National Library of Energy BETA

Sample records for determination industrial facility

  1. Superior Energy Performance Industrial Facility Best Practice...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Facility Best Practice Scorecard Superior Energy Performance Industrial Facility Best Practice Scorecard Superior Energy Performance logo Facilities seeking to use the ...

  2. Ennis Laundry Industrial Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Ennis Laundry Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Ennis Laundry Industrial Low Temperature Geothermal Facility Facility Ennis Laundry...

  3. Local Option- Industrial Facilities and Development Bonds

    Broader source: Energy.gov [DOE]

    Under the Utah Industrial Facilities and Development Act, counties, municipalities, and state universities in Utah may issue Industrial Revenue Bonds (IRBs) or Industrial Development Bonds (IDBs)...

  4. Industrial Facility Combustion Energy Use

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    McMillan, Colin

    2016-08-01

    Facility-level industrial combustion energy use is calculated from greenhouse gas emissions data reported by large emitters (>25,000 metric tons CO2e per year) under the U.S. EPA's Greenhouse Gas Reporting Program (GHGRP, https://www.epa.gov/ghgreporting). The calculation applies EPA default emissions factors to reported fuel use by fuel type. Additional facility information is included with calculated combustion energy values, such as industry type (six-digit NAICS code), location (lat, long, zip code, county, and state), combustion unit type, and combustion unit name. Further identification of combustion energy use is provided by calculating energy end use (e.g., conventional boiler use, co-generation/CHP use, process heating, other facility support) by manufacturing NAICS code. Manufacturing facilities are matched by their NAICS code and reported fuel type with the proportion of combustion fuel energy for each end use category identified in the 2010 Energy Information Administration Manufacturing Energy Consumption Survey (MECS, http://www.eia.gov/consumption/manufacturing/data/2010/). MECS data are adjusted to account for data that were withheld or whose end use was unspecified following the procedure described in Fox, Don B., Daniel Sutter, and Jefferson W. Tester. 2011. The Thermal Spectrum of Low-Temperature Energy Use in the United States, NY: Cornell Energy Institute.

  5. Oregon General Industrial Water Pollution Control Facilities...

    Open Energy Info (EERE)

    General Industrial Water Pollution Control Facilities Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon General Industrial Water Pollution...

  6. LARGE INDUSTRIAL FACILITIES BY STATE | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    LARGE INDUSTRIAL FACILITIES BY STATE LARGE INDUSTRIAL FACILITIES BY STATE PDF icon Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy...

  7. Low Temperature Direct Use Industrial Geothermal Facilities ...

    Open Energy Info (EERE)

    Low Temperature Direct Use Industrial Geothermal Facilities Jump to: navigation, search Loading map... "format":"googlemaps3","type":"ROADMAP","types":"ROADMAP","SATELLITE","HYBR...

  8. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412: ...

  9. Superior Energy Performance Industrial Facility Best Practice Scorecard |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Industrial Facility Best Practice Scorecard Superior Energy Performance Industrial Facility Best Practice Scorecard Superior Energy Performance logo Facilities seeking to use the Mature Energy Pathway to qualify for Superior Energy Performance® (SEP(tm)) certification will use the SEP Industrial Facility Best Practice Scorecard to assess the maturity of the facility's energy management system. This scorecard describes credits that can be earned by implementing energy

  10. EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TX | Department of Energy 2: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX EIS-0412: TX Energy, LLC, Industrial Gasification Facility Near Beaumont, TX February 18, 2009 EIS-0412: Notice of Intent to Prepare an Environmental Impact Statement Construction of the TX Energy, LLC, Industrial Gasification Facility near Beaumont, Texas

  11. SUPERIOR ENERGY PERFORMANCE INDUSTRIAL FACILITY BEST PRACTICE SCORECARD

    Broader source: Energy.gov [DOE]

    Facilities seeking to use the Mature Energy Pathway to qualify for Superior Energy Performance® (SEP™) certification will use the SEP Industrial Facility Best Practice Scorecard to assess the...

  12. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Moss Point, MS | Department of Energy 8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS Documents Available for Download November 12, 2009 EIS-0428: Notice of Intent to Prepare an Environmental Impact Statement Construction and Startup of the Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, Mississippi December 1, 2009 EIS-0428:

  13. EIS-0429: Indiana Gasification, LLC, Industrial Gasification Facility in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rockport, IN and CO2 Pipeline | Department of Energy 9: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN and CO2 Pipeline EIS-0429: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN and CO2 Pipeline Documents Available for Download November 12, 2009 EIS-0429: Notice of Intent to Prepare an Environmental Impact Statement Construction and Startup of the Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, Indiana December

  14. Two Facilities, One Goal: Advancing America's Wind Industry | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Two Facilities, One Goal: Advancing America's Wind Industry Two Facilities, One Goal: Advancing America's Wind Industry November 27, 2013 - 1:35pm Addthis Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. | Photo courtesy of Clemson University Energy Deputy Secretary Daniel Poneman speaks at the Clemson University Wind Turbine Drivetrain Testing Facility dedication in South Carolina. |

  15. LARGE INDUSTRIAL FACILITIES BY STATE | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) More Documents ...

  16. Live from Greenbuild: From the Industrial Facilities Connect & Learn |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Live from Greenbuild: From the Industrial Facilities Connect & Learn Live from Greenbuild: From the Industrial Facilities Connect & Learn November 18, 2015 - 5:32pm Addthis By Monica Kanojia The industrial industry is filled with unique and dynamic projects with substantially high process loads and resource consumption. This sector faces a different set of challenges in attaining sustainably built campuses. Owners must address compliance, regulations and safety

  17. 2015 Energy Systems Integration Facility Annual Report Calls to Industry:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bring Us Your Challenges | Grid Modernization | NREL 2015 Energy Systems Integration Facility Annual Report Calls to Industry: Bring Us Your Challenges April 6, 2016 The 2015 Energy Systems Integration Facility Annual Report is now available for download. The Energy Systems Integration Facility (ESIF) is the nation's premier facility for research, development, and demonstration of the components and strategies needed to optimize our entire energy system. It was established in 2013 by the

  18. ET Industries: Noncompliance Determination (2012-SE-2902)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to ET Industries, Inc. finding that showerhead basic model TH-1 does not comport with the water conservation standards.

  19. Zoe Industries: Noncompliance Determination (2011-SW-2912)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Noncompliance Determination to Zoe Industries, Inc. finding that Giessdorf 150043 model, a showerhead, does not comport with the water conservation standards.

  20. EIS-0007: Low Btu Coal Gasification Facility and Industrial Park

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) prepared this draft environmental impact statement that evaluates the potential environmental impacts that may be associated with the construction and operation of a low-Btu coal gasification facility and the attendant industrial park in Georgetown, Scott County, Kentucky. DOE cancelled this project after publication of the draft.

  1. Mercury control challenge for industrial boiler MACT affected facilities

    SciTech Connect (OSTI)

    2009-09-15

    An industrial coal-fired boiler facility conducted a test program to evaluate the effectiveness of sorbent injection on mercury removal ahead of a fabric filter with an inlet flue gas temperature of 375{sup o}F. The results of the sorbent injection testing are essentially inconclusive relative to providing the facility with enough data upon which to base the design and implementation of permanent sorbent injection system(s). The mercury removal performance of the sorbents was significantly less than expected. The data suggests that 50 percent mercury removal across a baghouse with flue gas temperatures at or above 375{sup o}F and containing moderate levels of SO{sub 3} may be very difficult to achieve with activated carbon sorbent injection alone. The challenge many coal-fired industrial facilities may face is the implementation of additional measures beyond sorbent injection to achieve high levels of mercury removal that will likely be required by the upcoming new Industrial Boiler MACT rule. To counter the negative effects of high flue gas temperature on mercury removal with sorbents, it may be necessary to retrofit additional boiler heat transfer surface or spray cooling of the flue gas upstream of the baghouse. Furthermore, to counter the negative effect of moderate or high SO{sub 3} levels in the flue gas on mercury removal, it may be necessary to also inject sorbents, such as trona or hydrated lime, to reduce the SO{sub 3} concentrations in the flue gas. 2 refs., 1 tab.

  2. Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Callaway, Duncan S.; Kiliccote, Sila

    2011-08-16

    Changes in the electricity consumption of commercial buildings and industrial facilities (C&I facilities) during Demand Response (DR) events are usually estimated using counterfactual baseline models. Model error makes it difficult to precisely quantify these changes in consumption and understand if C&I facilities exhibit event-to-event variability in their response to DR signals. This paper seeks to understand baseline model error and DR variability in C&I facilities facing dynamic electricity prices. Using a regression-based baseline model, we present a method to compute the error associated with estimates of several DR parameters. We also develop a metric to determine how much observed DR variability results from baseline model error rather than real variability in response. We analyze 38 C&I facilities participating in an automated DR program and find that DR parameter errors are large. Though some facilities exhibit real DR variability, most observed variability results from baseline model error. Therefore, facilities with variable DR parameters may actually respond consistently from event to event. Consequently, in DR programs in which repeatability is valued, individual buildings may be performing better than previously thought. In some cases, however, aggregations of C&I facilities exhibit real DR variability, which could create challenges for power system operation.

  3. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  4. Determining Memory Use | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Allinea DDT Core File Settings Determining Memory Use Using VNC with a Debugger bgq_stack gdb Coreprocessor Runjob termination TotalView Performance Tools & APIs Software & Libraries IBM References Cooley Policies Documentation Feedback Please provide feedback to help guide us as we continue to build documentation for our new computing resource. [Feedback Form] Determining Memory Use Determining the amount of memory available during the execution of the program requires the use of

  5. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Facilities LANL's mission is to develop and apply science and technology to ensure the safety, security, and reliability of the U.S. nuclear deterrent; reduce global threats; and solve other emerging national security and energy challenges. Contact Operator Los Alamos National Laboratory (505) 667-5061 Some LANL facilities are available to researchers at other laboratories, universities, and industry. Unique facilities foster experimental science, support the Lab's security mission

  6. Liquid Effluent Retention Facility (LERF) Final Hazard Category Determination

    SciTech Connect (OSTI)

    HUTH, L.L.

    2001-06-06

    The Liquid Effluent Retention Facility was designed to store 242-A Evaporator process condensate and other liquid waste streams for treatment at the 200 East Area Effluent Treatment Facility. The Liquid Effluent Retention Facility has been previously classified as a Category 3 Nonreactor Nuclear Facility. As defined in Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports (DOE 1992, DOE 1997), Category 3 Nuclear Facilities have the potential for significant localized (radiological) consequences. However, based on current facility design, operations, and radioactive constituent concentrations, the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences and is categorized as a Radiological Facility. This report documents the final hazard categorization process performed in accordance with DOE Order 5480.23, Nuclear Safety Analysis Reports. This report describes the current configuration and operations of the Liquid Effluent Retention Facility. Also included is a preliminary hazard categorization, which is based on current and proposed radioactive and hazardous material inventories, a preliminary hazards and accident analysis, and a final hazard category determination. The results of the hazards and accident analysis, based on the current configuration and operations of the Liquid Effluent Retention Facility and the current and proposed radioactive and hazardous material inventories, demonstrate that the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences. Based on the final hazard category analysis, the Liquid Effluent Retention Facility is a Radiological Facility. The final hazard category determination is based on a comparative evaluation of the consequence basis for the Category 3 threshold quantities to the calculated consequences for credible releases The basis for

  7. Carbon Fiber Technology Facility Set To Scale Up Industry | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educational institutions partner with the Carbon Fiber Technology Facility to develop the skilled workforce needed for widespread production of low-cost carbon fiber. Carbon fiber ...

  8. Energy management planning and control in a large industrial facility

    SciTech Connect (OSTI)

    Rood, L.; Korber, J.

    1995-06-01

    Eastman Kodak`s Kodak Park Manufacturing facility is a collection of hundreds of buildings and millions of square feet operated by dozens of semi-autonomous manufacturing units. The facility is served by a centralized Utilities system which cogenerates electricity and distributes steam, chilled water, compressed air, and several other services throughout the site. Energy management at Kodak Park has been active since the 70`s. In 1991, the Utilities Division took ownership of a site wide energy thrust to address capacity limitations of electric, compressed air and other services. Planning and organizing a program to meet Utilities Division goals in such a large complex site was a slightly daunting task. Tracking progress and keeping on schedule is also a challenge. The authors will describe innovative use of a project management software program called Open Plan{reg_sign} to accomplish much of the planning and control for this program. Open Plan{reg_sign} has been used since the initial planning to the current progress of about 50% completion of the program. Hundreds of activities performed by dozens of resource people are planned and tracked. Not only the usual cost and schedule information is reported, but also the schedule for savings in terms of kilowatt-hours, pounds of steam, etc. These savings schedules are very useful for tracking against energy goals and Utilities business planning. Motivation of the individual departments to participate in the program and collection of data from these departments will also be discussed.

  9. Expert system for testing industrial processes and determining sensor status

    DOE Patents [OSTI]

    Gross, K.C.; Singer, R.M.

    1998-06-02

    A method and system are disclosed for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 24 figs.

  10. Expert system for testing industrial processes and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C.; Singer, Ralph M.

    1998-01-01

    A method and system for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  11. Safeguards by design - industry engagement for new uranium enrichment facilities in the United States

    SciTech Connect (OSTI)

    Demuth, Scott F; Grice, Thomas; Lockwood, Dunbar

    2010-01-01

    The United States Department of Energy's (DOE's) Office of Nonproliferation and International Security (NA-24) has initiated a Safeguards by Design (SBD) effort to encourage the incorporation of international (IAEA) safeguards features early in the design phase of a new nuclear facility in order to avoid the need to redesign or retrofit the facility at a later date. The main goals of Safeguards by Design are to (1) make the implementation of international safeguards at new civil nuclear facilities more effective and efficient, (2) avoid costly and time-consuming re-design work or retrofits at such facilities and (3) design such facilities in a way that makes proliferation as technically difficult, as time-consuming, and as detectable as possible. The U.S. Nuclear Regulatory Commission (NRC) has recently hosted efforts to facilitate the use of Safeguards by Design for new uranium enrichment facilities currently being planned for construction in the U.S. While SBD is not a NRC requirement, the NRC is aiding the implementation of SBD by coordinating discussions between DOE's NA-24 and industry's facility design teams. More specifically, during their normal course of licensing discussions the NRC has offered industry the opportunity to engage with NA-24 regarding SBD.

