the Iraqi invasion of Kuwait has caused disarray in oil markets, driving up oil prices, and disrupting access to oil supplies. Potentially, this upheaval could lead to an upward spike in worldwide drilling activity.

Moritis, G.

1990-09-24T23:59:59.000Z

51

International guide: blasthole drills  

SciTech Connect (OSTI)

This survey is a comprehensive quick reference guide for surface mine operators. It details rotary blasthole drill rigs that are available around the world. More than 60 drills, each with a pulldown of about 125 kN, are included in the survey.

Chadwick, J.R.

1982-01-01T23:59:59.000Z

52

Advanced drilling systems study.  

SciTech Connect (OSTI)

This report documents the results of a study of advanced drilling concepts conducted jointly for the Natural Gas Technology Branch and the Geothermal Division of the U.S. Department of Energy. A number of alternative rock cutting concepts and drilling systems are examined. The systems cover the range from current technology, through ongoing efforts in drilling research, to highly speculative concepts. Cutting mechanisms that induce stress mechanically, hydraulically, and thermally are included. All functions necessary to drill and case a well are considered. Capital and operating costs are estimated and performance requirements, based on comparisons of the costs for alternative systems to conventional drilling technology, are developed. A number of problems common to several alternatives and to current technology are identified and discussed.

Pierce, Kenneth G.; Livesay, Billy Joe; Finger, John Travis (Livesay Consultants, Encintas, CA)

1996-05-01T23:59:59.000Z

53

Disposal of drilling fluids  

SciTech Connect (OSTI)

Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

Bryson, W.R.

1983-06-01T23:59:59.000Z

54

Deep Drilling Basic Research: Volume 5 - System Evaluations. Final Report, November 1988--August 1990  

SciTech Connect (OSTI)

This project is aimed at decreasing the costs and increasing the efficiency of drilling gas wells in excess of 15,000 feet. This volume presents a summary of an evaluation of various drilling techniques. Drilling solutions were compared quantitatively against typical penetration rates derived from conventional systems. A qualitative analysis measured the impact of a proposed system on the drilling industry. The evaluations determined that the best candidates f o r improving the speed and efficiency of drilling deep gas wells include: PDC/TSD bits, slim-hole drilling, roller-cone bits, downhole motors, top-driven systems, and coiled-tubing drilling.

None

1990-06-01T23:59:59.000Z

55

Focus on rotary drill rigs  

SciTech Connect (OSTI)

This article discusses the drill rig, focusing on the rotary drill rigs. There are two principal drilling methods - rotary and percussion. In certain situations, percussion drilling is the most practical method, but for most applications, rotary drilling using the rotary-tricone bit with either steel-toothed cones or carbide inserts, is the common and accepted drilling technique. There are four principal reasons for a rotary drill rig: to provide power to the rotary-tricone bit; to provide air to clean the hole; to provide a life-support system for the rotary-tricone bits; and, to provide a stable and efficient platform from which to drill the hole.

Schivley, G.P. Jr.

1987-06-01T23:59:59.000Z

56

Technology assessment of vertical and horizontal air drilling potential in the United States. Final report  

SciTech Connect (OSTI)

The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.

Carden, R.S.

1993-08-18T23:59:59.000Z

57

Report of the Offset Drilling Workshop Ocean Drilling Program  

E-Print Network [OSTI]

Report of the Offset Drilling Workshop held at Ocean Drilling Program Texas A&M University College Need for an Engineering Leg 35 Realistic Strategies for Offset Drilling 37 Appendix 1 Workshop (Leg 153) 21 Figure 4 "Rig Floor Perception" of Generic Boreholes Drilled During Leg 153 22 Figure 5

58

Cranial Drilling Tool with Retracting Drill Bit Upon Skull Penetration  

E-Print Network [OSTI]

Cranial Drilling Tool with Retracting Drill Bit Upon Skull Penetration Paul Loschak1 , Kechao Xiao1 is required to perform the drilling w devices on the market. Although frequent monitoring has been correlated of a sufficient number of neurosurgeons [3]. The cranial drilling device described in this paper designed to allow

59

Blast furnace taphole drill  

SciTech Connect (OSTI)

A blast furnace taphole drill has a flaring head with cutting edges at its cutting end formed by intersecting angled faces. A central bore carries cleaning air to the cutting end. To prevent blockage of the cleaning air bore by debris and possible jamming of the drill, the head has deep radial grooves formed at the bottoms of the valley shapes between the cutting edges. The grooves extend radially from the air bore and conduct the air so that it can get behind or under jammed debris. Reduced taphole drilling times can be achieved.

Gozeling, J.A.; de Boer, S.; Spiering, A.A.

1984-06-26T23:59:59.000Z

60

November 2002 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

November 2002 OCEAN DRILLING PROGRAM LEG 209 SCIENTIFIC PROSPECTUS DRILLING MANTLE PERIDOTITE ALONG Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA -------------------------------- Dr. D. Jay Miller Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

January 2003 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

January 2003 OCEAN DRILLING PROGRAM LEG 210 SCIENTIFIC PROSPECTUS DRILLING THE NEWFOUNDLAND HALF OF THE NEWFOUNDLAND­IBERIA TRANSECT: THE FIRST CONJUGATE MARGIN DRILLING IN A NON-VOLCANIC RIFT Brian E. Tucholke Co Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery

62

February 2002 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

February 2002 OCEAN DRILLING PROGRAM LEG 204 SCIENTIFIC PROSPECTUS DRILLING GAS HYDRATES ON HYDRATE -------------------------------- Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Richter Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

63

December 2001 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

December 2001 OCEAN DRILLING PROGRAM LEG 203 SCIENTIFIC PROSPECTUS DRILLING AT THE EQUATORIAL -------------------------------- Dr. Jack Bauldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University. Acton Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

64

Advanced Mud System for Microhole Coiled Tubing Drilling  

SciTech Connect (OSTI)

An advanced mud system was designed and key components were built that augment a coiled tubing drilling (CTD) rig that is designed specifically to drill microholes (less than 4-inch diameter) with advanced drilling techniques. The mud system was tailored to the hydraulics of the hole geometries and rig characteristics required for microholes and is capable of mixing and circulating mud and removing solids while being self contained and having zero discharge capability. Key components of this system are two modified triplex mud pumps (High Pressure Slurry Pumps) for advanced Abrasive Slurry Jetting (ASJ) and a modified Gas-Liquid-Solid (GLS) Separator for well control, flow return and initial processing. The system developed also includes an additional component of an advanced version of ASJ which allows cutting through most all materials encountered in oil and gas wells including steel, cement, and all rock types. It includes new fluids and new ASJ nozzles. The jetting mechanism does not require rotation of the bottom hole assembly or drill string, which is essential for use with Coiled Tubing (CT). It also has low reactive forces acting on the CT and generates cuttings small enough to be easily cleaned from the well bore, which is important in horizontal drilling. These cutting and mud processing components and capabilities compliment the concepts put forth by DOE for microhole coiled tubing drilling (MHTCTD) and should help insure the reality of drilling small diameter holes quickly and inexpensively with a minimal environmental footprint and that is efficient, compact and portable. Other components (site liners, sump and transfer pumps, stacked shakers, filter membranes, etc.. ) of the overall mud system were identified as readily available in industry and will not be purchased until we are ready to drill a specific well.

Kenneth Oglesby

2008-12-01T23:59:59.000Z

65

How to calibrate the jet energy scale?  

SciTech Connect (OSTI)

Top quarks dominantly decay into b-quark jets and W bosons, and the W bosons often decay into jets, thus the precise determination of the jet energy scale is crucial in measurements of many top quark properties. I present the strategies used by the CDF and D0 collaborations to determine the jet energy scale. The various cross checks performed to verify the determined jet energy scale and evaluate its systematic uncertainty are also discussed.

Hatakeyama, K.; /Rockefeller U.

2006-01-01T23:59:59.000Z

66

Directional drilling sub  

SciTech Connect (OSTI)

A directional drilling ''sub'' provides a shifting end portion which allows the sub to be rotated from a first in-line axially straight orientation with the drill string to a second angled or ''bent'' position which second position is normally associated with conventional bent ''subs'' which are permanently structured in the bent position. The device shifts from the first (In-line) position to the second (Bent) position upon the application of torsional force thereto which torsional force can be applied, for example, by the actuation of a ''turbodrill'' (Normally attached thereto in operation). The device can be manufactured or machined to provide varying angles to the sub in its bent position to satisfy differing directional drilling situations. The axially aligned first position allows easy entry of the drill string, sub , and turbodrill into the well hole, while the second bend position is used to commence directional drilling. The sub will return gradually to its original axially aligned position when the device is withdrawn from the wellhole, as such position is the path of minimum resistance for the withdrawing drill string and torsion is not present to hold the sub in the bent position.

Benoit, L.F.

1980-09-02T23:59:59.000Z

67

Drill pipe with helical ridge for drilling highly angulated wells  

SciTech Connect (OSTI)

This patent describes a method for drilling a highly angulated wellbore with a rotary rig having a drill string terminated with a bit which method employs drilling fluid. The improvement comprises: employing a length of drill pipe in the highly angulated drill string which has a helical ridge disposed thereabout, wherein the flight of the helical ridge is wound in the same direction as the rotation of the drill string such as to move drill cuttings in a direction from the bit to the surface upon rotation, and wherein the height of the helical ridge above the circumferential surface of the length of the drill pipe is 1 to 15 percent of the diameter of the drill pipe.

Finnegan, J.E.; Williams, J.G.

1991-08-27T23:59:59.000Z

68

Drill wear: its effect on the diameter of drilled holes  

E-Print Network [OSTI]

genoa arrrZgg zo gaamWra gHZ. zo ZaaXm axz:gVm VZXgg DRILL WEhR: ITS EFFECT ON THE DlhEETER GF DRILLED HOLES h Thesis Villian Frederick Reiehert, Jr. hpproved as to style and oontent by: a rman o onn ee ea o par nen hugus t 1955 h.... I RTRONCTIOE ~ ~ ~ ~ ~ ~ e s ~ o e o o o ~ N I I DRILLS AND DRXLLXNG ~ ~ ~ ~ ~ o e ~ o ~ ~ Twist Drills Drill Presses Cutting Fluids . . . ~ Drill Pigs IIX DESCRIPTXOM OF EQUIPRERT AND PROCEXlIRE 6 13 19 23 27 Drilliag Eguipeeat...

Reichert, William Frederick

1955-01-01T23:59:59.000Z

69

Finite Element Modeling of Drilling Using DEFORM  

E-Print Network [OSTI]

Vijayaraghavan, A. (2005), “Drilling of Fiber- ReinforcedFINITE ELEMENT MODELING OF DRILLING USING DEFORM J. Gardner,of Comprehensive Drilling Simulation Tool” ABSTRACT DEFORM-

Gardner, Joel D.; Dornfeld, David

2006-01-01T23:59:59.000Z

70

Marcellus Shale Drilling and Hydraulic Fracturing; Technicalities and  

E-Print Network [OSTI]

Pipe · Air Rotary Drilling Rig · Hydraulic Rotary Drilling Rig ­ Barite/Bentonite infused drilling muds A "Thumper Truck" #12;Rigging Up #12;Drilling · The Drill String ­ Diesel Powered ­ Drilling Bit ­ Drilling

Jiang, Huiqiang

71

Drill pipe corrosion control using an inert drilling fluid  

SciTech Connect (OSTI)

The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternately used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico. Data from corrosion rings, corrosion probes, fluid samples and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid, nitrogen, reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an onsite inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

Caskey, B.C.; Copass, K.S.

1981-01-01T23:59:59.000Z

72

Acid placement and coverage in the acid jetting process  

E-Print Network [OSTI]

Many open-hole acid treatments are being conducted by pumping acid through jetting ports placed at the end of coiled tubing or drill pipe. The filter-cake on the bore-hole is broken by the jet; the acid-soluble material is dissolved, creating...

Mikhailov, Miroslav I.

2009-05-15T23:59:59.000Z

73

Combination drilling and skiving tool  

DOE Patents [OSTI]

A combination drilling and skiving tool including a longitudinally extending hollow skiving sleeve slidably and concentrically mounted on a right-handed twist drill. Dogs or pawls provided on the internal periphery of the skiving sleeve engage with the helical grooves of the drill. During a clockwise rotation of the tool, the drill moves downwardly and the sleeve translates upwardly, so that the drill performs a drilling operation on a workpiece. On the other hand, the drill moves upwardly and the sleeve translates downwardly, when the tool is rotated in a counter-clockwise direction, and the sleeve performs a skiving operation. The drilling and skiving operations are separate, independent and exclusive of each other.

Stone, William J. (Kansas City, MO)

1989-01-01T23:59:59.000Z

74

RECIPIENT:Potter Drilling Inc  

Broader source: Energy.gov (indexed) [DOE]

Potter Drilling Inc u.s. DEPARTUEN T OF ENERG EERE PROJECT MANAGEMENT CENT ER NEPA DEIERlIINATION PROJECr TITLE: Development of a Hydrothermal Spallation Drilling System for EGS...

75

Managed Pressure Drilling Candidate Selection  

E-Print Network [OSTI]

. Rodolphe Leschot invented and patented the earliest form of diamond core drills. T. F. Rowland patented an ?offshore rotary drilling rig?. Captain Lucas, with his Spindletop field wells, Earle Halliburton with his cementing service company, inventors... is the ancient water and brine wells drilled from the prehistoric eras to not so modern times. The second stage is the drilling of the earliest oil wells, and development of basic derricks, rigs, and cable tool rigs. The third stage is the development of rotary...

Nauduri, Anantha S.

2010-07-14T23:59:59.000Z

76

Well drilling tool  

SciTech Connect (OSTI)

There is disclosed a turbodrill having an axial thrust bearing section which is contained within a lubricant chamber arranged within an annular space between the case and shaft of the turbodrill above the turbine section, and which is defined between means sealing between the shaft and the case which, in use of the turbodrill, are above the drilling fluid circulating therethrough.

Fox, F.K.

1981-04-07T23:59:59.000Z

77

Proposed Drill Sites  

SciTech Connect (OSTI)

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

2013-06-28T23:59:59.000Z

78

Proposed Drill Sites  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Proposed drill sites for intermediate depth temperature gradient holes and/or deep resource confirmation wells. Temperature gradient contours based on shallow TG program and faults interpreted from seismic reflection survey are shown, as are two faults interpreted by seismic contractor Optim but not by Oski Energy, LLC.

Lane, Michael

79

November 2002 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

November 2002 OCEAN DRILLING PROGRAM LEG 208 SCIENTIFIC PROSPECTUS EARLY CENOZOIC EXTREME CLIMATES -------------------------------- Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Leg Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery

80

Modified shielding jet model for twin-jet shielding analysis  

E-Print Network [OSTI]

the slowing of the jet flow due to turbulent mixing and entrainment of particles from the surrounding medium. The empirical formulations and velocity profiles derived for the respective regions of the jet consider this increase in entrained fluid... velocity profiles are integrated over their respective cross sections of the shielding jet to determine the total volumetric flowrate at the specified locations. A slug flow velocity approximation is then determined for each of the desired downstream...

Gilbride, Jennifer Frances

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Drilling subsurface wellbores with cutting structures  

DOE Patents [OSTI]

A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.

Mansure, Arthur James (Alburquerque, NM); Guimerans, Rosalvina Ramona (The Woodlands, TX)

2010-11-30T23:59:59.000Z

82

Lateral Drilling and Completion Technologies for Shallow-Shelf Carbonates of the Red River and Ratcliffe Formations, Williston Basin  

SciTech Connect (OSTI)

Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil- well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius laterals in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2590 to 2890 m (8500 to 9500 ft) in Richland Co., MT; Bowman Co., ND; and Harding Co., SD.

David Gibbons; Larry A. Carrell; Richard D. George

1997-07-31T23:59:59.000Z

83

Williston Basin: An analysis of salt drilling techniques for brine-based drilling-fluid systems  

SciTech Connect (OSTI)

Williston Basin salt intervals, ranging in depth from 5,000 to 12,500 ft (1525 to 3810 m), have been responsible for widespread casing collapse because of the plastic movement of evaporites and the subsequent point loading of casing. This phenomenon is attributable to poor cement jobs across excessively eroded salt sections. A 2-year study led to the realization that this erosion is a function of not only salt dissolution but also the mechanical action of turbulent flow in the wellbore. A laminar flow regime can be realized and salt enlargement limited by careful control of annular flow rate, jet velocity, and drilling-fluid rheology.

Stash, S.M.; Jones, M.E.

1988-03-01T23:59:59.000Z

84

Advanced Ultra-High Speed Motor for Drilling  

SciTech Connect (OSTI)

Three (3) designs have been made for two sizes, 6.91 cm (2.72 inch) and 4.29 cm (1.69 inch) outer diameters, of a patented inverted configured Permanent Magnet Synchronous Machines (PMSM) electric motor specifically for drilling at ultra-high rotational speeds (10,000 rpm) and that can utilize advanced drilling methods. Benefits of these motors are stackable power sections, full control (speed and direction) of downhole motors, flow hydraulics independent of motor operation, application of advanced drilling methods (water jetting and abrasive slurry jetting), and the ability of signal/power electric wires through motor(s). Key features of the final designed motors are: fixed non-rotating shaft with stator coils attached; rotating housing with permanent magnet (PM) rotor attached; bit attached to rotating housing; internal channel(s) in a nonrotating shaft; electric components that are hydrostatically isolated from high internal pressure circulating fluids ('muds') by static metal to metal seals; liquid filled motor with smoothed features for minimized turbulence in the motor during operation; and new inverted coated metal-metal hydrodynamic bearings and seals. PMSM, Induction and Switched Reluctance Machines (SRM), all pulse modulated, were considered, but PMSM were determined to provide the highest power density for the shortest motors. Both radial and axial electric PMSM driven motors were designed with axial designs deemed more rugged for ultra-high speed, drilling applications. The 6.91 cm (2.72 inch) OD axial inverted motor can generate 4.18KW (5.61 Hp) power at 10,000 rpm with a 4 Nm (2.95 ft-lbs) of torque for every 30.48 cm (12 inches) of power section. The 6.91 cm (2.72 inch) OD radial inverted motor can generate 5.03 KW (6.74 Hp) with 4.8 Nm (3.54 ft-lb) torque at 10,000 rpm for every 30.48 cm (12 inches) of power section. The 4.29 cm (1.69 inch) OD radial inverted motor can generate 2.56 KW (3.43 Hp) power with 2.44 Nm (1.8 ft-lb) torque at full speed 10,000 rpm for every 30.48 cm (12 inches) of power section. Operating conditions are 300 voltage AC at the motor leads. Power voltage losses in the cables/wirelines to the motor(s) are expected to be about 10% for 5000 feet carrying 2 amperes. Higher voltages and better insulators can lower these losses and carry more amperes. Cutting elements for such high tip velocities are currently not available, consequently these motors will not be built at this time. However, 7.62 cm (3 inch) OD, low speed, PMSM radial electric motors based on this project design are being built under a 2006 Oklahoma Center for the Advancement of Science and Technology 'proof of concept' grant.

Impact Technologies LLC; University of Texas at Arlington

2007-03-31T23:59:59.000Z

85

Advanced Seismic While Drilling System  

SciTech Connect (OSTI)

A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology of a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a

Robert Radtke; John Fontenot; David Glowka; Robert Stokes; Jeffery Sutherland; Ron Evans; Jim Musser

2008-06-30T23:59:59.000Z

86

Cost effectiveness of sonic drilling  

SciTech Connect (OSTI)

Sonic drilling (combination of mechanical vibrations and rotary power) is an innovative environmental technology being developed in cooperation with DOE`s Arid-Site Volatile Organic Compounds Integrated Demonstration at Hanford and the Mixed Waste Landfill Integrated Demonstration at Sandia. This report studies the cost effectiveness of sonic drilling compared with cable-tool and mud rotary drilling. Benefit of sonic drilling is its ability to drill in all types of formations without introducing a circulating medium, thus producing little secondary waste at hazardous sites. Progress has been made in addressing the early problems of failures and downtime.

Masten, D.; Booth, S.R.

1996-03-01T23:59:59.000Z

87

Laser Drilling - Drilling with the Power of Light  

SciTech Connect (OSTI)

Gas Technology Institute (GTI) has been the leading investigator in the field of high power laser applications research for well construction and completion applications. Since 1997, GTI (then as Gas Research Institute- GRI) has investigated several military and industrial laser systems and their ability to cut and drill into reservoir type rocks. In this report, GTI continues its investigation with a 5.34 kW ytterbium-doped multi-clad high power fiber laser (HPFL). When compared to its competitors; the HPFL represents a technology that is more cost effective to operate, capable of remote operations, and requires considerably less maintenance and repair. Work performed under this contract included design and implementation of laboratory experiments to investigate the effects of high power laser energy on a variety of rock types. All previous laser/rock interaction tests were performed on samples in the lab at atmospheric pressure. To determine the effect of downhole pressure conditions, a sophisticated tri-axial cell was designed and tested. For the first time, Berea sandstone, limestone and clad core samples were lased under various combinations of confining, axial and pore pressures. Composite core samples consisted of steel cemented to rock in an effort to represent material penetrated in a cased hole. The results of this experiment will assist in the development of a downhole laser perforation or side tracking prototype tool. To determine how this promising laser would perform under high pressure in-situ conditions, GTI performed a number of experiments with results directly comparable to previous data. Experiments were designed to investigate the effect of laser input parameters on representative reservoir rock types of sandstone and limestone. The focus of the experiments was on laser/rock interaction under confining pressure as would be the case for all drilling and completion operations. As such, the results would be applicable to drilling, perforation, and side tracking applications. In the past, several combinations of laser and rock variables were investigated at standard conditions and reported in the literature. More recent experiments determined the technical feasibility of laser perforation on multiple samples of rock, cement and steel. The fiber laser was capable of penetrating these materials under a variety of conditions, to an appropriate depth, and with reasonable energy requirements. It was determined that fiber lasers are capable of cutting rock without causing damage to flow properties. Furthermore, the laser perforation resulted in permeability improvements on the exposed rock surface. This report has been prepared in two parts and each part may be treated as a stand-alone document. Part 1 (High Energy Laser Drilling) includes the general description of the concept and focuses on results from experiments under the ambient lab conditions. Part 2 (High Energy Laser Perforation and Completion Techniques) discusses the design and development of a customized laser pressure cell; experimental design and procedures, and the resulting data on pressure-charged samples exposed to the laser beam. An analysis provides the resulting effect of downhole pressure conditions on the laser/rock interaction process.

Iraj A. Salehi; Brian C. Gahan; Samih Batarseh

2007-02-28T23:59:59.000Z

88

Development of a micro-drilling burr-control chart for PCB drilling  

E-Print Network [OSTI]

single- or double-sided). Drilling provides the holes forstandard conditions. Fig. 4. Drilling experimental setup.a standard procedure in PCB drilling). These were clamped

2014-01-01T23:59:59.000Z

89

Drill bit assembly for releasably retaining a drill bit cutter  

DOE Patents [OSTI]

A drill bit assembly is provided for releasably retaining a polycrystalline diamond compact drill bit cutter. Two adjacent cavities formed in a drill bit body house, respectively, the disc-shaped drill bit cutter and a wedge-shaped cutter lock element with a removable fastener. The cutter lock element engages one flat surface of the cutter to retain the cutter in its cavity. The drill bit assembly thus enables the cutter to be locked against axial and/or rotational movement while still providing for easy removal of a worn or damaged cutter. The ability to adjust and replace cutters in the field reduces the effect of wear, helps maintains performance and improves drilling efficiency.

Glowka, David A. (Austin, TX); Raymond, David W. (Edgewood, NM)

2002-01-01T23:59:59.000Z

90

Apparatus in a drill string  

DOE Patents [OSTI]

An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable spirally welded metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube.

Hall, David R. (Provo, UT); Dahlgren, Scott (Alpine, UT); Hall, Jr., Tracy H. (Provo, UT); Fox, Joe (Lehi, UT); Pixton, David S. (Provo, UT)

2007-07-17T23:59:59.000Z

91

Astrophysical Jets  

SciTech Connect (OSTI)

Many astrophysical sources - especially those powered by release of gravitational energy - are associated with an outflow of material, generally taking place along the axis of symmetry of the system. In the most extreme cases, the outflow is accelerated to relativistic speeds; such a phenomenon is known as an astrophysical jet. When a relativistic jet points close to our line of sight, the observed radiation is strongly Doppler-boosted. Most spectacular cases of astrophysical jets are those produced by active galactic nuclei, where the measured spectrum - presumably dominated by the radiation from the jet - reaches up to the multi-GeV range. Our knowledge of these jets is limited: we don't fully understand how are they formed, collimated, and accelerated, and what is the process of conversion of the bulk energy of the jet into radiation. We anticipate that the increased sensitivity of GLAST will provide us with spectacular data yielding new insights as to their origin and structure.

Madejski, Grzegorz (SLAC) [SLAC

2006-05-01T23:59:59.000Z

92

Jet initiation of PBX 9502  

SciTech Connect (OSTI)

This report details the progress of an effort to determine the quantitative aspects of the initiation of PBX 9502 (95% TATB, 5% Kel-F 800) by copper jets. The particular jet used was that produced by the LAW warhead (66-mm diameter, 42/sup 0/ angle cone, copper-lined, conical shaped charge). Fifteen experiments, in various configurations, have been fired to define the essential parameters for quantitatively measuring the jet performance and initiation of bare PBX 9502. 7 refs., 8 figs.

McAfee, J.M.

1987-07-01T23:59:59.000Z

93

OCEAN DRILLING PROGRAM LEG 109 PRELIMINARY REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 109 PRELIMINARY REPORT BARE ROCK DRILLING IN THE MID-ATLANTIC RIDGE RIFT 109 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469 Philip D. Rabinowitz Director Ocean Drilling Program Robert B. Kidd Manager of Science Operations Ocean Drilling Program Louis E

94

Transducer for downhole drilling components  

DOE Patents [OSTI]

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. The transmission element may include an annular housing forming a trough, an electrical conductor disposed within the trough, and an MCEI material disposed between the annular housing and the electrical conductor.

Hall, David R; Fox, Joe R

2006-05-30T23:59:59.000Z

95

Drilling Productivity Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesDataTranslocationDiurnalCommittee Draft Advice9Drilling

96

Stellar jets  

E-Print Network [OSTI]

With a goal of understanding the conditions under which jets might be produced in novae and related objects, I consider the conditions under which jets are produced from other classes of accreting compact objects. I give an overview of accretion disk spectral states, including a discussion of in which states these jets are seen. I highlight the differences between neutron stars and black holes, which may help give us insights about when and how the presence of a solid surface may help or inhibit jet production.

Thomas J. Maccarone

2008-05-23T23:59:59.000Z

97

Scientific Drilling, Number 1, 2005 Scientific ocean drilling started in the early 1960s with  

E-Print Network [OSTI]

Scientific Drilling, Number 1, 2005 Scientific ocean drilling started in the early 1960s, or the Moho). This project, known as Mohole, was succeeded by the Deep Sea Drilling Project, the International Phase of Ocean Drilling, the Ocean Drilling Program, and the current Integrated Ocean Drilling Program

Demouchy, Sylvie

98

Managed pressure drilling techniques and tools  

E-Print Network [OSTI]

these problems, the economics of drilling the wells will improve, thus enabling the industry to drill wells that were previously uneconomical. Managed pressure drilling (MPD) is a new technology that enables a driller to more precisely control annular pressures...

Martin, Matthew Daniel

2006-08-16T23:59:59.000Z

99

Relating horsepower to drilling productivity  

SciTech Connect (OSTI)

Many technological advancements have been made in explosive products and applications over the last 15 years resulting in productivity and cost gains. However, the application of total energy (engine horsepower) in the majority of rotary drilling technology, has remained virtually unchanged over that period. While advancements have been made in components, efficiency, and types of hydraulic systems used on drills, the application of current hydraulic technology to improve drilling productivity has not been interactive with end users. This paper will investigate how traditional design assumptions, regarding typical application of horsepower in current rotary drill systems, can actually limit productivity. It will be demonstrated by numeric analysis how changing the partitioning of available hydraulic energy can optimize rotary drill productivity in certain conditions. Through cooperative design ventures with drill manufacturers, increased penetration rates ranging from 20% to 100% have been achieved. Productivity was increased initially on some rigs by careful selection of optional hydraulic equipment. Additional gains were made in drilling rates by designing the rotary hydraulic circuit to meet the drilling energies predicted by computer modeling.

Givens, R.; Williams, G.; Wingfield, B.

1996-12-31T23:59:59.000Z

100

OM300 Direction Drilling Module  

SciTech Connect (OSTI)

OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

MacGugan, Doug

2013-08-22T23:59:59.000Z

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Sandia National Laboratories: Geothermal Energy & Drilling Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyGeothermalGeothermal Energy & Drilling Technology Geothermal Energy & Drilling Technology Geothermal energy is an abundant energy resource that comes from tapping the natural...

102

Development and testing of underbalanced drilling products. Topical report, September 1994--September 1995  

SciTech Connect (OSTI)

Underbalanced drilling is experiencing growth at a rate that rivals that of horizontal drilling in the mid-1980s. Problems remain, however, for applying underbalanced drilling in a wider range of geological settings and drilling environments. This report addresses the development and testing of two products designed to advance the application of underbalanced drilling techniques. A user-friendly foam fluid hydraulics model (FOAM) was developed for a PC Windows environment. The program predicts pressure and flow characteristics of foam fluids used in underbalanced drilling operations. FOAM is based on the best available mathematical models, and was validated through comparison to existing models, laboratory test well measurements, and field data. This model does not handle air or mist drilling where the foam quality is above 0.97. An incompressible drilling fluid was developed that utilizes lightweight solid additives (hollow glass spheres) to reduce the density of the mud to less than that of water. This fluid is designed for underbalanced drilling situations where compressible lightweight fluids are inadequate. In addition to development of these new products, an analysis was performed to determine the market potential of lightweight fluids, and a forecast of underbalanced drilling in the USA over the next decade was developed. This analysis indicated that up to 12,000 wells per year (i.e., 30 percent of all wells) will be drilled underbalanced in the USA within the next ten years.

Medley, G.H., Jr; Maurer, W.C.; Liu, G.; Garkasi, A.Y.

1995-09-01T23:59:59.000Z

103

Surface readout drill stem test control apparatus  

SciTech Connect (OSTI)

A surface readout (SRO) system for use with a wire line drill stem testing apparatus is disclosed. More particularly, the preferred and illustrated embodiment sets forth control circuitry for such a system. At the time that a well has been drilled and a potentially productive formation has been located, test apparatus incorporating a probe assembly is lowered on a wire line. The probe assembly incorporates a latch mechanism and a motorized tester valve opening apparatus. THis disclosure sets forth a control system for the latch to fasten the probe in the downhole apparatus for conducting pressure and temperature testing of the formation to determine its flow and production potential. Moreover, a motor control circuit is also included to open the tester valve. These devices are located in the probe and are triggered into operation by signals transmitted on the wire line to the probe.

Maddock Jr., A. W.

1984-11-20T23:59:59.000Z

104

Establishing nuclear facility drill programs  

SciTech Connect (OSTI)

The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

NONE

1996-03-01T23:59:59.000Z

105

Drilling fluids and reserve pit toxicity  

SciTech Connect (OSTI)

Drilling fluids are now classified as exempt under the Resource Conservation and Recovery Act (RCRA) hazardous waste laws. Since 1986, however, the U.S. Environmental Protection Agency (EPA) has been studying reserve pit contents to determine whether oilfield wastes should continue under this exemption. Concerns regarding reserve pit contents and disposal practices have resulted in state and local governmental regulations that limit traditional methods of construction, closure, and disposal of reserve pit sludge and water. A great deal of attention and study has been focused on drilling fluids that eventually reside in reserve pits. In-house studies show that waste from water-based drilling fluids plays a limited role (if any) in possible hazards associated with reserve pits. Reserve pit water samples and pit sludge was analyzed and collated. Analyses show that water-soluble heavy metals (Cr, Pb, Zn and Mn) in reserve pits are generally undetectable or, if found in the total analysis, are usually bound to clays or organics too tightly to exceed the limitations as determined by the EPA toxicity leachate test. The authors' experience is that most contamination associated with reserve pits involves high salt content from produced waters and/or salt formations, lead contamination from pipe dope, or poorly designed pits, which could allow washouts into surface waters or seepage into groundwater sources. The authors' analyses show that reserve its associated with water-based drilling fluid operations should not be classified as hazardous; however, careful attention attention should be paid to reserve pit construction and closure to help avoid any adverse environmental impact.

