Powered by Deep Web Technologies
Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fact Sheet for Industrial Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Industrial Facilities May 2012 Overview Public utilities in the Pacific Northwest serve more than 2,200 megawatts of industrial load, making industrial sector users a vitally...

2

Industrial Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Facilities Industrial Facilities Industrial Facilities October 8, 2013 - 10:14am Addthis The Federal Energy Management Program (FEMP) encourages Federal agencies requiring assistance with implementing energy-efficiency measures in their industrial facilities to hire a U.S. Department of Energy Industrial Assessment Center (IAC) for assessment services. The following resources can be used to plan and implement industrial facility energy-efficiency projects. Technical Publications: The Advanced Manufacturing Office (AMO) website offers fact sheets, handbooks, and self-assessment manuals covering steam system efficiency, fundamentals of compressed air systems, motor systems management, and other topics. Tools: The AMO website offers valuable software tools for evaluating

3

Industrial Facility Best Practice Scorecard  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

BP Scorecard 20120620 ( 2012Georgia Tech Research Corporation) Superior Energy Performance CM Industrial Facility Best Practice Scorecard Rev. 9 5 December 2012 Replaces rev. 8...

4

User Facilities for Industry 101  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Satellite!Workshop!10!-!User!Facilities!for!Industry!101! Organizers:+Andreas+Roelofs+(CNM),+Jyotsana+Lal+(APS),+Katie+Carrado+Gregar+(CNM),+and+Susan+Strasser+ (APS)! ! In! order! to! increase! awareness! of! the! industrial! community! to! Argonne! National! Laboratory! user! facilities,!the!Advanced!Photon!Source!(APS),!the!Center!for!Nanoscale!Materials!(CNM)!and!the!Electron! Microscopy!Center!(EMC)!welcomed!industrial!scientists,!engineers!and!related!professionals!to!a!oneC day! workshop! to! learn! more! about! Argonne's! National! Laboratory! and! the! capabilities/techniques! available! for! their! use.! The! workshop! showcased! several! successful! industrial! user! experiments,! and! explained! the! different! ways! in! which! industrial! scientists! can! work! at! Argonne! or! with! Argonne!

5

Location logistics of industrial facilities  

E-Print Network [OSTI]

is not growing rapidly or 1s very small, they may not carry a staff from wh1ch the necessary people for a 25 s1te selection team can be drawn. Also, quite possibly, a company may not be involved in the site selection process for expansion. Instead, they may... location and site selection. This data was gathered through library research, atten- dance of various industr1al development conferences, sol1citation of mater1als from individuals currently involved with industrial facil1ties location, and various...

Hammack, William Eugene

2012-06-07T23:59:59.000Z

6

EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...  

Broader source: Energy.gov (indexed) [DOE]

2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412:...

7

Virginia Regional Industrial Facilities Act (Virginia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Regional Industrial Facilities Act (Virginia) Regional Industrial Facilities Act (Virginia) Virginia Regional Industrial Facilities Act (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Industry Recruitment/Support Provider Regional Industrial Facility Authorities The Virginia Regional Industrial Facilities Act is meant to aid the economic development of localities within the Commonwealth. The Act provides a mechanism for localities to establish regional industrial facility authorities, enabling them to pool financial resources to stimulate economic development. The purpose of a regional industrial

8

Superior Energy Performance Industrial Facility Best Practice Scorecard  

Broader source: Energy.gov [DOE]

Industrial facilities seeking to use the Mature Energy Pathway to qualify for Superior Energy Performance® (SEP™) certification will use the SEP Industrial Facility Best Practice Scorecard to assess the maturity of the facility’s energy management system. This scorecard describes credits that can be earned by implementing energy management system activities, processes or procedures that are “above and beyond” the requirements of ISO 50001.

9

Stability analysis of pipe racks for industrial facilities.  

E-Print Network [OSTI]

??Pipe rack structures are used extensively throughout industrial facilities worldwide. While stability analysis is required in pipe rack design per the AISC Specification for Structural… (more)

Nelson, David Aaron

2012-01-01T23:59:59.000Z

10

Demand Response Enabling Technologies and Approaches for Industrial Facilities  

E-Print Network [OSTI]

, there are also huge opportunities for demand response in the industrial sector. This paper describes some of the demand response initiatives that are currently active in New York State, explaining applicability of industrial facilities. Next, we discuss demand...

Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

2005-01-01T23:59:59.000Z

11

Superior Energy Performance Industrial Facility Best Practice...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Facility Best Practice Scorecard to assess the maturity of the facility's energy management system. This scorecard describes credits that can be earned by implementing...

12

Industrial Solid Waste Landfill Facilities (Ohio) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) Industrial Solid Waste Landfill Facilities (Ohio) < Back Eligibility Agricultural Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Utility Program Info State Ohio Program Type Environmental Regulations Provider Ohio Environmental Protection Agency This chapter of the law establishes that the Ohio Environmental Protection Agency provides rules and guidelines for landfills, including those that treat waste to generate electricity. The law provides information for permitting, installing, maintaining, monitoring, and closing landfills. There are no special provisions or exemptions for landfills used to generate electricity. However, the law does apply to landfills that do

13

Two Facilities, One Goal: Advancing America's Wind Industry | Department  

Broader source: Energy.gov (indexed) [DOE]

Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry November 27, 2013 - 1:35pm Addthis Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University The Clemson University Wind Turbine Drivetrain Testing Facility in North Charleston, South Carolina will test large, commercial scale turbines. | Photo courtesy of Clemson University The Clemson University Wind Turbine Drivetrain Testing Facility in North

14

Two Facilities, One Goal: Advancing America's Wind Industry | Department  

Broader source: Energy.gov (indexed) [DOE]

Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry November 27, 2013 - 1:35pm Addthis Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University The Clemson University Wind Turbine Drivetrain Testing Facility in North Charleston, South Carolina will test large, commercial scale turbines. | Photo courtesy of Clemson University The Clemson University Wind Turbine Drivetrain Testing Facility in North

15

Daylighting Application and Effectiveness in Industrial Facilities  

E-Print Network [OSTI]

Before the advent of practical mercury vapor and fluorescent lighting, the only available artificial lighting for industrial buildings was incandescent. The illumination of active industrial workspaces with incandescent lighting is difficult, so...

McCowan, B.; Birleanu, D.

2005-01-01T23:59:59.000Z

16

Estimating Fire Risks at Industrial Nuclear Facilities  

SciTech Connect (OSTI)

The Savannah River Site (SRS) has a wide variety of nuclear production facilities that include chemical processing facilities, machine shops, production reactors, and laboratories. Current safety documentation must be maintained for the nuclear facilities at SRS. Fire Risk Analyses (FRAs) are used to support the safety documentation basis. These FRAs present the frequency that specified radiological and chemical consequences will be exceeded. The consequence values are based on mechanistic models assuming specific fire protection features fail to function as designed.

Coutts, D.A.

1999-07-12T23:59:59.000Z

17

Ennis Laundry Industrial Low Temperature Geothermal Facility | Open Energy  

Open Energy Info (EERE)

Ennis Laundry Industrial Low Temperature Geothermal Facility Ennis Laundry Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Ennis Laundry Industrial Low Temperature Geothermal Facility Facility Ennis Laundry Sector Geothermal energy Type Industrial Location Ennis, Montana Coordinates 45.3488165°, -111.7296968° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

18

Oregon Trail Mushrooms Industrial Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Oregon Trail Mushrooms Industrial Low Temperature Geothermal Facility Oregon Trail Mushrooms Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Trail Mushrooms Industrial Low Temperature Geothermal Facility Facility Oregon Trail Mushrooms Sector Geothermal energy Type Industrial Location Vale, Oregon Coordinates 43.9821055°, -117.2382311° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

19

Incremental Implementation of Energy Management at Industrial Facilities  

E-Print Network [OSTI]

The essential elements of a sustainable energy management program at industrial facilities are defined in the ANSI/MSE 2000 Management System for Energy standard document. Although many organizations have expressed interest in improving their energy...

Brown, M.; Key, G.

2005-01-01T23:59:59.000Z

20

Cool Storage Economic Feasibility Analysis for a Large Industrial Facility  

E-Print Network [OSTI]

The analysis of economic feasibility for adding a cool storage facility to shift electric demand to off-peak hours for a large industrial facility is presented. DOE-2 is used to generate the necessary cooling load profiles for the analysis...

Fazzolari, R.; Mascorro, J. A.; Ballard, R. H.

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The Solarex Solar Power Industrial Facility  

E-Print Network [OSTI]

kWh lead-acid storage batteryj and a micro-canputer controller capable of fully au 0 mated operations. This systEl11 has been optimally designed to integrate with the highly energy conservative building of the facility and the law-energy USif... conv rter be n he source of' power and loads improving reliability, and gives us eA~erience with an assortment of OC powered loads. 2.6 Batt ry Th battery bank consists of 480 2-volt cells connected in four series strings of 120 1s r string...

Macomber, H. L.; Bumb, D. R.

1984-01-01T23:59:59.000Z

22

Tavistock Facility: ENERGY STAR Challenge for Industry Plant Profile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Tavistock Facility Tavistock Facility Saputo Dairy Products Canada G.P. 284 Hope Street RR#2 Tavistock, Ontario, N0B 2R0, Canada The Tavistock facility was built in 1972 as a cheddar cheese plant for a local co-op. Following its co-op years, this facility was owned by McCain (1983-1999), Dairyland (1999-2001) and Saputo. In 2001, Saputo acquired the Tavistock facility as part of its Dairyland acquisition and expansion in Canadian provinces. The plant has expanded significantly in the last 15 years, and now includes a large cheese cutting-and-wrapping department, as well as a whey drying department. Since 1999, the town of Tavistock has been known for hosting the annual World Crokinole Championship. The Tavistock facility achieved the ENERGY STAR Challenge for Industry in 2012, in one

23

EIS-0007: Low Btu Coal Gasification Facility and Industrial Park  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this environmental impact statement which evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky.

24

Medical surveillance and programs on industrial hygiene at RCRA facilities  

SciTech Connect (OSTI)

Some special areas where much progress in industrial hygiene and safety has been made in the past few years are; training, personal protective equipment, uniforms, personal monitoring, area monitoring, and medical surveillance. Before one can begin to construct programs for worker protection, some knowledge of potential exposures must be gained. The best place to start is the Waste Analysis Plan, and the list of wastes that a particular site is authorized to receive. Waste Codes are listed within a facility`s Part A and Part B permits. Actual facility receipt of wastes are well documented within Load Records and other documentation. A facility`s training program forms the heart of a health and safety program. Every TSD facility should have developed a matrix of job titles and required training. Every facility must also make a commitment to providing a wide range of personal protective equipment, including a wide array of disposables. Some facilities will benefit from the occasional use of the newer respirator quantitative fit-testing devices. All facilities are urged to rent or borrow this type of equipment periodically. Quantitative respirator fit-testers are capable of revealing important deficiencies in a respirator program. Providing uniforms is a newer means of protecting workers. The use of uniforms is an effective means for addressing the idea of carry-home-waste. The use of disposables including boots, must be integrated into a Uniform Program if the program is to be effective. In addition, employees must strictly understand that uniforms must not leave the facility at any time, including lunch time.

Murphy, T.E. [Ash Grove Cement Co., Overland Park, KS (United States)

1994-12-31T23:59:59.000Z

25

Thermal Storage Applications for Commercial/Industrial Facilities  

E-Print Network [OSTI]

THERMAL STORAGE APPLICATIONS FOR COMMERCIAL/INDUSTRIAL FACILITIES Roger 1. Knipp, PE. Dallas Power & Light Company Dallas, Texas ABSTRACT Texas Utilities Electric Company has been actively encouraging installations of thermal storage... since 1981. Financial incentives and advantageous rates can make thermal storage an attractive cooling concept in Texas Utilities Electric Company service area. Currently, 14 million square feet of commercial building space in Dallas is either...

Knipp, R. L.

26

Mercury control challenge for industrial boiler MACT affected facilities  

SciTech Connect (OSTI)

An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

NONE

2009-09-15T23:59:59.000Z

27

Electric generating or transmission facility: determination of rate-making  

Broader source: Energy.gov (indexed) [DOE]

Electric generating or transmission facility: determination of Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) Electric generating or transmission facility: determination of rate-making principles and treatment: procedure (Kansas) < Back Eligibility Municipal/Public Utility Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Generating Facility Rate-Making Provider Kansas Corporation Commission This legislation permits the KCC to determine rate-making principles that will apply to a utility's investment in generation or transmission before constructing a facility or entering into a contract for purchasing power. There is no restriction on the type or the size of electric generating unit

28

Resuspension of Soil as a Source of Airborne Lead near Industrial Facilities and Highways  

Science Journals Connector (OSTI)

Resuspension of Soil as a Source of Airborne Lead near Industrial Facilities and Highways ... To examine the potential significance of this mechanism, surface soil samples with a range of bulk soil Pb concentrations were obtained near five industrial facilities and along roadsides and were resuspended in a specially designed laboratory chamber. ...

Thomas M Young; Deo A. Heeraman; Gorkem Sirin; Lowell L. Ashbaugh

2002-05-04T23:59:59.000Z

29

ET Industries: Noncompliance Determination (2012-SE-2902) | Department of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Noncompliance Determination (2012-SE-2902) Noncompliance Determination (2012-SE-2902) ET Industries: Noncompliance Determination (2012-SE-2902) May 24, 2013 DOE issued a Notice of Noncompliance Determination to ET Industries, Inc. finding that showerhead basic model TH-1 does not comport with the water conservation standards. DOE determined the product was noncompliant based on DOE testing. ET Industries must immediately notify each person (or company) to whom ET Industries distributed the noncompliant products that the product does not meet Federal standards. In addition, ET Industries must provide to DOE documents and records showing the number of units ET Industries distributed and to whom. The manufacturer and/or private labeler of the product may be subject to civil penalties. ET Industries: Noncompliance Determination (2012-SE-2902)

30

Determining Memory Use | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Allinea DDT Core File Settings Determining Memory Use Using VNC with a Debugger bgqstack gdb Coreprocessor TotalView on BGQ Systems Performance Tools & APIs Software & Libraries...

31

Zoe Industries: Noncompliance Determination (2011-SW-2912) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Zoe Industries: Noncompliance Determination (2011-SW-2912) Zoe Industries: Noncompliance Determination (2011-SW-2912) Zoe Industries: Noncompliance Determination (2011-SW-2912) September 28, 2011 DOE issued a Notice of Noncompliance Determination to Zoe Industries, Inc. finding that Giessdorf 150043 model, a showerhead, does not comport with the water conservation standards. DOE determined the product was noncompliant based on DOE testing. Zoe must immediately notify each person (or company) to whom Zoe distributed the noncompliant products that the product does not meet Federal standards. In addition, Zoe must provide to DOE documents and records showing the number of units Zoe distributed and to whom. The manufacturer and/or private labeler of the product may be subject to civil penalties. Zoe Industries: Noncompliance Determination (2011-SW-2912)

32

Two Facilities, One Goal: Advancing America’s Wind Industry  

Office of Energy Efficiency and Renewable Energy (EERE)

Two state-of-the-art wind turbine drivetrain test facilities are now open for business: the Clemson University Wind Turbine Drivetrain Testing Facility in South Carolina and a National Renewable Energy Laboratory dynamometer at the National Wind Technology Center in Colorado.

33

Two Facilities, One Goal: Advancing America's Wind Industry ...  

Office of Environmental Management (EM)

November 27, 2013 - 12:00am Addthis Two state-of-the-art wind turbine drivetrain test facilities are now open for business: the Clemson University Wind Turbine Drivetrain...

34

Energy Responsibility Accounting - An Energy Conservation Tool for Industrial Facilities  

E-Print Network [OSTI]

As energy costs continue to rise faster than the rate of inflation, industrial energy management becomes a more important issue in the control of manufacturing costs. Energy Responsibility Accounting (ERA) is a tool which improves management...

Kelly, R. L.

1980-01-01T23:59:59.000Z

35

Determination of dilution factors in a nuclear facility  

E-Print Network [OSTI]

location was found to be 909. From the results of this study it was determined that the described method can be used to determine dilu- tion factors in any facility effectively. ACKNOWLEDGENENTS I wish to express my sincere appreciation to Dr. R. D... and diverse studies. Atmospheric dispersion of particles and gases from the atomic energy field is constantly being studied. Emperical dispersion calculations for aerosol releases into the atmosphere are well known ' . In addition, (1, 2) studies...

Sandel, Philip Sidney

1972-01-01T23:59:59.000Z

36

Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support LANL's security mission DARHT accelerator DARHT's electron accelerators use large, circular aluminum structures to create magnetic fields that focus and steer a stream of electrons down the length of the accelerator. Tremendous electrical energy is added along the way. When the stream of high-speed electrons exits the accelerator it is

37

US Air Force Facility Energy Management Program - How Industry Can Help the Air Force Meet Its Objectives  

E-Print Network [OSTI]

This paper describes the Air Force's facility energy management program including how industry can help the Air Force meet its facility energy objectives. Background information on energy use and energy conservation efforts are presented to give...

Holden, P. C.; Kroop, R. H.

1983-01-01T23:59:59.000Z

38

Identification of Process Energy and Pollution Reduction Opportunities at DoD Industrial Facilities  

E-Print Network [OSTI]

IDENTIFICATION OF PROCESS ENERGY AND POLLUTION REDUCTION OPPORTUNITIES AT DOD INDUSTRIAL FACILITIES Mike C. Lin Jeri 1. Northrup Principal Investigator Principal Investigator USACERL USACERL Champaign, IL Champaign, IL ABSTRACT Industrial... Information System (DEIS). DEIS is the infonnation system with which the DoD monitors its supplies and consumption of energy. It is primarily used as an energy management tool, providing infonnation about each fuel used within the DoD, including bulk...

Lin, M. C.; Northrup, J. I.; Smith, E. D.

39

Restructuring, Tight Budgets and Executive Order 13123 Create New Incentives to Reduce Waste in Federal Industrial Facilities  

E-Print Network [OSTI]

This paper discusses the positive impact that electric utility industry restructuring, a reduction in the size of government operations, and the recent Presidential Executive Order 13123 should have on energy use in Federal industrial facilities...

Verdict, M. E.

40

Determination of tritiated formaldehyde in effluents from tritium facilities  

SciTech Connect (OSTI)

Recent observations suggested that formal-dehyde can be incorporated in vegetation at a very high rate. In this paper, the authors develop a methodology for determining tritiated formaldehyde (CHTO) in gaseous effluent containing HTO and HT as dominant species. CHTO being very soluble in water is collected in a solution of carrier formaldehyde. This carrier is necessary for precipitating for formaldehyde derivative of dimedone and collecting it by filtration. The precipitate, which contains the formaldehyde hydrogens, is freed from exchangeable tritium, dried in oven, and combusted to water for tritium determination. CHTO can thus be separated from HTO with a high efficiency, leading to the possibility of determining accurately 1 Bq of CHTO in as much as 5 {times} 10{sup 4} Bq of HTO. The methodology has been applied in preliminary experiments to determine the ratio of CHTO to HTO in effluent from a tritium-handling facility and effluent released from solid miscellaneous wastes.

Belot, Y.; Camus, H.; Marini, T. (Commissariat a l'Energie Atomique, DPEI/SERGD, BP 6, F-92265 Fontenay aux Roses Cedex (FR))

1992-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Determination of heliostat and concentrator size for solar furnace facilities  

SciTech Connect (OSTI)

There are basically two types of solar furnaces -- a vertical-beam or a horizontal-beam facility. A vertical-beam facility uses movable heliostats to redirect the incoming solar energy vertically upward to a stationary parabolid. A horizontal-beam furnace uses the heliostat to redirect the incoming energy horizontally to the paraboloid. This paper presents a method to determine the optimum size of the heliostat and/or concentrator to meet predetermined design criteria. Usually the concentrator size is fixed by the temperature and flux-density required at the test plane and the problem is to size the heliostat so the facility can be used for a certain length of time each day during the entire year. However, the method can also be used when the heliostat size is fixed and the concentrator size must be determined. The analysis considers energy incident from the sun being reflected from a flat spectral surface (heliostat) onto a concentrating surface (concentrator), which then redirects the energy to a focal spot that can then be used as a high temperature, high-flux density source. The analysis uses the basic relations of geometric optics and considers only the central ray of the incoming cone of energy from the sun. Errors involved with this assumption will be minimal for most cases, but if deemed necessary, the reflected cone can be accounted for in the reflected ray from the heliostat.

Mulholland, G.P.

1983-08-01T23:59:59.000Z

42

Trois-Rivieres Facility: ENERGY STAR Challenge for Industry Plant Profile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Trois-Rivières Facility Trois-Rivières Facility Saputo Dairy Products Canada G.P. 700 Radisson Street Trois-Rivières, Québec, G9A 2E1, Canada The Trois-Rivières facility was initially built in 1919 as fluid milk plant for Crèmerie des Trois-Rivières (CTR). Over the years, it has diversified its production and included products such as ice cream, butter, fluid milk beverages and juices. In 1997, Saputo acquired CTR and its Trois-Rivières facility as part of its expansion in eastern Canada. Trois-Rivières is Canada's oldest industrial city, with its first foundry established in 1738. This city was also known as the pulp and paper industry capital of the world from the late 1920s until the early 1960s. The Trois-Rivières facility achieved the ENERGY STAR Challenge for Industry in 2012, in

43

The research bench meets industry: New facility scales up production of  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Video: Scenes from Argonne's Materials Engineering Research Facility Video: Scenes from Argonne's Materials Engineering Research Facility Scenes from Argonne's Materials Engineering Research Facility Experiments can keep researchers on their feet all day long. Process R&D chemist Kris Pupek moves between fume hoods in the Materials Engineering Research Facility's process research and development lab, while lab-mate Trevor Dzwiniel records data in his notebook. Experiments can keep researchers on their feet all day long. Process R&D chemist Kris Pupek moves between fume hoods in the Materials Engineering Research Facility's process research and development lab, while lab-mate Trevor Dzwiniel records data in his notebook. Argonne material engineer YoungHo Shin prepares a coin cell battery in a glovebox in the Materials Engineering Research Facility. Once it is prepared, the battery can be tested to determine the energy output characteristics of a cathode material for lithium-ion batteries.

44

Tuesday Webcast for Industry: Key Energy-Saving Activities for Smaller Facilities  

Broader source: Energy.gov (indexed) [DOE]

ADVANCED MANUFACTURING OFFICE Tuesday Webcast for Industry Key Energy-Saving Activities for Smaller Facilities Webcast Questions and Answers: January 10, 2012 Presenters: Tom Wenning, Technical Account Manager, Oak Ridge National Laboratory Richard D. Feustel, Corporate Energy Services Manager, Briggs & Stratton Corporation The U.S. Department of Energy's (DOE's) Office of Advanced Manufacturing Program (AMO) hosts a series of webcasts on the first Tuesday of every month from 2:00 p.m. to 3:00 p.m. Eastern Standard Time. The series' objective is to help industrial personnel learn about software

45

Determination of DCGL for Site Closure of Nuclear Facility  

SciTech Connect (OSTI)

To measure the degree of radioactive contamination of industrial facilities using depleted uranium as catalysts, and to release the site on this basis, RESRAD 6.21 was used to radiological impact assessment. Samples were taken from 20 points. Among the 20 sampling points, the highest point artificially contaminated (upper and lower part of point 16) was selected, and radiological impact was assessed and assessment and DCGL (Derived concentration guideline level) was computed. As a result, individual doses by nuclide were U-234: 4.162E-03 mSv/yr, U-235: 8.762E-04 mSv/yr, U-238: 2.204E-02 mSv/yr. In addition, the domestic dose standard relating to self-disposal and IAEA TECDOC-855 Clearance levels define the individual dose as 10 {mu}Sv. On this basis DCGL (Derived concentration guideline level) was computed, and it was 6.35E-02 Bq/g for U-238. (authors)

Kim, J.; Shin, S.; Whang, J. [Kyung Hee Univ., Dept. of Nuclear Engineering (Korea, Republic of)

2007-07-01T23:59:59.000Z

46

Tuesday Webcast for Industry: Key Energy-Saving Projects for Smaller Facilities  

Broader source: Energy.gov (indexed) [DOE]

Key Energy-Saving Key Energy-Saving Projects for Smaller Facilities January 10, 2012 Program Name or Ancillary Text eere.energy.gov Key Energy-Saving Activities for Small and Medium Sized Facilities Thomas Wenning Oak Ridge National Laboratory Tuesday Webcast for Industry January 10, 2012 3 | Advanced Manufacturing Office eere.energy.gov Percent of Total U.S. Manufacturing Energy Small 5% Mid-Size 37% Large 58% 0 50000 100000 150000 200000 250000 U.S. Manufacturing Plants: By Size Small Plants Mid-Size Plants Large Plants Number of U.S. Plants All Plants 84,298 112,398 4,014 200,710 System-Specific Assessments Crosscutting Assessments Industry Breakdown 4 | Advanced Manufacturing Office eere.energy.gov 4,014 large plants use 58% of the energy Energy Saving

47

DETERMINATION OF IMPORTANCE EVALUATION FOR THE SURFACE EXPLORATORY STUDIES FACILITY  

SciTech Connect (OSTI)

This DIE applies to the surface facilities component of the Yucca Mountain Site Characterization Project (W) ESF. The ESF complex-including surface and subsurface accommodations--encompasses an area that is approximately six miles wide and nine miles long (approximately 30,000 acres total) (United States Department of Energy [DOE] 1997, p. 9.04). It is located on federally withdrawn lands, near the southwest border of the Nevada Test Site (NTS) in southern Nevada (DOE 1997, p. 9.04). Site characterization activities are conducted within the subsurface ESF to obtain the information necessary to determine whether the Yucca Mountain Site is suitable as a geologic repository for spent nuclear fuel and high-level radioactive waste. Most ESF surface facilities are located within the Conceptual Controlled Area Boundary (CCAB) (DOE 1997, p. 9.04), with the exception of the southeastern most portions of the H-Road and the Water Supply System. Various SBT activities are also conducted throughout the Yucca Mountain region as a part of the overall site-characterization effort. In general, the DIE for SBT Activities (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 1998a) evaluates activities associated with SBT. Potential test-to-test interference and waste isolation impacts associated with SBT activities are also evaluated in CRWMS M&O (1998a).

C.J. Byrne

2000-07-25T23:59:59.000Z

48

Certified Facilities  

Broader source: Energy.gov [DOE]

Industrial Leaders: The industrial facilities shown below are among the first to earn certification for Superior Energy Performance® (SEP™).

49

Partnering with Industry to Advance Biofuels and Bioproducts (Fact Sheet), Integrated Biorefinery Research Facility (IBRF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

operated by the Alliance for Sustainable Energy, LLC. Partnering with Industry to Advance Biofuels and Bioproducts Integrated Biorefinery Research Facility The IBRF can handle high concentrations of solids in the pretreatment and enzymatic hydrolysis steps, a key factor in reducing costs. Bioreactors from 10 L to 9000 L and separation and concentration equipment are housed in the IBRF allowing for biomass conversion processes to be fully integrated. Access to Experts While using the IBRF, industry partners have access to NREL's world-renowned experts, process equipment, and systems that can be used to develop and evaluate commercial processes for the production of biobased products and fuels. In addition, partners have access to NREL's state-of-the-art molecular

50

The October 17, 1989, Loma Prieta Earthquake: Effects on selected power and industrial facilities  

SciTech Connect (OSTI)

The Loma Prieta Earthquake of Tuesday, October 17, 1989, was the most damaging seismic event in California since the great San Francisco Earthquake of 1906. The earthquake created Modified Mercalli Intensities (MMI) of 7 or 8 throughout the northern Monterey and southern San Francisco Bay areas. This heavily shaken region included over 5000 square kilometers, and an urban population of over 3 million. This region includes a wide variety of modern industry, ranging from conventional smokestack'' operations to electronics and information processing facilities. The area nearest the fault rupture contains some of the largest power generation and transmission stations operated by the regional utility -- Pacific Gas Electric (PG E). This report summarizes the latest study in a program of post-earthquake investigations sponsored by The Electric Power Research Institute (EPRI). The Loma Prieta Earthquake created the largest amount of potentially useful data of any EPRI study to date. Over two dozen electric power and industrial facilities were reviewed following the earthquake. The following sections provide an overview of some of the primary observations. 16 figs.

Swan, S.W.; Roche, T.R. (EQE Engineering, Inc., San Francisco, CA (United States)); Schiff, A.J. (Precision Measurement Instruments, Los Altos Hills, CA (United States))

1991-09-01T23:59:59.000Z

51

INDUSTRIAL CONTROL SYSTEM CYBER SECURITY: QUESTIONS AND ANSWERS RELEVANT TO NUCLEAR FACILITIES, SAFEGUARDS AND SECURITY  

SciTech Connect (OSTI)

Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's ability to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.

Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

2011-07-01T23:59:59.000Z

52

Determining Levels of Productivity and Efficiency in the Electricity Industry  

SciTech Connect (OSTI)

A few major themes run fairly consistently through the history of productivity and efficiency analysis of the electricity industry: environmental controls, economies of scale, and private versus government.

Abbott, Malcolm

2005-11-01T23:59:59.000Z

53

Recreation motivators and facility factors as relative determinants of urban outdoor recreation behavior and satisfaction  

E-Print Network [OSTI]

RECREATION MOTIVATORS AND FACILITY FACTORS AS RELATIVE DETERMINANTS OF URBAN OUTDOOR RECREATION BEHAVIOR AND SATISFACTION A Thesis by JEFFREY STEPHEN MILKES Submitted to the Graduate College of Texas A8M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1987 Major Subject: Recreation and Resource Development RECREATION MOTIVATORS AND FACILITY FACTORS AS RELATIVE DETERMINANTS OF URBAN OUTDOOR RECREATION BEHAVIOR AND SATISFACTION A Thesis...

Milkes, Jeffrey Stephen

2012-06-07T23:59:59.000Z

54

Chemical resistance determination test scheme and rating system development for industrial glove evaluation  

E-Print Network [OSTI]

CHEMICAL RESISTANCE DETERMINATION TEST SCHEME AND RATING SYSTEM DEVELOPMENT FOR INDUSTRIAL GLOVE EVALUATION A Thesis by WILLIAM JOSEPH CORNILS Submitted to the Graduate College of Texas A&M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1981 Major Subject: Industrial Hygiene CHEMICAL RESISTANCE DETERMINATION TEST SCHEME AND RATING SYSTEM DEVELOPMENT FOR INDUSTRIAL GLOVE EVALUATION A Thesis by WILLIAM JOSEPH CORNILS Approved...

Cornils, William Joseph

2012-06-07T23:59:59.000Z

55

Determination of elements for Industrial Hygiene and Safety Engineering programs at the Masters level  

E-Print Network [OSTI]

DETERMINATION OF ELEMENTS FOR INDUSTRIAL HYGIENE AND SAFETY ENGINEERING PROGRAMS AT THE MASTERS LEVEL A Thesis by JAMES EDWARD DUKE JR. Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Industrial Hygiene DETERMINATION OF ELEMENTS FOR INDUSTRIAL HYGIENE AND SAFETY ENGINEERING PROGRAM% AT THE MASTERS LEVEL A Thesis by JAMES EDWARD DUKE JR. Submitted to Texas...

Duke, James Edward

1992-01-01T23:59:59.000Z

56

Industrial  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Products Industrial Institutional Multi-Sector Residential Momentum Savings Regional Efficiency Progress Report Utility Toolkit Energy Smart Industrial - Energy Management...

57

Industry  

E-Print Network [OSTI]

2004). US DOE’s Industrial Assessment Centers (IACs) are anof Energy’s Industrial Assessment Center program in SMEs

Bernstein, Lenny

2008-01-01T23:59:59.000Z

58

NEPA CX Determination SS-SC-12-03 for the Stanford Research Computer Facility (SRCF)  

Broader source: Energy.gov (indexed) [DOE]

3 for the Stanford Research Computer Facility (SRCF) 3 for the Stanford Research Computer Facility (SRCF) National Environmental Policy Act (NEPA) Categorical Exclusion (CX) Determination A. SSO NEPA Control #: SS-SC-12-03 AN12038 B. Brief Description of Proposed Action: The project scope includes the construction of a new computer facility (21,500 square feet) capable of providing 3 MW of data center potential. The new two-story facility will provide infrastructure for a multitude of server racks. There are three fenced service yards outside the building, one for chillers, one for new electrical substation equipment, and one for emergency generators. The ground floor will be utilized for electrical and receiving area; the second floor will have a server room, mechanical room, conference

59

Outsourcing Ownership, Operation and Management of Industrial Facility Power Plants for the Purpose of Reducing Future Risk and Capital Requirements of the Corporation  

E-Print Network [OSTI]

For many industrial corporations, the availability of funds for maintaining and modernizing Central Utility systems is becoming more and more difficult to obtain. Total return on investments in facility infrastructure generally does not tend to meet...