  12. Industrial Energy Audit Guidebook: Guidelines for Conducting an Energy Audit in Industrial Facilities

    SciTech Connect (OSTI)

    Hasanbeigi, Ali; Price, Lynn

    2010-10-07

    Various studies in different countries have shown that significant energy-efficiency improvement opportunities exist in the industrial sector, many of which are cost-effective. These energy-efficiency options include both cross-cutting as well as sector-specific measures. However, industrial plants are not always aware of energy-efficiency improvement potentials. Conducting an energy audit is one of the first steps in identifying these potentials. Even so, many plants do not have the capacity to conduct an effective energy audit. In some countries, government policies and programs aim to assist industry to improve competitiveness through increased energy efficiency. However, usually only limited technical and financial resources for improving energy efficiency are available, especially for small and medium-sized enterprises. Information on energy auditing and practices should, therefore, be prepared and disseminated to industrial plants. This guidebook provides guidelines for energy auditors regarding the key elements for preparing for an energy audit, conducting an inventory and measuring energy use, analyzing energy bills, benchmarking, analyzing energy use patterns, identifying energy-efficiency opportunities, conducting cost-benefit analysis, preparing energy audit reports, and undertaking post-audit activities. The purpose of this guidebook is to assist energy auditors and engineers in the plant to conduct a well-structured and effective energy audit.

  13. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  14. DETERMINATION OF IMPORTANCE EVALUATION FOR THE SURFACE EXPLORATORY STUDIES FACILITY

    SciTech Connect (OSTI)

    C.J. Byrne

    2000-07-25

    This DIE applies to the surface facilities component of the Yucca Mountain Site Characterization Project (W) ESF. The ESF complex-including surface and subsurface accommodations--encompasses an area that is approximately six miles wide and nine miles long (approximately 30,000 acres total) (United States Department of Energy [DOE] 1997, p. 9.04). It is located on federally withdrawn lands, near the southwest border of the Nevada Test Site (NTS) in southern Nevada (DOE 1997, p. 9.04). Site characterization activities are conducted within the subsurface ESF to obtain the information necessary to determine whether the Yucca Mountain Site is suitable as a geologic repository for spent nuclear fuel and high-level radioactive waste. Most ESF surface facilities are located within the Conceptual Controlled Area Boundary (CCAB) (DOE 1997, p. 9.04), with the exception of the southeastern most portions of the H-Road and the Water Supply System. Various SBT activities are also conducted throughout the Yucca Mountain region as a part of the overall site-characterization effort. In general, the DIE for SBT Activities (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 1998a) evaluates activities associated with SBT. Potential test-to-test interference and waste isolation impacts associated with SBT activities are also evaluated in CRWMS M&O (1998a).

  15. Characterizing the Response of Commercial and Industrial Facilities to Dynamic Pricing Signals from the Utility

    SciTech Connect (OSTI)

    Mathieu, Johanna L.; Gadgil, Ashok J.; Callaway, Duncan S.; Price, Phillip N.; Kiliccote, Sila

    2010-07-01

    We describe a method to generate statistical models of electricity demand from Commercial and Industrial (C&I) facilities including their response to dynamic pricing signals. Models are built with historical electricity demand data. A facility model is the sum of a baseline demand model and a residual demand model; the latter quantifies deviations from the baseline model due to dynamic pricing signals from the utility. Three regression-based baseline computation methods were developed and analyzed. All methods performed similarly. To understand the diversity of facility responses to dynamic pricing signals, we have characterized the response of 44 C&I facilities participating in a Demand Response (DR) program using dynamic pricing in California (Pacific Gas and Electric's Critical Peak Pricing Program). In most cases, facilities shed load during DR events but there is significant heterogeneity in facility responses. Modeling facility response to dynamic price signals is beneficial to the Independent System Operator for scheduling supply to meet demand, to the utility for improving dynamic pricing programs, and to the customer for minimizing energy costs.

  16. Tuesday Webcast for Industry: Key Energy-Saving Projects for Smaller Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Energy-Saving Projects for Smaller Facilities January 10, 2012 Program Name or Ancillary Text eere.energy.gov Key Energy-Saving Activities for Small and Medium Sized Facilities Thomas Wenning Oak Ridge National Laboratory Tuesday Webcast for Industry January 10, 2012 3 | Advanced Manufacturing Office eere.energy.gov Percent of Total U.S. Manufacturing Energy Small 5% Mid-Size 37% Large 58% 0 50000 100000 150000 200000 250000 U.S. Manufacturing Plants: By Size Small Plants Mid-Size Plants

  17. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C.; Hoyer, Kristin K.; Humenik, Keith E.

    1995-01-01

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  18. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1997-05-13

    A method and system are disclosed for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  19. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, K.C.; Hoyer, K.K.; Humenik, K.E.

    1995-10-17

    A method and system for monitoring an industrial process and a sensor are disclosed. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 17 figs.

  20. System for monitoring an industrial process and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C.; Hoyer, Kristin K.; Humenik, Keith E.

    1997-01-01

    A method and system for monitoring an industrial process and a sensor. The method and system include generating a first and second signal characteristic of an industrial process variable. One of the signals can be an artificial signal generated by an auto regressive moving average technique. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the two pairs of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  1. Tuesday Webcast for Industry: Key Energy-Saving Activities for Smaller Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE Tuesday Webcast for Industry Key Energy-Saving Activities for Smaller Facilities Webcast Questions and Answers: January 10, 2012 Presenters: Tom Wenning, Technical Account Manager, Oak Ridge National Laboratory Richard D. Feustel, Corporate Energy Services Manager, Briggs & Stratton Corporation The U.S. Department of Energy's (DOE's) Office of Advanced Manufacturing Program (AMO) hosts a series of webcasts on the first Tuesday of every month from 2:00 p.m. to

  2. AREA FACTOR DETERMINATIONS FOR AN INDUSTRIAL WORKER EXPOSED TO A CONCRETE SLAB END-STATE

    SciTech Connect (OSTI)

    Jannik, T; Patricia Lee, P; Eduardo Farfan, E; Jesse Roach, J

    2007-02-08

    The U.S. Department of Energy's (DOE) Savannah River Site (SRS) is decommissioning many of its excess facilities through removal of the facility structures leaving only the concrete-slab foundations in place. Site-specific, risk-based derived concentration guideline levels (DCGLs) for radionuclides have been determined for a future industrial worker potentially exposed to residual contamination on these concrete slabs as described in Jannik [1]. These risk-based DCGLs were estimated for an exposure area of 100 m{sup 2}. During deactivation and decommissioning (D&D) operations at SRS, the need for area factors for larger and smaller contaminated areas arose. This paper compares the area factors determined for an industrial worker exposed to a concrete slab end-state for several radionuclides of concern at SRS with (1) the illustrative area factors provided in MARSSIM [2], (2) the area correction factors provided in the U.S. Environmental Protection Agency's (EPA) Soil Screening Guidance [3], and (3) the hot spot criterion for field application provided in the RESRAD User's Manual [4].

  3. RCRA Subtitle C TSD facilities and solvent recovery facilities: Section 313 of the Emergency Planning and Community Right-to-Know Act. Toxic chemical release inventory; Industry guidance

    SciTech Connect (OSTI)

    1999-01-01

    The purpose of this guidance document is to assist facilities in SIC code 4953 that are regulated under the Resource Conservation and Recovery Act (RCRA), Subtitle C and facilities in SIC code 7389 that are primarily engaged in solvent recovery services on a contract or fee basis. This document explains the EPCRA Section 313 and PPA Section 6607 reporting requirements (collectively referred to as the EPCRA Section 313) reporting requirements, and discusses specific release and other waste management activities encountered at many facilities in these industries. The objectives of this manual are to: clarify EPCRA Section 313 requirements for industry; increase the accuracy and completeness of the data being reported by RCRA Subtitle C TSD and solvent recovery facilities; and reduce the level of effort expended by those facilities that prepare an EPCRA Section 313 report.

  4. NGNP Nuclear-Industrial Facility and Design Certification Boundaries White Paper

    SciTech Connect (OSTI)

    Thomas E. Hicks

    2011-07-01

    The Next Generation Nuclear Plant (NGNP) Project was initiated at Idaho National Laboratory by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act and based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is helium cooled and graphite moderated and can operate at reactor outlet temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, in addition to producing electricity, which is the principal application of current LWRs. These varied industrial applications may involve a standard HTGR modular design using different Energy Conversion Systems. Additionally, some of these process heat applications will require process heat delivery systems to lie partially outside the HTGR operator’s facility.

  5. INDUSTRIAL CONTROL SYSTEM CYBER SECURITY: QUESTIONS AND ANSWERS RELEVANT TO NUCLEAR FACILITIES, SAFEGUARDS AND SECURITY

    SciTech Connect (OSTI)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

    2011-07-01

    Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's ability to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.

  6. Determining the research needs of the surface coal mining industry

    SciTech Connect (OSTI)

    Zell, L.M.

    1982-12-01

    This paper reveals avenues open to the coal industry to help gain technology and research information needed to meet the requirements of the Surface Mining Control and Reclamation Act of 1977. It discusses projects of the Department of Energy's (DOE) Office of Coal Mining and the Mining and Reclamation Council of America (MARC) to help meet the environmental needs as well as the coal industry needs.

  7. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Secure and Sustainable Energy Future Mission/Facilities Facilities Tara Camacho-Lopez 2016-04-06T18:06:13+00:00 National Solar Thermal Test Facility (NSTTF) facility_nsttf_slide NSTTF's primary goal is to provide experimental engineering data for the design, construction, and operation of unique components and systems in proposed solar thermal electrical plants, which have three generic system architectures: line-focus (trough and continuous linear Fresnel reflector systems), point-focus central

  8. EIS-0412: Federal Loan Guarantee to Support Construction of the TX Energy LLC, Industrial Gasification Facility near Beaumont, Texas

    Broader source: Energy.gov [DOE]

    The Department of Energy is assessing the potential environmental impacts for its proposed action of issuing a Federal loan guarantee to TX Energy, LLC (TXE). TXE submitted an application to DOE under the Federal loan guarantee program pursuant to the Energy Policy Act of 2005 (EPAct 2005) to support construction of the TXE industrial Gasification Facility near Beaumont, Texas.

  9. Steam plant ash disposal facility and industrial landfill at the Y-12 Plant, Anderson County, Tennessee. Environmental Assessment

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    The US Department of Energy (DOE) is proposing to install a wet ash handling system to dewater bottom ash from the coal-fired steam plant at its Y-12 Plant and to construct a new landfill for disposal of industrial wastes, including the dewatered bottom ash. The DOE operates three major facilities on its Oak Ridge Reservation (ORR). Operation of these facilities results in the production of a variety of nonhazardous, nonradioactive solid wastes (approximately 300 m{sup 3} per day, compacted) including sanitary wastes, common industrial wastes and construction debris. At the current rate of use, this existing landfill will be filled within approximately 18 months, and more space is urgently needed. In an effort to alleviate this problem, DOE and WMD management propose to create additional landfill facilities at a nearby site. The potential environmental impacts associated with this proposed action are the subject of this environmental assessment (EA).

  10. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The the WTGa1 turbine (aka DOE/SNL #1) retuns to power as part of a final series of commissioning tests. Permalink Gallery First Power for SWiFT Turbine Achieved during Recommissioning Facilities, News, Renewable Energy, SWIFT, Wind Energy, Wind News First Power for SWiFT Turbine Achieved during Recommissioning The Department of Energy's Scaled Wind Farm Technology (SWiFT) Facility reached an exciting milestone with the return to power production of the WTGa1 turbine (aka DOE/SNL #1)

  11. A method for the assessment of site-specific economic impacts of commercial and industrial biomass energy facilities. A handbook and computer model

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    A handbook on ``A Method for the Assessment of Site-specific Econoomic Impacts of Industrial and Commercial Biomass Energy Facilities`` has been prepared by Resource Systems Group Inc. under contract to the Southeastern Regional Biomass Energy Program (SERBEP). The handbook includes a user-friendly Lotus 123 spreadsheet which calculates the economic impacts of biomass energy facilities. The analysis uses a hybrid approach, combining direct site-specific data provided by the user, with indirect impact multipliers from the US Forest Service IMPLAN input/output model for each state. Direct economic impacts are determined primarily from site-specific data and indirect impacts are determined from the IMPLAN multipliers. The economic impacts are given in terms of income, employment, and state and federal taxes generated directly by the specific facility and by the indirect economic activity associated with each project. A worksheet is provided which guides the user in identifying and entering the appropriate financial data on the plant to be evaluated. The WLAN multipliers for each state are included in a database within the program. The multipliers are applied automatically after the user has entered the site-specific data and the state in which the facility is located. Output from the analysis includes a summary of direct and indirect income, employment and taxes. Case studies of large and small wood energy facilities and an ethanol plant are provided as examples to demonstrate the method. Although the handbook and program are intended for use by those with no previous experience in economic impact analysis, suggestions are given for the more experienced user who may wish to modify the analysis techniques.

  12. Waste Tank Size Determination for the Hanford River Protection Project Cold Test, Training, and Mockup Facility

    SciTech Connect (OSTI)

    Onishi, Yasuo; Wells, Beric E.; Kuhn, William L.

    2001-03-30

    The objective of the study was to determine the minimum tank size for the Cold Test Facility process testing of Hanford tank waste. This facility would support retrieval of waste in 75-ft-diameter DSTs with mixer pumps and SSTs with fluidic mixers. The cold test model will use full-scale mixer pumps, transfer pumps, and equipment with simulated waste. The study evaluated the acceptability of data for a range of tank diameters and depths and included identifying how the test data would be extrapolated to predict results for a full-size tank.

  13. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  14. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio)

    SciTech Connect (OSTI)

    1995-11-01

    The report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume I is a description of the components and methodologies used in the risk assessment and provides a summary of the major results from the three components of the assessment.