Leuterman, A.J.J.; Jones, F.V.; Chandler, J.E. (M-I Drilling Fluids Co. (US))

1988-11-01T23:59:59.000Z

106

Laser Oil and Gas Well Drilling Demonstration Videos  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

ANL's Laser Applications Laboratory and collaborators are examining the feasibility of adapting high-power laser technology to drilling for gas and oil. The initial phase is designed to establish a scientific basis for developing a commercial laser drilling system and determine the level of gas industry interest in pursuing future research. Using lasers to bore a hole offers an entirely new approach to mechanical drilling. The novel drilling system would transfer light energy from lasers on the surface, down a borehole by a fiber optic bundle, to a series of lenses that would direct the laser light to the rock face. Researchers believe that state-of-the-art lasers have the potential to penetrate rock many times faster than conventional boring technologies - a huge benefit in reducing the high costs of operating a drill rig. Because the laser head does not contact the rock, there is no need to stop drilling to replace a mechanical bit. Moreover, researchers believe that lasers have the ability to melt the rock in a way that creates a ceramic sheath in the wellbore, eliminating the expense of buying and setting steel well casing. A laser system could also contain a variety of downhole sensors, including visual imaging systems that could communicate with the surface through the fiber optic cabling. Earlier studies have been promising, but there is still much to learn. One of the primary objectives of the new study will be to obtain much more precise measurements of the energy requirements needed to transmit light from surface lasers down a borehole with enough power to bore through rocks as much as 20,000 feet or more below the surface. Another objective will be to determine if sending the laser light in sharp pulses, rather than as a continuous stream, could further increase the rate of rock penetration. A third aspect will be to determine if lasers can be used in the presence of drilling fluids. In most wells, thick fluids called "drilling muds" are injected into the borehole to wash out rock cuttings and keep water and other fluids from the underground formations from seeping into the well. The technical challenge will be to determine whether too much laser energy is expended to clear away the fluid where the drilling is occurring. (Copied with editing from http://www.ne.anl.gov/facilities/lal/laser_drilling.html). The demonstration videos, provided here in QuickTime format, are accompanied by patent documents and PDF reports that, together, provide an overall picture of this fascinating project.

107

OCEAN DRILLING PROGRAM LEG 179 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 179 SCIENTIFIC PROSPECTUS HAMMER DRILLING and NERO Dr. Jack Casey Chief.S.A. Tom Pettigrew Chief Engineer, Leg 179 Ocean Drilling Program Texas A&M University Research Park 1000 Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

108

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN  

E-Print Network [OSTI]

REVISED HYDROGEN SULFIDE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY Technical Note 19 Gien N. Foss Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 Bradley D. Julson Ocean Drilling Program Texas A&M University 1000 Discovery Drive

109

OCEAN DRILLING PROGRAM LEG 200 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 200 SCIENTIFIC PROSPECTUS DRILLING AT THE H2O LONG-TERM SEAFLOOR Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA

110

OCEAN DRILLING PROGRAM LEG 104 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 104 SCIENTIFIC PROSPECTUS NORWEGIAN SEA Olav Eldholm Co-Chief Scientist Ocean Drilling Program Texas A & M University College Station, Texas 77843-3469 Pni±ip o Rabinowitz Director Ocean Drilling Program Robert B Kidd Manager of Science Operations Ocean Drilling Program Louis E

111

HYDROGEN SULFIDE -HIGH TEMPERATURE DRILLING CONTINGENCY PLAN  

E-Print Network [OSTI]

HYDROGEN SULFIDE - HIGH TEMPERATURE DRILLING CONTINGENCY PLAN OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY Technical Note 16 Steven P. Howard Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 Daniel H. Reudelhuber Ocean Drilling Program Texas A&M University

112

OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 196 SCIENTIFIC PROSPECTUS LOGGING WHILE DRILLING AND ADVANCED CORKS Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX 77845-9547 USA

113

OCEAN DRILLING PROGRAM LEG 192 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 192 SCIENTIFIC PROSPECTUS BASEMENT DRILLING OF THE ONTONG JAVA PLATEAU of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX Drilling Program Texas A&M University 1000 Discovery Drive College Station, TX 77845-9547 U.S.A. May 2000

114

INSTRUCTIONS INTEGRATED OCEAN DRILLING PROGRAM (IODP)  

E-Print Network [OSTI]

INSTRUCTIONS FOR THE INTEGRATED OCEAN DRILLING PROGRAM (IODP) MANUSCRIPT AND PHOTOGRAPH COPYRIGHT, Integrated Ocean Drilling Program, 1000 Discovery Drive, College Station, Texas 77845, USA A signed copyright of the Integrated Ocean Drilling Program or any other publications of the Integrated Ocean Drilling Program. Author

115

OCEAN DRILLING PROGRAM LEG 106 PRELIMINARY REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 106 PRELIMINARY REPORT BARE ROCK DRILLING IN THE MID-ATLANTIC RIDGE RIFT 106 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469 ±nuwiLZ" ector ODP Drilling Program, Texas A & M University, College Station, Texas 77843-3469. In some cases, orders

116

OCEAN DRILLING PROGRAM LEG 118 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 118 SCIENTIFIC PROSPECTUS FRACTURE ZONE DRILLING ON THE SOUTHWEST INDIAN Oceanographic Institution Woods Hole, MA 02543 Andrew C. Adamson Staff Scientist, Leg 118 Ocean Drilling Program the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000

117

OCEAN DRILLING PROGRAM LEG 106 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

designed bare rock guide base and use new drilling technology. The drillship JOIDES Resolution is scheduledOCEAN DRILLING PROGRAM LEG 106 SCIENTIFIC PROSPECTUS BARE ROCK DRILLING IN THE KANE FRACTURE ZONE Drilling Program Texas A & M University College Station, TX 77843-3469

118

Geothermal drill pipe corrosion test plan  

SciTech Connect (OSTI)

Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

Caskey, B.C.; Copass, K.S.

1980-12-01T23:59:59.000Z

119

Emerging Jets  

E-Print Network [OSTI]

In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

Pedro Schwaller; Daniel Stolarski; Andreas Weiler

2015-02-24T23:59:59.000Z

120

Emerging Jets  

E-Print Network [OSTI]

In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilit...

Schwaller, Pedro; Weiler, Andreas

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Microhole Arrays Drilled With Advanced Abrasive Slurry Jet Technology To  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH Jump to:Michigan: Energy ResourcesMicrofield

122

The Study of Drilling and Countersink Technology in Robot Drilling End-effector  

E-Print Network [OSTI]

The Study of Drilling and Countersink Technology in Robot Drilling End-effector Chengkun Wang--Aiming at the drilling verticality in aircraft assembly, this paper presents a design method of a Double- Eccentricdisc by the interaction of two eccentric discs, and make the drill axis coincide with the normal direction of the drilling

123

DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto  

E-Print Network [OSTI]

DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto R. Sampaio thiagoritto Descartes, 77454 Marne-la-Vallée, France Abstract. The influence of the drilling fluid (or mud) on the drill in the analysis of the nonlinear dynamics of a drill-string. The aim of this paper is to investigate how the fluid

Boyer, Edmond

124

Jet Substructure by Accident  

E-Print Network [OSTI]

We propose a new search strategy for high-multiplicity hadronic final states. When new particles are produced at threshold, the distribution of their decay products is approximately isotropic. If there are many partons in the final state, it is likely that several will be clustered into the same large-radius jet. The resulting jet exhibits substructure, even though the parent states are not boosted. This "accidental" substructure is a powerful discriminant against background because it is more pronounced for high-multiplicity signals than for QCD multijets. We demonstrate how to take advantage of accidental substructure to reduce backgrounds without relying on the presence of missing energy. As an example, we present the expected limits for several R-parity violating gluino decay topologies. This approach allows for the determination of QCD backgrounds using data-driven methods, which is crucial for the feasibility of any search that targets signatures with many jets and suppressed missing energy.

Timothy Cohen; Eder Izaguirre; Mariangela Lisanti; Hou Keong Lou

2013-04-23T23:59:59.000Z

125

Jet Substructure by Accident  

E-Print Network [OSTI]

We propose a new search strategy for high-multiplicity hadronic final states. When new particles are produced at threshold, the distribution of their decay products is approximately isotropic. If there are many partons in the final state, it is likely that several will be clustered into the same large-radius jet. The resulting jet exhibits substructure, even though the parent states are not boosted. This "accidental" substructure is a powerful discriminant against background because it is more pronounced for high-multiplicity signals than for QCD multijets. We demonstrate how to take advantage of accidental substructure to reduce backgrounds without relying on the presence of missing energy. As an example, we present the expected limits for several R-parity violating gluino decay topologies. This approach allows for the determination of QCD backgrounds using data-driven methods, which is crucial for the feasibility of any search that targets signatures with many jets and suppressed missing energy.

Cohen, Timothy; Lisanti, Mariangela; Lou, Hou Keong

2012-01-01T23:59:59.000Z

126

Tool Wear in Friction Drilling  

SciTech Connect (OSTI)

This study investigated the wear of carbide tools used in friction drilling, a nontraditional hole-making process. In friction drilling, a rotating conical tool uses the heat generated by friction to soften and penetrate a thin workpiece and create a bushing without generating chips. The wear of a hard tungsten carbide tool used for friction drilling a low carbon steel workpiece has been investigated. Tool wear characteristics were studied by measuring its weight change, detecting changes in its shape with a coordinate measuring machine, and making observations of wear damage using scanning electron microscopy. Energy dispersive spectroscopy was applied to analyze the change in chemical composition of the tool surface due to drilling. In addition, the thrust force and torque during drilling and the hole size were measured periodically to monitor the effects of tool wear. Results indicate that the carbide tool is durable, showing minimal tool wear after drilling 11000 holes, but observations also indicate progressively severe abrasive grooving on the tool tip.

Miller, Scott F [ORNL; Blau, Peter Julian [ORNL; Shih, Albert J. [University of Michigan

2007-01-01T23:59:59.000Z

127

Rotary steerable motor system for underground drilling  

DOE Patents [OSTI]

A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

2010-07-27T23:59:59.000Z

128

Rotary steerable motor system for underground drilling  

DOE Patents [OSTI]

A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

2008-06-24T23:59:59.000Z

129

Geothermal drilling research in the United States  

SciTech Connect (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of this resource. The Department of Energy (DOE), Division of Geothermal Energy (DGE), is conducting an R and D program directed at reducing well costs through improvements in geothermal drilling and completion technology. This program includes R and D activities in high temperature drilling hardware, drilling fluids, lost circulation control methods, completion technology, and advanced drilling systems. An overview of the program is presented.

Varnado, S.G.; Maish, A.B.

1980-01-01T23:59:59.000Z

130

Drill bit having a failure indicator  

SciTech Connect (OSTI)

A lubrication system is described to indicate a decrease in lubricant volume below a predetermined level in a rotary drill bit having a bit body adapted to receive drilling fluid at a high first pressure from a suspended drill string, and adapted to discharge the drilling fluid therefrom in a void space between the bit body and an associated well bore with the drilling fluid in the space being at a low second pressure.

Daly, J.E.; Pastusek, P.E.

1986-09-09T23:59:59.000Z

131

Calculating limits for torsion and tensile loads on drill pipe  

SciTech Connect (OSTI)

Drill pipe used for drilling horizontal and extended reach holes experiences much higher torsional and tensile loads than normally seen while drilling vertical holes. This is particularly true for rigs with top drives vs. rigs with rotary tables. When pipe is rotated while pulling out of the hole, which is commonly done on top drive rigs, the drill pipe can experience high tensile and torsional loading simultaneously. These conditions increase the probability of overload on tool joints and require that the drill pipe and tool joint selection process include consideration of combined loading. Calculating the required drill pipe strength for vertical holes is straightforward and spelled out in Section 5 of API RP7G. In vertical hole applications, pipe is almost always selected for its tensile capacity and the torsional strength of the pipe generally does not require special consideration. In Section 4 of API Sec 7, API recommends that the tool joints have a torsional strength of 80% of the pipe`s torsional strength; this is usually adequate. The torsional strength and tensile strength of commonly used drill pipe and tool joint combinations are tabulated in Tables 2 through 10 of API RP7G. Appendix A.8.3 in API RP7G shows a method for plotting a graphical representation of the combined torsional and tensile operational limits of tool joints. How to calculate the limits of the drill pipe tube is shown in Appendix A.9.2. This paper defines terms and limits, and discusses building and using a diagram to determine safe loads.

Bailey, E.I. [Stress Engineering Service Inc., Houston, TX (United States); Smith, J.E. [Grant Prideco, Houston, TX (United States)

1998-02-01T23:59:59.000Z

132

Analysis and correlation of volcanic ash in marine sediments from the Peru Margin, Ocean Drilling Program Leg 201: explosive volcanic cycles of the north-central Andes  

E-Print Network [OSTI]

A detailed investigation of cores from three Peru Margin sites drilled during Ocean Drilling Program (ODP) Leg 201 has been conducted to determine the occurrence of volcanic ash layers and ash accumulations within marine sediments along the Peru...

Hart, Shirley Dawn

2007-04-25T23:59:59.000Z

133

Friction Reduction for Microhole CT Drilling  

SciTech Connect (OSTI)

The objective of this 24 month project focused on improving microhole coiled tubing drilling bottom hole assembly (BHA) reliability and performance, while reducing the drilling cost and complexity associated with inclined/horizontal well sections. This was to be accomplished by eliminating the need for a downhole drilling tractor or other downhole coiled tubing (CT) friction mitigation techniques when drilling long (>2,000 ft.) of inclined/horizontal wellbore. The technical solution to be developed and evaluated in this project was based on vibrating the coiled tubing at surface to reduce the friction along the length of the downhole CT drillstring. The Phase 1 objective of this project centered on determining the optimum surface-applied vibration system design for downhole CT friction mitigation. Design of the system would be based on numerical modeling and laboratory testing of the CT friction mitigation achieved with various types of surface-applied vibration. A numerical model was developed to predict how far downhole the surface-applied vibration would travel. A vibration test fixture, simulating microhole CT drilling in a horizontal wellbore, was constructed and used to refine and validate the numerical model. Numerous tests, with varying surface-applied vibration parameters were evaluated in the vibration test fixture. The data indicated that as long as the axial force on the CT was less than the helical buckling load, axial vibration of the CT was effective at mitigating friction. However, surface-applied vibration only provided a small amount of friction mitigation as the helical buckling load on the CT was reached or exceeded. Since it would be impractical to assume that routine field operations be conducted at less than the helical buckling load of the CT, it was determined that this technical approach did not warrant the additional cost and maintenance issues that would be associated with the surface vibration equipment. As such, the project was concluded following completion of Phase 1, and Phase 2 (design, fabrication, and testing of a prototype surface vibration system) was not pursued.

Ken Newman; Patrick Kelleher; Edward Smalley

2007-03-31T23:59:59.000Z

134

JOIDES Resolution Drill Ship Drill into Indian Ridge MOHO Hole Cleaning Study  

E-Print Network [OSTI]

The Integrated Ocean Drilling Program (IODP) uses a variety of technology for use in its deep water scientific research, including the Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) Resolution (JR) drill ship. The JR drill ship...

Lindanger, Catharina

2014-05-03T23:59:59.000Z

135

Report on ignitability testing of flammable gasses in a core sampling drill string  

SciTech Connect (OSTI)

This document describes the results from testing performed at the Pittsburgh Research Center to determine the effects of an ignition of flammable gasses contained in a core sampling drill string. Testing showed that 1) An ignition of stoichiometric hydrogen and air in a vented 30 or 55 ft length of drill string will not force 28`` or more of water out the bottom of the drill string, and 2) An ignition of this same gas mixture will not rupture a vented or completely sealed drill string.

Witwer, K.S., Westinghouse Hanford

1996-12-01T23:59:59.000Z

136

OPENING ANGLES OF COLLAPSAR JETS  

SciTech Connect (OSTI)

We investigate the jet propagation and breakout from the stellar progenitor for gamma-ray burst (GRB) collapsars by performing two-dimensional relativistic hydrodynamic simulations and analytical modeling. We find that the jet opening angle is given by ?{sub j} ? 1/5?{sub 0} and infer the initial Lorentz factor of the jet at the central engine, ?{sub 0}, is a few for existing observations of ?{sub j}. The jet keeps the Lorentz factor low inside the star by converging cylindrically via collimation shocks under the cocoon pressure and accelerates at jet breakout before the free expansion to a hollow-cone structure. In this new picture, the GRB duration is determined by the sound crossing time of the cocoon, after which the opening angle widens, reducing the apparent luminosity. Some bursts violating the maximum opening angle ?{sub j,{sub max}} ? 1/5 ? 12° imply the existence of a baryon-rich sheath or a long-acting jet. We can explain the slopes in both Amati and Yonetoku spectral relations using an off-centered photosphere model, if we make only one assumption that the total jet luminosity is proportional to the initial Lorentz factor of the jet. We also numerically calibrate the pre-breakout model (Bromberg et al.) for later use.

Mizuta, Akira; Ioka, Kunihito [Theory Center, Institute of Particle and Nuclear Studies, KEK, Tsukuba 305-0801 (Japan)

2013-11-10T23:59:59.000Z

137

Technology Development and Field Trials of EGS Drilling Systems...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Project objective: Development of drilling systems...

138

BOREHOLE DRILLING AND RELATED ACTIVITIES AT THE STRIPA MINE  

E-Print Network [OSTI]

Drilling Costs and Rates . . . • . . . • • . . . . , . .TABLES I. II. III. Costs of Core Drilling Per Meter. . . . .ABSTRACT . . • L vi vi vii INTRODUCTION DRILLING . • Surface

Kurfurst, P.J.

2011-01-01T23:59:59.000Z

139

Greening PCB Drilling Process: Burr Minimization and Other Strategies  

E-Print Network [OSTI]

of Analytical Model for Drilling Burr Formation in DuctileJ. and Chen, L. , “Drilling Burr Formation in Titaniumfor Burr Minimization in Drilling,” PhD dissertation, The

Huang, Yu-Chu; Linke, Barbara; Bhandari, Binayak; Ahn, Sung-Hoon; Dornfeld, David

2011-01-01T23:59:59.000Z

140

Acoustic data transmission through a drill string  

DOE Patents [OSTI]

Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

Drumheller, D.S.

1988-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

OCEAN DRILLING PROGRAM LEG 190 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

164 Japan __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling under the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions) Natural Environment Research Council (United Kingdom) European Science Foundation Consortium for the Ocean

142

A STUDY ON PDC DRILL BITS QUALITY M. Yahiaouia,1  

E-Print Network [OSTI]

A STUDY ON PDC DRILL BITS QUALITY M. Yahiaouia,1 , L. Gerbaudb , J-Y. Parisa , K. Delbéa , J. Denapea , A. Dourfayec Abstract The quality of innovating PDC bits materials needs to be determined efficiency and wear contribution to the overall sample quality toward abrasion. Four main properties of PDC

Paris-Sud XI, Université de

143

Downhole drilling network using burst modulation techniques  

DOE Patents [OSTI]

A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

2007-04-03T23:59:59.000Z

144

AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program  

E-Print Network [OSTI]

AANNUALNNUAL RREPORTEPORT Integrated Ocean Drilling ProgramIntegrated Ocean Drilling Program U ANNUAL REPORT #12;#12;Integrated Ocean Drilling Program United States Implementing Organization JOI T his Integrated Ocean Drilling Program (IODP)-U.S. Implementing Organization (USIO) Fiscal Year 2006

145

Proceedings of IADC Middle East Drilling Conference, Dubai, November 1998. 1 IADC Middle East Drilling Conference  

E-Print Network [OSTI]

Proceedings of IADC Middle East Drilling Conference, Dubai, November 1998. 1 IADC Middle East Drilling Conference Case-Based Reasoning, a method for gaining experience and giving advise on how to avoid and how to free stuck drill strings. IADC Middle East Drilling Conference, Dubai, Nov. 3 - 4, 1998. P

Aamodt, Agnar

146

CAD BASED DRILLING USING CONVENTIONAL TWIST DRILLS PANAGIOTIS KYRATSIS*, Dr. Ing. NIKOLAOS BILALIS**, Dr. VASILIS  

E-Print Network [OSTI]

CAD BASED DRILLING USING CONVENTIONAL TWIST DRILLS PANAGIOTIS KYRATSIS*, Dr. Ing. NIKOLAOS BILALIS, antoniadis@dpem.tuc.gr Abstract: Twist drills are geometrically complex tools, which are used in industry and experimental approaches for drilling simulation. The present paper is based on the ground that the increasing

Aristomenis, Antoniadis

147

2006 Ocean Drilling Citation Report Overview of the Ocean Drilling Citation Database  

E-Print Network [OSTI]

2006 Ocean Drilling Citation Report Overview of the Ocean Drilling Citation Database The Ocean Drilling Citation Database, which contained almost 22,000 citation records related to the Deep Sea Drilling Institute (AGI). The database has been on line since August 2002. Beginning in 2006, citation records

148

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean: National Science Foundation _______________________________ David L. Divins Director, Ocean Drilling

149

Alphine 1/Federal: Drilling report. Final report, Part 1  

SciTech Connect (OSTI)

Regional geologic and geophysical surveys, shallow temperature-gradient drilling, and published reconnaissance geothermal studies infer possible hot dry rock (HDR) geothermal resources in the Alpine-Springerville area. This report discusses the results of a State of Arizona and US Department of Energy funded drilling project designed to gather the deep temperature and stratigraphic data necessary to determine if near-term HDR geothermal potential actually exists in this portion of the White Mountains region of Arizona. A 4505 feet deep slim-hole exploratory well, Alpiner/Federal, was drilled within the Apache-Sitgreaves National Forest at Alpine Divide near the Alpine Divide Camp Ground about 5 miles north of Alpine, Arizona in Apache County (Figure 1).

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.; Pisto, L. [Tonto Drilling Services, Inc., Salt Lake City, UT (United States); Hahman, W.R. [Hahman (W. Richard), Las Cruces, NM (United States); Swanberg, C.A. [Swanberg (Chandler A.), Phoenix, AZ (United States)

1994-06-01T23:59:59.000Z

150

Geothermal drilling in Cerro Prieto  

SciTech Connect (OSTI)

To date, 71 goethermal wells have been drilled in Cerro Prieto. The activity has been divided into several stages, and, in each stage, attempts have been made to correct deficiencies that were gradually detected. Some of these problems have been solved; others, such as those pertaining to well casing, cement, and cementing jobs, have persisted. The procedures for well completion - the most important aspect for the success of a well - that were based on conventional oil well criteria have been improved to meet the conditions of the geothermal reservoir. Several technical aspects that have improved should be further optimized, even though the resolutions are considered to be reasonably satisfactory. Particular attention has been given to the development of a high-temperature drilling fluid capable of being used in drilling through lost circulation zones. Conventional oil well drilling techniques have been used except where hole-sloughing is a problem. Sulfonate lignitic mud systems have been used with good results. When temperatures exceed 300/sup 0/C (572/sup 0/F), it has been necessary to use an organic polymer to stabilize the mud properties.

Dominguez, B.; Sanchez, G.

1981-01-01T23:59:59.000Z

151

Advanced Drilling Systems for EGS  

Broader source: Energy.gov [DOE]

Project objectives: Apply Novateks Stinger® and JackBit® technology in the development of an innovative; durable fixed bladed bit and improved roller cone bit that will increase ROP by three times in drilling hard rock formations normally encountered in developing EGS resources.

152

OCEAN DRILLING PROGRAM LEG 205 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 205 SCIENTIFIC PROSPECTUS FLUID FLOW AND SUBDUCTION FLUXES ACROSS __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

153

OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 202 SCIENTIFIC PROSPECTUS SOUTHEAST PACIFIC PALEOCEANOGRAPHIC TRANSECTS __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

154

OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 165 SCIENTIFIC PROSPECTUS CARIBBEAN OCEAN HISTORY AND THE CRETACEOUS Scientist, Leg 165 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College of any portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University

155

OCEAN DRILLING PROGRAM LEG 195 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 195 SCIENTIFIC PROSPECTUS MARIANA CONVERGENT MARGIN/ WEST PHILIPPINE SEA Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive College Station TX

156

OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 185 SCIENTIFIC PROSPECTUS IZU-MARIANA MARGIN Dr. Terry Plank Co France Dr. Carlota Escutia Staff Scientist Ocean Drilling Program Texas A&M University Research Park 1000 the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000

157

OCEAN DRILLING PROGRAM LEG 100 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 100 SCIENTIFIC PROSPECTUS SHAKEDOWN AND SEA TRIALS CRUISE Philip D. Rabinowitz Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843 William J. Merrell Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station

158

SHIPBOARD SCIENTISTS1 OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

SHIPBOARD SCIENTISTS1 HANDBOOK OCEAN DRILLING PROGRAM TEXAS A&M UNIVERSITY TECHNICAL NOTE 3 portion requires the written consent of the Director, Ocean Drilling Program, Texas A&M University be obtained from the Director, Ocean Drilling Program, Texas A & M University Research Park, 1000 Discovery

159

OCEAN DRILLING PROGRAM LEG 132 PRELIMINARY REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 132 PRELIMINARY REPORT ENGINEERING II: WESTERN AND CENTRAL PACIFIC Mr. Michael A. Storms Supervisor of Development Engineering Ocean Drilling Program Texas A&M University and Drilling Operations ODP/TAMU Timothy J.G. Francis Deputy Director ODP/TAMU September 1990 #12;This informal

160

OCEAN DRILLING PROGRAM LEG 100 REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 100 REPORT NORTHEASTERN GULF OF MEXICO Philip D Rabinowitz Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843 William J. Merrell Co-Chief Scientist, Leg 100 Ocean Drilling Program Texas A&M University College Station, TX 77843

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 159 SCIENTIFIC PROSPECTUS THE COTE D'IVOIRE - GHANA TRANSFORM MARGIN, Leg 159 Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station requires the written consent of the Director, Ocean Drilling Program, Texas A&M University Research Park

162

drilling in Tapping Automaker Ingenuity to  

E-Print Network [OSTI]

drilling in detroit Tapping Automaker Ingenuity to Build Safe and Efficient Automobiles DAVID paper #12;iiiDrilling in Detroit Figures v Tables vii Acknowledgements xi Executive Summary xiii 1. Actual Motor Vehicle Crash Statistics 97 #12;vDrilling in Detroit Figures 1. US Oil Product Demand 2 2

Kammen, Daniel M.

163

OCEAN DRILLING PROGRAM LEG 140 PRELIMINARY REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 140 PRELIMINARY REPORT HOLE 504B Dr. Henry Dick Dr. Jörg Erzinger Co Giessen Federal Republic of Germany Dr. Laura Stokking Staff Scientist, Leg 140 Ocean Drilling Program Copies of this publication may be obtained from the Director, Ocean Drilling Program, Texas A

164

OCEAN DRILLING PROGRAM LEG 110 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 110 SCIENTIFIC PROSPECTUS LESSER ANTILLES FOREARC J. Casey Moore Staff Science Representative, Leg 110 Ocean Drilling Program Texas A&M University College Station, TX 77843-3469 Philip D. Direct* Ocean Drilling Program Robert B. Kidd Manager of Science Operations Ocean

165

ESF Consortium for Ocean Drilling White Paper  

E-Print Network [OSTI]

ESF Consortium for Ocean Drilling (ECOD) White Paper An ESF Programme September 2003 #12;The, maintains the ship over a specific location while drilling into water depths up to 27,000 feet. A seven Amsterdam, The Netherlands #12;1 ESF Consortium for Ocean Drilling (ECOD) White Paper Foreword 3

Purkis, Sam

166

OCEAN DRILLING PROGRAM LEG 191 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 191 SCIENTIFIC PROSPECTUS NORTHWEST PACIFIC SEISMIC OBSERVATORY AND HAMMER DRILL ENGINEERING TESTS Dr. Toshihiko Kanazawa Co-Chief Scientist Earthquake Research Institute Director of Science Operations Ocean Drilling Program Texas A&M University 1000 Discovery Drive College

167

OCEAN DRILLING PROGRAM LEG 199 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 199 SCIENTIFIC PROSPECTUS PALEOGENE EQUATORIAL TRANSECT Dr. Mitchell __________________ Dr. Jack Baldauf Deputy Director of Science Operations Ocean Drilling Program Texas A&M University Project Manager and Staff Scientist Ocean Drilling Program Texas A&M University 1000 Discovery Drive

168

OCEAN DRILLING PROGRAM LEG 105 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 105 SCIENTIFIC PROSPECTUS LABRADOR SEA - BAFFIN BAY Dr. Michael A. Bradford Clement Staff Science Representative, Leg 105 Ocean Drilling Program Texas A & M University College Station, TX 77843-3469" Philip Director Ocean Drilling Program Robert B. Kidd Manager of Science

169

OCEAN DRILLING PROGRAM LEG 120 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 120 SCIENTIFIC PROSPECTUS CENTRAL KERGUELEN PLATEAU Dr. Roland Schlich Drilling Program Texas A&M University College Station, TX 77841 Philip D.VRabinowitz Director ^^~-- ODP of the Director, Ocean Drilling Program, Texas A&M University Research Park, 1000 Discovery Drive, College Station

170

LEG 142 PRELIMINARY REPORT OCEAN DRILLING PROGRAM  

E-Print Network [OSTI]

LEG 142 PRELIMINARY REPORT OCEAN DRILLING PROGRAM ENGINEERING PRELIMINARY REPORT NO. 3 EAST PACIFIC RISE 1992 #12;OCEAN DRILLING PROGRAM LEG 142 PRELIMINARY REPORT East Pacific Rise Dr. Rodey Batiza Co 96822 Mr. Michael A. Storms Operations Superintendent/ Assistant Manager of Engineering and Drilling

171

OCEAN DRILLING PROGRAM LEG 108 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 108 SCIENTIFIC PROSPECTUS NORTHWEST AFRICA Dr. William Ruddiman Co Federal Republic of Germany Dr. Jack G. Baldauf Staff Scientist, Leg 108 Ocean Drilling Program Texas A & M University College Station, Texas 77843-3469 Philip W Rabin Direct Ocean Drilling Program

172

Geothermal drilling research in the United States  

SciTech Connect (OSTI)

Current research and development in the following areas are presented: geothermal roller cone bits, polycrystalline diamond compact bits, a continuous chain drill, drilling fluids test equipment, mud research, inert fluids, foam fluids, lost circulation control, completion technology, and advanced drilling and completion systems. (MHR)

Varnado, S.G.

1980-01-01T23:59:59.000Z

173

OCEAN DRILLING PROGRAM LEG 132 ENGINEERING PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 132 ENGINEERING PROSPECTUS WESTERN AND CENTRAL PACIFIC Mr. Michael A. Storms Supervisor of Development Engineering Ocean Drilling Program Texas A & M University College Manager of Engineering and Drilling Operations ODP/TAMU Louis E. Garrison Deputy Director ODP

174

DEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS  

E-Print Network [OSTI]

for the program is provided by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche&M University, as an account of work performed under the international Ocean Drilling Program which is managedDEEP SEA DRILLING PROJECT DATA FILE DOCUMENTS Ocean Drilling Program Texas A&M University Technical

175

Directional drilling and equipment for hot granite wells  

SciTech Connect (OSTI)

The following drilling equipment and experience gained in drilling to date are discussed: positive displacement motors, turbodrills, motor performance experience, rotary-build and rotary-hold results, steering devices and surveying tools, shock absorbers, drilling and fishing jars, drilling bits, control of drill string drag, and control of drill string degradation. (MHR)

Williams, R.E.; Neudecker, J.W.; Rowley, J.C.; Brittenham, T.L.

1981-01-01T23:59:59.000Z

176

Methods and system for subsurface stabilization using jet grouting  

DOE Patents [OSTI]

Methods and systems are provided for stabilizing a subsurface area such as a buried waste pit for either long term storage, or interim storage and retrieval. A plurality of holes are drilled into the subsurface area with a high pressure drilling system provided with a drill stem having jet grouting nozzles. A grouting material is injected at high pressure through the jet grouting nozzles into a formed hole while the drill stem is withdrawn from the hole at a predetermined rate of rotation and translation. A grout-filled column is thereby formed with minimal grout returns, which when overlapped with other adjacent grout-filled columns encapsulates and binds the entire waste pit area to form a subsurface agglomeration or monolith of grout, soil, and waste. The formed monolith stabilizes the buried waste site against subsidence while simultaneously providing a barrier against contaminate migration. The stabilized monolith can be left permanently in place or can be retrieved if desired by using appropriate excavation equipment. The jet grouting technique can also be utilized in a pretreatment approach prior to in situ vitrification of a buried waste site. The waste encapsulation methods and systems are applicable to buried waste materials such as mixed waste, hazardous waste, or radioactive waste.

Loomis, Guy G. (Idaho Falls, ID); Weidner, Jerry R. (Iona, ID); Farnsworth, Richard K. (Idaho Falls, ID); Gardner, Bradley M. (Idaho Falls, ID); Jessmore, James J. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

177

High-temperature directional drilling turbodrill  

SciTech Connect (OSTI)

The development of a high-temperature turbodrill for directional drilling of geothermal wells in hard formations is summarized. The turbodrill may be used for straight-hole drilling but was especially designed for directional drilling. The turbodrill was tested on a dynamometer stand, evaluated in laboratory drilling into ambient temperature granite blocks, and used in the field to directionally drill a 12-1/4-in.-diam geothermal well in hot 200/sup 0/C (400/sup 0/F) granite at depths to 10,5000 ft.