Sebesta, J. J.; Schubbe, T.

60

Waste Tank Size Determination for the Hanford River Protection Project Cold Test, Training, and Mockup Facility  

SciTech Connect (OSTI)

The objective of the study was to determine the minimum tank size for the Cold Test Facility process testing of Hanford tank waste. This facility would support retrieval of waste in 75-ft-diameter DSTs with mixer pumps and SSTs with fluidic mixers. The cold test model will use full-scale mixer pumps, transfer pumps, and equipment with simulated waste. The study evaluated the acceptability of data for a range of tank diameters and depths and included identifying how the test data would be extrapolated to predict results for a full-size tank.

Onishi, Yasuo; Wells, Beric E.; Kuhn, William L.

2001-03-30T23:59:59.000Z

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES  

SciTech Connect (OSTI)

The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

2002-02-25T23:59:59.000Z

62

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio)  

SciTech Connect (OSTI)

The report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume I is a description of the components and methodologies used in the risk assessment and provides a summary of the major results from the three components of the assessment.

NONE

1995-11-01T23:59:59.000Z

63

Techniques and Methods Used to Determine the Best Estimate of Radiation Fluxes at SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Techniques and Methods Used to Determine the Techniques and Methods Used to Determine the Best Estimate of Radiation Fluxes at SGP Central Facility Y. Shi and C. N. Long Pacific Northwest National Laboratory Richland, Washington Algorithm and Methodology The Best Estimate Flux value-added product (VAP) processes data started on March 22, 1997, when data from the three central facility (CF) radiometer systems, Solar Infrared Station (SIRS) E13, C1, and baseline surface radiation network (BSRN) (sgpsirs1duttE13.c1, sgpsirs1duttC1.c1, and sgpbsrn1duttC1.c1), were all available. In 2001, the diffuse shortwave (SW) instruments were switched to shaded black and white instruments, and the name BSRN was switched to broadband radiometer station (BRS). Before that time, this VAP uses corrected diffuse SW from the DiffCorr1Dutt VAP as

64

Industry  

E-Print Network [OSTI]

Information on corn wet milling. Corn Refiners Association corn wet milling industry: An ENERGYas an automotive fuel. Corn wet milling is the most energy-

Bernstein, Lenny

2008-01-01T23:59:59.000Z

65

Industry  

E-Print Network [OSTI]

increased use of biomass and energy efficiency improvements,Moreira, J. , 2006: Global biomass energy potential. Journal1971–2004 Notes 1) Biomass energy included 2) Industrial

Bernstein, Lenny

2008-01-01T23:59:59.000Z

66

DOE/DHS INDUSTRIAL CONTROL SYSTEM CYBER SECURITY PROGRAMS: A MODEL FOR USE IN NUCLEAR FACILITY SAFEGUARDS AND SECURITY  

SciTech Connect (OSTI)

Many critical infrastructure sectors have been investigating cyber security issues for several years especially with the help of two primary government programs. The U.S. Department of Energy (DOE) National SCADA Test Bed and the U.S. Department of Homeland Security (DHS) Control Systems Security Program have both implemented activities aimed at securing the industrial control systems that operate the North American electric grid along with several other critical infrastructure sectors (ICS). These programs have spent the last seven years working with industry including asset owners, educational institutions, standards and regulating bodies, and control system vendors. The programs common mission is to provide outreach, identification of cyber vulnerabilities to ICS and mitigation strategies to enhance security postures. The success of these programs indicates that a similar approach can be successfully translated into other sectors including nuclear operations, safeguards, and security. The industry regulating bodies have included cyber security requirements and in some cases, have incorporated sets of standards with penalties for non-compliance such as the North American Electric Reliability Corporation Critical Infrastructure Protection standards. These DOE and DHS programs that address security improvements by both suppliers and end users provide an excellent model for nuclear facility personnel concerned with safeguards and security cyber vulnerabilities and countermeasures. It is not a stretch to imagine complete surreptitious collapse of protection against the removal of nuclear material or even initiation of a criticality event as witnessed at Three Mile Island or Chernobyl in a nuclear ICS inadequately protected against the cyber threat.

Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

2011-07-01T23:59:59.000Z

67

Industry  

E-Print Network [OSTI]

combined heat and power and coke ovens, and waste managementto ban the use of small-scale coke-producing facilities forcasting, Scrap preheating, Dry coke quenching Inert anodes,

Bernstein, Lenny

2008-01-01T23:59:59.000Z

68

Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

69

Industry  

E-Print Network [OSTI]

for im- proving energy efficiency of corn wet milling havefor the corn wet milling industry: An ENERGY STAR Guide forfuel. Corn wet milling is the most energy-intensive food

Bernstein, Lenny

2008-01-01T23:59:59.000Z

70

Industry  

E-Print Network [OSTI]

options for combined heat and power in Canada. Office ofpolicies to promote combined heat and power in US industry.with fuel inputs in combined heat and power plants being

Bernstein, Lenny

2008-01-01T23:59:59.000Z

71

Industry  

E-Print Network [OSTI]

EJ of primary energy, 40% of the global total of 227 EJ. Bytotal energy use by industry and on the fraction of electricity use consumed by motor driven systems was taken as representative of global

Bernstein, Lenny

2008-01-01T23:59:59.000Z

72

Using Outside Air for Flooded Oil Screw Compressors at an Industrial Facility  

E-Print Network [OSTI]

A study has been performed to determine if inlet air temperature provides an increase in compressor efficiency, seen through reduced power for some specified mass flow. A theoretical analysis suggests that power is not a function of volumetric flow...

Hunt, D. G.; Terry, S.

2014-01-01T23:59:59.000Z

73

Industry  

SciTech Connect (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

74

A New Approach for Determining Optimal Air Compressor Location in A Manufacturing Facility to Increase Energy Efficiency  

E-Print Network [OSTI]

An approach is proposed to determine the optimal air compressor location in a manufacturing facility. The optimization strategy is based on an objective function that minimizes the total energy consumption of the air compressor -thereby decreasing...

Zahlan, J.; Avci, M.; Asfour, S.

2014-01-01T23:59:59.000Z

75

Emission Reduction Using RTP Green Fuel in Industry Facilities: A Life Cycle Study  

Science Journals Connector (OSTI)

Scenario analyses were also conducted to determine responses to model assumptions including different biomass feedstocks, feedstock transport mode and distance, and geographical locations of the pyrolysis process. ... The savings of GHG emissions compared to fossil heavy fuel oil is greater than 80% for all of these biomass feedstocks. ...

Jiqing Fan; David Shonnard; Tom Kalnes; Monique Streff; Geoff Hopkins

2013-08-23T23:59:59.000Z

76

The January 17, 1994 Northridge Earthquake: Effects on selected industrial facilities and lifelines  

SciTech Connect (OSTI)

Revision 0 of this report is being published in February 1995 to closely mark the one-year anniversary of the Northridge Earthquake. A September 1994 Draft version of the report was reviewed by DOE and NRC, and many of the review comments are incorporated into Revision 0. While this revision of the report is not entirely complete, it is being made available for comment, review, and evaluation. Since the report was written by several authors, sections of the report have slightly different styles. Several sections of Revision 0 are not complete, but are planned to be completed in Revision 1. The primary unfinished section is Section 3.3 on Electric Power Transmission. Other sections of Revision 0, such as Section 4.5.2 on the Energy Technology Engineering Center and 3.2 on Electric Power Generation, will be enhanced with further detailed information as it becomes available. In addition, further data, including processed response spectra for investigated facilities and cataloging of relay performance, will be added to Revision 1 depending upon investigation support. While Revision 0 of this report is being published by LLNL, Revision 1 is planned to be published by EPRI. The anticipated release date for Revision 1 is December 1995. Unfortunately, the one-year anniversary of the Northridge Earthquake was also marked by the devastating Hyogo-Ken Nanbu (or Hanshin-Awaji) Earthquake in Kobe, Japan. As compared to the Northridge Earthquake, there were many more deaths, collapsed structures, destroyed lifelines, and fires following the Kobe Earthquake. Lessons from the Kobe Earthquake will both reemphasize topics discussed in this report and provide further issues to be addressed when designing and retrofitting structures, systems, and components for seismic strong motion.

Eli, M.W.; Sommer, S.C. [Lawrence Livermore National Lab., CA (United States); Roche, T.R.; Merz, K.L.

1995-02-01T23:59:59.000Z

77

Industrial  

Gasoline and Diesel Fuel Update (EIA)

Industrial Industrial 8,870,422 44.3% Commercial 3,158,244 15.8% Electric Utilities 2,732,496 13.7% Residential 5,241,414 26.2% Source: Energy Information Administration (EIA), Form EIA-176, "Annual Report of Natural and Supplemental Gas Supply and Disposition." T e x a s L o u i s i a n a C a l i f o r n i a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Industrial Billion Cubic Meters T e x a s C a l i f o r n i a F l o r i d a A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Electric Utilities Billion Cubic Meters N e w Y o r k C a l i f o r n i a I l l i n o i s A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Commercial Billion Cubic Meters I l l i n o i s C a l i f o r n i a N e w Y o r k A l l O t h e r S t a t e s 0 1 2 3 4 5 0 30 60 90 120 Trillion Cubic Feet Residential Billion Cubic Meters 11. Natural Gas Delivered to Consumers in the United States, 1996 Figure Volumes in Million Cubic Feet Energy Information Administration

78

Modeling the determinants of industry political power: industry winners in the Economic Recovery Tax Act of 1981  

E-Print Network [OSTI]

This study uses qualitative comparative analysis (QCA) to examine the basis of industry political power by assessing conditions of economic interdependence and political action associated with the passage of the Economic Recovery Tax Act of 1981...

Kardell, Amy Louise

2004-09-30T23:59:59.000Z

79

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 1. Executive summary  

SciTech Connect (OSTI)

Contents: Introduction and Summary of Results; Facility Background; Facility Emissions; Atmospheric Dispersion and Deposition Modeling of Emissions; Human Health Risk Assessment; Screening Ecological Risk Assessment; Accident Analysis; Additional Analysis in Response to Peer Review Recommendations; References.

NONE

1997-05-01T23:59:59.000Z

80

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 2. Introduction  

SciTech Connect (OSTI)

Contents: Overview; Facility Background; Risk Assessment History at WTI; Peer Review Comments and Key Assumptions; and References.

NONE

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Energy Consumption Characteristics of Light Manufacturing Facilities in The Northern Plains: A Study of Detailed Data from 10 Industrial Energy Audits Conducted in 1993  

E-Print Network [OSTI]

ENERGY CONSUMPTION CHARACTERISTICS OF LIGHT MANUFACTURING FACll..ITIES IN THE NORTHERN PLAINS: A study of detailed data from 10 industrial energy audits conducted in 1993. Michael Twedt Graduate Research Assistant IEOPIEADC South Dakota... profiles and common energy conservation opportunities. A statistical breakdown of energy consumption of 10 light manufacturing facilities by process, equipment type, and end use is provided. Common energy optimization procedures are also summarized...

Twedt, M.; Bassett, K.

82

The Impact of Control Technology on the Demand Response Potential of California Industrial Refrigerated Facilities Final Report  

E-Print Network [OSTI]

and Automated Demand Response in Industrial RefrigeratedDemand Response .. ..Technology on the Demand Response Potential of California

Scott, Doug

2014-01-01T23:59:59.000Z

83

SOURCE AND PATHWAY DETERMINATION FOR BERYLLIUM FOUND IN BECHTEL NEVADA NORTH LAS VEGAS FACILITIES  

SciTech Connect (OSTI)

In response to the report ''Investigation of Beryllium Exposure Cases Discovered at the North Las Vegas Facility of the National Nuclear Security Administration'', published by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) in August 2003, Bechtel Nevada (BN) President and General Manager Dr. F. A. Tarantino appointed the Beryllium Investigation & Assessment Team (BIAT) to identify both the source and pathway for the beryllium found in the North Las Vegas (NLV) B-Complex. From September 8 to December 18, 2003, the BIAT investigated the pathway for beryllium and determined that a number of locations existed at the Nevada Test Site (NTS) which could have contained sufficient quantities of beryllium to result in contamination if transported. Operations performed in the B-1 Building as a result of characterization activities at the Engine Maintenance, Assembly, and Disassembly (EMAD); Reactor Maintenance, Assembly, and Disassembly (RMAD); Test Cells A and C; and the Central Support Facility in Area 25 had the greatest opportunity for transport of beryllium. Investigative monitoring and sampling was performed at these sites with subsequent transport of sample materials, equipment, and personnel from the NTS to the B-1 Building. The timeline established by the BIAT for potential transport of the beryllium contamination into the B-1 Building was from September 1997 through November 2002. Based on results of recently completed swipe sampling, no evidence of transport of beryllium from test areas has been confirmed. Results less than the DOE beryllium action level of 0.2 ???g/100 cm2 were noted for work support facilities located in Area 25. All of the identified sites in Area 25 worked within the B-1 tenant's residency timeline have been remediated. Legacy contaminants have either been disposed of or capped with clean borrow material. As such, no current opportunity exists for release or spread of beryllium contamination. Historical records indicate that there are locations at the NTS which contain hazardous quantities of beryllium; however, because beryllium was not always considered a contaminant of concern, complete characterization was not performed prior to remediation efforts. Today, it is not practical to characterize Area 25 for beryllium due to the successful remediation. Analysis of sample data collected in B-1 for the BIAT was performed for the purpose of confirming past results and identifying a source of beryllium through the use of markers. The results confirmed the presence of man-made beryllium contamination in the B-1 High Bay at levels consistent with the NNSA Report. No source markers were found that would be associated with NTS historical nuclear rocket or weapons-related operations. Beryllium contamination was identified in the southwest area of the B-1 High Bay in characteristic association with materials handled during historic metal-working operations. Use of source marker analysis suggests a contributor of beryllium found in carpeted areas of the B-Complex may be naturally occurring. Naturally occurring beryllium is not regulated by Title 10 Code of Federal Regulations Part 850 (10 CFR 850) (see Appendix A). No current uncontrolled beryllium source or transport pathways have been identified as available for spread of contamination to uncontrolled areas from the NTS.

BECHTEL NEVADA

2004-07-01T23:59:59.000Z

84

Assessing determinants of industrial waste reuse: The case of coal ash in the United States  

Science Journals Connector (OSTI)

Abstract Devising effective strategies to facilitate waste reuse depends on the solid understanding of reuse behaviors. However, previous studies of reuse behavior have been limited in scope, focusing mostly on household recycling behaviors or very limited types of industrial wastes. To gain a better understanding of the business reuse behaviors, this study examined the impact of various factors in technical, economic, regulatory, and behavioral categories in the case of coal ash generated in the United States. The results of fixed effect models for fly ash and bottom ash particularly showed the significance role of the behavioral factor. In both models, a proxy variable, which represents knowledge sharing among the power plants or the utility's decision-making, turned out to be statistically significant and had the largest coefficient estimates among a group of variables. This finding may imply that the characteristics of waste reuse behavior are determined more by business decision-making behaviors than by market or institutional factors. However, the role of the behavioral variable was stronger in the bottom ash models than in the fly ash models. While the reuse of bottom ash was determined primarily by the behavioral variable, fly ash reuse was determined by more diverse factors including economic and regulatory variables. This could be explained by material characteristics in relation to competing resources and the nature of reuse applications.

Joo Young Park

2014-01-01T23:59:59.000Z

85

Interim Action Determination Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS), DOE/EIS-0283-S2. DOE is evaluating, among many other things, the environmental impacts of any design and operations changes to the MFFF, which is under construction at the Savannah River Site near Aiken, South Carolina. DOE

86

Interim Action Determination Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF)  

Broader source: Energy.gov (indexed) [DOE]

Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS), DOE/EIS-0283-S2. DOE is evaluating, among many other things, the environmental impacts of any design and operations changes to the MFFF, which is under construction at the Savannah River Site near Aiken, South Carolina. DOE

87

The Impact of Control Technology on the Demand Response Potential of California Industrial Refrigerated Facilities Final Report  

E-Print Network [OSTI]

11 Figure 2. Example of a Parallel Rack Refrigeration10. Sample Industrial Control Panel with PLC Rack and I011 Packaged Rack

Scott, Doug

2014-01-01T23:59:59.000Z

88

Basis for Section 3116 Determination for the Idaho Nuclear Technology and Engineering Center Tank Farm Facility at the Idaho National Laboratory  

Broader source: Energy.gov (indexed) [DOE]

NE-ID-11226 NE-ID-11226 Revision 0 Basis for Section 3116 Determination for the Idaho Nuclear Technology and Engineering Center Tank Farm Facility November 2006 DOE/NE-ID-11226 Revision 0 Basis for Section 3116 Determination for the Idaho Nuclear Technology and Engineering Center Tank Farm Facility November 2006 ii CONTENTS ACRONYMS.............................................................................................................................................. vii 1. INTRODUCTION AND PURPOSE.................................................................................................. 1 2. BACKGROUND................................................................................................................................ 5 2.1 Tank Farm Facility Description.............................................................................................

89

Determining perception-based impacts of noxious facilities on wage rates and property values  

SciTech Connect (OSTI)

This document, written for the US Department of Energy, discusses current information and the need for future research on estimating the impacts on wages and property values that could result from people's perceptions of the risks associated with noxious facilities. Psychometric studies indicate that the US population is averse to living near noxious facilities, nuclear-related facilities in particular. Contingent valuation and hedonic studies find that the net economic impacts of proximity to noxious facilities are generally negative and often substantial. Most of these studies are limited in scope, and none estimate the impacts derived from public perceptions of such facilities. This study examines the mechanisms by which negative public perceptions result in economic impacts reflected in wages and property values. On the basis of these mechanisms, it develops a predictive model of perception-based impacts and identifies the data and methods needed to implement it. The key to predicting perception-based impacts lies in combining psychometric and hedonic methods. The reliability of psychometric measures as indicators of aversive stimuli that precipitate economic impacts can be empirically tested. To test the robustness of the findings, alternative estimation methods an be employed in the hedonic analysis. Contingent valuation methods can confirm the results.

Nieves, L.A.; Clark, D.E.

1992-02-01T23:59:59.000Z

90

Determining perception-based impacts of noxious facilities on wage rates and property values  

SciTech Connect (OSTI)

This document, written for the US Department of Energy, discusses current information and the need for future research on estimating the impacts on wages and property values that could result from people`s perceptions of the risks associated with noxious facilities. Psychometric studies indicate that the US population is averse to living near noxious facilities, nuclear-related facilities in particular. Contingent valuation and hedonic studies find that the net economic impacts of proximity to noxious facilities are generally negative and often substantial. Most of these studies are limited in scope, and none estimate the impacts derived from public perceptions of such facilities. This study examines the mechanisms by which negative public perceptions result in economic impacts reflected in wages and property values. On the basis of these mechanisms, it develops a predictive model of perception-based impacts and identifies the data and methods needed to implement it. The key to predicting perception-based impacts lies in combining psychometric and hedonic methods. The reliability of psychometric measures as indicators of aversive stimuli that precipitate economic impacts can be empirically tested. To test the robustness of the findings, alternative estimation methods an be employed in the hedonic analysis. Contingent valuation methods can confirm the results.

Nieves, L.A.; Clark, D.E.

1992-02-01T23:59:59.000Z

91

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 6. Screening ecological risk assessment (SERA). Draft report  

SciTech Connect (OSTI)

This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. The Screening Ecological Risk Assessment (SERA) is an analysis of the potential significance of risks to ecological receptors (e.g., plants, fish, wildlife) from exposure to facility emissions. The SERA was performed using conservative assumptions and approaches to determine if a further, more refined analysis is warranted. Volume VI describes in detail the methods used in the SERA and reports the results of the SERA in terms of site-specific risks to ecological receptors.

NONE

1995-11-01T23:59:59.000Z

92

EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...  

Broader source: Energy.gov (indexed) [DOE]

8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS...

93

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 2. Introduction. Draft report  

SciTech Connect (OSTI)

This volume provides a description of the facility, and its location and setting in the three-state area of Ohio, Pennsylvania, and West Virginia; an overview of previous risk assessments conducted by U.S. EPA for this site, including the preliminary assessment of inhalation exposure and the screening-level risk analyses of indirect exposure; and a summary of comments provided by the Peer Review Panel on the Project Plan.

NONE

1995-11-01T23:59:59.000Z

94

The impact of implied facilities cost of money subsidies on capital expenditures and the cost of debt in the defense industry  

Science Journals Connector (OSTI)

We examine the public policy effects of a cash flow subsidy unique to the government contracting industry, on defense contractors’ capital expenditures and cost of debt over a relatively long time-period, 1978–2009. Because the Department of Defense found evidence of a shrinking defense industrial base in the early 1970s, it wanted to encourage capital spending by defense firms. The result was a cost accounting standard that reimbursed contractors for an imputed facilities capital cost of money (FCCOM) that has remained in effect, virtually unchanged, for almost 30 years, despite structural changes in the defense industry. Our results, using a sample of 628 defense firms, suggest that the standard met its intended objective of increased capital spending within 10 years of its promulgation. However, we also find that the FCCOM subsidy may have contributed to a decreased cost of debt within the defense sector over the long-term. Finally, further analyses indicate that the long-term persistence of this subsidy may have encouraged defense contractors to overinvest in capital goods. Our findings suggest that public policy makers should consider both direct and indirect effects of regulation embedded in accounting standards.

Carolyn M. Callahan; Valaria P. Vendrzyk; Maureen G. Butler

2012-01-01T23:59:59.000Z

95

Considering the customer : determinants and impact of using technology on industry evolution  

E-Print Network [OSTI]

This dissertation raises two questions: How do customers come to understand and use a technology? What is the influence of customers using a technology on industry evolution and competition? I use two historical cases to ...

Kahl, Steven J. (Steven John)

2007-01-01T23:59:59.000Z

96

Determining the Cause of a Header Failure in a Natural Gas Production Facility  

SciTech Connect (OSTI)

An investigation was made into the premature failure of a gas-header at the Rocky Mountain Oilfield Testing Center (RMOTC) natural gas production facility. A wide variety of possible failure mechanisms were considered: design of the header, deviation from normal pipe alloy composition, physical orientation of the header, gas composition and flow rate, type of corrosion, protectiveness of the interior oxide film, time of wetness, and erosion-corrosion. The failed header was examined using metallographic techniques, scanning electron microscopy, and microanalysis. A comparison of the failure site and an analogous site that had not failed, but exhibited similar metal thinning was also performed. From these studies it was concluded that failure resulted from erosion-corrosion, and that design elements of the header and orientation with respect to gas flow contributed to the mass loss at the failure point.

Matthes, S.A.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Holcomb, G.R.

2007-03-01T23:59:59.000Z

97

Lighting Test Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Custom Projects Lighting Test Facilities SSL Guidelines Industrial Federal Agriculture LED Street and Area Lighting Field Test of Exterior LED Down Lights Abstract Outdoor...

98

Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506  

SciTech Connect (OSTI)

The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

Beres, Christopher M.; Fort, E. Joseph [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States)] [Cabrera Services, Inc., 473 Silver Lane, East Hartford, CT 06118 (United States); Boyle, James D. [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)] [United States Army Corps of Engineers - Buffalo, 1776 Niagara Street, Buffalo, NY 14207 (United States)

2013-07-01T23:59:59.000Z

99

Determining the biomass fraction of mixed waste fuels: A comparison of existing industry and 14C-based methodologies  

Science Journals Connector (OSTI)

Abstract 14C analysis of flue gas by accelerator mass spectrometry (AMS) and liquid scintillation counting (LSC) were used to determine the biomass fraction of mixed waste at an operational energy-from-waste (EfW) plant. Results were converted to bioenergy (% total) using mathematical algorithms and assessed against existing industry methodologies which involve manual sorting and selective dissolution (SD) of feedstock. Simultaneous determinations using flue gas showed excellent agreement: 44.8 ± 2.7% for AMS and 44.6 ± 12.3% for LSC. Comparable bioenergy results were obtained using a feedstock manual sort procedure (41.4%), whilst a procedure based on selective dissolution of representative waste material is reported as 75.5% (no errors quoted). 14C techniques present significant advantages in data acquisition, precision and reliability for both electricity generator and industry regulator.

G.K.P. Muir; S. Hayward; B.G. Tripney; G.T. Cook; P. Naysmith; B.M.J. Herbert; M.H Garnett; M. Wilkinson

2014-01-01T23:59:59.000Z

100

An Integrated Approach to Evaluating the Technical and Commercial Options for Cogeneration Facilities in the Process Industry  

E-Print Network [OSTI]

, economic and financial considerations, as well as to the determination of the appropriate degree of thermal integration of the power and process subsystems. An overview of steam and gas turbine cycle options for process/power integration typical...

Cooke, D. H.; McCue, R. H.

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

The determinants of fuel use in the trucking industry—volume, fleet characteristics and the rebound effect  

Science Journals Connector (OSTI)

This paper studies the determinants of fuel use in the trucking industry in Denmark, using aggregate time series data for the period 1980–2007. The model captures the main linkages between the demand for freight transport, the characteristics of the vehicle fleet, and the demand for fuel. Results include the following. First, we precisely define and estimate a rebound effect of improvements in fuel efficiency in the trucking industry: behavioural adjustments in the industry imply that an exogenous improvement in fuel efficiency reduces fuel use less than proportionately. Our best estimate of this effect is approximately 10 % in the short run and 17 % in the long run, so that a 1% improvement in fuel efficiency reduces fuel use by 0.90% (short-run) to 0.83% (long-run). Second, we find that higher fuel prices raise the average capacity of trucks, and they induce firms to invest in newer, typically more fuel efficient, trucks. Third, these adjustments and the rebound effect jointly imply that the effect of higher fuel prices on fuel use in the trucking industry is fairly small; estimated price elasticities are ? 0.13 and ? 0.22 in the short run and in the long run, respectively. The empirical results of this paper have implications for judging the implications of fuel efficiency standards and regulations with respect to larger trucks in the EU.

Bruno De Borger; Ismir Mulalic

2012-01-01T23:59:59.000Z

102

Techniques and Methods Used to Determine the Aerosol Best Estimate Value-Added Product at SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Determine the Aerosol Best Estimate Value-Added Product at SGP Central Facility C. Sivaraman, D. D. Turner, and C. J. Flynn Pacific Northwest National Laboratory Richland, Washington Objective Profiles of aerosol optical properties are needed for radiative closure exercises such as the broadband heating rate profile (BBHRP) project (Mlawer et al. 2002) and the Shortwave Quality Measurement Experiment (QME). Retrieving cloud microphysical properties using radiation measurements in the shortwave, such as the spectral retrieval technique described in Daniel et al. (2002), also require the optical properties of the aerosols so that they can be accounted for in the retrieval process. The objective of the aerosol best estimate (ABE) value-added procedure (VAP) is to provide profiles of

103

Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)  

SciTech Connect (OSTI)

The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

Not Available

2010-01-01T23:59:59.000Z

104

Surveillance Guide - OSS 19.9 Industrial Hygiene  

Broader source: Energy.gov (indexed) [DOE]

INDUSTRIAL HYGIENE INDUSTRIAL HYGIENE 1.0 Objective The objective of this surveillance is to evaluate the effectiveness of programs implemented by the contractor to anticipate, recognize, evaluate, and control environmental factors or stresses that may adversely affect the health of the Department's workers. The Facility Representative conducts walkthroughs, observes activities, and reviews records to determine if the implementation of the contractor's Industrial Hygiene Program is achieving required results. The Facility Representative evaluates compliance with DOE requirements and implementation of best practices. 2.0 References 2.1 DOE 5480.4, Environmental Protection, Safety and Health Protection Standards 2.2 DOE 5480.10, Contractor Industrial Hygiene Program

105

NREL: Research Facilities - Test and User Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test and User Facilities Test and User Facilities NREL has test and user facilities available to industry and other organizations for researching, developing, and evaluating renewable energy and energy efficiency technologies. Here you'll find an alphabetical listing and brief descriptions of NREL's test and user facilities. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines At our wind testing facilities, we have turbines available to test new control schemes and equipment for reducing loads on wind turbine components. Learn more about the Advanced Research Turbines on our Wind Research website. Back to Top D Distributed Energy Resources Test Facility This facility was designed to assist the distributed power industry in the

106

NREL: Buildings Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities NREL provides industry, government, and university researchers with access to state-of-the-art and unique equipment for analyzing a wide spectrum of building energy efficiency technologies and innovations. NREL engineers and researchers work closely with industry partners to research and develop advanced technologies. NREL's existing facilities have been used to test and develop many award-winning building technologies and innovations that deliver significant energy savings in buildings, and the new facilities further extend those capabilities. In addition, the NREL campus includes living laboratories, buildings that researchers and other NREL staff use every day. Researchers monitor real-time building performance data in these facilities to study energy use

107

An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry  

SciTech Connect (OSTI)

In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

2004-01-30T23:59:59.000Z

108

NREL: Wind Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained within a 305-acre area that comprises field test sites, test laboratories, industrial high-bay work areas, machine shops, electronics and instrumentation laboratories, and office areas. In addition, there are hundreds of test articles and supporting components such as turbines, meteorological towers, custom test apparatus, test sheds,

109

Industry Alliance Industry Alliance  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century Industry Alliance Industry Alliance Clean, Sustainable Energy for the 21st Century October, 2010...

110

User Facilities | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

USER PORTAL USER PORTAL BTRICBuilding Technologies Research Integration Center CNMSCenter for Nanophase Materials Sciences CSMBCenter for Structural Molecular Biology CFTFCarbon Fiber Technology Facility HFIRHigh Flux Isotope Reactor MDF Manufacturing Demonstration Facility NTRCNational Transportation Research Center OLCFOak Ridge Leadership Computing Facility SNSSpallation Neutron Source Keeping it fresh at the Spallation Neutron Source Nanophase material sciences' nanotech toolbox Home | User Facilities SHARE ORNL User Facilities ORNL is home to a number of highly sophisticated experimental user facilities that provide unmatched capabilities to the broader scientific community, including a growing user community from universities, industry, and other laboratories research institutions, as well as to ORNL

111

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 3. Characterization of the nature and magnitude of emissions. Draft report  

SciTech Connect (OSTI)

This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume III of the report describes the methods used to estimate both stack and fugitive emission rates from the facility.

NONE

1995-11-01T23:59:59.000Z

112

Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications Task 4 –Testing in Alstom’s 15 MWth Boiler Simulation Facility  

SciTech Connect (OSTI)

Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: • Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs. • Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF). • Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools. • Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems. • Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost. • Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project is scheduled for completion by April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of fuels, oxy-process variables and boiler design parameters. Significant improvement of CFD modeling tools and validation against 15 MWth experimental data has been completed. Oxy-boiler demonstration and large reference designs have been developed, supported with the information and knowledge gained from the 15 MWth testing. This report addresses the results from the 15 MWth testing in the BSF.

Levasseur, Armand

2014-04-30T23:59:59.000Z

113

NREL: Photovoltaics Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities NREL's world-class research facilities provide the venue for innovative advances in photovoltaic technologies and applications. These facilities within the National Center for Photovoltaics (NCPV) serve both multi-use and dedicated-use functions. We encourage our research colleagues in industry, universities, and other laboratories to pursue opportunities in working with our staff in these facilities. Dedicated-Use Facilities Photo of a red-hot coil glowing inside a round machine. Research within these facilities focuses on targeted areas of interest that require specific tools, techniques, or unique capabilities. Our two main dedicated-use facilities are the following: Outdoor Test Facility (OTF) OTF researchers study and evaluate advanced or emerging PV technologies

114

Environmental Protection- Industrial Compliance (Newfoundland and Labrador, Canada)  

Broader source: Energy.gov [DOE]

The Industrial Compliance Section develops and administers Certificates of Approval for the Construction and/or Operation of various industrial facilities. Industries with air emissions and/or...