  15. DOE/DHS INDUSTRIAL CONTROL SYSTEM CYBER SECURITY PROGRAMS: A MODEL FOR USE IN NUCLEAR FACILITY SAFEGUARDS AND SECURITY

    SciTech Connect (OSTI)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

    2011-07-01

    Many critical infrastructure sectors have been investigating cyber security issues for several years especially with the help of two primary government programs. The U.S. Department of Energy (DOE) National SCADA Test Bed and the U.S. Department of Homeland Security (DHS) Control Systems Security Program have both implemented activities aimed at securing the industrial control systems that operate the North American electric grid along with several other critical infrastructure sectors (ICS). These programs have spent the last seven years working with industry including asset owners, educational institutions, standards and regulating bodies, and control system vendors. The programs common mission is to provide outreach, identification of cyber vulnerabilities to ICS and mitigation strategies to enhance security postures. The success of these programs indicates that a similar approach can be successfully translated into other sectors including nuclear operations, safeguards, and security. The industry regulating bodies have included cyber security requirements and in some cases, have incorporated sets of standards with penalties for non-compliance such as the North American Electric Reliability Corporation Critical Infrastructure Protection standards. These DOE and DHS programs that address security improvements by both suppliers and end users provide an excellent model for nuclear facility personnel concerned with safeguards and security cyber vulnerabilities and countermeasures. It is not a stretch to imagine complete surreptitious collapse of protection against the removal of nuclear material or even initiation of a criticality event as witnessed at Three Mile Island or Chernobyl in a nuclear ICS inadequately protected against the cyber threat.

  16. Equity Industrial Partners | Open Energy Information

    Open Energy Info (EERE)

    Equity Industrial Partners Jump to: navigation, search Name Equity Industrial Partners Facility Equity Industrial Partners Sector Wind energy Facility Type Community Wind Facility...

  17. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities User facility agreements allow Los Alamos partners and other entities to conduct research at our unique facilities. In 2011, LANL hosted more than 1,200 users at CINT, LANSCE, and NHMFL. Users came from across the DOE complex, from international academia, and from industrial companies from 45 states across the U.S. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, LANL can implement user facility

  18. ORNL necessary and sufficient standards for environment, safety, and health. Final report of the Identification Team for other industrial, radiological, and non-radiological hazard facilities

    SciTech Connect (OSTI)

    1998-07-01

    This Necessary and Sufficient (N and S) set of standards is for Other Industrial, Radiological, and Non-Radiological Hazard Facilities at Oak Ridge National Laboratory (ORNL). These facility classifications are based on a laboratory-wide approach to classify facilities by hazard category. An analysis of the hazards associated with the facilities at ORNL was conducted in 1993. To identify standards appropriate for these Other Industrial, Radiological, and Non-Radiological Hazard Facilities, the activities conducted in these facilities were assessed, and the hazards associated with the activities were identified. A preliminary hazards list was distributed to all ORNL organizations. The hazards identified in prior hazard analyses are contained in the list, and a category of other was provided in each general hazard area. A workshop to assist organizations in properly completing the list was held. Completed hazard screening lists were compiled for each ORNL division, and a master list was compiled for all Other Industrial, Radiological Hazard, and Non-Radiological facilities and activities. The master list was compared against the results of prior hazard analyses by research and development and environment, safety, and health personnel to ensure completeness. This list, which served as a basis for identifying applicable environment, safety, and health standards, appears in Appendix A.

  19. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of

  20. Determination of Thermal Neutron Capture Cross-Sections at Budapest PGAA Facility

    SciTech Connect (OSTI)

    Revay, Zsolt; Belgya, Tamas; Firestone, Richard B.

    2007-10-26

    Prompt gamma activation analysis (PGAA) is a powerful nuclear analytical technique to determine the elemental and isotopic composition of materials. The PGAA facility at Budapest, Hungary is one of the leading laboratories of the world, determining spectroscopic data for chemical analysis to be used in other laboratories. These partial gamma-ray production cross-sections and k{sub 0} values, being proportional to the analytical sensitivities of the chemical elements, can be transformed into thermal neutron capture cross-sections, i.e. the probabilities of the (n,{gamma}) reactions, which are of broader interest in different fields of nuclear physics. Some preliminary results on thermal neutron capture cross-sections are presented.

  1. Facility Floorplan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility floorplan Facility Floorplan

  2. The January 17, 1994 Northridge Earthquake: Effects on selected industrial facilities and lifelines

    SciTech Connect (OSTI)

    Eli, M.W.; Sommer, S.C.; Roche, T.R.; Merz, K.L.

    1995-02-01

    Revision 0 of this report is being published in February 1995 to closely mark the one-year anniversary of the Northridge Earthquake. A September 1994 Draft version of the report was reviewed by DOE and NRC, and many of the review comments are incorporated into Revision 0. While this revision of the report is not entirely complete, it is being made available for comment, review, and evaluation. Since the report was written by several authors, sections of the report have slightly different styles. Several sections of Revision 0 are not complete, but are planned to be completed in Revision 1. The primary unfinished section is Section 3.3 on Electric Power Transmission. Other sections of Revision 0, such as Section 4.5.2 on the Energy Technology Engineering Center and 3.2 on Electric Power Generation, will be enhanced with further detailed information as it becomes available. In addition, further data, including processed response spectra for investigated facilities and cataloging of relay performance, will be added to Revision 1 depending upon investigation support. While Revision 0 of this report is being published by LLNL, Revision 1 is planned to be published by EPRI. The anticipated release date for Revision 1 is December 1995. Unfortunately, the one-year anniversary of the Northridge Earthquake was also marked by the devastating Hyogo-Ken Nanbu (or Hanshin-Awaji) Earthquake in Kobe, Japan. As compared to the Northridge Earthquake, there were many more deaths, collapsed structures, destroyed lifelines, and fires following the Kobe Earthquake. Lessons from the Kobe Earthquake will both reemphasize topics discussed in this report and provide further issues to be addressed when designing and retrofitting structures, systems, and components for seismic strong motion.

  3. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users The facility has been used for more than a decade by a virtual Who's Who of the semiconductor industry to simulate the potential failures posed by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User Information The Neutron and Nuclear Science (WNR) Facility welcomes proposals for beam time experiments from industry users. Proprietary and non-proprietary industrial

  4. Research Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facilities Our state-of-the-art facilities are available to industry entrepreneurs, engineers, scientists, and universities for researching and developing their energy technologies. Our researchers and technicians who operate these labs and facilities are ready to work with you and share their expertise. Alphabetical Listings Laboratories Test and User Facilities Popular Facilities Energy Systems Integration Facility Integrated Biorefinery Research Facility Process Development

  5. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 1. Executive summary

    SciTech Connect (OSTI)

    1997-05-01

    Contents: Introduction and Summary of Results; Facility Background; Facility Emissions; Atmospheric Dispersion and Deposition Modeling of Emissions; Human Health Risk Assessment; Screening Ecological Risk Assessment; Accident Analysis; Additional Analysis in Response to Peer Review Recommendations; References.

  6. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 2. Introduction

    SciTech Connect (OSTI)

    1997-05-01

    Contents: Overview; Facility Background; Risk Assessment History at WTI; Peer Review Comments and Key Assumptions; and References.

  7. Oregon Trail Mushrooms Industrial Low Temperature Geothermal...

    Open Energy Info (EERE)

    Mushrooms Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Trail Mushrooms Industrial Low Temperature Geothermal Facility Facility Oregon...

  8. SOURCE AND PATHWAY DETERMINATION FOR BERYLLIUM FOUND IN BECHTEL NEVADA NORTH LAS VEGAS FACILITIES

    SciTech Connect (OSTI)

    BECHTEL NEVADA

    2004-07-01

    In response to the report ''Investigation of Beryllium Exposure Cases Discovered at the North Las Vegas Facility of the National Nuclear Security Administration'', published by the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) in August 2003, Bechtel Nevada (BN) President and General Manager Dr. F. A. Tarantino appointed the Beryllium Investigation & Assessment Team (BIAT) to identify both the source and pathway for the beryllium found in the North Las Vegas (NLV) B-Complex. From September 8 to December 18, 2003, the BIAT investigated the pathway for beryllium and determined that a number of locations existed at the Nevada Test Site (NTS) which could have contained sufficient quantities of beryllium to result in contamination if transported. Operations performed in the B-1 Building as a result of characterization activities at the Engine Maintenance, Assembly, and Disassembly (EMAD); Reactor Maintenance, Assembly, and Disassembly (RMAD); Test Cells A and C; and the Central Support Facility in Area 25 had the greatest opportunity for transport of beryllium. Investigative monitoring and sampling was performed at these sites with subsequent transport of sample materials, equipment, and personnel from the NTS to the B-1 Building. The timeline established by the BIAT for potential transport of the beryllium contamination into the B-1 Building was from September 1997 through November 2002. Based on results of recently completed swipe sampling, no evidence of transport of beryllium from test areas has been confirmed. Results less than the DOE beryllium action level of 0.2 ???g/100 cm2 were noted for work support facilities located in Area 25. All of the identified sites in Area 25 worked within the B-1 tenant's residency timeline have been remediated. Legacy contaminants have either been disposed of or capped with clean borrow material. As such, no current opportunity exists for release or spread of beryllium contamination. Historical

  9. Conceptual design of a solar cogeneration facility industrial process heat. Final report, September 30, 1980-August 14, 1981

    SciTech Connect (OSTI)

    Joy, P.; Brzeczek, M.; Seilestad, H.; Silverman, C.; Yenetchi, G.

    1981-07-01

    The cogeneration facility systems specification is presented which defines the characteristics, and design and environmental requirements for the facility and the performance, characteristics and economic data for the solar additions as well as certain design data for the existing facility. Climatological data are presented for the site. A copy of the Pacific Gas and Electric Draft Power Sales Agreement is included. Collector operating and safety procedures are given.

  10. Determining perception-based impacts of noxious facilities on wage rates and property values

    SciTech Connect (OSTI)

    Nieves, L.A.; Clark, D.E.

    1992-02-01

    This document, written for the US Department of Energy, discusses current information and the need for future research on estimating the impacts on wages and property values that could result from people's perceptions of the risks associated with noxious facilities. Psychometric studies indicate that the US population is averse to living near noxious facilities, nuclear-related facilities in particular. Contingent valuation and hedonic studies find that the net economic impacts of proximity to noxious facilities are generally negative and often substantial. Most of these studies are limited in scope, and none estimate the impacts derived from public perceptions of such facilities. This study examines the mechanisms by which negative public perceptions result in economic impacts reflected in wages and property values. On the basis of these mechanisms, it develops a predictive model of perception-based impacts and identifies the data and methods needed to implement it. The key to predicting perception-based impacts lies in combining psychometric and hedonic methods. The reliability of psychometric measures as indicators of aversive stimuli that precipitate economic impacts can be empirically tested. To test the robustness of the findings, alternative estimation methods an be employed in the hedonic analysis. Contingent valuation methods can confirm the results.

  11. Determining perception-based impacts of noxious facilities on wage rates and property values

    SciTech Connect (OSTI)

    Nieves, L.A.; Clark, D.E.

    1992-02-01

    This document, written for the US Department of Energy, discusses current information and the need for future research on estimating the impacts on wages and property values that could result from people`s perceptions of the risks associated with noxious facilities. Psychometric studies indicate that the US population is averse to living near noxious facilities, nuclear-related facilities in particular. Contingent valuation and hedonic studies find that the net economic impacts of proximity to noxious facilities are generally negative and often substantial. Most of these studies are limited in scope, and none estimate the impacts derived from public perceptions of such facilities. This study examines the mechanisms by which negative public perceptions result in economic impacts reflected in wages and property values. On the basis of these mechanisms, it develops a predictive model of perception-based impacts and identifies the data and methods needed to implement it. The key to predicting perception-based impacts lies in combining psychometric and hedonic methods. The reliability of psychometric measures as indicators of aversive stimuli that precipitate economic impacts can be empirically tested. To test the robustness of the findings, alternative estimation methods an be employed in the hedonic analysis. Contingent valuation methods can confirm the results.

  12. Wind Manufacturing Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Facilities Wind Manufacturing Facilities Wind Manufacturing Facilities America's wind energy industry supports a growing domestic industrial base. Check out this map to find manufacturing facilities in your state

  13. Interim Action Determination Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flexible Manufacturing Capability for the Mixed Fuel Fabrication Facility (MFFF) The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS), DOE/EIS-0283-S2. DOE is evaluating, among many other things, the environmental impacts of any design and operations changes to the MFFF, which is under construction at the Savannah River Site near Aiken, South Carolina. DOE evaluated the impacts of construction and operation of the

  14. Final Assessment: U.S. Virgin Islands Industrial Development Park and Adjacent Facilities Energy-Efficiency and Micro-Grid Infrastructure

    SciTech Connect (OSTI)

    Petersen, Joseph M.; Boyd, Paul A.; Dahowski, Robert T.; Parker, Graham B.

    2015-12-31

    The purpose of this assessment was to undertake an assessment and analysis of cost-effective options for energy-efficiency improvements and the deployment of a micro-grid to increase the energy resilience at the U.S. Virgin Islands Industrial Development Park (IDP) and adjacent facilities in St. Croix, Virgin Islands. The Economic Development Authority sought assistance from the U.S. Department of Energy to undertake this assessment undertaken by Pacific Northwest National Laboratory. The assessment included 18 buildings plus the perimeter security lighting at the Virgin Islands Bureau of Correctional Facility, four buildings plus exterior lighting at the IDP, and five buildings (one of which is to be constructed) at the Virgin Islands Police Department for a total of 27 buildings with a total of nearly 323,000 square feet.

  15. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 6. Screening ecological risk assessment (SERA). Draft report

    SciTech Connect (OSTI)

    1995-11-01

    This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. The Screening Ecological Risk Assessment (SERA) is an analysis of the potential significance of risks to ecological receptors (e.g., plants, fish, wildlife) from exposure to facility emissions. The SERA was performed using conservative assumptions and approaches to determine if a further, more refined analysis is warranted. Volume VI describes in detail the methods used in the SERA and reports the results of the SERA in terms of site-specific risks to ecological receptors.

  16. Determining the Cause of a Header Failure in a Natural Gas Production Facility

    SciTech Connect (OSTI)

    Matthes, S.A.; Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Holcomb, G.R.

    2007-03-01

    An investigation was made into the premature failure of a gas-header at the Rocky Mountain Oilfield Testing Center (RMOTC) natural gas production facility. A wide variety of possible failure mechanisms were considered: design of the header, deviation from normal pipe alloy composition, physical orientation of the header, gas composition and flow rate, type of corrosion, protectiveness of the interior oxide film, time of wetness, and erosion-corrosion. The failed header was examined using metallographic techniques, scanning electron microscopy, and microanalysis. A comparison of the failure site and an analogous site that had not failed, but exhibited similar metal thinning was also performed. From these studies it was concluded that failure resulted from erosion-corrosion, and that design elements of the header and orientation with respect to gas flow contributed to the mass loss at the failure point.