Neudecker, J.W.; Rowley, J.C.

1982-02-01T23:59:59.000Z

178

Optical coherence tomography guided dental drill  

DOE Patents [OSTI]

A dental drill that has one or multiple single mode fibers that can be used to image in the vicinity of the drill tip. It is valuable to image below the surface being drilled to minimize damage to vital or normal tissue. Identifying the boundary between decayed and normal enamel (or dentine) would reduce the removal of viable tissue, and identifying the nerve before getting too close with the drill could prevent nerve damage. By surrounding a drill with several optical fibers that can be used by an optical coherence domain reflectometry (OCDR) to image several millimeters ahead of the ablation surface will lead to a new and improved dental treatment device.

DaSilva, Luiz B. (Danville, CA); Colston, Jr., Bill W. (Livermore, CA); James, Dale L. (Tracy, CA)

2002-01-01T23:59:59.000Z

179

CX-006681: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006681: Categorical Exclusion Determination New Drilling Location in Section 29 CX(s) Applied: B3.1 Date: 12232009 Location(s): Casper,...

180

CX-006682: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006682: Categorical Exclusion Determination New Drilling Location in Section 29 (Revision 1) CX(s) Applied: B3.7 Date: 06022010 Location(s):...

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CX-003888: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003888: Categorical Exclusion Determination Improved Drilling and Fracturing Fluids for Shale Gas Reservoirs CX(s) Applied: B3.6 Date: 09102010...

182

CX-000855: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000855: Categorical Exclusion Determination 25A5208 - Low-contact Drilling Technology to Enable Economical Engineered Geothermal System Wells CX(s) Applied:...

183

Microhole Drilling Tractor Technology Development  

SciTech Connect (OSTI)

In an effort to increase the U.S. energy reserves and lower costs for finding and retrieving oil, the USDOE created a solicitation to encourage industry to focus on means to operate in small diameter well-Microhole. Partially in response to this solicitation and because Western Well Tool's (WWT) corporate objective to develop small diameter coiled tubing drilling tractor, WWT responded to and was awarded a contract to design, prototype, shop test, and field demonstrate a Microhole Drilling Tractor (MDT). The benefit to the oil industry and the US consumer from the project is that with the MDT's ability to facilitate Coiled Tubing drilled wells to be 1000-3000 feet longer horizontally, US brown fields can be more efficiently exploited resulting in fewer wells, less environmental impact, greater and faster oil recovery, and lower drilling costs. Shortly after award of the contract, WWT was approached by a major oil company that strongly indicated that the specified size of a tractor of 3.0 inches diameter was inappropriate and that immediate applications for a 3.38-inch diameter tractor would substantially increase the usefulness of the tool to the oil industry. Based on this along with an understanding with the oil company to use the tractor in multiple field applications, WWT applied for and was granted a no-cost change-of-scope contract amendment to design, manufacture, assemble, shop test and field demonstrate a prototype a 3.38 inch diameter MDT. Utilizing existing WWT tractor technology and conforming to an industry developed specification for the tool, the Microhole Drilling Tractor was designed. Specific features of the MDT that increase it usefulness are: (1) Operation on differential pressure of the drilling fluid, (2) On-Off Capability, (3) Patented unique gripping elements (4) High strength and flexibility, (5) Compatibility to existing Coiled Tubing drilling equipment and operations. The ability to power the MDT with drilling fluid results in a highly efficient tool that both delivers high level of force for the pressure available and inherently increases downhole reliability because parts are less subject to contamination. The On-Off feature is essential to drilling to allow the Driller to turn off the tractor and pull back while circulating in cleanout runs that keep the hole clean of drilling debris. The gripping elements have wide contact surfaces to the formation to allow high loads without damage to the formation. As part of the development materials evaluations were conducted to verify compatibility with anticipated drilling and well bore fluids. Experiments demonstrated that the materials of the tractor are essentially undamaged by exposure to typical drilling fluids used for horizontal coiled tubing drilling. The design for the MDT was completed, qualified vendors identified, parts procured, received, inspected, and a prototype was assembled. As part of the assembly process, WWT prepared Manufacturing instructions (MI) that detail the assembly process and identify quality assurance inspection points. Subsequent to assembly, functional tests were performed. Functional tests consisted of placing the MDT on jack stands, connecting a high pressure source to the tractor, and verifying On-Off functions, walking motion, and operation over a range of pressures. Next, the Shop Demonstration Test was performed. An existing WWT test fixture was modified to accommodate operation of the 3.38 inch diameter MDT. The fixture simulated the tension applied to a tractor while walking (pulling) inside 4.0 inch diameter pipe. The MDT demonstrated: (1) On-off function, (2) Pulling forces proportional to available differential pressure up to 4000 lbs, (3) Walking speeds to 1100 ft/hour. A field Demonstration of the MDT was arranged with a major oil company operating in Alaska. A demonstration well with a Measured Depth of approximately 15,000 ft was selected; however because of problems with the well drilling was stopped before the planned MDT usage. Alternatively, functional and operational tests were run with the MDT insi

Western Well Tool

2007-07-09T23:59:59.000Z

184

Wayne field: A horizontal drilling case study  

SciTech Connect (OSTI)

Beginning in the spring of 1994, studies of Wayne field located on the northeastern flank of the Williston Basin were initiated to determine the feasibility of using horizontal drilling to increase recoverable reserves in the field. The Wayne subinterval is one of several shoaling-upwards cycles within the Mission Canyon Formation of the Mississippian Madison Group. The reservoir pay averages 24% porosity, 100 millidarcys permeability, and 50% water saturation. Vertical wells, since field discovery in 1957, typically IP for 70 bopd and 20% water with a rapid decline within a few months to 10 bopd and 90% water. This type of well performance is characteristic of severe water coning for which horizontal development can help to minimize. In late 1994 and early 1995 the Ballantyne Hedges No.7H and GeoResources O. Fossum No.H1 were drilled. The wells recorded IP`s of 280 bopd/5 bwpd and 390 bopd/80 bwpd respectively. After six months of production both wells stabilized at approximately 110 bopd with a 35% water cut. Projections indicate that each horizontal well will recover 250,000 bbls of oil as compared to 115,000 bbls for an average vertical well and will do so in half the time. These early results provide a significant improvement over the vertical production and would seem to be reducing water coning. Three more horizontal wells are planned for the fourth quarter of 1995.

Jennings, J.B. [GeoResources, Inc., Williston, ND (United States); Johnson, R.P. [Harris, Brown, & Kiemer, Inc., Bismarck, ND (United States)

1996-06-01T23:59:59.000Z

185

Conformable apparatus in a drill string  

DOE Patents [OSTI]

An apparatus in a drill string comprises an internally upset drill pipe. The drill pipe comprises a first end, a second end, and an elongate tube intermediate the first and second ends. The elongate tube and the ends comprising a continuous an inside surface with a plurality of diameters. A conformable metal tube is disposed within the drill pipe intermediate the ends thereof and terminating adjacent to the ends of the drill pipe. The conformable metal tube substantially conforms to the continuous inside surface of the metal tube. The metal tube may comprise a non-uniform section which is expanded to conform to the inside surface of the drill pipe. The non-uniform section may comprise protrusions selected from the group consisting of convolutions, corrugations, flutes, and dimples. The non-uniform section extends generally longitudinally along the length of the tube. The metal tube may be adapted to stretch as the drill pipes stretch.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2007-08-28T23:59:59.000Z

186

Drilling of wells with top drive unit  

SciTech Connect (OSTI)

Well drilling apparatus including a top drive drilling assembly having a motor driven stem adapted to be attached to the upper end of a drill string and drive it during a drilling operation, a torque wrench carried by the top drive assembly and movable upwardly and downwardly therewith and operable to break a threated connection between the drill string and the stem, and an elevator carried by and suspended from the top drive assembly and adapted to engage a section of drill pipe beneath the torque wrench in suspending relation. The torque wrench and elevator are preferably retained against rotation with the rotary element which drives the drill string, but may be movable vertically relative to that rotary element and relative to one another in a manner actuating the apparatus between various different operating conditions.

Boyadjieff, G.I.

1984-05-22T23:59:59.000Z

187

The Feasibility of Natural Gas as a Fuel Source for Modern Land-Based Drilling Rigs  

E-Print Network [OSTI]

The purpose of this study is to determine the feasibility of replacing diesel with natural gas as a fuel source for modern drilling rigs. More specifically, this thesis (1) establishes a control baseline by examining operational characteristics...

Nunn, Andrew Howard

2012-02-14T23:59:59.000Z

188

Filter for a drill string  

DOE Patents [OSTI]

A filter for a drill string comprises a perforated receptacle having an open end and a perforated end and first and second mounting surfaces are adjacent the open end. A transmission element is disposed within each of the first and second mounting surfaces. A capacitor may modify electrical characteristics of an LC circuit that comprises the transmission elements. The respective transmission elements are in communication with each other and with a transmission network integrated into the drill string. The transmission elements may be inductive couplers, direct electrical contacts, or optical couplers. In some embodiments of the present invention, the filter comprises an electronic component. The electronic component may be selected from the group consisting of a sensor, a router, a power source, a clock source, a repeater, and an amplifier.

Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Briscoe, Michael (Lehi, UT); McPherson, James (Sandy, UT)

2007-12-04T23:59:59.000Z

189

Potter Drilling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power Inc JumpPortage,Austin, PennsylvaniaPotter Drilling

190

Shallow gas well drilling with coiled tubing in the San Juan Basin  

SciTech Connect (OSTI)

Coiled tubing is being utilized to drill new wells, for re-entry drilling to deepen or laterally extend existing wells, and for underbalanced drilling to prevent formation damage. Less than a decade old, coiled tubing drilling technology is still in its inaugral development stage. Initially, utilizing coiled tubing was viewed as a {open_quotes}science project{close_quotes} to determine the validity of performing drilling operations in-lieu of the conventional rotary rig. Like any new technology, the initial attempts were not always successful, but did show promise as an economical alternative if continued efforts were made in the refinement of equipment and operational procedures. A multiwell project has been completed in the San Juan Basin of Northwestern New Mexico which provides documentation indicating that coiled tubing can be an alternative to the conventional rotary rig. A 3-well pilot project, a 6-well project was completed uniquely utilizing the combined resources of a coiled tubing service company, a producing company, and a drilling contractor. This combination of resources aided in the refinement of surface equipment, personnel, mud systems, jointed pipe handling, and mobilization. The results of the project indicate that utilization of coiled tubing for the specific wells drilled was an economical alternative to the conventional rotary rig for drilling shallow gas wells.

Moon, R.G.; Ovitz, R.W.; Guild, G.J.; Biggs, M.D.

1996-12-31T23:59:59.000Z

191

Drill rig hook  

SciTech Connect (OSTI)

A hook for suspending a pipe string or other load in a well rig, including a tubular outer body supported by a first connector structure which is attachable to a suspending line, a tubular inner body which supports a second connector structure preferably taking the form of a hook, with the inner body being received within the outer body and being yieldingly urged upwardly relative thereto by a resilient unit or assembly located within the inner body, and with a structure within the inner body bearing upwardly against and supporting the resilient assembly and attached to the first connector structure. A cam mechanism between the inner and outer bodies automatically cams the inner body to a predetermined rotary position upon upward movement, with a locking device or devices serving to retain the inner body in fixed rotary position and/or to lock the camming mechanism in a fixed position in a manner determining the rotary setting to which the inner body returns upon upward movement. The mentioned first and/or second connectors may each consist of two parts receivable within one of the tubular bodies and held in operative connecting engagement therewith by a spacer between the two parts. A link suporting member may be formed separately from the load suporting hook, to be detachable therefrom for a repair or replacement.

Zimmermann, A.

1985-02-12T23:59:59.000Z

192

Use of an inert drilling fluid to control geothermal drill pipe corrosion  

SciTech Connect (OSTI)

The results of a geothermal drill pipe corrosion field test are presented. When a low-density drilling fluid was required for drilling a geothermal well because of an underpressured, fractured formation, two drilling fluids were alternatively used to compare drill pipe corrosion rates. The first fluid was an air-water mist with corrosion control chemicals. The other fluid was a nitrogen-water mist without added chemicals. The test was conducted during November 1980 at the Baca Location in northern New Mexico, USA. Data from corrosion rings, corrosion probes, fluid samples, and flow line instrumentation are plotted for the ten day test period. It is shown that the inert drilling fluid (nitrogen) reduced corrosion rates by more than an order of magnitude. Test setup and procedures are also discussed. Development of an on-site inert gas generator could reduce the cost of drilling geothermal wells by extending drill pipe life and reducing corrosion control chemical costs.

Caskey, B.C.

1981-04-01T23:59:59.000Z

193

Tight gas sands study breaks down drilling and completion costs  

SciTech Connect (OSTI)

Given the high cost to drill and complete tight gas sand wells, advances in drilling and completion technology that result in even modest cost savings to the producer have the potential to generate tremendous savings for the natural gas industry. The Gas Research Institute sponsored a study to evaluate drilling and completion costs in selected tight gas sands. The objective of the study was to identify major expenditures associated with tight gas sand development and determine their relative significance. A substantial sample of well cost data was collected for the study. Individual well cost data were collected from nearly 300 wells in three major tight gas sand formations: the Cotton Valley sand in East Texas, the Frontier sand in Wyoming, and the Wilcox sand in South Texas. The data were collected and organized by cost category for each formation. After the information was input into a data base, a simple statistical analysis was performed. The statistical analysis identified data discrepancies that were then resolved, and it helped allow conclusions to be drawn regarding drilling and completion costs in these tight sand formations. Results are presented.

Brunsman, B. (Gas Research Inst., Chicago, IL (United States)); Saunders, B. (S.A. Holditch Associates Inc., College Station, TX (United States))

1994-06-06T23:59:59.000Z

194

Introduction to the Ocean Drilling Program JOIDES RESOLUTION  

E-Print Network [OSTI]

Introduction to the Ocean Drilling Program JOIDES RESOLUTION OCEAN DRILLING PROGRAM TECHNICAL NOTE 11 1989 #12;TEXAS A&M UNIVERSITY #12;INTRODUCTION TO THE OCEAN DRILLING PROGRAM Ocean Drilling Program Texas A&M University Technical Note No. 11 Anne Gilbert Graham Ocean Drilling Program Texas A

195

2010 OCEAN DRILLING CITATION REPORT Covering Citations Related to the  

E-Print Network [OSTI]

2010 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2009 Produced by Integrated Ocean Drilling Program

196

2009 OCEAN DRILLING CITATION REPORT Covering Citations Related to the  

E-Print Network [OSTI]

2009 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2008 Produced by Integrated Ocean Drilling Program

197

2013 OCEAN DRILLING CITATION REPORT Covering Citations Related to the  

E-Print Network [OSTI]

2013 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2012 Produced by Integrated Ocean Drilling Program

198

Silica dust control when drilling concrete Page 1 of 2  

E-Print Network [OSTI]

Silica dust control when drilling concrete Page 1 of 2 Drilling into concrete releases a fine sandy and routinely drill into concrete are at risk of developing this disease. Controlling the dust Hammer drills are available with attached dust removal systems. These draw dust from the drill end, down the attachment

Knowles, David William

199

2008 OCEAN DRILLING CITATION REPORT Covering Citations Related to the  

E-Print Network [OSTI]

2008 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2007 Produced by Integrated Ocean Drilling Program

200

2012 OCEAN DRILLING CITATION REPORT Covering Citations Related to the  

E-Print Network [OSTI]

2012 OCEAN DRILLING CITATION REPORT Covering Citations Related to the Deep Sea Drilling Project, Ocean Drilling Program, and Integrated Ocean Drilling Program from GeoRef Citations Indexed by the American Geological Institute from 1969 through 2011 Produced by Integrated Ocean Drilling Program

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

High Temperature 300°C Directional Drilling System  

Broader source: Energy.gov [DOE]

Project objective: provide a directional drilling system that can be used at environmental temperatures of up to 300°C; and at depths of 10; 000 meters.

202

Loaded transducer for downhole drilling components  

DOE Patents [OSTI]

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force, urging them closer together."

Hall, David R.; Hall Jr., H. Tracy; Pixton, David S.; Briscoe, Michael A.; Dahlgren, Scott Steven; Fox, Joe; Sneddon, Cameron

2006-02-21T23:59:59.000Z

203

Driltac (Drilling Time and Cost Evaluation)  

SciTech Connect (OSTI)

The users manual for the drill tech model for estimating the costs of geothermal wells. The report indicates lots of technical and cost detail. [DJE-2005

None

1986-08-01T23:59:59.000Z

204

Newberry exploratory slimhole: Drilling and testing  

SciTech Connect (OSTI)

During July--November, 1995, Sandia National Laboratories, in cooperation with CE Exploration, drilled a 5,360 feet exploratory slimhole (3.895 inch diameter) in the Newberry Known Geothermal Resource Area (KGRA) near Bend, Oregon. This well was part of Sandia`s program to evaluate slimholes as a geothermal exploration tool. During and after drilling the authors performed numerous temperature logs, and at the completion of drilling attempted to perform injection tests. In addition to these measurements, the well`s data set includes: over 4,000 feet of continuous core (with detailed log); daily drilling reports from Sandia and from drilling contractor personnel; daily drilling fluid record; and comparative data from other wells drilled in the Newberry KGRA. This report contains: (1) a narrative account of the drilling and testing, (2) a description of equipment used, (3) a brief geologic description of the formation drilled, (4) a summary and preliminary interpretation of the data, and (5) recommendations for future work.

Finger, J.T.; Jacobson, R.D.; Hickox, C.E.

1997-11-01T23:59:59.000Z

205

International guide: blasthole drills. [For blastholes  

SciTech Connect (OSTI)

This survey is a comprehensive, quick reference guide for surface mine operators. It details what rotary blasthole drill rigs are available around the world. The survey covers over 60 drills, each with a pulldown of about 125 kilonewtons (27,500 pounds). They are manufactured by companies in eight different countries. Drill rigs continue to grow in size and power as larger diameter blastholes increase drilling economy. With a range of units costing from approximately $200,000 to over $1,000,000 each, careful selection based on the requirements of specific mines is essential.

Chadwick, J.R.

1982-01-01T23:59:59.000Z

206

Loaded Transducer Fpr Downhole Drilling Component  

DOE Patents [OSTI]

A robust transmission element for transmitting information between downhole tools, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The transmission element maintains reliable connectivity between transmission elements, thereby providing an uninterrupted flow of information between drill string components. A transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe. To close gaps present between transmission elements, transmission elements may be biased with a "spring force," urging them closer together.

Hall, David R. (Provo, UT); Hall, H. Tracy (Provo, UT); Pixton, David (Lehi, UT); Dahlgren, Scott (Provo, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT); Fox, Joe (Spanish Fork, UT)

2005-07-05T23:59:59.000Z

207

High Temperature 300°C Directional Drilling System  

Broader source: Energy.gov (indexed) [DOE]

300C Directional Drilling System John Macpherson Baker Hughes Oilfield Operations DE-EE0002782 May 19, 2010 This presentation does not contain any proprietary confidential, or...

208

A model study of the effect of bucket dentations on a ski-jump spillway jet: with a mathematical analysis of critical bucket radius determination.  

E-Print Network [OSTI]

investigations have not shown this high a degree of success, however, the reduction is con- siderable in most cases. 10 The problem of cavitation must be dealt with any time there is an abrupt change of direction of flow of a high speed stream. lnas- rnuch... as rounding of sharp corners has a tendency to reduce cavita- tion it can be seen that dentations with rounded crowns have a dual advantage. The problem of cavitation will not become evident in the normal spillway model tests. Relative Velocit of Jet...

Gladwell, John Stuart

1961-01-01T23:59:59.000Z

209

PHYSICAL PARAMETERS OF STANDARD AND BLOWOUT JETS  

SciTech Connect (OSTI)

The X-ray Telescope on board the Hinode mission revealed the occurrence, in polar coronal holes, of much more numerous jets than previously indicated by the Yohkoh/Soft X-ray Telescope. These plasma ejections can be of two types, depending on whether they fit the standard reconnection scenario for coronal jets or if they include a blowout-like eruption. In this work, we analyze two jets, one standard and one blowout, that have been observed by the Hinode and STEREO experiments. We aim to infer differences in the physical parameters that correspond to the different morphologies of the events. To this end, we adopt spectroscopic techniques and determine the profiles of the plasma temperature, density, and outflow speed versus time and position along the jets. The blowout jet has a higher outflow speed, a marginally higher temperature, and is rooted in a stronger magnetic field region than the standard event. Our data provide evidence for recursively occurring reconnection episodes within both the standard and the blowout jet, pointing either to bursty reconnection or to reconnection occurring at different locations over the jet lifetimes. We make a crude estimate of the energy budget of the two jets and show how energy is partitioned among different forms. Also, we show that the magnetic energy that feeds the blowout jet is a factor of 10 higher than the magnetic energy that fuels the standard event.

Pucci, Stefano; Romoli, Marco [Department of Physics and Astronomy, University of Firenze, I-50121 Firenze (Italy); Poletto, Giannina [INAF-Arcetri Astrophysical Observatory, I-50125 Firenze (Italy); Sterling, Alphonse C., E-mail: stpucci@arcetri.astro.it [Space Science Office, NASA/MSFC, Huntsville, Al 35812 (United States)

2013-10-10T23:59:59.000Z

210

Environmental Measurement-While-Drilling System and Horizontal Directional Drilling Technology Demonstration, Hanford Site  

SciTech Connect (OSTI)

The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted of the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.

Williams, C.V.; Lockwood, G.J.; Normann, R.A.; Myers, D.A.; Gardner, M.G.; Williamson, T.; Huffman, J.

1999-06-01T23:59:59.000Z

211

Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations  

SciTech Connect (OSTI)

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

212

HIGH-POWER TURBODRILL AND DRILL BIT FOR DRILLING WITH COILED TUBING  

SciTech Connect (OSTI)

Commercial introduction of Microhole Technology to the gas and oil drilling industry requires an effective downhole drive mechanism which operates efficiently at relatively high RPM and low bit weight for delivering efficient power to the special high RPM drill bit for ensuring both high penetration rate and long bit life. This project entails developing and testing a more efficient 2-7/8 in. diameter Turbodrill and a novel 4-1/8 in. diameter drill bit for drilling with coiled tubing. The high-power Turbodrill were developed to deliver efficient power, and the more durable drill bit employed high-temperature cutters that can more effectively drill hard and abrasive rock. This project teams Schlumberger Smith Neyrfor and Smith Bits, and NASA AMES Research Center with Technology International, Inc (TII), to deliver a downhole, hydraulically-driven power unit, matched with a custom drill bit designed to drill 4-1/8 in. boreholes with a purpose-built coiled tubing rig. The U.S. Department of Energy National Energy Technology Laboratory has funded Technology International Inc. Houston, Texas to develop a higher power Turbodrill and drill bit for use in drilling with a coiled tubing unit. This project entails developing and testing an effective downhole drive mechanism and a novel drill bit for drilling 'microholes' with coiled tubing. The new higher power Turbodrill is shorter, delivers power more efficiently, operates at relatively high revolutions per minute, and requires low weight on bit. The more durable thermally stable diamond drill bit employs high-temperature TSP (thermally stable) diamond cutters that can more effectively drill hard and abrasive rock. Expectations are that widespread adoption of microhole technology could spawn a wave of 'infill development' drilling of wells spaced between existing wells, which could tap potentially billions of barrels of bypassed oil at shallow depths in mature producing areas. At the same time, microhole coiled tube drilling offers the opportunity to dramatically cut producers' exploration risk to a level comparable to that of drilling development wells. Together, such efforts hold great promise for economically recovering a sizeable portion of the estimated remaining shallow (less than 5,000 feet subsurface) oil resource in the United States. The DOE estimates this U.S. targeted shallow resource at 218 billion barrels. Furthermore, the smaller 'footprint' of the lightweight rigs utilized for microhole drilling and the accompanying reduced drilling waste disposal volumes offer the bonus of added environmental benefits. DOE analysis shows that microhole technology has the potential to cut exploratory drilling costs by at least a third and to slash development drilling costs in half.

Robert Radtke; David Glowka; Man Mohan Rai; David Conroy; Tim Beaton; Rocky Seale; Joseph Hanna; Smith Neyrfor; Homer Robertson

2008-03-31T23:59:59.000Z

213

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint Oceanographic Institutions, Inc. Executive Director, Ocean Drilling Programs Joint Oceanographic Institutions.................................... 19 3.3.1. Drilling and Science Services

214

COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES  

E-Print Network [OSTI]

SHAFT SINKING IN-MINE DRILLiNG NEW MINE - 1500 M SURFACEORILUNG SHAFT SINKiNG FACIUTY DEVELOPMENT IN-MINE DRILLINGSURFACE DRILLING FACIUTY DEVELOPMENT IN-MINE DRILLING ~~NGM!

Lamb, D.W.

2013-01-01T23:59:59.000Z

215

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs of work for Integrated Ocean Drilling Program (IODP) activities and deliverables for the current fiscal

216

Multi-gradient drilling method and system  

DOE Patents [OSTI]

A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

Maurer, William C. (Houston, TX); Medley, Jr., George H. (Spring, TX); McDonald, William J. (Houston, TX)

2003-01-01T23:59:59.000Z

217

Status Report A Review of Slimhole Drilling  

SciTech Connect (OSTI)

This 1994 report reviews the various applications of slimhole technology including for exploration in remote areas, low-cost development wells, reentering existing wells, and horizontal and multilateral drilling. Advantages of slimholes to regular holes are presented. Limitations and disadvantages of slimholes are also discussed. In 1994, slimhole drilling was still an ongoing development technology. (DJE 2005)

Zhu, Tao; Carroll, Herbert B.

1994-09-01T23:59:59.000Z

218

OCEAN DRILLING PROGRAM LEG 111 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

under the international Ocean Drilling Program which is managed by Joint Oceanographic Institutions, Inc by the following agencies: Department of Energy, Mines and Resources (Canada) Deutsche ForschungsgemeinschaftOCEAN DRILLING PROGRAM LEG 111 SCIENTIFIC PROSPECTUS DSDP HOLE 504B REVISITED Keir Becker

219

Measurement-While-Drilling (MWD) development for air drilling  

SciTech Connect (OSTI)

When downhole contact between the BHA and formation was optimum, as it was during rotation, high signal levels were experienced. Survey data acquired at the connections, when the BHA was totally at rest, is excellent. GEC intends modifying the system to optimize operations consistent with these disparate factors. A Mean-Time-To-Failure (MTTF) of 89.9 hours appears reasonable from the data. It is not possible to infer an MTBF figure from this test. It is quite obvious, however, that the system reliability performance has been significantly improved since FT {number_sign}5 was performed almost two years earlier. Based on the above results, GEC concludes that it is certainly feasible to attain 100 hours MTBF, for the Model 27, in any and all situations, and hence to provide a reliable MWD for air-drilling.

Harrison, W.A.; Rubin, L.A.

1993-12-31T23:59:59.000Z

220

A concept for marine shallow drilling Drill test from R/V Hkom Mosby in Nov. 1995 Commercial rig built by GeoDrilling  

E-Print Network [OSTI]

A concept for marine shallow drilling Drill test from R/V HÃ¥kom Mosby in Nov. 1995 Commercial rig built by GeoDrilling BACKGROUND There is a quantum leap between the costs of marine operations using conventional sediment coring devices with or without piston for 10-15 m of core recovery and drilling from

Kristoffersen, Yngve

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Communication adapter for use with a drilling component  

DOE Patents [OSTI]

A communication adapter is disclosed that provides for removable attachment to a drilling component when the drilling component is not actively drilling and for communication with an integrated transmission system in the drilling component. The communication adapter comprises a data transmission coupler that facilitates communication between the drilling component and the adapter, a mechanical coupler that facilitates removable attachment of the adapter to the drilling component, and a data interface.

Hall, David R. (Provo, UT); Pixton, David S. (Lehi, UT); Hall; Jr.; H. Tracy (Provo, UT); Bradford, Kline (Orem, UT); Rawle, Michael (Springville, UT)

2007-04-03T23:59:59.000Z

222

Comparative analysis of core drilling and rotary drilling in volcanic terrane  

SciTech Connect (OSTI)

Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr. (ed.)

1987-04-01T23:59:59.000Z

223

Westinghouse GOCO conduct of casualty drills  

SciTech Connect (OSTI)

Purpose of this document is to provide Westinghouse Government Owned Contractor Operated (GOCO) Facilities with information that can be used to implement or improve drill programs. Elements of this guide are highly recommended for use when implementing a new drill program or when assessing an existing program. Casualty drills focus on response to abnormal conditions presenting a hazard to personnel, environment, or equipment; they are distinct from Emergency Response Exercises in which the training emphasis is on site, field office, and emergency management team interaction. The DOE documents which require team training and conducting drills in nuclear facilities and should be used as guidance in non-nuclear facilities are: DOE 5480.19 (Chapter 1 of Attachment I) and DOE 5480.20 (Chapter 1, paragraphs 7 a. and d. of continuing training). Casualty drills should be an integral part of the qualification and training program at every DOE facility.

Ames, C.P.

1996-02-01T23:59:59.000Z

224

Innovative technology summary report: Cryogenic drilling  

SciTech Connect (OSTI)

Environmental drilling is used to conduct site investigations and to install monitoring and remediation wells. Employing conventional drilling techniques to conduct environmental investigations in unconsolidated soils can result in borehole collapse and may also lead to cross-contamination of aquifers and soil formations. For investigations in certain geologic conditions, there are currently no viable conventional drilling techniques available. Cryogenic drilling improves upon conventional air rotary drilling by replacing ambient air with cold nitrogen (either liquid or gas) as the circulating medium. The cold nitrogen gas stream freezes moisture in the ground surrounding the hole. The frozen zone prevents the collapse of the hole and prevents the movement of groundwater or contaminants through and along the hole. The technology, its performance, uses, cost, and regulatory issues are discussed.

NONE

1998-10-01T23:59:59.000Z

225

Development of a Hydrothermal Spallation Drilling System for...  

Open Energy Info (EERE)

eliminating bit wear and drill string fatigue, hydrothermal spallation drilling can transform the costs of geothermal well construction and enable widespread deployment of...

226

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

1 INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs

227

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of...

228

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. ______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

229

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. _______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

230

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. _______________________________ Steven R. Bohlen President, Joint Oceanographic Institutions Division Executive Director, Ocean Drilling

231

Technology Development and Field Trials of EGS Drilling Systems...  

Broader source: Energy.gov (indexed) [DOE]

Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS Drilling Systems Technology Development and Field Trials of EGS...

232

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

1 INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint, Ocean Drilling Programs Joint Oceanographic Institutions, Inc. Washington DC 20005 19 July 2005 #12

233

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean _______________________________ David L. Divins Director, Ocean Drilling Programs Consortium for Ocean Leadership, Inc. Washington, D

234

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean. Bohlen President, Joint Oceanographic Institutions Division Executive Director, Ocean Drilling Programs

235

Temporary Bridging Agents for Use in Drilling and Completions...  

Broader source: Energy.gov (indexed) [DOE]

Temporary Bridging Agents for Use in Drilling and Completions of EGS Temporary Bridging Agents for Use in Drilling and Completions of EGS DOE Geothermal Peer Review 2010 -...

236

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization JOI Alliance Joint President, Joint Oceanographic Institutions Executive Director, Ocean Drilling Programs Joint Oceanographic

237

WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS.  

E-Print Network [OSTI]

??WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS Applications of waterjeting to drill horizontal wells for the purpose of degassing coalbeds prior to mining… (more)

Funmilayo, Gbenga M.

2010-01-01T23:59:59.000Z

238

Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)  

Broader source: Energy.gov [DOE]

Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

239

Induced drilling strains in glass fibre reinforced epoxy composites J.P. Nobrea,b, J.-H. Stiffelc, A. Nauc, J.C. Outeiro (2)d, A.C. Batistaa, W. Van Paepegeme, B. Scholtesc  

E-Print Network [OSTI]

Induced drilling strains in glass fibre reinforced epoxy composites J.P. Nobrea,b, J.-H. Stiffelc Residual strains induced by drilling of glass-fibre reinforced polymers (GFRP) were determined using a hybrid experimental-numerical methodology. Experimentally, a set of GFRP specimens were drilled under

Paris-Sud XI, Université de

240

CX-003403: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-003403: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: A9, B3.7...

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

CX-002745: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-002745: Categorical Exclusion Determination The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration CX(s) Applied: B3.1, A9...

242

CX-008486: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-008486: Categorical Exclusion Determination Demonstration of Gas Powered Drilling Operations for Economically-Challenged Wellhead Gas and Evaluation CX(s) Applied:...

243

CX-007941: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: A9 Date: 02152012 Location(s): Texas...

244

CX-007940: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: B3.6 Date: 02152012 Location(s): Texas...