115

Nanotechnology User Facility for  

E-Print Network [OSTI]

A National Nanotechnology User Facility for Industry Academia Government #12;The National Institute of Commerce's nanotechnology user facility. The CNST enables innovation by providing rapid access to the tools new measurement and fabrication methods in response to national nanotechnology needs. www

116

October 24, 2003, Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities  

Broader source: Energy.gov (indexed) [DOE]

4.1 4.1 Revision 3 October 24, 2003 U. S. Department of Energy Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities October 24, 2003 CRAD - 4.2.4.1 Revision 3 October 24, 2003 ii TABLE OF CONTENTS ACRONYMS ..................................................................................................................................iii GLOSSARY ...................................................................................................................................iv 1.0 INTRODUCTION ...............................................................................................................1 2.0 BACKGROUND .................................................................................................................2

117

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARM Climate Research Facility Communication Products Garner Awards in ARM Climate Research Facility Communication Products Garner Awards in Competition Bookmark and Share Entries in the Communicator Awards are judged by industry professionals who look for talents that exceed a high standard of excellence and work that serves as a benchmark for the industry. Entries in the Communicator Awards are judged by industry professionals who look for talents that exceed a high standard of excellence and work that serves as a benchmark for the industry. Trying to describe the ARM Climate Research Facility to an educated audience is hard enough; imagine explaining it to someone who knows next to nothing about atmospheric science! Judges of the 2005 Communicator Awards print media competition apparently got the message, as they gave awards to

118

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 7. Accident analysis: Selection and assessment of potential release scenarios. Draft report  

SciTech Connect (OSTI)

This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. The Accident Analysis is an evaluation of the likelihood of occurrence and resulting consequences from several general classes of accidents that could potentially occur during operation of the facility. The Accident Analysis also evaluates the effectiveness of existing mitigation measures in reducing off-site impacts. Volume VII describes in detail the methods used to conduct the Accident Analysis and reports the results of evaluations of likelihood and consequence for the selected accident scenarios.

NONE

1995-11-01T23:59:59.000Z

119

Probabilistic risk assessment for salt repository conceptual design of subsurface facilities: A techical basis for Q-list determination  

SciTech Connect (OSTI)

Subpart G ''Quality Assurance'' of 10 CFR Part 60 requires that the US Department of Energy (DOE) apply a quality assurance program to ''all systems, structures, and components important to safety'' and to ''design and characterization of barriers important to waste isolation.'' In April 1986, DOE's Office of Geologic Repositories (OGR) issued general guidance for formulating a list of such systems, structures, and components---the Q-list. This guidance called for the use of probabilistic risk assessment (PRA) techniques to identify Q-list items. In this report, PRA techniques are applied to the underground facilities and systems described in the conceptual design report for the Salt Repository Project (SRP) in Deaf Smith County, Texas. Based on probability and dose consequence calculations, no specific items were identified for the Q-list. However, evaluation of the analyses indicated that two functions are important in precluding off-site releases of radioactivity: disposal container integrity; and isolation of the underground facility by the heating, ventilation, and air conditioning (HVAC) systems. Items related to these functions are recommended for further evaluation as the repository design progresses. 13 refs., 20 figs.

Chen, C.P.; Mayberry, J.J.; Shepherd, J.; Koza, H.; Rahmani, H.; Sinsky, J.

1987-12-01T23:59:59.000Z

120

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Better Sandia Capabilities to Support Power Industry On January 8, 2013, in Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 5. Human health risk assessment (HHRA): Evaluation of potential risks from multipathway exposure to emissions. Draft report  

SciTech Connect (OSTI)

The Human Health Risk Assessment (HHRA) portion of the WTI Risk Assessment involves the integration of information about the facility with site-specific data for the surrounding region and population to characterize the potential human health risks due to emissions from the facility. The estimation of human health risks is comprised of the following general steps: (1) identification of substances of potential concern; (2) estimation of the nature and magnitude of chemical releases from the WTI facility; (3) prediction of the atmospheric transport of the emitted contaminants; (4) determination of the types of adverse effects associated with exposure to the substances of potential concern (referred to as hazard identification), and the relationship between the level of exposure and the severity of any health effect (referred to as dose-response assessment); (5) estimation of the magnitude of exposure (referred to as exposure assessment); and (6) characterization of the health risks associated with exposure (referred to as risk characterization).

NONE

1995-11-01T23:59:59.000Z

122

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 1. Executive summary. Draft report  

SciTech Connect (OSTI)

This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume I is a description of the components and methodologies used in the risk assessment and provides a summary of the major results from the three components of the assessment.

NONE

1995-11-01T23:59:59.000Z

123

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 4. Atmospheric dispersion and deposition modeling of emissions. Draft report  

SciTech Connect (OSTI)

The report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume IV describes the air dispersion model used to estimate air concentrations and particle deposition, as well as the results of the modeling exercise.

NONE

1995-11-01T23:59:59.000Z

124

Chapter 3, Commercial and Industrial Lighting Controls Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures  

Broader source: Energy.gov (indexed) [DOE]

3: Commercial and 3: Commercial and Industrial Lighting Controls Evaluation Protocol Stephen Carlson, DNV KEMA Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 3 - 1 Chapter 3 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol ....................................................................................... 3 3 Savings Calculations .............................................................................................................. 5 3.1 Algorithms ....................................................................................................................... 5

125

Determination of Thermal-Degradation Rates of Some Candidate Rankine-Cycle Organic Working Fluids for Conversion of Industrial Waste Heat Into Power  

E-Print Network [OSTI]

DETERMINATION OF THERMAL-DEGRADATION RATES OF SOME CANDIDATE RANKINE-CYCLE ORGANIC WORKING FLUIDS FOR CONVERSION OF INDUSTRIAL WASTE HEAT INTO POWER Mohan L. Jain, Jack Demirgian, John L. Krazinski, and H. Bushby Argonne National Laboratory..., Argonne, Illinois Howard Mattes and John Purcell U.S. Department of Energy ABSTRACT Serious concerns over the long-term thermal In a previous study [1] based on systems stability of organic working fluids and its effect analysis and covering...

Jain, M. L.; Demirgian, J.; Krazinski, J. L.; Bushby, H.; Mattes, H.; Purcell, J.

1984-01-01T23:59:59.000Z

126

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

BTRIC CNMS CSMB CFTF HFIR MDF Working with MDF NTRC OLCF SNS Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

127

MDF | Manufacturing Demonstration Facility | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Working with MDF Working with MDF Titanium robotic hand holding sphere fabricated using additive manufacturing Home | User Facilities | MDF MDF | Manufacturing Demonstration Facility SHARE As the nation's premier research laboratory, ORNL is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. Manufacturing industries engage ORNL's expertise in materials synthesis, characterization, and process technology to reduce technical risk and validate investment for innovations targeting products of the future. DOE's Manufacturing Demonstration Facility, established at ORNL, helps industry adopt new manufacturing technologies to reduce life-cycle energy

128

Users from Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Users from Industry Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

129

Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous  

Broader source: Energy.gov (indexed) [DOE]

1: Siting of Industrial 1: Siting of Industrial Hazardous Waste Facilities (New York) Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York) < Back Eligibility Commercial Fed. Government Industrial Investor-Owned Utility Local Government Municipal/Public Utility State/Provincial Govt Tribal Government Utility Program Info State New York Program Type Siting and Permitting Provider NY Department of Environmental Conservation These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used for the purpose of treating, storing, compacting, recycling, exchanging or disposing of industrial hazardous waste materials, including treatment, compacting,

130

3 Cleantech Facilities You Should Know About  

Broader source: Energy.gov [DOE]

These National Lab facilities are supporting local economies across the country and driving national industries -- and you should definitely know more about them.

131

BNL | Research Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brookhaven's Research Facilities Brookhaven's Research Facilities Tools of Discovery Brookhaven National Lab excels at the design, construction, and operation of large-scale, cutting-edge research facilities-some available nowhere else in the world. Each year, thousands of scientists from laboratories, universities, and industries around the world use these facilities to delve into the basic mysteries of physics, chemistry, biology, materials science, energy, and the environment-and develop innovative applications that arise, sometimes at the intersections of these disciplines. construction Brookhaven Lab is noted for the design, construction and operation of large-scale, cutting-edge research facilities that support thousands of scientists worldwide. RHIC tunnel Relativistic Heavy Ion Collider

132

LANSCE | Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Isotope Production Facility (IPF) Lujan Neutron Scattering Center Materials Test Station (MTS) Proton Radiography (pRad) Ultracold Neutrons (UCN) Weapons Neutron Research Facility...

133

WIPP - Public Reading Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Public Reading Facilities/Electronic Reading Facilities The Freedom of Information Act (FOIA) and Electronic FOIA (E-FOIA) require that various specific types of records, as well as various other records, be maintained in public reading facilities. Before you submit a FOIA request, we recommend you contact or visit the appropriate public reading facility to determine if the records you are seeking have already been released. The U.S. Department of Energy (DOE), as well as other related DOE sites, have established home pages on the Internet with links to other web sites. If you determine a specific facility might have records in which you are interested, requests for those records can be made directly to the public reading rooms identified below. Copying of records located in the public reading rooms must be made by the staff of those facilities.

134

Energy Department Applauds Nation's First Large-Scale Industrial...  

Office of Environmental Management (EM)

Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage...

135

Secretary Chu Announces More than $155 Million for Industrial...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

projects across the country. These awards include funding for industrial combined heat and power systems, district energy systems for industrial facilities, and grants to...

136

Reducing Industrial Energy Intensity in the Southeast Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Authority and its project partners will establish the Southeastern Center for Industrial Energy Intensity Reduction (the Center) to inform industrial facilities about the U.S....

137

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 6. Screening ecological risk assessment  

SciTech Connect (OSTI)

The Screening Ecological Risk Assessment (SERA) includes an evaluation of available biotic information from the site vicinity to provide a preliminary description of potential ecological receptors (e.g., rare, threatened and endangered species; migratory birds; and important game species), and important ecological habitats (e.g., wetland areas). A conceptual site model is developed that describe show stressors associated with the WTI facility might affect the ecological components in the surrounding environment through the development and evaluation of specific ecological endpoints. Finally, an estimate of the potential for current and/or future adverse impacts to the biotic component of the environment is provided, based on the integration of potential exposures of ecological receptors to WTI emissions and toxicological threshold values.

NONE

1997-05-01T23:59:59.000Z

138

Users from Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Users from Industry Print Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial users to access our user facilities and engage in productive relationships with our scientific and engineering staff. Examples of past and current research conducted at the ALS can be viewed on the Industry @ ALS Web page. There are several modes of access; the ALS User and Scientific Support Groups are especially committed to helping new industrial users gain a foothold in our user community and welcome inquiries about how to make that happen.

139

Industrial Energy Efficiency Assessments  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility * Current situation * Recommendations for improving energy efficiency * Cost-benefit analysis of recommended options * An action plan for realizing potential savings Types of Industrial Energy Efficiency Assessments - Preliminary or walk-through - Detailed or diagnostic Audit criteria

140

Photovoltaic industry manufacturing technology. Final report  

SciTech Connect (OSTI)

This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

1998-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Improving Steam System Performance: A Sourcebook for Industry...  

Energy Savers [EERE]

in Industrial Steam Systems Insulate Steam Distribution and Condensate Return Lines Advanced Manufacturing Home Key Activities Research & Development Projects Facilities...

142

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

28, 2005 [Facility News] 28, 2005 [Facility News] Readiness of New Lidar Evaluated at Southern Great Plains Site Bookmark and Share Aircraft for the Boundary Layer CO2 Intensive Operational Period will fly over the SGP Central Facility using both spirals and racetrack patterns. Data will be collected under a variety of cloud and meteorological conditions. Aircraft for the Boundary Layer CO2 Intensive Operational Period will fly over the SGP Central Facility using both spirals and racetrack patterns. Data will be collected under a variety of cloud and meteorological conditions. As the focus of the Boundary Layer Carbon Dioxide (CO2) Intensive Operational Period (IOP) starting in March, science collaborators at ITT Industries and the National Aeronautics and Space Administration (NASA)

143

Determination of risk-based, site-specific cleanup levels for an industrial site in Seattle, Washington  

SciTech Connect (OSTI)

Risk-based, site-specific cleanup criteria were developed for an active industrial site where shallow soil was contaminated with bunker fuel. This approach resulted in defensible cleanup levels that eliminated the need for complicated and disruptive remedial measures and is expediting site closure under Washington State Department of Ecology`s (Ecology) Independent Remedial Action Program. Initially, in anticipation of the sale of the property, a site investigation was conducted to provide information on the extent of contamination resulting from a leaking underground storage tank. Results of the investigation indicated that at least 3,600 cubic yards of soil contained bunker fuel at concentrations exceeding Ecology`s Model Toxics Control Act (MTCA) default Method A cleanup value for heavy oil of 200 milligrams per kilogram. The contamination extended under two of the site structures. Following Ecology`s new interim policy for cleanup of total petroleum hydrocarbons under MTCA, a risk-based cleanup criterion was calculated using an approach in which aliphatic and aromatic fractions of weathered bunker fuel were represented by surrogates of known toxicity. The cleanup criterion yielded by the quantitative evaluation was more than an order of magnitude higher than the default MTCA Method A value for heavy oil. Cleanup criteria for carcinogenic polynuclear aromatic hydrocarbons (cPAHs) were also derived. Use of these risk-based cleanup levels eliminated the need for remedial measures outside of the immediate vicinity of the former tank location, reducing the volume of soil that required remediation from 3,600 cubic yards to 70 cubic yards.

Birkner, P.D.; Gaulke, S.W.; Tirao, A.C.; Veilleux, A.L. [Shannon & Wilson, Inc., Seattle, WA (United States)

1997-12-31T23:59:59.000Z

144

Industrial Assessment Center Awards: Recognizing Excellence in...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

elsewhere, conducting energy-efficiency assessments, as well as design reviews, for wastewater treatment, industrial, and commercial facilities. Distinguished Alumni - Adam Selvin...

145

Advanced Energy Industries Inc | Open Energy Information  

Open Energy Info (EERE)

Industries is using the ESIF's Power Systems Integration Laboratory (PSIL) to test its new solar photovoltaic (PV) inverter technology with the facility's hardware-in-the-loop...

146

Industrial | OpenEI  

Open Energy Info (EERE)

Industrial Industrial Dataset Summary Description The Industrial Assessment Centers (IAC) Database is a collection of all the publicly available data from energy efficiency assessments conducted by IACs at small and medium-sized industrial facilities. Source Department of Energy Industrial Assessment Centers Date Released September 20th, 2012 (2 years ago) Date Updated September 20th, 2012 (2 years ago) Keywords assessment energy efficiency Industrial manufacturing small and medium-sized Data application/vnd.ms-excel icon copy_of_iac_database.xls (xls, 28.7 MiB) Quality Metrics Level of Review Standards Comment Temporal and Spatial Coverage Frequency Daily Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset

147

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1996-10-24T23:59:59.000Z

148

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

1995-11-16T23:59:59.000Z

149

Outlook for Industrial Energy Benchmarking  

E-Print Network [OSTI]

The U.S. Environmental Protection Agency is exploring options to sponsor an industrial energy efficiency benchmarking study to identify facility specific, cost-effective best practices and technologies. Such a study could help develop a common...

Hartley, Z.

150

Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

area area Contact Us | Careers | Staff Directory | User Support Search form Search Search Argonne Leadership Computing Facility an Office of Science user facility Home . About Overview History Staff Directory Careers Visiting Us Contact Us Resources & Expertise Mira Cetus Vesta Intrepid Challenger Surveyor Visualization Clusters Data and Networking Our Teams User Advisory Council Science at ALCF INCITE 2014 Projects ALCC 2013 Projects ESP Projects View All Projects Allocation Programs Early Science Program Publications Industry Collaborations News & Events Web Articles In the News Upcoming Events Past Events Informational Materials Photo Galleries User Services User Support Machine Status Presentations Training & Outreach User Survey Getting Started How to Get an Allocation New User Guide

151

CX-004659: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

59: Categorical Exclusion Determination 59: Categorical Exclusion Determination CX-004659: Categorical Exclusion Determination State Energy Program - Biodiesel Refueling Infrastructure CX(s) Applied: A9, B1.7, B5.1 Date: 12/09/2010 Location(s): Tacoma, Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Washington Department of Commerce and Whole Energy Fuels Corporation are proposing to use American Recovery and Reinvestment Act funding for the purchase and installation of equipment for production of biodiesel-blended fuel with installation at two established industrial facilities in Anacortes and Tacoma, Washington. These facilities are the Venoil, LLC Biorefinery facility and Truck Rail-Handling, Incorporated facility. Whole Energy Venoil, LLC Biorefinery is a biodiesel manufacturing facility which

152

CX-004005: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

5: Categorical Exclusion Determination 5: Categorical Exclusion Determination CX-004005: Categorical Exclusion Determination Venoil Bio-Refinery CX(s) Applied: B5.1 Date: 09/21/2010 Location(s): Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Washington Department of Commerce is proposing to use American Recovery and Reinvestment Act funding for the purchase and installation of a skid mounted glycerin distillation system at an existing industrial facility. The existing facility is a biodiesel manufacturing facility which is being developed and converted into a biodiesel refinery and glycerin recycling facility. The glycerin recycling facility will use by-products from existing biodiesel plants and other currently unusable materials and refine them into high quality glycerin and co-products.

153

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and room-temperature semiconductors for detection arrays of x-rays, gamma rays and neutrons. User Support The facility's special capabilities include: low-noise environment to test solid-state detectors for x-ray, gamma-ray, and neutron response mass spectrometry to quantify contaminants in detectors and detector-grade materials photoluminescence and thermally-stimulated current to measure

154

SERAPH facility capabilities  

SciTech Connect (OSTI)

The SERAPH (Solar Energy Research and Applications in Process Heat) facility addresses technical issues concerning solar thermal energy implementation in industry. Work will include computer predictive modeling (refinement and validation), system control and evaluation, and the accumulation of operation and maintenance experience. Procedures will be consistent (to the extent possible) with those of industry. SERAPH has four major components: the solar energy delivery system (SEDS); control and data acquisition (including sequencing and emergency supervision); energy distribution system (EDS); and areas allocated for storage development and load devices.

Castle, J.; Su, W.

1980-06-01T23:59:59.000Z

155

Industry - ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry and Neutron Science Industry and Neutron Science Industry and Neutron Science: Working To Make a Match "In fundamental research, we want to know everything. Industry wants to know enough to answer a question." Research Contact: Mike Crawford September 2011, Written by Deborah Counce Mike Crawford and Souleymane Diallo Mike Crawford of Dupont (right) and Souleymane Diallo, instrument scientist for the Backscattering Spectrometer at SNS, prepare a material sample for an experiment on the instrument. Industrial users are starting to eye the potential of neutron science for solving problems that can't be solved in any other way. At the same time, the SNS and HFIR neutron science facilities at ORNL are exploring ways to woo such users and to make a match of it, to the benefit of both.

156

Energistics Laboratory facility  

Science Journals Connector (OSTI)

Energistics Laboratory in Houston Texas is a leading laboratory for the testing of HVAC equipment. For over 15 years this facility has ensured the highest standards in leading?edge HVAC technology and architectural testing capabilities. Testing capabilities include both industry standard rating procedures and mock?up testing to simulate field conditions. The laboratory is open to developers owners architects engineers general contractors manufacturers and others who require independent component testing and evaluation.

2001-01-01T23:59:59.000Z

157

.Mr. C. Yayne Bickerstaff Manager, Corporate Industrial Hygiene  

Office of Legacy Management (LM)

Mr. C. Yayne Bickerstaff Mr. C. Yayne Bickerstaff Manager, Corporate Industrial Hygiene Westinghouse Electric Corporation East Pittsburgh Plant Forest Hills Pittsburgh, Pennsylvania 15230 Dear Mr. Bickerstaff: The Department of Energy (DOE), as part of its formerly Utilized Sites Remedial Action Program (FUSRAP). has reviewed information on the Westinghouse facility in Pittsburgh, Pennsylvania, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the Atomic Energy Commisslon (a predecessor to DOE). A radiological survey indicated that the radiation levels are equal to natural background. Therefore. no remedial action Is required, and DOE is eliminating this Uestinghouse facility from further consideration under FUSRAP.

158

NREL: Electricity Integration Research - Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities NREL's electricity integration research is conducted in state-of-the-art facilities. These facilities assist industry in the development of power systems and address the operational challenges of full system integration. The Energy Systems Integration Facility can be used to design, test, and analyze components and systems to enable economic, reliable integration of renewable electricity, fuel production, storage, and building efficiency technologies with the U.S. electricity delivery infrastructure. New grid integration capabilities at the National Wind Technology Center will allow testing of many grid integration aspects of multi-megawatt, utility-scale variable renewable generation and storage technologies. The Distributed Energy Resources Test Facility can be used to characterize,

159

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 15, 2007 [Facility News] October 15, 2007 [Facility News] ARM Joins National Science Foundation Remote Sensing Collaboration Bookmark and Share In September, the ARM Climate Research Facility became an official member of the National Science Foundation's Center for Collaborative Adaptive Sensing of the Atmosphere, or CASA. Initial discussions for partnering began nearly a year ago. After a series of informative visits and presentations, the decision was made to move forward with membership process. The transfer of interagency funds was completed on September 18, 2007, solidifying the partnership. In the meantime, CASA dedicated a significant effort to support the CLASIC field campaign in June 2007 by providing a network of four scanning X-band radars. CASA is a multi-sector partnership among academia, industry, and government

160

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CIMEL Sunphotometer Helps Researchers See the Light in Australia CIMEL Sunphotometer Helps Researchers See the Light in Australia Bookmark and Share A CIMEL sunphotometer, similar to this one in Tinga Tingana, Australia, will be installed at the ARM Climate Research Facility Darwin site. Photo courtesy of NASA Goddard Space Flight Center. A CIMEL sunphotometer, similar to this one in Tinga Tingana, Australia, will be installed at the ARM Climate Research Facility Darwin site. Photo courtesy of NASA Goddard Space Flight Center. Science collaborators at the Australian Bureau of Meteorology (BOM) and the Australian Commonwealth Scientific and Industry Research Organization (CSIRO) are using the ARM Climate Research Facility Darwin site in Australia to evaluate aerosol optical properties during the tropical dry season. As part of the Darwin Aerosol Intensive Operational Period (IOP), a

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Personnel Support Facility (PSF)  

High Performance Buildings Database

Virginia Beach, VA The Personnel Support Facility (PSF) provides space for a library, the Navy Marine Corps Relief Society, the Substance Abuse Rehabilitation Program, St. Leo College, and the Navy College Program. A design-build project of brick, masonry, and steel, PSF is part of a post-occupancy evaluation study run by Naval Facilities Engineering Command. The study is being used to determine the benefits of green design.

162

Science Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electron Microscopy Lab Ion Beam Materials Lab Matter-Radiation Interactions in Extremes (MaRIE) Proton Radiography Trident Laser Facility LOOK INTO LANL - highlights...

163

Reducing Energy Consumption in Industrial Facilities  

E-Print Network [OSTI]

modulate to match a reduced load. For example, assume a building has a 20% load reduction. If it is a reheat system, then there is tco much supply air. What can be done? Law Investment - Slow fan by 20%, save almost 50% in fan horsepower, eliminate... modulate to match a reduced load. For example, assume a building has a 20% load reduction. If it is a reheat system, then there is tco much supply air. What can be done? Law Investment - Slow fan by 20%, save almost 50% in fan horsepower, eliminate...

Whalen, J. M.

1984-01-01T23:59:59.000Z

164

Energy Conservation in Army Industrial Facilities  

E-Print Network [OSTI]

The United States Army Materiel Development and Readiness Command (DARCOM) is responsible for the life cycle functions for all assigned materiel systems of the United States Army and Department of Defense agencies. DARCOM installations account...

Aveta, G. A.; Sliwinski, B. J.

1984-01-01T23:59:59.000Z

165

System Assessment Standards: Defining the Market for Industrial Energy Assessments  

SciTech Connect (OSTI)

Improved efficiency of industrial systems (e.g., compressed air or steam) contributes to a manufacturing facility?s bottom line, improves reliability, and better utilizes assets. Despite these advantages, many industrial facilities continue to have unrealized system optimization potential. A barrier to realizing this potential is the lack of market definition for system energy efficiency assessment services, creating problems for both service providers in establishing market value for their services and for consumers in determining the relative quality of these system assessment services. On August 19, 2008, the American Society of Mechanical Engineers (ASME) issued four new draft Standards for trial use that are designed to raise the bar and define the market for these services. These draft Standards set the requirements for conducting an energy assessment at an industrial facility for four different system types: compressed air, process heating, pumping, and steam. The Standards address topics such as organizing and conducting assessments; analyzing the data collected; and reporting and documentation. This paper addresses both the issues and challenges in developing the Standards and the accompanying Guidance Documents, as well as the result of field testing by industrial facilities, consultants, and utilities during the trial use period that ended in January, 2009. These Standards will be revised and released by ASME for public review, and subsequently submitted for approval as American National Standards for publication in late 2009. Plans for a related activity to establish a professional-level program to certify practitioners in the area of system assessments, opportunities to integrate the ASME Standards with related work on industrial energy efficiency, as well as plans to expand the system assessment Standard portfolio are also discussed.

Sheaffer, Paul; McKane, Aimee; Tutterow, Vestal; Crane, Ryan

2009-08-01T23:59:59.000Z

166

Research Facilities & Centers | Clean Energy | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Clean Energy Clean Energy Research Areas Research Highlights Facilities and Centers BioEnergy Science Center Building Technologies Research and Integration Center Carbon Fiber Technology Facility Center For Structural Molecular Biology Climate Change Science Institute Joint Institute for Biological Sciences Manufacturing Demonstration Facility National Transportation Research Center Tools & Resources News and Awards Supporting Organizations Clean Energy Home | Science & Discovery | Clean Energy | Facilities and Centers SHARE Facilities, Centers Welcome Industry, Academia Oak Ridge National Laboratory facilities and capabilities together provide a unique environment for Clean Energy research. For example, as the lead institution for DOE's BioEnergy Science Center, ORNL is pioneering

167

The assess facility descriptor module  

SciTech Connect (OSTI)

The Facility Descriptor (Facility) module is part of the Analytic System and Software for Evaluating Safeguards and Security (ASSESS). Facility is the foundational software application in the ASSESS system for modelling a nuclear facility's safeguards and security system to determine the effectiveness against theft of special nuclear material. The Facility module provides the tools for an analyst to define a complete description of a facility's physical protection system which can then be used by other ASSESS software modules to determine vulnerability to a spectrum of insider and outsider threats. The analyst can enter a comprehensive description of the protection system layout including all secured areas, target locations, and detailed safeguards specifications. An extensive safeguard component catalog provides the reference data for calculating delay and detection performance. Multiple target locations within the same physical area may be specified, and the facility may be defined for two different operational states such as dayshift and nightshift. 6 refs., 5 figs.

Jordan, S.E.; Winblad, A.; Key, B.; Walker, S.; Renis, T.; Saleh, R.

1989-01-01T23:59:59.000Z

168

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

2005-12-22T23:59:59.000Z

169

ENERGY STAR Challenge for Industry  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Plant Industrial Plant Certification Professional Engineers' Guide for Validating Statements of Energy Performance Office of Air and Radiation Climate Protection Partnerships Division June 2013 ii Introduction The U.S. Environmental Protection Agency's ENERGY STAR program provides guidance, tools, and recognition to help companies improve the energy performance of their facilities and strengthen the effectiveness of their energy management program. Through ENERGY STAR, the U.S. Environmental Protection Agency (EPA) offers a number of forms of recognition, including certification for facility energy efficiency. ENERGY STAR certification for industrial plants recognizes individual manufacturing plants whose

170

INDUSTRIAL SAFETY & HEALTH (ISH)  

Broader source: Energy.gov (indexed) [DOE]

HEALTH (ISH) HEALTH (ISH) OBJECTIVE ISH.1 A comprehensive industrial safety & health program has been implemented to address applicable safety requirements at the TA 55 SST Facility. (Core Requirements 1, 3, and 4) Criteria * Procedures are implemented to address applicable industrial & health safety issues. * An adequate number of trained personnel are available to support SST facility regarding industrial safety & health concerns. * Portable fire extinguishers are appropriate for the class of fire they are expected to fight and are located within the proper distance. * Cranes, hooks, slings, and other rigging are plainly marked as to their capacity and inspected prior to use. * Forklifts and other powered lifting devices are adequately inspected.

171

Mobile Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 Data Operations AMF Fact Sheet Images Contacts AMF Deployments Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010 Graciosa Island, Azores, 2009-2010 Shouxian, China, 2008 Black Forest, Germany, 2007 Niamey, Niger, 2006 Point Reyes, California, 2005 Mobile Facilities Pictured here in Gan, the second mobile facility is configured in a standard layout. Pictured here in Gan, the second mobile facility is configured in a standard layout. To explore science questions beyond those addressed by ARM's fixed sites at

172

Industrial Engineering Industrial Advisory Board  

E-Print Network [OSTI]

Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

Gelfond, Michael

173

High Technology and Industrial Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

174

OSS 19.9 Industrial Hygiene 4/10/95 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

9 Industrial Hygiene 4/10/95 9 Industrial Hygiene 4/10/95 OSS 19.9 Industrial Hygiene 4/10/95 The objective of this surveillance is to evaluate the effectiveness of programs implemented by the contractor to anticipate, recognize, evaluate, and control environmental factors or stresses that may adversely affect the health of the Department's workers. The Facility Representative conducts walkthroughs, observes activities, and reviews records to determine if the implementation of the contractor's Industrial Hygiene Program is achieving required results. The Facility Representative evaluates compliance with DOE requirements and implementation of best practices. OSS19-09.doc More Documents & Publications OSS 19.8 Heat Stress 4/3/95 OSS 19.5 Hazardous Waste Operations and Emergency Response 3/21/95

175

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

15, 2006 [Facility News] 15, 2006 [Facility News] Radar Wind Profiler Joins ARM Mobile Facility Instrument Suite Bookmark and Share This spring, a 915 MHz radar wind profiler (RWP) was successfully installed at the ARM Mobile Facility (AMF) site in Niamey, Niger, West Africa, for the remainder of the 1-year RADAGAST field campaign which started in January. The RWP will provide information about wind speed, wind direction, and wind shear, and also enable measurements of the turbulence in the lower part of the troposphere. This may be a key variable in determining the vertical distribution of dust in the experimental domain. Gradients in the radar's reflectivity spectrum may also help to provide continuous identification of the depth of the boundary layer in the summer months, when refractive gradients are likely to be maximized by low-level moisture.

176

Argonne CNM: Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

For Industrial Users For Industrial Users The Center for Nanoscale Materials (CNM) has specific interest in growing the industrial user program and encourages researchers in industry to consider the capabilities and expertise we have to offer. As a CNM user, you have easy access to sophisticated scientific instrumentation geared toward nanoscience and nanotechnology. Moreover, our widely recognized staff researchers offer support in designing your experiments, using the equipment, and analyzing your data. Access to the CNM is through peer review of user proposals. Before you submit your first user proposal, we encourage you to contact any of our staff researchers, group leaders, the User Office, or division management to discuss the feasibility of your intended research using the expertise and facilities at the CNM. We are here to serve you as part of our user community and will be happy to address any questions you might have.

177

Industry - ORNL Neutron Sciences  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Former User Group Chair Enthusiastic About Relevance of Neutron Scattering Former User Group Chair Enthusiastic About Relevance of Neutron Scattering to Industrial Research Former User Group Chair Mike Crawford Mike Crawford, DuPont Research and Development. The drive is intensifying to encourage research partnerships between Neutron Sciences and private industry. Such partnerships, a long-term strategic goal set by the DOE's Basic Energy Sciences Advisory Committee, will deliver industry and its technological problems to SNS and HFIR, where joint laboratory-industry teams can use the unparalleled resources available here to resolve them. "SNS is a tremendous facility. It has the potential to have a couple of thousand user visits a year and, if they build another target station in the future, you're probably talking about 4000 user visits a year,"

178

User's guide to DOE facilities  

SciTech Connect (OSTI)

The Department of Energy's research laboratories represent valuable, often unique, resources for university and industrial scientists. It is DOE policy to make these laboratories and facilities available to qualified scientists. The answers to such questions as who are eligible, what and where are the facilities, what is the cost, when can they be used, are given. Data sheets are presented for each facility to provide information such as location, user contact, description of research, etc. A subject index refers to areas of research and equipment available.

Not Available

1984-01-01T23:59:59.000Z

179

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

2002-05-20T23:59:59.000Z

180

Pahoa geothermal industrial park. Engineering and economic analysis for direct applications of geothermal energy in an industrial park at Pahoa, Hawaii  

SciTech Connect (OSTI)

This engineering and economic study evaluated the potential for developing a geothermal industrial park in the Puna District near Pahoa on the Island of Hawaii. Direct heat industrial applications were analyzed from a marketing, engineering, economic, environmental, and sociological standpoint to determine the most viable industries for the park. An extensive literature search produced 31 existing processes currently using geothermal heat. An additional list was compiled indicating industrial processes that require heat that could be provided by geothermal energy. From this information, 17 possible processes were selected for consideration. Careful scrutiny and analysis of these 17 processes revealed three that justified detailed economic workups. The three processes chosen for detailed analysis were: an ethanol plant using bagasse and wood as feedstock; a cattle feed mill using sugar cane leaf trash as feedstock; and a papaya processing facility providing both fresh and processed fruit. In addition, a research facility to assess and develop other processes was treated as a concept. Consideration was given to the impediments to development, the engineering process requirements and the governmental support for each process. The study describes the geothermal well site chosen, the pipeline to transmit the hydrothermal fluid, and the infrastructure required for the industrial park. A conceptual development plan for the ethanol plant, the feedmill and the papaya processing facility was prepared. The study concluded that a direct heat industrial park in Pahoa, Hawaii, involves considerable risks.

Moreau, J.W.

1980-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

PNNL: EDO - Facilities & Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities & Equipment Facilities & Equipment Facilities Equipment Decades of government investment on and around the Pacific Northwest National Laboratory campus has made PNNL a business-friendly resource for conducting a wide range of research. As a mission-focused organization, we are dedicated to teaming with government agencies, industry and academia to address what we believe are among the nation's most pressing needs in the areas of energy, environment, national security, and fundamental science. But behind these important missions is a wealth of supporting capabilities including incubator space, research laboratories, and user facilities that may be just what your business needs. We invite you to learn more about how we can work with businesses as well as what research laboratories and user facilities are available.

182

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

2000-11-20T23:59:59.000Z

183

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

2005-12-22T23:59:59.000Z

184

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

2013-06-21T23:59:59.000Z

185

Key Energy-Saving Projects for Smaller Facilities  

Broader source: Energy.gov [DOE]

This presentation discusses how smaller industrial facilities can save energy and how the Industrial Assessment Centers can help. Briggs and Stratton provides examples of projects and implementation plans which worked for them.

186

Energy Efficiency Opportunities in California Food Processing Facilities  

E-Print Network [OSTI]

the Commission has conducted 10 targeted and plant-wide assessments in industrial facilities associated with the food processing industry. Two of these assessments were Energy Savings Assessments (ESA) funded under the DOE’s “Save Energy Now” Program. All...

Wong, T.; Kazama, D; Wang, J.

2008-01-01T23:59:59.000Z

187

CX-005951: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

951: Categorical Exclusion Determination 951: Categorical Exclusion Determination CX-005951: Categorical Exclusion Determination Silicon Valley Technology Center Solar: A Photovoltaic Manufacturing Development Facility CX(s) Applied: B3.6, B5.1 Date: 05/31/2011 Location(s): San Jose, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Silicon Valley Technology Center (SVTC) Solar proposes to use federal funding to create a photovoltaic manufacturing development facility. This facility will allow industry partners access to cutting edge equipment which is intended to speed the transition from research and development to full-scale manufacturing of photovoltaic materials. The facility will be located within an existing building at 5212 Hellyer Avenue, San Jose, California.

188

Overview of the Facility Safeguardability Analysis (FSA) Process  

SciTech Connect (OSTI)

The safeguards system of the International Atomic Energy Agency (IAEA) provides the international community with credible assurance that a State is fulfilling its nonproliferation obligations. The IAEA draws such conclusions from the evaluation of all available information. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of this “State-level” approach. Efficiently used, the Safeguards by Design (SBD) methodologies , , , now being developed can contribute to effective and cost-efficient facility-level safeguards. The Facility Safeguardability Assessment (FSA) introduced here supports SBD in three areas. 1. It describes necessary interactions between the IAEA, the State regulator, and the owner / designer of a new or modified facility to determine where SBD efforts can be productively applied, 2. It presents a screening approach intended to identify potential safeguard issues for; a) design changes to existing facilities; b) new facilities similar to existing facilities with approved safeguards approaches, and c) new designs, 3. It identifies resources (the FSA toolkit), such as good practice guides, design guidance, and safeguardability evaluation methods that can be used by the owner/designer to develop solutions for potential safeguards issues during the interactions with the State regulator and IAEA. FSA presents a structured framework for the application of the SBD tools developed in other efforts. The more a design evolves, the greater the probability that new safeguards issues could be introduced. Likewise, for first-of-a-kind facilities or research facilities that involve previously unused processes or technologies, it is reasonable to expect that a number of possible safeguards issues might exist. Accordingly, FSA is intended to help the designer and its safeguards experts identify early in the design process: • Areas where elements of previous accepted safeguards approach(es) may be applied to facility modifications or new designs • Modifications of the design that could mitigate a potential safeguards issue or facilitate a more efficient application of the safeguards approach • Possible innovative ideas for more efficient application of safeguards • The potential for changes in elements of the safeguard approach that may be required by IAEA as a result of facility design features and characteristics • Other potential concerns These issues will then be presented to the IAEA and the state regulator to be resolved in a timely manner, ensuring that the planned safeguards approach is acceptable and compatible with the facility design. The proposed approach should be validated by application to suitable facilities to assess its utility, comprehensiveness, and cost-effectiveness. The approach and example application should also be reviewed by industry to confirm the conclusions reached in the DOE review.

Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Shirley J.; Wigeland, Roald; Zentner, Michael D.

2011-10-10T23:59:59.000Z

189

Industrial process surveillance system  

DOE Patents [OSTI]

A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

1998-06-09T23:59:59.000Z

190

Recent developments: Industry briefs  

SciTech Connect (OSTI)

This article is the `Industry Briefs` portion of Nuexco`s July 1992 `Recent Developments` section. Specific items mentioned include: (1) the merger of Entergy and Gulf States Utilities, (2) restart of the Sequoyah Fuels facility in Oklahoma, (3) development of the 7th and 8th nuclear units in Taiwan, (4) purchase of interest in Rio Algom, Ltd, and (5) acquisition of the Italian firm AGIP by a Canadian company.

NONE

1992-07-01T23:59:59.000Z

191

Thinking Globally: How ISO 50001 - Energy Management can make industrial energy efficiency standard practice  

E-Print Network [OSTI]

organizational framework for industrial facilities to integrate energy efficiencyof energy efficiency. A first step once the organizational

McKane, Aimee

2010-01-01T23:59:59.000Z

192

Industrial Buildings Tools and Resources  

Broader source: Energy.gov (indexed) [DOE]

Rolf Butters Rolf Butters Industrial Technologies Program Industrial Buildings Tools and Resources Webinar - June 11, 2009 Michael MacDonald Agenda  Introduction to Industrial Buildings Opportunity and Tools  EERE Funding, Opportunities, and Resources  Next Steps 6/11/2009 2 Facilities Energy  ITP has been working for a couple years now to develop tools to address facilities energy use, present in most plants, and about 8% of total sector energy use  First tool is a Score Card, implemented both as a stand- alone Excel file and for QuickPEP - Score Card has to be simple, so is approximate - But it can be a very important tool for scoping facilities energy use at a plant  Second tool is an adaptation of the BCHP Screening Tool, originally developed by the Distributed Energy program but

193

Industrial Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Industrial Industrial Industrial / Manufacturing Buildings Industrial/manufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey (MECS). See the MECS home page for further information. Commercial buildings found on a manufacturing industrial complex, such as an office building for a manufacturer, are not considered to be commercial if they have the same owner and operator as the industrial complex. However, they would be counted in the CBECS if they were owned and operated independently of the manufacturing industrial complex. Specific questions may be directed to: Joelle Michaels joelle.michaels@eia.doe.gov CBECS Manager Release date: January 21, 2003 Page last modified: May 5, 2009 10:18 AM http://www.eia.gov/consumption/commercial/data/archive/cbecs/pba99/industrial.html

194

Equity Industrial Partners | Open Energy Information  

Open Energy Info (EERE)

Equity Industrial Partners Equity Industrial Partners Jump to: navigation, search Name Equity Industrial Partners Facility Equity Industrial Partners Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Equity Industrial Turbines LLC Developer Equity Industrial Turbines LLC Energy Purchaser City of Gloucester Location Gloucester MA Coordinates 42.625864°, -70.65621° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.625864,"lon":-70.65621,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

195

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

1995-10-13T23:59:59.000Z

196

Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

2012-12-04T23:59:59.000Z

197

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy  

Open Energy Info (EERE)

Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Energy Efficiency, Industry Resource Type: Guide/manual Website: china.lbl.gov/sites/china.lbl.gov/files/LBNL-3991E.Industrial%20Energy Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities Screenshot References: Industrial Energy Audit Guidebook[1] "This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and

198

Lighting Research Group: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Facilities Lighting Research Facilities at LBNL gonio-photometer Gonio-photometer We use this device to measure the intensity and direction of the light from a lamp or fixture. integrating sphere Integrating sphere This instrument allows us to get a fast and accurate measurement of the total light output of a lamp. We are not able to determine the direction of the light, only the intensity. power analyzer Power analyzer We use our power analyzer with the lamps in the gonio-photometer to measure input power, harmonic distortion, power factor, and many other signals that tell us how well a lamp is performing. spectro-radiometer Spectro-radiometer This device measures not only the intensity of a light source but also the intensity of the light at each wavelength.

199

Superior Energy Performance Enrollment and Application Forms for Industry  

Broader source: Energy.gov [DOE]

Enrollment and Application Forms for SEP Industrial Participants. The Superior Energy Performance® (SEP™) program, built on ISO 50001 framework, provides a globally recognized system that U.S. industrial facilities can use to improve their energy management and performance.

200

NETL: Research Capabilities and Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Capabilities and Facilities Research Capabilities and Facilities Onsite Research Research Capabilities and Facilities Lab Worker As the lead field center for the DOE Office of Fossil Energy's research and development program, NETL has established a strong onsite research program conducted by Federal scientists and engineers. Onsite R&D – managed by NETL's Office of Research and Development – makes important contributions to NETL's mission of implementing a research, development, and demonstration program to resolve the environmental, supply, and reliability constraints of producing and using fossil resources. With its expert research staff and state-of-the-art facilities, NETL has extensive experience in working with the technical issues related to fossil resources. Onsite researchers also participate with NETL's industrial partners to solve problems that become barriers to commercialization of power systems, fuels, and environmental and waste management. Onsite research capabilities are strengthened by collaborations with well-known research universities.

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Facility Security Officer Contractor Toolcart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RESPONSIBILITIES RESPONSIBILITIES FSO Overview FSO Reporting Responsibilities Questions an FSOs at a Non-Possesssing Site Could Be Asked During an Audit Non-Possessing Contractor Security Requirements Plan Training for Facility Security Officers (FSOs) PHY-210DE Facility Security Officer Overview PHY-210DB, Introduction to Facility Security Officer (Self-Study Course ) Duration: 3 days Description: This correspondence course provides an overview of the roles and responsibilities of the DOE or DOE-contractor FSO. The course emphasizes facility clearance requirements, personnel security, information security, incident reporting, and other related programs. The course references the National Industrial Security Program Operating Manual (NISPOM) (DoD 5220.22-M) and a comprehensive listing of DOE orders, manuals, guides, forms, and notices.

202

Existing Facilities Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Existing Facilities Program Existing Facilities Program Existing Facilities Program < Back Eligibility Agricultural Commercial Fed. Government Industrial Installer/Contractor Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Appliances & Electronics Other Construction Commercial Weatherization Manufacturing Heat Pumps Commercial Lighting Lighting Maximum Rebate Pre-Qualified Measures (General): $30,000 (electric and gas) Electric Efficiency and Energy Storage: 50% of cost or $2 million Natural Gas Efficiency: 50% of cost or $200,000 Demand Response: 75% of cost or $2 million (limit also applies to combined performance based efficiency and demand response measures) Industrial Process Efficiency: 50% of cost or $5 million

203

Borehole closure and test zone volume determination program for brine-permeability test results within the Waste Isolation Pilot Plant underground facility  

SciTech Connect (OSTI)

Until recently, hydrologic characterization in closed sections of boreholes at the Waste Isolation Pilot Plant (WIPP) has relied on measurements of pressure and temperature to establish the permeability of the host geological formations. There were no provisions for monitoring tool compliance and salt creep resulting from borehole closure. The new permeability test tool used to characterize the WIPP underground facility has been equipped with a series of sensors to measure the movement of the tool with respect to the borehole and borehole wall movement. A FORTRAN program can interpret the output data from each test and calculate the change in borehole radius, test zone length, and test zone volume. These values provide a correlation of fluid compressibility and tool compliance with the permeability results derived from the test data. 4 figs., 3 tabs.

Jensen, A.L.

1990-05-01T23:59:59.000Z

204

Using CFN Facilities | Center for Functional Nanomaterials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Using CFN Facilities Using CFN Facilities CFN facilities are available free of charge to scientists from universities, industry, and national laboratories worldwide, for non-proprietary nanoscience research projects. Access to the facilities is granted to external users through a peer-reviewed proposal system. Proposals are submitted electronically and reviewed and rated by an external Proposal Review Panel. Proposals must include the specific equipment requested, the scientific impact of the research project, and a description of the research to be conducted at the CFN. For an accepted proposal, the actual schedule for work at the CFN is jointly made by the leader(s) of the requested facility (or facilities), and the proposal's principal investigator. User Registration All researchers coming to the CFN to work at a facility must have an active

205

Alternate Cooling Methods for Industrial Plants  

E-Print Network [OSTI]

Cooling in industrial facilities has traditionally been performed by mechanical vapor compression units. While it remains the standard, recent concerns with the rising cost of electricity and environmental legislation restricting or outlawing CFC...

Brown, M.; Moore, D.

206

Audit of the Department of Energy's User Facilities, IG-0395  

Broader source: Energy.gov (indexed) [DOE]

August 19, 1996 August 19, 1996 REPLY TO ATTN OF: IG-1 SUBJECT: INFORMATION: Report on "Audit of the Department of Energy's User Facilities" TO: The Secretary BACKGROUND: The Department of Energy has for years made certain designated user facilities available to universities, industry, and other research organizations. Due to technology transfer efforts and excess capacities, even more facilities, such as defense program facilities, are being made available to outside users. Today, Department user facilities fall into one of three categories - designated user facilities, other user resources, and Technology Deployment Center/User Facilities. The objectives of the audit

207

Industry @ ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industry @ ALS Industry @ ALS Industry @ ALS Concrete Industry Benefits from Ancient Romans and the ALS Print Thursday, 17 October 2013 14:24 New insights into the Romans' ingenious concrete harbor structures emerging from ALS beamline research could move the modern concrete industry toward its goal of a reduced carbon footprint. Summary Slide Read more... Moving Industry Forward: Finding the Environmental Opportunity in Biochar Print Thursday, 12 September 2013 08:41 Using ALS Beamlines 10.3.2 and 8.3.2, the Environmental Protection Agency (EPA) is currently investigating how biochar sorbs environmental toxins and which kinds of biochar are the most effective. The possibilities for widespread use have already launched entrepreneurial commercial ventures. Summary Slide

208

Industrial energy use indices  

E-Print Network [OSTI]

and colder are determined by annual average temperature weather data). Data scatter may have several explanations, including climate, plant area accounting, the influence of low cost energy and low cost buildings used in the south of the U.S. iv... This analysis uses electricity and natural gas energy consumption and area data of manufacturing plants available in the U.S. Department of Energy’s national Industrial Assessment Center (IAC) database. The data there come from Industrial Assessment Centers...

Hanegan, Andrew Aaron

2008-10-10T23:59:59.000Z

209

Industrial Hygienist  

Broader source: Energy.gov [DOE]

A successful candidate in this position wil l serve as an Industrial Hygienist in the Operations Division, providing technical oversight of the Pacific Northwest National Laboratory contractors...

210

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

211

Industrial Users  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

on altitude. This large flux allows testing of semiconductor devices at greatly accelerated rates. Industry users are invited to contact Steve Wender, phone:505-667-1344 or...

212

Facilities evaluation report  

SciTech Connect (OSTI)

The Buried Waste Integrated Demonstration (BWID) is a program of the Department of Energy (DOE) Office of Technology Development whose mission is to evaluate different new and existing technologies and determine how well they address DOE community waste remediation problems. Twenty-three Technical Task Plans (TTPs) have been identified to support this mission during FY-92; 10 of these have identified some support requirements when demonstrations take place. Section 1 of this report describes the tasks supported by BWID, determines if a technical demonstration is proposed, and if so, identifies the support requirements requested by the TTP Principal Investigators. Section 2 of this report is an evaluation identifying facility characteristics of existing Idaho National Engineering Laboratory (INEL) facilities that may be considered for use in BWID technology demonstration activities.

Sloan, P.A.; Edinborough, C.R.

1992-04-01T23:59:59.000Z

213

SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

214

ARM - SGP Central Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Central Facility Central Facility SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts SGP Central Facility The ARM Climate Research Facility deploys specialized remote sensing instruments in a fixed location at the site to gather atmospheric data of unprecedented quality, consistency, and completeness. More than 30 instrument clusters have been placed around the site; the central facility; and the boundary, intermediate, and extended facilities. The locations for the instruments were chosen so that the measurements reflect conditions

215

Property Tax Abatement for Production and Manufacturing Facilities |  

Broader source: Energy.gov (indexed) [DOE]

Abatement for Production and Manufacturing Facilities Abatement for Production and Manufacturing Facilities Property Tax Abatement for Production and Manufacturing Facilities < Back Eligibility Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Heating & Cooling Swimming Pool Heaters Water Heating Heating Wind Program Info Start Date 5/25/2007 State Montana Program Type Industry Recruitment/Support Rebate Amount 50% tax abatement Provider Montana Department of Revenue In May 2007, Montana enacted legislation (H.B. 3) that allows a property tax abatement for new renewable energy production facilities, new renewable energy manufacturing facilities, and renewable energy research and

216

Guidelines for Evaluation of Nuclear Facility Training Programs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guidelines for Evaluation of Nuclear Facility Training Programs establish objectives and criteria for evaluating nuclear facility training programs. The guidance in this standard provides a framework for the systematic evaluation of training programs at nuclear facilities and is based, in part, on established criteria for Technical Safety Appraisals, Tiger Team Assessments, commercial nuclear industry evaluations, and the DOE Training Accreditation Program.

1995-11-22T23:59:59.000Z

217

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect (OSTI)

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

Laycak, D T

2008-06-16T23:59:59.000Z

218

Underground Facilities Information (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facilities Information (Iowa) Facilities Information (Iowa) Underground Facilities Information (Iowa) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Residential Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any excavation which may impact underground facilities, including those used for the conveyance of electricity or the transportation of hazardous liquids or natural gas. Excavation is prohibited unless notification takes place, as described in this chapter

219

Drainage, Sanitation, and Public Facilities Districts (Virginia) |  

Broader source: Energy.gov (indexed) [DOE]

Drainage, Sanitation, and Public Facilities Districts (Virginia) Drainage, Sanitation, and Public Facilities Districts (Virginia) Drainage, Sanitation, and Public Facilities Districts (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Siting and Permitting Provider Local Governments and Districts This legislation provides for the establishment of sanitary, sanitation, drainage, and public facilities districts in Virginia. Designated districts are public bodies, and have the authority to regulate the construction and development of sanitation and waste disposal projects in their

220

NREL: Energy Systems Integration Facility - Facility Design  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Design Throughout the Energy Systems Integration Facility design process, the National Renewable Energy Laboratory hosted workshops in which stakeholders from across the...

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Management of a complex cavern storage facility for natural gas  

SciTech Connect (OSTI)

The Epe cavern storage facility operated by Ruhrgas AG has developed into one of the largest gas cavern storage facilities in the world. Currently, there are 32 caverns and 18 more are planned in the future. Working gas volume will increase from approximately 1.5 {times} 10{sup 9} to 2 {times} 10{sup 9} m{sup 3}. The stratified salt deposit containing the caverns has a surface area of approximately 7 km{sup 2} and is 250 m thick at the edge and 400 m thick in the center. Caverns are leached by a company that uses the recovered brine in the chlorine industry. Cavern dimensions are determined before leaching. The behavior of each cavern, as well as the thermodynamic properties of natural gas must be considered in cavern management. The full-length paper presents the components of a complex management system covering the design, construction, and operation of the Epe gas-storage caverns.

NONE

1998-04-01T23:59:59.000Z

222

Water treatment facilities (excluding wastewater facilities). (Latest citations from the Selected Water Resources Abstracts database). Published Search  

SciTech Connect (OSTI)

The bibliography contains citations concerning the design, construction, costs, and operation of water treatment facilities. Facilities covered include those that provide drinking water, domestic water, and water for industrial use. Types of water treatment covered include reverse osmosis, chlorination, filtration, and ozonization. Waste water treatment facilities are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-07-01T23:59:59.000Z

223

Central Appalachia: Coal industry profile  

SciTech Connect (OSTI)

Central Appalachia, the most complex and diverse coal-producing region in the United States, is also the principal source of very low sulfur coal in the East. This report provides detailed profiles of companies and facilities responsible for about 90% of the area's production, conveying a unique view of the aggregate industry as well as its many parts.

McMahan, R.L.; Kendall, L.K. (Resource Data International, Inc., Boulder, CO (USA))

1991-05-01T23:59:59.000Z

224

Hazard Baseline Downgrade Effluent Treatment Facility  

SciTech Connect (OSTI)

This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility.

Blanchard, A.

1998-10-21T23:59:59.000Z

225

Industrial microbiology  

Science Journals Connector (OSTI)

...include the fruit, wine, baking, milling, dairy, and distill-ing industries...fructose known as high fruc-tose corn syrup. Between 500,000 and 1...glucose isomerase has permitted the corn wet milling industry to capture 30 percent of...

AL Demain

1981-11-27T23:59:59.000Z

226

CX-008574: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

74: Categorical Exclusion Determination 74: Categorical Exclusion Determination CX-008574: Categorical Exclusion Determination University of Wisconsin Oshkosh Anaerobic Dry Digestion Facility CX(s) Applied: A9, B3.6, B5.20 Date: 05/31/2012 Location(s): Wisconsin Offices(s): Golden Field Office DOE is proposing to provide federal funding to the University of Wisconsin, Oshkosh (UW-Oshkosh) to purchase add-on equipment to operate an anaerobic dry digestion, waste-to-energy system at an existing facility. DOE funding would be used to purchase equipment that would measure facility performance using biogas generated by anaerobic digestion of different municipal, agricultural and industrial feedstocks, as well as to use waste biogas from a municipal treatment plant. CX-008574.pdf More Documents & Publications

227

CX-000669: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

69: Categorical Exclusion Determination CX-000669: Categorical Exclusion Determination Illinois Energy Conservation Plan for State Facilities - Capital Development Board Projects...

228

CX-011597: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-011597: Categorical Exclusion Determination Mission Support Alliance Annual Categorical Exclusion for Facility Safety and Environmental Improvements under...

229

CX-009656: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-009656: Categorical Exclusion Determination Mission Support Alliance Annual Categorical Exclusion for Facility Safety and Environmental Improvements...

230

4858 recreation facility [n  

Science Journals Connector (OSTI)

plan. recr. (Installation and equipment provided for recreation; ? simply-provided recreation facility , ? well-provided recreation facility ...

2010-01-01T23:59:59.000Z

231

Facilities | Argonne National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced...

232

Comparing the Effects of Mutualism and Competition on Industrial Districts  

E-Print Network [OSTI]

refining, chemical and bio-chemical produc- tion facilities, as well as heavy industrial facilities the industrial economy of the Humber region. Obviously such an intricate network of relationships is not unique to the Humber region. In fact, any economy which has a regional component could be represented by a complicated

Hoyle, Rebecca B.

233

NSLS Industrial User Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jun Wang Physicist, Industrial Program Coordinator Phone: 344-2661 Email: junwang@bnl.gov Jun Wang is an Industrial Program Coordinator in the Photon Science Directorate at Brookhaven National Laboratory. She is working closely with industrial researchers as well as beamline staff to identify and explore new opportunities in industrial applications using synchrotron radiation. She has been leading the industrial research program including consultation, collaboration and outreach to the industrial user groups. Before joining BNL in 2008, Jun Wang was a Lead Scientist for a high-resolution high throughput powder diffraction program at the Advanced Photon Source (APS). As a Physicist at BNL, her research focuses on materials structure determination and evolution. Her expertise covers wide range x-ray techniques such as thin film x-ray diffraction and reflectivity, powder diffraction, small angle x-ray scattering, protein solution scattering and protein crystallography, as well as x-ray imaging. Currently she is the project leader of a multi-million dollar project on transmission x-ray microscopy recently funded by the U.S. DOE and the spokesperson for this new imaging beamline at the NSLS. She has also been collaborating with universities and industries for several projects on energy research at the NSLS.

234

Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

063-2011 063-2011 February 2011 Superseding DOE-STD-1063-2006 April 2006 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2011 ii Available on the Department of Energy Technical Standards Program Web site at http://www.hss.doe.gov/nuclearsafety/ns/techstds/ DOE-STD-1063-2011 iii FOREWORD 1. This Department of Energy (DOE) standard is approved for use by all DOE/National Nuclear Security Administration (NNSA) Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations,

235

Facility Representatives  

Broader source: Energy.gov (indexed) [DOE]

DOE-STD-1063-2006 April 2006 Superseding DOE-STD-1063-2000 March 2000 DOE STANDARD FACILITY REPRESENTATIVES U.S. Department of Energy AREA MGMT Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1063-2006 ii Available on the Department of Energy Technical Standards Program web site at http://www.eh.doe.gov/techstds/ DOE-STD-1063-2006 iii FOREWORD 1. This Department of Energy standard is approved for use by all DOE Components. 2. The revision to this DOE standard was developed by a working group consisting of headquarters and field participants. Beneficial comments (recommendations, additions, deletions) and any pertinent data that may improve this document should

236

Facility Type!  

Office of Legacy Management (LM)

ITY: ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR GUN-I OWNED ----- LEEE!? M!s LE!Ps2 -LdJG?- ---L .ANDS ILJILDINGS X2UIPilENT IRE OR RAW HA-I-L :INAL PRODUCT IASTE Z. RESIDUE I I kility l pt I ,-- 7- ,+- &!d,, ' IN&"E~:EW AT SITE -' ---------------- , . Control 0 AEC/tlED managed operations

237

Research Facility,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collecting and Delivering the Data Collecting and Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired must be of sufficient quality to be useful and must be documented such that users will be able to clearly understand the meaning and organization of the data. Final, quality-assured data sets are stored in the Data Archive and are freely accessible to the general scientific community. Preliminary data may be shared among field campaign participants during and shortly following the campaign. To facilitate sharing of preliminary data, the ARM Data Archive establishes restricted access capability, limited to participants and data managers.

238

High Field Magnetic Resonance Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HFMRF Overview HFMRF Overview Section 2-3-1 High Field Magnetic Resonance Facility The High Field Magnetic Resonance Facility (HFMRF) focuses a significant portion of its research on developing a fundamental, molecular-level understanding of biochemical and biological systems and their response to environmental effects. A secondary focus is materials science, including catalysis and chemical mechanisms and processes. Staff and science consultants within this facility offer expertise in the areas of structural biology, solid-state materials characterization, and magnetic resonance imaging (MRI) techniques. Research activities in the HFMRF include: * structure determination of large molecular assemblies such as protein-DNA (normal and damaged DNA) and protein-RNA complexes

239

NREL: Sustainable NREL - Integrated Biorefinery Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Biorefinery Research Facility Integrated Biorefinery Research Facility A photo of a grey, three-story research facility on a large campus. The Integrated Biorefinery Research Facility The Integrated Biorefinery Research Facility (IBRF) incorporates a large number of energy efficiency and sustainability practices into its cutting-edge design. This facility received a Leadership in Energy and Environmental Design (LEED®) Gold-level certification from the U.S. Green Building Council and supports a variety of advanced biofuels projects and enables researchers and industry partners to develop, test, evaluate, and demonstrate processes for the production of bio-based products and fuels. Fast Facts Cost: $33.5M Square feet: 27,000 Occupants: 32 Labs/Equipment: high-bay biochemical conversion pilot plant that

240

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) |  

Broader source: Energy.gov (indexed) [DOE]

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) Massachusetts Hazardous Waste Facility Siting Act (Massachusetts) < Back Eligibility Commercial Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct, maintain, and/or operate a hazardous waste facility in a city or town is demonstrated, a local assessment committee will be established by that community. The

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NREL: Photovoltaics Research - Science and Technology Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Science and Technology Facility Science and Technology Facility Photo of the Science and Technology Facility (S&TF) at NREL. NREL's Science and Technology Facility (S&TF) has a sustainable and energy efficient design and will support solar cell, thin film, and nanostructure research. Solar cell, thin film, and nanostructure research are conducted in our Science and Technology Facility (S&TF) with the benefits of a forty percent reduction in energy use compared to standard laboratory buildings; energy recovery for ventilation in laboratories; and functional and flexible laboratory space. Designed specifically to reduce time delays associated with transferring technology to industry, the S&TF's 71,000 square feet is a multi-level facility of laboratory space, office space, and lobby connected by an

242

Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 5. Human health risk assessment; evaluation of potential risks from multipathway exposure to emissions  

SciTech Connect (OSTI)

The report provide estimates of: (1) individual risks based on central tendency exposure; (2) individual risks based on maximum environmental concentrations; (3) risks to highly exposed or susceptible subgroups of the population (e.g., subsistence farmers and school children); (4) risks associated with specific activities that may result in elevated exposures (e.g., subsistence fishermen and deer hunters); and (5) population risk. This approach allows for the estimation of risks to specific segments of the population taking into consideration activity patterns, number of individuals, and actual locations of individuals in these subgroups with respect to the facility. The fate and transport modeling of emissions from the facility to estimate exposures to identified subgroups is described.

NONE

1997-05-01T23:59:59.000Z

243

CX-001651: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

651: Categorical Exclusion Determination 651: Categorical Exclusion Determination CX-001651: Categorical Exclusion Determination Commercial and Industrial Building Energy Efficiency CX(s) Applied: A9, A11, B5.1 Date: 04/09/2010 Location(s): Saint Paul, Minnesota Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The City of Saint Paul would sub grant Energy Efficiency and Conservation Block Grant (EECBG) funds to the Saint Paul Port Authority's (the industrial economic redevelopment arm of the City of Saint Paul) Trillion British Thermal Unit (BTU) Energy Efficiency Improvement Program. The Port Authority would use the funds to design, finance, and install energy efficient improvements in commercial and industrial facilities. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-001651.pdf More Documents & Publications

244

ORELA accelerator facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Oak Ridge Electron Linear Accelerator The Oak Ridge Electron Linear Accelerator Pulsed Neutron Source The ORELA is a powerful electron accelerator-based neutron source located in the Physics Division of Oak Ridge National Laboratory. It produces intense, nanosecond bursts of neutrons, each burst containing neutrons with energies from 10e-03 to 10e08 eV. ORELA is operated about 1200 hours per year and is an ORNL User Facility open to university, national laboratory and industrial scientists. The mission of ORELA has changed from a recent focus on applied research to nuclear astrophysics. This is an area in which ORELA has historically been very productive: most of the measurements of neutron capture cross sections necessary for understanding heavy element nucleosynthesis through the slow neutron capture process (s-process) have

245

Industry Perspective  

Broader source: Energy.gov [DOE]

Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

246

Energy Conversion and Transmission Facilities (South Dakota) | Department  

Broader source: Energy.gov (indexed) [DOE]

Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) Energy Conversion and Transmission Facilities (South Dakota) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Retail Supplier Institutional Systems Integrator Fuel Distributor Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Dakota Program Type Siting and Permitting Provider South Dakota Public Utilities Commission This legislation applies to energy conversion facilities designed for or capable of generating 100 MW or more of electricity, wind energy facilities with a combined capacity of 100 MW, certain transmission facilities, and

247

Wool Industries Research Association  

Science Journals Connector (OSTI)

... THE report of Dr. A. B. P. Cassie, director of research of the Wool Industries Research Association, presented to the annual general meeting of the Association on April ... No. 212.) Headingley, Leeds: 1959). Modifications have been made to the pilot scouring plant, while methods for determining oil and grease in ...

1959-06-27T23:59:59.000Z

248

Harrisburg Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Harrisburg Facility Biomass Facility Harrisburg Facility Biomass Facility Jump to: navigation, search Name Harrisburg Facility Biomass Facility Facility Harrisburg Facility Sector Biomass Facility Type Landfill Gas Location Dauphin County, Pennsylvania Coordinates 40.2734277°, -76.7336521° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2734277,"lon":-76.7336521,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

249

Brookhaven Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Brookhaven Facility Biomass Facility Brookhaven Facility Biomass Facility Jump to: navigation, search Name Brookhaven Facility Biomass Facility Facility Brookhaven Facility Sector Biomass Facility Type Landfill Gas Location Suffolk County, New York Coordinates 40.9848784°, -72.6151169° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.9848784,"lon":-72.6151169,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

250

Facility effluent monitoring plan for the 325 Facility  

SciTech Connect (OSTI)

The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1998-12-31T23:59:59.000Z

251

Establishing and maintaining a facility representative program at DOE nuclear facilities  

SciTech Connect (OSTI)

The purpose of this DOE standard, (Establishing and Maintaining a Facility Representative Program at DOE Nuclear Facilities), is to help ensure that DOE Facility Representatives are selected based on consistently high standards and from the best qualified candidates available, that they receive the training required for them to function effectively, and that their expected duties, responsibilities, and authorities are well understood and accurately documented. To this end, this guidance provides the following practical information: (1) An approach for use in determining the required facility coverage; (2) The duties, responsibilities and authorities expected of a Facility Representative; and (3) The training and qualification expected of a Facility Representative.

Not Available

1993-08-01T23:59:59.000Z

252

AOC opens gel-coat facility  

Science Journals Connector (OSTI)

AOC HAS extended its service to North American customers with the opening of a new facility for the development and production of gel-coats at its Collierville, Tennessee, USA, headquarters. The new gel-coat centre is said to be ‘world-class’. The company already operates gel-coat facilities in Canada and Mexico. This is a short news story only. Visit www.reinforcedplastics.com for the latest plastics industry news.

2003-01-01T23:59:59.000Z

253

LEASE OF LAND AND FACILITIES AT THE EAST TENNESSEE TECHNOLOGY PARK,OAK  

Broader source: Energy.gov (indexed) [DOE]

LEASE OF LAND AND FACILITIES LEASE OF LAND AND FACILITIES AT THE EAST TENNESSEE TECHNOLOGY PARK,OAK RIDGE,TENNESSEE AGENCY. U.S. DEPARTMENTOF ENERGY ACTION: FINDINGOF NO SIGNIFICANT IMPACT SUMMARY: The U.S. D e p m e n t of Energy (DOE) has completed an environmental assessment @OE/EA- 1175)for the proposed expansion of it.Reindustrializationhgrarn, whereby land and facilities at the E a s t Tennessee TcchnologyPark (ETTP) would be leased for industrial and business uses. Based on the results of the impacts analysisreported in the EA, DOE has determined that the proposed action is not a major F e d d action that would significantly affect the quality of the human environment within the context of the National Environmental Policy Act of 1969 (NEPA).Thcrefore, preparation of an environmental impact statement (EIS) is not necessary, and DOE

254

Hazardous and Industrial Waste (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Hazardous and Industrial Waste (Minnesota) Hazardous and Industrial Waste (Minnesota) Hazardous and Industrial Waste (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a facility. The statute also

255

International Facility Management Association Strategic Facility  

Broader source: Energy.gov (indexed) [DOE]

Facility Management Association Facility Management Association Strategic Facility Planning: A WhIte PAPer Strategic Facility Planning: A White Paper on Strategic Facility Planning © 2009 | International Facility Management Association For additional information, contact: 1 e. Greenway Plaza, Suite 1100 houston, tX 77046-0104 USA P: + 1-713-623-4362 F: + 1-713-623-6124 www.ifma.org taBle OF cOntentS PreFace ......................................................... 2 executive Summary .................................... 3 Overview ....................................................... 4 DeFinitiOn OF Strategic Facility Planning within the Overall cOntext OF Facility Planning ................. 5 SPecializeD analySeS ................................ 9 OrganizatiOnal aPPrOacheS tO SFP ... 10 the SFP PrOceSS .......................................

256

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 11, 2011 Facility News ARM Mobile Facility Completes Extended Campaign in the Azores; Next Stop-India Bookmark and Share The ARM Mobile Facility obtained data on Graciosa...

257

Facilities Services Overview & Discussion  

E-Print Network [OSTI]

& Finance Facilities Services Director: Jeff Butler Human Resources Administrative Services Engineering) Environmental Services Morrison (3) Admin Services Evans (1) Human Resources Engineering (4) ·EngineeringFacilities Services Overview & Discussion Jeff Butler Director ­ Facilities Services November 2011

Maxwell, Bruce D.

258

Tools for tracking and benchmarking facility energy performance | ENERGY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial energy management Industrial energy management » Measure, track, and benchmark » Tools for tracking and benchmarking facility energy performance Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices

259

Industrial Radiology  

Science Journals Connector (OSTI)

... chief application of industrial radiology in Norway is in the examination of pipe welds in hydroelectric plant. H. Vinter (Denmark), director of the Akademiet for de Technische Videns ... and to compare various methods of non-destructive testing. He gave results of tests on turbine disk forgings of austenitic steel which showed satisfactory agreement between radiography, ultrasonic examination and ...

1950-11-18T23:59:59.000Z

260

Tax-Exempt Industrial Revenue Bonds (Kansas) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industrial Revenue Bonds (Kansas) Industrial Revenue Bonds (Kansas) Tax-Exempt Industrial Revenue Bonds (Kansas) < Back Eligibility Agricultural Commercial Construction Industrial Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Kansas Program Type Bond Program Provider Revenue Tax-Exempt Industrial Revenue Bonds are issued by cities and counties for the purchase, construction, improvement or remodeling of a facility for agricultural, commercial, hospital, industrial, natural resources, recreational development or manufacturing purposes. The board of county commissioners of any county or the governing body of any city may approve an exemption of property funded by industrial revenue bonds (IRB's). Some

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

262

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Center in Vermont Achieves Milestone Installation On September 23, 2014, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, News &...

263

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

January 15, 2008 Facility News ARM Mobile Facility Completes Field Campaign in Germany Bookmark and Share Researchers will study severe precipitation events that occurred in...

264

from Isotope Production Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium 2:32 Isotope cancer treatment...

265

Programs & User Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Programs & User Facilities Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy...

266

Facility Data Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Data Policy About ESnet Our Mission The Network ESnet History Governance & Policies ESnet Policy Board ESCC Acceptable Use Policy Facility Data Policy Career Opportunities...

267

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 15, 2005 Facility News More Server Power Improves Performance at the ARM Data Management Facility Bookmark and Share Recently, several new Sun servers joined the...

268

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

approximately 22,500 square kilometers, or the approximate area of a modern climate model grid cell. Centered around the SGP Central Facility, these extended facilities are...

269

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From Coastal Clouds to Desert Dust: ARM Mobile Facility Headed to Africa Bookmark and Share ARM operations staff prepare the ARM Mobile Facility in Point Reyes, California, for...

270

ET Industries, Inc.  

Broader source: Energy.gov (indexed) [DOE]

ET Industries, Inc. ET Industries, Inc. (showerheads) Issued: May 24, 2013 BEFORE THE U.S. DEPARTMENT OF ENERGY Washington, D.C. 20585 ) ) ) ) ) Case Number: 2012-SE-2902 AMENDED NOTICE OF NONCOMPLIANCE DETERMINATION 1 Manufacturers (including importers) are prohibited from distributing covered products in the United States that do not comply with applicable federal water conservation standards. See 10 C.F.R. §§ 429.5, 429.102; 42 U.S.C. §§ 6291(10), 6302. On April 3, 2012, DOE tested one unit of the "ThunderHead" showerhead basic model ("basic model TH-1 " 2 ), which ET Industries, Inc. ("ET") imported into the United States. On April 24, 2012, DOE completed testing of three additional units of basic model TH-1, also imported into

271

Sponsors of CIEEDAC: Environment Canada Natural Resources Canada, Canadian Industry Program for Energy Conservation, Aluminium Industry Association, Canadian Chemical Producers' Association, Canadian Electricity  

E-Print Network [OSTI]

. This includes the oil and gas extraction industries and the coal mining industry. To analyze changes in GHG; technology innovations; transparency of data availability; location of production facilities; international political dynamics; nuclear development initiatives; frontier exploration initiatives; Canada's Clean Air

272

Nuclear Facilities | Department of Energy  

Energy Savers [EERE]

Nuclear Facilities Nuclear Facilities Nuclear Facilities Locator Map Numerical map data points indicate two or more nuclear facilities in the same geographic location. Nuclear...

273

Facility Representative Program: 2003 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 Facility Representative Workshop 3 Facility Representative Workshop May 13 - 15, 2003 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 13, 2003 Theme: Program Successes and Challenges 8:00 a.m. John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathleen Carlson Manager, Nevada Site Office 8:30 a.m. Keynote Address Savannah River Site and Facility Reps - A Shared History and Common Future Jeffrey M. Allison Manager, Savannah River Operations Office 9:00 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board

274

Facility Representative Program: 2000 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 Facility Representative Workshop 0 Facility Representative Workshop May 16-18, 2000 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Tuesday, May 16, 2000 Theme for Day 1: Sustaining the Success of the Facility Representative Program 8:00 a.m. - Opening Remarks - Joe Arango, Facility Representative Program Manager 8:05 a.m. - Welcome - Kenneth Powers, Deputy Manager Nevada Operations Office 8:15 a.m. - Deputy Secretary Remarks - T. J. Glauthier, Deputy Secretary of Energy 8:30 a.m. - Keynote Address - Jerry Lyle, Assistant Manager for Environmental Management, Idaho Operations Office 9:00 a.m. - Facility Representative of the Year Presentation - Mark B. Whitaker, Departmental Representative 9:30 a.m. - Break 9:50 a.m. - Program Results and Goals - Joe Arango, Facility Representative Program Manager

275

Facility effluent monitoring plan for 242-A evaporator facility  

SciTech Connect (OSTI)

A facility effluent monitoring plan is required by the U.S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could affect employee or public safety or the environment. A facility effluent monitoring plan determination was performed during Calendar Year 1991 and the evaluation showed the need for a facility effluent monitoring plan. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438-1. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated, as a minimum, every three years.

Crummel, G.M.; Gustavson, R.D.

1995-02-01T23:59:59.000Z

276

Fast Flux Test Facility project plan. Revision 2  

SciTech Connect (OSTI)

The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

Hulvey, R.K.

1995-11-01T23:59:59.000Z

277

Guidance for Preparing ENERGY STAR Challenge for Industry Plant Profile  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Suzhou Facility Suzhou Facility BD Medical No.5 Baiyu Road Suzhou Industrial Park Jiangsu P.R. China In 1995 BD became the second multinational company to open a manufacturing facility in Suzhou Industrial Park. The BD Medical facility in Suzhou currently employs approximately 1,100 associates and produces catheters, infusion products, anesthesia kits and other medical devices. BD is a leading global medical technology company that manufactures and sells medical devices, instrument systems and reagents. The Suzhou facility achieved the ENERGY STAR Challenge for Industry in 2012. The facility reduced its energy intensity by 22.2% in two years, avoiding greenhouse gas emissions in the amount of 1,192 metric tons of CO 2 e. Energy achievements were accomplished through

278

Research Projects in Industrial Technology.  

SciTech Connect (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

279

Industrial Carbon Capture Project Selections  

Broader source: Energy.gov (indexed) [DOE]

(Partner Organizations) Funding Lead Organization Location (City, State) Project Title - Project Description 1) Large Scale Testing of Advanced Gasification Technologies Air Products & Chemicals, Inc. $71,700,000 Allentown, PA Development of ITM Oxygen Technology for Integration with Advanced Industrial Systems Air Products will accelerate commercial manufacture of ion transport membranes modules and initiate the development a 2,000 TPD pre- commercial scale facility ahead of schedule, enabling this technology

280

Hydrogeologic investigation of petrochemical contamination at a bulk storage facility  

E-Print Network [OSTI]

in 1953 and began receiving petroleum products through a pipeline in 1954. Other industrial facilities which developed in the area include Duke City Distributing, a food distributor; the Texaco Refining and Marketing bulk terminal; General Electric... in 1953 and began receiving petroleum products through a pipeline in 1954. Other industrial facilities which developed in the area include Duke City Distributing, a food distributor; the Texaco Refining and Marketing bulk terminal; General Electric...

Fryar, Dennis Gene

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Small Power Production Facilities (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facilities (Montana) Facilities (Montana) Small Power Production Facilities (Montana) < Back Eligibility Commercial Industrial Institutional Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Interconnection Provider Montana Public Service Commission For the purpose of these regulations, a small power production facility is defined as a facility that: : (a) produces electricity by the use, as a primary energy source, of biomass, waste, water, wind, or other renewable resource, or any combination of those sources; or : (b) produces electricity and useful forms of thermal energy, such as heat

282

Nuclear Power Generating Facilities (Maine) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) Nuclear Power Generating Facilities (Maine) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Maine Program Type Siting and Permitting Provider Radiation Control Program The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in Maine. The Legislature

283

Gamma Industry Processing Alliance Overview  

Broader source: Energy.gov (indexed) [DOE]

NATIONAL NATIONAL STAKEHOLDERS TRANSPORTATION FORUM WHO IS GIPA? * Alliance made up of 15 companies from the Medical Device Manufacturers, Cobalt source , manufacturers and one industrial processing company Represents all the major gamma processing * Represents all the major gamma processing facilities within the US to the regulatory bodies such as the USNRC. * Member of International Irradiation Association (iiA) WHO IS GIPA? An alliance created to advocate the development of An alliance created to advocate the development of responsible regulations that enhance the safe and secure management of Cobalt-60 sources and related irradiation processing facilities related irradiation processing facilities. APRIL 15, 2010 PRESENTATION TITLE WORLD SUPPLIERS OF COBALT 60 COBALT 60 * Nordion Inc

284

Football facility and equipment management  

Science Journals Connector (OSTI)

The paper investigates the subject of football facility and equipment management to present the key success factors and planning elements for consideration. The work is based on secondary data analysis and literature review, and the findings include both descriptive and prescriptive elements. The findings construct a theoretical basis for further development and provide football managers with explicit and practical advice on the subject. They further indicate that topics pertaining to football facility and equipment management are not and should not be viewed as independent tasks under a common umbrella. They are all part of a larger system with all aspects interrelated both at the planning and the operation stages. Moreover, they are found to be inextricably linked with the wider strategic and marketing processes and constitute a significant part of the value proposition of the club to its immediate customers, implicit customers, industry associates and wider society.

Nicos L. Kartakoullis; Alkis Thrassou; Demetris Vrontis; Thanos Kriemadis

2013-01-01T23:59:59.000Z

285

Commissioning for Federal Facilities  

Broader source: Energy.gov [DOE]

Guide describes building commissioning, recommissioning, retrocommissioning, and continuous commissioning for federal facilities.

286

Safeguards Approaches for Black Box Processes or Facilities  

SciTech Connect (OSTI)

The objective of this study is to determine whether a safeguards approach can be developed for “black box” processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. This analysis identified the necessary conditions for safeguardability of black box processes and facilities.

Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John; Miller, Erin; Wylie, Joann

2013-09-25T23:59:59.000Z

287

User Facilities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

User User Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers Electron-Beam Microcharacterization Centers Accelerator & Detector Research & Development Principal Investigators' Meetings Scientific Highlights Construction Projects BES Home User Facilities Print Text Size: A A A RSS Feeds FeedbackShare Page BES User Facilities Brochure .pdf file (7.4MB)Brochure .pdf file (7.4MB) The BES user facilities provide open access to specialized instrumentation and expertise that enable scientific users from universities, national laboratories, and industry to carry out experiments and develop theories that could not be done at their home institutions. These forefront research facilities require resource commitments well

288

Facility Representative Program: 2010 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10 Facility Representative Workshop 10 Facility Representative Workshop May 12 - 13, 2010 Las Vegas, NV Facility Rep of the Year Award | Attendees | Summary Report Workshop Agenda and Presentations Day 1: Wednesday, May 12, 2010 8:00 a.m. Opening Remarks James Heffner, Facility Representative Program Manager Earl Hughes, Safety System Oversight Program Manager Office of Nuclear Safety Policy and Assistance Office of Health, Safety and Security 8:15 a.m. Welcome from the Nevada Site Office John Mallin, Deputy Assistant Manager for Site Operations Nevada Site Office 8:30 a.m. Workshop Keynote Address Todd Lapointe Chief of Nuclear Safety Central Technical Authority Staff 9:15 a.m. Facility Representative and Safety System Oversight Award Ceremony James Heffner, Facility Representative Program Manager

289

Facility Representative Program: 2007 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7 Facility Representative Workshop 7 Facility Representative Workshop May 15 - 17, 2007 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 15, 2007 8:00 a.m. Opening Remarks Joanne Lorence, Facility Representative Program Manager 8:15 a.m. Welcome from the Nevada Site Office Gerald Talbot, Manager, Nevada Site Office 8:30 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:45 a.m. Keynote Address - Safety Oversight Perspective and Expectations Glenn Podonsky, Chief Health, Safety and Security Officer, Office of Health, Safety and Security 9:10 a.m. Facility Representative of the Year Presentation Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board,

290

Facility Representative Program: 2001 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Facility Representative Workshop 1 Facility Representative Workshop May 15 - 17, 2001 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Day 1: Tuesday, May 15, 2001 Theme: Program Successes and Challenges 8:00 a.m. - Logistics Announcements & Opening Remarks - Joe Arango, Facility Representative Program Manager 8:15 a.m. - Welcome - Debbie Monette, Assistant Manager for National Security, Nevada Operations Office 8:30 a.m. - Keynote Address - Ralph Erickson, National Nuclear Security Administration 9:00 a.m.- DOE Facility Representative of the Year Presentation - Mark B. Whitaker, Jr., Departmental Representative to the Defense Nuclear Facilities Safety Board 9:30 a.m. - Break 9:50 a.m. - Program Summary - Joe Arango 10:10 a.m. - Management Panel/Questions and Answers

291

CRAD, Occupational Safety & Health- Idaho MF-628 Drum Treatment Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a February 2006 Commencement of Operations assessment of the Occupational Safety and Industrial Hygiene programs at the MF-628 Drum Treatment Facility at the Idaho National Laboratory Advanced Mixed Waste Treatment Project.

292

Facility effluent monitoring plan for the 324 Facility  

SciTech Connect (OSTI)

The 324 Facility [Waste Technology Engineering Laboratory] in the 300 Area primarily supports the research and development of radioactive and nonradioactive waste vitrification technologies, biological waste remediation technologies, spent nuclear fuel studies, waste mixing and transport studies, and tritium development programs. All of the above-mentioned programs deal with, and have the potential to, release hazardous and/or radioactive material. The potential for discharge would primarily result from (1) conducting research activities using the hazardous materials, (2) storing radionuclides and hazardous chemicals, and (3) waste accumulation and storage. This report summarizes the airborne and liquid effluents, and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterizing effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

NONE

1994-11-01T23:59:59.000Z

293

AMO Industrial Distributed Energy: Immediate Deployment of Waste Energy Technologies at Multiple Sites  

Broader source: Energy.gov [DOE]

Fact sheet overviewing Verso Paper Corp. project that will deploy industrial technologies to recover and reuse water and steam at pulp and paper facilities.

294

CX-002134: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2134: Categorical Exclusion Determination 2134: Categorical Exclusion Determination CX-002134: Categorical Exclusion Determination Rocky Mountain Solar Training Provider CX(s) Applied: B1.15, B5.1 Date: 05/06/2010 Location(s): Salt Lake City, Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Department of Energy is proposing to provide federal funding to the recipient to construct an outdoor training facility at Salt Lake Community College (SLCC). The proposed site for the training facility is on the SLCC Meadowbrook Campus located on the northeast comer of 3900 South and 300 West in a commercial/industrial area of Salt Lake City. The site is approximately 75 feet wide and 150 feet deep. It is situated behind and contiguous with Building C of the campus. Light rail tracks boarder the

295

CX-001883: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

3: Categorical Exclusion Determination 3: Categorical Exclusion Determination CX-001883: Categorical Exclusion Determination Green Industry Business Development CX(s) Applied: B5.1 Date: 04/20/2010 Location(s): Champaign, Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Illinois Department of Commerce and Economic Opportunity will use $2,500,224 in Recovery Act funds to support the facility upgrade efforts of Epiworks. The funds will be used to purchase and install equipment and machinery for the production and characterization of solar photovoltaic (PV) wafers at EpiWorks' existing facility in Champaign, Illinois. The equipment will be installed in a new 5,000 square foot clean room adjacent to its existing clean room. The equipment includes a PV wafer production

296

CX-005564: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

4: Categorical Exclusion Determination 4: Categorical Exclusion Determination CX-005564: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act - Targeting Industrial Efficiency - Reliable Castings Corporation CX(s) Applied: B5.1 Date: 04/05/2011 Location(s): Ohio Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Reliable Castings Corporation is proposing to use $146,507 in State Energy Program American Recovery and Reinvestment Act funding to purchase and install a new stack melt furnace at an existing facility to melt scrap metal in order to meet increased production demands. The proposed project will occur entirely within the existing Reliable Castings facility. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-005564.pdf More Documents & Publications

297

CX-005963: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

63: Categorical Exclusion Determination 63: Categorical Exclusion Determination CX-005963: Categorical Exclusion Determination Missouri - Independent Energy Efficiency Program: Mallinckrodt - Plant-Wide Chiller System Retrofit and Upgrades CX(s) Applied: B5.1 Date: 06/03/2011 Location(s): Saint Louis, Missouri Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Missouri Department of Natural Resources proposes to provide $500,000 of State Energy Program funds to Mallinckrodt/Covidien for a plant-wide chiller system retrofit and upgrades at their existing facility at 3600 North 2nd Street in Saint Louis, Missouri. Mallinckrodt's facility is an industrial complex that was formerly utilized for a production of radioactive materials for the Manhattan Project. DOCUMENT(S) AVAILABLE FOR DOWNLOAD

298

Uncertainties in Recorded Doses in the Nuclear Industry: Identification, Quantification and Implications for Epidemiology Studies  

Science Journals Connector (OSTI)

......radiation exposures in the nuclear industry have been assessed...and recording practices in nuclear facilities, currently underway...study of cancer risk among nuclear industry workers, is described...dosemeter design, radiation energy and dose estimation, and steps......

E. Cardis; J. Estéve

1991-06-01T23:59:59.000Z

299

Underground Facilities, Technological Challenges  

E-Print Network [OSTI]

This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

Spooner, N

2010-01-01T23:59:59.000Z

300

Development of power facility management services using RFID/USN  

Science Journals Connector (OSTI)

In the electric power industry, there are many research projects to stabilise the power and increase the efficiency using ubiquitous technology. Many power utilities control and supervise the transmission line of energy to avoid power failures. In this ... Keywords: #, 47, RFID, RFID&, USN, cable joint, electric power industry, power facility management, radio frequency identification, service framework, ubiquitous sensor networks, wireless networks

Young-Il Kim; Jae-Ju Song; Jin-Ho Shin; Bong-Jae Yi; Hoon Choi

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

ENERGY STAR industrial partnership | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ENERGY STAR industrial partnership ENERGY STAR industrial partnership Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance ENERGY STAR industrial partnership New ENERGY STAR industrial partners Energy guides Energy efficiency and air regulation

302

Nevada National Security Site Industrial Sites Project Closeout - 12498  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office is responsible for environmental restoration (ER) at the Nevada National Security Site (NNSS). This includes remediation at Industrial Sites where past nuclear testing activities and activities that supported nuclear testing may have or are known to have resulted in the release of contaminants into the environment. Industrial Sites at the NNSS have included nuclear facilities that supported the nuclear rocket/missile development programs, gas stations, landfills, spill sites, ordnance sites, and numerous other waste disposal and release sites. The NNSS Industrial Sites activities neared completion at the end of fiscal year 2011 while other activities required under the Federal Facility Agreement and Consent Order (FFACO) and part of the same NNSS ER Project are forecasted to extend to 2027 or beyond. With the majority of Industrial Sites corrective action units (CAUs) completed (more than 250 CAUs and over 1,800 corrective action sites), it was determined that an activity closeout process should be implemented to ensure that the work completed over the past 15 years is well documented in a comprehensive and concise summary. While the process used to close each individual CAU is described in approved documents, no single document describes in summary fashion the work completed to close the many individual Industrial Sites. The activity closeout process will be used to develop an Industrial Sites closeout document that describes these years of work. This document will summarize the number of Industrial Sites closed under the FFACO and provide general descriptions of projects, contaminants removed, and sites closed in place with corresponding Use Restrictions. Other pertinent information related to Industrial Sites work such as the project history, closure decisions, historical declarations, remediation strategies, and final CAU status will be included in the closeout document, along with a table listing each CAU and corresponding corrective action sites within each CAU. Using this process of conducting the activity closeout and developing a closeout document may prove useful for other ER projects within the DOE complex in describing how a long period of ER can be summarized in a single document. The NNSS Industrial Sites activities were completed over the span of 15 years and involved the investigation, cleanup or Use Restriction, and closure of more than 260 CAUs and over 1,800 sites. These activities will conclude in FY 2012 (with the exception of one CAU). In order to capture the work completed over this length of time and document decisions made during the activities, a closeout effort was initiated. The closeout will review the work conducted during the Industrial Sites activities and produce a single document that summarizes Industrial Sites activities. This closeout is being conducted at an interim stage in the overall NNSA/NSO ER Project since the Soils and UGTA activities will continue for a number of years, but the completion of the Industrial Sites project warrants conducting a closeout now while personnel are available and information is still current. The process followed by NNSA/NSO in conducing project closeout for the Industrial Sites portion of the ER program may prove useful within the DOE complex in demonstrating how a large ER project can be summarized. (authors)

Cabble, Kevin [U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Las Vegas, Nevada 89193 (United States); Krauss, Mark [S.M. Stoller for Navarro-Intera, LLC, Las Vegas, Nevada 89193 (United States); Matthews, Pat [Navarro-Intera, LLC, Las Vegas, Nevada 8919 (United States)

2012-07-01T23:59:59.000Z

303

CRAD, Facility Safety- Nuclear Facility Safety Basis  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

304

CX-002110: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

110: Categorical Exclusion Determination 110: Categorical Exclusion Determination CX-002110: Categorical Exclusion Determination Colorado State Energy Program American Recovery and Reinvestment Act - Capital Investment New Energy Economic Development - B&H Industries Photovoltaic CX(s) Applied: B5.1 Date: 04/30/2010 Location(s): Rocky Ford, Colorado Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The State of Colorado will provide $210,000 to B&H Industries to install a 100 kilowatt ground-mounted photovoltaic (PV) system at a livestock feeding facility located at Rocky Ford Feedyard, 30611 County Rd. 16, Rocky Ford, CO. The solar array covers an area approximately 640x100 feet and will be ground mounted. The area where the PV array will be located has been used for cattle grazing: the area adjacent is for cattle grazing. Beyond that,

305

CX-004717: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

717: Categorical Exclusion Determination 717: Categorical Exclusion Determination CX-004717: Categorical Exclusion Determination Earl Fisher Biofuels CX(s) Applied: B5.1 Date: 12/14/2010 Location(s): Chester, Montana Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Montana Department of Environmental Quality is proposing to provide $25,000 of State Energy Program American Recovery and Reinvestment Act funds to Earl Fisher Biofuels, LLC (EFB) for the purchase and installation of two Kern Kraft KK40 oil seed crushers at their existing biodiesel production facility located in Chester's industrial park west of Chester, Montana. The purpose of the proposed project is to increase oil seed crushing capacity and biodiesel production by 40% and support a self sustaining industry by creating a market for oilseed crops that can be

306

PNNL: Research Aircraft Facility (RAF) - FCSD  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Aircraft Facility (RAF) Research Aircraft Facility (RAF) It is in the mixed layer and free troposphere that most chemical reactions, gas-to-particle transformations, cloud processes, and transport of materials occur. The Pacific Northwest National Laboratory operates the U.S. Department of Energy (DOE) Research Aircraft Facility (RAF) performing airborne research in these areas to serve atmospheric scientists at DOE and other federal, state, and industrial entities. The RAF is dedicated to fulfilling important DOE and national goals in understanding atmospheric processes as they relate to the DOE's environmental missions and the global environment. Central to this facility are the PNNL Grumman Gulfstream 159 (G-1) aircraft, its flight crew, science and engineering technical staff,

307

SPI Anderson Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

SPI Anderson Biomass Facility SPI Anderson Biomass Facility Jump to: navigation, search Name SPI Anderson Biomass Facility Facility SPI Anderson Sector Biomass Owner Sierra Pacific Industries Location Anderson, California Coordinates 40.448208°, -122.2977815° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.448208,"lon":-122.2977815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

308

Aberdeen Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Aberdeen Biomass Facility Aberdeen Biomass Facility Jump to: navigation, search Name Aberdeen Biomass Facility Facility Aberdeen Sector Biomass Owner Sierra Pacific Industries Location Aberdeen, Washington Coordinates 46.9753708°, -123.8157218° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.9753708,"lon":-123.8157218,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

SPI Sonora Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Sonora Biomass Facility Sonora Biomass Facility Jump to: navigation, search Name SPI Sonora Biomass Facility Facility SPI Sonora Sector Biomass Owner Sierra Pacific Industries Location Sonora, California Coordinates 37.9840911°, -120.3821381° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9840911,"lon":-120.3821381,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

Microsoft Word - NEAC Facilities report.doc  

Broader source: Energy.gov (indexed) [DOE]

Review of the NEAC Facilities Subcommittee Review of the NEAC Facilities Subcommittee In 2008 then NE-1 Spurgeon tasked NEAC to examine "Facilitization of US Nuclear R&D Infrastructure." A preliminary response was produced in July of 2008. Subsequently this was incorporated in the NEAC Technical Subcommittee report in the November 2008 NEAC report Nuclear Energy: Policies and Technology for the 21 st Century. This section used several reports which also served as a base for the facilities subcommittee: Nuclear Energy for the Future: Required R&D Capabilities - An Industry Perspective, Battelle, September 2008; Required Assets for a Nuclear Energy Applied R&D Program, INL, September 2008; Executive Recommendations for Nuclear R&D Capabilities, Battelle, July, 2008; Evaluation of Existing DOE Facilities to Support the

311

Facility Energy Assessment Matrix | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Energy Assessment Matrix Facility Energy Assessment Matrix Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

312

Carbon emissions reduction potential in the US chemicals and pulp and paper industries by applying CHP technologies  

SciTech Connect (OSTI)

The chemical and the pulp/paper industries combined provide 55% of CHP generation in the US industry. Yet, significant potential for new CHP capacities exists in both industries. From the present steam consumption data, the authors estimate about 50 GW of additional technical potential for CHP in both industries. The reduced carbon emissions will be equivalent to 44% of the present carbon emissions in these industries. They find that most of the carbon emissions reductions can be achieved at negative costs. Depending on the assumptions used in calculations, the economic potential of CHP in these industries can be significantly lower, and carbon emissions mitigation costs can be much higher. Using sensitivity analyses, they determine that the largest effect on the CHP estimate have the assumptions in the costs of CHP technology, in the assumed discount rates, in improvements in efficiency of CHP technologies, and in the CHP equipment depreciation periods. Changes in fuel and electricity prices and the growth in the industries' steam demand have less of an effect. They conclude that the lowest carbon mitigation costs are achieved with the CHP facility is operated by the utility and when industrial company that owns the CHP unit can sell extra electricity and steam to the open wholesale market. Based on the results of the analyses they discuss policy implications.

Khrushch, M.; Worrell, E.; Price, L.; Martin, N.; Einstein, D.

1999-07-01T23:59:59.000Z

313

Facility Representative Program: Facility Representative Program Sponsors  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facility Representative Program Sponsors Facility Representative Program Sponsors There are 29 Facility Representative Program Sponsors Office Name Title E-Mail Phone ASO Larry Pendexter ES&H Div Dir (Argonne) larry.pendexter@ch.doe.gov 630-252-1485 BHSO Bob Desmarais Operations Management Division Director desmarai@bnl.gov 631-344-5434 CBFO Glenn Gamlin Facility Representative Supervisor glenn.gamlin@wipp.ws 575-234-8136 CBFO Casey Gadbury Operations Manager casey.gadbury@wipp.ws 575-234-7372 FSO Mark Bollinger Deputy Manager Mark.Bollinger@ch.doe.gov 630-840-8130 FSO John Scott FR Team Lead john.scott@ch.doe.gov 630-840-2250 HS-30 James O'Brien Director, Office of Nuclear Safety James.O'Brien@hq.doe.gov 301-903-1408 HS-32 Earl Hughes Facility Representative Program Manager Earl.Hughes@hq.doe.gov 202-586-0065

314

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board October 15, 2010 #12;Mechanical & Industrial Engineering 2 MIE Dorothy Adams Undergraduate/Graduate Secretary David Schmidt Associate Professor & Graduate Program Director #12;Mechanical & Industrial Engineering 3 MIE James Rinderle

Mountziaris, T. J.

315

CRAD, Occupational Safety & Health- Y-12 Enriched Uranium Operations Oxide Conversion Facility  

Broader source: Energy.gov [DOE]

A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a January 2005 assessment of Industrial Safety and Industrial Health programs at the Y-12 - Enriched Uranium Operations Oxide Conversion Facility.

316

Industry Perspective  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

idatech.com idatech.com info@idatech.com 63065 NE 18 th Street Bend, OR 97701 541.383.3390 Industry Perspective Biogas and Fuel Cell Workshop National Renewable Energy Laboratory June 11 - 13, 2012 Mike Hicks Chairman of the Board of Directors, FCHEA Treasurer of the Board of Directors, FCS&E Engineering Manager, Technology Development & Integration, IdaTech Outline 1. Critical Factors * Fuel Purity * Fuel Cost 2. Natural Gas - The Wild Card & Competition 3. IdaTech's Experience Implementing Biofuel Critical Factor - Fuel Purity All fuel cell system OEMs have fuel purity specifications * Independent of * Raw materials or feed stocks * Manufacturing process * Depends on * Fuel processor technology * Fuel cell technology - low temp PEM versus SOFC

317

NREL: News Feature - NREL Uses Industry Best Practices to Add...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Uses Industry Best Practices to Add Partners July 28, 2014 Photo of a man and woman in hard hats inside NREL's Integrated Biorefinery Research Facility. Enlarge image Thanks...

318

Simulation of Combustion and Thermal Flow in an Industrial Boiler  

E-Print Network [OSTI]

Industrial boilers that produce steam or electric power represent a crucial facility for overall plant operations. To make the boiler more efficient, less emission (cleaner) and less prone to tube rupture problems, it is important to understand...

Saripalli, R.; Wang, T.; Day, B.

2005-01-01T23:59:59.000Z

319

Sandia National Laboratories: help U.S. PV industry expand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

help U.S. PV industry expand Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live On February 26, 2013, in Energy, National Solar Thermal Test Facility, News, News &...

320

An Evaluation of Thermal Storage at Two Industrial Plants  

E-Print Network [OSTI]

Thermal storage offers substantial energy cost savings potential in situations with favorable electrical rates and significant cooling demand. Full storage is usually restricted to facilities occupied only part of the day, but two industrial plants...

Brown, M. L.; Gurta, M. E.

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Engineering Industrial & Systems  

E-Print Network [OSTI]

Industrial Engineering Department of Industrial & Systems Engineering Leslie Monplaisir, Ph powerful tool sets used in industry today. -Brent Gillett, BSIE 2007 Advanced Planning Engineer at BMW I is available at: http://ise.wayne.edu/bs-industrial/index What is Industrial Engineering? The industrial

Berdichevsky, Victor

322

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. Industrial engineers design and run the factories and systems

323

INDUSTRIAL ENGINEERING Industrial engineering is concerned  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING Industrial engineering is concerned with looking at the "big picture" of systems that allow organizations and individuals to perform at their best. Industrial engineers bridge should be used and how they should be used. The focus of industrial engineering is on process improvement

324

Categorical Exclusion Determinations: Kentucky | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

June 2, 2010 June 2, 2010 CX-002501: Categorical Exclusion Determination Beneficiation of Fine Size Powder River Basin Coal CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Lexington, Kentucky Office(s): Fossil Energy, National Energy Technology Laboratory June 2, 2010 CX-003128: Categorical Exclusion Determination University of Kentucky Research Foundation -A Solvent/Membrane Hybrid Post-combustion Carbon Dioxide Capture Process CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Kentucky Office(s): Advanced Research Projects Agency - Energy May 27, 2010 CX-002516: Categorical Exclusion Determination Industrial Facility Retrofit Showcase - Arch Chemicals, Inc. CX(s) Applied: B5.1 Date: 05/27/2010 Location(s): Brandenburg, Kentucky Office(s): Energy Efficiency and Renewable Energy, National Energy

325

Categorical Exclusion Determinations: American Recovery and Reinvestment  

Broader source: Energy.gov (indexed) [DOE]

9, 2011 9, 2011 CX-005353: Categorical Exclusion Determination Commercial Industrial and Large Profit- Keller Cresent Chiller Replacement CX(s) Applied: B5.1 Date: 03/09/2011 Location(s): Pineville, North Carolina Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 9, 2011 CX-005716: Categorical Exclusion Determination City Facilities CX(s) Applied: B2.5, B5.1 Date: 03/09/2011 Location(s): Lancaster, Ohio Office(s): Energy Efficiency and Renewable Energy March 9, 2011 CX-005452: Categorical Exclusion Determination State Energy Program American Recovery and Reinvestment Act - GEN-X Energy Group, Incorporated CX(s) Applied: A9, B1.7, B5.1 Date: 03/09/2011 Location(s): Washington Office(s): Energy Efficiency and Renewable Energy, Golden Field Office

326

"Z" Facility Dielectric Oil Clean-Up  

SciTech Connect (OSTI)

In August of 1998 the Z facility leaked approximately 150 gallons of deionized water into the dielectric oil of the Energy Storage Section (ESS). After processing the oil to remove existing particulate and free water the dielectric breakdown strength increased from the mid 20kV range to values in excess of 40 kV. 40 kV is above historical operating levels of about 35 kV. This, however, was not enough to allow 90 kV charging of the Marx Generators in the ESS. Further analysis of the oil showed dissolved water at a saturated level (70 - 80 ppm) and some residual particulate contamination smaller than 3 microns. The dissolved water and particulate combination was preventing the 90 kV charging of the Marx Generators in the ESS. After consulting with the oil industry it was determined that nitrogen sparging could be used to remove the dissolved water. Further particulate filtering was also conducted. After approximately 20 hours of sparging the water content in the ESS was reduced to 42 ppm which enabled Marx charging to 90 kV.

Alessandri, Daniel; Bloomquist, Doug; Donovan, Guy; Feltz, Greg; Grelle, Nibby; Guthrie, Doug; Harris, Mark; Horry, Mike; Lockas, Mike; Potter, Jimmy; Pritchard, Chuck; Steedly, Jim

1999-06-30T23:59:59.000Z

327

FACET User Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

AD SLACPortal > Accelerator Research Division > FACET User Facility AD SLACPortal > Accelerator Research Division > FACET User Facility Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES FACET User Facility : FACET An Office of Science User Facility Search this site... Search Help (new window) Top Link Bar FACET User Facility FACET Home About FACET FACET Experimental Facilities FACET Users Research at FACET SAREC Expand SAREC FACET FAQs FACET User Facility Quick Launch FACET Users Home FACET Division ARD Home About FACET FACET News FACET Users FACET Experimental Facilities FACET Research Expand FACET Research FACET Images Expand FACET Images SAREC Expand SAREC FACET Project Site (restricted) FACET FAQs FACET Site TOC All Site Content

328

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

October 15, 2005 [Facility News] October 15, 2005 [Facility News] Room to Share-New Guest Facility Ready for Users at North Slope of Alaska Bookmark and Share In September, installation was completed on the new Guest Instrument Facility in Barrow to provide additional space and ease crowded conditions. In September, installation was completed on the new Guest Instrument Facility in Barrow to provide additional space and ease crowded conditions. To alleviate crowded conditions at its research facilities on the North Slope of Alaska (NSA) site in Barrow, ARM operations staff recently completed the installation of a new Guest Instrument Facility. Similar to the platform at the Atqasuk site, the facility consists of two insulated shipping containers mounted on pilings, with a mezzanine to accommodate

329

Jupiter Laser Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jupiter Laser Facility The commissioning of the Titan Petawatt-Class laser to LLNL's Jupiter Laser Facility (JLF) has provided a unique platform for the use of petawatt (PW)-class...

330

Facilities | Jefferson Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JLab Buildings Facilities Management & Logistics is responsible for performing or specifying performance of all Jefferson Lab facility maintenance. A D D I T I O N A L L I N K S:...

331

Hazardous Waste Facility Siting Program (Maryland) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facility Siting Program (Maryland) Facility Siting Program (Maryland) Hazardous Waste Facility Siting Program (Maryland) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Transportation Utility Program Info State Maryland Program Type Siting and Permitting Provider Maryland Department of the Environment The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level nuclear waste facilities. This legislation describes the factors considered by the Board in making siting decisions. The Board is authorized to enact rules and regulations pertaining to the siting of hazardous and low-level nuclear

332

Non-Destructive Evaluation (NDE) and Testing Facilities - Nuclear  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities > Non-Destructive Facilities > Non-Destructive Evaluation (NDE) and Testing Facilities Non-Destructive Evaluation (NDE) and Testing Facilities Overview MTS Table Top Load Frame X-ray Inspection Systems Other Facilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Non-Destructive Evaluation (NDE) and Testing Facilities The Non-Destructive Evaluation (NDE) and Testing Facilities contain state-of-the-art NDE laboratories including microwave/millimeter wave, acoustic/ultrasonic, X-ray, thermal imaging, optics, and eddy current for health monitoring of materials and components used in aerospace, defense, and power generation (fossil and nuclear) industries as well as for medical and scientific research. Bookmark and Share

333

PROJECT MANGEMENT PLAN EXAMPLES Facility End State Decisions Examples  

Broader source: Energy.gov (indexed) [DOE]

Facility End State Decisions Examples Facility End State Decisions Examples Example 3 3.0 POST DEACTIVATION END STATE VISION The Heavy Water Facility is scheduled to cease moderator operations and commence final shutdown of moderator processing and processing support systems. The Heavy Water Facility and supporting facilities will be declared excess. Deactivation will place the facilities into a passively safe, minimal cost, long term S&M mode. At the end of the deactivation period, the facilities will be categorized "Radiological" and "Other Industrial Use". The following deactivation end state is envisioned: Moderator Processing and Moderator Storage Buildings The deactivation of the moderator processing and storage buildings will remove the moderator storage drums

334

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) |  

Broader source: Energy.gov (indexed) [DOE]

Low-Level Radioactive Waste Disposal Regional Facility Act Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Program Info State Pennsylvania Program Type Environmental Regulations Fees This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental Resources funds to be utilized for disposal facilities. This act ensures that nuclear facilities and the Department comply with the Low-Level Radioactive Disposal Act. The regional facility siting fund is used for reimbursement of expenses

335

The digital preservation facility  

Science Journals Connector (OSTI)

Critical listening should be an essential part of all archiving and restoration facilities quality control. We review the priorities and requirements for listening spaces ranging from the individual collector and small community archives to large?scale facilities. Examples discussed include the Library of Congress Culpepper facility university libraries and commercial facilities. Adapting listening rooms to the requirements of n?channel audio are discussed. Public recommendations of the Sound Preservation Board of the Library of Congress will be reviewed.

2006-01-01T23:59:59.000Z

336

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DETL, Energy, Facilities, Materials Science, News, News & Events, Photovoltaic, Renewable Energy, Research & Capabilities, Solar, Solar Newsletter, Systems Analysis Sandia...

337

ORAU South Campus Facility  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding the ORAU South Campus Facility.

338

DOE Designated Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Argonne Wakefield Accelerator (AWA) Argonne Tandem Linac Accelerator System (ATLAS) Center for Nanoscale Materials Leadership Computing Facility* Brookhaven National...

339

International Cooperation on Advancing Industrial Efficiency  

Broader source: Energy.gov (indexed) [DOE]

Industrial Efficiency Industrial Efficiency The Global Superior Energy Performance (GSEP) Initiative 1 What is GSEP? * GSEP is a partnership that: - Encourages operators of commercial buildings and industrial facilities to pursue continuous improvement in energy efficiency - Promotes public-private partnerships for cooperation on specific technologies or in specific energy-intensive sectors * GSEP has 13 participants 2 Canada Denmark European Commission Finland France India Japan Korea Mexico Russia South Africa Sweden United States * GSEP has five working groups. Members don't have to participate in all groups. GSEP Organization 3 GSEP Partnership CERTIFICATION WORKING GROUP (Lead: U.S.) CHP WORKING GROUP (Lead: Finland) STEEL WORKING GROUP

340

Designing Industrial DSM Programs that Work  

E-Print Network [OSTI]

.5% $0.021 BPA ConlMod Program 100% 2.5% $0.006 BPA Energy Savings Plan 26% 0.8% $0.007 Puget Power Industrial Conservation Program 5% 2.0% $0.026 UI Energy Blueprint 60% 0.1 % $0.035 ... Number of participating customers divided by number... (POO) Industrial Lighting Incentive Pilot Program. From 1985 through 1988, the Bonneville Power Administration (BPA) funded a lighting efficiency pilot program which served industrial and warehousing facilities in the Clark PUD service territory...

Nadel, S. M.; Jordan, J. A.

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

1990 Washington State directory of biomass energy facilities  

SciTech Connect (OSTI)

This second edition is an update of biomass energy production and use in Washington State for 1989. The purpose of this directory is to provide a listing of known biomass users within the state and some basic information about their facilities. The data can be helpful to persons or organizations considering the use of biomass fuels. The directory is divided into three sections of biomass facilities with each section containing a map of locations and a data summary table. In addition, a conversion table, a glossary and an index are provided in the back of the directory. The first section deals with biogas production from wastewater treatment plants. The second section provides information on the wood combustion facilities in the state. This section is subdivided into two categories. The first is for facilities connected with the forest products industries. The second category include other facilities using wood for energy. The third section is composed of three different types of biomass facilities -- ethanol, municipal solid waste, and solid fuel processing. Biomass facilities included in this directory produce over 64 trillion Btu (British thermal units) per year. Wood combustion facilities account for 91 percent of the total. Biogas and ethanol facilities each produce close to 800 billion Btu per year, MSW facilities produce 1845 billion BTU, and solid fuel processing facilities produce 2321 billion Btu per year. To put these numbers in perspective, Washington's industrial section uses 200 trillion Btu of fuels per year. Therefore, biomass fuels used and/or produced by facilities listed in this directory account for nearly 32 percent of the state's total industrial fuel demand. This is a sizable contribution to the state's energy needs.

Deshaye, J.A.; Kerstetter, J.D.

1990-01-01T23:59:59.000Z

342

Wheelabrator Bridgeport Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Wheelabrator Bridgeport Biomass Facility Jump to: navigation, search Name Wheelabrator Bridgeport Biomass Facility Facility Wheelabrator Bridgeport Sector Biomass Facility Type...

343

Los Alamos Lab: MPA: Focus on Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Focus on Facilities Focus on Facilities Mechanical testing and modeling in MST The mission of the Materials Science and Technology Division includes the development of constitutive deformation and failure models for the metals, polymers, ceramics, and composites of interest to Department of Energy, Department of Defense, and industrially-sponsored programs. More about mechanical testing and modeling in MST (pdf). Sensors and Electrochemical Devices Group The Sensors and Electrochemical Devices Group (MPA-11), within the Materials Physics and Applications Division at Los Alamos National Laboratory, conducts basic and applied research on electronic and ionic conducting materials, including the development of novel materials characterization approaches. More about the Sensors and Electrochemical Devices Group (pdf).

344

Los Alamos Lab: MST: Focus on Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Focus on Facilities Focus on Facilities Mechanical testing and modeling in MST The mission of the Materials Science and Technology Division includes the development of constitutive deformation and failure models for the metals, polymers, ceramics, and composites of interest to Department of Energy, Department of Defense, and industrially-sponsored programs. More about mechanical testing and modeling in MST (pdf). Sensors and Electrochemical Devices Group The Sensors and Electrochemical Devices Group (MPA-11), within the Materials Physics and Applications Division at Los Alamos National Laboratory, conducts basic and applied research on electronic and ionic conducting materials, including the development of novel materials characterization approaches. More about the Sensors and Electrochemical Devices Group (pdf).

345

Haselden/RNL - Research Support Facility Documentary  

ScienceCinema (OSTI)

The US Department of Energy's (DOE) Research Support Facility (RSF) on the campus of the National Renewable Energy Laboratory is positioned to be one of the most energy efficient buildings in the world. It will demonstrate NREL's role in moving advanced technologies and transferring knowledge into commercial applications. Because 19 percent of the country's energy is used by commercial buildings, DOE plans to make this facility a showcase for energy efficiency. DOE hopes the design of the RSF will be replicated by the building industry and help reduce the nation's energy consumption by changing the way commercial buildings are designed and built.

None

2013-05-29T23:59:59.000Z

346

Maintenance Management Program for DOE Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To define the program for the management of cost-effective maintenance of Department of Energy (DOE) nuclear facilities. Guidance for compliance with this Order is contained in DOE G 433.1-1, Nuclear Facility Maintenance Management Program Guide for use with DOE O 433.1, which references Federal regulations, DOE directives, and industry best practices using a graded approach to clarify requirements and guidance for maintaining DOE-owned Government property. (Cancels DOE 4330.4B, Chapter II, Maintenance Management Program, dated 2-10-94.) Cancels DOE 4330.4B (in part). Canceled by DOE O 433.1A.

2001-06-01T23:59:59.000Z

347

Company Name Tax Credit* Manufacturing Facility's  

Broader source: Energy.gov (indexed) [DOE]

Company Company Name Tax Credit* Manufacturing Facility's City & State Project Description Carrier Corporation $5.1 million Indianapolis, IN Carrier, a part of UTC Building & Industrial Systems and a subsidiary of United Technologies Corporation, was selected for a $5.1 million dollar 48C Advanced Energy Manufacturing Tax Credit to expand production at its Indianapolis facility to meet increasing demand for its eco-friendly condensing gas furnace product line. The new line includes the most energy efficient gas furnaces on the market-all with at least 92% annual fuel utilization efficiency-and exemplifies Carrier's commitment to economical and environmentally sustainable solutions for achieving improved energy efficiency and performance.

348

CRAD, Nuclear Facility Construction - Structural Steel, May 29, 2009 |  

Broader source: Energy.gov (indexed) [DOE]

Steel, May 29, Steel, May 29, 2009 CRAD, Nuclear Facility Construction - Structural Steel, May 29, 2009 May 29, 2009 Nuclear Facility Construction - Structural Steel (HSS CRAD 64-16, Rev. 0) Nuclear Facility Construction - Structural Steel criteria, review, and approach document, observes construction activities and review records and design documentation to assess the quality of structural steel fabrication and erection and to determine if requirements specified by design basis documents, contracts, and applicable codes and standards have been met. CRAD, Nuclear Facility Construction - Structural Steel, May 29, 2009 More Documents & Publications CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 CRAD, Nuclear Facility Construction - Mechanical Equipment - June 26, 2012

349

Facility Representative Program: 2004 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4 Facility Representative Workshop 4 Facility Representative Workshop May 18 - 20, 2004 Las Vegas, NV Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final Day 1: Tuesday, May 18, 2004 Theme: Program Successes and Challenges 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome Kathy Carlson, Nevada Site Office Manager 8:30 a.m. Videotaped Remarks from the Deputy Secretary Kyle E. McSlarrow, Deputy Secretary of Energy Deputy Secretary's Remarks 8:40 a.m. Keynote Address - NNSA Evaluation of Columbia Accident Investigation Board Report Brigadier General Ronald J. Haeckel, Principal Assistant Deputy Administrator for Military Applications, NNSA Other Information: NASAÂ’S Columbia Accident Investigation Board Report

350

Facility Representative Program: 2006 Facility Representative Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6 Facility Representative Workshop 6 Facility Representative Workshop May 16 - 19, 2006 Knoxville, Tennessee Facility Rep of the Year Award | Attendees list | Summary Report [PDF] WORKSHOP AGENDA Final To view Pictures, scroll the mouse over the Picture icon To view Presentations, Picture Slideshows and Video, click on the icon Day 1: Tuesday, May 16, 2006 8:00 a.m. Opening Remarks John Evans, Facility Representative Program Manager 8:15 a.m. Welcome from Oak Ridge Office Gerald Boyd, Manager, Oak Ridge Office 8:25 a.m. Welcome from Y-12 Site Office Theodore Sherry, Manager, Y-12 Site Office 8:35 a.m. Videotaped Remarks from the Deputy Secretary The Honorable Clay Sell, Deputy Secretary of Energy 8:40 a.m. Keynote Address - Safety Oversight at Environmental Management Activities Dr. Inés Triay, Chief Operating Officer, Office of Environmental Management

351

Variability in Automated Responses of Commercial Buildings and Industrial  

E-Print Network [OSTI]

consumption of commercial buildings and industrial facilities (C&I facilities) during Demand Response (DR. Keywords: demand response, baseline models, load prediction, error analysis, variability, measurement in the past ­ either with relays that interrupt power to air conditioners and water heaters [1], [2

352

Renewable Energy Co-Location of Distribution Facilities (Virginia) |  

Broader source: Energy.gov (indexed) [DOE]

Co-Location of Distribution Facilities (Virginia) Co-Location of Distribution Facilities (Virginia) Renewable Energy Co-Location of Distribution Facilities (Virginia) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Siting and Permitting Provider Virginia State Corporation Commission This legislation applies to distribution facilities, which include poles and wires, cables, pipelines, or other underground conduits by which a renewable generator is able to (i) supply electricity generated at its

353

Hazardous Waste Facilities Siting (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facilities Siting (Connecticut) Facilities Siting (Connecticut) Hazardous Waste Facilities Siting (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Connecticut Program Type Siting and Permitting Provider Department of Energy and Environmental Protection These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure,

354

Chapter 47 Solid Waste Facilities (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) Chapter 47 Solid Waste Facilities (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Kentucky Program Type Environmental Regulations Fees Siting and Permitting Provider Kentucky Division of Waste Management This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or

355

Utility Facility Siting and Environmental Protection Act (South Carolina) |  

Broader source: Energy.gov (indexed) [DOE]

Utility Facility Siting and Environmental Protection Act (South Utility Facility Siting and Environmental Protection Act (South Carolina) Utility Facility Siting and Environmental Protection Act (South Carolina) < Back Eligibility Utility Commercial Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State South Carolina Program Type Siting and Permitting Provider South Carolina Public Service Commission This legislation applies to electric generating plants and associated facilities designed for or capable of operation at a capacity of more than 75 MW. A certificate from the Public Service Commission is required prior

356

Georgia Utility Facility Protection Act (Georgia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Georgia Utility Facility Protection Act (Georgia) Georgia Utility Facility Protection Act (Georgia) Georgia Utility Facility Protection Act (Georgia) < Back Eligibility Agricultural Commercial Construction General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Safety and Operational Guidelines Siting and Permitting Provider Utilities Protection Center of Georgia The Georgia Utility Facility Protection Act (GUFPA) was established to protect the underground utility infrastructure of Georgia. GUFPA mandates that, before starting any mechanized digging or excavation work, you must

357

Solid Waste Facilities Regulations (Massachusetts) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solid Waste Facilities Regulations (Massachusetts) Solid Waste Facilities Regulations (Massachusetts) Solid Waste Facilities Regulations (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Massachusetts Program Type Environmental Regulations Provider Department of Environmental Protection This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management

358

Solid Waste Disposal Facilities (Massachusetts) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) Solid Waste Disposal Facilities (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative State/Provincial Govt Transportation Tribal Government Utility Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Environmental Protection These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the Massachusetts Department of Environmental Protection as well as the Department of Public

359

CX-012137: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-012137: Categorical Exclusion Determination Modular Carbon Dioxide Capture Facility Decommission - Building 84, Room 124 CX(s) Applied: B3.6...

360

CX-004384: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-004384: Categorical Exclusion Determination Grant Rebate Program for Renewable Energy Projects at StateLocal Government Facilities - Front...

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

CX-009004: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

04: Categorical Exclusion Determination CX-009004: Categorical Exclusion Determination "Solar Panels on Hudson County Facilities CX(s) Applied: B5.16 Date: 08272012 Location(s):...

362

CX-007925: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-007925: Categorical Exclusion Determination Severe Environment Corrosion and Erosion Research Facility CX(s) Applied: B3.6 Date: 02222012 Location(s):...

363

CX-006048: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-006048: Categorical Exclusion Determination Severe Environmental Corrosion & Erosion Research Facility (SECERF) CX(s) Applied: B3.6 Date: 06082011...

364

CX-009118: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

8: Categorical Exclusion Determination CX-009118: Categorical Exclusion Determination Sludge Batch 8 Qualification: Washing and Defense Waste Processing Facility Simulations (Rad)...

365

CX-011708: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-011708: Categorical Exclusion Determination Reaction Chemistry and Engineering Facility CX(s) Applied: B3.6 Date: 01152014 Location(s):...

366

CX-011599: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-011599: Categorical Exclusion Determination Mission Support Alliance Annual Categorical Exclusion for Drop-Off, Collection, and Transfer Facilities for...

367

Facility Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser  

Open Energy Info (EERE)

Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Name Facility Name Facility FacilityType Owner Developer EnergyPurchaser Place GeneratingCapacity NumberOfUnits CommercialOnlineDate WindTurbineManufacturer FacilityStatus Coordinates D Metals D Metals D Metals Definition Small Scale Wind Valley City OH MW Northern Power Systems In Service AB Tehachapi Wind Farm AB Tehachapi Wind Farm AB Tehachapi Definition Commercial Scale Wind Coram Energy AB Energy Southern California Edison Co Tehachapi CA MW Vestas In Service AFCEE MMR Turbines AFCEE MMR Turbines AFCEE MMR Turbines Definition Commercial Scale Wind AFCEE Air Force Center for Engineering and the Environment Distributed generation net metered Camp Edwards Sandwich MA MW GE Energy In Service AG Land AG Land AG Land Definition Community Wind AG Land Energy LLC

368

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

March 22, 2007 [Facility News] March 22, 2007 [Facility News] GEWEX News Features Dust Data from ARM Mobile Facility Deployment Bookmark and Share Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. Data from the recent deployment of the ARM Mobile Facility are featured in the February issue of GEWEX News. The February 2007 issue (Vol. 17, No. 1) of GEWEX News features early results from special observing periods of the African Monsoon Mutidisciplinary Analysis, including data obtained by the ARM Mobile Facility (AMF). The AMF was stationed in the central Sahel from January through December 2006, with the primary facility at the Niamey airport, and an ancillary site in Banizoumbou. The AMF recorded a major dust storm that passed through the area in March, and combined with simultaneous satellite

369

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 16, 2005 [Facility News] February 16, 2005 [Facility News] Mobile Facility Arrives Safe and Sound in Point Reyes Bookmark and Share Image - The ARM Mobile Facility in Point Reyes, California Image - The ARM Mobile Facility in Point Reyes, California Safe and sound at Point Reyes, the ARM Mobile Facility instrumentation is set up on the roof of a shelter until a fence is installed to keep out the curious local cattle. On February 9, the ARM Mobile Facility (AMF) withstood an accident on the way to its deployment location at Point Reyes, California. About an hour from its destination, the truck carrying the two AMF shelters packed with instrumentation and associated equipment swerved to avoid another vehicle and slid off the road and down a steep embankment. Emergency personnel soon

370

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

22, 2011 [Facility News] 22, 2011 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of an ARM mobile facility (AMF), the ARM aerial facility (AAF), and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility, with availability as follows: AMF2 available December 2013 AMF1 available March 2015 AAF available between June and October 2013 Fixed sites available FY2013 Priority will be given to proposals that make comprehensive use of the ARM facilities and focus on long-term goals of the DOE Office of Biological and Environmental Research. Successful proposals will be supplied all operational and logistical resources (provided at no cost to the principal

371

HOISTING & RIGGING Assessment Plan--NNSA/Nevada Site Office Facility  

Broader source: Energy.gov (indexed) [DOE]

HOISTING & RIGGING Assessment Plan--NNSA/Nevada Site Office HOISTING & RIGGING Assessment Plan--NNSA/Nevada Site Office Facility Representative Division HOISTING & RIGGING Assessment Plan--NNSA/Nevada Site Office Facility Representative Division : To determine that hoisting and rigging operations are conducted according to "industry best standards" for increasing equipment reliability while assuring worker safety, and to verify issues being addressed in BN Hoisting assessment. Criteria: Lifts are identified and categorized appropriately for scheduled maintenance. DOE-STD-1090-2001 An integrated process ensures safety issues are identified and controls established. DOE-STD-1090-2001 Personnel operating and maintaining the hoisting equipment are trained; they understand their roles and responsibilities. DOE-STD-1090-2001

372

2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond  

SciTech Connect (OSTI)

This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

David B. Frederick

2011-02-01T23:59:59.000Z

373

224-T Facility - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

T Facility Projects & Facilities 100 Area 118-K-1 Burial Ground 200 Area 209-E Critical Mass Laboratory 222-S Laboratory 224-B Facility 224-T Facility 242-A Evaporator 300 Area 324...

374

Cold Test Facility - Hanford Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Projects & Facilities > Cold Test Facility Projects & Facilities 100 Area 118-K-1 Burial Ground 200 Area 209-E Critical Mass Laboratory 222-S Laboratory 224-B Facility 224-T...

375

Facility Representative of the Year Award  

Broader source: Energy.gov (indexed) [DOE]

REPRESENTATIVE OF THE YEAR AWARD PROGRAM REPRESENTATIVE OF THE YEAR AWARD PROGRAM OBJECTIVE The Facility Representative Award Program is a special award designed to recognize superior or exemplary service by a Facility Representative over a period of one year. This special award program has been established in accordance with the requirements of Department of Energy (DOE) Order 331.1C, Employee Performance Management and Recognition Program. FACILITY REPRESENTATIVE OF THE YEAR AWARD The Facility Representative of the Year Award is determined by a panel representing the Chief Health, Safety and Security Officer and managers from the National Nuclear Security Administration (NNSA), the Office of Environmental Management (EM), the Office of Science (SC), and the Office of Nuclear Energy (NE). The Facility Representative Program Manager in

376

Development of a performance-based industrial energy efficiency indicator for corn refining plants.  

SciTech Connect (OSTI)

Organizations that implement strategic energy management programs have the potential to achieve sustained energy savings if the programs are carried out properly. A key opportunity for achieving energy savings that plant managers can take is to determine an appropriate level of energy performance by comparing their plant's performance with that of similar plants in the same industry. Manufacturing facilities can set energy efficiency targets by using performance-based indicators. The U.S. Environmental Protection Agency (EPA), through its ENERGY STAR{reg_sign} program, has been developing plant energy performance indicators (EPIs) to encourage a variety of U.S. industries to use energy more efficiently. This report describes work with the corn refining industry to provide a plant-level indicator of energy efficiency for facilities that produce a variety of products--including corn starch, corn oil, animal feed, corn sweeteners, and ethanol--for the paper, food, beverage, and other industries in the United States. Consideration is given to the role that performance-based indicators play in motivating change; the steps needed to develop indicators, including interacting with an industry to secure adequate data for an indicator; and the actual application and use of an indicator when complete. How indicators are employed in the EPA's efforts to encourage industries to voluntarily improve their use of energy is discussed as well. The report describes the data and statistical methods used to construct the EPI for corn refining plants. Individual equations are presented, as are the instructions for using them in an associated Excel spreadsheet.

Boyd, G. A.; Decision and Information Sciences; USEPA

2006-07-31T23:59:59.000Z

377

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

883: Categorical Exclusion Determination 883: Categorical Exclusion Determination Green Industry Business Development CX(s) Applied: B5.1 Date: 04/20/2010 Location(s): Champaign, Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 20, 2010 CX-001877: Categorical Exclusion Determination Joliet Junior College Facilities Building CX(s) Applied: B5.1 Date: 04/20/2010 Location(s): Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 20, 2010 CX-001833: Categorical Exclusion Determination Energy Efficiency Conservation Municipal Grants - ALASKA - Energy Efficiency and Conservation Block Grant CX(s) Applied: A9, A11, B5.1 Date: 04/20/2010 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 20, 2010 CX-001768: Categorical Exclusion Determination

378

CX-000172: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

72: Categorical Exclusion Determination 72: Categorical Exclusion Determination CX-000172: Categorical Exclusion Determination Minnesota City St. Paul CX(s) Applied: A9, A11, B5.1 Date: 11/02/2009 Location(s): St. Paul, Minnesota Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Energy Efficiency and Conservation Block Grant for: Saint Paul Energy Smart homes, Multi Family Energy Rehab Pilot Program, LED (light-emitting diode) Street Light Retrofit, Energy Efficiency in Municipal Facilities, Commercial & Industrial Bulding energy Efficiency, Public Education and climate Change challenge Grants, Electric Vehicle Charbing Stations. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-000172.pdf More Documents & Publications CX-000251: Categorical Exclusion Determination CX-001651: Categorical Exclusion Determination

379

CX-000652: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

2: Categorical Exclusion Determination 2: Categorical Exclusion Determination CX-000652: Categorical Exclusion Determination Cardinal Glass - Photovoltaic Glass Production CX(s) Applied: B5.1 Date: 01/27/2010 Location(s): Portage, Wisconsin Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Washington's Office of Energy Independence would pass Department of Energy funding to Cardinal Glass Industries, Corporation. Cardinal Glass's facility in Portage, Wisconsin would use a $500,000 State Energy Program loan to purchase the following equipment: an x-ray fluorescence spectrometer; firnace sidewall and bottom cooling systems. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-000652.pdf More Documents & Publications CX-000655: Categorical Exclusion Determination CX-000653: Categorical Exclusion Determination

380

Categorical Exclusion Determinations: Office of Energy Efficiency and  

Broader source: Energy.gov (indexed) [DOE]

883: Categorical Exclusion Determination 883: Categorical Exclusion Determination Green Industry Business Development CX(s) Applied: B5.1 Date: 04/20/2010 Location(s): Champaign, Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 20, 2010 CX-001877: Categorical Exclusion Determination Joliet Junior College Facilities Building CX(s) Applied: B5.1 Date: 04/20/2010 Location(s): Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 20, 2010 CX-001833: Categorical Exclusion Determination Energy Efficiency Conservation Municipal Grants - ALASKA - Energy Efficiency and Conservation Block Grant CX(s) Applied: A9, A11, B5.1 Date: 04/20/2010 Location(s): Alaska Office(s): Energy Efficiency and Renewable Energy, Golden Field Office April 20, 2010 CX-001768: Categorical Exclusion Determination

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

CX-006851: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

51: Categorical Exclusion Determination 51: Categorical Exclusion Determination CX-006851: Categorical Exclusion Determination Targeting Industrial Efficiency - Fortin Welding CX(s) Applied: B5.1 Date: 09/20/2011 Location(s): Columbus, Ohio Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Department of Energy is proposing to provide $162,000 in State Energy Program American Recovery and Reinvestment Act funding to Fortin Welding to retrofit the existing facility with new light bulbs and fixtures, a new white roof and a 60 kilowatt thin film photovoltaic (PV) electric generation system on the roof adjacent to the white roof. CX-006851.pdf More Documents & Publications CX-005397: Categorical Exclusion Determination CX-007535: Categorical Exclusion Determination CX-009142

382

Industrial Assessment Centers Train Future Energy-Savvy Engineers |  

Broader source: Energy.gov (indexed) [DOE]

Industrial Assessment Centers Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers April 12, 2013 - 11:06am Addthis Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Cassie Mills Communications Associate in the Advanced Manufacturing Office What does this project do? The Industrial Assessment Centers provide students with real-world experience performing energy audits for small- and medium-sized

383

Analysis of Energy Use in Building Services of the Industrial Sector in California: A Literature Review and a Preliminary Characterization  

E-Print Network [OSTI]

ENERGY UTILIZATION AUDIT (EUA) INDUSTRIAL DATA BASE 2 The EVA data base contains auditorenergy sources possibly in use and different activities facility to facility, or pos- sibly of incorrect perceptions by the auditors,

Akbari, H.

2008-01-01T23:59:59.000Z

384

RMOTCTrainingFacilityNEW.doc  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* Field Laboratory with surface outcrops of Cretaceous fluvial and marine units * Gas Processing Facilities * Production Facilities * Tanks & Pipelines * Aquaculture &...

385

The US Department of Energy`s facility reuse at the Rocky Flats Environmental Technology Site  

SciTech Connect (OSTI)

This audit was initiated to determine whether the Rocky Flats Environmental Technology Site was maximizing its reuse of excess facilities.

NONE

1998-08-01T23:59:59.000Z

386

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 31, 2009 [Facility News] July 31, 2009 [Facility News] President of the Regional Government Speaks at Opening Ceremony for Mobile Facility in the Azores Bookmark and Share Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos César, President of the Regional Government of the Azores, signs a weather balloon while local media record the event. Photo by Mike Alsop. Highlighting the opening ceremony for the ARM Mobile Facility on Graciosa Island, Carlos César, President of the Regional Government of the Azores, signs a weather balloon while local media record the event. Photo by Mike Alsop. On June 30, officials from the Regional Government of the Azores recognized the deployment of the ARM Mobile Facility on Graciosa Island during an official opening ceremony held at the site. Notable among the participants

387

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

6, 2012 [Facility News] 6, 2012 [Facility News] News Tips from 2012 EGU General Assembly Bookmark and Share The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. The ARM Facility is attending the 2012 European Geophysical Union General Assembly at the Austria Center in Vienna for the first time. VIENNA - The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is the world's most comprehensive outdoor laboratory and data archive for research related to atmospheric processes that affect Earth's climate. At the European Geophysical Union (EGU) General Assembly 2012 in Vienna, find out how scientists use the ARM Facility to study the interactions between clouds,

388

BNL | Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Test Facility Accelerator Test Facility Home Core Capabilities Photoinjector S-Band Linac Laser Systems CO2 Laser Nd:Yag Laser Beamlines Beamline Simulation Data Beamline Parameters Beam Diagnostics Detectors Beam Schedule Operations Resources Fact Sheet (.pdf) Image Library Upgrade Proposal (.pdf) Publications ES&H Experiment Start-up ATF Handbook Laser Safety Collider-Accelerator Dept. C-AD ES&H Resources Staff Users' Place Apply for Access ATF photo ATF photo ATF photo ATF photo ATF photo A user facility for advanced accelerator research The Brookhaven Accelerator Test Facility (ATF) is a proposal driven, steering committee reviewed facility that provides users with high-brightness electron- and laser-beams. The ATF pioneered the concept of a user facility for studying complex properties of modern accelerators and

389

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2011 [Facility News, Publications] 8, 2011 [Facility News, Publications] Journal Special Issue Includes Mobile Facility Data from Germany Bookmark and Share The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. The ARM Mobile Facility operated in Heselbach, Germany, as part of the COPS surface network. In 2007, the ARM Mobile Facility participated in one of the most ambitious field studies ever conducted in Europe-the Convective and Orographically Induced Precipitation Study (COPS). Now, 21 papers published in a special issue of the Quarterly Journal of the Royal Meteorological Society demonstrate that the data collected during COPS are providing new insight into: the key chemical and physical processes leading to convection initiation and to the modification of precipitation by orography;

390

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

15, 2005 [Facility News] 15, 2005 [Facility News] Aging, Overworked Computer Network at SGP Gets Overhauled Bookmark and Share This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. This aerial map of instruments deployed at the SGP Central Facility provides an indication of the computer resources needed to manage data at the site, let alone communicate with other ARM sites. Established as the first ARM research facility in 1992, the Southern Great Plains (SGP) site in Oklahoma is the "old man on the block" when it comes to infrastructure. Though significant improvements have been made to facilities and equipment throughout the years, the computer network at the

391

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 7, 2011 [Facility News] April 7, 2011 [Facility News] Review Panel States ARM Facility "Without Peer" Bookmark and Share Every three years, DOE Office of Science user facilities undergo a review to evaluate their effectiveness in contributing to their respective science areas. The latest ARM Facility review was conducted in mid-February by a six-member review panel led by Minghua Zhang of Stony Brook University. Notably, in a debriefing following the review, the panel stated that ARM was a "world class facility without peer." The panel convened in Ponca City, Oklahoma, near ARM's Southern Great Plains site to conduct their review. Their first agenda item was an SGP site tour, which provided a realtime example of the scope and expertise of site operations and included a demonstration of the site's newly

392

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, 2010 [Facility News] 8, 2010 [Facility News] Europeans Keen to Hear About Effects of Dust Using Data from Africa Bookmark and Share In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. In 2006, the ARM Mobile Facility joined the AMMA project to obtain data for scientists to study the impact that airborne Saharan dust has on incoming solar radiation. This photo shows the sun setting through a dusty atmosphere near Niamey, Niger, where the mobile facility was deployed for one year. Researcher Xiaohong Liu from Pacific Northwest National Laboratory was

393

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 30, 2008 [Facility News] April 30, 2008 [Facility News] Team Scouts Graciosa Island for 2009 Mobile Facility Deployment Site Bookmark and Share A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens A location near the airport on the northern end of Graciosa Island was identified as an excellent location for operating the ARM Mobile Facility. Image source: Luis Miguens Indications from a scouting trip by the ARM Mobile Facility (AMF) science and operations management team are that an excellent site for the 2009 deployment may have been found. From April 8 through April 16, the team traveled to Graciosa Island in the Azores to scout sites for the Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) field

394

340 Facility compliance assessment  

SciTech Connect (OSTI)

This study provides an environmental compliance evaluation of the RLWS and the RPS systems of the 340 Facility. The emphasis of the evaluation centers on compliance with WAC requirements for hazardous and mixed waste facilities, federal regulations, and Westinghouse Hanford Company (WHC) requirements pertinent to the operation of the 340 Facility. The 340 Facility is not covered under either an interim status Part A permit or a RCRA Part B permit. The detailed discussion of compliance deficiencies are summarized in Section 2.0. This includes items of significance that require action to ensure facility compliance with WAC, federal regulations, and WHC requirements. Outstanding issues exist for radioactive airborne effluent sampling and monitoring, radioactive liquid effluent sampling and monitoring, non-radioactive liquid effluent sampling and monitoring, less than 90 day waste storage tanks, and requirements for a permitted facility.

English, S.L. [Pacific Northwest Lab., Richland, WA (United States)

1993-10-01T23:59:59.000Z

395

Integrated Facilities Disposition Program  

Broader source: Energy.gov (indexed) [DOE]

Facilities Facilities Disposition Program Tank Waste Corporate Board Meeting at ORNL Sharon Robinson Dirk Van Hoesen Robert Jubin Brad Patton July 29, 2009 2 Managed by UT-Battelle for the U.S. Department of Energy The Integrated Facility Disposition Program (IFDP) addresses the remaining EM Scope at both ORNL and Y-12 Cost Range: $7 - $14B Schedule: 26 Years 3 Managed by UT-Battelle for the U.S. Department of Energy Scope of work * Treatment and disposition of legacy materials and waste * D&D 327 (1.5 M ft 2 ) excess facilities generating >2 M yd 3 debris * Soil and groundwater remedial actions generating >1 M yd 3 soils * Facilities surveillance and maintenance * Reconfiguration of waste management facilities * Ongoing waste management operations * Project management

396

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4, 2013 [Facility News] 4, 2013 [Facility News] Work Cut Out for ARM Science Board Bookmark and Share With a new fixed site on the horizon in the Azores, a third ARM Mobile Facility gearing up for action in the Arctic, and more aircraft probes and sensors than scientists can shake a stick at, the ARM Facility continues to expand its considerable suite of assets for conducting climate research. Along with this impressive inventory comes the responsibility to ensure the Facility is supporting the highest-value science possible. Enter the ARM Science Board. This eleven-member group annually reviews complex proposals for use of the ARM mobile and aerial facilities. To maintain excellence and integrity in the review process, each member serves a renewable term of two years, with membership updated annually.

397

and Industrial Engineering  

E-Print Network [OSTI]

45 Mechanical and Industrial Engineering 220 Engineering Lab Degrees: Bachelor of Science in Mechanical Engineering Bachelor of Science in Industrial Engineering Contact: James R. Rinderle to prosthetic limbs to windmills, and their myriad components. Industrial engineers are concerned

Mountziaris, T. J.

398

Industrial and Systems engineering  

E-Print Network [OSTI]

Industrial and Systems engineering COLLEGE of ENGINEERING DepartmentofIndustrialandSystemsEngineering EDGE Engineering Entrepreneur Certificate Program is a great addition to an industrial and systems to expert clinical recommendations. engineering.wayne.edu/isefaculty Industrial and systems engineering

Berdichevsky, Victor

399

Commentary on industrial processes  

Science Journals Connector (OSTI)

...crucial for an industrial process, namely: catalyst activity...of catalysis to industrial processes. The papers, however, do...at the heart of successful commercialization of catalytic science and technology...addressed in any industrial process, namely: activity-the...

2005-01-01T23:59:59.000Z

400

Industries in focus | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ENERGY STAR Energy Performance Indicators for plants ENERGY STAR Energy Performance Indicators for plants » Industries in focus Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Tools for benchmarking energy management practices Tools for tracking and benchmarking facility energy performance

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

NPDES Individual Permit for Industrial Facilities - Mail Merge Template  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

No. TN0002968 No. TN0002968 Authorization to discharge under the National Pollutant Discharge Elimination System (NPDES) Issued By Tennessee Department of Environment and Conservation Division of Water Pollution Control 401 Church Street 6th Floor, L & C Annex Nashville, Tennessee 37243-1534 Under authority of the Tennessee Water Quality Control Act of 1977 (T.C.A. 69-3-101 et seq.) and the delegation of authority from the United States Environmental Protection Agency under the Federal Water Pollution Control Act, as amended by the Clean Water Act of 1977 (33 U.S.C. 1251, et seq.) Discharger: USDOE-Oak Ridge Y12 National Security Complex is authorized to discharge: process wastewaters and other wastewaters which have been accepted for treatment via waste acceptance procedures, cooling

402

Greening Industrial Facilities: A Sustainable Approach to Addressing Energy Concerns  

E-Print Network [OSTI]

The prices for natural gas and oil-based products have risen significantly in recent years, making it more costly for U.S.-based manufacturers to be profitable and compete globally. A poll taken at a recent meeting of the National Association...

Love, D.

2008-01-01T23:59:59.000Z

403

Lime slurry use at the Industrial Wastewater Pretreatment Facility  

SciTech Connect (OSTI)

The use of lime slurry at the IWPF demonstrated many benefits. Hazardous chemical use was reduced, solids handling was improved, water quality was enhanced and there has been a cost savings. The lime slurry also enabled the plant to begin treating the soluble oil waste, which we were not able to do in the past.

Rice, L.E. [Allied-Signal Aerospace Co., Kansas City, MO (United States). Kansas City Div.; Hughes, R.W. [Professional Services Group, Inc., Kansas City, MO (United States); Baggett, G. [Genex/Praxair, Inc., Kansas City, MO (United States)

1996-04-01T23:59:59.000Z

404

Energy and Demand Savings from Implementation Costs in Industrial Facilities  

E-Print Network [OSTI]

, electrical consumption, demand and fees were tracked separately. The remaining data include only one energy stream (e.g., natural gas) in each code [6]. Table 1. Energy Streams STREAM CODE Electrical Consumption EC Electrical Demand ED Other... Electrical Fees EF Electricity E1 Natural Gas E2 L.P.G. E3 #1 Fuel Oil E4 #2 Fuel Oil E5 #4 Fuel Oil E6 #6 Fuel Oil E7 Coal E8 Wood E9 Paper E10 Other Gas E11 Other Energy E12 ESL-IE-00-04-17 Proceedings from the Twenty-second National...

Razinha, J. A.; Heffington, W. M.

405

Energy and Demand Savings from Implementation Costs in Industrial Facilities  

E-Print Network [OSTI]

.g., natural gas) in each code [6]. Table 1. Energy Streams STREAM CODE Electrical Consumption EC Electrical Demand ED Other Electrical Fees EF Electricity E1 Natural Gas E2 L.P.G. E3 #1 Fuel Oil E4 #2 Fuel Oil E5 #4 Fuel Oil E6 #6 Fuel... that are widely scattered). Therefore, the correlations of implementation costs with electrical consumption and natural gas are also investigated in Tables 2 and 4, because they are highly important both nationally and in Texas. In fact, the total number...

Razinha, J. A.; Heffington, W. M.

406

Applications of AirMaster+ in Real Industrial Facilities  

E-Print Network [OSTI]

. The software itself is well documented and training programs are provided through the Department of Energy's Compressed Air Challenge Program. This paper focuses on real world experiences and the overall process of applying the AIRMaster+ analytical tool...

Moray, S.; D'Antonio, M.; Patil, Y.; MacDougall, A.

2005-01-01T23:59:59.000Z

407

Incorporating Carbon in Energy Planning at Industrial Facilities  

E-Print Network [OSTI]

for emissions, or (3) purchases of carbon offsets (i.e., CO2 reduction or sequestration projects to offset emissions). Although much remains uncertain as to the nature of the legislation, the inevitability of a per-tonne emissions cost makes it important...

Smith, K.

408

Poultry Facility Biosecurity  

E-Print Network [OSTI]

of organic materials on tires and shoes. Design features should include a one-way traff_ic system for all poultry facilities. The system should route personnel, vehicles and poultry from youngest birds to oldest birds, from ?clean? areas to ?dirty? areas... from waterways used by migra - tory waterfowl. Locate new facilities as far as possible from roads handling high volumes of poultry vehicles such as feed trucks or live-haul vehicles. Poultry facilities also need adequate amounts of potable water...

Carey, John B.; Prochaska, J. Fred; Jeffrey, Joan S.

2005-12-21T23:59:59.000Z

409

Sales and Use Tax Exemption for Electrical Generating Facilities |  

Broader source: Energy.gov (indexed) [DOE]

Sales and Use Tax Exemption for Electrical Generating Facilities Sales and Use Tax Exemption for Electrical Generating Facilities Sales and Use Tax Exemption for Electrical Generating Facilities < Back Eligibility Commercial Industrial Savings Category Bioenergy Commercial Heating & Cooling Manufacturing Buying & Making Electricity Alternative Fuel Vehicles Hydrogen & Fuel Cells Water Solar Wind Program Info State North Dakota Program Type Sales Tax Incentive Rebate Amount 100% Provider Office of the State Tax Commissioner Electrical generating facilities are exempt from sales and use taxes in North Dakota. The exemption is granted for the purchase of building materials, production equipment, and any other tangible personal property that is used for constructing or expanding the facility. In order to qualify, the facility must have at least one electrical generation unity

410

Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode  

Broader source: Energy.gov (indexed) [DOE]

Regulation No. 8 - Solid Waste Composting Facilities Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) Solid Waste Regulation No. 8 - Solid Waste Composting Facilities (Rhode Island) < Back Eligibility Commercial Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management Facilities which compost putrescible waste and/or leaf and yard waste are subject to these regulations. The regulations establish permitting, registration, and operational requirements for composting facilities. Operational requirements for putrescible waste facilities include siting, distance, and buffer requirements, as well as standards for avoiding harm to endangered species and contamination of air and water sources. Specific

411

Eligible Facility Borrower (Missouri) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Eligible Facility Borrower (Missouri) Eligible Facility Borrower (Missouri) Eligible Facility Borrower (Missouri) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Utility Program Info Funding Source Missouri Linked Deposit Program State Missouri Program Type Loan Program Provider Missouri Department of Agriculture The Missouri State Treasurer's Office administers the Missouri Linked Deposit Program, one of the nation's most utilized low interest loan programs. In order to promote Missouri's economic growth and development, below-market rate deposits of state funds are placed in Missouri financial institutions, allowing eligible borrowers to obtain low interest loans from that institution. The borrower typically saves 25-30% of the interest paid

412

2-6 Molecular Science Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MSCF Overview MSCF Overview Molecular Science Computing Facility The Molecular Science Computing Facility (MSCF) supports a wide range of computational activities in environmental molecular research, from benchmark calculations on small mole- cules to reliable calculations on large molecules, and from solids to simulations of large bio- molecules and reactive chemical transport modeling. The MSCF provides an integrated production computing environment with links to external facilities within the U.S. Depart- ment of Energy (DOE), collaborating universities, and industry. Instrumentation & Capabilities * MPP2. Production cluster of 980 HP rx2600 nodes, 1960 1.5 gigahertz IA64 processors, 450 terabytes local disk, 6.8 terabytes memory, 11.8 teraflops * Lustre. Shared cluster

413

ARM Climate Research Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

banner banner Home | People | Site Index Atmospheric Radiation Measurement Climate Research Facility US Department of Energy About Science Campaigns Sites Instruments Measurements Data News Publications Education Become a User Recovery Act Mission FAQ Outreach Displays History Organization Participants Facility Statistics Forms Contacts Research Themes Research Highlights Journal Articles Collaborations Atmospheric System Research (ASR) ARM Science Team Meetings Propose a Campaign Submitting Proposals: Guidelines Featured Campaigns Campaign Data List of Campaigns Aerial Facility Eastern North Atlantic Mobile Facilities North Slope of Alaska Southern Great Plains Tropical Western Pacific Location Table Contacts Instrument Datastreams Value-Added Products PI Data Products Field Campaign Data Related Data

414

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

20, 2008 Facility News ARM Scientists Lead International Radiation Symposium in Brazil Bookmark and Share The ARM Science Team showed up in force at the 2008 International...

415

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities Sandian Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) On December 15, 2014, in Computational Modeling & Simulation,...

416

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Production Method Could Lead to Better Lights, Lenses, Solar Cells On July 1, 2014, in Capabilities, CINT, Energy, Energy Efficiency, Facilities, Materials Science,...

417

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 30, 2007 Facility News New Radar Wind Profiler Joins AMF Instrument Suite in Germany Bookmark and Share The 1290 MHz wind profiler (foreground) joins the eddy correlation...

418

ARM Mobile Facilities  

ScienceCinema (OSTI)

This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

Orr, Brad; Coulter, Rich

2014-09-15T23:59:59.000Z

419

AMF ARM Mobile FAcility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AMF ARM Mobile FAcility Details on the AMF proposal process can be found at http:www.arm.govacrfsubmitproposals.stm. For more information, contact: Mark Miller Mary Jane...

420

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2007 Facility News Field Campaigns Generate Interest from Aviation Aficionados in Oklahoma Bookmark and Share Dr. Pete Lamb On November 13, Dr. Pete Lamb attended a meeting of...

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

ARM Mobile Facilities  

SciTech Connect (OSTI)

This video provides an overview of the ARM Mobile Facilities, two portable climate laboratories that can deploy anywhere in the world for campaigns of at least six months.

Orr, Brad; Coulter, Rich

2010-12-13T23:59:59.000Z

422

Facility Survey & Transfer  

Broader source: Energy.gov [DOE]

As DOE facilities become excess, many that are radioactively and/or chemically contaminated will become candidate for transfer to DOE-EM for deactivation and decommissioning.

423

Neutron Scattering Facilities  

Science Journals Connector (OSTI)

The past history, present performance and future prospects for neutron scattering facilities will be discussed. Special features of neutron scattering techniques applicable to biological problems will be ... . Th...

D. L. Price

1996-01-01T23:59:59.000Z

424

Sandia National Laboratories: Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 31, 2014, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid Integration, Infrastructure Security, News, News & Events, Photovoltaic, Renewable...

425

Science and Technology Facility  

Office of Environmental Management (EM)

IBRF Project Lessons Learned Report Integrated Biorefinery Research Facility Lessons Learned - Stage I Acquisition through Stage II Construction Completion August 2011 This...

426

Supercomputing | Facilities | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

facilities, and authorization checks for physical access. An integrated cyber security plan encompasses all aspects of computing. Cyber security plans are risk-based....

427

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the website still features the familiar faces of Professor Polar Bear, Teacher Turtle, and PI Prairie Dog (each representing an ARM Climate Research Facility site), but now...

428

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(left) and 2-channel (right) NFOV radiometers are collocated with the infrared thermometer (green stripe) at the SGP Central Facility. Numerous other instruments are situated...

429

Secretary Chu Announces More than $155 Million for Industrial Energy  

Broader source: Energy.gov (indexed) [DOE]

Secretary Chu Announces More than $155 Million for Industrial Secretary Chu Announces More than $155 Million for Industrial Energy Efficiency Projects Secretary Chu Announces More than $155 Million for Industrial Energy Efficiency Projects November 3, 2009 - 12:00am Addthis WASHINGTON, DC- Energy Secretary Steven Chu announced today that the Department of Energy is awarding more than $155 million in funding under the American Recovery and Reinvestment Act for 41 industrial energy efficiency projects across the country. These awards include funding for industrial combined heat and power systems, district energy systems for industrial facilities, and grants to support technical and financial assistance to local industry. The industrial sector uses more than 30 percent of U.S. energy and is responsible for nearly 30 percent of U.S.

430

Secretary Chu Announces More than $155 Million for Industrial Energy  

Broader source: Energy.gov (indexed) [DOE]

More than $155 Million for Industrial More than $155 Million for Industrial Energy Efficiency Projects Secretary Chu Announces More than $155 Million for Industrial Energy Efficiency Projects November 3, 2009 - 12:00am Addthis WASHINGTON, DC- Energy Secretary Steven Chu announced today that the Department of Energy is awarding more than $155 million in funding under the American Recovery and Reinvestment Act for 41 industrial energy efficiency projects across the country. These awards include funding for industrial combined heat and power systems, district energy systems for industrial facilities, and grants to support technical and financial assistance to local industry. The industrial sector uses more than 30 percent of U.S. energy and is responsible for nearly 30 percent of U.S. carbon emissions.

431

Environment/Health/Safety (EHS): Industrial Hygiene: Programs: Hearing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hearing Conservation Noise sources at the Berkeley Lab are associated with, but not limited to, the Facilities and Engineering shops, mechanical rooms throughout the site, construction projects, and emergency generators. Engineering controls, such as enclosing noise sources (i.e., pumps, generators) and acoustical material (i.e., mechanical room walls and ceilings) are implemented when feasible. EH&S Industrial Hygienists evaluate high noise areas with sound level meters and noise dosimeters to determine if employees need to be enrolled in the Lab's Hearing Conservation Program. Employees enrolled in the Program receive a baseline audiogram and training and annually thereafter. Employees exposed to noise sources in excess of 85 decibels will be enrolled in the Program. Hearing protection must be made available

432

Uranium industry annual 1997  

SciTech Connect (OSTI)

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

433

An Integrated Assessment of Location-Dependent Scaling for Microalgae Biofuel Production Facilities  

SciTech Connect (OSTI)

Successful development of a large-scale microalgae-based biofuels industry requires comprehensive analysis and understanding of the feedstock supply chain—from facility siting/design through processing/upgrading of the feedstock to a fuel product. The evolution from pilot-scale production facilities to energy-scale operations presents many multi-disciplinary challenges, including a sustainable supply of water and nutrients, operational and infrastructure logistics, and economic competitiveness with petroleum-based fuels. These challenges are addressed in part by applying the Integrated Assessment Framework (IAF)—an integrated multi-scale modeling, analysis, and data management suite—to address key issues in developing and operating an open-pond facility by analyzing how variability and uncertainty in space and time affect algal feedstock production rates, and determining the site-specific “optimum” facility scale to minimize capital and operational expenses. This approach explicitly and systematically assesses the interdependence of biofuel production potential, associated resource requirements, and production system design trade-offs. The IAF was applied to a set of sites previously identified as having the potential to cumulatively produce 5 billion-gallons/year in the southeastern U.S. and results indicate costs can be reduced by selecting the most effective processing technology pathway and scaling downstream processing capabilities to fit site-specific growing conditions, available resources, and algal strains.

Coleman, Andre M.; Abodeely, Jared; Skaggs, Richard; Moeglein, William AM; Newby, Deborah T.; Venteris, Erik R.; Wigmosta, Mark S.

2014-06-19T23:59:59.000Z

434

Maywood Industries of Oregon Space Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Maywood Industries of Oregon Space Heating Low Temperature Geothermal Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Facility Maywood Industries of Oregon Sector Geothermal energy Type Space Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

435

Energy Department Applauds Nation's First Large-Scale Industrial Carbon  

Broader source: Energy.gov (indexed) [DOE]

Nation's First Large-Scale Industrial Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur, Illinois. Supported by the 2009 economic stimulus legislation - the American Recovery and Reinvestment Act - the ambitious project will capture and store one million tons of carbon dioxide (CO2) per year produced as the result of processing corn into fuel-grade ethanol from the nearby Archer Daniels Midland biofuels plant. Since all of

436

Energy Department Applauds Nation's First Large-Scale Industrial Carbon  

Broader source: Energy.gov (indexed) [DOE]

Energy Department Applauds Nation's First Large-Scale Industrial Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur, Illinois. Supported by the 2009 economic stimulus legislation - the American Recovery and Reinvestment Act - the ambitious project will capture and store one million tons of carbon dioxide (CO2) per year produced as the result of processing corn into fuel-grade ethanol from the nearby Archer Daniels Midland biofuels plant. Since all of

437

Calistoga Private and Commercial Industrial Low Temperature Geothermal  

Open Energy Info (EERE)

Calistoga Private and Commercial Industrial Low Temperature Geothermal Calistoga Private and Commercial Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Calistoga Private and Commercial Industrial Low Temperature Geothermal Facility Facility Calistoga Private and Commercial Sector Geothermal energy Type Industrial Location Calistoga, California Coordinates 38.5787965°, -122.5797054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

438

Summary - WTP Pretreatment Facility  

Broader source: Energy.gov (indexed) [DOE]

Block Block D DOE is Immob site's t facilitie purpos techno Facility to be i The as CTEs, Readin * C * C * W * Tr * U * Pu * W * H * Pl The as require The Ele Site: H roject: W Report Date: M ited States Wast Why DOE Diagram of Cesiu s constructing bilization Plant tank wastes. T es including a P se of this asses ology elements y and determin ncorporated in What th ssessment team along with eac ness Level (TR s Nitric Acid Re s Ion Exchang Waste Feed Eva reated LAW Ev ltrafiltration Pro ulse Jet Mixer Waste Feed Rec LW Lag Storag lant Wash and ssessment team ed maturity prio To view the full T http://www.em.doe. objective of a Tech ements (CTEs), usin Hanford/ORP Waste Treatme March 2007 Departmen te Treatm E-EM Did This um Nitric Acid R a Waste Treat (WTP) at Hanf The WTP is com Pretreatment F ssment was to s (CTEs) in the

439

Facility Security Officer Contractor Toolcart  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FOREIGN OWNERSHIP, CONTROL OR INFLUENCE (FOCI) PROGRAM FOREIGN OWNERSHIP, CONTROL OR INFLUENCE (FOCI) PROGRAM It is DOE policy to obtain information that indicates whether a company that SNL will enter into a contract with is Owned, Controlled, or Influenced by a foreign person or entity and whether as a result, the potential for an undue risk to the common defense and national security may exist. Reference: Department of Energy Order (DOE O) 470.1, Safeguards and Security Program, Change 1, Chapter VI, Section 1 The DOE conducts a background check to determine FOCI, based on the information the company provides through the e-FOCI website: https://foci.td.anl.gov. Upon favorable FOCI certification by DOE, a facility clearance is granted. Facility cleareance is required in order to support personnel clearances needed to perform the work under contractual agreement with Sandia.

440

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

442

Advanced Mechanical Heat Pump Technologies for Industrial Applications  

E-Print Network [OSTI]

, advanced chemical and mechanical heat pump technologies are being developed for industrial application. Determining which technologies are appropriate for particular industrial applications and then developing those technologies is a stepped process which...

Mills, J. I.; Chappell, R. N.

443

Renewable Energy Facilities Revolving Loan Fund (Delaware) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Facilities Revolving Loan Fund (Delaware) Facilities Revolving Loan Fund (Delaware) Renewable Energy Facilities Revolving Loan Fund (Delaware) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source U.S. Department of Commerce, Delaware Strategic Fund State Delaware Program Type Loan Program Provider Delaware Economic Development Office Renewable Energy Facilities Revolving Loan Fund provides loans at market to below-market interest rates to businesses that cannot otherwise obtain capital, provided that those businesses will create or retain jobs in industries that promote energy efficiency and/or recycling. The new fund was made possible with a $500,000 grant from the U.S. Department of

444

Science &Technology Facilities Council  

E-Print Network [OSTI]

and Science & Technology Facilities Council invite you to The ESA Technology Transfer Network SpaceTech2012Science &Technology Facilities Council Innovations Issue 31 October 2012 This issue: 1 STFC International prize for `no needles' breast cancer diagnosis technique 6 CEOI Challenge Workshop ­ Current

445

Facilities Management CAD Standards  

E-Print Network [OSTI]

Facilities Management CAD Standards 2011 #12;Facilities Management CAD Standards Providing: Layering Standards 2.1 Layer Name Format 2.2 Layer Name Modifiers 2.3 Layer Attributes 2.4 Special Layer of PDF and DWG Files APPENDIX A: DAL FM CAD Standard Layers APPENDIX B: DAL FM CAD Special Layers

Brownstone, Rob

446

Cornell University Facilities Services  

E-Print Network [OSTI]

requirements, building code, and sustainability objectives. This plan takes a long- term view, projecting workCornell University Facilities Services Contract Colleges Facilities Fernow and Rice Hall in Fernow, Rice, Bruckner, Bradfield and Plant Science buildings. It includes a surging and phasing plan

Manning, Sturt

447

Emergency Facilities and Equipment  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This volume clarifies requirements of DOE O 151.1 to ensure that emergency facilities and equipment are considered as part of emergency management program and that activities conducted at these emergency facilities are fully integrated. Canceled by DOE G 151.1-4.

1997-08-21T23:59:59.000Z

448

Privacy Impact Assessment OFEO Facilities Management System Facilities Center  

E-Print Network [OSTI]

Privacy Impact Assessment OFEO Facilities Management System ­ Facilities Center I. System Identification 1. IT System Name: Facilities Management System - FacilityCenter 2. IT System Sponsor: Office. IT System Manager: Michelle T. Gooch, Facilities Management Systems Manager 5. PIA Author: Michelle T. Gooch

Mathis, Wayne N.

449

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

30, 2007 [Facility News] 30, 2007 [Facility News] High-Speed Internet Deflects Information Overload Bookmark and Share Covering approximately 143,000 square kilometers in Oklahoma and Kansas, instruments at the various facilities throughout the SGP site generate approximately 27 gigabytes of data every day. Covering approximately 143,000 square kilometers in Oklahoma and Kansas, instruments at the various facilities throughout the SGP site generate approximately 27 gigabytes of data every day. A little more room in the internet link at the ARM Southern Great Plains site is providing needed relief to the crowded lines that keep data flowing from the site. In July 2007, the internet service from the SGP Central Facility was switched to a higher speed (6 megabits) link, increasing the

450

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

, 2009 [Facility News] , 2009 [Facility News] Mobile Facility Begins Marine Cloud Study in the Azores Bookmark and Share Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Located next to the airport on Graciosa Island, the ARM Mobile Facility's comprehensive and sophisticated instrument suite will obtain atmospheric measurements from the marine boundary layer. Extended deployment will obtain seasonal statistics to improve climate models Today marks the beginning of a 20-month field campaign on Graciosa Island in the Azores to study the seasonal life cycle of marine clouds and how they modulate the global climate system. Sponsored by the U.S. Department

451

ARM Aerial Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

govSitesAerial Facility govSitesAerial Facility AAF Information Proposal Process Science (PDF) Baseline Instruments Campaign Instruments Instrumentation Workshop 2008 AAF Fact Sheet G-1 Fact Sheet Images Field Campaigns AAF Campaigns 2007 - UAV Campaigns 1993 - 2006, 2015 Other Aircraft Campaigns 1993 - 2010 AAF Contacts Rickey Petty DOE AAF Program Director Beat Schmid Technical Director ARM Aerial Facility Numerous instrumented aircraft participated in CLASIC, a cross-disciplinary interagency research effort. Numerous instrumented aircraft participated in CLASIC, a cross-disciplinary interagency research effort. As an integral measurement capability of the ARM Climate Research Facility, the ARM Aerial Facility (AAF) provides airborne measurements required to answer science questions proposed by the ARM Science Team and the external

452

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

15, 2010 [Facility News] 15, 2010 [Facility News] Water Vapor Network at SGP Site Goes Offline Bookmark and Share Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data collection and storage. Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data collection and storage. After nearly eleven years, the Single Frequency GPS Water Vapor Network field campaign at the ARM Southern Great Plains (SGP) site came to a close on July 1, 2010. Installed between 1999 and 2000, this network consisted of 24 GPS stations operating within an 8-kilometer radius around the SGP Central Facility near Lamont, Oklahoma. Developed to function as a single instrument, the network simultaneously measured "slant water vapor" in

453

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

30, 2005 [Facility News] 30, 2005 [Facility News] Coastal Clouds Field Campaign Takes Off in July Bookmark and Share The 2-channel NFOV gets careful attention as it joins the suite of instruments collecting data for the ARM Mobile Facility field campaign at Point Reyes National Seashore. The 2-channel NFOV gets careful attention as it joins the suite of instruments collecting data for the ARM Mobile Facility field campaign at Point Reyes National Seashore. Since March 2005, the ARM Mobile Facility (AMF) has been at Point Reyes National Seashore in northern California for the Marine Stratus Radiation, Aerosol, and Drizzle Intensive Operational Period. The goals of this 6-month field campaign are to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated

454

NSA Barrow Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Barrow Facility Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts NSA Barrow Facility Location: 71° 19' 23.73" N, 156° 36' 56.70" W Altitude: 8 meters The Barrow facility was dedicated in July 1997 and chosen because the Arctic is particularly sensitive to climate changes. Barrow is located at the northernmost point in the United States, 330 miles north of the Arctic Circle. Also known as the Top of the World, Barrow is Alaska's largest Eskimo village (home to 4,581 people). Tax revenue from the Slope's oil fields pay for services borough wide, and natural gas is used to heat homes and generate electricity in Barrow. Many residents, however, maintain

455

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

25, 2013 [Education, Facility News] 25, 2013 [Education, Facility News] Junior Rangers Enjoy Science Education at ARM Facility on Cape Cod Bookmark and Share Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at regular intervals four times per day throughout the one-year campaign. Children and adults join in the balloon launch countdown at the ARM Mobile Facility site at Cape Cod National Seashore. Weather balloons are launched at regular intervals four times per day throughout the one-year campaign. School break means vacation, and around Cape Cod, that often means a trip to the seashore. On April 17, families looking for fun and educational outdoor activities spent several hours at Cape Cod National Seashore's

456

ARM - NSA Barrow Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Barrow Facility Barrow Facility NSA Related Links Facilities and Instruments Barrow Atqasuk ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Images Information for Guest Scientists Contacts NSA Barrow Facility Location: 71° 19' 23.73" N, 156° 36' 56.70" W Altitude: 8 meters The Barrow facility was dedicated in July 1997 and chosen because the Arctic is particularly sensitive to climate changes. Barrow is located at the northernmost point in the United States, 330 miles north of the Arctic Circle. Also known as the Top of the World, Barrow is Alaska's largest Eskimo village (home to 4,581 people). Tax revenue from the Slope's oil fields pay for services borough wide, and natural gas is used to heat homes and generate electricity in Barrow. Many residents, however, maintain

457

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 15, 2004 [Facility News] May 15, 2004 [Facility News] Mid-latitude Cirrus Cloud Experiment Underway Bookmark and Share NASA's WB-57F research aircraft can carry an instrument payload up to 6,000 lbs. NASA's WB-57F research aircraft can carry an instrument payload up to 6,000 lbs. In late April, scientific collaborators at the National Aeronautics and Space Administration (NASA) carried out two high-altitude flights over the ARM Climate Research Facility Southern Great Plains (SGP) central facility. The purpose of these flights was to use a new suite of cloud property probes on the WB-57F aircraft to more accurately characterize the properties of mid-latitude cirrus clouds-which are composed solely of ice crystals-than has previously been possible. Eight flights over the SGP central facility were originally planned, but the expected cirrus clouds

458

FACILITY SAFETY (FS)  

Broader source: Energy.gov (indexed) [DOE]

FACILITY SAFETY (FS) FACILITY SAFETY (FS) OBJECTIVE FS.1 - (Core Requirement 7) Facility safety documentation in support of SN process operations,is in place and has been implemented that describes the safety envelope of the facility. The, safety documentation should characterize the hazards/risks associated with the facility and should, identify preventive and mitigating measures (e.g., systems, procedures, and administrative, controls) that protect workers and the public from those hazards/risks. (Old Core Requirement 4) Criteria 1. A DSA has been prepared by FWENC, approved by DOE, and implemented to reflect the SN process operations in the WPF. (10 CFR 830.200, DOE-STD-3009-94) 2. A configuration control program is in place and functioning such that the DSA is

459

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

7, 2009 [Facility News] 7, 2009 [Facility News] Town Hall Meeting at AGU 2009 Fall Meeting Bookmark and Share ARM Climate Research Facility - New Measurement Capabilities for Climate Research Thursday, December 17, 6:15-7:15 pm, Moscone West Room 2002 American Recovery and Reinvestment Act American Recovery and Reinvestment Act Scientists from around the world use data from the ARM Climate Research Facility to study the interactions between clouds, aerosol and radiation. Through the American Recovery and Reinvestment Act of 2009, the DOE Office of Science received $1.2 billion, with $60 million allocated to the ARM Climate Research Facility. With these funds, ARM will purchase and deploy dual-frequency scanning cloud radars to all the ARM sites, enhance several sites with precipitation radars and energy flux measurement capabilities,

460

Solar Industry At Work | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Industry At Work Industry At Work Solar Industry At Work Addthis 1 of 11 Vice President Joe Biden talks with staff at the National Renewable Energy Lab's Process Development and Integration Laboratory (PDIL). The PDIL brings together technical experts from NREL, the solar industry, and universities for collaborative research. Image: Dennis Schroeder (NREL) 2 of 11 Steven Bohn, an engineer at SunEdison oversees SunEdison's testing facility at SolarTAC in Aurora, CO. The SolarTAC mission is to increase the efficiency of solar energy products and rapidly deploy them to the commercial market. Image: Dennis Schroeder (NREL) 3 of 11 NREL scientists Ki Ye and Joe Berry peer into the glass siding of a deposition instrument to view the latest results of an experiment with a new material.

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

CX-100134 Categorical Exclusion Determination | Department of...  

Office of Environmental Management (EM)

4 Categorical Exclusion Determination CX-100134 Categorical Exclusion Determination Test Procedures for Measuring Energy Efficiency of Consumer Products and Industrial Equipment...

462

CX-012114: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4: Categorical Exclusion Determination CX-012114: Categorical Exclusion Determination Test Procedures for Measuring Energy Efficiency of Consumer Products and Industrial Equipment...

463

CX-010694: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Categorical Exclusion Determination CX-010694: Categorical Exclusion Determination Waste Heat-to-Power in Small-Scale Industry Using Scroll Expander for Organic Rankine Bottoming...

464

CX-010020: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-010020: Categorical Exclusion Determination F-08 Industrial Wastewater Outfall Flow Measurement Improvements CX(s) Applied: B3.1 Date: 01282013...

465

CX-007871: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

1: Categorical Exclusion Determination 1: Categorical Exclusion Determination CX-007871: Categorical Exclusion Determination Renewable Energy and Energy Efficiency Revolving Loan Program - H2 Technologies CX(s) Applied: B5.22 Date: 01/27/2012 Location(s): Nevada Offices(s): Golden Field Office State Energy Program. H2 is proposing to use federal funding to build a modular and fully scalable hydrogen fueling station as part of its "Hydrogen Highway Project". The station would produce hydrogen from water electrolysis and would be located at an existing fueling facility at the Carson City Industrial Air Park. The proposed project would utilize a highly efficient electrolyser, hydrogen compressor, storage tanks, and delivery system. CX-007871.pdf More Documents & Publications CX-009563: Categorical Exclusion Determination

466

CX-009537: Categorical Exclusion Determination | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

7: Categorical Exclusion Determination 7: Categorical Exclusion Determination CX-009537: Categorical Exclusion Determination In-Situ X-Ray Analysis of Rapid Thermal Processing for Thin-Fil Solar Cells CX(s) Applied: A9, B1.31, B3.6 Date: 11/21/2012 Location(s): California, Colorado Offices(s): Golden Field Office The U.S. DOE is proposing to provide federal funding to Stanford University to conduct research and development activities that advance solar photovoltaic (PV) technology. DOE funding would be used for data collection, analysis and to design, fabricate and assemble a rapid-thermal0processing/X-ray diffraction and fluorescence tool/facility to increase rapid thermal processing for the PC industry. CX-009537.pdf More Documents & Publications CX-009008: Categorical Exclusion Determination

467

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS  

E-Print Network [OSTI]

INDUSTRIAL ENGINEERING GRADUATE PROGRAMS The Master of Science in Industrial Engineering (M Systems and Engineering (M.S.M.S.E.), the Doctor of Philosophy in Industrial Engineering, and the Doctor of Philosophy in Systems and Engineering Management programs prepare competent industrial engineers

Gelfond, Michael

468

Mechanical & Industrial Engineering  

E-Print Network [OSTI]

Mechanical & Industrial Engineering 1 Welcome MIE Industrial Advisory Board May 5th, 2011 #12;Mechanical & Industrial Engineering 2 IAB 2010-2011 · David K. Anderson ­ Alden Research Laboratory, Inc went on for three weeks Mechanical & Industrial Engineering 6 #12;Reza Shahbazian Yassar Mechanical

Mountziaris, T. J.

469

Career Map: Industrial Engineer  

Broader source: Energy.gov [DOE]

The Wind Program's Career Map provides job description information for Industrial Engineer positions.

470

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Number DE-FOA-0000698). This announcement is open to universities, industry, non- profit organizations, and Federally Funded Research and Development Centers (FFRDCs),...

471

Climate VISION: Industry Associations  

Office of Scientific and Technical Information (OSTI)

Industry Associations Industry Associations Aluminum Aluminum Association (Coordinating aluminum industry Climate VISION activities) The Aluminum Association, Inc. is the trade association for producers of primary aluminum, recyclers and semi-fabricated aluminum products, as well as suppliers to the industry. The Association provides leadership to the industry through its programs and services which aim to enhance aluminum's position in a world of proliferating materials, increase its use as the "material of choice," remove impediments to its fullest use, and assist in achieving the industry's environmental, societal, and economic objectives. Automobile Manufacturers Alliance of Automobile Manufacturers (Coordinating automobile industry Climate VISION activities) The Alliance of Automobile Manufacturers, Inc. is a trade association

472

Second law analysis of industrial processes  

Science Journals Connector (OSTI)

An extensive industrial energy data base has been developed at the four-digit and sub four-digit Standard Industrial Classification (SIC) level. The information includes typical process configurations (processes), energy and material flow rates, and temperatures for up to 25 separate unit operations in over 100 industrial processes. These processes represent the top 60 energy industries in the United States, and account for 75% of the industrial manufacturing energy consumption in this country. A thermodynamic availability analysis is presently being constructed using this data base to investigate industrial energy utilization. An approach has been developed to determine thermodynamic losses and second law analyses for the industrial processes and for the more than 50 generic classes of unit operations. Applications using this data base enable systematic investigations to be performed on most energy intensive industrial processes, and allow the overall effectiveness of industrial energy utilization to be gauged. Illustrative examples of this methodology and preliminary results for specific industrial processes will be presented in this paper. The application of thermodynamic availability and second law analysis will be assessed in both unit operations and in larger industrial sectors.

Bruce A. Hedman; Harry L. Brown; Bernard B. Hamel

1980-01-01T23:59:59.000Z

473

Contact Manufacturing Demonstration Facility Craig Blue, Ph.D.  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manufacturing Demonstration Facility Craig Blue, Ph.D. Director, Manufacturing Demonstration Facility (865) 574-4351 blueca@ornl.gov INNOVATIONS IN MANUFACTURING www.ornl.gov/manufacturing Advanced Manufacturing Next-Generation Manufacturing As the nation's premier research laboratory, Oak Ridge National Laboratory is one of the world's most capable resources for transforming the next generation of scientific discovery into solutions for rebuilding and revitalizing America's manufacturing industries. These industries call upon ORNL's expertise in materials synthesis, characterization, and process technology to reduce risk and accelerate the development and deployment of innovative energy-efficient manufacturing processes and materials targeting products of the future.

474

Calibration Facilities | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities Calibration Facilities DOE supports the development, standardization, and maintenance of calibration facilities for environmental radiation sensors. Radiation standards at the facilities are primarily used to calibrate portable surface gamma-ray survey meters and borehole logging instruments used for uranium and other mineral exploration and remedial action measurements. Standards for calibrating borehole fission neutron devices are also available, but are used infrequently. Radiation standards are constructed of concrete with elevated, uniform concentrations of naturally occurring potassium, uranium, and/or thorium. Pad standards have large, flat surfaces suitable for calibration

475

Enforcement Letter, Amer Industrial Technologies - April 13, 2010 |  

Broader source: Energy.gov (indexed) [DOE]

Amer Industrial Technologies - April 13, 2010 Amer Industrial Technologies - April 13, 2010 Enforcement Letter, Amer Industrial Technologies - April 13, 2010 April 13, 2010 Enforcement Letter issued to Amer Industrial Technologies related to Weld Deficiencies at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 This letter refers to the Office of Health, Safety and Security's Office of Enforcement's investigation into the facts and circumstances associated with quality assurance deficiencies in safety significant drain pipe fabricated by Amer Industrial Technologies, Inc. (AIT) as a supplier to Parsons Infrastructure & Technology Group, Inc. (Parsons) for the Salt Waste Processing Facility (SWPF) construction project at the Department of Energy (DOE) Savanuah River Site. The contract between Parsons and AIT was

476

Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities  

SciTech Connect (OSTI)

Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a facility, DECON requires that contaminated components either be: (1) decontaminated to restricted or unrestricted release levels or (2) packaged and shipped to an authorized disposal site. This study considers unrestricted release only. The new decommissioning criteria of July 1997 are too recent for this study to include a cost analysis of the restricted release option, which is now allowed under these new criteria. The costs of decommissioning facility components are generally estimated to be in the range of $140 to $27,000, depending on the type of component, the type and amount of radioactive contamination, the remediation options chosen, and the quantity of radioactive waste generated from decommissioning operations. Estimated costs for decommissioning the example laboratories range from $130,000 to $205,000, assuming aggressive low-level waste (LLW) volume reduction. If only minimal LLW volume reduction is employed, decommissioning costs range from $150,000 to $270,000 for these laboratories. On the basis of estimated decommissioning costs for facility components, the costs of decommissioning typical non-fuel-cycle laboratory facilities are estimated to range from about $25,000 for the decommissioning of a small room containing one or two fume hoods to more than $1 million for the decommissioning of an industrial plant containing several laboratories in which radiochemicals and sealed radioactive sources are prepared. For the reference sites of this study, the basic decommissioning alternatives are: (1) site stabilization followed by long-term care and (2) removal of the waste or contaminated soil to an authorized disposal site. Cost estimates made for decommissioning three reference sites range from about $130,000 for the removal of a contaminated drain line and hold-up tank to more than $23 million for the removal of a tailings pile that contains radioactive residue from ore-processing operations in which tin slag is processed for the recovery of rare metals. Total occupational radiation doses generally range from 0.00007 person-rem to 13 person-rem for

MC Bierschbach; DR Haffner; KJ Schneider; SM Short

2002-12-01T23:59:59.000Z

477

RCRA facility assessments  

SciTech Connect (OSTI)

The Hazardous and Solid Waste Amendments of 1984 (HSWA) broadened the authorities of the Resource Conservation and Recovery Act (RCRA) by requiring corrective action for releases of hazardous wastes and hazardous constituents at treatment, storage, and disposal (TSD) facilities. The goal of the corrective action process is to ensure the remediation of hazardous waste and hazardous constituent releases associated with TSD facilities. Under Section 3004(u) of RCRA, operating permits issued to TSD facilities must address corrective actions for all releases of hazardous waste and hazardous constituents from any solid waste management unit (SWMU) regardless of when the waste was placed in such unit. Under RCRA Section 3008(h), the Environmental Protection Agency (EPA) may issue administrative orders to compel corrective action at facilities authorized to operate under RCRA Section 3005(e) (i.e., interim status facilities). The process of implementing the Corrective Action program involves the following, in order of implementation; (1) RCRA Facility Assessment (RFA); (2) RCRA Facility Investigation (RFI); (3) the Corrective Measures Study (CMS); and (4) Corrective Measures Implementation (CMI). The RFA serves to identify and evaluate SWMUs with respect to releases of hazardous wastes and hazardous constituents, and to eliminate from further consideration SWMUs that do not pose a threat to human health or the environment. This Information Brief will discuss issues concerning the RFA process.

NONE

1994-07-01T23:59:59.000Z

478

Supercomputing | Facilities | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Facilities and Capabilities Facilities and Capabilities Primary Systems Infrastructure High Performance Storage Supercomputing and Computation Home | Science & Discovery | Supercomputing and Computation | Facilities and Capabilities | High Performance Storage SHARE High Performance Storage and Archival Systems To meet the needs of ORNL's diverse computational platforms, a shared parallel file system capable of meeting the performance and scalability require-ments of these platforms has been successfully deployed. This shared file system, based on Lustre, Data Direct Networks (DDN), and Infini-Band technologies, is known as Spider and provides centralized access to petascale datasets from all major on-site computational platforms. Delivering more than 240 GB/s of aggregate performance,

479

ARM - Facility News Article  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 10, 2012 [Facility News] July 10, 2012 [Facility News] Collaborations in Atmospheric Science and Observations Discussed in Germany Bookmark and Share Susanne Crewell (center) is flanked by Jimmy Voyles (left) and Shaocheng Xie (right) during a tour of the Research Center Juelich and the university's Jülich ObservatorY for Cloud Evolution (JOYCE) site. Crewell explained that JOYCE, like ARM facilities, was designed for long-term continuous measurements of cloud, radiation, boundary humidity, and precipitation, using active and passive remote sensing instruments. Susanne Crewell (center) is flanked by Jimmy Voyles (left) and Shaocheng Xie (right) during a tour of the Research Center Juelich and the

480

A. Appendix: Cost Estimate for the Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Appendix: Cost Estimate for the Facility Appendix: Cost Estimate for the Facility Determining the cost of a facility as complex as the neutrino source presented here is a very difficult task within the short time period of six months. Three factors contribute to the uncertainty significantly: 1. The number of subsystems in the facility, which are described throughout the report, is comparatively large. All of the subsystems contribute a considerable amount of complexity and cost that have to be addressed by specific expertise in order to find a technical solution and a reasonable cost estimate. The variety of technologies is large and many of them have to be pushed to the edge or beyond and therefore has to be addressed with an appropriate R&D program. Cost savings from mass production will not be

Note: This page contains sample records for the topic "determination industrial facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sandia National Laboratories: Research: Facilities: Technology Deployment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Shock Thermodynamic Applied Research Facility (STAR) Shock Thermodynamic Applied Research Facility (STAR) The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only experimental test facility in the world that can cover the full range of pressure (bars to multi-Mbar) for material property study utilizing gas/propellant launchers, ramp-loading pulsers, and ballistic applications. Material Characterization Shock wave experiments are an established technique to determine the equation of state at high pressures and temperature, which can be applied to virtually all materials. This technique allows the probing of the internal structure of the material as it undergoes deformation. This provides a better understanding of the material properties for development

482

DOE Announces First Companies to Receive Industrial Energy Efficiency  

Broader source: Energy.gov (indexed) [DOE]

First Companies to Receive Industrial Energy First Companies to Receive Industrial Energy Efficiency Certification DOE Announces First Companies to Receive Industrial Energy Efficiency Certification December 9, 2010 - 12:00am Addthis WASHINGTON - The U.S. Department of Energy today announced the first industrial plants in the country to be certified under the Superior Energy Performance program -- a new, market-based industrial energy efficiency program. The energy management certification program is accredited by the American National Standards Institute (ANSI) and will serve as a roadmap for industrial facilities to help continually improve their efficiency and maintain market competitiveness. The industrial and manufacturing sectors, which account for roughly one-third of energy use in the United

483

Test Facility Daniil Stolyarov, Accelerator Test Facility User...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of the Solid-State Laser System for the Accelerator Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009 Outline Motivation for...

484

NREL: Research Facilities - Laboratories and Facilities by Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratories and Facilities by Technology The following NREL research programs have laboratory, andor test and user facility capabilities for researching, developing, and testing...

485

Zoe Industries, Inc.  

Broader source: Energy.gov (indexed) [DOE]

D.C. 20585 D.C. 20585 ) ) ) ) ) Case Number: 2011-SW-2912 Issued: September 28, 2011 NOTICE OF NONCOMPLIANCE DETERMINATION Manufacturers and private labelers are prohibited from distributing covered products that do not comply with applicable Federal water conservation standards. 10 C.F.R. § 429.102; 42 U.S.C. § 6302. On July 20, 2011, DOE tested four units of the Giessdorf eight-jet basic model showerhead, SKU 150043 ("Giessdorf 150043"), manufactured by GiessdorfPlumbing, Inc. ("Giessdorf"), and imported by Zoe Industries, Inc. ("Zoe"), in accordance with DOE test procedures (10 C.F.R. Part 430, Subpart B, Appendix S). DOE's testing demonstrated that the Giessdorf 150043 model is not in compliance with Federal law. First, Federal water conservation standards require that the water flow for a showerhead

486

Pre-industrial charcoal production in Lower Lusatia (Brandenburg, Germany): Detection and evaluation of a large charcoal-burning field by combining archaeological studies, GIS-based analyses of shaded-relief maps and dendrochronological age determination  

Science Journals Connector (OSTI)

Abstract In pre-industrial times, charcoal burning was a common source of energy across Europe. Charcoal production and its related consequences for the upland environment are well known due to historical and palaeoenvironmental research. In recent years, awareness has grown regarding the use of woods in the lowlands for charcoal production. In the last 20 years, a large charcoal-burning field in Lower Lusatia (Brandenburg, North German Lowlands) was discovered by systematic archaeological excavations of the opencast mine of Jänschwalde. However, the excavations are limited to the mine, which only covers a portion of the Jänschwalder Heide and the surrounding forests. In this paper, we present the results of our study regarding the spatial extension and timing of charcoal production in the Jänschwalder Heide and its surrounding areas. We applied a combined approach using archaeological research results, GIS-analyses of shaded-relief maps (SRMs) and tree-ring dating of selected charcoal kiln remains. Approximately 900 excavated charcoal kiln ground plans were analysed, which provided a solid data basis for our GIS analyses. For an extensive evaluation, we enlarged our study area beyond the limits of the lignite mine. We identified and digitised the remains of the charcoal kilns by creating \\{SRMs\\} from digital elevation models (DEMs) that were based on high-resolution airborne laser scanning data (ALS). The data from the excavated and digitised charcoal kiln remains were analysed in terms of their sizes and spatial distributions. In addition, the dendrochronological ages of 16 selected charcoal kiln remains were determined. This study shows that charcoal production was more extensive than initially proven by archaeological excavations. The remains of more than 5000 charcoal kilns were detected on the \\{SRMs\\} across an area that was twice as large as the excavated charcoal-burning field. In the Jänschwalder Heide, considerably more charcoal kiln relicts exist compared with the surrounding communal areas. Furthermore, the charcoal kiln remains in the Jänschwalder Heide have larger diameters, suggesting large-scale charcoal production for supplying energy to the nearby ironworks at Peitz. However, the charcoal production on the communal land was most likely for local crafts. The ages of the charcoal kiln remains indicated that charcoal production occurred between the 17th and 19th centuries, corresponding with the main period of charcoal burning. Overall, our study suggested that charcoal production sites are underestimated in the modern landscapes of the North German Lowlands.

A. Raab; M. Takla; T. Raab; A. Nicolay; A. Schneider; H. Rösler; K.-U. Heußner; E. Bönisch

2014-01-01T23:59:59.000Z

487

Energy Facility Evaluation, Siting, Construction and Operation (New  

Broader source: Energy.gov (indexed) [DOE]

Energy Facility Evaluation, Siting, Construction and Operation (New Energy Facility Evaluation, Siting, Construction and Operation (New Hampshire) Energy Facility Evaluation, Siting, Construction and Operation (New Hampshire) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Retail Supplier Rural Electric Cooperative Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Solar Wind Program Info State New Hampshire Program Type Siting and Permitting Provider NH Department of Environmental Services, Public Information and Permitting Unit The statute establishes a procedure for the review, approval, monitoring,

488

Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities  

Broader source: Energy.gov (indexed) [DOE]

0: Solid Waste Management 0: Solid Waste Management Facilities (New York) Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York) < Back Eligibility Agricultural Commercial Fuel Distributor Industrial Institutional Investor-Owned Utility Multi-Family Residential Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State New York Program Type Environmental Regulations Provider NY Department of Environmental Conservation These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction, and the regulations provide details about permitting, construction, registration, and operation requirements. The regulations contain specific guidance for land

489

NPDES Rule for Coal Mining Facilities (West Virginia) | Department of  

Broader source: Energy.gov (indexed) [DOE]

NPDES Rule for Coal Mining Facilities (West Virginia) NPDES Rule for Coal Mining Facilities (West Virginia) NPDES Rule for Coal Mining Facilities (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule establishes requirements implementing the powers, duties, and responsibilities of State's Water Pollution Control Act with respect to all

490

North Dakota Energy Conversion and Transmission Facility Siting Act (North  

Broader source: Energy.gov (indexed) [DOE]

Dakota Energy Conversion and Transmission Facility Siting Act Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) North Dakota Energy Conversion and Transmission Facility Siting Act (North Dakota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State North Dakota Program Type Line Extension Analysis

491

NIPSCO - Existing Facility Retrofit Rebate Program | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

NIPSCO - Existing Facility Retrofit Rebate Program NIPSCO - Existing Facility Retrofit Rebate Program NIPSCO - Existing Facility Retrofit Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Contact NIPSCO $500,000 per project per year $1,000,000 per applicant per year Program Info Expiration Date 12/31/2013 State Indiana Program Type Utility Rebate Program Rebate Amount Other Projects: $0.09/kWh in electricity reductions Energize Indiana Rebates: Varies widely Provider

492

EWEB - Existing Facilities Energy Efficiency Rebate Program | Department  

Broader source: Energy.gov (indexed) [DOE]

EWEB - Existing Facilities Energy Efficiency Rebate Program EWEB - Existing Facilities Energy Efficiency Rebate Program EWEB - Existing Facilities Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances & Electronics Heat Pumps Heating Commercial Lighting Lighting Manufacturing Home Weatherization Windows, Doors, & Skylights Maximum Rebate See Program Catalog Program Info State Oregon Program Type Utility Rebate Program Rebate Amount Lighting: Varies Widely Office Equipment: Varies Widely Air Conditioner (Non-Electric): $60 - $115/ton Air-Source Heat Pump: $60 - $220/ton Ductless Heat Pump: $100 - $220/ton Small Business Ductless Heat Pump: $750 - $1,000 Western Premium Economizer: $125/ton Programmable Thermostat: $25 - $100

493

Impact of Electric Generating Facilities (Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Impact of Electric Generating Facilities (Virginia) Impact of Electric Generating Facilities (Virginia) Impact of Electric Generating Facilities (Virginia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Virginia Program Type Environmental Regulations Siting and Permitting Provider Virginia Department of Environmental Quality After a proposed power plant has received approval from the State Corporation Commission (SCC) and location approval from the local government, it must apply for all applicable permits from the Virginia

494

NREL: Research Facilities Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NREL Research Facilities Here you'll find information about the National Renewable Energy Laboratory's R&D facility and laboratory capabilities. These state-of-the-art facilities...

495

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

496

Industrial/manufacturing resources | ENERGY STAR Buildings & Plants  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial/manufacturing resources Industrial/manufacturing resources Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources Success stories Target Finder

497

ENERGY STAR Industrial Plant Certification: Instructions for applying |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Industrial Plant Certification: Instructions for Industrial Plant Certification: Instructions for applying Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

498

Brochure: ENERGY STAR for Commercial Buildings and Industrial Plants |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Brochure: ENERGY STAR for Commercial Buildings and Industrial Brochure: ENERGY STAR for Commercial Buildings and Industrial Plants Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

499

Industrial energy management information center | ENERGY STAR Buildings &  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy management information center energy management information center Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In this section Get started with ENERGY STAR Make the business case Build an energy management program Measure, track, and benchmark Improve energy performance Industrial service and product providers Earn recognition Market impacts: Improvements in the industrial sector

500

Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate  

Broader source: Energy.gov (indexed) [DOE]

Duke Energy (Electric) - Commercial and Industrial Energy Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program Duke Energy (Electric) - Commercial and Industrial Energy Efficiency Rebate Program < Back Eligibility Commercial Industrial Institutional Local Government Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Commercial Weatherization Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Home Weatherization Windows, Doors, & Skylights Maximum Rebate Commercial Incentives: $50,000 per fiscal year, per facility for all eligible technologies combined Custom Incentives: 50% of incremental cost Most Prescriptive Incentives: 50% of equipment cost Custom Incentives: 50% of incremental cost