  17. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 2. Introduction. Draft report

    SciTech Connect (OSTI)

    1995-11-01

    This volume provides a description of the facility, and its location and setting in the three-state area of Ohio, Pennsylvania, and West Virginia; an overview of previous risk assessments conducted by U.S. EPA for this site, including the preliminary assessment of inhalation exposure and the screening-level risk analyses of indirect exposure; and a summary of comments provided by the Peer Review Panel on the Project Plan.

  18. SPI Sonora Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Sonora Biomass Facility Jump to: navigation, search Name SPI Sonora Biomass Facility Facility SPI Sonora Sector Biomass Owner Sierra Pacific Industries Location Sonora, California...

  19. ISSUANCE 2016-05-19: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Final Determination of Miscellaneous Refrigeration Products as Covered Products

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Final Determination of Miscellaneous Refrigeration Products as Covered Products

  20. ISSUANCE 2016-04-11: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Determination of Portable Air Conditioners as a Covered Consumer Product

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Determination of Portable Air Conditioners as a Covered Consumer Product

  1. ISSUANCE 2016-02-26: Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Supplemental Proposed Determination of Miscellaneous Refrigeration Products as Covered Products

    Broader source: Energy.gov [DOE]

    Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment: Supplemental Proposed Determination of Miscellaneous Refrigeration Products as Covered Products

  2. Solar production of industrial process steam. Phase III. Operation and evaluation of the Johnson and Johnson solar facility. Final report, January 1, 1980-March 31, 1981

    SciTech Connect (OSTI)

    Brink, D.F.; Kendall, J.M.; Youngblood, S.B.

    1981-03-01

    A solar facility that generates 177/sup 0/C (350/sup 0/F) process steam has been designed and constructed by Acurex Corporation and has operated for 1 yr supplying steam to the Johnson and Johnson manufacturing plant in Sherman, Texas. The facility consists of 1068 m/sup 2/ (11,520 ft/sup 2/) of parabolic trough concentrating collectors, a 18,900 1 (5000 gal) flash boiler, and an 18.6 kW (25 hp) circulating pump. In the first year of operation the system was available 97 percent of the days, and with sufficient solar radiation available it operated 70 percent of the days during this period. The measured data showed that the collector field operated at an efficiency of 25.4 percent for the year, and that at least 75 percent of the energy reaching the flash boiler was delivered to the plant as steam. A total of 309,510 kg (682,400 lb) of steam was produced by the solar facility for the first year. An analysis of the data showed that the delivered energy was within 90 to 100 percent of the predicted value. The successful completion of the first year of operation has demonstrated the technical feasibility of generating industrial process steam with solar energy.

  3. EIS-0428: Mississippi Gasification, LLC, Industrial Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS EIS-0428: Mississippi Gasification, LLC, Industrial Gasification Facility in Moss Point, MS ...

  4. Economic analysis of solar industrial process heat systems: a methodology to determine annual required revenue and internal rate of return

    SciTech Connect (OSTI)

    Dickinson, W.C.; Brown, K.C.

    1981-08-11

    To permit an economic evaluation of solar industrial process heat systems, a methodology was developed to determine the annual required revenue and the internal rate of return. First, a format is provided to estimate the solar system's installed cost, annual operating and maintenance expenses, and net annual solar energy delivered to the industrial process. Then an expression is presented that gives the annual required revenue and the price of solar energy. The economic attractiveness of the potential solar investment can be determined by comparing the price of solar energy with the price of fossil fuel, both expressed in levelized terms. This requires calculation of the internal rate of return on the solar investment or, in certain cases, the growth rate of return.

  5. Linde FUSRAP Site Remediation: Engineering Challenges and Solutions of Remedial Activities on an Active Industrial Facility - 13506

    SciTech Connect (OSTI)

    Beres, Christopher M.; Fort, E. Joseph; Boyle, James D.

    2013-07-01

    The Linde FUSRAP Site (Linde) is located in Tonawanda, New York at a major research and development facility for Praxair, Inc. (Praxair). Successful remediation activities at Linde combines meeting cleanup objectives of radiological contamination while minimizing impacts to Praxair business operations. The unique use of Praxair's property coupled with an array of active and abandoned utilities poses many engineering and operational challenges; each of which has been overcome during the remedial action at Linde. The U.S. Army Corps of Engineers - Buffalo District (USACE) and CABRERA SERVICES, INC. (CABRERA) have successfully faced engineering challenges such as relocation of an aboveground structure, structural protection of an active water line, and installation of active mechanical, electrical, and communication utilities to perform remediation. As remediation nears completion, continued success of engineering challenges is critical as remaining activities exist in the vicinity of infrastructure essential to business operations; an electrical substation and duct bank providing power throughout the Praxair facility. Emphasis on engineering and operations through final remediation and into site restoration will allow for the safe and successful completion of the project. (authors)

  6. Humboldt Industrial Park Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Industrial Park Wind Farm Jump to: navigation, search Name Humboldt Industrial Park Wind Farm Facility Humboldt Industrial Park Sector Wind energy Facility Type Community Wind...

  7. SALTSTONE DISPOSAL FACILITY: DETERMINATION OF THE PROBABLE MAXIMUM WATER TABLE ELEVATION

    SciTech Connect (OSTI)

    Hiergesell, R

    2005-04-01

    A coverage depicting the configuration of the probable maximum water table elevation in the vicinity of the Saltstone Disposal Facility (SDF) was developed to support the Saltstone program. This coverage is needed to support the construction of saltstone vaults to assure that they remain above the maximum elevation of the water table during the Performance Assessment (PA) period of compliance. A previous investigation to calculate the historical high water table beneath the SDF (Cook, 1983) was built upon to incorporate new data that has since become available to refine that estimate and develop a coverage that could be extended to the perennial streams adjacent to the SDF. This investigation incorporated the method used in the Cook, 1983 report to develop an estimate of the probable maximum water table for a group of wells that either existed at one time at or near the SDF or which currently exist. Estimates of the probable maximum water table at these wells were used to construct 2D contour lines depicting this surface beneath the SDF and extend them to the nearby hydrologic boundaries at the perennial streams adjacent to the SDF. Although certain measures were implemented to assure that the contour lines depict a surface above which the water table will not rise, the exact elevation of this surface cannot be known with complete certainty. It is therefore recommended that the construction of saltstone vaults incorporate a vertical buffer of at least 5-feet between the base of the vaults and the depicted probable maximum water table elevation. This should provide assurance that the water table under the wet extreme climatic condition will never rise to intercept the base of a vault.

  8. Existing Facilities Rebate Program

    Broader source: Energy.gov [DOE]

    The NYSERDA Existing Facilities program merges the former Peak Load Reduction and Enhanced Commercial and Industrial Performance programs. The new program offers a broad array of different...

  9. Siting analyses for existing facilities

    SciTech Connect (OSTI)

    Ford, K.; Mannan, M. [RMT/Jones and Neuse, Inc., Austin, TX (United States)

    1996-08-01

    The term {open_quotes}facility siting{close_quotes} refers to the spacial relationships between process units, process equipment within units, and the location of buildings relative to process equipment. Facility siting is an important consideration for the safe operation of manufacturing facilities. Paragraph (d) of the Process Safety Management (PSM) rule (29 CFR 1910.119) requires employers to document the codes and standards used for designing process equipment. This documentation includes facility siting. The regulation also requires employers to document that the design of the facility complies with recognized and generally accepted good engineering practices. In addition, paragraph (e) of the PSM regulation requires that facility siting be evaluated during Process Hazard Analyses. Facility siting issues may also need to be considered in emergency planning and response which are required under paragraph (n) of the PSM rule. This paper will demonstrate, by utilizing an example, one technique for evaluating whether buildings could be affected by a catastrophic incident and for determining if these buildings should be included in the PSM programs developed at the facility such as Process Hazard Analysis and Mechanical Integrity. In addition, this example will illustrate a methodology for determining if the buildings are designed and located in accordance with good engineering practice and industry standards.

  10. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    SciTech Connect (OSTI)

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  11. Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

  12. Assessment of Replicable Innovative Industrial Cogeneration Applicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Replicable Innovative Industrial Cogeneration Applications, June 2001 Assessment of Replicable Innovative Industrial Cogeneration Applications, June 2001 U.S. industrial facilities ...

  13. Determination of inorganic and organic priority pollutants in biosolids from meat processing industry

    SciTech Connect (OSTI)

    Sena, Rennio F. de Tambosi, Jose L.; Floriani, Silvia L.; Virmond, Elaine; Schroeder, Horst Fr.; Moreira, Regina F.P.M.; Jose, Humberto J.

    2009-09-15

    The biosolids (BS) generated in the wastewater treatment process of a meat processing plant were monitored and the priority pollutant content was characterized. The trace metal and organic pollutant content - polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/PCDF) - were determined quantitatively and compared to guideline limits established by the US EPA and EU. PCBs were not detected in the solid samples, while trace metals, PAHs and PCDD/PCDF were detected in concentrations below the limits established by international standards. Toxic equivalent factors were evaluated for the biosolids, and the results proved that these wastes can be safely deposited on land or used in combustion/incineration plants. Since no previous data were found for meat processing waste, comparisons were made using municipal sewage sludge data reported in the literature. Since, this report monitored part of the priority pollutants established by the US EPA for meat and poultry processing wastewater and sludge, the results verified that low pollution loads are generated by the meat processing plant located in the southern part of Brazil. However, the BS generated in the treatment processes are in accordance with the limits established for waste disposal and even for soil fertilizer.

  14. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Radiation Detection Materials Characterization Laboratory Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas: (1) testing and characterizing radiation detector materials and devices; and (2) determining the relationships between the physical properties of the detector materials and the device response. Systems of interest include scintillators and

  15. Fact Sheet for Industrial Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (TSP): This includes expansion and enhancement of traditional TSP services, including quick-response time and materials work, and BPA funding of scoping assessments, detailed...

  16. Industrial Facility Best Practice Scorecard

    Office of Environmental Management (EM)

    of Energy Induction Lighting: An Old Lighting Technology Made New Again Induction Lighting: An Old Lighting Technology Made New Again July 27, 2009 - 5:00am Addthis John Lippert Induction lighting is one of the best kept secrets in energy-efficient lighting. Simply stated, induction lighting is essentially a fluorescent light without electrodes or filaments, the items that frequently cause other bulbs to burn out quickly. Thus, many induction lighting units have an extremely long life of up

  17. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 3. Characterization of the nature and magnitude of emissions. Draft report

    SciTech Connect (OSTI)

    1995-11-01

    This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume III of the report describes the methods used to estimate both stack and fugitive emission rates from the facility.

  18. Facilities Operations Specialist | Department of Energy

    Office of Environmental Management (EM)

    Announcement Number DOE-BPA-16-11659-DE Job Summary Ross Facilities Operations and Maintenance operates and maintains the office and light industrial facilities, buildings and...

  19. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING & SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    SciTech Connect (OSTI)

    GRIFFIN PW

    2009-08-27

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  20. Recovery Act: Oxy-Combustion Technology Development for Industrial-Scale Boiler Applications. Task 4 - Testing in Alstom's 15 MWth Boiler Simulation Facility

    SciTech Connect (OSTI)

    Levasseur, Armand

    2014-04-30

    Alstom Power Inc. (Alstom), under U.S. DOE/NETL Cooperative Agreement No. DE-NT0005290, is conducting a development program to generate detailed technical information needed for application of oxy-combustion technology. The program is designed to provide the necessary information and understanding for the next step of large-scale commercial demonstration of oxy combustion in tangentially fired boilers and to accelerate the commercialization of this technology. The main project objectives include: Design and develop an innovative oxyfuel system for existing tangentially-fired boiler units that minimizes overall capital investment and operating costs; Evaluate performance of oxyfuel tangentially fired boiler systems in pilot scale tests at Alstom’s 15 MWth tangentially fired Boiler Simulation Facility (BSF); Address technical gaps for the design of oxyfuel commercial utility boilers by focused testing and improvement of engineering and simulation tools; Develop the design, performance and costs for a demonstration scale oxyfuel boiler and auxiliary systems; Develop the design and costs for both industrial and utility commercial scale reference oxyfuel boilers and auxiliary systems that are optimized for overall plant performance and cost; and, Define key design considerations and develop general guidelines for application of results to utility and different industrial applications. The project was initiated in October 2008 and the scope extended in 2010 under an ARRA award. The project is scheduled for completion by April 30, 2014. Central to the project is 15 MWth testing in the BSF, which provided in-depth understanding of oxy-combustion under boiler conditions, detailed data for improvement of design tools, and key information for application to commercial scale oxy-fired boiler design. Eight comprehensive 15 MWth oxy-fired test campaigns were performed with different coals, providing detailed data on combustion, emissions, and thermal behavior over a matrix of

  1. Public perceptions of industrial risks: the context of public attitudes toward radioactive waste

    SciTech Connect (OSTI)

    Earle, T.C.

    1981-06-01

    A survey was made to determine the public risk perception of several industrial hazards. A free response approach was used in order for respondents to generate their own alternatives. The general class of hazard investigated here included all hazardous industrial facilities. The free response survey was used to study public perception of: (a) the closeness of the nearest hazardous industrial facility (as estimated by the respondent); (b) the sort of facility it is; (c) the sorts of risk associated with it; and (d) the persons placed at risk by it. Respondents also identified the risks of, and the persons placed at risk by, both a toxic chemical disposal facility and a nuclear waste disposal facility. Results of this study thus can inform us of the unprompted concerns of the public regarding a wide variety of industrial facilities.

  2. Patterns of energy use in the Brazilian economy: Can the profile of Brazilian exports determine the future energy efficiency of its industry?

    SciTech Connect (OSTI)

    Machado, G.V.; Schaeffer, R.

    1997-07-01

    This study examines the integration of the Brazilian economy in the global economy as a determining factor for the energy efficiency of its industry. Depending upon the profile of a country's exports (i.e., depending upon the share of energy-intensive exports out of total exports), different quantities of energy are required to produce the country's exported goods, which may counterbalance efforts made elsewhere to improve the overall energy efficiency of the country's industry. Different scenarios for the energy embodied in the industrial exports of Brazil are considered for the period 1995--2015. These scenarios are a combination of different shares of energy-intensive goods in the total exports of the country with different assumptions for gains obtained in industrial energy efficiency over time. For all scenarios the same fundamental hypothesis of liberalization of commerce and economic growth are assumed. Results for the year 2015 show that the total energy embodied in industrial exports varies from 1,413 PJ to 2,491 PJ, and the total industrial use of energy varies from 3,858 PJ to 6,153 PJ, depending upon the assumptions made. This is equivalent to an average industrial energy intensity variation ranging from 13.8 MJ to 22.0 MJ per US$-1985. The authors conclude that any policy aimed at improving Brazil's overall industrial energy efficiency should concentrate not only on the reduction of the energy intensity of particular industrial sectors, but also (and, perhaps, more importantly) on rethinking the very strategy for the integration of the country's economy in the global market in the future, with respect to the share of energy-intensive goods out of total exports. The focus is not incidental, for the ongoing structural changes in Brazilian exports alone may come to offset any efficiency improvements achieved by the national industry as a whole.