245

CX-007584: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-007584: Categorical Exclusion Determination Demonstration of Gas-Powered Drilling Operations for Economically Challenged Wellhead Gas and Evaluation of Complementary...

246

CX-005582: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Foro Energy, Incorporated - Low-Contact Drilling Technology to Enable Economical Enhance Geothermal System Wells CX(s) Applied: B3.6,...

247

CX-001057: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

new wells. The project will also focus on determining the location of the fractures, fracture spacing and orientation during drilling as well as characterizing open fractures...

248

Counter-Rotating Tandem Motor Drilling System  

SciTech Connect (OSTI)

Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively compared to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.

Kent Perry

2009-04-30T23:59:59.000Z

249

Jets at all scales  

E-Print Network [OSTI]

I discuss recent developments in the field of relativistic jets in AGNs. After a brief review of our current knowledge of emission from Blazars, I discuss some consequences of the recent detection made by {\\it Chandra} of X-ray emission from extended jets. Finally I report some recent results on the problem of the connection between accretion and jets, study that in principle could shed light on the important issue of jet formation.

F. Tavecchio

2002-12-11T23:59:59.000Z

250

A study of fatigue in drill collars  

E-Print Network [OSTI]

A STUDY OF FATIGUE IN DRILL COLLARS A Thesis by Joe Robert Feeler Approved as to style and content by: Chairman of Committee Head of Department Member /n/X~l~~ Member Member January 1969 ABSTRACT A Study of Fatigue in Drill Collars.... (January, 1969) Joe R. Fowler, B. S. , Texas A&M University; Directed by: Dr. P. D. Neiner Fatigue failures of drill collar connectors are presently cost- ing the major oil companies enormous sums of money in ruined equipment and lost time...

Fowler, Joe Robert

1969-01-01T23:59:59.000Z

251

Bakken shale typifies horizontal drilling success  

SciTech Connect (OSTI)

Given the favorable production response that has been obtained from horizontal drilling in vertical- fractured reservoirs such as the Bakken shale and, more recently, the Austin chalk, industry interest in this technology has mushroomed in the U.S. Indeed, it is difficult to find a good-sized oil company these days that is not involved in a horizontal drilling project or is giving it serious consideration. In response to growing evidence of successful field applications, the realization is dawning on the investment community that horizontal drilling represents a significant technological development with positive implications for both the exploration and production business, and the oilfield services industry.

Leibman, P.R. (Petrie Parkman and Co., Denver, CO (US))

1990-12-01T23:59:59.000Z

252

INTEGRATED DRILLING SYSTEM USING MUD ACTUATED DOWN HOLE HAMMER AS PRIMARY ENGINE  

SciTech Connect (OSTI)

A history and project summary of the development of an integrated drilling system using a mud-actuated down-hole hammer as its primary engine are given. The summary includes laboratory test results, including atmospheric tests of component parts and simulated borehole tests of the hammer system. Several remaining technical hurdles are enumerated. A brief explanation of commercialization potential is included. The primary conclusion for this work is that a mud actuated hammer can yield substantial improvements to drilling rate in overbalanced, hard rock formations. A secondary conclusion is that the down-hole mud actuated hammer can serve to provide other useful down-hole functions including generation of high pressure mud jets, generation of seismic and sonic signals, and generation of diagnostic information based on hammer velocity profiles.

John V. Fernandez; David S. Pixton

2005-12-01T23:59:59.000Z

253

Microquasars and Jets  

E-Print Network [OSTI]

I present an overview of past, present and future research on microquasars and jets, showing that microquasars, i.e. galactic jet sources, are among the best laboratories for high energy phenomena. After remindind the analogy with quasars, I focus on one of the best microquasar representatives, probably the archetype, namely GRS 1915+105, and present accretion and ejection phenomena, showing that only a multi-wavelength approach allows a better understanding of phenomena occuring in these sources. Thereafter, I review jets at different scales: compact jets, large-scale jets, and the interactions between ejections and the surrounding medium. I finish by speaking about microblazars and ultraluminous X-ray sources.

Sylvain Chaty

2005-06-01T23:59:59.000Z

254

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

Integrated Ocean Drilling Program U.S. Implementing Organization FY09 Annual Report #12;Discrete core sampling #12;The Integrated Ocean Drilling Program (IODP) is an international marine research successes of the Deep Sea Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs

255

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

Integrated Ocean Drilling Program U.S. Implementing Organization FY10 Annual Report #12;Crane ball #12;The Integrated Ocean Drilling Program (IODP) is an international marine research program Drilling Project (DSDP) and the Ocean Drilling Program (ODP), programs that revolutionized our view

256

Drilling long geodesics in hyperbolic 3-manifolds K. Bromberg  

E-Print Network [OSTI]

Drilling long geodesics in hyperbolic 3-manifolds K. Bromberg September 22, 2006 1 Introduction to such a deformation as drilling and results which compare the geometry of the original manifold to the geometry of the drilled manifold as drilling theorems. The first results of this type are due to Hodgson and Kerckhoff

Bromberg, Kenneth

257

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

Integrated Ocean Drilling Program U.S. Implementing Organization FY13 Annual Report #12;Tripping Integrated Ocean Drilling Program (IODP) monitored subseafloor environments and explored Earth's history Drilling Project (DSDP) and the Ocean Drilling Program (ODP), which revolutionized our view of Earth

258

Acronyms and Abbreviations Used in the Ocean Drilling Program  

E-Print Network [OSTI]

Stone Soup Acronyms and Abbreviations Used in the Ocean Drilling Program Ocean Drilling Program Texas A&M University Technical Note No. 13 Compiled by Elizabeth A. Heise Ocean Drilling Program Texas A orpersonalresearchpurposes; however,republicationof any portion requires the written consent of the Director, Ocean Drilling

259

Measuring while drilling apparatus mud pressure signal valve  

SciTech Connect (OSTI)

This patent describes a measurement while drilling system for borehole drilling having a downhole instrument connectable in a drill string of a rotary drilling rig including apparatus to sense geological and geophysical parameters and a valve apparatus to pulse modulate drilling fluid flowing in the drill string. A surface apparatus is connected to a drilling fluid flow conductor for extracting intelligence carrying information from the modulated drilling fluid. An improved valve apparatus is described comprising: (a) a drilling fluid flow pulse modulating pressure pulse valve member longitudinally, movably mounted in a body member and movable from a retracted position substantially removed from the drilling fluid flow and an extended position disposed at least partially within the drilling fluid flow thereby temporarily restricting drilling fluid flow within the drill string; and (b) the pulse valve member is a tubular member having a lower end portion displaceable from the body member into the drilling fluid and an upper end portion with opposed fluid pressure force areas thereon being in fluid communication with the drilling fluid flow such that forces due to the drilling fluid acting on the pressure pulse valve member are balanced in a longitudinal direction.

Peppers, J.M.; Shaikh, F.A.

1986-12-09T23:59:59.000Z

260

Ocean Drilling Program Texas A&M University  

E-Print Network [OSTI]

December 2002 Leg 204 Preliminary Report Drilling Gas Hydrates on Hydrate Ridge, Cascadia Continental

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Particle multiplicity of unbiased gluon jets from $e^+ e^-$ three-jet events  

E-Print Network [OSTI]

The charged particle multiplicities of two- and three-jet events from the reaction e+e- -> Z0 -> hadrons are measured for Z0 decays to light quark (uds) flavors. Using recent theoretical expressions to account for biases from event selection, results corresponding to unbiased gluon jets are extracted over a range of jet energies from about 11 to 30 GeV. We find consistency between these results and direct measurements of unbiased gluon jet multiplicity from upsilon and Z0 decays. The unbiased gluon jet data including the direct measurements are compared to corresponding results for quark jets. We perform fits based on analytic expressions for particle multiplicity in jets to determine the ratio r = Ng/Nq of multiplicities between gluon and quark jets as a function of energy. We also determine the ratio of slopes, r(1) = (dNg/dy)/(dNq/dy), and of curvatures, r(2) = (d2Ng/dy2)/(d2Nq/dy2), where y specifies the energy scale. At 30 GeV, we find r = 1.422 +/- 0.051, r(1) = 1.761 +/- 0.071 and r(2) = 1.98 +/- 0.13,...

Abbiendi, G; Åkesson, P F; Alexander, Gideon; Allison, J; Anagnostou, G; Anderson, K J; Arcelli, S; Asai, S; Axen, D A; Azuelos, Georges; Bailey, I; Barberio, E; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Bloodworth, Ian J; Boeriu, O; Bock, P; Böhme, J; Bonacorsi, D; Boutemeur, M; Braibant, S; Brigliadori, L; Brown, R M; Burckhart, H J; Cammin, J; Campana, S; Carnegie, R K; Caron, B; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Clarke, P E L; Clay, E; Cohen, I; Couchman, J; Csilling, Akos; Cuffiani, M; Dado, S; Dallavalle, G M; Dallison, S; de Roeck, A; De Wolf, E A; Dervan, P J; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Feld, L; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Graham, K; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harder, K; Harel, A; Harin-Dirac, M; Hauschild, M; Hauschildt, J; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Hensel, C; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Homer, R James; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Ishii, K; Jawahery, A; Jeremie, H; Jones, C R; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J; Karapetian, G V; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klein, K; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Kokott, T P; Komamiya, S; Kowalewski, R V; Kramer, T; Kress, T; Krieger, P; Von Krogh, J; Krop, D; Kühl, T; Kupper, M; Kyberd, P; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Lawson, I; Layter, J G; Leins, A; Lellouch, Daniel; Letts, J; Levinson, L; Lillich, J; Littlewood, C; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mader, W; Marcellini, S; Marchant, T E; Martin, A J; Martin, J P; Martínez, G; Masetti, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McMahon, T J; McPherson, R A; Meijers, F; Méndez-Lorenzo, P; Menges, W; Merritt, F S; Mes, H; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Moed, S; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Okpara, A N; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Patrick, G N; Pilcher, J E; Pinfold, James L; Plane, D E; Poli, B; Polok, J; Pooth, O; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Rick, Hartmut; Rodning, N L; Roney, J M; Rosati, S; Roscoe, K; Rozen, Y; Runge, K; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Spagnolo, S; Spanó, F; Sproston, M; Stahl, A; Stephens, K; Strom, D; Ströhmer, R; Stumpf, L; Surrow, B; Tarem, S; Tasevsky, M; Taylor, R J; Teuscher, R; Thomas, J; Thomson, M A; Torrence, E; Toya, D; Trefzger, T M; Tricoli, A; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vachon, B; Vollmer, C F; Vannerem, P; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Waller, D; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wetterling, D; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Zacek, V; Zer-Zion, D; 10.1007/s100520200926

2002-01-01T23:59:59.000Z

262

Formation damage in underbalanced drilling operations  

E-Print Network [OSTI]

Formation damage has long been recognized as a potential source of reduced productivity and injectivity in both horizontal and vertical wells. From the moment that the pay zone is being drilled until the well is put on production, a formation...

Reyes Serpa, Carlos Alberto

2003-01-01T23:59:59.000Z

263

Limitations of extended reach drilling in deepwater  

E-Print Network [OSTI]

As the worldwide search for hydrocarbons continues into the deepwater of the oceans, drilling extended reach wells have helped to drain the fields in the most cost effective way, thus providing the oil and gas industry the cushion to cope...

Akinfenwa, Akinwunmi Adebayo

2000-01-01T23:59:59.000Z

264

Drill Rig Safety Topics of the Presentation  

E-Print Network [OSTI]

;Inspect Cooling System & Fan #12;The Most Injury Related Activity Handling Drill Pipe Tools Casing #12;Automated Loading Arms w/ Radio Remote Controls #12;Automatic Pipe Handling System w/ Tilt Out Top Head #12

265

OCEAN DRILLING PROGRAM LEG 207 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

3E3 Canada -------------------------------- Dr. Jack Bauldauf Deputy Director of Science Operations the international Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract Foundation (United States) Natural Environment Research Council (United Kingdom) Ocean Research Institute

266

OCEAN DRILLING PROGRAM LEG 166 SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

Director ODP/TAMU _____________________ Jack Baldauf Manager Science Operations ODP Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract of the University of Tokyo (Japan) National Science Foundation (United States) Natural Environment Research Council

267

Fort Bliss exploratory slimholes: Drilling and testing  

SciTech Connect (OSTI)

During November/96 to April/97 Sandia National Laboratories provided consulation, data collection, analysis and project documentation to the U.S. Army for a series of four geothermal exploratory slimholes drilled on the McGregor Range approximately 25 miles north of El Paso, Texas. This drilling was directed toward evaluating a potential reservoir for geothermal power generation in this area, with a secondary objective of assessing the potential for direct use applications such as space heating or water de-salinization. This report includes: representative temperature logs from the wells; daily drilling reports; a narrative account of the drilling and testing; a description of equipment used; a summary and preliminary interpretation of the data; and recommendations for future work.

Finger, J.T.; Jacobson, R.D.

1997-12-01T23:59:59.000Z

268

Impedance matched joined drill pipe for improved acoustic transmission  

DOE Patents [OSTI]

An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

Moss, William C. (San Mateo, CA)

2000-01-01T23:59:59.000Z

269

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program  

E-Print Network [OSTI]

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program No.14,September2012 ScientificDrilling ISSN: 1816-8957 Exp. 333: Nankai Trough Subduction Input and Records of Slope Instability 4 Lake Drilling In Eastern Turkey 18 Exp. 326 and 332: Nan

Gilli, Adrian

270

Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation  

E-Print Network [OSTI]

Stress intensity factors and fatigue growth of a surface crack in a drill pipe during rotary drilling operation Ngoc Ha Daoa, , Hedi Sellamia aMines ParisTech, 35 rue Saint-Honoré, 77305 Fontainebleau cedex, France Abstract Drill pipe in a curved section of the drilled well is considered as a rotating

Paris-Sud XI, Université de

271

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program  

E-Print Network [OSTI]

NUMBER1,2005 Published by the Integrated Ocean Drilling Program with the International Continental Scientific Drilling Program No.11,March2011 ScientificDrilling ISSN: 1816-8957 Climate and Ocean Change in the Bering Sea 4 San Andreas Fault Zone Drilling 14 Climate History from Lake El'gygytgyn, Siberia 29 World

Demouchy, Sylvie

272

Use of Downhole Motors in Geothermal Drilling in the Philippines  

SciTech Connect (OSTI)

This paper describes the use of downhole motors in the Tiwi geothermal field in the Philippines, The discussion includes the application Of a Dyna-Drill with insert-type bits for drilling through surface alluvium. The economics of this type of drilling are compared to those of conventional rotary drilling. The paper also describes the use of a turbodrill that drills out scale as the well produces geothermal fluids.

Pyle, D. E.

1981-01-01T23:59:59.000Z

273

ALTERNATE POWER AND ENERGY STORAGE/REUSE FOR DRILLING RIGS: REDUCED COST AND LOWER EMISSIONS PROVIDE LOWER FOOTPRINT FOR DRILLING OPERATIONS  

E-Print Network [OSTI]

on alternate drilling energy sources which can make entire drilling process economic and environmentally friendly. One of the major ways to reduce the footprint of drilling operations is to provide more efficient power sources for drilling operations...

Verma, Ankit

2010-07-14T23:59:59.000Z

274

Hotspots, Jets and Environments  

E-Print Network [OSTI]

I discuss the nature of `hotspots' and `jet knots' in the kpc-scale structures of powerful radio galaxies and their relationship to jet-environment interactions. I describe evidence for interaction between the jets of FRI sources and their local environments, and discuss its relationship to particle acceleration, but the main focus of the paper is the hotspots of FRIIs and on new observational evidence on the nature of the particle acceleration associated with them.

M. J. Hardcastle

2007-07-12T23:59:59.000Z

275

Lateral drilling and completion technologies for shallow-shelf carbonates of the Red River and Ratcliffe Formations, Williston Basin. Topical report, July 1997  

SciTech Connect (OSTI)

Luff Exploration Company (LEC) focused on involvement in technologies being developed utilizing horizontal drilling concepts to enhance oil-well productivity starting in 1992. Initial efforts were directed toward high-pressure lateral jetting techniques to be applied in existing vertical wells. After involvement in several failed field attempts with jetting technologies, emphasis shifted to application of emerging technologies for drilling short-radius lateral in existing wellbores and medium-radius technologies in new wells. These lateral drilling technologies were applied in the Mississippi Ratcliffe and Ordovician Red River formations at depths of 2,590 to 2,890 m in Richland County, MT; Bowman County, ND; and Harding County, SD. In theory, all of the horizontal drilling techniques explored in this project have merit for application fitting specific criteria. From a realistic point of view, the only relatively trouble-free, adequately-proven technology employed was the medium-radius steered motor/MWD technology. The slim-tool steered motor/MWD re-entry technology has been used extensively but appears to still be significantly in developmental stages. This technology will probably always be more troublesome than the technology used to drill new wells because the smaller diameter required for the tools contributes to both design and operational complexities. Although limited mechanical success has been achieved with some of the lateral jetting technologies and the Amoco tools, their predictability and reliability is unproven. Additionally, they appear to be limited to shallow depths and certain rock types. The Amoco technology probably has the most potential to be successfully developed for routinely reliable, field applications. A comparison of the various horizontal drilling technologies investigated is presented.

Carrell, L.A.; George, R.D.; Gibbons, D.

1998-07-01T23:59:59.000Z

276

Method and apparatus of assessing down-hole drilling conditions  

DOE Patents [OSTI]

A method and apparatus for use in assessing down-hole drilling conditions are disclosed. The apparatus includes a drill string, a plurality of sensors, a computing device, and a down-hole network. The sensors are distributed along the length of the drill string and are capable of sensing localized down-hole conditions while drilling. The computing device is coupled to at least one sensor of the plurality of sensors. The data is transmitted from the sensors to the computing device over the down-hole network. The computing device analyzes data output by the sensors and representative of the sensed localized conditions to assess the down-hole drilling conditions. The method includes sensing localized drilling conditions at a plurality of points distributed along the length of a drill string during drilling operations; transmitting data representative of the sensed localized conditions to a predetermined location; and analyzing the transmitted data to assess the down-hole drilling conditions.

Hall, David R. (Provo, UT); Pixton, David S. (Lehl, UT); Johnson, Monte L. (Orem, UT); Bartholomew, David B. (Springville, UT); Fox, Joe (Spanish Fork, UT)

2007-04-24T23:59:59.000Z

277

Learning by Drilling: Inter-Firm Learning and Relationship Persistence in the Texas Oilpatch  

E-Print Network [OSTI]

and Henry Licis, “Improving Drilling Performance ThroughJ.F. and K.K. Millheim, “The Drilling Performance Curve: AYardstick for Judging Drilling Performance,” Society of

KELLOGG, RYAN M

2007-01-01T23:59:59.000Z

278

Dual, rotating stripper rubber drilling head  

SciTech Connect (OSTI)

In a drilling head for a well bore through which a tool string of varying outside diameter is run, the drilling head sealing against fluid flow past the tool string to divert such fluid through a side outlet port, said drilling head including a housing having an axial passageway through which the tool string is run and a bearing assembly to facilitate rotation of the tool string within the axial passageway, the improved drilling head comprising: first and second stripper rubbers rotatably mounted within the drilling head housing in seating contact with the tool string, said stripper rubbers having substantially identical inner diameters through which the tool string extends, said first stripper rubber formed of an abrasive resistant material to divert fluid flow from the axial passageway of the housing to the side outlet port and said second stripper rubber formed on a sealingly resilient material which maintains sealing contact with the tool string extending there through preventing fluid flow past said tool string; said first stripper rubber being corrected to clamping means associated with the bearing assembly through a first drive ring such that said first stripper rubber rotates with the tool string; and said second stripper rubber is rotatably connected to said clamping means associated with the bearing assembly through a second drive ring, said first and second drive rings coaxially mounted within the housing whereby said first stripper rubber is positioned axially below said second stripper rubber in sealing contact with the tool string.

Bailey, T.F.; Campbell, J.E.

1993-05-25T23:59:59.000Z

279

Deep drilling technology for hot crystalline rock  

SciTech Connect (OSTI)

The development of Hot Dry Rock (HDR) geothermal systems at the Fenton Hill, New Mexico site has required the drilling of four deep boreholes into hot, Precambrian granitic and metamorphic rocks. Thermal gradient holes, four observation wells 200 m (600 ft) deep, and an exploration core hole 800 m (2400 ft) deep guided the siting of the four deep boreholes. Results derived from the exploration core hole, GT-1 (Granite Test No. 1), were especially important in providing core from the granitic rock, and establishing the conductive thermal gradient and heat flow for the granitic basement rocks. Essential stratigraphic data and lost drilling-fluid zones were identified for the volcanic and sedimentary rocks above the contact with the crystalline basement. Using this information drilling strategies and well designs were then devised for the planning of the deeper wells. The four deep wells were drilled in pairs, the shallowest were planned and drilled to depths of 3 km in 1975 at a bottom-hole temperature of nearly 200/sup 0/C. These boreholes were followed by a pair of wells, completed in 1981, the deepest of which penetrated the Precambrian basement to a vertical depth of 4.39 km at a temperature of 320/sup 0/C.

Rowley, J.C.

1984-01-01T23:59:59.000Z

280

Data transmission element for downhole drilling components  

DOE Patents [OSTI]

A robust data transmission element for transmitting information between downhole components, such as sections of drill pipe, in the presence of hostile environmental conditions, such as heat, dirt, rocks, mud, fluids, lubricants, and the like. The data transmission element components include a generally U-shaped annular housing, a generally U-shaped magnetically conductive, electrically insulating element such as ferrite, and an insulated conductor. Features on the magnetically conducting, electrically insulating element and the annular housing create a pocket when assembled. The data transmission element is filled with a polymer to retain the components within the annular housing by filling the pocket with the polymer. The polymer can bond with the annular housing and the insulated conductor but preferably not the magnetically conductive, electrically insulating element. A data transmission element is mounted within a recess proximate a mating surface of a downhole drilling component, such as a section of drill pipe.

Hall, David R. (Provo, UT); Hall, Jr., H. Tracy (Provo, UT); Pixton, David S. (Lehi, UT); Dahlgren, Scott (Provo, UT); Fox, Joe (Spanish Fork, UT); Sneddon, Cameron (Provo, UT); Briscoe, Michael (Lehi, UT)

2006-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

J_{E_T}: A Global Jet Finding Algorithm  

E-Print Network [OSTI]

We introduce a new jet-finding algorithm for a hadron collider based on maximizing a J_{E_T} function for all possible combinations of particles in an event. This function prefers a larger value of the jet transverse energy and a smaller value of the jet mass. The jet shape is proved to be a circular cone in Cartesian coordinates with the geometric center shifted from the jet momentum toward the central region. The jet cone size shrinks for a more forward jet. We have implemented our J_{E_T} algorithm with a reasonable running time scaling as N n^3, where "N" is the total number of particles and "n" (much less than N) is the number of particles in a fiducial region. Many features of our J_{E_T} jets are similar to anti-k_t jets, including the reconstructed jet momentum and the "back-reaction" from soft contamination. Nevertheless, when the jet parameters in the two algorithms are matched using QCD jets, we find that the J_{E_T} algorithm has a larger efficiency than anti-k_t for identifying objects with hard splittings such as a W-jet.

Yang Bai; Zhenyu Han; Ran Lu

2014-11-13T23:59:59.000Z

282

Air drilling has some pluses for horizontal wells  

SciTech Connect (OSTI)

Drilling horizontal wells with air as the circulating medium is not a common practice; however, air has come distinct advantages over drilling mud. They are: Significant increase in rate of penetration which leads to shorter drilling time. Elimination of lost circulation problems, especially in areas of very low bottom hole pressures. Continual drill stem test of potential producing formations. Minimal damage to the formation. Unfortunately, there are some disadvantages to drilling with air. Downhole motor life is shorter and less predictable. No measurement-while-drilling (MWD) system is currently available that will work consistently in air drilling environments. Hole cleaning is a problem at inclinations above 50{degree}. The horizontal section length is reduced because of the increased friction (drag) between the drillstring and borehole. The types of lithologies and targets are limited. Several horizontal wells have been successfully drilled with air or foam since 1986. At a minimum, operators drill the horizontal section with air or foam to eliminate lost circulation problems in low pressure or partially depleted reservoirs and to reduce formation damage due to drilling fluid invasion. However, problems have been encountered in drilling horizontal wells with air. Not all of the problems are unique to air drilling, but some may be exaggerated by the conditions in an air-drilled hole.

Carden, R.S. (Grace, Shursen, Moore and Associates, Inc., Amarillo, TX (US))

1991-04-08T23:59:59.000Z

283

Analysis of drill stem test data  

E-Print Network [OSTI]

LI8RARY A s IN CNLLEGE OF TEXAS ANALYSIS OF DRILL STEM TEST DATA A THESIS By ALBIN J. ZAK, JR. Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August, 1956 Major Subject: Petroleum Engineering ANALYSIS OF DRILL STEM TEST DATA A THESIS ALBIN J. ZAK, JR. Approved as to style and content by; h irman of Committee Head of Department TABLE OF CONTENTS Page I. ABSTRAC...

Zak, Albin Joseph

1956-01-01T23:59:59.000Z

284

Geothermal wells: a forecast of drilling activity  

SciTech Connect (OSTI)

Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

Brown, G.L.; Mansure, A.J.; Miewald, J.N.

1981-07-01T23:59:59.000Z

285

Dictionary of petroleum exploration, drilling, and production  

SciTech Connect (OSTI)

This book contains more than 20,000 definitions of oil exploration, drilling, and production terms, making this dictionary mandatory for both the experienced industry professional and the nontechnical person. Completing this comprehensive reference are more than 500 detailed illustrations. Appendices include a rotary rig diagram, a cable tool drilling rig, a beam pumping unit, giant oil fields of the world, giant oil, and gas fields of the United States and Canada, a geological time chart, geological map symbols, conversion factors, the Greek alphabet atomic weights and numbers, charts of the geological features of the United States and Canada, plus much, much more.

Hyne, N.J.

1991-01-01T23:59:59.000Z

286

Drilling slated to resume in Honduras  

SciTech Connect (OSTI)

Considered to have major oil reserve potential, yet sparsely explored, the onshore Mosquitia basin and its offshore sector are attracting operators back to Honduras who may drill on a level not seen since the mid-1970s. Exploratory drilling is scheduled to resume after a five-hear hiatus. After concluding seismic shooting on its Brus Laguna concession is eastern Honduras, Houston-based Bonavista Oil and Mining Corporation plans to spud the first of three wildcats to test the Mosquitia by next summer.

Kaya, W.; Abraham, K.S.

1989-01-01T23:59:59.000Z

287

CX-011101: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

01: Categorical Exclusion Determination CX-011101: Categorical Exclusion Determination Bio-Jet Fuel from N-Butanol Utilizing Lignocellulosic Sugars CX(s) Applied: A9 Date: 0830...

288

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas  

DOE Patents [OSTI]

A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area. 3 figs.

McCormick, S.H.; Pigott, W.R.

1997-12-30T23:59:59.000Z

289

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas  

DOE Patents [OSTI]

A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger and out through the holes in the bottom of the auger into the potentially hazardous area.

McCormick, Steve H. (Idaho Falls, ID); Pigott, William R. (Idaho Falls, ID)

1997-01-01T23:59:59.000Z

290

Development plan for an advanced drilling system with real-time diagnostics (Diagnostics-While-Drilling)  

SciTech Connect (OSTI)

This proposal provides the rationale for an advanced system called Diagnostics-while-drilling (DWD) and describes its benefits, preliminary configuration, and essential characteristics. The central concept is a closed data circuit in which downhole sensors collect information and send it to the surface via a high-speed data link, where it is combined with surface measurements and processed through drilling advisory software. The driller then uses this information to adjust the drilling process, sending control signals back downhole with real-time knowledge of their effects on performance. The report presents background of related previous work, and defines a Program Plan for US Department of Energy (DOE), university, and industry cooperation.

FINGER,JOHN T.; MANSURE,ARTHUR J.; PRAIRIE,MICHAEL R.; GLOWKA,D.A.

2000-02-01T23:59:59.000Z

291

Continuous injection of an inert gas through a drill rig for drilling into potentially hazardous areas  

SciTech Connect (OSTI)

A drill rig for drilling in potentially hazardous areas includes a drill having conventional features such as a frame, a gear motor, gear box, and a drive. A hollow rotating shaft projects through the drive and frame. An auger, connected to the shaft is provided with a multiplicity of holes. An inert gas is supplied to the hollow shaft and directed from the rotating shaft to the holes in the auger. The inert gas flows down the hollow shaft, and then down the hollow auger, and out through the holes in the bottom of the auger into the potentially hazardous area.

McCormick, S.H.; Pigott, W.R.

1998-04-01T23:59:59.000Z

292

The Infrared Jet in 3C31  

E-Print Network [OSTI]

We report the detection of infrared emission from the jet of the nearby FR I radio galaxy 3C 31. The jet was detected with the IRAC instrument on Spitzer at 4.5 micron, 5.8 micron, and 8.0 micron out to 30" (13 kpc) from the nucleus. We measure radio, infrared, optical, and X-ray fluxes in three regions along the jet determined by the infrared and X-ray morphology. Radio through X-ray spectra in these regions demonstrate that the emission can be interpreted as synchrotron emission from a broken power-law distribution of electron energies. We find significant differences in the high energy spectra with increasing distance from the nucleus. Specifically, the high energy slope increases from 0.86 to 1.72 from 1 kpc to 12 kpc along the jet, and the spectral break likewise increases in frequency along the jet from 10-100's of GHz to ~20 THz. Thus the ratio of IR to X-ray flux in the jet increases by at least an order of magnitude with increasing distance from the nucleus. We argue that these changes cannot simply ...

Lanz, Lauranne; Kraft, Ralph P; Birkinshaw, Mark; Lal, Dharam V; Forman, William R; Jones, Christine; Worrall, Diana M

2015-01-01T23:59:59.000Z

293

Potential use of hollow spheres in dual gradient drilling  

E-Print Network [OSTI]

The increasing number of significant deepwater discoveries has pushed the operator and service oil companies to focus their efforts on developing new technologies to drill in deeper water. Dual gradient drilling (DGD) will allow reaching deeper...

Vera Vera, Liliana

2002-01-01T23:59:59.000Z

294

Adaptive tool selection strategies for drilling in flexible manufacturing systems  

E-Print Network [OSTI]

The thesis presents an approach to adaptive decision making strategies to reduce bottlenecks in a drilling operation and to extend tool life. It is an attempt to portray the real drilling system in a typical Flexible Manufacturing System (FMS...

Chander, Karthik Balachandran

2004-09-30T23:59:59.000Z

295

Development of a High-Temperature Diagnostics-While-Drilling...  

Energy Savers [EERE]

Development of a High-Temperature Diagnostics-While-Drilling Tool Development of a High-Temperature Diagnostics-While-Drilling Tool This report documents work performed in the...

296

Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...  

Open Energy Info (EERE)

Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory Drilling Program...

297

PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL AND HIGHLY DEVIATED WELLS  

E-Print Network [OSTI]

PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL parameters such as wellbore geometry, pump rate, drilling fluid rheology and density, and maximum drilling Computational Fluid Dynamics methods. Movement, concentration and accumulation of drilled cuttings in non

Ullmer, Brygg

298

Fluid jet electric discharge source  

DOE Patents [OSTI]

A fluid jet or filament source and a pair of coaxial high voltage electrodes, in combination, comprise an electrical discharge system to produce radiation and, in particular, EUV radiation. The fluid jet source is composed of at least two serially connected reservoirs, a first reservoir into which a fluid, that can be either a liquid or a gas, can be fed at some pressure higher than atmospheric and a second reservoir maintained at a lower pressure than the first. The fluid is allowed to expand through an aperture into a high vacuum region between a pair of coaxial electrodes. This second expansion produces a narrow well-directed fluid jet whose size is dependent on the size and configuration of the apertures and the pressure used in the reservoir. At some time during the flow of the fluid filament, a high voltage pulse is applied to the electrodes to excite the fluid to form a plasma which provides the desired radiation; the wavelength of the radiation being determined by the composition of the fluid.

Bender, Howard A. (Ripon, CA)

2006-04-25T23:59:59.000Z

299

Technology Development and Field Trials of EGS Drilling Systems  

Broader source: Energy.gov [DOE]

Project objective: Development of drilling systems based upon rock penetration technologies not commonly employed in the geothermal industry.

300

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Georgia Bettin Doug Blankenship Presenter: Doug Blankenship Sandia National Laboratories...

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Blind shaft drilling: The state of the art  

SciTech Connect (OSTI)

This report discusses the ``Art`` of blind shaft drilling which has been in a continual state of evolution at the Nevada Test Site (NTS) since the start of underground testing in 1957. Emplacement holes for nuclear devices are still being drilled by the rotary drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. Blind shaft drilling and tunnel construction technologies received increased emphasis with the signing of the LTBT in 1963.

Rowe, P.A.