  3. MSGP Documents & Reports by Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Requirements The following records are available for each facility: Site specific Storm Water Pollution Prevention Plans (SWPPPs) for each industrial activity Reporting of visual...

  4. Industrial Energy Efficiency Assessments

    Broader source: Energy.gov (indexed) [DOE]

    Energy Efficiency Assessments Lynn Price Staff Scientist China Energy Group Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory Industrial Energy Efficiency Assessments - Definition and overview of key components - International experience - Chinese situation and recommendations - US-China collaboration Industrial Energy Efficiency Assessments - Analysis of the use of energy and potential for energy efficiency in an industrial facility *

  5. Chapter 2, Commercial and Industrial Lighting Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: Commercial and Industrial Lighting Evaluation Protocol The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures Dakers Gowans, Left Fork Energy Subcontract Report NREL/SR-7A30-53827 April 2013 Chapter 2 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of the Protocol

  6. Chapter 3, Commercial and Industrial Lighting Controls Evaluation Protocol: The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Commercial and Industrial Lighting Controls Evaluation Protocol Stephen Carlson, DNV KEMA Subcontract Report NREL/SR-7A30-53827 April 2013 The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures 3 - 1 Chapter 3 - Table of Contents 1 Measure Description .............................................................................................................. 2 2 Application Conditions of Protocol

  7. NREL: Transportation Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities NREL conducts vehicles and fuels research in laboratories and test sites on its 327-acre main campus in Golden, Colorado, and at specialized facilities within the region. Industry, government, and university partners benefit from access to NREL equipment and facilities tailored to analyze a broad spectrum of energy-efficient vehicle and fuel technologies and innovations. NREL engineers and researchers work closely with a wide variety of partners to research and develop advanced

  8. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    Facilities Production Facilities Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Sand 2011-4582P. ENERGY U.S. DEPARTMENT OF Gamma Irradiation Facility (GIF) The GIF provides test cells for the irradiation of experiments with high-intensity gamma ray sources. The main features

  9. Program development to identify and characterize potential emergency situations at a petroleum refinery and determination of industrial hygiene emergency responses

    SciTech Connect (OSTI)

    Oransky, J.J.; Delp, S.N.; Deppen, E.A.; Barrett, D.

    1995-12-31

    In the modern world the field of industrial hygiene continues to grow beyond the traditional definition of the profession. This case study documents the problem solving approach used to identify potential exposures and evaluate industrial hygiene preparedness to handle emergencies due to fire or major spill at a complex multi-process petroleum refinery. In the recent past an environmental engineer and industrial hygiene consulting firm was retained by a mature, multi-process petroleum refinery to assist in the program development to identify and characterize potential emergency situations due to a fire, major release, or spill. This study would assist the refinery in compliance with the process safety and emergency response standards and to protect refinery operations and fire fighting personnel by minimizing potential exposures and risk when responding to such a major incident.

  10. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 7. Accident analysis: Selection and assessment of potential release scenarios. Draft report

    SciTech Connect (OSTI)

    1995-11-01

    This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. The Accident Analysis is an evaluation of the likelihood of occurrence and resulting consequences from several general classes of accidents that could potentially occur during operation of the facility. The Accident Analysis also evaluates the effectiveness of existing mitigation measures in reducing off-site impacts. Volume VII describes in detail the methods used to conduct the Accident Analysis and reports the results of evaluations of likelihood and consequence for the selected accident scenarios.

  11. Commercial & Industrial Renewable Energy Grants

    Broader source: Energy.gov [DOE]

    The New Hampshire Public Utilities Commission (PUC) offers grant funding for renewable energy projects installed at commercial, industrial, public, non-profit, municipal or school facilities, or ...

  12. Collaborating with Industry for Innovation

    SciTech Connect (OSTI)

    2004-03-01

    This is a brochure describing Laboratory Coordinating Council's network of labs and facilities to promote partnership between industry and national laboratories.

  13. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 4. Atmospheric dispersion and deposition modeling of emissions. Draft report

    SciTech Connect (OSTI)

    1995-11-01

    The report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume IV describes the air dispersion model used to estimate air concentrations and particle deposition, as well as the results of the modeling exercise.

  14. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 1. Executive summary. Draft report

    SciTech Connect (OSTI)

    1995-11-01

    This report constitutes a comprehensive site-specific risk assessment for the WTI incineration facility located in East Liverpool, OH. Volume I is a description of the components and methodologies used in the risk assessment and provides a summary of the major results from the three components of the assessment.

  15. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incinerator facility (east Liverpool, Ohio). Volume 5. Human health risk assessment (HHRA): Evaluation of potential risks from multipathway exposure to emissions. Draft report

    SciTech Connect (OSTI)

    1995-11-01

    The Human Health Risk Assessment (HHRA) portion of the WTI Risk Assessment involves the integration of information about the facility with site-specific data for the surrounding region and population to characterize the potential human health risks due to emissions from the facility. The estimation of human health risks is comprised of the following general steps: (1) identification of substances of potential concern; (2) estimation of the nature and magnitude of chemical releases from the WTI facility; (3) prediction of the atmospheric transport of the emitted contaminants; (4) determination of the types of adverse effects associated with exposure to the substances of potential concern (referred to as hazard identification), and the relationship between the level of exposure and the severity of any health effect (referred to as dose-response assessment); (5) estimation of the magnitude of exposure (referred to as exposure assessment); and (6) characterization of the health risks associated with exposure (referred to as risk characterization).

  16. WIPP - Public Reading Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Public Reading Facilities/Electronic Reading Facilities The Freedom of Information Act (FOIA) and Electronic FOIA (E-FOIA) require that various specific types of records, as well as various other records, be maintained in public reading facilities. Before you submit a FOIA request, we recommend you contact or visit the appropriate public reading facility to determine if the records you are seeking have already been released. The U.S. Department of Energy (DOE), as well as other related DOE

  17. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  18. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  19. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  20. Industrial Energy Efficiency Assessments

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Cassie Mills Communications Associate in the Advanced

  1. Assessing the Control Systems Capacity for Demand Response in California Industries

    SciTech Connect (OSTI)

    Ghatikar, Girish; McKane, Aimee; Goli, Sasank; Therkelsen, Peter; Olsen, Daniel

    2012-01-18

    California's electricity markets are moving toward dynamic pricing models, such as real-time pricing, within the next few years, which could have a significant impact on an industrial facility's cost of energy use during the times of peak use. Adequate controls and automated systems that provide industrial facility managers real-time energy use and cost information are necessary for successful implementation of a comprehensive electricity strategy; however, little is known about the current control capacity of California industries. To address this gap, Lawrence Berkeley National Laboratory, in close collaboration with California industrial trade associations, conducted a survey to determine the current state of controls technologies in California industries. This,study identifies sectors that have the technical capability to implement Demand Response (DR) and Automated Demand Response (Auto-DR). In an effort to assist policy makers and industry in meeting the challenges of real-time pricing, facility operational and organizational factors were taken into consideration to generate recommendations on which sectors Demand Response efforts should be focused. Analysis of the survey responses showed that while the vast majority of industrial facilities have semi- or fully automated control systems, participation in Demand Response programs is still low due to perceived barriers. The results also showed that the facilities that use continuous processes are good Demand Response candidates. When comparing facilities participating in Demand Response to those not participating, several similarities and differences emerged. Demand Response-participating facilities and non-participating facilities had similar timings of peak energy use, production processes, and participation in energy audits. Though the survey sample was smaller than anticipated, the results seemed to support our preliminary assumptions. Demonstrations of Auto-Demand Response in industrial facilities with

  2. Record of the facility deactivation, decommissioning, and material disposition (D and D) workshop: A new focus for technology development, opportunities for industry/government collaboration

    SciTech Connect (OSTI)

    Bedick, R.C.; Bossart, S.J.; Hart, P.W.

    1995-07-01

    This workshop was held at the Morgantown Energy Technology Center (METC) in Morgantown, West Virginia, on July 11--12, 1995. The workshop sought to establish a foundation for continued dialogue between industry and the DOE to ensure that industry`s experiences, lessons learned, and recommendations are incorporated into D and D program policy, strategy, and plans. The mission of the D and D Focus Area is to develop improved technologies, processes and products, to characterize, deactivate, survey, maintain, decontaminate, dismantle, and dispose of DOE surplus structures, buildings, and contents. The target is a five-to-one return on investment through cost avoidance. The cornerstone of the D and D focus area activities is large-scale demonstration projects that actually decontaminate, decommission, and dispose of a building. The aim is to demonstrate innovative D and D technologies as part of an ongoing DOE D and D project. OTD would pay the incremental cost of demonstrating the innovative technologies. The goal is to have the first demonstration project completed within the next 2 years. The intent is to select projects, or a project, with visible impact so all of the stakeholders know that a building was removed, and demonstrate at a scale that is convincing to the customers in the EM program so they feel comfortable using it in subsequent D and D projects. The plan is to use a D and D integrating contractor who can then use the expertise in this project to use in jobs at other DOE sites.

  3. Huntington Resource Recovery Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Resource Recovery Facility Biomass Facility Jump to: navigation, search Name Huntington Resource Recovery Facility Biomass Facility Facility Huntington Resource Recovery Facility...

  4. Wheelabrator Sherman Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Sherman Energy Facility Biomass Facility Jump to: navigation, search Name Wheelabrator Sherman Energy Facility Biomass Facility Facility Wheelabrator Sherman Energy Facility Sector...

  5. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determinants of Household Use of Selected Energy Star Appliances May 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Determinants of Household Use of Selected Energy Star Appliances i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  6. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    September 15, 2009 [Facility News] Outreach Display Awarded for Communications Excellence Bookmark and Share The ARM display received the Gold Hermes Creative Award in 2009 for exemplifying communications excellence. The ARM display received the Gold Hermes Creative Award in 2009 for exemplifying communications excellence. As the ARM Climate Research Facility prepares to participate in the coming round of winter meetings, now is a good time to share news of the two industry awards its display

  7. Ashton Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ashton Extended Facility Map

  8. Byron Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Byron Extended Facility Map

  9. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 6. Screening ecological risk assessment

    SciTech Connect (OSTI)

    1997-05-01

    The Screening Ecological Risk Assessment (SERA) includes an evaluation of available biotic information from the site vicinity to provide a preliminary description of potential ecological receptors (e.g., rare, threatened and endangered species; migratory birds; and important game species), and important ecological habitats (e.g., wetland areas). A conceptual site model is developed that describe show stressors associated with the WTI facility might affect the ecological components in the surrounding environment through the development and evaluation of specific ecological endpoints. Finally, an estimate of the potential for current and/or future adverse impacts to the biotic component of the environment is provided, based on the integration of potential exposures of ecological receptors to WTI emissions and toxicological threshold values.

  10. User Facilities at Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities at Argonne Argonne National Laboratory designs, builds, and operates national scientific user facilities for the benefit of researchers from industry, academia, and government laboratories. These one-of-a-kind facilities attract great minds from all over the nation to solve society's complex scientific problems. PDF icon User_Facilities

  11. Facility deactivation and demolition

    SciTech Connect (OSTI)

    Cormier, S.L.; Adamowski, S.J.

    1994-12-31

    Today an improperly closed facility can be a liability to its owner, both financially and environmentally. A facility deactivation program must be planned and implemented to decrease liabilities, minimize operating costs, seek to reuse or sell processes or equipment, and ultimately aid in the sale and/or reuse of the facility and property whether or not the building(s) are demolished. These programs should be characterized within the deactivation plan incorporating the following major categories: Utility Usage; Environmental Decontamination; Ongoing Facility Management; Property Management/Real Estate Issues. This paper will outline the many facets of the facility deactivation and demolition programs implemented across the country for clients in the chemical, automotive, transportation, electronic, pharmaceutical, power, natural gas and petroleum industries. Specific emphasis will be placed on sampling and analysis plans, specification preparation, equipment and technologies utilized, ``how clean is clean`` discussions and regulatory guidelines applicable to these issues.

  12. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Detection Materials Characterization Laboratory This facility provides assistance to users from federal laboratories, U.S. industry and academia in the following areas:...

  13. 3 Cleantech Facilities You Should Know About

    Office of Energy Efficiency and Renewable Energy (EERE)

    These National Lab facilities are supporting local economies across the country and driving national industries -- and you should definitely know more about them.

  14. Voluntary Protection Program Onsite Review, Portsmouth Facility...

    Office of Environmental Management (EM)

    Portsmouth Facility Support Services - March 2013 Voluntary Protection Program Onsite Review, Portsmouth Facility Support Services - March 2013 March 2013 Evaluation to determine...

  15. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-01

    This standard, DOE-STD-1063, Facility Representatives, defines the duties, responsibilities and qualifications for Department of Energy (DOE) Facility Representatives, based on facility hazard classification; risks to workers, the public, and the environment; and the operational activity level. This standard provides the guidance necessary to ensure that DOE’s hazardous nuclear and non-nuclear facilities have sufficient staffing of technically qualified facility representatives (FRs) to provide day-to-day oversight of contractor operations.

  16. User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Facilities User Facilities A new research frontier awaits! Our door is open, and we thrive on mutually beneficial partnerships and collaborations that drive innovations and new technologies. Unique world-class user facilities foster rich research opportunities Through its technology transfer efforts, Los Alamos National Laboratory can implement user facility agreements that allow its partners and other entities to conduct research at many of its unique facilities. While our largest user

  17. Maywood Industries of Oregon Space Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Maywood Industries of Oregon Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Maywood Industries of Oregon Space Heating Low Temperature...

  18. Calistoga Private and Commercial Industrial Low Temperature Geothermal...

    Open Energy Info (EERE)

    Private and Commercial Industrial Low Temperature Geothermal Facility Jump to: navigation, search Name Calistoga Private and Commercial Industrial Low Temperature Geothermal...

  19. CX-001078: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8: Categorical Exclusion Determination CX-001078: Categorical Exclusion Determination An Industry/Academe Consortium for Achieving 20 Percent Wind by 2030 Through Cutting-Edge Research and Workforce Training CX(s) Applied: A9, B3.1, B3.6 Date: 03/04/2010 Location(s): Minnesota Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Develop an industry/academe consortium led by the University of Minnesota. Project activities will include curriculum development; research facility

  20. Enforcement Letter, Amer Industrial Technologies- April 13, 2010

    Broader source: Energy.gov [DOE]

    Issued to Amer Industrial Technologies related to Weld Deficiencies at the Salt Waste Processing Facility at the Savannah River Site.

  1. Technical Approach for Determining Key Parameters Needed for Modeling the Performance of Cast Stone for the Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Yabusaki, Steven B.; Serne, R. Jeffrey; Rockhold, Mark L.; Wang, Guohui; Westsik, Joseph H.

    2015-03-30

    Washington River Protection Solutions (WRPS) and its contractors at Pacific Northwest National Laboratory (PNNL) and Savannah River National Laboratory (SRNL) are conducting a development program to develop / refine the cementitious waste form for the wastes treated at the ETF and to provide the data needed to support the IDF PA. This technical approach document is intended to provide guidance to the cementitious waste form development program with respect to the waste form characterization and testing information needed to support the IDF PA. At the time of the preparation of this technical approach document, the IDF PA effort is just getting started and the approach to analyze the performance of the cementitious waste form has not been determined. Therefore, this document looks at a number of different approaches for evaluating the waste form performance and describes the testing needed to provide data for each approach. Though the approach addresses a cementitious secondary aqueous waste form, it is applicable to other waste forms such as Cast Stone for supplemental immobilization of Hanford LAW. The performance of Cast Stone as a physical and chemical barrier to the release of contaminants of concern (COCs) from solidification of Hanford liquid low activity waste (LAW) and secondary wastes processed through the Effluent Treatment Facility (ETF) is of critical importance to the Hanford Integrated Disposal Facility (IDF) total system performance assessment (TSPA). The effectiveness of cementitious waste forms as a barrier to COC release is expected to evolve with time. PA modeling must therefore anticipate and address processes, properties, and conditions that alter the physical and chemical controls on COC transport in the cementitious waste forms over time. Most organizations responsible for disposal facility operation and their regulators support an iterative hierarchical safety/performance assessment approach with a general philosophy that modeling provides

  2. ORISE: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORISE Facilities Unique laboratories and training centers among the assets managed on behalf of the U.S. Department of Energy The Oak Ridge Institute for Science and Education (ORISE) is home to a number of on- and off-site facilities that support the U.S. Department of Energy's (DOE) science education and research mission. From on-site medical laboratories to radiation emergency medicine training facilities, ORISE facilities are helping to address national needs in the following areas:

  3. Science Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Science Facilities The focal point for basic and applied R&D programs with a primary focus on energy but also encompassing medical, biotechnology, high-energy physics, and advanced scientific computing programs. Center for Integrated Nanotechnologies» Dual Axis Radiographic Hydrodynamic Test Facility (DARHT)» Electron Microscopy Lab» Ion Beam Materials Lab» Isotope Production Facility» Los Alamos Neutron Science Center» Lujan Center» Matter-Radiation Interactions in

  4. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  5. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  6. Working with SRNL - Our Facilities- Gamma Irradiation Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for irradiating solid and liquid samples, allowing a wide range of tests to determine the effects of radiation on materials. Typically, the Gamma Irradiation Facility is used to...

  7. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  8. Minimize Compressed Air Leaks; Industrial Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 * August 2004 Industrial Technologies Program Suggested Actions * Fixing leaks once is not enough. Incorporate a leak prevention program into operations at your facility. It ...

  9. EIS-0429: Indiana Gasification, LLC, Industrial Gasification...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EIS-0429: Indiana Gasification, LLC, Industrial Gasification Facility in Rockport, IN and CO2 Pipeline Documents Available for Download EIS-0429: Notice of Intent to Prepare an ...

  10. Biodiesel Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Barbara, California Zip: 93110 Product: Biodiesel producer and facility developer. References: Biodiesel Industries Inc1 This article is a stub. You can help OpenEI by expanding...

  11. Wheelabrator Millbury Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Facility Facility Wheelabrator Millbury Facility Sector Biomass Facility Type Municipal Solid Waste Location Worcester County, Massachusetts Coordinates 42.4096528, -71.8571331...

  12. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Council Meeting 4 - 5 November 2015 Meeting Minutes The autumn 2015 meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on 4 - 5 November 2015 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. The first day of meeting was a joint meeting of the CASL Industry and Science Councils and was held at the Spallation Neutron Source (SNS) facility at ORNL. An independent IC meeting was held the morning of the second

  13. Integrated Biorefinery Research Facility | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Biorefinery Research Facility NREL's Integrated Biorefinery Research Facility (IBRF) enables researchers and industry partners to develop, test, evaluate, and demonstrate processes and technologies for the production of bio-based products and fuels. Interior of industrial, two-story building with high-bay, piping, and large processing equipment. Three workers in hard hats. In addition to the facility itself, NREL's world-renowned expert staff works with IBRF partners at every stage of

  14. Beamlines & Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Group: Beamlines The X-ray Micrscopy and Imaging Group operates several beamlines and facilities. The bending magnet beamline (2-BM) entertaines 2 general user programs in...

  15. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  16. Facility Representatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-06

    REPLACED BY DOE-STD-1063 | SUPERSEDING DOE-STD-1063-2000 (MARCH 2000) The purpose of the DOE Facility Representative Program is to ensure that competent DOE staff personnel are assigned to oversee the day-to-day contractor operations at DOE’s hazardous nuclear and non-nuclear facilities.

  17. NREL: Photovoltaics Research - Outdoor Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Outdoor Test Facility Aerial photo of the Outdoor Test Facility. The Outdoor Test Facility at NREL is used to evaluate prototype, precommercial, and commercial modules. Outdoor Test Facility (OTF) researchers study and evaluate advanced or emerging PV technologies under simulated, accelerated indoor and outdoor, and prevailing outdoor conditions. One of the major roles of researchers at the OTF is to work with industry to develop uniform and consensus standards and codes for testing PV devices.

  18. Energy Department Applauds Nation's First Large-Scale Industrial Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capture and Storage Facility | Department of Energy Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur,

  19. .Mr. C. Yayne Bickerstaff Manager, Corporate Industrial Hygiene

    Office of Legacy Management (LM)

    Mr. C. Yayne Bickerstaff Manager, Corporate Industrial Hygiene Westinghouse Electric Corporation East Pittsburgh Plant Forest Hills Pittsburgh, Pennsylvania 15230 Dear Mr. Bickerstaff: The Department of Energy (DOE), as part of its formerly Utilized Sites Remedial Action Program (FUSRAP). has reviewed information on the Westinghouse facility in Pittsburgh, Pennsylvania, to determine whether it contains residual radioactivity traceable to activities conducted on behalf of the Atomic Energy

  20. Targeting commercial and industrial customers with GIS

    SciTech Connect (OSTI)

    Camp, W.A.

    1994-11-01

    Unlike siting new retail stores, utility companies face unique barriers to expanding their markets. Other than by merger and acquisition, utility companies can only expand into new markets by adding new transmission and/or pipelines to existing facilities. This situation lends itself to the use of corridor target marketing along the leading edge of existing markets to determine the best potential for expansion. This paper will detail how the Tennessee Valley Authority (TVA) utilized TARGETMASTER, a customized geographic information system (GIS), to locate and assess the potential to directly serve electrical power to commercial and industrial customers along a corridor.

  1. System Assessment Standards: Defining the Market for Industrial Energy Assessments

    SciTech Connect (OSTI)

    Sheaffer, Paul; McKane, Aimee; Tutterow, Vestal; Crane, Ryan

    2009-08-01

    Improved efficiency of industrial systems (e.g., compressed air or steam) contributes to a manufacturing facility?s bottom line, improves reliability, and better utilizes assets. Despite these advantages, many industrial facilities continue to have unrealized system optimization potential. A barrier to realizing this potential is the lack of market definition for system energy efficiency assessment services, creating problems for both service providers in establishing market value for their services and for consumers in determining the relative quality of these system assessment services. On August 19, 2008, the American Society of Mechanical Engineers (ASME) issued four new draft Standards for trial use that are designed to raise the bar and define the market for these services. These draft Standards set the requirements for conducting an energy assessment at an industrial facility for four different system types: compressed air, process heating, pumping, and steam. The Standards address topics such as organizing and conducting assessments; analyzing the data collected; and reporting and documentation. This paper addresses both the issues and challenges in developing the Standards and the accompanying Guidance Documents, as well as the result of field testing by industrial facilities, consultants, and utilities during the trial use period that ended in January, 2009. These Standards will be revised and released by ASME for public review, and subsequently submitted for approval as American National Standards for publication in late 2009. Plans for a related activity to establish a professional-level program to certify practitioners in the area of system assessments, opportunities to integrate the ASME Standards with related work on industrial energy efficiency, as well as plans to expand the system assessment Standard portfolio are also discussed.

  2. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, supersedes DOE O 420.1C.

  3. Systems and Industry Analyses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems and industry analyses Go to the NETL Gasification Systems Program's Systems and Industry Analyses Studies Technology & Cost/Performance Studies NETL Gasification Systems Program's Systems and Industry Analyses Studies provide invaluable information, and help to ensure that the technologies being developed are the best ones to develop. System studies are often used to compare competing technologies, determine the best way to integrate a technology with other technologies, and predict

  4. Total Energy Facilities Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Energy Facilities Biomass Facility Jump to: navigation, search Name Total Energy Facilities Biomass Facility Facility Total Energy Facilities Sector Biomass Facility Type...

  5. Gas Utilization Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Gas Utilization Facility Biomass Facility Jump to: navigation, search Name Gas Utilization Facility Biomass Facility Facility Gas Utilization Facility Sector Biomass Facility Type...

  6. CRAD, Assessment Criteria and Guidelines for Determining the Adequacy of Software Used in the Safety Analysis and Design of Defense Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    These guidelines and criteria provide a consistent overall framework for assessment of the processes that are currently in place to ensure that the software being used in the safety analysis and design of the SSCs in defense nuclear facilities is adequate. These reviews will be conducted only on software that is currently in use, not on software that was previously used as part of a safety analysis and design process.

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  9. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  11. Working with SRNL - Our Facilities - Glovebox Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRNL Our Facilities - Glovebox Facilities Govebox Facilities are sealed, protectively-lined compartments with attached gloves, allowing workers to safely handle dangerous materials...

  12. About Industrial Technical Assistance | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Assistance » About Industrial Technical Assistance About Industrial Technical Assistance CHP System at Frito Lay facility in Killingly, Connecticut.<br /> <em>Photo courtesy of Energy Solutions Center.</em> CHP System at Frito Lay facility in Killingly, Connecticut. Photo courtesy of Energy Solutions Center. Industrial Technical Assistance supports the deployment of energy efficient manufacturing technologies and practices, including strategic energy management and

  13. User's guide to DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1984-01-01

    The Department of Energy's research laboratories represent valuable, often unique, resources for university and industrial scientists. It is DOE policy to make these laboratories and facilities available to qualified scientists. The answers to such questions as who are eligible, what and where are the facilities, what is the cost, when can they be used, are given. Data sheets are presented for each facility to provide information such as location, user contact, description of research, etc. A subject index refers to areas of research and equipment available.

  14. Test and User Facilities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Test and User Facilities Our test and user facilities are available to industry and other organizations for researching, developing, and evaluating energy technologies. We can work with you to design the tests and operate the equipment. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Advanced Research Turbines B Battery Thermal and Life Test Facility Biochemical Conversion Pilot Plant C Controllable Grid Interface Test System D Distributed

  15. SLAC Accelerator Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  16. Industrial Users | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities User Facilities Accessing ASCR Facilities Innovative & Novel Computational Impact on Theory & Experiement (INCITE) ASCR Leadership Computing Challenge (ALCC) Industrial Users Computational Science Graduate Fellowship (CSGF) Research & Evaluation Prototypes (REP) Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community

  17. AUTOmatic Message PACKing Facility

    Energy Science and Technology Software Center (OSTI)

    2004-07-01

    AUTOPACK is a library that provides several useful features for programs using the Message Passing Interface (MPI). Features included are: 1. automatic message packing facility 2. management of send and receive requests. 3. management of message buffer memory. 4. determination of the number of anticipated messages from a set of arbitrary sends, and 5. deterministic message delivery for testing purposes.

  18. Number of Large Energy User Manufacturing Facilities by Sector...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number of Large Energy User Manufacturing Facilities by Sector and State (with Industrial Energy Consumption by State and Manufacturing Energy Consumption by Sector) State...

  19. Advances in Ion Accelerators Boost Argonne's ATLAS User Facility...

    Office of Science (SC) Website

    generation, high-current accelerator-based isotope production facilities, and compact high-intensity proton accelerators for medical, industrial and homeland security applications. ...

  20. Pahoa geothermal industrial park. Engineering and economic analysis for direct applications of geothermal energy in an industrial park at Pahoa, Hawaii

    SciTech Connect (OSTI)

    Moreau, J.W.

    1980-12-01

    This engineering and economic study evaluated the potential for developing a geothermal industrial park in the Puna District near Pahoa on the Island of Hawaii. Direct heat industrial applications were analyzed from a marketing, engineering, economic, environmental, and sociological standpoint to determine the most viable industries for the park. An extensive literature search produced 31 existing processes currently using geothermal heat. An additional list was compiled indicating industrial processes that require heat that could be provided by geothermal energy. From this information, 17 possible processes were selected for consideration. Careful scrutiny and analysis of these 17 processes revealed three that justified detailed economic workups. The three processes chosen for detailed analysis were: an ethanol plant using bagasse and wood as feedstock; a cattle feed mill using sugar cane leaf trash as feedstock; and a papaya processing facility providing both fresh and processed fruit. In addition, a research facility to assess and develop other processes was treated as a concept. Consideration was given to the impediments to development, the engineering process requirements and the governmental support for each process. The study describes the geothermal well site chosen, the pipeline to transmit the hydrothermal fluid, and the infrastructure required for the industrial park. A conceptual development plan for the ethanol plant, the feedmill and the papaya processing facility was prepared. The study concluded that a direct heat industrial park in Pahoa, Hawaii, involves considerable risks.