1993-04-20T23:59:59.000Z

302

Jet Measurements and Extraction of the Strong Coupling Constant at HERA  

E-Print Network [OSTI]

Results on jet measurements in neutral current deep inelastic scattering at HERA are presented. The low-$x_{Bj}$ and low-$Q^2$ region is explicitly investigated using forward jet production and the azimuthal asymmetry between jets in dijet production. Recent results on the determination of the strong coupling constant, $\\alpha_s(M_Z)$, are discussed.

A. A. Savin

2005-05-22T23:59:59.000Z

303

Impedance-matched drilling telemetry system  

DOE Patents [OSTI]

A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.

Normann, Randy A. (Edgewood, NM); Mansure, Arthur J. (Albuquerque, NM)

2008-04-22T23:59:59.000Z

304

Recovery Act Weekly Video: 200 West Drilling  

ScienceCinema (OSTI)

President of Cascade Drilling, Bruce, talks about his contract with the Department of Energy and what his team is doing to improve water treatment and environmental cleanup. The small business owner hits on how the Recovery Act saved him from downsizing and helped him stay competitive and safe on site.

None

2012-06-14T23:59:59.000Z

305

Method of drilling and casing a well  

SciTech Connect (OSTI)

A well drilling rig having a rotary table for driving a drill string rotatively and having jacking mechanism for lowering casing into the well after drilling, with the jacking mechanism including fluid pressure actuated piston and cylinder means which may be left in the rig during drilling and which are positioned low enough in the rig to avoid interference with operation of the rotary table. The jacking mechanism also includes a structure which is adapted to be connected to the piston and cylinder means when the casing or other well pipe is to be lowered and which is actuable upwardly and downwardly and carries one of two pipe gripping units for progressively jacking the pipe downwardly by vertical reciprocation of that structure. The reciprocating structure may take the form of a beam extending between two pistons and actuable thereby, with a second beam being connected to cylinders within which the pistons are contained and being utilized to support the second gripping element. In one form of the invention, the rotary table when in use is supported by this second beam.

Boyadjieff, G.I.; Campbell, A.B.

1983-12-20T23:59:59.000Z

306

Russian techniques for more productive core drilling  

SciTech Connect (OSTI)

This is a short discussion of the trends and technology being used in Russia to increase the production of core drilling. The currently used rigs are given with the plans for improvement in drive methods and to reduce trip time in the recovery of cores. The recommendations by the Russians to improve the core recovery quality and quantity are also given.

Not Available

1984-09-01T23:59:59.000Z

307

Field Testing of Environmentally Friendly Drilling System  

SciTech Connect (OSTI)

The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

David Burnett

2009-05-31T23:59:59.000Z

308

OCEAN DRILLING PROGRAM LEG 180 PRELIMINARY REPORT  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 180 PRELIMINARY REPORT ACTIVE CONTINENTAL EXTENSION IN THE WESTERN WOODLARK BASIN, PAPUA NEW GUINEA Dr. Philippe Huchon CNRS, Laboratoire de Géologie �cole Normale Supérieure and Technology University of Hawaii at Manoa 2525 Correa Road Honolulu, HI 96822-2285 U.S.A. Dr. Adam Klaus Ocean

309

Deep-hole drilling Fruit Flies & Zebrafish  

E-Print Network [OSTI]

surface to purify air, employing existing technology in a new way. It is the brainchild of artistFEATURE Deep-hole drilling Fruit Flies & Zebrafish Björk FEATURE Academics & Industry: ResearchIScOvER mAGAZInE discover@sheffield.ac.uk Research and Innovation Services University of Sheffield New

Li, Yi

310

OCEAN DRILLING PROGRAM LEG 136 PRELIMINARY REPORT  

E-Print Network [OSTI]

Operations ODP/TAI Timothy J.G. Francis Deputy Director ODP/TAMU May 1991 #12;This informal report Ocean Drilling Program, which is managed by Joint Oceanographic Institutions, Inc., under contract Environment Research Council (United Kingdom) Ocean Research Institute of the University of Tokyo (Japan) Any

311

OCEAN DRILLING PROGRAM LEG 160 PRELIMINARY REPORT  

E-Print Network [OSTI]

of this report can be found on the ODP Publications Home Page on the World Wide Web at http Consortium for the Ocean Drilling Program (Belgium, Denmark, Finland, Greece, Iceland, Italy, The Netherlands, Budapestlaan 4, 3584 CD Utrecht, The Netherlands; E-mail: gdelange@earth.ruu.nl) Enrico Di Stefano (De

312

CX-006160: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-006160: Categorical Exclusion Determination Pumpernickel Valley: Sub-soil Gas and Fluid Inclusion Exploration and Slim Well Drilling CX(s) Applied: A9, B3.1,...

313

CX-006729: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006729: Categorical Exclusion Determination Liner Drilling CX(s) Applied: B1.3, B3.7, B5.12 Date: 04272010 Location(s): Casper, Wyoming...

314

CX-006719: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-006719: Categorical Exclusion Determination Casing Drilling Test CX(s) Applied: B1.3, B3.7, B5.12 Date: 05172011 Location(s): Casper, Wyoming...

315

Water's Journey Through the Shale Gas Drilling and  

E-Print Network [OSTI]

Water's Journey Through the Shale Gas Drilling and Production Processes in the Mid-Atlantic Region: Marcellus shale drilling in progress, Beaver Run Reservoir, Westmoreland County. Credit: Robert Donnan. Gas. This publication fo- cuses mostly on Pennsylvania because it has the most Marcellus drilling activity of any state

Lee, Dongwon

316

OCEAN DRILLING PROGRAM LEG 124E ENGINEERING PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 124E ENGINEERING PROSPECTUS PHILIPPINE SEA Michael A. Storms Supr. of Development Engineering Ocean Drilling Program Texas A & M University College Station, Texas 77840 Philip D. Rabinowitz Director ODP/TAMU- Barry W. Harding Manager of Engineering and Drilling Operations ODP/TAMU Louis

317

FY04 Annual Report Integrated Ocean Drilling Program  

E-Print Network [OSTI]

#12;#12;FY04 Annual Report Integrated Ocean Drilling Program United States Implementing and the Science Community . . . . . . . . . . 34 RESEARCH TOWARD ENHANCED DRILLING CAPABILITY . . . 37 JOI of the goals of scientific ocean drilling for 8 years (ODP: 1997­2003; IODP: 2003­2005), making many invaluable

318

OCEAN DRILLING PROGRAM LEG 142 ENGINEERING AND SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 142 ENGINEERING AND SCIENTIFIC PROSPECTUS EAST PACIFIC RISE Mr. Michael A. Storms Operations Superintendent/ Assistant Manager of Engineering and Drilling Operations Ocean Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

319

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

Integrated Ocean Drilling Program U.S. Implementing Organization FY12 Annual Report #12;Handling downhole tool string #12;The Integrated Ocean Drilling Program (IODP) is an international marine research in seafloor sediments and rocks. IODP builds upon the earlier successes of the Deep Sea Drilling Project (DSDP

320

Applications of CBR in oil well drilling "A general overview"  

E-Print Network [OSTI]

Applications of CBR in oil well drilling "A general overview" Samad Valipour Shokouhi1,3 , Agnar. In this paper we present the evolving story of CBR applied in petroleum engineering especially in drilling engineering. Drilling engineering contains several potential domains of interest, in which CBR can be employed

Aamodt, Agnar

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Integrated Ocean Drilling Program U.S. Implementing Organization  

E-Print Network [OSTI]

Integrated Ocean Drilling Program U.S. Implementing Organization FY11 Annual Report #12;Sunset aboard the JOIDES Resolution #12;The Integrated Ocean Drilling Program (IODP) is an international marine as recorded in seafloor sediments and rocks. IODP builds upon the earlier successes of the Deep Sea Drilling

322

OCEAN DRILLING PROGRAM LEG 171A SCIENTIFIC PROSPECTUS  

E-Print Network [OSTI]

OCEAN DRILLING PROGRAM LEG 171A SCIENTIFIC PROSPECTUS BARBADOS ACCRETIONARY PRISM LOGGING WHILE DRILLING (LWD) Dr. J. Casey Moore Co-Chief Scientist, Leg 171A University of California, Santa Cruz Earth Drilling Program Texas A&M University Research Park 1000 Discovery Drive College Station, Texas 77845

323

A simple model for laser drilling Jeb Collins a,1  

E-Print Network [OSTI]

A simple model for laser drilling Jeb Collins a,1 , Pierre Gremaud b,2, aDepartment of Mathematics drilling is proposed. Assuming axi-symmetry of the process around the axis of the laser beam, a one, implemented and validated for drilling using lasers with intensities in the GW/cm2 range and microsecond

324

INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION  

E-Print Network [OSTI]

INTEGRATED OCEAN DRILLING PROGRAM U.S. IMPLEMENTING ORGANIZATION FISCAL YEAR 2008 ANNUAL REPORT #12;#12;INTEGRATED OCEAN DRILLING PROGRAM UNITED STATES IMPLEMENTING ORGANIZATION CONSORTIUM FOR OCEAN LEADERSHIP FOUNDATION CONTRACT OCE-0352500 1 OCTOBER 2007­30 SEPTEMBER 2008 #12;INTEGRATED OCEAN DRILLING PROGRAM ii

325

CARD No. 33 Consideration of Drilling Events in Performance Assessments  

E-Print Network [OSTI]

CARD No. 33 Consideration of Drilling Events in Performance Assessments 33.A.1 BACKGROUND have an effect on the disposal system (61 FR 5228). Section 194.33, "Consideration of drilling events in performance assessments," sets forth specific requirements for incorporation of human-initiated drilling

326

A Novel Membrane Finite Element with Drilling Rotations  

E-Print Network [OSTI]

A Novel Membrane Finite Element with Drilling Rotations Reijo Kouhia 1 Abstract. A new low order interpolation is used for the drill rotation #12;eld. Both triangular and quadrilateral elements are considered of freedom. 1 INTRODUCTION In-plane rotational degrees of freedom, \\drilling de- grees of freedom

Kouhia, Reijo

327

ResonantSonic drilling. Innovative technology summary report  

SciTech Connect (OSTI)

The technology of ResonantSonic drilling is described. This technique has been demonstrated and deployed as an innovative tool to access the subsurface for installation of monitoring and/or remediation wells and for collection of subsurface materials for environmental restoration applications. The technology uses no drilling fluids, is safe and can be used to drill slant holes.

NONE

1995-04-01T23:59:59.000Z

328

Surface control bent sub for directional drilling of petroleum wells  

DOE Patents [OSTI]

Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.

Russell, Larry R. (6025 Edgemoor, Suite C, Houston, TX 77081)

1986-01-01T23:59:59.000Z

329

Suggested drilling research tasks for the Federal Government  

SciTech Connect (OSTI)

A brief summary discussion of drilling, drilling research and the role of the government in drilling research is presented. Specific research and development areas recommended for federal consideration are listed. The technical nature of the identified tasks is emphasized. The Appendices present the factual basis for the discussion and recommendations. Numerous references are noted in the Appendices.

Carson, C.C.

1984-04-01T23:59:59.000Z

330

Gas Jet Disruption Mitigation Studies on Alcator C-Mod and DIII-D  

E-Print Network [OSTI]

Gas Jet Disruption Mitigation Studies on Alcator C-Mod and DIII-D R.S. Granetz1, E.M. Hollmann2, D-pressure noble gas jet High-pressure noble gas jets can mitigate 3 problems arising from disruptions, without molybdenum Be, W, C #12;Specific goals of these DIII-D and C-Mod gas jet experiments · Determine penetration

331

Angular Scaling In Jets  

SciTech Connect (OSTI)

We introduce a jet shape observable defined for an ensemble of jets in terms of two-particle angular correlations and a resolution parameter R. This quantity is infrared and collinear safe and can be interpreted as a scaling exponent for the angular distribution of mass inside the jet. For small R it is close to the value 2 as a consequence of the approximately scale invariant QCD dynamics. For large R it is sensitive to non-perturbative effects. We describe the use of this correlation function for tests of QCD, for studying underlying event and pile-up effects, and for tuning Monte Carlo event generators.

Jankowiak, Martin; Larkoski, Andrew J.; /SLAC

2012-02-17T23:59:59.000Z

332

ATLAS Jet Energy Scale  

E-Print Network [OSTI]

Jets originating from the fragmentation of quarks and gluons are the most common, and complicated, final state objects produced at hadron colliders. A precise knowledge of their energy calibration is therefore of great importance at experiments at the Large Hadron Collider at CERN, while is very difficult to ascertain. We present in-situ techniques and results for the jet energy scale at ATLAS using recent collision data. ATLAS has demonstrated an understanding of the necessary jet energy corrections to within \\approx 4% in the central region of the calorimeter.

D. Schouten; A. Tanasijczuk; M. Vetterli; for the ATLAS Collaboration

2012-01-11T23:59:59.000Z

333

Drilling, logging, and testing information from borehole UE-25 UZ{number_sign}16, Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Borehole UE-25 UZ{number_sign}16 is the first of two boreholes that may be used to determine the subsurface structure at Yucca Mountain by using vertical seismic profiling. This report contains information collected while this borehole was being drilled, logged, and tested from May 27, 1992, to April 22, 1994. It does not contain the vertical seismic profiling data. This report is intended to be used as: (1) a reference for drilling similar boreholes in the same area, (2) a data source on this borehole, and (3) a reference for other information that is available from this borehole. The reference information includes drilling chronology, equipment, parameters, coring methods, penetration rates, completion information, drilling problems, and corrective actions. The data sources include lithology, fracture logs, a list of available borehole logs, and depths at which water was recorded. Other information is listed in an appendix that includes studies done after April 22, 1994.

Thamir, F.; Thordarson, W.; Kume, J.; Rousseau, J. [Geological Survey, Denver, CO (United States). Yucca Mountain Project Branch; Long, R. [Dept. of Energy, Las Vegas, NV (United States); Cunningham, D.M. Jr. [Science Applications International Corp., Las Vegas, NV (United States)

1998-09-01T23:59:59.000Z

334

State-of-the-art in coalbed methane drilling fluids  

SciTech Connect (OSTI)

The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impact on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.

Baltoiu, L.V.; Warren, B.K.; Natras, T.A.

2008-09-15T23:59:59.000Z

335

Closed chamber drill stem test detects deep damage  

SciTech Connect (OSTI)

Closed chamber drill stem tests are a relatively new development in drill stem testing. The technique was originated to reduce operational and safety problems caused by hydrate formation during conventional drill stem tests in the Canadian Arctic. During the 1970s, closed chamber testing found widespread acceptance in Canada and is now becoming more widely used in the US. The closed chamber testing method is used in conjunction with conventional drill stem testing tools and equipment. The only additional requirement is a means of continuously monitoring pressure at the surface; therefore, the method can be conducted anywhere conventional drill stem testing equipment is available. The advantage and disadvantages of the system are discussed.

Berkstresser, M.

1982-02-01T23:59:59.000Z

336

Semisubmersible rigs attractive for tender-assisted drilling  

SciTech Connect (OSTI)

Tender-assisted drilling (TAD) involves the use of tender support vessel (TSV) during the drilling phase of platform development to provide drilling utilities to the platform-mounted drilling package. The TSV provides facilities such as mud mixing, storage, pumping, bulk storage, hotel accommodations, and power. Thus, the platform topsides and jacket weight and size can be smaller and less expensive. The paper discusses the advantages and disadvantages of TAD, then describes the TAD vessel, semisubmersible, platform cost savings, accommodations, drilling and workovers, and field experience.

Tranter, P. (Sedco Forex, Aberdeen (United Kingdom))

1994-09-19T23:59:59.000Z

337

Parsec-Scale Jet-Environment Interactions in AGN  

E-Print Network [OSTI]

Observations made with the VLBA have led to fundamental advances in our understanding of how radio jets in AGN evolve from parsec-scales out to distances exceeding several hundred kiloparsecs. In this review I discuss current models of young radio source evolution, as well as the observational evidence for a rapid change in jet properties on scales of ~1 kpc. A central topic of current debate is the relative importance of intermittent jet fueling versus jet-environment interactions in causing a drop-off in powerful radio sources at this critical evolutionary stage. Recent 3-D hydrodynamical jet simulations suggest that dense environments and cloud collisions can temporarily stifle, but not completely halt powerful relativistic jets. Several VLBA studies of jet-ISM interactions in both blazars and weak Seyfert jets have indicated that collimated outflows are indeed possible in dense environments. At present, the bulk of the evidence favors intermittent AGN accretion as the dominant factor in determining the evolutionary path of large numbers of AGN jets.

Matthew L. Lister

2007-07-12T23:59:59.000Z

338

Down hole drilling motor with pressure balanced bearing seals  

SciTech Connect (OSTI)

A downhole drilling motor, e.g., a turbodrill is described, which is connected to a string of drill pipe has a rotating shaft for driving a drill bit which may be a rotary bit or a high speed solid head diamond bit. The turbine section has rotor and stator blades which are crescent shaped in cross section with each blade having an exit angle of 14-23/sup 0/ for maximum turbine efficiency. The drilling motor may alternatively be a positive displacement motor. The bearing shaft is provided with chevron rotary seals positioned below the rotary bearings carrying both radial and vertical thrust. Fluid lubricant fills the space from the rotary seals to a predetermined level above the bearings. A piston seals the lubricant chamber and is pressurized by drilling fluid (i.e. mud) flowing through the tool. A layer of lubricant fluid overlies the first piston and has a second piston covering said fluid and transmitting pressure from the drilling fluid to the lubricant fluid surrounding the bearings. The drilling mud is divided into two streams, one of which rotates the drill bit, and the other of which passes through the drill bit. The pressure drop across the drilling motor equals the pressure drop across the drill bit, thus balancing the pressure on the bearing seals.

Maurer, W.C.

1980-09-30T23:59:59.000Z

339

GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING  

SciTech Connect (OSTI)

Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discuss results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.

Walsh, S C; Lomov, I; Roberts, J J

2012-01-19T23:59:59.000Z

340

Microjet based noise control of supersonic jets on carrier decks  

E-Print Network [OSTI]

The effectiveness of ground plane water microjet control on the noise generated by a supersonic, ideally expanded, Mach 1.5, impinging jet was determined. Using a converging-diverging nozzle with a design Mach number of ...

Ragaller, Paul Aaron

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Four rigs refurbished for West Africa drilling  

SciTech Connect (OSTI)

In April and May 1990, Shell Petroleum Development Co. of Nigeria Ltd. awarded Noble Drilling West Africa Inc. four separate contracts to drill oil and gas wells in the inland waterways of Nigeria. The contracted rigs included a shallow water jack up, the NN-1, and three posted barges, the Gene Rosser, the Chuck Syring, and the Lewis Dugger. The jack up was built in 1978, and the three posted barges are 1980s vintage. Three of the rigs have been idle for a number of years. The Shell Nigeria contracts required major modifications to the rigs before putting them into international service. Noble replaced or refurbished all major pieces of equipment in the drilling, power, and service systems on the rigs. Rig crews serviced all other equipment. A significant amount of general service piping and electrical wiring was replaced. Each rig also required additional motor control centers to support the new drilling and mud processing equipment. Alfa-Laval waste-heat water desalination plants and new sewage treatment units were installed on all four rigs. Because of the tidal variances and high silt conditions expected in the African waterways, all engine cooling systems were converted from heat exchangers to radiators. Rotary tables were made common on all rigs at 37 1/2 in. Noble had all traveling equipment completely inspected and modified as necessary. Strict attention was paid to certification and documentation of all equipment. Safety upgrades conformed to both Shell and Noble standards. Fire and gas detection systems were installed throughout each rig. Water and foam deluge systems were installed in the wellhead areas, and new foam systems and monitors were installed on the helldecks.

Not Available

1991-06-10T23:59:59.000Z

342

Microhole Wireless Steering While Drilling System  

SciTech Connect (OSTI)

A background to Coiled Tubing Bottom Hole Assemblies (CT-BHA) is given, and the development of a bi-directional communications and power module (BCPM)component is described. The successful operation of this component in both the laboratory and field environment is described. The primary conclusion of this development is that the BCPM component operates as anticipated within the CT-BHA, and significantly extends the possibility of drilling with coiled tubing in the microhole environment.

John Macpherson; Thomas Gregg

2007-12-31T23:59:59.000Z

343

National Advanced Drilling and Excavation Technologies Program  

SciTech Connect (OSTI)

The second meeting of Federal agency representatives interested in the National Advanced Drilling and Excavation Technologies (NADET) Program took place on June 15, 1993. The Geothermal Division of the U.S. Department of Energy (DOE) hosted the meeting at the Washington, D.C., offices of DOE. Representatives from the National Science Foundation, U.S. Geological Survey, U.S. Bureau of Mines, National Institute of Standards and Technology, National Aeronautics and Space Administration, Environmental Protection Agency, and various offices within the Department of Energy attended. For a complete list of attendees see Attachment A. The purpose of the meeting was: (1) to cover the status of efforts to gain formal approval for NADET, (2) to brief participants on events since the last meeting, especially two recent workshops that explored research needs in drilling and excavation, (3) to review some recent technological advances, and (4) to solicit statements of the importance of improving drilling and excavation technologies to the missions of the various agencies. The meeting agenda is included as Attachment B.

None

1993-06-15T23:59:59.000Z

344

Optimization of Operating Parameters for Minimum Mechanical Specific Energy in Drilling  

SciTech Connect (OSTI)

Efficiency in drilling is measured by Mechanical Specific Energy (MSE). MSE is the measure of the amount of energy input required to remove a unit volume of rock, expressed in units of energy input divided by volume removed. It can be expressed mathematically in terms of controllable parameters; Weight on Bit, Torque, Rate of Penetration, and RPM. It is well documented that minimizing MSE by optimizing controllable factors results in maximum Rate of Penetration. Current methods for computing MSE make it possible to minimize MSE in the field only through a trial-and-error process. This work makes it possible to compute the optimum drilling parameters that result in minimum MSE. The parameters that have been traditionally used to compute MSE are interdependent. Mathematical relationships between the parameters were established, and the conventional MSE equation was rewritten in terms of a single parameter, Weight on Bit, establishing a form that can be minimized mathematically. Once the optimum Weight on Bit was determined, the interdependent relationship that Weight on Bit has with Torque and Penetration per Revolution was used to determine optimum values for those parameters for a given drilling situation. The improved method was validated through laboratory experimentation and analysis of published data. Two rock types were subjected to four treatments each, and drilled in a controlled laboratory environment. The method was applied in each case, and the optimum parameters for minimum MSE were computed. The method demonstrated an accurate means to determine optimum drilling parameters of Weight on Bit, Torque, and Penetration per Revolution. A unique application of micro-cracking is also presented, which demonstrates that rock failure ahead of the bit is related to axial force more than to rotation speed.

Hamrick, Todd

2011-05-25T23:59:59.000Z

345

Deep Geothermal Drilling Using Millimeter Wave Technology Final Technical Research Report  

SciTech Connect (OSTI)

Conventional drilling methods are very mature, but still have difficulty drilling through very deep,very hard and hot rocks for geothermal, nuclear waste entombment and oil and gas applications.This project demonstrated the capabilities of utilizing only high energy beams to drill such rocks,commonly called ‘Direct Energy Drilling’, which has been the dream of industry since the invention of the laser in the 1960s. A new region of the electromagnetic spectrum, millimeter wave (MMW) wavelengths at 30-300 giga-hertz (GHz) frequency was used to accomplish this feat. To demonstrate MMW beam drilling capabilities a lab bench waveguide delivery, monitoring and instrument system was designed, built and tested around an existing (but non-optimal) 28 GHz frequency, 10 kilowatt (kW) gyrotron. Low waveguide efficiency, plasma generation and reflected power challenges were overcome. Real-time monitoring of the drilling process was also demonstrated. Then the technical capability of using only high power intense millimeter waves to melt (with some vaporization) four different rock types (granite, basalt, sandstone, limestone) was demonstrated through 36 bench tests. Full bore drilling up to 2” diameter (size limited by the available MMW power) was demonstrated through granite and basalt samples. The project also demonstrated that MMW beam transmission losses through high temperature (260oC, 500oF), high pressure (34.5 MPa, 5000 psi) nitrogen gas was below the error range of the meter long path length test equipment and instruments utilized. To refine those transmission losses closer, to allow extrapolation to very great distances, will require a new test cell design and higher sensitivity instruments. All rock samples subjected to high peak temperature by MMW beams developed fractures due to thermal stresses, although the peak temperature was thermodynamically limited by radiative losses. Therefore, this limited drill rate and rock strength data were not able to be determined experimentally. New methods to encapsulate larger rock specimens must be developed and higher power intensities are needed to overcome these limitations. It was demonstrated that rock properties are affected (weakening then strengthened) by exposure to high temperatures. Since only MMW beams can economically reach rock temperatures of over 1650oC, even exceeding 3000oC, that can cause low viscosity melts or vaporization of rocks. Future encapsulated rock specimens must provide sufficiently large sizes of thermally impacted material to provide for the necessary rock strength, permeability and other analyzes required. Multiple MMW field systems, tools and methods for drilling and lining were identified. It was concluded that forcing a managed over-pressure drilling operation would overcome water influx and hot rock particulates handling problems, while simultaneously forming the conditions necessary to create a strong, sealing rock melt liner. Materials that contact hot rock surfaces were identified for further study. High power windows and gases for beam transmission under high pressures are critical paths for some of the MMW drilling systems. Straightness/ alignment can be a great benefit or a problem, especially if a MMW beam is transmitted through an existing, conventionally drilled bore.

Oglesby, Kenneth [Impact Technologies LLC; Woskov, Paul [MIT; Einstein, Herbert [MIT

2014-12-30T23:59:59.000Z

346

Development and Manufacture of Cost Effective Composite Drill Pipe  

SciTech Connect (OSTI)

This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2004 through September 30, 2005 and contains the following discussions: (1) Qualification Testing; (2) Prototype Development and Testing of ''Smart Design'' Configuration; (3) Field Test Demonstration; and (4) Commercial order for SR-CDP from Torch International. The objective of this contract is to develop and demonstrate ''cost effective'' Composite Drill Pipe. It is projected that this drill pipe will weigh less than half of its steel counter part. The resultant weight reduction will provide enabling technology that will increase the lateral distance that can be reached from an offshore drilling platform and the depth of water in which drilling and production operations can be carried out. Further, composite drill pipe has the capability to carry real time signal and power transmission within the pipe walls. CDP can also accommodate much shorter drilling radius than is possible with metal drill pipe. As secondary benefits, the lighter weight drill pipe can increase the storage capability of floating off shore drilling platforms and provide substantial operational cost savings.

James C. Leslie; James C. Leslie II; Lee Truong; James T. Heard; Steve Loya

2006-02-20T23:59:59.000Z

347

New oilfield air bit improves drilling economics in Appalachian Basin  

SciTech Connect (OSTI)

Petroleum exploration in the Appalachian Basin of the northeastern United States has traditionally relied on compressed air, rather than drilling fluid, for its circulating medium. When compared to drilling mud, compressed air provides such advantages as increased rates of penetration, longer bit life, decreased formation damage, no lost circulation and saves the expense associated with mud handling equipment. Throughout the 1970s and early 1980s, roller cone mining bits and surplus oilfield bits were used to drill these wells. While the cutting structures of mining bits were well-suited for air drilling, the open roller bearings invariably shortened the useful life of the bit, particularly when water was present in the hole. This paper will highlight the development of a new IADC Class 539Y oilfield roller cone bit that is establishing performance records in air drilling applications throughout the Appalachian Basin. Essentially, the latest generation evolved from a roller cone bit successfully introduced in 1985 that combined a specialized non-offset cutting structure with a premium oilfield journal bearing package. Since its introduction, several sizes and types of oilfield air bits have been developed that have continually decreased drilling costs through enhanced performance and reliability. The design and evolution of rock bit cutting structures and bearing packages for high-performance oilfield air drilling applications will be detailed. Laboratory drilling test data will demonstrate the difference in drilling efficiencies between air drilling and conventional fluid drilling. Case studies taken from throughout the Appalachian Basin will be presented to illustrate the improvements in cost per foot, penetration rate, total footage drilled, drilling hours, and bit dull grades.

Brannon, K.C.; Grimes, R.E. [Hughes Christensen Co., Houston, TX (United States); Vietmeier, W.R. [Hughes Christensen Co., Imperial, PA (United States)

1994-12-31T23:59:59.000Z

348

Effect of oil and gas well drilling fluids on shallow groundwater in western North Dakota  

SciTech Connect (OSTI)

Upon completion of an oil and gas well in North Dakota, the drilling fluid is buried in the reserve pit at the site. Reclamation of the drill site is expedited by digging a series of trenches which radiate out from the reserve pit. The majority of buried drilling fluid is ultimately contained within these 5-7-metre deep trenches. These fluids are commonly salt-based, i.e., they contain a concentration of 300,000 +- 20,000 ppM NaCl. In addition, these drilling fluids also contain additives including toxic trace-metal compounds. Four reclaimed oil and gas well sites were chosen for study in western North Dakota. The ages of these sites ranged from 2 to 23 years. A total of 31 piezometers and 22 soil water samplers were installed in and around the drill sites, and quarterly groundwater samples were obtained from these instruments. The local groundwater flow conditions were also determined at these sites. Results of both the water analyses and earth resistivity surveys indicate that leachate is being generated at all of the study sites. Water obtained from the unsaturated zone beneath the buried drilling fluid at all of the four study sites exceeds some of the recommended concentration limits and maximum permissible concentration limits for trace elements and major ions (As, Cl/sup -/, Pb, Se, and NO/sub 3//sup -/). These values are greatly reduced in the unsaturated zone as the depth from the buried drilling fluid increases. This reduction is assumed to be the result of attenuation of these ions by cation exchange on Na montmorillonitic clays. Two of these study sites represent the typical geohydrologic setting for the majority of oil and gas well sites in this area. At these sites the saturated zone was not monitored. The reduction in ion concentration in the unsaturated zone suggests that there would be very little impact on the groundwater from this buried drilling fluid at these two sites. 46 references, 58 figures, 3 tables.

Murphy, E.C.; Kehew, A.E.

1984-01-01T23:59:59.000Z

349

Evaluation of aqueous-foam surfactants for geothermal drilling fluids  

SciTech Connect (OSTI)

Aqueous foams are potentially useful drilling and cleanout fluids for geothermal applications. Successful use of foams requires surfactants (foaming agents) that can survive in the high-temperature geothermal environment. In this study, solutions of aqueous-foam-forming surfactants have been exposed to 260/sup 0/C (500/sup 0/F) and 310/sup 0/C (590/sup 0/F) in various chemical environments to determine if they can survive and make foams after exposure. Comparison of foams before and after exposure and the change in solution pH were used to evaluate their performance. Controlled liquid-volume-fraction foams, made in a packed-bed foam generator, were used for all tests. These tests have shown that many commercially available surfactants can survive short high-temperature cycles in mild acids, mild bases, and salt solutions as evidenced by their ability to make foams after exposure to high temperatures.

Rand, P.B.; Montoya, O.J.

1983-07-01T23:59:59.000Z

350

Preliminary cutting and drilling studies using new generation lasers  

SciTech Connect (OSTI)

High power and radiance dye lasers developed at Lawrence Livermore National Laboratory show promise for material processing tanks. Evaluation using welding heat flow models suggest significant increases in precision and speed are expected. We developed tooling and instrumentation to diagnose important parameters including spot geometry and optical train quality. We started processing studies to determine the viability of these lasers of cutting and drilling. We used titanium alloys first in the studies due to the availability of comparable parametric studies in the technical literature. Results show that cuts and holes with extremely fine features can be made with dye lasers. The high radiance beam produces low distortion and small heat-affected zones. We have accomplished very high aspect ratios and micron scale kerfs and holes. Through continued system improvement and process optimization, we believe that submicron levels will be achieved.

Kautz, D.D.; Sze, J.S.; Dragon, E.P.; Hargrove, R.S.

1992-02-20T23:59:59.000Z

351

Drilling Optimization Utilizing Surface Instrumentaton for Downhole Event Recognition  

SciTech Connect (OSTI)

This DOE project was undertaken to develop and test an instrumented data-acquisition sub that is mounted in a drill string below the top drive and used to detect downhole events. Data recorded at the surface during drilling operations would then be processed and presented to the driller to discern undesirable drilling conditions and help optimize drilling rates and maximize the life of components in the BHA. This instrumented sub was originally conceived and developed solely as a single-point collection center for rig data that would be used in a number of Noble's products. The sub was designed to collect hook load, rotary torque, rotary speed, rotary position, drill pipe pressure, mud temperature, triaxial vibration, and triaxial magnetometer data. The original design and fabrication was by Sandia National Labs under Noble's direction, which was then tested with Sandia's diagnostics-while-drilling downhole package. After initial results were analyzed, the team surmised that important information describing performance and condition of the bottom-hole assembly (BHA) was embedded in the data recorded by the instrumented sub, and began investigating the potential of using surface measurements from the sub to highlight problems occurring downhole before they could be discerned by the driller. Later, a proposal was submitted to DOE for funding to more broadly investigate use of the system for detecting downhole problems while drilling. Soon after DOE awarded this contract, the Noble team responsible for the previous developments was disbanded and their work terminated (due to factors unrelated to the sub development). This change halted the complementary work that Noble had planned to conduct during the DOE project, and necessitated that all the development work be completed by the DOE project. More effort was expended on the project to develop a field-ready prototype than was originally foreseen. The sub's design had to be significantly modified during the project based on results of field tests. The original slip ring for communication was replaced with a radio link, which makes the sub easier to move to different rigs and simplifies the set-up process. In addition, the sub's previous design would prevent it being used on oil and gas rigs due to potential explosion hazard. The sub was redesigned so that during operation all electrical components on the sub are under a blanket of nitrogen. A pressure switch is used so that, should a leak develop, the sub will shut itself down until any problems are repaired. A total of four series of field tests were conducted. The first (mentioned above) was part of the original Noble-sponsored program and in conjunction with Sandia's diagnostics-while-drilling system. Although these tests highlighted important problems, they showed significant promise for the concept, and the sub was returned to Sandia for early repairs and modifications. After the DOE project took possession of the sub, it was tested three more times in the field. The first two DOE tests had the same objective, which was to establish that the sub could function correctly on the rig and deliver usable data, and to develop procedures for setting up and operating the sub and support computer on a rig. During the first test most of the time was spent troubleshooting the sub. Several significant problems were revealed, demonstrating that the current design was not robust enough to survive typical oil field operations. The sub was then redesigned to increase its robustness and allow it to run safely in areas where explosive gases might be present. Once these changes were implemented, the sub was sent to a second shake-down field test. The new design was found to be greatly improved. The sub operated throughout the test, and quality of the data was significantly higher. Near the end of this project, a final field test was conducted with the objective of creating (or simulating) specific problem conditions and recording data to determine if signatures could be recorded and identified that, after analysis, might signify particula

John H. Cohen; Greg Deskins

2006-02-01T23:59:59.000Z

352

Search for New Physics in the Jets + Missing ET topology  

SciTech Connect (OSTI)

Although the standard model of particle physics agrees perfectly with experimental data, it is unlikely the final theory describing particles and their interactions. New phenomena has been searched in the jets and missing transverse energy topology. Such phenomena may be due to the pair production of leptoquarks decaying into a quark and a neutrino or the pair production of stops decaying into a charm and a neutralino which is assumed to be the lightest supersymmetric particle. These searches have been performed with the D0 detector at hadronic collider TeVatron with a center of mass energy of 1.96 TeV. This kind of search needs a good understanding of the jet energy calibration. The determination of the relative jet energy scale has allowed them to reduce the systematic uncertainties on the jet energy measurement when comparing the data and the simulation. Moreover a new method has been developed in order to correct simulated jets for the differences observed in the jet energy scale, the jet energy resolution and the jet reconstruction efficiency between the data and the simulation. The data analysis, performed with an integrated luminosity of 310 pb{sup -1}, has not observed any excess. This result is interpreted in terms of limit on the mass of the particles: leptoquarks with a mass smaller than 136 GeV and stops with a mass smaller than 131 GeV, for a neutralino mass equal to 46 GeV, are excluded with 95% confidence level.

Makovec, Nikola Michel; /Orsay

2006-05-01T23:59:59.000Z

353

Multiple jet interactions  

E-Print Network [OSTI]

Type Designation Key Direction of Traverse: A - Axial R ? Radial A CON1 N (1) (3) (2) (2) Probe Type: N - Straight, a=O' S - Slant, a=45' (3) Configuration: CON1 CON2 CON3 CON4 CONS CON6 Jets h/D X/h 8 5. 0 16 2. 5 5. 33 7. 5 8 5. 0..., h/D=8. 0 and 2 Jets, h/D=8. 0. 0. 30 SYM INFORMATION: 8 RUN 24 RCON4N X/0 40 0. 25 oo 0. 20 0. 10 0. 05 0. 00 -0 4 -0 3 -0 2 -0. 1 0 0 0. 1 0 2 0 3 0 4 TyX Fig. 24 Distribution of Turbulence Intensity for 2 Jets, b/D=16. 0. 0. 30 BYN...

Hehr, Roger James

2012-06-07T23:59:59.000Z

354

Development and Manufacture of Cost-Effective Composite Drill Pipe  

SciTech Connect (OSTI)

Advanced Composite Products and Technology, Inc. (ACPT) has developed composite drill pipe (CDP) that matches the structural and strength properties of steel drill pipe, but weighs less than 50 percent of its steel counterpart. Funding for the multiyear research and development of CDP was provided by the U.S. Department of Energy Office of Fossil Energy through the Natural Gas and Oil Projects Management Division at the National Energy Technology Laboratory (NETL). Composite materials made of carbon fibers and epoxy resin offer mechanical properties comparable to steel at less than half the weight. Composite drill pipe consists of a composite material tube with standard drill pipe steel box and pin connections. Unlike metal drill pipe, composite drill pipe can be easily designed, ordered, and produced to meet specific requirements for specific applications. Because it uses standard joint connectors, CDP can be used in lieu of any part of or for the entire steel drill pipe section. For low curvature extended reach, deep directional drilling, or ultra deep onshore or offshore drilling, the increased strength to weight ratio of CDP will increase the limits in all three drilling applications. Deceased weight will reduce hauling costs and increase the amount of drill pipe allowed on offshore platforms. In extreme extended reach areas and high-angle directional drilling, drilling limits are associated with both high angle (fatigue) and frictional effects resulting from the combination of high angle curvature and/or total weight. The radius of curvature for a hole as small as 40 feet (12.2 meters) or a build rate of 140 degrees per 100 feet is within the fatigue limits of specially designed CDP. Other properties that can be incorporated into the design and manufacture of composite drill pipe and make it attractive for specific applications are corrosion resistance, non-magnetic intervals, and abrasion resistance coatings. Since CDP has little or no electromagnetic force fields up to 74 kilohertz (KHz), a removable section of copper wire can be placed inside the composite pipe to short the tool joints electrically allowing electromagnetic signals inside the collar to induce and measure the same within the rock formation. By embedding a pair of wires in the composite section and using standard drill pipe box and pin ends equipped with a specially developed direct contact joint electrical interface, power can be supplied to measurement-while-drilling (MWD) and logging-while-drilling (LWD) bottom hole assemblies. Instantaneous high-speed data communications between near drill bit and the surface are obtainable utilizing this 'smart' drilling technology. The composite drill pipe developed by ACPT has been field tested successfully in several wells nationally and internationally. These tests were primarily for short radius and ultra short radius directional drilling. The CDP in most cases performed flawlessly with little or no appreciable wear. ACPT is currently marketing a complete line of composite drill collars, subs, isolators, casing, and drill pipe to meet the drilling industry's needs and tailored to replace metal for specific application requirements.

James C. Leslie

2008-12-31T23:59:59.000Z

355

Organic vapor jet printing system  

DOE Patents [OSTI]

An organic vapor jet printing system includes a pump for increasing the pressure of an organic flux.

Forrest, Stephen R

2012-10-23T23:59:59.000Z

356

Evaluation of potential kick scenarios in riserless drilling  

E-Print Network [OSTI]

when drilling conventionally is somewhat different from the procedures when drilling riserless. The two most common methods of kick killing utilized in conventional drilling, are the "Driller's Method" and the "Wait and Weight Method" (also referred... to as the "Engineers Method" )' . The basic procedure utilized by the Driller's Method is to shut in the well, measure stabilized shut-in drillpipe pressure (SIDPP), shut-in casing pressure (SICP), and pit gain. Circulate the kick up the annulus and out...

Seland, Stig

1999-01-01T23:59:59.000Z

357

Conoco cuts North Sea drilling time by 40%  

SciTech Connect (OSTI)

The record-breaking Murchison platform has slashed development drilling time by an average of 20 days and in the process has attracted the interest of oil men over the world. This article details each aspect of the operation how the rig was modified for speed, mud and casing programs and how they were changed, computer-aided MWD directional program, special conductor pipe and the way straight-hole turbo drilling complemented conventional rotary drilling.

Shute, J.; Alldredge, G.

1982-07-01T23:59:59.000Z

358

Effects of drilling fluids on marine bacteria from a Nigerian offshore oilfield  

SciTech Connect (OSTI)

Two marine bacterial isolates from drill mud cuttings obtained from Agbara oilfield, Staphylococcus sp. and Bacillus sp., were cultured aerobically in the presence of varying concentrations (0, 25, 50, and 75 {mu}g/ml) of drilling fluids to determine the effects of concentration of toxicants on their growth. With the exception of Clairsol, Enviromul, and Bariod mineral oil, which had little or no effect, the exponential growth of Bacillus sp. was depressed by all other test chemicals. Additionally, all test chemicals except Clairsol had no effect on lag phase of growth of Bacillus sp. With Staphylococcus sp. the depressive effect on the exponential phase of growth was shown by almost all test chemicals. There was enhancement of both growth rate and generation times of Staphylococcus sp. and decrease of those of Bacillus sp. with increasing concentrations of drilling fluids. These results show that while some drilling fluids may be stimulatory or depressive to bacterial growth, others may be without effect. 23 refs., 6 figs., 3 tabs.

Okpokwasil, G.C.; Nnubia, C. [Univ. of Prot Harcourt (Nigeria)

1995-11-01T23:59:59.000Z

359

2014 Ocean Drilling Cita on Report Covering Cita ons Related to the  

E-Print Network [OSTI]

2014 Ocean Drilling Cita on Report Covering Cita ons Related to the Deep Sea Drilling Project, Ocean Drilling Program, Integrated Ocean Drilling Program, and Interna onal Ocean Discovery Program from #12;22014 Ocean Drilling Cita on Report Introduc on At the end of each fiscal year, the Interna onal

360

Geothermal: Sponsored by OSTI -- A study of geothermal drilling...  

Office of Scientific and Technical Information (OSTI)

A study of geothermal drilling and the production of electricity from geothermal energy Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Evaluation of an air drilling cuttings containment system  

SciTech Connect (OSTI)

Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

Westmoreland, J.

1994-04-01T23:59:59.000Z

362

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications  

Broader source: Energy.gov [DOE]

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications presentation at the April 2013 peer review meeting held in Denver, Colorado.

363

Title 11 Alaska Administrative Code 87 Geothermal Drilling and...  

Open Energy Info (EERE)

Geothermal Drilling and Conservation Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 11 Alaska Administrative Code 87...

364

atlantic drill site: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

140 7th Avenue South, University of South Florida, St Atlantic DSDP (Deep Sea Drilling Project) Site 607 and South Atlantic ODP Site 1090. Data collected provide and...

365

Type A Accident Investigation of the June 21, 2001, Drilling...  

Office of Environmental Management (EM)

A Accident Investigation of the June 21, 2001, Drilling Rig Operator Injury at the Fermi National Accelerator Laboratory, August 2001 Type A Accident Investigation of the June 21,...

366

Historical Exploration And Drilling Data From Geothermal Prospects...  

Open Energy Info (EERE)

Historical Exploration And Drilling Data From Geothermal Prospects And Power Generation Projects In The Western United States Jump to: navigation, search OpenEI Reference...

367

Recent Drilling Activities At The Earth Power Resources Tuscarora...  

Open Energy Info (EERE)

Drilling Activities At The Earth Power Resources Tuscarora Geothermal Power Project'S Hot Sulphur Springs Lease Area Jump to: navigation, search OpenEI Reference LibraryAdd to...

368

Development of a Hydrothermal Spallation Drilling System for EGS  

Broader source: Energy.gov [DOE]

Project objective: Build and demonstrate a working prototype hydrothermal spallation drilling unit that will accelerate commercial deployment of EGS as a domestic energy resource.

369

advanced drill components: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Agnar Aamodt and Odd Erik Norwegian University of Science and Technology, NTNU, Norway ABSTRACT The drilling process is getting increasingly more complex as oil fields...

370

Geothermal: Sponsored by OSTI -- Vale exploratory slimhole: Drilling...  

Office of Scientific and Technical Information (OSTI)

Vale exploratory slimhole: Drilling and testing Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About Publications Advanced Search New...

371

Directional drilling techniques for exploration in-advance of mining  

SciTech Connect (OSTI)

In-seam directionally drilled horizontal boreholes have provided effective solutions in underground coal mines for methane and water drainage and inherently provide an excellent tool for coalbed exploration. Directionally drilled methane drainage boreholes have identified rapid changes in coalbed elevation, coalbed thickness and faults. Specific directional drilling and coring procedures for exploration in-advance of mining are reviewed in this paper, and also other directional drilling applications including in-mine horizontal gob ventilation boreholes, identification of abandoned workings, and water drainage boreholes.

Kravits, S.J.; Schwoebel, J.J. (REI Underground Exploration Inc., Salt Lake City, UT (United States))

1994-01-01T23:59:59.000Z

372

Technology Development and Field Trials of EGS Drilling Systems  

Broader source: Energy.gov (indexed) [DOE]

technologies (i.e. percussion hammers, PDC bits, hybrid bits, mud hammers, and turbo drills) - Select Two Candidate Options - Field test (Secure industry partner with...

373

Google.org-Backed Potter Drilling Blazing Geothermal Trail |...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act grant, Potter Drilling is developing innovative technologies aimed at making geothermal energy exploration and development cheaper, more efficient and widely...

374

Rapid Characterization of Drill Core and Cutting Mineralogy using...  

Open Energy Info (EERE)

Characterization of Drill Core and Cutting Mineralogy using Infrared Spectroscopy Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Rapid...

375

Chesapeake Bay, Drilling for Oil or Gas Prohibited (Virginia)  

Broader source: Energy.gov [DOE]

Drilling for oil or gas in the waters or within 500 hundred feet from the shoreline of the Chesapeake Bay or any of its tributaries is prohibited.

376

Lowering Drilling Cost, Improving Operational Safety, and Reducing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact through Zonal Isolation Improvements for Horizontal Wells Drilled in the Marcellus Shale 10122.19.Final 11132014 Jeff Watters, Principal Investigator General Manager CSI...

377

Sound Coiled-Tubing Drilling Practices  

SciTech Connect (OSTI)

This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

Williams, Thomas; Deskins, Greg (Maurer Technology Inc.); Ward, Stephen L. (Advantage Energy Services Ltd); Hightower, Mel

2001-09-30T23:59:59.000Z

378

Hydrates represent gas source, drilling hazard  

SciTech Connect (OSTI)

Gas hydrates look like ordinary ice. However, if a piece of such ice is put into warm water its behavior will be different from the ordinary melting of normal ice. In contrast, gas hydrates cause bubbles in the warm water, which indicates the high content of gas in the hydrate crystals. The presence of four components is required: gas itself, water, high pressure, and low temperature. The paper discusses how hydrates form, hydrates stability, South Caspian hydrates, and hydrates hazards for people, ships, pipelines, and drilling platforms.

Bagirov, E. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Lerche, I. [Univ. of South Carolina, Columbia, SC (United States)

1997-12-01T23:59:59.000Z

379

Category:Development Drilling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind Farm JumpBLM)Development Drilling page? For

380

Alpine Geothermal Drilling | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil Jump to:Information332InformationCore Complex Of TheDrilling

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Category:Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade SierraStatus Statuspage? For detailedDrilling

382

drilling-tools | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture and Storageconvert 2 3 DEPARTMENT OF drilling-tools

383

Salton Sea Scientific Drilling Project: A summary of drilling and engineering activities and scientific results  

SciTech Connect (OSTI)

The Salton Sea Scientific g Project (SSSDP) completed the first major well in the United States Continental Scientific Drilling Program. The well (State 2-14) was drilled to 10,W ft (3,220 m) in the Salton Sea Geothermal Field in California's Imperial Valley, to permit scientific study of a deep, high-temperature portion of an active geothermal system. The program was designed to investigate, through drilling and testing, the subsurface thermal, chemical, and mineralogical environments of this geothermal area. Extensive samples and data, including cores, cuttings, geothermal fluids and gases, and geophysical logs, were collected for future scientific analysis, interpretation, and publication. Short duration flow tests were conducted on reservoirs at a depth of approximately 6,120 ft (1,865 m) and at 10,136 ft (3,089 m). This report summarizes all major activities of the SSSDP, from project inception in the fall of 1984 through brine-pond cleanup and site restoration, ending in February 1989. This report presents a balanced summary of drilling, coring, logging, and flow-test operations, and a brief summary of technical and scientific results. Frequent reference is made to original records, data, and publication of results. The report also reviews the proposed versus the final well design, and operational summaries, such as the bit record, the casing and cementing program, and the coring program. Summaries are and the results of three flow tests. Several teamed during the project.

Ross, H.P.; Forsgren, C.K. (eds.)

1992-04-01T23:59:59.000Z

384

CX-001425: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-001425: Categorical Exclusion Determination Temporary Bridging Agents for Use in Drilling and Completion of Engineered Geothermal Systems CX(s) Applied: B3.6, B3.11, A9 Date:...

385

CX-000411: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Fiber Containing Sweep Fluids for Ultra Deepwater Drilling Applications CX(s) Applied: A1, A9, B3.6 Date: 12172009 Location(s): Norman,...

386

CX-008914: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: A9, B3.6 Date: 08292012 Location(s):...

387

CX-008518: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Zonal Isolation Improvement for Horizontal Wells Drilling in the Marcellus Shale CX(s) Applied: A9, A11, B3.6 Date: 07122012 Location(s):...

388

Gasoline Jet Fuels  

E-Print Network [OSTI]

C4n= Diesel Gasoline Jet Fuels C O C5: Xylose C6 Fermentation of sugars Biofuel "Nanobowls" are inorganic catalysts that could provide the selectivity for converting sugars to fuels IACT Proposes Synthetic, Inorganic Catalysts to Produce Biofuels Current Process

Kemner, Ken

389

Vortex diode jet  

DOE Patents [OSTI]

A fluid transfer system that combines a vortex diode with a jet ejector to transfer liquid from one tank to a second tank by a gas pressurization method having no moving mechanical parts in the fluid system. The vortex diode is a device that has a high resistance to flow in one direction and a low resistance to flow in the other.

Houck, Edward D. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

390

Jet quenching and elliptic flow  

E-Print Network [OSTI]

In jet quenching, a hard QCD parton, before fragmenting into a jet of hadrons, deposits a fraction of its energy in the medium, leading to suppressed production of high-$p_T$ hadrons. Assuming that the deposited energy quickly thermalizes, we simulate the subsequent hydrodynamic evolution of the QGP fluid. Explicit simulation of Au+Au collision with and without a quenching jet indicate that elliptic flow is greatly reduced in a jet event. The result can be used to identify the jet events in heavy ion collisions.

A. K. Chaudhuri

2007-08-29T23:59:59.000Z

391

Directional Drilling and Equipment for Hot Granite Wells  

SciTech Connect (OSTI)

Directional drilling technology was extended and modified to drill the first well of a subsurface geothermal energy extraction system at the Fenton Hill, New Mexico, hot dry rock (HDR) experimental site. Borehole geometries, extremely hard and abrasive granite rock, and high formation temperatures combined to provide a challenging environment for directional drilling tools and instrumentation. Completing the first of the two-wellbore HDR system resulted in the definition of operation limitations of -many conventional directional drilling tools, instrumentation, and techniques. The successful completion of the first wellbore, Energy Extraction Well No. 2 (EE-21), to a measured depth of 4.7 km (15,300 ft) in granite reservoir rock with a bottomhole temperature of 320 C (610 F) required the development of a new high-temperature downhole motor and modification of existing wireline-conveyed steering tool systems. Conventional rotary-driven directional assemblies were successfully modified to accommodate the very hard and abrasive rock encountered while drilling nearly 2.6 km (8,500 ft) of directional hole to a final inclination of 35{sup o} from the vertical at the controlled azimuthal orientation. Data were collected to optimize the drilling procedures far the programmed directional drilling of well EE-3 parallel to, and 370 metres (1,200 ft) above, Drilling equipment and techniques used in drilling wellbores for extraction of geothermal energy from hot granite were generally similar to those that are standard and common to hydrocarbon drilling practices. However, it was necessary to design some new equipment for this program: some equipment was modified especially for this program and some was operated beyond normal ratings. These tools and procedures met with various degrees of success. Two types of shock subs were developed and tested during this project. However, downhole time was limited, and formations were so varied that analysis of the capabilities of these items is not conclusive. Temperature limits of the tools were exceeded. EE-2. Commercial drilling and fishing jars were improved during the drilling program. Three-cone, tungsten-carbide insert bit performance with downhole motors was limited by rapid gauge wear. Rotary drilling was optimized for wells EE-2 and EE-3 using softer (IADS 635 code) bits and provided a balance between gauge,. cutting structure, and bearing life. Problems of extreme drill string drag, drill string twist-off, and corrosion control are discussed.

Williams, R. E.; Neudecker, J. W.; Rowley, J.C.; Brittenham, T. L.

1981-01-01T23:59:59.000Z

392

Rapidity-Dependent Jet Vetoes  

E-Print Network [OSTI]

Jet vetoes are a prominent part of the signal selection in various analyses at the LHC. We discuss jet vetoes for which the transverse momentum of a jet is weighted by a smooth function of the jet rapidity. With a suitable choice of the rapidity-weighting function, such jet-veto variables can be factorized and resummed allowing for precise theory predictions. They thus provide a complementary way to divide phase space into exclusive jet bins. In particular, they provide a natural and theoretically clean way to implement a tight veto on central jets with the veto constraint getting looser for jets at increasingly forward rapidities. We mainly focus our discussion on the 0-jet case in color-singlet processes, using Higgs production through gluon fusion as a concrete example. For one of our jet-veto variables we compare the resummed theory prediction at NLL'+NLO with the recent differential cross section measurement by the ATLAS experiment in the $H\\to\\gamma\\gamma$ channel, finding good agreement. We also propose that these jet-veto variables can be measured and tested against theory predictions in other SM processes, such as Drell-Yan, diphoton, and weak diboson production.

Shireen Gangal; Maximilian Stahlhofen; Frank J. Tackmann

2014-12-15T23:59:59.000Z

393

Rotating head for rotary drilling rigs  

SciTech Connect (OSTI)

A rotating head is claimed for a rotary drilling rig which is to be secured to the top of a well pipe having an inner rotating portion with an opening therethrough which permits passage of drill pipe, pipe joints, and Kelly tools; the rotating portion has an annular drive rubber formed integrally with the top portion thereof. A rotating head drive bushing having an opening with a cross-sectional shape generally conforming to the cross-section of the Kelly tool to permit only sliding motion therebetween is provided with helical external ridges which produce a disengagable gripping action with the opening in the drive rubber at the top of the rotating portion of the rotating head. The rotating portion has a conventional stripper rubber at the bottom thereof and is mounted with a double roller bearing to provide low friction motion with respect to the fixed portion of the head. The double roller bearing is lubricated with a viscous lubricating material and paddles are provided between the sets of rollers of the double roller bearing for distributing the viscous lubricating material and in particular propel it onto the upper set of bearings; the upper body portion of the rotating head is readily detachable from the lower sleeve portion which is normally welded to the well conductor pipe.

Adams, J.R.

1983-09-27T23:59:59.000Z

394

Microhole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

Advance & adapt microhole & ASJ/FLASH ASJTMdrilling for EGS; optimize microhole array configurations to maximize heat removal from expanded volume of reservoir rock.

395

An evaluation of subsea pump technologies that can be used to achieve dual gradient drilling  

E-Print Network [OSTI]

Dual Gradient Drilling is an exciting technology which promises to solve the current technical hurdles and economic risks of Deepwater Drilling. Several techniques for Dual Gradient Drilling have been proposed to the industry. One such method...

Oluwadairo, Tolulope

2009-05-15T23:59:59.000Z

396

Thermoporoelastic Effects of Drilling Fluid Temperature on Rock Drillability at Bit/Formation Interface  

E-Print Network [OSTI]

A drilling operation leads to thermal disturbances in the near-wellbore stress, which is an important cause of many undesired incidents in well drilling. A major cause of this thermal disturbance is the temperature difference between the drilling...

Thepchatri, Kritatee 1984-

2012-10-26T23:59:59.000Z

397

Support for Offshore Oil and Gas Drilling among the California Public  

E-Print Network [OSTI]

005 "Support for Offshore Oil and Gas Drilling Among theSupport for Offshore Oil and Gas Drilling among theSupport for Offshore Oil and Gas Drilling among the

Smith, Eric R.A.N.

2003-01-01T23:59:59.000Z

398

Public Support for Oil and Gas Drilling in California's Forests and Parks  

E-Print Network [OSTI]

009 "Public Support for Oil and Gas Drilling in California’sPublic Support for Oil and Gas Drilling in California’sPublic Support for Oil and Gas Drilling in California’s

Smith, Eric R.A.N.; Carlisle, Juliet; Michaud, Kristy

2004-01-01T23:59:59.000Z

399

Leading Particle Production in Light Flavour Jets  

E-Print Network [OSTI]

The energy distribution and type of the particle with the highest momentum in quark jets are determined for each of the five quark flavours making only minimal model assumptions. The analysis is based on a large statistics sample of hadronic Z0 decays collected with the OPAL detector at the LEP e+e- collider. These results provide a basis for future studies of light flavour production at other centre-of-mass energies. We use our results to study the hadronisation mechanism in light flavour jets and compare the data to the QCD models JETSET and HERWIG. Within the JETSET model we also directly determine the suppression of strange quarks to be gamma_s=0.422+-0.049 (stat.)+-0.059 (syst.) by comparing the production of charged and neutral kaons in strange and non-strange light quark events. Finally we study the features of baryon production.

Abbiendi, G; Åkesson, P F; Alexander, Gideon; Allison, J; Anderson, K J; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Bailey, I; Ball, A H; Barberio, E; Barlow, R J; Batley, J Richard; Baumann, S; Behnke, T; Bell, K W; Bella, G; Bellerive, A; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bloodworth, Ian J; Bock, P; Böhme, J; Boeriu, O; Bonacorsi, D; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couchman, J; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Dallison, S; Davis, R; de Roeck, A; Dervan, P J; Desch, Klaus; Dienes, B; Dixit, M S; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Estabrooks, P G; Etzion, E; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Feld, L; Ferrari, P; Fiedler, F; Fierro, M; Fleck, I; Frey, A; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Graham, K; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Harel, A; Hargrove, C K; Harin-Dirac, M; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hobson, P R; Höcker, Andreas; Hoffman, K; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Jones, C R; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J I; Karapetian, G V; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klier, A; Kobayashi, T; Kobel, M; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kühl, T; Kupper, M; Kyberd, P; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Lauber, J; Lawson, I; Layter, J G; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; Lillich, J; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Lü, J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mader, W F; Mannelli, M; Marcellini, S; Marchant, T E; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Méndez-Lorenzo, P; Merritt, F S; Mes, H; Meyer, I; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Okpara, A N; Oreglia, M J; Orito, S; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poli, B; Polok, J; Przybycien, M B; Quadt, A; Rembser, C; Rick, Hartmut; Robins, S A; Rodning, N L; Roney, J M; Rosati, S; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schmitt, S; Schöning, A; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Spagnolo, S; Sproston, M; Stahl, A; Stephens, K; Stoll, K; Strom, D; Ströhmer, R; Surrow, B; Talbot, S D; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomas, J; Thomson, M A; Torrence, E; Towers, S; Trefzger, T M; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Van Kooten, R; Vannerem, P; Verzocchi, M; Voss, H; Wäckerle, F; Waller, D; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wetterling, D; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Zacek, V; Zer-Zion, D

2000-01-01T23:59:59.000Z

400

OPTIMIZATION OF INFILL DRILLING IN NATURALLY-FRACTURED TIGHT-GAS RESERVOIRS  

SciTech Connect (OSTI)

A major goal of industry and the U.S. Department of Energy (DOE) fossil energy program is to increase gas reserves in tight-gas reservoirs. Infill drilling and hydraulic fracture stimulation in these reservoirs are important reservoir management strategies to increase production and reserves. Phase II of this DOE/cooperative industry project focused on optimization of infill drilling and evaluation of hydraulic fracturing in naturally-fractured tight-gas reservoirs. The cooperative project involved multidisciplinary reservoir characterization and simulation studies to determine infill well potential in the Mesaverde and Dakota sandstone formations at selected areas in the San Juan Basin of northwestern New Mexico. This work used the methodology and approach developed in Phase I. Integrated reservoir description and hydraulic fracture treatment analyses were also conducted in the Pecos Slope Abo tight-gas reservoir in southeastern New Mexico and the Lewis Shale in the San Juan Basin. This study has demonstrated a methodology to (1) describe reservoir heterogeneities and natural fracture systems, (2) determine reservoir permeability and permeability anisotropy, (3) define the elliptical drainage area and recoverable gas for existing wells, (4) determine the optimal location and number of new in-fill wells to maximize economic recovery, (5) forecast the increase in total cumulative gas production from infill drilling, and (6) evaluate hydraulic fracture simulation treatments and their impact on well drainage area and infill well potential. Industry partners during the course of this five-year project included BP, Burlington Resources, ConocoPhillips, and Williams.

Lawrence W. Teufel; Her-Yuan Chen; Thomas W. Engler; Bruce Hart

2004-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Environmental Conditions for Ocean Drilling Program Operations in  

E-Print Network [OSTI]

problems and delays during the several previous Deep Sea Drilling Project (DSDP) legs in the South Atlantic by the Deep Sea Drilling Project1 s shipboard Cruise Operations managers (DSDP Operations report, 1974, 1976 STATION, TX 77843-3469 #12;TABLE OF CONTENTS I. INTRODUCTION 1 II. GENERAL ANTARCTIC WATER MASSES

402

Resonant acoustic transducer system for a well drilling string  

DOE Patents [OSTI]

For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

Nardi, Anthony P. (Burlington, MA)

1981-01-01T23:59:59.000Z

403

Resonant acoustic transducer system for a well drilling string  

DOE Patents [OSTI]

For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

Kent, William H. (Westford, MA); Mitchell, Peter G. (Concord, MA)

1981-01-01T23:59:59.000Z

404

Evaluation of liquid lift approach to dual gradient drilling  

E-Print Network [OSTI]

the mudline to the rig floor so as to maintain the bottom hole pressure. Several methods have been developed to achieve the dual gradient drilling principle. For this research project, we paid more attention to the liquid lift, dual gradient drilling (riser...

Okafor, Ugochukwu Nnamdi

2008-10-10T23:59:59.000Z

405

Development of a Mine Rescue Drilling System (MRDS) :  

SciTech Connect (OSTI)

Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site; (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.

Raymond, David W.; Gaither, Katherine N.; Polsky, Yarom; Knudsen, Steven D.; Broome, Scott Thomas; Su, Jiann-Cherng; Blankenship, Douglas A.; Costin, Laurence S.

2014-06-01T23:59:59.000Z

406

Crosswell Imaging Technology & Advanced DSR Navigation for Horizontal Directional Drilling  

SciTech Connect (OSTI)

The objective of Phase II is to develop and demonstrate real-time measurement-while-drilling (MWD) for guidance and navigation of drill strings during horizontal drilling operations applicable to both short and long holes. The end product of Phase II is a functional drill-string assembly outfitted with a commercial version of Drill String Radar (DSR). Project Objectives Develop and demonstrate a dual-phase methodology of in-seam drilling, imaging, and structure confirmation. This methodology, illustrated in Figure 1, includes: (1) Using RIM to image between drill holes for seam thickness estimates and in-seam structures detection. Completed, February 2005; and (2) Using DSR for real-time MWD guidance and navigation of drillstrings during horizontal drilling operations. Completed, November 2008. As of November 2008, the Phase II portion of Contract DE-FC26-04NT42085 is about 99% complete, including milestones and tasks original outlined as Phase II work. The one percent deficiency results from MSHA-related approvals which have yet to be granted (at the time of reporting). These approvals are pending and are do not negatively impact the scope of work or project objectives.

Larry Stolarczyk

2008-08-08T23:59:59.000Z

407

Pioneering work, economic factors provide insights into Russian drilling technology  

SciTech Connect (OSTI)

In Russia and America, individual ingenuity and economic forces have produced a variety of drilling technologies, resulting in the development of disparate drilling systems. Endeavors by the US Department of Energy, the Gas Research Institute, Sandia Laboratories, and private industry have promoted exchanges of knowledge since the 1980s, and now that the barriers to technology transfer are being lifted, engineers from both countries have the opportunity to exchange knowledge and incorporate the best of both. The Russian drilling industry, like the Russian space program, has achieved tremendous success in implementing product and process innovations including the first directional (1940s), horizontal (1950s), and multilateral (1950s) wells. In addition, Russian engineers built the first turbodrills, electrodrills, novel drills (lasers, explosives), aluminum drill pipe, downhole electric submersible pumps, and mud hammers. This first part of a two-part series describes the achievements of Russian engineers in horizontal and multilateral drilling technologies followed by a discussion of the economic differences that led Russian and American drillers to develop dissimilar drilling systems. The second part describes a variety of innovative Russian technologies and provides details on the technical advantages they offer for the drilling process.

Gaddy, D.E.

1998-07-06T23:59:59.000Z

408

Using Bayesian Network to Develop Drilling Expert Systems  

E-Print Network [OSTI]

in foam UBD ............................................ 82 67 Overall air and gas UBD ........................................................................... 83 68 Rotary and hammer drilling options... .......................................................... 84 69 A list of limits and challenges for air and gas UBD .................................. 85 70 A list of possible gas drilling operations ................................................... 86 71 A list of possible rig equipment...

Alyami, Abdullah

2012-10-19T23:59:59.000Z

409

Big-hole drilling - the state of the art  

SciTech Connect (OSTI)

The art of big-hole drilling has been in a continual state of evolution at the Nevada Test Site since the start of underground testing in 1961. Emplacement holes for nuclear devices are still being drilled by the rotary-drilling process, but almost all the hardware and systems have undergone many changes during the intervening years. The current design of bits, cutters, and other big-hole-drilling hardware results from contributions of manufacturers and Test Site personnel. The dual-string, air-lift, reverse-circulation system was developed at the Test Site. Necessity was really the Mother of this invention, but this circulation system is worthy of consideration under almost any condition. Drill rigs for big-hole drilling are usually adaptations of large oil-well drill rigs with minor modifications required to handle the big bits and drilling assemblies. Steel remains the favorite shaft lining material, but a lot of thought is being given to concrete linings, especially precast concrete.

Lackey, M.D.

1983-01-01T23:59:59.000Z

410

Improved Efficiency of Oil Well Drilling through Case Based Reasoning  

E-Print Network [OSTI]

to give the operator valuable advise on how to go about solving the new case. Introduction Drilling of oil1 Improved Efficiency of Oil Well Drilling through Case Based Reasoning Paal Skalle Norwegian University of Science and Technology, Dept. of Petroleum Technology, N-7491, Trondheim, Norway (pskalle

Aamodt, Agnar

411

a microsoft white paper Drilling for new Business Value  

E-Print Network [OSTI]

a microsoft white paper Drilling for new Business Value How innovative oil and gas companies Perez, Enterprise Architect, Microsoft #12;a microsoft white paper Drilling for new B usiness Value 2 for new B usiness Value 3 executive summary as the buzz about big data makes the leap from technology

Bernstein, Phil

412

KNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING  

E-Print Network [OSTI]

for capturing and reusing experience and best practice in industrial operations5-7 . CBR as a technology has nowKNOWLEDGE-BASED DECISION SUPPORT IN OIL WELL DRILLING Combining general and case-specific knowledge of Computer and Information Science. agnar.aamodt@idi.ntnu.no Abstract: Oil well drilling is a complex process

Aamodt, Agnar

413

Slimhole Drilling, Logging, and Completion Technology - An Update  

SciTech Connect (OSTI)

Using slim holes (diameter < 15 cm) for geothermal exploration and small-scale power production can produce significant cost savings compared to conventional rotary-drilling methods. In addition, data obtained from slim holes can be used to lower the risks and costs associated with the drilling and completion of large-diameter geothermal wells. As a prime contractor to the U.S. Department of Energy (DOE), Sandia National Laboratories has worked with industry since 1992 to develop and promote drilling, testing, and logging technology for slim holes. This paper describes the current status of work done both in-house and contracted to industry. It focuses on drilling technology, case histories of slimhole drilling projects, data collection and rig instrumentation, and high-temperature logging tools.

FINGER,JOHN T.; JACOBSON,RONALD D.

1999-10-07T23:59:59.000Z

414

X-ray Emission Processes in Radio Jets  

E-Print Network [OSTI]

The emission processes responsible for the observed X-rays from radio jets are commonly believed to be non-thermal, but in any particular case, it is unclear if synchrotron emission or one or more varieties of inverse Compton emission predominates. We present a formulation of inverse Compton emission from a relativistically moving jet (``IC/beaming'') which relies on radio emitting synchrotron sources for which the energy densities in particles and fields are comparable. We include the non-isotropic nature of inverse Compton scattering of the relativistic electrons on photons of the cosmic microwave background (CMB) and provide beaming parameters for a number of jets. A list of X-ray emitting jets is given and the jets are classified on the basis of their morphology and spectral energy distribution to determine their likely emission process. We conclude that these jets have significant bulk relativistic velocities on kpc scales; that higher redshift sources require less beaming because the energy density of the CMB is significantly greater than locally; and that for some nearby sources, synchrotron X-ray emission predominates because the jet makes a large angle to the line of sight.

D. E. Harris; H. Krawczynski

2001-09-27T23:59:59.000Z

415

Azimuthal decorrelations and multiple parton interactions in photon+2 jet and photon+3 jet events in ppbar collisions at sqrt{s}=1.96 TeV  

SciTech Connect (OSTI)

Samples of inclusive {gamma} + 2 jet and {gamma} + 3 jet events collected by the D0 experiment with an integrated luminosity of about 1 fb{sup -1} in p{bar p} collisions at {radical}s = 1.96 TeV are used to measure cross sections as a function of the angle in the plane transverse to the beam direction between the transverse momentum (p{sub T}) of the {gamma} + leading jet system (jets are ordered in p{sub T}) and p{sub T} of the other jet for {gamma} + 2 jet, or p{sub T} sum of the two other jets for {gamma} + 3 jet events. The results are compared to different models of multiple parton interactions (MPI) in the pythia and sherpa Monte Carlo (MC) generators. The data indicate a contribution from events with double parton (DP) interactions and are well described by predictions provided by the pythia MPI models with p{sub T}-ordered showers and by sherpa with the default MPI model. The {gamma} + 2 jet data are also used to determine the fraction of events with DP interactions as a function of the azimuthal angle and as a function of the second jet p{sub T}.

Abazov, Victor Mukhamedovich; /Dubna, JINR; Abbott, Braden Keim; /Oklahoma U.; Acharya, Bannanje Sripath; /Tata Inst.; Adams, Mark Raymond; /Illinois U., Chicago; Adams, Todd; /Florida State U.; Alexeev, Guennadi D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls; Alverson, George O.; /Northeastern U.; Alves, Gilvan Augusto; /Rio de Janeiro, CBPF; Ancu, Lucian Stefan; /Nijmegen U. /Serpukhov, IHEP

2011-01-01T23:59:59.000Z

416

E-Print Network 3.0 - autolifting floating drilling Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7. Spar... that by one-third. o By producing more oil domestically though offshore drilling o Reducing our dependence... Ocean Explorer 12;Types of offshore drilling...

417

Production of $K^{0}_{S}$ and $\\Lambda$ in Quark and Gluon Jets from $Z^{0}$ Decay  

E-Print Network [OSTI]

The production of K^0_S mesons and Lambda baryons in quark and gluon jets has been investigated using two complementary techniques. In the first approach, which provides high statistical accuracy, jets were selected using different jet finding algorithms and ordered according to their energy. Production rates were determined taking into account the dependences of quark and gluon compositions as a function of jet energy as predicted by Monte Carlo models. Selecting three-jet events with the k_perp (Durham) jet finder (y_cut = 0.005), the ratios of K^0_S and Lambda production rates in gluon and quark jets relative to the mean charged particle multiplicity were found to be 1.10 +/- 0.02 +/- 0.02 and 1.41 +/- 0.04 +/- 0.04, respectively, where the first uncertainty is statistical and the second is systematic. In the second approach, a new method of identifying quark jets based on the collimation of energy flow around the jet axis is introduced and was used to anti-tag gluon jets in symmetric (Y-shaped) three-jet ...

Ackerstaff, K; Allison, J; Altekamp, N; Anderson, K J; Anderson, S; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Ball, A H; Barberio, E; Barlow, R J; Bartoldus, R; Batley, J Richard; Baumann, S; Bechtluft, J; Behnke, T; Bell, K W; Bella, G; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bird, S D; Blobel, Volker; Bloodworth, Ian J; Bobinski, M; Bock, P; Böhme, J; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brown, R M; Burckhart, Helfried J; Burgard, C; Bürgin, R; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Davis, R; De Jong, S; del Pozo, L A; de Roeck, A; Desch, Klaus; Dienes, B; Dixit, M S; Doucet, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Eatough, D; Estabrooks, P G; Evans, H G; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Fiedler, F; Fierro, M; Fischer, H M; Fleck, I; Folman, R; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gascon, J; Gascon-Shotkin, S M; Geich-Gimbel, C; Geralis, T; Giacomelli, G; Giacomelli, P; Gibson, V; Gibson, W R; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Gross, E; Grunhaus, Jacob; Gruwé, M; Hanson, G G; Hansroul, M; Hapke, M; Hargrove, C K; Hartmann, C; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herndon, M; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hillier, S J; Hobson, P R; Höcker, Andreas; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Joly, A; Jones, C R; Jovanovic, P; Junk, T R; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Klier, A; Kluth, S; Kobayashi, T; Kobel, M; Koetke, D S; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kyberd, P; Lafferty, G D; Lanske, D; Lauber, J; Lautenschlager, S R; Lawson, I; Layter, J G; Lazic, D; Lee, A M; Lefebvre, E; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Ludwig, J; Liu, D; Macchiolo, A; MacPherson, A L; Mannelli, M; Marcellini, S; Markopoulos, C; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Menke, S; Merritt, F S; Mes, H; Meyer, J; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mir, R; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nellen, B; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Oreglia, M J; Orito, S; Pálinkás, J; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poffenberger, P R; Poli, B; Polok, J; Przybycien, M B; Rembser, C; Rick, Hartmut; Robertson, S; Robins, S A; Rodning, N L; Roney, J M; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharf, F; Scharff-Hansen, P; Schieck, J; Schmitt, B; Schmitt, S; Schöning, A; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Sittler, A; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Sproston, M; Stahl, A; Stephens, K; Steuerer, J; Stoll, K; Strom, D; Ströhmer, R; Tafirout, R; Talbot, S D; Tanaka, S; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomson, M A; Von Törne, E; Torrence, E; Towers, S; Trigger, I; Trócsányi, Z L; Tsur, E; Turcot, A S; Turner-Watson, M F; Van Kooten, R; Vannerem, P; Verzocchi, M; Vikas, P; Voss, H; Wäckerle, F; Wagner, A; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wermes, N; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Yekutieli, G; Zacek, V; Zer-Zion, D

1999-01-01T23:59:59.000Z

418

Flexible shaft and roof drilling system  

DOE Patents [OSTI]

A system for drilling holes in the roof of a mine has a flexible shaft with a pair of oppositely wound, coaxial flat bands. One of the flat bands defines an inner spring that is wound right handed into a helical configuration, adjacent convolutions being in nesting relationship to one another. The other flat band defines an outer spring that is wound left handed into a helical configuration about the inner band, adjacent convolutions being nesting relationship with one another. A transition member that is configured to hold a rock bit is mounted to one end of the flexible shaft. When torque and thrust are applied to the flexible shaft by a driver, the inner spring expands outwardly and the outer spring contracts inwardly to form a relatively rigid shaft.

Blanz, John H. (Carlisle, MA)

1981-01-01T23:59:59.000Z

419

Laser-Mechanical Drilling for Geothermal Energy: Low-Contact Drilling Technology to Enable Economical EGS Wells  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, making them an effective way to access the U.S. energy resources currently locked under hard rock formations.

None

2010-01-15T23:59:59.000Z

420

Wear mechanisms for polycrystalline-diamond compacts as utilized for drilling in geothermal environments. Final report  

SciTech Connect (OSTI)

The work, which was performed in the period from 12/6/79 to 9/30/81 included: (1) rock cutting experiments with single point polycrystalline sintered diamond compact (PDC) cutters to quantitatively determine cutter wear rates and identify wear modes, (2) PDC rock cutting experiments to measure temperatures developed and examine the effects of tool wear, cutting parameters and coolant flow rates on temperature generation, (3) assisting in performing full scale laboratory drilling experiments with PDC bits, using preheated air to simulate geothermal drilling conditions, and in analyzing and reporting the experimental results, and (4) acting in a consulting role with the purpose of establishing design specifications for geothermal hard matrix PDC bits to be procured by Sandia Laboratories for test purposes.

Hibbs, L.E. Jr.; Sogoian, G.C.

1983-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Transverse liquid fuel jet breakup, burning, and ignition  

SciTech Connect (OSTI)

An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

Li, H.

1990-01-01T23:59:59.000Z

422

Transverse liquid fuel jet breakup, burning, and ignition  

SciTech Connect (OSTI)

An analytical/numerical study of the breakup, burning, and ignition of liquid fuels injected transversely into a hot air stream is conducted. The non-reacting liquid jet breakup location is determined by the local sonic point criterion first proposed by Schetz, et al. (1980). Two models, one employing analysis of an elliptical jet cross-section and the other employing a two-dimensional blunt body to represent the transverse jet, have been used for sonic point calculations. An auxiliary criterion based on surface tension stability is used as a separate means of determining the breakup location. For the reacting liquid jet problem, a diffusion flame supported by a one-step chemical reaction within the gaseous boundary layer is solved along the ellipse surface in subsonic crossflow. Typical flame structures and concentration profiles have been calculated for various locations along the jet cross-section as a function of upstream Mach numbers. The integrated reaction rate along the jet cross-section is used to predict ignition position, which is found to be situated near the stagnation point. While a multi-step reaction is needed to represent the ignition process more accurately, the present calculation does yield reasonable predictions concerning ignition along a curved surface.

Li, H.

1990-12-31T23:59:59.000Z

423

Environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system technology demonstration plan for use at the Savannah River Site F-Area Retention Basin  

SciTech Connect (OSTI)

The Environmental Measurement-While-Drilling-Gamma Ray Spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drillbit data during drilling operations. This demonstration plan presents information on the EMWD-GRS technology, demonstration design, Cs-137 contamination at the Savannah River Site F-Area Retention Basin, responsibilities of demonstration participants, and the policies and procedures for the demonstration to be conducted at the Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration will consist of continuously monitoring for gamma-radiation contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes will pass near previously sampled vertical borehole locations where concentrations of contaminant levels are known. Contaminant levels continuously recorded by the EMWD-GRS system during drilling will be compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples.

Williams, C.V.; Lockwood, G.J.; Normann, R.A. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Gruebel, R.D. [Tech Reps, Inc., Albuquerque, NM (United States)] [Tech Reps, Inc., Albuquerque, NM (United States)

1996-08-01T23:59:59.000Z

424

Geothermal Drilling and Completion Technology Development Program Annual Progress Report  

SciTech Connect (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the timely development of geothermal resources in the US. The Division of Geothermal Energy (DGE) of the Department of Energy (DOE) has initiated a development program aimed at reducing well costs through improvements in the technology used to drill and complete geothermal wells. Sandia National Laboratories (SNL) has been selected to manage this program for DOE/DGE. Based on analyses of existing well costs, cost reduction goals have been set for the program. These are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987. To meet these goals, technology development in a wide range of areas is required. The near-term goal will be approached by improvements in conventional, rotary drilling technology. The long-term goal will require the development of an advanced drilling and completion system. Currently, the program is emphasizing activities directed at the near-term cost reduction goal, but increased emphasis on advanced system development is anticipated as time progresses. The program is structured into six sub-elements: Drilling Hardware, Drilling Fluids, Completion Technology, Lost Circulation Control Methods, Advanced Drilling Systems, and Supporting Technology. Technology development in each of these areas is conducted primarily through contracts with private industries and universities. Some projects are conducted internally by Sandia. This report describes the program, status, and results of ongoing R and D within the program for the 1980 fiscal year.

Varnado, S. G.

1981-03-01T23:59:59.000Z

425

Down hole drilling motor with pressure balanced bearing seals  

SciTech Connect (OSTI)

A down hole drilling motor, e.g., A turbodrill, which is connected to a string of drill pipe has a rotating shaft for driving a drill bit which may be a rotary bit or a high speed solid head diamond bit. The turbine section has rotor and stator blades which are crescent shaped in cross section with each blade having an exit angle of 14*-23* for maximum turbine efficiency. The bearing shaft is provided with chevron rotary seals positioned below the rotary bearings carrying both radial and vertical thrust. Fluid lubricant fills the space from the rotary seals to a predetermined level above the bearings. A piston seals the lubricant chamber and is pressurized by drilling fluid (I.E. Mud) flowing through the tool. A layer of lubricant fluid overlies the first piston and has a second piston covering said fluid and transmitting pressure from the drilling fluid to the lubricant fluid surrounding the bearings. The drilling mud that causes the turbodrill to rotate is pumped away from the bearing seals by pump means operated by the drilling motor to balance the pressure on the upper and lower bearing seals.

McDonald, W.J.

1981-01-27T23:59:59.000Z

426

Drill-bit with full offset cutter bodies  

SciTech Connect (OSTI)

A rotary drag drill bit is seen wherein cutter bodies are rotatively connected to a main body structure at a fully offset position. The fully offset position is defined by a rotational axis of each cutter body, a longitudinal axis of the drill bit and end support points or positions of the cutter bodies. The rotational axes of the cutter bodies are perpendicular to the longitudinal axis of the drill bit. The end supports of the cutter body are each equal distance from any point on the longitudinal axis of the drill bit. The cutter bodies of essentially ellipsoidal configuration, being slightly thicker at a mid-portion thereof. Cutting elements are connected to flutes projecting above an outer surface of each cutter body. In a primary rotational direction of the drill string and drill bit, the rows abrade the bottom and side walls of a well bore as the cutter body attacks the earth formation as the drill bit is rotated. The impingement of the cutting elements of the cutter body on the earth formation imparts a secondary rotation to the cutter bodies, which secondary rotation is induced by the primary rotation. The secondary rotation allows the rows of cutting elements to engage the side wall of the bore and gauge the hole as well as abrading away material from the bottom of the well bore. A roller bearing assembly is provided for the cutter body to permit the secondary rotation, while a thrust bearing assembly assists the primary abrasive action imparted by the primary rotational movement of the rotary drill bit. A lubrication system is included in the main body structure of the drill bit wherein both the roller bearing assembly and thrust bearing assembly are lubricated.

Frear, L.

1985-11-12T23:59:59.000Z

427

Buoyant jet behavior in confined regions  

E-Print Network [OSTI]

Previous confined jet studies have emphasized the behavior of non-buoyant jets inside ducts or near plane boundaries (Coanda effect). Buoyancy, however, is a major factor in the confined jet behavior experienced in many ...

Fry, David J.

1981-01-01T23:59:59.000Z

428

Drilling, completing, and maintaining geothermal wells in Baca, New Mexico  

SciTech Connect (OSTI)

A 55-MWe power plant is planned for development in the Baca location in the Jemez Mountains of New Mexico. Union Geothermal has contracted to provide the steam for the power plant. This paper uses Baca Well No. 13 as a case history to describe the drilling methods, casing program, cementing program, and completion methods used by Union. The discussion includes aerated-water. Lost circulation control in mud drilling and its effort on the subsequent casing cementing program are discussed. The paper also includes a case history of scale removal methods used in Baca Well No. 11, including drilling the scale out with a turbodrill and attempts at chemical inhibition.

Pye, S.

1981-01-01T23:59:59.000Z

429

A leading index of drilling activity: Update and improvements  

SciTech Connect (OSTI)

A five-component composite leading index of United States rotary rig drilling activity is updated. The index is presented for 1949 through April 1986 and is shown to consistently lead turning points in drilling activity. Seven new leading indices based on some new components are also presented. A forecast of drilling activity is made for the remainder of 1986 based on the leading index and the current economic condition of the petroleum industry. The methods used to prepare time series and construct indices are reviewed.

Buell, R.S.; Maurer, R.A.

1986-01-01T23:59:59.000Z

430

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980  

SciTech Connect (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

Kelsey, J.R. (ed.)

1981-03-01T23:59:59.000Z

431

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981  

SciTech Connect (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

Kelsey, J.R. (ed.)

1981-06-01T23:59:59.000Z

432

Experimental Verification of the Control of Automatic Drilling Module in Surgery  

E-Print Network [OSTI]

5 3 Experimental Verification of the Control of Automatic Drilling Module in Surgery Tony Boiadjiev drilling (in part or of all) of the corresponding bones. The main problems when the hand drilling takes place can be described as follows: bone overheating caused by inappropriate drilling velocity

Borissova, Daniela

433

A Real-Time Decision Support System for High Cost Oil-Well Drilling Operations  

E-Print Network [OSTI]

A Real-Time Decision Support System for High Cost Oil-Well Drilling Operations Odd Erik Gundersen In this paper we present DrillEdge - a commercial and award winning software system that monitors oil-well drilling operations in order to reduce non-productive time (NPT). DrillEdge utilizes case-based reasoning

Aamodt, Agnar

434

4 Scientific Drilling, No. 3, September 2006 Science ReportsScience Reports  

E-Print Network [OSTI]

4 Scientific Drilling, No. 3, September 2006 Science ReportsScience Reports IODP Expeditions 304 forty years after the Mohole Project (Bascom, 1961), the goal of drilling a complete section through in situ oceanic crust remains unachieved. Deep Sea Drilling Project ­ Ocean Drilling Program (DSDP

Demouchy, Sylvie

435

Solidi cation of a high-Reynolds-number ow in laser percussion drilling  

E-Print Network [OSTI]

Solidi#12;cation of a high-Reynolds-number ow in laser percussion drilling W. R. Smith y and R. M laser percussion drilling. 1 Introduction Laser percussion drilling is used to machine gas turbine with conventional mechanical drills. The term percussion refers to the repeated operation of the laser in short

Eindhoven, Technische Universiteit

436

Sound transmission through a periodic cascade with application to drill pipes  

E-Print Network [OSTI]

Sound transmission through a periodic cascade with application to drill pipes Niels J. C. Lous Acoustical data transmission through the wall of drill pipes is considered. Drill pipes are known to behave the frequency domain drill pipe models presented by Barnes and Kirkwood J. Acoust. Soc. Am. 51, 1606­1608 1972

Rienstra, Sjoerd W.

437

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

Zemach, Ezra

438

An Advisory System For Selecting Drilling Technologies and Methods in Tight Gas Reservoirs  

E-Print Network [OSTI]

). 13 Fig. 6? Rotary drilling process (Bourgoyne et al. 1986). Two main systems are currently used to rotate the drill bit. As of 2007, for onshore drilling, 55% of the drilling rigs are equipped with a rotary table and Kelly- bushing while 45... ................................................................................................ 11 2.2.2. Discussion .................................................................................................. 12 2.3 Fit For Purpose Land Rig ................................................................................. 16 2.4 Slim...

Pilisi, Nicolas

2010-01-16T23:59:59.000Z

439

Mercury Jet Studies Tristan Davenne  

E-Print Network [OSTI]

Mercury Jet Studies Tristan Davenne Rutherford Appleton Laboratory Joint UKNF, INO, UKIERI meeting mercury target and reported a radial velocity at surface of mercury jet due to proton beam is 36m/s #12;Numerical simulation of Sievers & Pugnat Result Click on image above to watch video of 2cm mercury target

McDonald, Kirk

440

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.

TerraTek, A Schlumberger Company

2008-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Water Wells and Drilled or Mined Shafts (Texas)  

Broader source: Energy.gov [DOE]

The drilling, excavation, and construction of a water well or mine shaft requires a permit from the Texas Commission on Environmental Quality (previously known as the Texas Natural Resource...

442

Argentine drilling equipment to go on auction block  

SciTech Connect (OSTI)

Yacimientos Petroliferos Fiscales (YPF) is preparing to sell all state owned drilling rigs and related assets as part of a plan to privatize Argnetina's oil and gas industry. YPF expects to offer the equipment to private companies by summer in a sealed bid auction in Buenos Aires. More than 30 mostly late model U.S. and Romanian rigs rated to 1,800-7,000 m will be included in the sale. Drilling contracts covering all major Argentina exploration areas will be offered with many of the rigs being sold. This paper reports that the YPF sale will include well completion units, drill pipe and collars, large equipment yards, shops, and warehouses, and possibly the largest inventory of fishing tools in South America, says a company helping to organize the sale. YPF will set up a data room in Buenos Aires to provide information about drilling, conditions, rigs and equipment, and other assets.

Not Available

1992-04-27T23:59:59.000Z

443

Superhard nanophase cutter materials for rock drilling applications  

SciTech Connect (OSTI)

The Low Pressure-High Temperature (LPHT) System has been developed for sintering of nanophase cutter and anvil materials. Microstructured and nanostructured cutters were sintered and studied for rock drilling applications. The WC/Co anvils were sintered and used for development of High Pressure-High Temperature (HPHT) Systems. Binderless diamond and superhard nanophase cutter materials were manufactured with help of HPHT Systems. The diamond materials were studied for rock machining and drilling applications. Binderless Polycrystalline Diamonds (BPCD) have high thermal stability and can be used in geothermal drilling of hard rock formations. Nanophase Polycrystalline Diamonds (NPCD) are under study in precision machining of optical lenses. Triphasic Diamond/Carbide/Metal Composites (TDCC) will be commercialized in drilling and machining applications.

Voronov, O.; Tompa, G.; Sadangi, R.; Kear, B.; Wilson, C.; Yan, P.

2000-06-23T23:59:59.000Z

444

Drilling Through Gas Hydrates Formations: Managing Wellbore Stability Risks  

E-Print Network [OSTI]

As hydrocarbon exploration and development moves into deeper water and onshore arctic environments, it becomes increasingly important to quantify the drilling hazards posed by gas hydrates. To address these concerns, a 1D semi-analytical model...

Khabibullin, Tagir R.

2010-10-12T23:59:59.000Z

445

Technology Development and Field Trials of EGS Drilling Systems  

Broader source: Energy.gov (indexed) [DOE]

Technology Development and Field Trials of EGS Drilling Systems David W. Raymond, PI Steven D. Knudsen, Co-PI Sandia National Laboratories ARRA Funded R&D April 22-25, 2013 This...

446

GRED Studies and Drilling of Americulture State 2, Americulture...  

Open Energy Info (EERE)

and Drilling of Americulture State 2, Americulture Tilapia Farm: Lightning Dock KGRA, Las Animas Valley, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to...

447

Drilling through gas hydrates formations: possible problems and suggested solution  

E-Print Network [OSTI]

Gas hydrate research in the last two decades has taken various directions ranging from ways to understand the safe and economical production of this enormous resource to drilling problems. as more rigs and production platforms move into deeper...

Amodu, Afolabi Ayoola

2009-05-15T23:59:59.000Z

448

Bent-housing turbodrills improve hard-formation directional drilling  

SciTech Connect (OSTI)

Improvements in the design of turbine-powered downhole motors allowed steerable drilling in a hard formation at a high rate of penetration (ROP). Drilling in this dolomite formation with the rotary or with positive-displacement motors (PDMs) was slow during steering operations. Shell's solution to the steering penetration rate problems was to change the well plans if suitable directional drilling tools weren't available. Where possible, the wells were designed with the Zechstein interval drilled as a tangent section with non-steerable turbodrills. However, a better solution was the use of a steerable turbodrill-a tool unavailable on the market at that time. The paper describes motor development, a field test, and the design and operation of the motor.

Koot, L.; Koole, K. (Shell U.K. Exploration and Production, Lowestoft (United Kingdom)); Gaynor, T. (Neyrfor-Weir Ltd., Aberdeen (United Kingdom))

1993-02-15T23:59:59.000Z

449

Scientific Drilling at Sulphur Springs, Valles Caldera, New Mexico...  

Open Energy Info (EERE)

Hole VC-2A Abstract A scientific core hole has been drilled into the western ring fracture zone of the Valles Caldera, N.Mex. Hole VC-2A, the second scientific core hole in the...

450

WATERJET ASSISTED POLYCRYSTALLINE DIAMOND INDENTATION DRILLING OF ROCK  

E-Print Network [OSTI]

., and Summers, D.A., University of Missouri-Rolla, USA Pixton, D., Novatek, Provo, Utah USA Abstract The use of drilling and completions of the wells can account for 25 ­ 50% of the cost of the electricity which

451

Investigation of the feasibility of deep microborehole drilling  

SciTech Connect (OSTI)

Recent advances in sensor technology, microelectronics, and telemetry technology make it feasible to produce miniature wellbore logging tools and instrumentation. Microboreholes are proposed for subterranean telemetry installations, exploration, reservoir definition, and reservoir monitoring this assumes that very small diameter bores can be produced for significantly lower cost using very small rigs. A microborehole production concept based on small diameter hydraulic or pneumatic powered mechanical drilling, assemblies deployed on coiled tubing is introduced. The concept is evaluated using, basic mechanics and hydraulics, published theories on rock drilling, and commercial simulations. Small commercial drill bits and hydraulic motors were selected for laboratory scale demonstrations. The feasibility of drilling deep, directional, one to two-inch diameter microboreholes has not been challenged by the results to date. Shallow field testing of prototype systems is needed to continue the feasibility investigation.

Dreesen, D.S. [Los Alamos National Lab., NM (United States); Cohen, J.H. [Maurer Engineering, Inc., Houston, TX (United States)

1997-01-01T23:59:59.000Z

452

Closed loop drilling systems can eliminate reserve pit costs  

SciTech Connect (OSTI)

Closed loop systems have become more dependable and efficient, making drilling without a mud pit an economically attractive alternative in many drilling programs. A closed loop system is defined simply as a mechanical and chemical system which will allow an operator to drill a well without using a reserve pit. A closed loop system includes some solids control equipment (such as the shaker, desander, desilter, and proper centrifuge), which may already be on the rig, and a polymer flocculation unit, which is not part of a conventional rig`s solids control system. This paper reviews the various methods of flocculation and the performance of the different units. It then goes on to describe costs and regulations associated with both methods of handling drilling wastes.

Astrella, L.; Wiemers, R. [Environmental Equipment Corp., Denver, CO (United States)

1996-05-27T23:59:59.000Z

453

Temperatures, heat flow, and water chemistry from drill holes...  

Open Energy Info (EERE)

Temperatures, heat flow, and water chemistry from drill holes in the Raft River geothermal system, Cassia County, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to...

454

Field Investigations And Temperature-Gradient Drilling At Marine...  

Open Energy Info (EERE)

Drilling At Marine Corps Air-Ground Combat Center (Mcagcc), Twenty-Nine Palms, Ca Abstract The U.S. Navy's Geothermal Program Office (GPO) has been conducting geothermal...

455

The objectives for deep scientific drilling in Yellowstone National Park  

SciTech Connect (OSTI)

The western area of the United Stated contains three young silicic calderas, all of which contain attractive targets for scientific drilling. Of the three, the Yellowstone caldera complex is the largest, has the most intense geothermal anomalies, and is the most seismically active. On the basis of scientific objectives alone. it is easily the first choice for investigating active hydrothermal processes. This report briefly reviews what is known about the geology of Yellowstone National Park and highlights unique information that could be acquired by research drilling only in Yellowstone. However, it is not the purpose of this report to recommend specific drill sites or to put forth a specific drilling proposal. 175 refs., 9 figs., 2 tabs.

Not Available

1987-01-01T23:59:59.000Z

456

A parametric study on the benefits of drilling horizontal and multilateral wells in coalbed methane reservoirs  

SciTech Connect (OSTI)

Recent years have witnessed a renewed interest in development of coalbed methane (CBM) reservoirs. Optimizing CBM production is of interest to many operators. Drilling horizontal and multilateral wells is gaining Popularity in many different coalbed reservoirs, with varying results. This study concentrates on variations of horizontal and multilateral-well configurations and their potential benefits. In this study, horizontal and several multilateral drilling patterns for CBM reservoirs are studied. The reservoir parameters that have been studied include gas content, permeability, and desorption characteristics. Net present value (NPV) has been used as the yard stick for comparing different drilling configurations. Configurations that have been investigated are single-, dual-, tri-, and quad-lateral wells along with fishbone (also known as pinnate) wells. In these configurations, the total length of horizontal wells and the spacing between laterals (SBL) have been studied. It was determined that in the cases that have been studied in this paper (all other circumstances being equal), quadlateral wells are the optimum well configuration.

Maricic, N.; Mohaghegh, S.D.; Artun, E. [Chevron Energy Technology Co., Houston, TX (USA)

2008-12-15T23:59:59.000Z

457

Image analysis of jet structure on electrospinning from free liquid surface  

SciTech Connect (OSTI)

The work analyses intra-jet distances during electrospinning from a free surface of water based poly(vinyl alcohol) solution confined by two thin metallic plates employed as a spinning electrode. A unique computer vision system and digital image processing were designed in order to track position of every polymer jet. Here, we show that jet position data are in good compliance with theoretically predicted intra-jet distances by linear stability analysis. Jet density is a critical parameter of electrospinning technology, since it determines the process efficiency and homogeneity of produced nanofibrous layer. Achievements made in this research could be used as essential approach to study jetting from two-dimensional spinning electrodes, or as fundamentals for further development of control system related to Nanospider{sup ™} technology.

Kula, Jiri, E-mail: jiri.kula@tul.cz; Linka, Ales, E-mail: ales.linka@tul.cz; Tunak, Maros, E-mail: maros.tunak@tul.cz [Department of Textile Evaluation, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec (Czech Republic); Lukas, David, E-mail: david.lukas@tul.cz [Department of Nonwoven and Nanofibrous Materials, Faculty of Textile Engineering, Technical University of Liberec, Studentska 2, 461 17 Liberec (Czech Republic); Centre for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Studentska 2, 461 17 Liberec (Czech Republic)

2014-06-16T23:59:59.000Z

458

Impact of common problems in geothermal drilling and completion  

SciTech Connect (OSTI)

Problems that arise in geothermal drilling and completion account for a significant portion of geothermal well costs. In order to evaluate new technologies for combatting these problems, the relative frequencies and severities of different problems have been estimated. The estimates were based on both subjective judgements and analysis of available drilling records. The most common problems include lost circulation, stuck pipe and cementing, and their impact is to increase well cost by an average of at least 15%.

Carson, C.C.; Lin, Y.T.

1982-01-01T23:59:59.000Z

459

Development and Manufacture of Cost Effective Composite Drill Pipe  

SciTech Connect (OSTI)

This technical report presents the engineering research, process development and data accomplishments that have transpired to date in support of the development of Cost Effective Composite Drill Pipe (CDP). The report presents progress made from October 1, 2005 through September 30, 2006 and contains the following discussions: Qualification Testing; Prototype Development and Testing of ''Smart Design'' Configuration; Field Test Demonstration; Development of Ultra-Short Radius Composite Drill Pipe (USR-CDP); and Development of Smart USR-CDP.

James C. Leslie; James C. Leslie, II; Lee Truong; James T. Heard

2006-09-29T23:59:59.000Z

460

Experiments concerning the dynamic filtration of drilling mud  

E-Print Network [OSTI]

EXPERIMENTS CONCERNING THE DYNAMIC FILTRATION OF DRILLING MUD A Thesis by JOHN GARY ELLER Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1989 Major Subject: Petroleum Engineering EXPERIMENTS CONCERNING THE DYNAMIC FILTRATION OF DRILLING MUD A Thesis by JOHN GARY ELLER Approved as to style and content by: Hans C. Ju am-Wold (Chair of Committee) tephen A. Holditch (Member) Ted...

Eller, John Gary

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Conoco cuts North Sea drilling time by 40%  

SciTech Connect (OSTI)

The record-breaking Murchison platform has slashed development drilling time by an average of 20 days and in the process has attracted the interest of oil men over the world. This study details each aspect of the operation - how the rig was modified for speed, mud and casing programs and how they were changed, computer-aided MWD directional program, special conductor pipe and the way straight-hole turbodrilling complemented conventional rotary drilling.

Shute, J.; Alldredge, G.

1982-07-01T23:59:59.000Z

462

Potential impacts of artificial intelligence expert systems on geothermal well drilling costs:  

SciTech Connect (OSTI)

The Geothermal research Program of the US Department of Energy (DOE) has as one of its goals to reduce the cost of drilling geothermal wells by 25 percent. To attain this goal, DOE continuously evaluates new technologies to determine their potential in contributing to the Program. One such technology is artifical intelligence (AI), a branch of computer science that, in recent years, has begun to impact the marketplace in a number of fields. Expert systems techniques can (and in some cases, already have) been applied to develop computer-based ''advisors'' to assist drilling personnel in areas such as designing mud systems, casing plans, and cement programs, optimizing drill bit selection and bottom hole asssembly (BHA) design, and alleviating lost circulation, stuck pipe, fishing, and cement problems. Intelligent machines with sensor and/or robotic directly linked to AI systems, have potential applications in areas of bit control, rig hydraulics, pipe handling, and pipe inspection. Using a well costing spreadsheet, the potential savings that could be attributed to each of these systems was calculated for three base cases: a dry steam well at The Geysers, a medium-depth Imerial Valley well, and a deep Imperial Valley well. Based on the average potential savings to be realized, expert systems for handling lost circulations problems and for BHA design are the most likely to produce significant results. Automated bit control and rig hydraulics also exhibit high potential savings, but these savings are extremely sensitive to the assumptions of improved drilling efficiency and the cost of these sytems at the rig. 50 refs., 19 figs., 17 tabs.

Satrape, J.V.

1987-11-24T23:59:59.000Z

463

Jet Fragmentation in Medium and Vacuum with the PHENIX Detector  

E-Print Network [OSTI]

One of the most active areas of investigation in relativistic heavy-ion collisions is the study of the jet quenching phenomenon whereby hard partons lose their energy as they traverse the hot, dense matter created in such collisions. Strong parton energy loss has been observed in central nucleus-nucleus collisions as evidenced by the a large suppression of the yield of high pT hadrons as compared to the expected yield based on measurements in p+p collisions. Moreover, measurements of back-to-back correlations of charged hadrons suggest that jet shapes are strongly modified modified by the medium. The quantitative interpretation of single and di-hadron measurements is, however, complicated by the fact that the initial parton energy is unknown. A more informative measurement would be one in which the initial parton energy is known, allowing the determination of the fragmentation function, which may be effectively modified from its vacuum form by the presence of the medium. Two measurements in which the initial parton energy may be estimated are discussed in these proceedings: jet reconstruction and two- particle correlations using direct photons. Jet reconstruction in nuclear collisions is challenging due to the large background of soft particles, fluctuations of which give rise to fake jets. Direct photons can be used to estimate the initial parton energy of the recoil jet without recourse to jet reconstruction algorithms. However, such studies suffer from a smaller rate and the direct photon signal must be disentangled from a large background of decay photons. We present jet reconstruction results which use an algorithm suitable for a high multiplicity environment. We also present results of two-particle correlations using direct photons. These results are discussed in the context of medium modification to the fragmentation function.

Matthew Nguyen for the PHENIX Collaboration

2010-08-08T23:59:59.000Z

464

Progress in the Advanced Synthetic-Diamond Drill Bit Program  

SciTech Connect (OSTI)

Cooperative research is currently underway among five drill bit companies and Sandia National Laboratories to improve synthetic-diamond drill bits for hard-rock applications. This work, sponsored by the US Department of Energy and individual bit companies, is aimed at improving performance and bit life in harder rock than has previously been possible to drill effectively with synthetic-diamond drill bits. The goal is to extend to harder rocks the economic advantages seen in using synthetic-diamond drill bits in soft and medium rock formations. Four projects are being conducted under this research program. Each project is investigating a different area of synthetic diamond bit technology that builds on the current technology base and market interests of the individual companies involved. These projects include: optimization of the PDC claw cutter; optimization of the Track-Set PDC bit; advanced TSP bit development; and optimization of impregnated-diamond drill bits. This paper describes the progress made in each of these projects to date.

Glowka, D.A. [Sandia National Labs., Albuquerque, NM (United States); Dennis, T. [Dennis Tool Co., Houston, TX (United States); Le, Phi [Security DBS, Houston, TX (United States); Cohen, J. [Maurer Engineering, Inc., Houston, TX (United States); Chow, J. [Hughes Christensen Co., Salt Lake City, UT (United States)

1995-11-01T23:59:59.000Z

465

Well drilling tool with diamond radial/thrust bearings  

SciTech Connect (OSTI)

A turbodrill is disclosed for connection to a drill string and has a rotating shaft for turning a drill bit. The turbodrill has rotor and stator blades operated by drilling mud flowing therethrough to rotate the shaft. The shaft is provided with radial/thrust bearing consisting of a pair of annular plates, each of which has conical surfaces supporting a plurality of friction bearing members of polycrystalline diamond. The radial and thrust loads are carried by the wear-resistant diamond bearing surfaces. The bearing members are preferably cylindrical studs having flat faces with flat disc-shaped diamond bearing members supported thereon around the adjacent surfaces of the supporting plates. The faces of the diamond bearings will wear into smoothly mating conical bearing surfaces with use. There are two or more pairs of diamond radial/thrust bearings to handle longitudinal as well as radial loads. The use of the diamond radial/thrust bearings makes it possible to eliminate the lubricant-flooded construction of prior art turbodrills and allow the bearings to be cooled and lubricated be drilling fluid flowing therethrough. The diamond radial/thrust bearings may be used with lubricant-flooded turbodrills and with other types of downhole motor driven drills such as drills driven by positive displacement motors.

Nagel, D.D.; Aparicio, T. Jr.

1983-10-18T23:59:59.000Z

466

Recommendations of the workshop on advanced geothermal drilling systems  

SciTech Connect (OSTI)

At the request of the U.S. Department of Energy, Office of Geothermal Technologies, Sandia National Laboratories convened a group of drilling experts in Berkeley, CA, on April 15-16, 1997, to discuss advanced geothermal drilling systems. The objective of the workshop was to develop one or more conceptual designs for an advanced geothermal drilling system that meets all of the criteria necessary to drill a model geothermal well. The drilling process was divided into ten essential functions. Each function was examined, and discussions were held on the conventional methods used to accomplish each function and the problems commonly encountered. Alternative methods of performing each function were then listed and evaluated by the group. Alternative methods considered feasible or at least worth further investigation were identified, while methods considered impractical or not potentially cost-saving were eliminated from further discussion. This report summarizes the recommendations of the workshop participants. For each of the ten functions, the conventional methods, common problems, and recommended alternative technologies and methods are listed. Each recommended alternative is discussed, and a description is given of the process by which this information will be used by the U.S. DOE to develop an advanced geothermal drilling research program.

Glowka, D.A.

1997-12-01T23:59:59.000Z

467

Rotary torque and rpm indicator for oil well drilling rigs  

SciTech Connect (OSTI)

Monitoring the torque applied by the rotary table to the drill string and the rpm of the drill string is provided. An intermediate adapter is positioned between the drill kelly and the rotary table. A strain gauge is attached to the intermediate adapter to measure torsional deformation and provide an indication of rotary torque. Transmission of torque data is accomplished by radio frequency transmission utilizing a transmitter on the intermediate adapter. A receiver is mounted to the side of the drill rig floor to receive and demodulate the torque signal. The intermediate adapter is rotating at the same rate as the drill string. Detection of the revolutions utilizing the changing R.F. Field strength is accomplished at the edge of the drill rig platform or elsewhere with a stationary sensor which doubles as the torque receiver. A highly directional torque transmitter antenna mounted on the adapter is used with the major lobe lying parallel to the rig floor and perpendicular to the pipe. By detecting the envelope of the radio frequency field strength, each rotation is marked by a peak. This enables continuous torque and rpm monitoring.

Chien, L.C.

1981-08-25T23:59:59.000Z

468

Application of horizontal drilling to tight gas reservoirs  

SciTech Connect (OSTI)

Vertical fractures and lithologic heterogeneity are extremely important factors controlling gas flow rates and total gas recovery from tight (very low permeability) reservoirs. These reservoirs generally have in situ matrix permeabilities to gas of less than 0.1 md. Enhanced gas recovery methods have usually involved hydraulic fracturing; however, the induced vertical hydraulic fractures almost always parallel the natural fracture and may not be an efficient method to establish a good conduit to the wellbore. Horizontal drilling appears to be an optimum method to cut across many open vertical fractures. Horizontal holes will provide an efficient method to drain heterogeneous tight reservoirs even in unfractured rocks. Although many horizontal wells have now been completed in coalbed methane and oil reservoirs, very few have been drilled to exclusively evaluate tight gas reservoirs. The U.S. Department of Energy (DOE) has funded some horizontal and slanthole drilling in order to demonstrate the applicability of these techniques for gas development. Four DOE holes have been drilled in Devonian gas shales in the Appalachian basin, and one hole has been drilled in Upper Cretaceous tight sandstones in the Piceance basin of Colorado. The Colorado field experiment has provided valuable information on the abundance and openness of deeply buried vertical fractures in tight sandstones. These studies, plus higher gas prices, should help encourage industry to begin to further utilize horizontal drilling as a new exploitation method for tight gas reservoirs.

Spencer, C.W. (U.S. Geological Survey, Lakewood, CO (United States)); Lorenz, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Brown, C.A. (Synder Oil Co., Denver, CO (United States))

1991-03-01T23:59:59.000Z

469

Apparatus for downhole drilling communications and method for making and using the same  

DOE Patents [OSTI]

An apparatus for downhole drilling communications is presented. The apparatus includes a spool and end pieces for maintaining the spool at the bottom of a drill string near a drill bit during drilling operations. The apparatus provides a cable for communicating signals between a downhole electronics package and a surface receiver in order to perform measurements while drilling. A method of forming the apparatus is also set forth wherein the apparatus is formed about a central spindle and lathe. 6 figs.

Normann, R.A.; Lockwood, G.J.; Gonzales, M.

1998-03-03T23:59:59.000Z

470

Apparatus for downhole drilling communications and method for making and using the same  

DOE Patents [OSTI]

An apparatus for downhole drilling communications is presented. The apparatus includes a spool and end pieces for maintaining the spool at the bottom of a drill string near a drill bit during drilling operations. The apparatus provides a cable for communicating signals between a downhole electronics package and a surface receiver in order to perform measurements while drilling. A method of forming the apparatus is also set forth wherein the apparatus is formed about a central spindle and lathe.

Normann, Randy A. (Edgewood, NM); Lockwood, Grant J. (Albuquerque, NM); Gonzales, Meliton (Albuquerque, NM)

1998-01-01T23:59:59.000Z

471

FOR ADDITIONAL INFORMATION on scientific ocean drilling,please contact Integrated Ocean Drilling Program,Texas A&M University,1000 Discovery Drive,  

E-Print Network [OSTI]

FOR ADDITIONAL INFORMATION on scientific ocean drilling,please contact Integrated Ocean Drilling.E-mail:information@iodp.tamu.edu; Web:www.iodp-usio.org;Telephone:(979) 845-2673. Design of this map was supported by the Ocean Drilling in this publication do not reflect the views of NSF or Texas A&M University. Deep Sea Drilling Project Legs 1­96,Ocean

472

Continental Scientific Drilling (CSD): Technology Barriers to Deep Drilling Studies in Thermal Regimes  

SciTech Connect (OSTI)

This report is the proceedings of a workshop. The primary thrust of these discussion was to identify the major key technology barriers to the Department of Energy (DOE) supported Thermal Regimes CSD projects and to set priorities for research and development. The major technological challenge is the high temperature to be encountered at depth. Specific problems derived from this issue were widely recognized among the participants and are reflected in this summary. A major concern for the projected Thermal Regimes CSD boreholes was the technology required for continuous coring, in contrast to that required for drilling without core or spot coring. Current commercial technology bases for these two techniques are quite different. The DOE has successfully fielded projects that used both technologies, i.e, shallow continuous coring (Inyo Domes and Valles Caldera) and deeper drilling with spot cores (Imperial Valley-SSSDP). It was concluded that future scientific objectives may still require both approaches, but continuous coring is the most likely requirement in the near term. (DJE-2005)

Kolstad, George A.; Rowley, John C.

1987-01-16T23:59:59.000Z

473

Copyright 2006, IADC/SPE Drilling Conference This paper was prepared for presentation at the IADC/SPE Drilling Conference held in Miami,  

E-Print Network [OSTI]

Copyright 2006, IADC/SPE Drilling Conference This paper was prepared for presentation at the IADC/SPE Drilling Conference held in Miami, Florida, U.S.A., 21­23 February 2006. This paper was selected of Drilling Contractors or Society of Petroleum Engineers and are subject to correction by the author

Paris-Sud XI, Université de

474

Sound Waves from Quenched Jets  

E-Print Network [OSTI]

Heavy ion collisions at RHIC/LHC energies are well described by the (nearly ideal) hydrodynamics. Last year this success has been extended to higher angular harmonics, $v_n,n=3..9$ induced by initial-state perturbations, in analogy to cosmic microwave background fluctuations. Here we use hydrodynamics to study sound propagation emitted by quenched jets. We use the so called "geometric acoustics" to follow the sound propagation, on top of the expanding fireball. The conical waves, known as "Mach cones", turn out to be strongly distorted. We show that large radial flow makes the observed particle spectra to be determined mostlly by the vicinity of their intersection with the fireball's space-like and time-like freezeout surfaces. We further show how the waves modify the freezeout surfaces and spectra. We end up comparing our calculations to the two-particle correlation functions at RHIC, while emphasizing that studies of dijet events observed at LHC should provide much better test of our theory.

Vladimir Khachatryan; Edward Shuryak

2011-08-15T23:59:59.000Z

475

Micromachined chemical jet dispenser  

DOE Patents [OSTI]

A dispenser is disclosed for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 {micro}m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (ca. 200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments. 4 figs.

Swierkowski, S.P.

1999-03-02T23:59:59.000Z

476

Micromachined chemical jet dispenser  

DOE Patents [OSTI]

A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.

Swierkowski, Steve P. (Livermore, CA)

1999-03-02T23:59:59.000Z

477

Water cooled steam jet  

DOE Patents [OSTI]

A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

Wagner, Jr., Edward P. (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

478

Framework for a comparative environmental assessment of drilling fluids  

SciTech Connect (OSTI)

During the drilling of an oil or gas well, drilling fluid (or mud) is used to maintain well control and to remove drill cuttings from the hole. In response to effluent limitation guidelines promulgated by the US Environmental Protection Agency (EPA) for discharge of drilling wastes offshore, alternatives to water and oil-based muds have been developed. These synthetic-based muds (SBMs) are more efficient than water-based muds (WBMs) for drilling difficult and complex formation intervals and have lower toxicity and smaller environmental impacts than diesel or conventional mineral oil-based muds (OBMs). A third category of drilling fluids, derived from petroleum and called enhanced mineral oils (EMOs), also have these advantages over the traditionally used OBMs and WBMs. EPA recognizes that SBMs and EMOs are new classes of drilling fluids, but their regulatory status is unclear. To address this uncertainty, EPA is following an innovative presumptive rulemaking process that will develop final regulations for SBM discharges offshore in less than three years. This report develops a framework for a comparative risk assessment for the discharge of SBMs and EMOs, to help support a risk-based, integrated approach to regulatory decision making. The framework will help identify potential impacts and benefits associated with the use of SBMs, EMOs, WBMs, and OBMs; identify areas where additional data are needed; and support early decision-making in the absence of complete data. As additional data becomes available, the framework can support a full quantitative comparative assessment. Detailed data are provided to support a comparative assessment in the areas of occupational and public health impacts.

Meinhold, A.F.

1998-11-01T23:59:59.000Z

479

Jets in heavy ion collisions with ATLAS  

E-Print Network [OSTI]

The energy loss of high-p_T partons provides insight into the transport properties of the medium created in relativistic heavy ion collisions. Evidence for this energy loss was first experimentally established through observation of high-p_T hadron suppression at RHIC. More recently, measurements of fully reconstructed jets have been performed at the LHC. In this summary the latest experimental results from the ATLAS collaboration on jet suppression are presented. In particular the jet suppression in inclusive jet yields, path length dependence of the jet suppression, photon-jet and Z^0-jet correlations, heavy flavor suppression, and jet fragmentation are discussed. These results establish qualitative features of the jet quenching mechanism as experimental fact and provide constraints on models of jet energy loss.

Martin Spousta; for the ATLAS Collaboration

2012-11-14T23:59:59.000Z

480

Smaller Footprint Drilling System for Deep and Hard Rock Environments; Feasibility of Ultra-High-Speed Diamond Drilling  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energy and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).

Arnis Judzis; Alan Black; Homer Robertson

2006-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination jet drilling" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A theory for radial jet reattachment flow  

E-Print Network [OSTI]

, the velocity profile and mass entrainment are given accordrng to Goertler's t. wo- dimensional free jet theory. His analysrs of a free jet also assumes that. the turbulent eddy viscosity is constant ar ross the jet. (6) For the case of laminar flow... of total jet momentum. Laminar jet flow is approximated using Schlichting's velocity profile, whereas turbulent flow calculations are made assuming Goertler's velocity profile. Momentum integral principles are applied to the flow at reattachment...

Hadden, Lynne Loise

2012-06-07T23:59:59.000Z

482

Latest jet results from the Tevatron  

SciTech Connect (OSTI)

A brief overview of the latest status of jet physics studies at the Tevatron in proton-antiproton collisions at {radical}s = 1.96 TeV is presented. In particular, measurements of the inclusive jet production cross-section, dijet production and searches for new physics, the ratio of the 3-jet to 2-jet production cross-sections, and the three-jet mass are discussed.

Price, Darren D.

2010-05-01T23:59:59.000Z

483

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

484

SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING  

SciTech Connect (OSTI)

The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rock cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.

Alan Black; Arnis Judzis

2004-10-01T23:59:59.000Z

485

Radial flow pulse jet mixer  

DOE Patents [OSTI]

The disclosure provides a pulse jet mixing vessel for mixing a plurality of solid particles. The pulse jet mixing vessel is comprised of a sludge basin, a flow surface surrounding the sludge basin, and a downcoming flow annulus between the flow surface and an inner shroud. The pulse jet mixing vessel is additionally comprised of an upper vessel pressurization volume in fluid communication with the downcoming flow annulus, and an inner shroud surge volume separated from the downcoming flow annulus by the inner shroud. When the solid particles are resting on the sludge basin and a fluid such as water is atop the particles and extending into the downcoming flow annulus and the inner shroud surge volume, mixing occurs by pressurization of the upper vessel pressurization volume, generating an inward radial flow over the flow surface and an upwash jet at the center of the sludge basin.

VanOsdol, John G.

2013-06-25T23:59:59.000Z

486

Strategic Technology JET PROPULSION LABORATORY  

E-Print Network [OSTI]

Strategic Technology Directions JET PROPULSION LABORATORY National Aeronautics and Space Administration 2 0 0 9 #12;© 2009 California Institute of Technology. Government sponsorship acknowledged. #12;Strategic Technology Directions 2009 offers a distillation of technologies, their links to space missions

Waliser, Duane E.

487

Geothermal drilling problems and their impact on cost  

SciTech Connect (OSTI)

Historical data are presented that demonstrate the significance of unexpected problems. In extreme cases, trouble costs are the largest component of well costs or severe troubles can lead to abandonment of a hole. Drilling experiences from US geothermal areas are used to analyze the frequency and severity of various problems. In addition, average trouble costs are estimated based on this analysis and the relationship between trouble and depth is discussed. The most frequent drilling and completion problem in geothermal wells is lost circulation. This is especially true for resources in underpressured, fractured formations. Serious loss of circulation can occur during drilling - because of this, the producing portions of many wells are drilled with air or aerated drilling fluid and the resulting corrosion/erosion problems are tolerated - but it can also affect the cementing of well casing. Problems in bonding the casing to the formation result from many other causes as well, and are common in geothermal wells. Good bonds are essential because of the possibility of casing collapse due to thermal cycling during the life of the well. Several other problems are identified and their impacts are quantified and discussed.

Carson, C.C.

1982-01-01T23:59:59.000Z

488

NEW HIGH STRENGTH AND FASTER DRILLING TSP DIAMOND CUTTERS  

SciTech Connect (OSTI)

The manufacture of thermally stable diamond (TSP) cutters for drill bits used in petroleum drilling requires the brazing of two dissimilar materials--TSP diamond and tungsten carbide. The ENDURUS{trademark} thermally stable diamond cutter developed by Technology International, Inc. exhibits (1) high attachment (shear) strength, exceeding 345 MPa (50,000 psi), (2) TSP diamond impact strength increased by 36%, (3) prevents TSP fracture when drilling hard rock, and (4) maintains a sharp edge when drilling hard and abrasive rock. A novel microwave brazing (MWB) method for joining dissimilar materials has been developed. A conventional braze filler metal is combined with microwave heating which minimizes thermal residual stress between materials with dissimilar coefficients of thermal expansion. The process results in preferential heating of the lower thermal expansion diamond material, thus providing the ability to match the thermal expansion of the dissimilar material pair. Methods for brazing with both conventional and exothermic braze filler metals have been developed. Finite element modeling (FEM) assisted in the fabrication of TSP cutters controllable thermal residual stress and high shear attachment strength. Further, a unique cutter design for absorbing shock, the densification of otherwise porous TSP diamond for increased mechanical strength, and diamond ion implantation for increased diamond fracture resistance resulted in successful drill bit tests.

Robert Radtke

2006-01-31T23:59:59.000Z

489

Bioaugmentation for the treatment of oilfield drilling waste  

SciTech Connect (OSTI)

Disposal of oilfield drilling pit waste is a problem for the petroleum industry. In the past, drilling pits were covered with dirt of the waste was excavated and hauled to a landfill. Bioremediation can clean-up the waste and save the oilfield drillers money and headaches. Bioremediation is the technique of using microbes capable of metabolizing hydrocarbons into environmentally safe water and carbon dioxide. Drilling companies can utilize bioremediation to treat the petroleum wastes in-situ rather than transport the waste. BioGEE has developed a procedure to use in-situ bioremediation on drilling wastes. After environmental conditions are adjusted, hydrocarbon degrading microbes and nutrients are applied. Drilling wastes consist primarily of hydrocarbons. An average well has a total petroleum hydrocarbon (TPH) level of 44,880 PPM. Using BioGEE`s bioremediation technology, TPH levels have successfully been lowered to below the maximum allowable level of 10,000 PPM to 6,486 PPM of TPH in 47 days.

Barber, T.P. [BioGEE International, Inc., Houston, TX (United States)

1997-06-01T23:59:59.000Z

490

Numerical Simulations of Bouncing Jets  

E-Print Network [OSTI]

Bouncing jets are fascinating phenomenons occurring under certain conditions when a jet impinges on a free surface. This effect is observed when the fluid is Newtonian and the jet falls in a bath undergoing a solid motion. It occurs also for non-Newtonian fluids when the jets falls in a vessel at rest containing the same fluid. We investigate numerically the impact of the experimental setting and the rheological properties of the fluid on the onset of the bouncing phenomenon. Our investigations show that the occurrence of a thin lubricating layer of air separating the jet and the rest of the liquid is a key factor for the bouncing of the jet to happen. The numerical technique that is used consists of a projection method for the Navier-Stokes system coupled with a level set formulation for the representation of the interface. The space approximation is done with adaptive finite elements. Adaptive refinement is shown to be very important to capture the thin layer of air that is responsible for the bouncing.

Bonito, Andrea; Lee, Sanghyun

2015-01-01T23:59:59.000Z

491

A 'BOOSTED FIREBALL' MODEL FOR STRUCTURED RELATIVISTIC JETS  

SciTech Connect (OSTI)

We present a model for relativistic jets which generates a particular angular distribution of Lorentz factor and energy per solid angle. We consider a fireball with specific internal energy E/M launched with bulk Lorentz factor ? {sub B}. In its center-of-momentum frame the fireball expands isotropically, converting its internal energy into radially expanding flow with asymptotic Lorentz factor ?{sub 0} ? E/M. In the lab frame the flow is beamed, expanding with Lorentz factor ? = 2?{sub 0}? {sub B} in the direction of its initial bulk motion and with characteristic opening angle ?{sub 0} ? 1/? {sub B}. The flow is jet-like with ??{sub 0} ? 2?{sub 0} such that jets with ? > 1/?{sub 0} are naturally produced. The choice ?{sub 0} ? ? {sub B} ? 10 yields a jet with ? ? 200 on-axis and angular structure characterized by opening angle ?{sub 0} ? 0.1 of relevance for cosmological gamma-ray bursts (GRBs), while ? {sub B} ?> 1 may be relevant for low-luminosity GRBs. The model produces a family of outflows, of relevance for different relativistic phenomena with structures completely determined by ?{sub 0} and ? {sub B}. We calculate the energy per unit solid angle for the model and use it to compute light curves for comparison with the widely used top-hat model. The jet break in the boosted fireball light curve is greatly subdued when compared to the top-hat model because the edge of the jet is smoother than for a top-hat. This may explain missing jet breaks in afterglow light curves.

Duffell, Paul C.; MacFadyen, Andrew I., E-mail: pcd233@nyu.edu, E-mail: macfadyen@nyu.edu [Center for Cosmology and Particle Physics, New York University, NY (United States)

2013-10-10T23:59:59.000Z

492

Surface Damage and Treatment by Impact of a Low Temperature Nitrogen Jet  

SciTech Connect (OSTI)

Nitrogen jets under high pressure and low temperature have been introduced recently. The process consists in projecting onto a surface a low temperature jet obtained from releasing the liquid nitrogen stored in a high pressure tank (e.g. 3000 bars) through a nozzle. It can be used in a range of industrial applications, including surface treatment or material removal through cutting, drilling, striping and cleaning. The process does not generate waste other than the removed matter, and it only releases neutral gas into the atmosphere. This work is aimed at understanding the mechanisms of the interaction between the jet and the material surface. Depending on the impacted material, the thermo-mechanical shock and blast effect induced by the jet can activate a wide range of damage mechanisms, including cleavage, crack nucleation and spalling, as well as void expansion and localized ductile failure. The test parameters (standoff distance, dwell time, operating pressure) play a role in selecting the dominant damage mechanism, but combinations of these various modes are usually present. Surface treatment through phase transformation or grain fragmentation in a layer below the surface can also be obtained by adequate tuning of the process parameters. In the current study, work is undertaken to map the damage mechanisms in metallic materials as well as the influence of the test parameters on damage, along with measurements of the thermo-mechanical conditions (impact force, temperature) in the impacted area.

Laribou, Hicham; Fressengeas, Claude; Entemeyer, Denis; Jeanclaude, Veronique [LPMM - Laboratoire de Physique et Mecanique des Materiaux, Universite Paul Verlaine-Metz / CNRS, Ile du Saulcy, Metz, 57045 (France); Tazibt, Abdel [CRITT TJF and U, Laboratoire Jet Fluide Tres Hautes Pressions, Bar-le-Duc, 55000 (France)

2011-01-17T23:59:59.000Z

493

Drilling/producing depths; Two records and a revision  

SciTech Connect (OSTI)

This paper reports that record depths for natural gas or oil well drilling or producing continue to be rare occurrences, although one or two still come in each year. Records fell in Texas Railroad Commission (RRC) District 9 and in the California area of the Minerals Management Service (MMS) Pacific Outer Continental Shelf (OCS) in 1990. Deep drilling and production has traditionally been defined as well depths greater than 15,000 ft. Smith Tool reported that 9.4% of all active rotary rigs were dedicated to targets below 15,000 ft at the beginning of 1991. Deep rigs had dropped to 8.1% by year-end 1991, but remained above the 1989 and 1990 levels of 8.4 and 7.6%, respectively. In 1988 about 11% of active rigs were drilling deep at any given time.

Not Available

1992-02-01T23:59:59.000Z

494

Drilling problems don't slow Williston basin operators  

SciTech Connect (OSTI)

In spite of the Williston basin's tough drilling environment, exploration activity has continued to increase, especially around northwestern North Dakota's Nesson anticline. The foremost drilling problem is the Charles slat section, which lies 8000-9000 ft deep; this section requires a salt-saturated mud system with additives, a heavyweight pipe, and a careful cementing job. Nevertheless, big discoveries - such as Texaco Inc.'s gas well in McKenzie Co., which tested at 9.9 million CF/day and 179 bbl/day of condensate - will spur exploration for some time since most of the basin remains untouched. Moreover, drilling engineers will soon be able to mitigate, if not eliminate, the typical difficulties encountered.

Moore, S.D.

1982-01-01T23:59:59.000Z

495

Plasma jet ignition device  

DOE Patents [OSTI]

An ignition device of the plasma jet type is disclosed. The device has a cylindrical cavity formed in insulating material with an electrode at one end. The other end of the cylindrical cavity is closed by a metal plate with a small orifice in the center which plate serves as a second electrode. An arc jumping between the first electrode and the orifice plate causes the formation of a highly-ionized plasma in the cavity which is ejected through the orifice into the engine cylinder area to ignite the main fuel mixture. Two improvements are disclosed to enhance the operation of the device and the length of the plasma plume. One improvement is a metal hydride ring which is inserted in the cavity next to the first electrode. During operation, the high temperature in the cavity and the highly excited nature of the plasma breaks down the metal hydride, liberating hydrogen which acts as an additional fuel to help plasma formation. A second improvement consists of a cavity insert containing a plurality of spaced, metal rings. The rings act as secondary spark gap electrodes reducing the voltage needed to maintain the initial arc in the cavity.

McIlwain, Michael E. (Franklin, MA); Grant, Jonathan F. (Wayland, MA); Golenko, Zsolt (North Reading, MA); Wittstein, Alan D. (Fairfield, CT)

1985-01-15T23:59:59.000Z

496

Gender determination of avian embryo  

DOE Patents [OSTI]

Disclosed is a method for gender determination of avian embryos. During the embryo incubation process, the outer hard shells of eggs are drilled and samples of allantoic fluid are removed. The allantoic fluids are directly introduced into an ion mobility spectrometer (IMS) for analysis. The resulting spectra contain the relevant marker peaks in the positive or negative mode which correlate with unique mobilities which are sex-specific. This way, the gender of the embryo can be determined.

Daum, Keith A. (Idaho Falls, ID); Atkinson, David A. (Idaho Falls, ID)

2002-01-01T23:59:59.000Z

497