  1. Recent developments: Industry briefs

    SciTech Connect (OSTI)

    1992-06-01

    This article is the `Industry Briefs` portion of Nuexco`s June 1992 `Recent Developments` section. Specific items mentioned in this article include: (1) a new fuel fabrication facility in South Korea, (2) use of mixed-oxide fuel in Belgium, (3) privatization of nuclear plants in Argentina, (4) startup of Ohi-4 in Japan, (5) purchase of uranium properties in Wyoming, and (6) formation of an international utilities forum.

  2. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, K.C.; Wegerich, S.W.; Singer, R.M.; Mott, J.E.

    1998-06-09

    A system and method are disclosed for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy. 96 figs.

  3. Industrial Process Surveillance System

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W; Singer, Ralph M.; Mott, Jack E.

    2001-01-30

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  4. Industrial process surveillance system

    DOE Patents [OSTI]

    Gross, Kenneth C.; Wegerich, Stephan W.; Singer, Ralph M.; Mott, Jack E.

    1998-01-01

    A system and method for monitoring an industrial process and/or industrial data source. The system includes generating time varying data from industrial data sources, processing the data to obtain time correlation of the data, determining the range of data, determining learned states of normal operation and using these states to generate expected values, comparing the expected values to current actual values to identify a current state of the process closest to a learned, normal state; generating a set of modeled data, and processing the modeled data to identify a data pattern and generating an alarm upon detecting a deviation from normalcy.

  5. Engine Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Engine Research Facility Argonne's Engine Research Facility allows scientists and engineers to study in-cylinder combustion and emissions under realistic operating conditions. The facility's engines range in size from automobile- to locomotive-sized, as well as stationary electric power production engines. The facility is used to discover and evaluate new technologies to determine their technical feasibility and commercial viability. In addition, Argonne researchers use the facility's engines to

  6. Facility effluent monitoring plan for the 327 Facility

    SciTech Connect (OSTI)

    1994-11-01

    The 327 Facility [Post-Irradiation Testing Laboratory] provides office and laboratory space for Pacific Northwest Laboratory (PNL) scientific and engineering staff conducting multidisciplinary research in the areas of post-irradiated fuels and structural materials. The facility is designed to accommodate the use of radioactive and hazardous materials in the conduct of these activities. This report summarizes the airborne emissions and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  7. Fermilab | Illinois Accelerator Research Center | IARC Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IARC Facilities Rendering Visit the IARC Multimedia Gallery The IARC Facility Located in the heart of the industrial area of the Fermi lab campus, IARC will consist of 36, 000 square feet of heavy assembly, technical, and office space in the existing heavy industrial building plus an additional 47,000 square feet of technical, office and educational space in the State funded addition. The resulting 83,000 square foot IARC complex will provide space and infrastructure for scientists and engineers

  8. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    discharges to Sandia Canyon, Los Alamos Canyon, Mortandad Canyon, Water Canyon, Canon de Valle, Ten Site Canyon, and Canada del Buey. The facility's discharges, most of...

  9. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  10. Nuclear Facilities

    Broader source: Energy.gov [DOE]

    The nuclear sites list and map shows how DOE nuclear operations are mostly divided between nuclear weapons stockpile maintenance, research and environmental cleanup. The operations are performed within several different facilities supporting nuclear reactor operations, nuclear research, weapons disassembly, maintenance and testing, hot cell operations, nuclear material storage and processing and waste disposal.

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  12. Overview of the Facility Safeguardability Analysis (FSA) Process

    SciTech Connect (OSTI)

    Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Shirley J.; Wigeland, Roald; Zentner, Michael D.

    2011-10-10

    The safeguards system of the International Atomic Energy Agency (IAEA) provides the international community with credible assurance that a State is fulfilling its nonproliferation obligations. The IAEA draws such conclusions from the evaluation of all available information. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of this “State-level” approach. Efficiently used, the Safeguards by Design (SBD) methodologies , , , now being developed can contribute to effective and cost-efficient facility-level safeguards. The Facility Safeguardability Assessment (FSA) introduced here supports SBD in three areas. 1. It describes necessary interactions between the IAEA, the State regulator, and the owner / designer of a new or modified facility to determine where SBD efforts can be productively applied, 2. It presents a screening approach intended to identify potential safeguard issues for; a) design changes to existing facilities; b) new facilities similar to existing facilities with approved safeguards approaches, and c) new designs, 3. It identifies resources (the FSA toolkit), such as good practice guides, design guidance, and safeguardability evaluation methods that can be used by the owner/designer to develop solutions for potential safeguards issues during the interactions with the State regulator and IAEA. FSA presents a structured framework for the application of the SBD tools developed in other efforts. The more a design evolves, the greater the probability that new safeguards issues could be introduced. Likewise, for first-of-a-kind facilities or research facilities that involve previously unused processes or technologies, it is reasonable to expect that a number of possible safeguards issues might exist. Accordingly, FSA is intended to help the designer and its safeguards experts identify early in the design process: • Areas where elements of previous accepted safeguards approach(es) may be applied

  13. Beam Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beam Test Facility Beam Test Facility Print Tuesday, 20 October 2009 09:36 Coming Soon

  14. Metro Methane Recovery Facility Biomass Facility | Open Energy...

    Open Energy Info (EERE)

    Methane Recovery Facility Biomass Facility Jump to: navigation, search Name Metro Methane Recovery Facility Biomass Facility Facility Metro Methane Recovery Facility Sector Biomass...

  15. Assessment of Replicable Innovative Industrial Cogeneration Applications,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    June 2001 | Department of Energy Replicable Innovative Industrial Cogeneration Applications, June 2001 Assessment of Replicable Innovative Industrial Cogeneration Applications, June 2001 U.S. industrial facilities utilize a wide array of thermal process equipment, including hot water heaters, thermal liquid heaters, ovens, furnaces, kilns, dryers, chillers, and boilers. This report provides a market assessment of innovative industrial distributed generation cogeneration systems that are less

  16. Tax-Exempt Bond Financing for Nonprofit Organizations and Industries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tax-Exempt Bond Financing for Nonprofit Organizations and Industries Tax-Exempt Bond Financing for Nonprofit Organizations and Industries State-chartered bond authorities exist in every state. They include healthcare facility authorities, housing finance agencies, higher education facility authorities, and industrial development finance authorities. For those authorities, eligible projects include energy efficiency retrofits for existing facilities owned by eligible

  17. Mobile Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govSitesMobile Facility AMF Information Science Architecture Baseline Instruments AMF1 AMF2 AMF3 MAOS AMF Fact Sheet Images Contacts AMF Deployments McMurdo Station, Antarctica, 2015-2016 Pearl Harbor, Hawaii, to San Francisco, California, 2015 Hyytiälä, Finland, 2014 Manacapuru, Brazil, 2014 Oliktok Point, Alaska, 2013 Los Angeles, California, to Honolulu, Hawaii, 2012 Cape Cod, Massachusetts, 2012 Gan Island, Maldives, 2011 Ganges Valley, India, 2011 Steamboat Springs, Colorado, 2010

  18. Facility Type!

    Office of Legacy Management (LM)

    ITY: --&L~ ----------- srct-r~ -----------~------~------- if yee, date contacted ------------- cl Facility Type! i I 0 Theoretical Studies Cl Sample 84 Analysis ] Production 1 Diepasal/Storage 'YPE OF CONTRACT .--------------- 1 Prime J Subcontract&- 1 Purchase Order rl i '1 ! Other information (i.e., ---------~---~--~-------- :ontrait/Pirchaee Order # , I C -qXlJ- --~-------~~-------~~~~~~ I I ~~~---~~~~~~~T~~~ FONTRACTING PERIODi IWNERSHIP: ,I 1 AECIMED AECMED GOVT GOUT &NTtiAC+OR

  19. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  20. Industry Economists

    U.S. Energy Information Administration (EIA) Indexed Site

    Industry Economists The U.S. Energy Information Administration (EIA) within the Department of Energy has forged a world-class information program that stresses quality, teamwork, and employee growth. In support of our program, we offer a variety of profes- sional positions, including the Industry Economist, whose work is associated with the performance of economic analyses using economic techniques. Responsibilities: Industry Economists perform or participate in one or more of the following

  1. Industry Cluster Development Grant winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Cluster Development Grant winners Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Industry Cluster Development Grant winners Recipients include Picuris Pueblo and Rio Arriba County February 1, 2015 A new community mural on the Hunter Ford facility in Española celebrates the building's planned revitalization and the future location of the Northern New Mexico Food Hub. A new

  2. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR...

  3. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  4. Tacoma Power- Commercial and Industrial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Tacoma Power’s New Construction Program is designed for commercial and business customers including industrial facilities, major remodels, offices, schools, hospitals, retail, non-profits and...

  5. Save (More) Energy Now with Intelligent Industrial Buildings

    Broader source: Energy.gov [DOE]

    This tip sheet outlines a variety of tools to reduce energy use in industrial facilities and improve plant-wide performance.

  6. Duke Energy- Commercial and Industrial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages its business customers to increase the energy efficiency of eligible facilities through the Commercial and Industrial Energy Efficiency Rebate Program. The equipment rebates...

  7. Wind Energy In America: Ventower Industries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 of 3 Finished wind tower sections await load-out at Ventower Industries, state-of-the-art fabrication facility in Monroe, MI. Image: Ventower Industries. 2 of 3 Ventower...

  8. NREL: Research Facilities - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Your name: Your email address: Your message: Send Message Printable Version Research Facilities Home Laboratories Test & User Facilities Laboratories & Facilities by Technology...

  9. Facilities | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities At NREL's state-of-the-art bioenergy research facilities, researchers design ... facility to develop, test, evaluate, and demonstrate bioenergy processes and technologies. ...

  10. Research Facility,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delivering the Data As a general condition for use of the ARM Climate Research Facility, users are required to include their data in the ARM Data Archive. All data acquired must be of sufficient quality to be useful and must be documented such that users will be able to clearly understand the meaning and organization of the data. Final, quality-assured data sets are stored in the Data Archive and are freely accessible to the general scientific community. Upon conclusion of the field campaign,

  11. Waste Characterization, Reduction, and Repackaging Facility ...

    Office of Environmental Management (EM)

    Operations Waste Characterization, Reduction, and Repackaging Facility (WCRRF) Waste Characterization Glovebox Operations This document was used to determine facts and conditions ...

  12. Harrisburg Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleHarrisburgFacilityBiomassFacility&oldid397545" Feedback Contact needs updating Image needs updating...

  13. Brookhaven Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    2006 Database Retrieved from "http:en.openei.orgwindex.php?titleBrookhavenFacilityBiomassFacility&oldid397235" Feedback Contact needs updating Image needs updating...

  14. Support - Facilities - Radiation Effects Facility / Cyclotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    During experiments at the Radiation Effects Facility users are assisted by the experienced ... shops are available to the users of the Radiation Effects Facility for design, ...

  15. Radiation Effects Facility - Facilities - Cyclotron Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Effects Facility Typical DUT(device under test) set-up at the end of the Radiation Effects beamline. The Radiation Effects Facility is available for commercial, ...

  16. Confusion reigns over industrial stormwater regulations

    SciTech Connect (OSTI)

    Bishop, J.

    1993-01-01

    More than five years after Congress mandated controls for industrial and municipal stormwater discharges, many in the regulated community remain unclear about how the rules apply to them. The regulations' progress since the 1987 CWA amendments opened the door for their development often has been shaky and marked by setbacks. According to a federal appeals court decision issued last summer, that struggle is likely to continue. Although the original stormwater rules issued by EPA in November 1990 appeared to focus on heavy manufacturing facilities, as well as municipalities, the appellate court cleared a path that could draw light industrial plants and small construction sites within the regulations' domain. The rules in dispute bring under their umbrella any stormwater discharges associated with industrial activity to surface waters or municipal storm sewer systems. However, the regulations distinguish between facilities engaged in heavy industry and light, or enclosed industrial facilities, based on the probability that stormwater discharges will be contaminated and require regulation.

  17. Kent County Waste to Energy Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    County Waste to Energy Facility Biomass Facility Jump to: navigation, search Name Kent County Waste to Energy Facility Biomass Facility Facility Kent County Waste to Energy...

  18. Stockton Regional Water Control Facility Biomass Facility | Open...

    Open Energy Info (EERE)

    Stockton Regional Water Control Facility Biomass Facility Jump to: navigation, search Name Stockton Regional Water Control Facility Biomass Facility Facility Stockton Regional...

  19. Guidelines for Evaluation of Nuclear Facility Training Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-22

    The Guidelines for Evaluation of Nuclear Facility Training Programs establish objectives and criteria for evaluating nuclear facility training programs. The guidance in this standard provides a framework for the systematic evaluation of training programs at nuclear facilities and is based, in part, on established criteria for Technical Safety Appraisals, Tiger Team Assessments, commercial nuclear industry evaluations, and the DOE Training Accreditation Program.

  20. J-1 APPENDIX J Central Plateau Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J-1 APPENDIX J Central Plateau Facilities Purpose and Description Appendix J, Central Plateau Facilities, is focused on Central Plateau facilities that are anticipated to require a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response action for cleanup. The following information will be contained in Appendix J: Central Plateau facilities determined by the Tri-Parties, in accordance with the Graded Approach process described in Section 8 of the Action Plan, to

  1. A conceptual advanced pyroprocess recycle facility.

    SciTech Connect (OSTI)

    Frigo, A. A.; Wahlquist, D. R.; Willit, J. L.

    2003-01-01

    Our efforts during the past year focused on the development of a detailed process flowsheet with mass balances, the generation of facility and equipment conceptual designs, and the determination of step-by-step operational details for an operational model of the facility. One of the key results has been the reduction in the floor-space-area requirements for the process cell within the facility of more than 50% compared with an earlier informal conceptual facility design generated in 2002.

  2. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 4, 2010 [Facility News] Request for Proposals Now Open Bookmark and Share The ARM Climate Research Facility is now accepting applications for use of the ARM mobile facilities, aerial facility, and fixed sites. Proposals are welcome from all members of the scientific community for conducting field campaigns and scientific research using the ARM Facility. Facility availability is as follows: ARM Mobile Facility 2 (AMF2) available FY2013 ARM Mobile Facility 1 (AMF1) available March 2015

  3. Manufacturing Demonstration Facility

    Energy Savers [EERE]

    of Energy Manufacturing Demonstration Facility DOE Advanced Manufacturing Office Merit Review Craig Blue Director, Manufacturing Demonstration Facility Energy and ...

  4. Risk assessment for the Waste Technologies Industries (WTI) hazardous waste incineration facility (East Liverpool, Ohio). Volume 5. Human health risk assessment; evaluation of potential risks from multipathway exposure to emissions

    SciTech Connect (OSTI)

    1997-05-01

    The report provide estimates of: (1) individual risks based on central tendency exposure; (2) individual risks based on maximum environmental concentrations; (3) risks to highly exposed or susceptible subgroups of the population (e.g., subsistence farmers and school children); (4) risks associated with specific activities that may result in elevated exposures (e.g., subsistence fishermen and deer hunters); and (5) population risk. This approach allows for the estimation of risks to specific segments of the population taking into consideration activity patterns, number of individuals, and actual locations of individuals in these subgroups with respect to the facility. The fate and transport modeling of emissions from the facility to estimate exposures to identified subgroups is described.

  5. Determining initial enrichment, burnup, and cooling time of pressurized-water reactor spent fuel assemblies by analyzing passive gamma spectra measured at the Clab interim-fuel storage facility in Sweden

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Favalli, Andrea; Vo, D.; Grogan, Brandon R.; Jansson, Peter; Liljenfeldt, Henrik; Mozin, Vladimir; Schwalbach, P.; Sjoland, A.; Tobin, Stephen J.; Trellue, Holly; et al

    2016-02-26

    The purpose of the Next Generation Safeguards Initiative (NGSI)–Spent Fuel (SF) project is to strengthen the technical toolkit of safeguards inspectors and/or other interested parties. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins; (3) estimate the plutonium mass [which is also a function of the variables in (1)]; (4) estimate the decay heat; and (5) determine the reactivity of spent fuelmore » assemblies. Since August 2013, a set of measurement campaigns has been conducted at the Central Interim Storage Facility for Spent Nuclear Fuel (Clab), in collaboration with Swedish Nuclear Fuel and Waste Management Company (SKB). One purpose of the measurement campaigns was to acquire passive gamma spectra with high-purity germanium and lanthanum bromide scintillation detectors from Pressurized Water Reactor and Boiling Water Reactor spent fuel assemblies. The absolute 137Cs count rate and the 154Eu/137Cs, 134Cs/137Cs, 106Ru/137Cs, and 144Ce/137Cs isotopic ratios were extracted; these values were used to construct corresponding model functions (which describe each measured quantity’s behavior over various combinations of burnup, cooling time, and initial enrichment) and then were used to determine those same quantities in each measured spent fuel assembly. Furthermore, the results obtained in comparison with the operator declared values, as well as the methodology developed, are discussed in detail in the paper.« less

  6. Industry Perspective

    Broader source: Energy.gov [DOE]

    Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  7. Water treatment facilities (excluding wastewater facilities). (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    The bibliography contains citations concerning the design, construction, costs, and operation of water treatment facilities. Facilities covered include those that provide drinking water, domestic water, and water for industrial use. Types of water treatment covered include reverse osmosis, chlorination, filtration, and ozonization. Waste water treatment facilities are excluded from this bibliography. (Contains 250 citations and includes a subject term index and title list.)

  8. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry @ ALS Industry @ ALS Hewlett Packard Labs Gains Insights with Innovative ALS Research Tools Print Thursday, 05 May 2016 11:21 For the past eight years, Hewlett Packard Labs, the central research organization of Hewlett Packard Enterprise, has been using cutting-edge ALS techniques to advance some of their most promising technological research, including vanadium dioxide phase transitions and atomic movement during memristor operation. Summary Slide Read more... ALS, Molecular Foundry,

  9. Laser Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Landscaping Landscaping Understanding your climate zone can help you determine the best energy-saving landscaping strategies for your home. <a href="/energysaver/articles/landscaping-energy-efficient-homes">Learn more about landscaping for energy-efficient homes</a>. Understanding your climate zone can help you determine the best energy-saving landscaping strategies for your home. Learn more about landscaping for energy-efficient homes. A well-designed landscape provides

  10. Programs | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Early Science Program INCITE Program ALCC Program Director's Discretionary (DD) Program ALCF Data Science Program INCITE 2016 Projects ALCC 2015 Projects ESP Projects View All Projects Publications ALCF Tech Reports Industry Collaborations Featured Science Reactive MD Simulations of Electrochemical Oxide Interfaces at Mesoscale Subramanian Sankaranarayanan Allocation Program: INCITE Allocation Hours: 40 Million Addressing Challenges As a DOE Office of Science User Facility dedicated to open

  11. HTGR Industrial Application Functional and Operational Requirements

    SciTech Connect (OSTI)

    L. E. Demick

    2010-08-01

    This document specifies the functional and performance requirements to be used in the development of the conceptual design of a high temperature gas-cooled reactor (HTGR) based plant supplying energy to a typical industrial facility. These requirements were developed from collaboration with industry and HTGR suppliers over the preceding three years to identify the energy needs of industrial processes for which the HTGR technology is technically and economically viable. The functional and performance requirements specified herein are an effective representation of the industrial sector energy needs and an effective basis for developing a conceptual design of the plant that will serve the broadest range of industrial applications.

  12. Use of risk-analysis methods in the LNG industry

    SciTech Connect (OSTI)

    Pelto, P.J.

    1982-06-01

    This paper examines the use of probabilistic risk analysis methods in the liquefied natural gas (LNG) industry and summarizes some ongoing work being conducted at Pacific Northwest Laboratory (PNL) using risk analysis techniques to assess LNG facility release prevention systems. The basic facilities for LNG processing, transportation, and storage include export terminals, marine vessels, import terminals, peakshaving/satellite facilities, and truck tankers. Risk analysis results can be used to characterize the safety of the current systems, to identify areas for improvement, to determine regulatory compliance, to guide research and development, and to evaluate system changes. Previous risk analysis studies on LNG facilities are reviewed in terms of successes and problems in meeting the above objectives. PNL is performing a study of the effectiveness of LNG release prevention and control systems. The overall objectives of this PNL research project are to develop an adequate understanding of LNG release prevention and control systems and to identify factors which may alter or nullify their usefulness. Analyses of LNG import terminal release prevention systems are summarized. Representative release scenarios are developed for reference import terminal. The analysis of these release scenarios consists of four main parts: (1) predicting the expected number of occurrences for each scenario, (2) determining the reliability and effectiveness of the emergency sensors and shutdown systems, and (3) estimating the size of the potential releases, and (4) evaluating design alternatives.

  13. Presentations for Industry | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentations for Industry Presentations for Industry Learn energy-saving strategies from leading manufacturing companies and energy experts. The presentations are organized below by topic area. In addition, industrial energy managers, utilities, and energy management professionals can find no-cost software tools, training (including online training), and technical publications. For presentations from workshops on R&D and Facilities activities, please review the workshop materials. Energy

  14. Office of Science User facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Office of Science User facilities Office of Science User facilities The Office of Science national scientific user facilities provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. In Fiscal Year 2013 over 30,000 researchers from academia, industry, and government laboratories, spanning all fifty

  15. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  16. Facilities removal working group

    SciTech Connect (OSTI)

    1997-03-01

    This working group`s first objective is to identify major economic, technical, and regulatory constraints on operator practices and decisions relevant to offshore facilities removal. Then, the group will try to make recommendations as to regulatory and policy adjustments, additional research, or process improvements and/or technological advances, that may be needed to improve the efficiency and effectiveness of the removal process. The working group will focus primarily on issues dealing with Gulf of Mexico platform abandonments. In order to make the working group sessions as productive as possible, the Facilities Removal Working Group will focus on three topics that address a majority of the concerns and/or constraints relevant to facilities removal. The three areas are: (1) Explosive Severing and its Impact on Marine Life, (2) Pile and Conductor Severing, and (3) Deep Water Abandonments This paper will outline the current state of practice in the offshore industry, identifying current regulations and specific issues encountered when addressing each of the three main topics above. The intent of the paper is to highlight potential issues for panel discussion, not to provide a detailed review of all data relevant to the topic. Before each panel discussion, key speakers will review data and information to facilitate development and discussion of the main issues of each topic. Please refer to the attached agenda for the workshop format, key speakers, presentation topics, and panel participants. The goal of the panel discussions is to identify key issues for each of the three topics above. The working group will also make recommendations on how to proceed on these key issues.

  17. Facility effluent monitoring plan for the 325 Facility

    SciTech Connect (OSTI)

    1998-12-31

    The Applied Chemistry Laboratory (325 Facility) houses radiochemistry research, radioanalytical service, radiochemical process development, and hazardous and mixed hazardous waste treatment activities. The laboratories and specialized facilities enable work ranging from that with nonradioactive materials to work with picogram to kilogram quantities of fissionable materials and up to megacurie quantities of other radionuclides. The special facilities include two shielded hot-cell areas that provide for process development or analytical chemistry work with highly radioactive materials, and a waste treatment facility for processing hazardous, mixed, low-level, and transuranic wastes generated by Pacific Northwest Laboratory. Radioactive material storage and usage occur throughout the facility and include a large number of isotopes. This material is in several forms, including solid, liquid, particulate, and gas. Some of these materials are also heated during testing which can produce vapors. The research activities have been assigned to the following activity designations: High-Level Hot Cell, Hazardous Waste Treatment Unit, Waste Form Development, Special Testing Projects, Chemical Process Development, Analytical Hot Cell, and Analytical Chemistry. The following summarizes the airborne and liquid effluents and the results of the Facility Effluent Monitoring Plan (FEMP) determination for the facility. The complete monitoring plan includes characterization of effluent streams, monitoring/sampling design criteria, a description of the monitoring systems and sample analysis, and quality assurance requirements.

  18. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Bioscience Computing and Information Science Electromagnetics Facilities Electromagnetic Environments Simulator (EMES) Mode Stirred Chamber Lightning Facility Electrostatic Discharge (ESD) Laboratory Other Facilities and Capabilities Programs & Capabilities Partnership Opportunities EM News & Reports Contact Information Engineering Science Geoscience Materials Science Nanodevices and Microsystems Radiation Effects and High Energy Density Science Research Facilities

  19. Guidelines for Estimating Unmetered Industrial Water Use | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Industrial Water Use Guidelines for Estimating Unmetered Industrial Water Use Document describes a systematic approach to estimate industrial water use in evaporative cooling systems, steam boiler systems, and facility wash applications. It assists Federal agencies in the baseline development by providing a methodology to calculate unmetered sources of industrial water use utilizing engineering estimates. Download the Guidelines for Estimating Unmetered Industrial Water Use. (2.11 MB)

  20. Idaho Waste Vitrification Facilities Project Vitrified Waste Interim Storage Facility

    SciTech Connect (OSTI)

    Bonnema, Bruce Edward

    2001-09-01

    This feasibility study report presents a draft design of the Vitrified Waste Interim Storage Facility (VWISF), which is one of three subprojects of the Idaho Waste Vitrification Facilities (IWVF) project. The primary goal of the IWVF project is to design and construct a treatment process system that will vitrify the sodium-bearing waste (SBW) to a final waste form. The project will consist of three subprojects that include the Waste Collection Tanks Facility, the Waste Vitrification Facility (WVF), and the VWISF. The Waste Collection Tanks Facility will provide for waste collection, feed mixing, and surge storage for SBW and newly generated liquid waste from ongoing operations at the Idaho Nuclear Technology and Engineering Center. The WVF will contain the vitrification process that will mix the waste with glass-forming chemicals or frit and turn the waste into glass. The VWISF will provide a shielded storage facility for the glass until the waste can be disposed at either the Waste Isolation Pilot Plant as mixed transuranic waste or at the future national geological repository as high-level waste glass, pending the outcome of a Waste Incidental to Reprocessing determination, which is currently in progress. A secondary goal is to provide a facility that can be easily modified later to accommodate storage of the vitrified high-level waste calcine. The objective of this study was to determine the feasibility of the VWISF, which would be constructed in compliance with applicable federal, state, and local laws. This project supports the Department of Energy’s Environmental Management missions of safely storing and treating radioactive wastes as well as meeting Federal Facility Compliance commitments made to the State of Idaho.

  1. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and Manufacturing R&D Program. The MERF is enabling the development of manufacturing processes for producing advanced battery materials in sufficient quantity for industrial testing. The research conducted in this program is known as process scale-up. Scale-up R&D involves taking a laboratory-developed material and developing

  2. CMI Unique Facility: Ferromagnetic Materials Characterization Facility |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Critical Materials Institute Ferromagnetic Materials Characterization Facility The Ferromagnetic Materials Characterization Facility is one of more than a dozen unique facilities developed by the Critical Materials Institute, an Energy Innovation Hub of the U.S. Department of Energy. CMI ferromagnetic materials characterization facility at The Ames Laboratory. In the search for substitute materials to replace rare earths in permanent magnets, whenever promising materials are identified,

  3. Industrial Assessment Centers Train Future Energy-Savvy Engineers |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Train Future Energy-Savvy Engineers Industrial Assessment Centers Train Future Energy-Savvy Engineers April 12, 2013 - 11:06am Addthis Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility during an energy audit. | Photo courtesy of University of Missouri IAC. Sandina Ponte, a member of the University of Missouri's Industrial Assessment Center, inspects equipment at a manufacturing facility

  4. Uranium Processing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Uranium Processing Facility

  5. CX-100363 Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-100363 Categorical Exclusion Determination Marine Algae Industrialization Consortium (MAGIC): Combining biofuel and high-value bioproducts to...

  6. CX-100267 Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-100267 Categorical Exclusion Determination Next Generation Logistics Systems for Delivering Optimal Biomass Feedstocks to Biorefining Industries in...

  7. McKay Bay Facility Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Biomass Facility Facility McKay Bay Facility Sector Biomass Facility Type Municipal Solid Waste Location Hillsborough County, Florida Coordinates 27.9903597, -82.3017728...

  8. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated research facilities. As a U.S. Department of Energy national laboratory, Argonne offers access to the facilities listed below through a variety of arrangements. Advanced Powertrain Research Facility Center for Transportation Research Materials Engineering Research Facility Distributed Energy Research Center

  9. National User Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National User Facilities Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Berkeley Lab's User Facilities-Engines of Discovery Berkeley Lab's User Facilities provide state-of-the-art resources for scientists across the nation and around the world. About 10,000 researchers a year use these facilities, representing nearly one third of the total for all Department of Energy

  10. CX-002516: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Industrial Facility Retrofit Showcase - Arch Chemicals, Inc.CX(s) Applied: B5.1Date: 05/27/2010Location(s): Brandenburg, KentuckyOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory