National Library of Energy BETA

Sample records for determination in-situ x-ray

  1. In Situ Ambient Pressure X-ray Photoelectron Spectroscopy Studies...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: In Situ Ambient Pressure X-ray ... Citation Details In-Document Search Title: In Situ Ambient ... Resource Relation: Journal Name: Scientific Reports; Journal ...

  2. Mechanisms Determining the Structure of Gold-Catalyzed GaAs Nanowires Studied by in Situ X-ray Diffraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Takahasi, Masamitu; Kozu, Miwa; Sasaki, Takuo; Hu, Wen

    2015-09-02

    The evolution of polytypism during GaAs nanowire growth was investigated with in situ X-ray diffraction. The growth of nanowires was found to start with the formation of zincblende structure, followed by the growth of wurtzite structure. The growth process was well reproduced by a simulation based on a layer-by-layer nucleation model. The good agreement between the measured and simulated results confirms that nucleation costs higher energy for the stackings changing the crystal structure than for those conserving the preceding structure. The transition in prevalent structure can be accounted for by the change of local growth conditions related to the shapemore » of triple phase line rather than by the change in supersaturation level, which quickly reaches steady state after starting growth.« less

  3. Mechanisms Determining the Structure of Gold-Catalyzed GaAs Nanowires Studied by in Situ X-ray Diffraction

    SciTech Connect (OSTI)

    Takahasi, Masamitu; Kozu, Miwa; Sasaki, Takuo; Hu, Wen

    2015-09-02

    The evolution of polytypism during GaAs nanowire growth was investigated with in situ X-ray diffraction. The growth of nanowires was found to start with the formation of zincblende structure, followed by the growth of wurtzite structure. The growth process was well reproduced by a simulation based on a layer-by-layer nucleation model. The good agreement between the measured and simulated results confirms that nucleation costs higher energy for the stackings changing the crystal structure than for those conserving the preceding structure. The transition in prevalent structure can be accounted for by the change of local growth conditions related to the shape of triple phase line rather than by the change in supersaturation level, which quickly reaches steady state after starting growth.

  4. Phase formation sequences in the silicon-phosphorous system : determined by in-situ synchrotron andj conventional x-ray diffraction measurements and predicted by a theoretical model.

    SciTech Connect (OSTI)

    Carlsson, J. R. A.; Clevenger, L.; Madsen, L. D.; Hultman, L.; Li, X.-H.; Jordan-Sweet, J.; Lavoie, C.; Roy, R. A.; Cabral, C., Jr.; Morales, G.; Ludwig, K. L.; Stephenson, G. B.; Hentzell, H. T. G.; Materials Science Division; Linkoeping Univ.; IBM T. J. Watson Research Center; Boston Univ.

    1997-01-01

    The phase formation sequences of Si-P alloy thin films with P concentrations between 20 and 44 at. % have been studied. The samples were annealed at progressively higher temperatures and the newly formed phases were identified both after each annealing step by ex-situ conventional X-ray diffraction (XRD) and continuously by in-situ synchrotron XRD. It was found that Si was the only phase to form in a sample with 20 at.% P since the evaporation of P at the crystallization temperature prevented phosphides from forming. For a sample with 30at.% P, the Si{sub 12}P{sub 5} phase formed prior to the SiP phase. For samples with 35 and 44at.%P, the formation of SiP preceded the formation of the Si{sub 12}P{sub 5} phase. The experimentally determined phase formation sequences were successfully predicted by a proposed model. According to the model, the first and second crystalline phases to form are those with the lowest and next-lowest crystallization temperatures of the competing compounds predicted by the Gibbs free-energy diagram.

  5. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Wednesday, 25 February 2015 00:00 Plastic solar cells...

  6. In meso in situ serial X-ray crystallography of soluble and membrane...

    Office of Scientific and Technical Information (OSTI)

    In meso in situ serial X-ray crystallography of soluble and membrane proteins Citation Details In-Document Search Title: In meso in situ serial X-ray crystallography of soluble and ...

  7. Gas cell for in situ soft X-ray transmission-absorption spectroscopy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cell for in situ soft X-ray transmission-absorption spectroscopy of materials Previous ... Abstract: A simple gas cell design, constructed primarily from commercially available ...

  8. Miniaturized multipurpose cell for in situ investigation of sputtered thin films with x-ray techniques

    SciTech Connect (OSTI)

    Luetzenkirchen-Hecht, D.; Bruder, K.; Haake, U.; Keil, P.; Markert, C.; Ringpfeil, C.; Frahm, R.

    2005-07-15

    The design of a miniaturized sputter deposition chamber for the in situ study of thin film growth processes with x rays is reported. X-ray diffraction experiments, grazing incidence x-ray reflectometry, as well as x-ray fluorescence analysis are possible. Due to its compact design and low weight, the chamber can be used in conjunction with conventional x-ray reflectometers and laboratory x-ray diffractometers as well, i.e., very detailed in situ studies of reactive and nonreactive sputtering processes and the resulting film properties are possible. The construction of the chamber is described in detail and first results obtained in situ with different techniques are presented, indicating that experiments that were previously restricted to synchrotron radiation facilities are now possible even with laboratory equipment.

  9. In situ x-ray photoelectron spectroscopy for electrochemical reactions in ordinary solvents

    SciTech Connect (OSTI)

    Masuda, Takuya; PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho, Kawaguchi, Saitama 333-0012 ; Yoshikawa, Hideki; Kobata, Masaaki; Kobayashi, Keisuke; Noguchi, Hidenori; PRESTO, Japan Science and Technology Agency , 4-1-8 Honcho, Kawaguchi, Saitama 333-0012; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810; International Center for Materials Nanoarchitectonics , National Institute for Materials Science , Tsukuba, Ibaraki 305-0044 ; Kawasaki, Tadahiro; Uosaki, Kohei; Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, Hokkaido 060-0810; International Center for Materials Nanoarchitectonics , National Institute for Materials Science , Tsukuba, Ibaraki 305-0044

    2013-09-09

    In situ electrochemical X-ray photoelectron spectroscopy (XPS) apparatus, which allows XPS at solid/liquid interfaces under potential control, was constructed utilizing a microcell with an ultra-thin Si membrane, which separates vacuum and a solution. Hard X-rays from a synchrotron source penetrate into the Si membrane surface exposed to the solution. Electrons emitted at the Si/solution interface can pass through the membrane and be analyzed by an analyzer placed in vacuum. Its operation was demonstrated for potential-induced Si oxide growth in water. Effect of potential and time on the thickness of Si and Si oxide layers was quantitatively determined at sub-nanometer resolution.

  10. IN SITU SURFACE X-RAY SCATTERING STUDIES OF ELECTROSORPTION

    SciTech Connect (OSTI)

    WANG,J.X.; ADZIC,R.R.; OCKO,B.M.

    1998-07-01

    A short review of the application of surface x-ray scattering techniques to the electrode/electrolyte interfaces is presented. Recent results on metal, halide, and metal-halide adlayers with three specific systems: Bi on Au(100) and Au(110); Br on Au(100) and Ag(100); and the coadsorption of Tl with Br or I on Au(111), are given as an illustration. Factors affecting ordering of pure metal and halide adlayers and the metal-halide surface compounds are discussed in some detail.

  11. Electrochemical cell for in-situ x-ray characterization

    SciTech Connect (OSTI)

    Doughty, D.H.; Ingersoll, D.; Rodriguez, M.A.

    1998-08-04

    An electrochemical cell suitable for in-situ XRD analysis is presented. Qualitative information such as phase formation and phase stability can be easily monitored using the in-situ cell design. Quantitative information such as lattice parameters and kinetic behavior is also straightforward. Analysis of the LiMn&sub2;O&sub4; spinel using this cell design shows that the lattice undergoes two major structural shrinkages at approx. 4.0 V and approx. 4.07 V during charging. These shrinkages correlate well with the two electrochemical waves observed and indicate the likelihood of two separate redox processes which charging and discharging.

  12. Kinetics of Methane Hydrate Decomposition Studied via in Situ Low Temperature X-ray Powder Diffraction

    SciTech Connect (OSTI)

    Everett, Susan M; Rawn, Claudia J; Keffer, David J.; Mull, Derek L; Payzant, E Andrew; Phelps, Tommy Joe

    2013-01-01

    Gas hydrates are known to have a slowed decomposition rate at ambient pressure and temperatures below the melting point of ice termed self-preservation or anomalous preservation. As hydrate exothermically decomposes, gas is released and water of the clathrate cages transforms into ice. Two regions of slowed decomposition for methane hydrate, 180 200 K and 230 260 K, were observed, and the kinetics were studied by in situ low temperature x-ray powder diffraction. The kinetic constants for ice formation from methane hydrate were determined by the Avrami model within each region and activation energies, Ea, were determined by the Arrhenius plot. Ea determined from the data for 180 200 K was 42 kJ/mol and for 230 260 K was 22 kJ/mol. The higher Ea in the colder temperature range was attributed to a difference in the microstructure of ice between the two regions.

  13. In-situ X-ray diffraction system using sources and detectors at fixed angular positions

    DOE Patents [OSTI]

    Gibson, David M.; Gibson, Walter M.; Huang, Huapeng

    2007-06-26

    An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.

  14. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Wednesday, 25 February 2015 00:00 Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a source of lightweight, inexpensive renewable energy. However, much of the power-conversion efficiency of such cells gets lost in the translation from small-scale lab studies to large-scale manufacturing processes. To help gain

  15. In situ laser heating and radial synchrotron x-ray diffraction in a diamond anvil cell

    SciTech Connect (OSTI)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk, Hans-Rudolf

    2007-06-15

    We report a first combination of diamond anvil cell radial x-ray diffraction with in situ laser heating. The laser-heating setup of ALS beamline 12.2.2 was modified to allow one-sided heating of a sample in a diamond anvil cell with an 80 W yttrium lithium fluoride laser while probing the sample with radial x-ray diffraction. The diamond anvil cell is placed with its compressional axis vertical, and perpendicular to the beam. The laser beam is focused onto the sample from the top while the sample is probed with hard x-rays through an x-ray transparent boron-epoxy gasket. The temperature response of preferred orientation of (Fe,Mg)O is probed as a test experiment. Recrystallization was observed above 1500 K, accompanied by a decrease in stress.

  16. Note: Sample chamber for in situ x-ray absorption spectroscopy studies of battery materials

    SciTech Connect (OSTI)

    Pelliccione, CJ; Timofeeva, EV; Katsoudas, JP; Segre, CU

    2014-12-01

    In situ x-ray absorption spectroscopy (XAS) provides element-specific characterization of both crystalline and amorphous phases and enables direct correlations between electrochemical performance and structural characteristics of cathode and anode materials. In situ XAS measurements are very demanding to the design of the experimental setup. We have developed a sample chamber that provides electrical connectivity and inert atmosphere for operating electrochemical cells and also accounts for x-ray interactions with the chamber and cell materials. The design of the sample chamber for in situ measurements is presented along with example XAS spectra from anode materials in operating pouch cells at the Zn and Sn K-edges measured in fluorescence and transmission modes, respectively. (C) 2014 AIP Publishing LLC.

  17. In Situ X-Ray Probing Reveals Fingerprints of Surface Platinum Oxide

    SciTech Connect (OSTI)

    Friebel, Daniel

    2011-08-24

    In situ x-ray absorption spectroscopy (XAS) at the Pt L{sub 3} edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard x-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF8 code and complementary extended x-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

  18. In situ laser heating and radial synchrotron X-ray diffraction ina diamond anvil cell

    SciTech Connect (OSTI)

    Kunz, Martin; Caldwell, Wendel A.; Miyagi, Lowell; Wenk,Hans-Rudolf

    2007-06-29

    We report a first combination of diamond anvil cell radialx-ray diffraction with in situ laser heating. The laser-heating setup ofALS beamline 12.2.2 was modified to allow one-sided heating of a samplein a diamond anvil cell with an 80 W yttrium lithium fluoride laser whileprobing the sample with radial x-ray diffraction. The diamond anvil cellis placed with its compressional axis vertical, and perpendicular to thebeam. The laser beam is focused onto the sample from the top while thesample is probed with hard x-rays through an x-ray transparentboron-epoxy gasket. The temperature response of preferred orientation of(Fe,Mg)O is probed as a test experiment. Recrystallization was observedabove 1500 K, accompanied by a decrease in stress.

  19. Cyclic olefin homopolymer-based microfluidics for protein crystallization and in situ X-ray diffraction

    SciTech Connect (OSTI)

    Emamzadah, Soheila [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Petty, Tom J. [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Biomedical Graduate Studies Genomics and Computational Biology Group, University of Pennsylvania, Philadelphia, PA 19104 (United States); De Almeida, Victor [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland); Nishimura, Taisuke [Department of Plant Biology, University of Geneva, CH-1205 Geneva (Switzerland); Joly, Jacques; Ferrer, Jean-Luc [Institut de Biologie Structurale J.-P. Ebel, CEA-CNRS-University J. Fourier, 38027 Grenoble CEDEX 1 (France); Halazonetis, Thanos D., E-mail: thanos.halazonetis@unige.ch [Department of Molecular Biology, University of Geneva, CH-1205 Geneva (Switzerland); Department of Biochemistry, University of Geneva, CH-1205 Geneva (Switzerland)

    2009-09-01

    A cyclic olefin homopolymer-based microfluidics system has been established for protein crystallization and in situ X-ray diffraction. Microfluidics is a promising technology for the rapid identification of protein crystallization conditions. However, most of the existing systems utilize silicone elastomers as the chip material which, despite its many benefits, is highly permeable to water vapour. This limits the time available for protein crystallization to less than a week. Here, the use of a cyclic olefin homopolymer-based microfluidics system for protein crystallization and in situ X-ray diffraction is described. Liquid handling in this system is performed in 2 mm thin transparent cards which contain 500 chambers, each with a volume of 320 nl. Microbatch, vapour-diffusion and free-interface diffusion protocols for protein crystallization were implemented and crystals were obtained of a number of proteins, including chicken lysozyme, bovine trypsin, a human p53 protein containing both the DNA-binding and oligomerization domains bound to DNA and a functionally important domain of Arabidopsis Morpheus molecule 1 (MOM1). The latter two polypeptides have not been crystallized previously. For X-ray diffraction analysis, either the cards were opened to allow mounting of the crystals on loops or the crystals were exposed to X-rays in situ. For lysozyme, an entire X-ray diffraction data set at 1.5 resolution was collected without removing the crystal from the card. Thus, cyclic olefin homopolymer-based microfluidics systems have the potential to further automate protein crystallization and structural genomics efforts.

  20. Nucleation and Growth of Electrodeposited ZnO Visualized by in-Situ X-ray

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microscopy | Stanford Synchrotron Radiation Lightsource Nucleation and Growth of Electrodeposited ZnO Visualized by in-Situ X-ray Microscopy Thursday, June 30, 2016 Electrodeposition (ED) of ZnO has been widely used to deposit transparent conducting films for optoelectronic applications. The film quality, and consequently the performance of the film, is highly dependent on both the nucleation and growth of ZnO. Current studies employ ex-situ experiments where the film is deposited, dried,

  1. In situ Nanotomography and Operando Transmission X-ray Microscopy of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Micron-sized Ge Particles in Battery Anodes | Stanford Synchrotron Radiation Lightsource In situ Nanotomography and Operando Transmission X-ray Microscopy of Micron-sized Ge Particles in Battery Anodes Friday, August 29, 2014 Ge fig1 Figure 1. Schematic of the irreversible deformation of the carbon/polymer binder matrix (blue) due to the large Ge (red/orange) volume changes during the first cycle. The deformation results in smaller particles becoming physically disconnected from the

  2. In-situ X-ray Photoelectron Spectroscopy of a Catalyst for Artificial

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photosynthesis | Stanford Synchrotron Radiation Lightsource In-situ X-ray Photoelectron Spectroscopy of a Catalyst for Artificial Photosynthesis Monday, June 30, 2014 Plants and other organisms use a process called photosynthesis to produce carbohydrates and oxygen from water and carbon dioxide using sunlight. Artificial photosynthesis replicates this process to produce energy in the form of usable fuels for human needs. Researches have been developing devices for artificial photosynthesis,

  3. Strains in Thermally Growing Alumina Films Measured in-situ usingSynchrotron X-rays

    SciTech Connect (OSTI)

    Hou, P.Y.; Paulikas, A.P.; Veal, B.W.

    2006-01-02

    Strains in thermally grown oxides have been measured in-situ, as the oxides develop and evolve. Extensive data have been acquired from oxides grown in air at elevated temperatures on different model alloys that form Al{sub 2}O{sub 3}. Using synchrotron x-rays at the Advanced Photon Source (Beamline 12BM, Argonne National Laboratory), Debye-Scherrer diffraction patterns from the oxidizing specimen were recorded every 5 minutes during oxidation and subsequent cooling. The diffraction patterns were analyzed to determine strains in the oxides, as well as phase changes and the degree of texture. To study a specimen's response to stress perturbation, the oxidizing temperature was quickly cooled from 1100 to 950 C to impose a compressive thermal stress in the scale. This paper describes this new experimental approach and gives examples from oxidized {beta}-NiAl, Fe-20Cr-10Al, Fe-28Al-5Cr and H{sub 2}-annealed Fe-28Al-5Cr (all at. %) alloys to illustrate some current understanding of the development and relaxation of growth stresses in Al{sub 2}O{sub 3}.

  4. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

    1999-06-15

    An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

  5. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, Luiz B.; Matthews, Dennis L.; Fitch, Joseph P.; Everett, Matthew J.; Colston, Billy W.; Stone, Gary F.

    1999-01-01

    An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

  6. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a source of lightweight, inexpensive renewable energy. However, much of the power-conversion efficiency of such cells gets lost in the translation from small-scale lab studies to large-scale manufacturing processes. To help gain an understanding of why that happens, researchers have developed at the ALS a miniature

  7. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a source of lightweight, inexpensive renewable energy. However, much of the power-conversion efficiency of such cells gets lost in the translation from small-scale lab studies to large-scale manufacturing processes. To help gain an understanding of why that happens, researchers have developed at the ALS a miniature

  8. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a source of lightweight, inexpensive renewable energy. However, much of the power-conversion efficiency of such cells gets lost in the translation from small-scale lab studies to large-scale manufacturing processes. To help gain an understanding of why that happens, researchers have developed at the ALS a miniature

  9. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a source of lightweight, inexpensive renewable energy. However, much of the power-conversion efficiency of such cells gets lost in the translation from small-scale lab studies to large-scale manufacturing processes. To help gain an understanding of why that happens, researchers have developed at the ALS a miniature

  10. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a source of lightweight, inexpensive renewable energy. However, much of the power-conversion efficiency of such cells gets lost in the translation from small-scale lab studies to large-scale manufacturing processes. To help gain an understanding of why that happens, researchers have developed at the ALS a miniature

  11. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a source of lightweight, inexpensive renewable energy. However, much of the power-conversion efficiency of such cells gets lost in the translation from small-scale lab studies to large-scale manufacturing processes. To help gain an understanding of why that happens, researchers have developed at the ALS a miniature

  12. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Plastic solar cells that can be printed on flexible sheets with an ink-like solution show a lot of potential as a source of lightweight, inexpensive renewable energy. However, much of the power-conversion efficiency of such cells gets lost in the translation from small-scale lab studies to large-scale manufacturing processes. To help gain an understanding of why that happens, researchers have developed at the ALS a miniature

  13. Simulations of in situ x-ray diffraction from uniaxially compressed highly textured polycrystalline targets

    SciTech Connect (OSTI)

    McGonegle, David Wark, Justin S.; Higginbotham, Andrew; Milathianaki, Despina; Remington, Bruce A.

    2015-08-14

    A growing number of shock compression experiments, especially those involving laser compression, are taking advantage of in situ x-ray diffraction as a tool to interrogate structure and microstructure evolution. Although these experiments are becoming increasingly sophisticated, there has been little work on exploiting the textured nature of polycrystalline targets to gain information on sample response. Here, we describe how to generate simulated x-ray diffraction patterns from materials with an arbitrary texture function subject to a general deformation gradient. We will present simulations of Debye-Scherrer x-ray diffraction from highly textured polycrystalline targets that have been subjected to uniaxial compression, as may occur under planar shock conditions. In particular, we study samples with a fibre texture, and find that the azimuthal dependence of the diffraction patterns contains information that, in principle, affords discrimination between a number of similar shock-deformation mechanisms. For certain cases, we compare our method with results obtained by taking the Fourier transform of the atomic positions calculated by classical molecular dynamics simulations. Illustrative results are presented for the shock-induced α–ϵ phase transition in iron, the α–ω transition in titanium and deformation due to twinning in tantalum that is initially preferentially textured along [001] and [011]. The simulations are relevant to experiments that can now be performed using 4th generation light sources, where single-shot x-ray diffraction patterns from crystals compressed via laser-ablation can be obtained on timescales shorter than a phonon period.

  14. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    SciTech Connect (OSTI)

    Oswald, Benjamin B.; Pagan, Darren C.; Miller, Matthew P.; Schuren, Jay C.

    2013-03-15

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 Degree-Sign C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models.

  15. Dynamic in-situ X-ray Diffraction of Catalyzed Alanates

    SciTech Connect (OSTI)

    Gross, K.J.; Sandrock, G.; Thomas, G.J.

    2000-11-01

    The discovery that hydrogen can be reversible absorbed and desorbed from NaAlH{sub 4} by the addition of catalysts has created an entirely new prospect for lightweight hydrogen storage. NaAlH{sub 4} releases hydrogen through the following set of decomposition reactions: NaAlH{sub 4} {r_arrow} 1/3({alpha}-Na{sub 3}AlH{sub 6}) + 2/3Al + H{sub 2} {r_arrow} NaH + Al + 3/2H{sub 2}. These decomposition reactions as well as the reverse recombination reactions were directly observed using time-resolved in-situ x-ray powder diffraction. These measurements were performed under conditions similar to those found in PEM fuel cell operations (hydrogen absorption: 50--70 C, 10--15 bar Hz, hydrogen resorption: 80--110 C, 5--100 mbar H{sub 2}). Catalyst doping was found to dramatically improve kinetics under these conditions. In this study, the alanate was doped with a catalyst by dry ball-milling NaAlH{sub 4} with 2 mol.% solid TiCl{sub 3}. X-ray diffraction clearly showed that TiCl{sub 3} reacts with NaAlH{sub 4} to form NaCl during the doping process. Partial desorption of NaAlH{sub 4} was even observed to occur during the catalyst doping process.

  16. In Situ Diffuse Reflectance IR Spectroscopy and X-ray Absorption Spectroscopy for Fast Catalytic Processes

    SciTech Connect (OSTI)

    N Marinkovic; Q Wang; A Frenkel

    2011-12-31

    A new instrument for synchronous in situ investigations of catalytic materials by IR and X-ray absorption spectroscopies was designed and built at the X18A beamline of the National Synchrotron Light Source of Brookhaven National Laboratory. It provides analytical tools for solving structural, electronic and kinetic problems in catalysis science by two complementary methods. Among the features attractive for catalysis research are the broad range of catalytically active elements that can be investigated (starting with Ni and beyond), the wide range of reaction conditions (temperatures up to 873 K, various reactive gases) and time scales (starting from tens of seconds). The results of several representative experiments that illustrate the attractive capabilities of the new set-up are discussed.

  17. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that can operate in an x-ray beamline. With this capability, researchers can, for the first time, apply grazing-incidence x-ray diffraction (GIXD) and grazing-incidence...

  18. Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis: Advantages and Limitations

    SciTech Connect (OSTI)

    Frenkel, A.I.; Hanson, J.; Wang, Q.; Marinkovic, N.; Chen, J.G.; Barrio, L.; Si, R.; Lopez Camara, A.; Estrella, A.M.; Rodriguez, J.A.

    2011-08-05

    Recent advances in catalysis instrumentations include synchrotron-based facilities where time-resolved X-ray scattering and absorption techniques are combined in the same in situ or operando experiment to study catalysts at work. To evaluate the advances and limitations of this method, we performed a series of experiments at the new XAFS/XRD instrument in the National Synchrotron Light Source. Nearly simultaneous X-ray diffraction (XRD) and X-ray absorption fine-structure (XAFS) measurements of structure and kinetics of several catalysts under reducing or oxidizing conditions have been performed and carefully analyzed. For CuFe{sub 2}O{sub 4} under reducing conditions, the combined use of the two techniques allowed us to obtain accurate data on kinetics of nucleation and growth of metallic Cu. For the inverse catalyst CuO/CeO{sub 2} that underwent isothermal reduction (with CO) and oxidation (with O{sub 2}), the XAFS data measured in the same experiment with XRD revealed strongly disordered Cu species that went undetected by diffraction. These and other examples emphasize the unique sensitivity of these two complementary methods to follow catalytic processes in the broad ranges of length and time scales.

  19. Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis:Advantages and Limitations

    SciTech Connect (OSTI)

    A Frenkel; Q Wang; N Marinkovic; J Chen; L Barrio; R Si; A Lopez Camara; A Estella; J Rodriquez; J Hanson

    2011-12-31

    Recent advances in catalysis instrumentations include synchrotron-based facilities where time-resolved X-ray scattering and absorption techniques are combined in the same in situ or operando experiment to study catalysts at work. To evaluate the advances and limitations of this method, we performed a series of experiments at the new XAFS/XRD instrument in the National Synchrotron Light Source. Nearly simultaneous X-ray diffraction (XRD) and X-ray absorption fine-structure (XAFS) measurements of structure and kinetics of several catalysts under reducing or oxidizing conditions have been performed and carefully analyzed. For CuFe{sub 2}O{sub 4} under reducing conditions, the combined use of the two techniques allowed us to obtain accurate data on kinetics of nucleation and growth of metallic Cu. For the inverse catalyst CuO/CeO{sub 2} that underwent isothermal reduction (with CO) and oxidation (with O{sub 2}), the XAFS data measured in the same experiment with XRD revealed strongly disordered Cu species that went undetected by diffraction. These and other examples emphasize the unique sensitivity of these two complementary methods to follow catalytic processes in the broad ranges of length and time scales.

  20. Boron phosphide under pressure: In situ study by Raman scattering and X-ray diffraction

    SciTech Connect (OSTI)

    Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.; Le Godec, Yann; Kurnosov, Aleksandr V.; Oganov, Artem R.

    2014-07-21

    Cubic boron phosphide, BP, has been studied in situ by X-ray diffraction and Raman scattering up to 55?GPa at 300?K in a diamond anvil cell. The bulk modulus of B{sub 0}?=?174(2) GPa has been established, which is in excellent agreement with our ab initio calculations. The data on Raman shift as a function of pressure, combined with equation-of-state (EOS) data, allowed us to estimate the Grneisen parameters of the TO and LO modes of zinc-blende structure, ?{sub G}{sup TO?}=?1.26 and ?{sub G}{sup LO?}=?1.13, just like in the case of other A{sup III}B{sup V} diamond-like phases, for which ?{sub G}{sup TO?}>??{sub G}{sup LO?}??1. We also established that the pressure dependence of the effective electro-optical constant ? is responsible for a strong change in relative intensities of the TO and LO modes from I{sub TO}/I{sub LO}???0.25 at 0.1?MPa to I{sub TO}/I{sub LO}???2.5 at 45?GPa, for which we also find excellent agreement between experiment and theory.

  1. Combined in Situ X-ray absorption and diffuse reflectance infraredspectroscopy: An attractive tool for catalytic investigations

    SciTech Connect (OSTI)

    Marinkovic, N.S.; Ehrlich, S.; Wang, Q.; Barrio, L.; Khalid, S.; et.al.

    2010-11-24

    Catalysis investigations are often followed in a range of spectroscopic techniques. While diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) can be done on a bench-top instrument, X-ray absorption spectroscopy (XAS) techniques, such as extended X-ray absorption fine structure (EXAFS) and X-ray absorption near-edge structure (XANES) require synchrotron light. In order to ensure the same conditions during in situ catalysis for each method, a combined XAS/DRIFTS has been developed at beamline X18A at the National Synchrotron Light Source, Brookhaven National Laboratory. A rapid-scan FTIR spectrometer capable of both mid- and far-infrared measurements is equipped with an arm to redirect the IR beam outside the spectrometer. An in situ reaction chamber, equipped with glassy carbon windows for X-ray light and a KBr window for IR light passage is installed firmly on the arm. The reaction cell can be heated to 600 C and allows passage of gases through the catalyst so that both XAS and DRIFTS techniques can be done simultaneously in controlled environment conditions. Together with a fast-moving monochromator for quick-EXAFS and mass-spectrometric residual gas analysis, this new tool is a powerful method for testing catalytic reactions in real time.

  2. A modular reactor design for in situ synchrotron x-ray investigation of atomic layer deposition processes

    SciTech Connect (OSTI)

    Klug, Jeffrey A. Emery, Jonathan D.; Martinson, Alex B. F.; Proslier, Thomas; Weimer, Matthew S.; Yanguas-Gil, Angel; Elam, Jeffrey W.; Seifert, Sönke; Schlepütz, Christian M.; Hock, Adam S.

    2015-11-15

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present in situ results for (1) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, (2) grazing-incidence small angle scattering of MnO nucleation on silicon, and (3) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er{sub 2}O{sub 3} ALD on amorphous ALD alumina and single crystalline sapphire.

  3. A modular reactor design for in situ synchrotron X-ray investigation of atomic layer deposition processes

    SciTech Connect (OSTI)

    Klug, Jeffrey A.; Weimer, Matthew S.; Emery, Jonathan D.; Yanguas-Gil, Angel; Seifert, Sonke; Schleputz, Christian M.; Martinson, Alex B. F.; Elam, Jeffrey W.; Hock, Adam S.; Proslier, Thomas

    2015-11-01

    Synchrotron characterization techniques provide some of the most powerful tools for the study of film structure and chemistry. The brilliance and tunability of the Advanced Photon Source allow access to scattering and spectroscopic techniques unavailable with in-house laboratory setups and provide the opportunity to probe various atomic layer deposition (ALD) processes in situ starting at the very first deposition cycle. Here, we present the design and implementation of a portable ALD instrument which possesses a modular reactor scheme that enables simple experimental switchover between various beamlines and characterization techniques. As first examples, we present \\textit{in situ} results for 1.) X-ray surface scattering and reflectivity measurements of epitaxial ZnO ALD on sapphire, 2.) grazing-incidence small angle scattering of MnO nucleation on silicon, and 3.) grazing-incidence X-ray absorption spectroscopy of nucleation-regime Er2O3 ALD on amorphous ALD alumina and single crystalline sapphire.

  4. In situ X-ray Characterization of Energy Storage Materials | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource X-ray Characterization of Energy Storage Materials Tuesday, July 9, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Johanna Nelson, Stanford Postdoctoral Scholar, SSRL MSD Hard X-ray Department A key factor in the global move towards clean, renewable energy is the electrification of the automobile. Current battery technology limits EV (electric vehicles) to a short travel range, slow recharge, and costly price tag. Li-ion batteries promise the high

  5. In situ monitoring of the electrochemical absorption of deuterium into palladium by x-ray diffraction using synchrotron-wiggler radiation

    SciTech Connect (OSTI)

    Dominguez, D.D.; Hagans, P.L.; Skelton, E.F.; Qadri, S.B.; Nagel, D.J.

    1998-12-31

    With low energy x-rays, such as those from a Cu x-ray tube, only the outer few microns of a metallic sample can be probed. This low penetrating power prohibits structural studies from being carried out on the interior of an electrode in an electrochemical cell because of absorption by the cell material, electrodes and the electrolyte. The work described in this paper circumvents this problem by utilizing high energy, high brightness x-rays produced on the superconducting wiggler beam line, X-17C, at the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The penetrating power of the higher energy x-rays allowed Pd diffraction spectra to be obtained in-situ on a 1 mm diameter Pd wire cathode during electrolysis of heavy water. Moreover, the beam (28 x 28 {micro}m in cross-section) allowed diffraction spectra to be acquired as a function of distance across the sample. Spectra were recorded in 50 {micro}m steps from the edge of the Pd wire to its core. This was done at 2 minute intervals as a function of electrolysis time. The {alpha}-{beta} phase transition induced in the Pd while deuterium was electrochemically absorbed was observed by monitoring the Pd-(422) diffraction peaks. Results allowed the diffusion rate and the diffusivity of deuterium atoms in the Pd wire to be determined. Other features of the structural changes associated with the absorption of deuterium into Pd are reported.

  6. An ultra-high vacuum electrochemical flow cell for in situ/operando soft X-ray spectroscopy study

    SciTech Connect (OSTI)

    Bora, Debajeet K. E-mail: jguo@lbl.gov; Glans, Per-Anders; Pepper, John; Liu, Yi-Sheng; Guo, J.-H. E-mail: jguo@lbl.gov; Du, Chun; Wang, Dunwei

    2014-04-15

    An in situ flow electrochemical cell has been designed and fabricated to allow better seal under UHV chamber thus to achieve a good signal to noise ratio in fluorescence yield detection of X-ray absorption spectra for spectroelectrochemical study. The cell also stabilizes the thin silicon nitride membrane window in an effective manner so that the liquid cell remains intact during X-ray absorption experiments. With the improved design of the liquid cell, electrochemical experiments such as cyclic voltammetry have been performed for 10 cycles with a good stability of sample window. Also an operando electrochemical experiment during photoelectrochemistry has been performed on n-type hematite electrode deposited on silicon nitride window. The experiment allows us to observe the formation of two extra electronic transitions before pre edge of O K-edge spectra.

  7. In-situ microscale through-silicon via strain measurements by synchrotron x-ray microdiffraction exploring the physics behind data interpretation

    SciTech Connect (OSTI)

    Liu, Xi; Thadesar, Paragkumar A.; Oh, Hanju; Bakir, Muhannad S.; Taylor, Christine L.; Sitaraman, Suresh K.; Kunz, Martin; Tamura, Nobumichi

    2014-09-15

    In-situ microscale thermomechanical strain measurements have been performed in combination with synchrotron x-ray microdiffraction to understand the fundamental cause of failures in microelectronics devices with through-silicon vias. The physics behind the raster scan and data analysis of the measured strain distribution maps is explored utilizing the energies of indexed reflections from the measured data and applying them for beam intensity analysis and effective penetration depth determination. Moreover, a statistical analysis is performed for the beam intensity and strain distributions along the beam penetration path to account for the factors affecting peak search and strain refinement procedure.

  8. In situ small angle x-ray studies of coal gasification

    SciTech Connect (OSTI)

    Jensen, K F

    1983-01-01

    This report summarizes the progress made the first 12 months of a planned 36 month project on small angle x-ray studies of coal and char pore structure. Model carbon studies have been employed to demonstrate the usefulness of small angle x-ray scattering (SAXS) in monitoring the structural changes in porous carbonaceous materials during gasification. Scattering data from particles gasified to varying levels of conversion show increases in the micropore sizes with conversion. This is also supported by surface area measurements by SAXS showing a maximum at intermediate conversion in agreements with previous studies by conventional means. The application of SAXS to PSOC coal samples is also demonstrated. Existing models for the porous structure have been reviewed and percolation theory has been selected as a consistent framework for both the modelling and the data analysis. This theory will make it possible to describe the porous structure in terms of its geometry and connectivity, rather than being limited to a fixed geometry as in conventional approaches. Two graduate students and the PI have been trained in SAXS and the associated theory. Results from the model carbon studies have been published. 18 references, 9 figures, 2 tables.

  9. In situ X-ray nanotomography of metal surfaces during electropolishing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nave, Maryana I.; Allen, Jason P.; Karen Chen-Wiegart, Yu-chen; Wang, Jun; Kalidindi, Surya R.; Kornev, Konstantin G.

    2015-10-15

    A low voltage electropolishing of metal wires is attractive for nanotechnology because it provides centimeter long and micrometer thick probes with the tip radius of tens of nanometers. Using X-ray nanotomography we studied morphological transformations of the surface of tungsten wires in a specially designed electrochemical cell where the wire is vertically submersed into the KOH electrolyte. We show that stability and uniformity of the probe span is supported by a porous shell growing at the surface of tungsten oxide and shielding the wire surface from flowing electrolyte. We discovered that the kinetics of shell growth at the triple line,more » where meniscus meets the wire, is very different from that of the bulk of electrolyte. Many metals follow similar electrochemical transformations hence the discovered morphological transformations of metal surfaces are expected to play significant role in many natural and technological applications.« less

  10. Characterization of Cathode Materials for Rechargeable Lithium Batteries using Synchrotron Based In Situ X-ray Techniques

    SciTech Connect (OSTI)

    Yang, Xiao-Qing

    2007-05-23

    not be representative for the full picture of the structural changes during charge (discharge). In other words, the important information might be missed for those charge (discharge) states which were not selected for ex situ XRD studies. Secondly, the structure of the sample may have changed after removed from the cell. Finally, it is impossible to use the ex situ XRD to study the dynamic effects during high rate charge-discharge, which is crucial for the application of lithium-ion batteries for electric vehicle. A few in situ studies have been done using conventional x-ray tube sources. All of the in situ XRD studies using conventional x-ray tube sources have been done in the reflection mode in cells with beryllium windows. Because of the weak signals, data collection takes a long time, often several hundred hours for a single charge-discharge cycle. This long time data collection is not suitable for dynamic studies at all. Furthermore, in the reflection mode, the x-ray beam probes mainly the surface layer of the cathode materials. Iri collaboration with LG Chemical Ltd., BNL group designed and constructed the cells for in situ studies. LG Chemical provided several blended samples and pouch cells to BNL for preliminary in situ study. The LG Chemical provided help on integrate the blended cathode into these cells. The BNL team carried out in situ XAS and XRD studies on the samples and pouch cells provided by LG Chemical under normal charge-discharge conditions at elevated temperature.

  11. Evaluating the solid electrolyte interphase formed on silicon electrodes: A comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Doucet, Mathieu; Browning, Jim; Baldwin, J. K.; Winiarz, Jeffrey; Kaiser, Helmut; Taub, H.; Veith, Gabriel M.

    2016-04-15

    This work details the in situ characterization of the interface between a silicon electrode and an electrolyte using a linear fluorinated solvent molecule, 0.1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in deuterated dimethyl perfluoroglutarate (d6-PF5M2) (1.87 x 10-2 mS/cm-1). The solid electrolyte interphase (SEI) composition and thickness determined via in situ neutron reflectometry (NR) and ex situ X-ray photoelectron spectroscopy (XPS) were compared. The data show that SEI expansion and contraction (breathing) during electrochemical cycling was observed via both techniques; however, ex situ XPS suggests that the SEI thickness increases during Si lithiation and decreases during delithiation, while in situ NR suggestsmore » the opposite. The most likely cause of this discrepancy is the selective removal of SEI components (top 20 nm of the SEI) during the electrode rinse process, required to remove electrolyte residue prior to ex situ analysis, demonstrating the necessity of performing SEI characterizations in situ.« less

  12. Enhanced water window x-ray emission from in situ formed carbon clusters irradiated by intense ultra-short laser pulses

    SciTech Connect (OSTI)

    Chakravarty, U.; Rao, B. S.; Arora, V.; Upadhyay, A.; Singhal, H.; Naik, P. A.; Chakera, J. A.; Mukherjee, C.; Gupta, P. D.

    2013-07-29

    Enhanced water window x-ray emission (23–44 Å) from carbon clusters, formed in situ using a pre-pulse, irradiated by intense (I > 10{sup 17} W/cm{sup 2}) ultra-short laser pulse, is demonstrated. An order of magnitude x-ray enhancement over planar graphite target is observed in carbon clusters, formed by a sub-ns pre-pulse, interacting with intense main pulse after a delay. The effect of the delay and the duration of the main pulse is studied for optimizing the x-ray emission in the water window region. This x-ray source has added advantages of being an efficient, high repetition rate, and low debris x-ray source.

  13. InSitu X-Ray Diffraction Studies on Lithium-Ion Battery Cathodes

    SciTech Connect (OSTI)

    Doughty, Daniel H.; Ingersoll, David; Rodriguez, Mark A.

    1999-07-13

    LiNi{sub 0.8}Co{sub 0.2}O{sub 2} and LiNiO{sub 2} have been characterized in-situ XRD. LiNi{sub 0.8}Co{sub 0.2}O{sub 2} does not undergo a monoclinic phase transformation but remains a hexagonal lattice throughout the entire charging cycle. It is hypothesized that Co-doping may help stabilize the hexagonal structure.

  14. Multiferroic CuCrO? under high pressure: In situ X-ray diffraction and Raman spectroscopic studies

    SciTech Connect (OSTI)

    Garg, Alka B. Mishra, A. K.; Pandey, K. K.; Sharma, Surinder M.

    2014-10-07

    The compression behavior of delafossite compound CuCrO? has been investigated by in situ x-ray diffraction (XRD) and Raman spectroscopic measurements up to 23.2 and 34 GPa, respectively. X-ray diffraction data show the stability of ambient rhombohedral structure up to ~23 GPa. Material shows large anisotropy in axial compression with c-axis compressibility, ?{sub c} = 1.26 10?(1) GPa? and a-axis compressibility, ?{sub a} = 8.90 10?(6) GPa?. Our XRD data show an irreversible broadening of diffraction peaks. Pressure volume data when fitted to 3rd order Birch-Murnaghan equation of state give the value of bulk modulus, B? = 156.7(2.8) GPa with its pressure derivative, B?{sup } as 5.3(0.5). All the observed vibrational modes in Raman measurements show hardening with pressure. Appearance of a new mode at ~24 GPa indicates the structural phase transition in the compound. Our XRD and Raman results indicate that CuCrO{sub 2} may be transforming to an ordered rocksalt type structure under compression.

  15. Tuning of colossal dielectric constant in gold-polypyrrole composite nanotubes using in-situ x-ray diffraction techniques

    SciTech Connect (OSTI)

    Sarma, Abhisakh; Sanyal, Milan K.

    2014-09-15

    In-situ x-ray diffraction technique has been used to study the growth process of gold incorporated polypyrrole nanotubes that exhibit colossal dielectric constant due to existence of quasi-one-dimensional charge density wave state. These composite nanotubes were formed within nanopores of a polycarbonate membrane by flowing pyrrole monomer from one side and mixture of ferric chloride and chloroauric acid from other side in a sample cell that allows collection of x-ray data during the reaction. The size of the gold nanoparticle embedded in the walls of the nanotubes was found to be dependent on chloroauric acid concentration for nanowires having diameter more than 100 nm. For lower diameter nanotubes the nanoparticle size become independent of chloroauric acid concentration and depends on the diameter of nanotubes only. The result of this study also shows that for 50 nm gold-polypyrrole composite nanotubes obtained with 5.3 mM chloroauric acid gives colossal dielectric constant of about 10{sup 7}. This value remain almost constant over a frequency range from 1Hz to 10{sup 6} Hz even at 80 K temperature.

  16. In situ, energy-dispersive X-ray diffraction study of natural gas conversion by CO[sub 2] reforming

    SciTech Connect (OSTI)

    Ashcroft, A.T. ); Cheetham, A.K. ); Jones, R.H.; Natarajan, S.; Thomas, J.M.; Waller, D. ); Clark, S.M. )

    1993-04-01

    The selective CO[sub 2] reforming of methane to synthesis gas over a rare-earth iridate pyrochlore, Ln[sub 2]Ir[sub 2]O[sub 7] (Ln = Eu), and rare-earth ruthenate pyrochlores, Ln[sub 2]Ru[sub 2]O[sub 7] (Ln = Nd, Sm, Eu, Gd), has been studied in situ by using energy-dispersive X-ray diffraction with synchrotron radiation. Analysis of the diffraction data shows that the oxides are activated by reduction to the platinum group metal, the iridate by a second-order kinetic reaction, and the ruthenates by a first-order process. Temperature programmed reductions under carbon monoxide, hydrogen, and methane establish that the iridates proceed directly to the metal, whereas the ruthenates reduce via an oxygen deficient pyrochlore. 18 refs., 7 figs., 1 tab.

  17. Characterization of beryllium deformation using in-situ x-ray diffraction

    SciTech Connect (OSTI)

    Magnuson, Eric Alan; Brown, Donald William; Clausen, Bjorn; Sisneros, Thomas A.; Park, Jun-Sang

    2015-08-24

    Beryllium’s unique mechanical properties are extremely important in a number of high performance applications. Consequently, accurate models for the mechanical behavior of beryllium are required. However, current models are not sufficiently microstructure aware to accurately predict the performance of beryllium under a range of processing and loading conditions. Previous experiments conducted using the SMARTS and HIPPO instruments at the Lujan Center(LANL), have studied the relationship between strain rate and texture development, but due to the limitations of neutron diffraction studies, it was not possible to measure the response of the material in real-time. In-situ diffraction experiments conducted at the Advanced Photon Source have allowed the real time measurement of the mechanical response of compressed beryllium. Samples of pre-strained beryllium were reloaded orthogonal to their original load path to show the reorientation of already twinned grains. Additionally, the in-situ experiments allowed the real time tracking of twin evolution in beryllium strained at high rates. The data gathered during these experiments will be used in the development and validation of a new, microstructure aware model of the constitutive behavior of beryllium.

  18. Study of supported PtCu and PdAu bimetallic nanoparticles using in-situ x-ray tools.

    SciTech Connect (OSTI)

    Oxford, S. M.; Lee, P. L.; Chupas, P. J.; Chapman, K. W.; Kung, M. C.; Kung, H. H.; Northwestern Univ.

    2010-01-01

    A combination of two synchrotron X-ray techniques, X-ray absorption spectroscopy (XAS), and pair distribution function analysis (PDF) with complementary Fourier transform infrared (FTIR) spectroscopy measurement, was used to characterize the composition distributions of PdAu and PtCu bimetallic particles after treatment in H{sub 2} or CO and in the presence of these gases. This is the first reported application of PDF to the study of supported bimetallic nanoparticles. We found that XAS was informative in determining the component distribution of an initial sample, but PDF was better suited to following changes in the distribution upon changing the gas environment. Thus, the surface of a PtCu bimetallic particle of about 2.5 nm after treatment in H{sub 2} was found to be enriched in Cu, while the core was bimetallic. There was no evidence of a component-segregated core?shell structure. Treatment in CO caused enrichment of Pt to the surface layer, with a concomitant migration of Cu to the core. The average particle size remained the same. For the PdAu bimetallic particles, the surface and core compositions were similar after H{sub 2} treatment, and Pd was enriched in the surface after CO treatment. The X-ray results compared favorably to infrared spectroscopy results. The results demonstrated that the two X-ray techniques in combination can generate new information not available with either technique alone or other techniques, about the elemental distribution of bimetallic particles under conditions relevant to catalysis. They could provide new insight into structure-function relationships and time-on-stream behavior of bimetallic catalysts.

  19. Synthesis of 1 nm Pd Nanoparticles in a Microfluidic Reactor: Insights from in Situ X ray Absorption Fine Structure Spectroscopy and Small-Angle X ray Scattering

    SciTech Connect (OSTI)

    Karim, Ayman M.; Al Hasan, Naila M.; Ivanov, Sergei A.; Siefert, Soenke; Kelly, Ryan T.; Hallfors, Nicholas G.; Benavidez, Angelica D.; Kovarik, Libor; Jenkins, Aaron; Winans, R. E.; Datye, Abhaya K.

    2015-06-11

    In this paper we show that the temporal separation of nucleation and growth is not a necessary condition for the colloidal synthesis of monodisperse nanoparticles. The synthesis mechanism of Pd nanoparticles was determined by in situ XAFS and SAXS in a microfluidic reactor capable of millisecond up to an hour time resolution. The SAXS results showed two autocatalytic growth phases, a fast growth phase followed by a very slow growth phase. The steady increase in the number of particles throughout the two growth phases indicates the synthesis is limited by slow continuous nucleation. The transition from fast to slow growth was caused by rapid increase in bonding with the capping agent as shown by XAFS. Based on this fundamental understanding of the synthesis mechanism, we show that 1 nm monodisperse Pd nanoparticles can be synthesized at low temperature using a strong binding capping agent such as trioctylphosphine (TOP).

  20. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOE Patents [OSTI]

    Berman, Robert M.; Cohen, Isadore

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  1. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOE Patents [OSTI]

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  2. High-pressure behavior and thermoelastic properties of niobium studied by in situ x-ray diffraction

    SciTech Connect (OSTI)

    Zou, Yongtao E-mail: yongtaozou6@gmail.com; Li, Baosheng; Qi, Xintong; Wang, Xuebing; Chen, Ting; Li, Xuefei; Welch, David

    2014-07-07

    In situ synchrotron energy dispersive x-ray diffraction (XRD) experiments on Nb have been conducted at pressures up to 6.4 GPa and temperatures up to 1073 K. From the pressure-volume-temperature measurements, thermoelastic parameters were derived for the first time for Nb based on the thermal pressure (?P{sub th}) equation of state (EOS), modified high-T Birch-Murnaghan EOS, and Mie-Grneisen-Debye EOS. With the pressure derivative of the bulk modulus K{sub T}{sup } fixed at 4.0, we obtained the ambient isothermal bulk modulus K{sub T0}=174(5) GPa, the temperature derivative of bulk modulus at constant pressure (?K{sub T}/?T){sub P}=-0.060(8) GPa K? and at constant volume (?K{sub T}/?T){sub V}=-0.046(8) GPa K?, the volumetric thermal expansivity ?{sub T}(T)=2.3(3)10??+0.3(2)10??T (K?), as well as the pressure dependence of thermal expansion (??/?P){sub T}=(?2.00.4)10?? K? GPa?. Fitting the present data to the Mie-Grneisen-Debye EOS with Debye temperature ??=276.6 K gives ??=1.27(8) and K{sub T0}=171(3) GPa at a fixed value of q=3.0. The ambient isothermal bulk modulus and Grneisen parameter derived from this work are comparable to previously reported values from both experimental and theoretical studies. An in situ high-resolution, angle dispersive XRD study on Nb did not indicate any anomalous behavior related to pressure-induced electronic topological transitions at ~5 GPa as has been reported previously.

  3. In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices

    SciTech Connect (OSTI)

    Bein, Benjamin; Hsing, Hsiang-Chun; Callori, Sara J.; Sinsheimer, John; Chinta, Priya V.; Headrick, Randall L.; Dawber, Matthew

    2015-12-04

    In the epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrostatic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in situ synchrotron X-ray diffraction during the growth of BaTiO3/SrTiO3 superlattices on SrTiO3 substrates by off-axis radio frequency magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effects of electric boundary conditions are investigated by growing the same superlattice alternatively on SrTiO3 substrates and 20 nm SrRuO3 thin films on SrTiO3 substrates. Our experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process.

  4. In situ X-ray diffraction and the evolution of polarization during the growth of ferroelectric superlattices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bein, Benjamin; Hsing, Hsiang-Chun; Callori, Sara J.; Sinsheimer, John; Chinta, Priya V.; Headrick, Randall L.; Dawber, Matthew

    2015-12-04

    In the epitaxially strained ferroelectric thin films and superlattices, the ferroelectric transition temperature can lie above the growth temperature. Ferroelectric polarization and domains should then evolve during the growth of a sample, and electrostatic boundary conditions may play an important role. In this work, ferroelectric domains, surface termination, average lattice parameter and bilayer thickness are simultaneously monitored using in situ synchrotron X-ray diffraction during the growth of BaTiO3/SrTiO3 superlattices on SrTiO3 substrates by off-axis radio frequency magnetron sputtering. The technique used allows for scan times substantially faster than the growth of a single layer of material. Effects of electric boundarymore » conditions are investigated by growing the same superlattice alternatively on SrTiO3 substrates and 20 nm SrRuO3 thin films on SrTiO3 substrates. Our experiments provide important insights into the formation and evolution of ferroelectric domains when the sample is ferroelectric during the growth process.« less

  5. Quantitative determination of mineral composition by powder X-ray diffraction

    DOE Patents [OSTI]

    Pawloski, Gayle A.

    1986-01-01

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  6. Quantitative determination of mineral composition by powder x-ray diffraction

    DOE Patents [OSTI]

    Pawloski, G.A.

    1984-08-10

    An external standard intensity ratio method is used for quantitatively determining mineralogic compositions of samples by x-ray diffraction. The method uses ratios of x-ray intensity peaks from a single run. Constants are previously determined for each mineral which is to be quantitatively measured. Ratios of the highest intensity peak of each mineral to be quantified in the sample and the highest intensity peak of a reference mineral contained in the sample are used to calculate sample composition.

  7. An in situ sample environment reaction cell for spatially resolved x-ray absorption spectroscopy studies of powders and small structured reactors

    SciTech Connect (OSTI)

    Zhang, Chu; Gustafson, Johan; Merte, Lindsay R.; Evertsson, Jonas; Norén, Katarina; Carlson, Stefan; Svensson, Håkan; Carlsson, Per-Anders

    2015-03-15

    An easy-to-use sample environment reaction cell for X-ray based in situ studies of powders and small structured samples, e.g., powder, pellet, and monolith catalysts, is described. The design of the cell allows for flexible use of appropriate X-ray transparent windows, shielding the sample from ambient conditions, such that incident X-ray energies as low as 3 keV can be used. Thus, in situ X-ray absorption spectroscopy (XAS) measurements in either transmission or fluorescence mode are facilitated. Total gas flows up to about 500 ml{sub n}/min can be fed while the sample temperature is accurately controlled (at least) in the range of 25–500 °C. The gas feed is composed by a versatile gas-mixing system and the effluent gas flow composition is monitored with mass spectrometry (MS). These systems are described briefly. Results from simultaneous XAS/MS measurements during oxidation of carbon monoxide over a 4% Pt/Al{sub 2}O{sub 3} powder catalyst are used to illustrate the system performance in terms of transmission XAS. Also, 2.2% Pd/Al{sub 2}O{sub 3} and 2% Ag − Al{sub 2}O{sub 3} powder catalysts have been used to demonstrate X-ray absorption near-edge structure (XANES) spectroscopy in fluorescence mode. Further, a 2% Pt/Al{sub 2}O{sub 3} monolith catalyst was used ex situ for transmission XANES. The reaction cell opens for facile studies of structure-function relationships for model as well as realistic catalysts both in the form of powders, small pellets, and coated or extruded monoliths at near realistic conditions. The applicability of the cell for X-ray diffraction measurements is discussed.

  8. Multiaxial deformation of polyethylene and polyethylene/clay nanocomposites: In situ synchrotron small angle and wide angle X-ray scattering study

    SciTech Connect (OSTI)

    Gurun, Bilge; Bucknall, David G.; Thio, Yonathan S.; Teoh, Chin Ching; Harkin-Jones, Eileen

    2013-01-10

    A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) measurements. SAXS and WAXS patterns of high-density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer.

  9. An MBE growth facility for real-time in situ synchrotron x-ray topography studies of strained-layer III--V epitaxial materials

    SciTech Connect (OSTI)

    Whitehouse, C.R.; Barnett, S.J.; Soley, D.E.J.; Quarrell, J.; Aldridge, S.J.; Cullis, A.G.; Emeny, M.T.; Johnson, A.D. , St. Andrews Road, Malvern, Worcs WR14 3PS ); Clarke, G.F.; Lamb, W. ); Tanner, B.K.; Cottrell, S. ); Lunn, B.; Hogg, C.; Hagston, W. )

    1992-01-01

    This paper describes a unique combined UHV MBE growth x-ray topography facility designed to allow the first real-time synchrotron radiation x-ray topography study of strained-layer III--V growth processes. This system will enable unambiguous determination of dislocation nucleation and multiplication processes as a function of controlled variations in growth conditions, and also during post-growth thermal processing. The planned experiments have placed very stringent demands upon the engineering design of the system, and design details regarding the growth chamber; sample manipulator, x-ray optics, and real-time imaging systems are described. Results obtained during a feasibility study are also presented.

  10. Method of determining the x-ray limit of an ion gauge

    DOE Patents [OSTI]

    Edwards, Jr., David; Lanni, Christopher P.

    1981-01-01

    An ion gauge having a reduced "x-ray limit" and means for measuring that limit. The gauge comprises an ion gauge of the Bayard-Alpert type having a short collector and having means for varying the grid-collector voltage. The "x-ray limit" (i.e. the collector current resulting from x-rays striking the collector) may then be determined by the formula: ##EQU1## where: I.sub.x ="x-ray limit", I.sub.l and I.sub.h =the collector current at the lower and higher grid voltage respectively; and, .alpha.=the ratio of the collector current due to positive ions at the higher voltage to that at the lower voltage.

  11. Low-level determination of plutonium by gamma and L x-ray spectroscopy

    SciTech Connect (OSTI)

    Nitsche, H.; Gatti, R.C.; Lee, S.C.

    1991-04-01

    we have developed an analytical method for detection of {sup 239}Pu in aqueous samples at concentrations as low as 10{sup {minus}10} M. This nuclear counting technique utilizes the uranium L X-rays, which follow the alpha decay of plutonium. Because L X-rays are specific for the element and not for the individual isotopes, the isotopic composition of the plutonium sample must be known. The counting efficiency in the 11--23 keV range is determined from a plutonium standard, and the concentration of the sample is then calculated from the L X-ray count and the isotopic composition. The total L X-ray count is corrected for possible contributions from other radionuclides present as impurities by measuring the low-energy gamma spectrum for each contaminant to establish specific photon/X-ray ratios. The ratios are important when {sup 241}Pu and {sup 242}Pu are measured, because the respective decay chain members produce non-U L X-rays. This new method can replace the use of labor-intensive radiochemical separation techniques and elaborate activation methods for analysis of {sup 239}Pu in aqueous samples. It is also applicable for assaying plutonium in liquid wastes that pose possible hazards to the environment.

  12. In situ and ex situ spectroelectrochemical and X-ray absorption studies on rechargeable, chemically-modified and other MnO{sub 2} materials

    SciTech Connect (OSTI)

    Conway, B.E.; Qu, D.; McBreen, J. |

    1992-12-31

    A combined series of in situ and ex situ UV spectroelectrochemical and X-ray absorption studies have been made on MnO{sub 2}, chemically-modified by small amounts of Bi(III), and comparatively on other MnO{sub 2} materials such as a blank (Bi-free) and {gamma}-MnO{sub 2}. These procedures are applied in order to follow the oxidation-states of Bi and of Mn during the course of discharge and recharge of MnO{sub 2} as a battery cathode material, and the extents of rechargeability that can be achieved with such materials. Presence of Bi appears to provide a preferred ``heterogeneous`` discharge/recharge pathway involving a soluble Mn(III) intermediate, over the alternative ``electron-proton`` hopping, solid-state mechanism. From XAS results, it is concluded that presence of Bi, although not affecting the O-coordination, does influence the Mn-Mn coordination, determining the way the MnO{sub 2} coordination octahedra are connected.

  13. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    SciTech Connect (OSTI)

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; Read, Randy J.; Wiedenheft, Blake

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging. Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.

  14. X-ray structure determination using low-resolution electron microscopy maps for molecular replacement

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jackson, Ryan N.; McCoy, Airlie J.; Terwilliger, Thomas C.; Read, Randy J.; Wiedenheft, Blake

    2015-07-30

    Structures of multi-subunit macromolecular machines are primarily determined by either electron microscopy (EM) or X-ray crystallography. In many cases, a structure for a complex can be obtained at low resolution (at a coarse level of detail) with EM and at higher resolution (with finer detail) by X-ray crystallography. The integration of these two structural techniques is becoming increasingly important for generating atomic models of macromolecular complexes. A low-resolution EM image can be a powerful tool for obtaining the "phase" information that is missing from an X-ray crystallography experiment, however integration of EM and X-ray diffraction data has been technically challenging.more » Here we show a step-by-step protocol that explains how low-resolution EM maps can be placed in the crystallographic unit cell by molecular replacement, and how initial phases computed from the placed EM density are extended to high resolution by averaging maps over non-crystallographic symmetry. As the resolution gap between EM and Xray crystallography continues to narrow, the use of EM maps to help with X-ray crystal structure determination, as described in this protocol, will become increasingly effective.« less

  15. An In-situ X-ray Scattering Study During Uniaxial Stretching of Ionic Liquid/Ultra-high Molecular Weight Polyethylene Blends

    SciTech Connect (OSTI)

    X Li; Y Mao; H Ma; F Zuo; B Hsiao; B Chu

    2011-12-31

    An ionic liquid (IL) 1-docosanyl-3-methylimidazolium bromide was incorporated into ultra-high molecular weight polyethylene (UHMWPE) and formed IL/UHMWPE blends by solution mixing. The structure evolution of these blends during uniaxial stretching was followed by in-situ synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. During deformation at room temperature, deformation-induced phase transformation from orthorhombic to monoclinic phase was observed in both IL/UHMWPE blends and neat UHMWPE. The elongation-to-break ratios of IL/UHMWPE blends were found to increase by 2-3 times compared with that of pure UHMWPE, while the tensile strength remained about the same. In contrast, during deformation at high temperature (120 C), no phase transformation was observed. However, the blend samples showed much better toughness, higher crystal orientation and higher tilting extent of lamellar structure at high strains.

  16. In situ dehydration behavior of zeolite-like pentagonite: A single-crystal X-ray study

    SciTech Connect (OSTI)

    Danisi, Rosa Micaela; Armbruster, Thomas; Lazic, Biljana

    2013-01-15

    The structural modifications upon heating of pentagonite, Ca(VO)(Si{sub 4}O{sub 10}){center_dot}4H{sub 2}O (space group Ccm2{sub 1}, a=10.3708(2), b=14.0643(2), c=8.97810(10) A, V=1309.53(3) A{sup 3}) were investigated by in situ temperature dependent single-crystal X-ray structure refinements. Diffraction data of a sample from Poona district (India) have been measured in steps of 25 up to 250 Degree-Sign C and in steps of 50 Degree-Sign C between 250 and 400 Degree-Sign C. Pentagonite has a porous framework structure made up by layers of silicate tetrahedra connected by V{sup 4+}O{sub 5} square pyramids. Ca and H{sub 2}O molecules are extraframework occupants. Room temperature diffraction data allowed refinement of H positions. The hydrogen-bond system links the extraframework occupants to the silicate layers and also interconnects the H{sub 2}O molecules located inside the channels. Ca is seven-fold coordinated forming four bonds to O of the tetrahedral framework and three bonds to extraframework H{sub 2}O. The H{sub 2}O molecule at O9 showing a high displacement parameter is not bonded to Ca. The dehydration in pentagonite proceeds in three steps. At 100 Degree-Sign C the H{sub 2}O molecule at O8 was released while O9 moved towards Ca. As a consequence the displacement parameter of H{sub 2}O at O9 halved compared to that at room temperature. The unit-cell volume decreased to 1287.33(3) A{sup 3} leading to a formula with 3H{sub 2}O per formula unit (pfu). Ca remained seven-fold coordinated. At 175 Degree-Sign C Ca(VO)(Si{sub 4}O{sub 10}){center_dot}3H{sub 2}O transformed into a new phase with 1H{sub 2}O molecule pfu characterized by doubling of the c axis and the monoclinic space group Pn. Severe bending of specific T--O--T angles led to contraction of the porous three-dimensional framework. In addition, H{sub 2}O at O9 was expelled while H{sub 2}O at O7 approached a position in the center of the channel. The normalized volume decreased to 1069.44(9) A{sup 3

  17. In situ soft X-ray absorption spectroscopy investigation of electrochemical corrosion of copper in aqueous NaHCO3 solution

    SciTech Connect (OSTI)

    Jiang, Peng; Chen, Jeng-Lung; Borondics, Ferenc; Glans, Per-Anders; West, Mark W.; Chang, Ching-Lin; Salmeron, Miquel; Guo, Jinghua

    2010-03-31

    A novel electrochemical setup has been developed for soft x-ray absorption studies of the electronic structure of electrode materials during electrochemical cycling. In this communication we illustrate the operation of the cell with a study of the corrosion behavior of copper in aqueous NaHCO3 solution via the electrochemically induced changes of its electronic structure. This development opens the way for in situ investigations of electrochemical processes, photovoltaics, batteries, fuel cells, water splitting, corrosion, electrodeposition, and a variety of important biological processes.

  18. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    SciTech Connect (OSTI)

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  19. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  20. Ordering in bio-inorganic hybrid nanomaterials probed by in situ scanning transmission X-ray microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lee, Jonathan R. I.; Bagge-Hansen, Michael; Tunuguntla, Ramya; Kim, Kyunghoon; Bangar, Mangesh; Willey, Trevor M.; Tran, Ich C.; Kilcoyne, David A.; Noy, Aleksandr; van Buuren, Tony

    2015-04-15

    Here, phospholipid bilayer coated Si nanowires are one-dimensional (1D) composites that provide versatile bio-nanoelectronic functionality via incorporation of a wide variety of biomolecules into the phospholipid matrix. The physiochemical behaviour of the phospholipid bilayer is strongly dependent on its structure and, as a consequence, substantial modelling and experimental efforts have been directed at the structural characterization of supported bilayers and unsupported phospholipid vesicles; nonetheless, the experimental studies conducted to date have exclusively involved volume-averaged techniques, which do not allow for the assignment of spatially resolved structural variations that could critically impact the performance of the 1D phospholipid-Si NW composites. Inmore » this manuscript, we use scanning transmission X-ray microscopy (STXM) to probe bond orientation and bilayer thickness as a function of position with a spatial resolution of ~30 nm for Δ9-cis 1,2-dioleoyl-sn-glycero-3-phosphocholine layers prepared Si NWs. When coupled with small angle X-ray scattering measurements, the STXM data reveal structural motifs of the Si NWs that give rise to multi-bilayer formation and enable assignment of the orientation of specific bonds known to affect the order and rigidity of phospholipid bilayers.« less

  1. Oxygen storage properties of La1-xSrxFeO3- for chemical-looping reactions an in-situ neutron and synchrotron X-ray study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Taylor, Daniel; Schreiber, Nathaniel; Levitas, Benjamin; Xu, Wenqian; Rodriguez, Efrain E

    2016-01-01

    Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La1 xSrxFeO3 has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La1 xSrxFeO3 for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2, 2/3, and 1, wemore » discover an envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. We recommend La2/3Sr1/3FeO3 as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less

  2. In-situ extended X-ray absorption fine structure study of electrostriction in Gd doped ceria

    SciTech Connect (OSTI)

    Korobko, Roman; Wachtel, Ellen; Lubomirsky, Igor; Lerner, Alyssa; Li, Yuanyuan; Frenkel, Anatoly I.

    2015-01-26

    Studying electric field-induced structural changes in ceramics is challenging due to the very small magnitude of the atomic displacements. We used differential X-ray absorption spectroscopy, an elementally specific and spatially sensitive method, to detect such changes in Gd-doped ceria, recently shown to exhibit giant electrostriction. We found that the large electrostrictive stress generation can be associated with a few percent of unusually short Ce-O chemical bonds that change their length and degree of order under an external electric field. The remainder of the lattice is reduced to the role of passive spectator. This mechanism is fundamentally different from that in electromechanically active materials currently in use.

  3. In Situ Observation of Water Dissociation with Lattice Incorporation at FeO Particle Edges Using Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy

    SciTech Connect (OSTI)

    Deng, Xingyi; Lee, Junseok; Wang, Congjun; Matranga, Christopher; Aksoy, Funda; Liu, Zhi

    2011-03-15

    The dissociation of H2O and formation of adsorbed hydroxyl groups, on FeO particles grown on Au(111) were identified with in situ,: X:ray photoelectron spectroscopy (XPS) at water pressures ranging from 3 x 10-8 to 0.1 Torr. The facile dissociation of H2O takes place at FeO particle edges, and it was successfully observed in situ With atomically resolved scanning tunneling microscopy (STM). The in situ STM studies show that adsorbed hydroxyl groups were formed exclusively along the edges of the FeO particles with the 0 atom becoming directly incorporated into the oxide crystalline lattice The STM results are consistent with coordinatively unsaturated ferrous (CUF) sites along the FeO particle edge causing the observed reactivity with H2O. Our results also directly illustrate how structural defects and under.-coordinated sites participate in chemical reactions.

  4. X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, X. Edward; Gao, Xiang; Barty, Anton; Kang, Yanyong; He, Yuanzheng; Liu, Wei; Ishchenko, Andrii; White, Thomas A.; Yefanov, Oleksandr; Han, Gye Won; et al

    2016-04-12

    Here, serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solvedmore » with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.« less

  5. Setup for in situ investigation of gases and gas/solid interfaces by soft x-ray emission and absorption spectroscopy

    SciTech Connect (OSTI)

    Benkert, A. E-mail: l.weinhardt@kit.edu; Blum, M.; Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720 ; Meyer, F.; Wilks, R. G.; Yang, W.; Bär, M.; Solar Energy Research, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin; Insitut für Physik und Chemie, Brandenburgische Technische Universität Cottbus-Senftenberg, Konrad-Wachsmann-Allee 1, 03046 Cottbus ; and others

    2014-01-15

    We present a novel gas cell designed to study the electronic structure of gases and gas/solid interfaces using soft x-ray emission and absorption spectroscopies. In this cell, the sample gas is separated from the vacuum of the analysis chamber by a thin window membrane, allowing in situ measurements under atmospheric pressure. The temperature of the gas can be regulated from room temperature up to approximately 600 °C. To avoid beam damage, a constant mass flow can be maintained to continuously refresh the gaseous sample. Furthermore, the gas cell provides space for solid-state samples, allowing to study the gas/solid interface for surface catalytic reactions at elevated temperatures. To demonstrate the capabilities of the cell, we have investigated a TiO{sub 2} sample behind a mixture of N{sub 2} and He gas at atmospheric pressure.

  6. Interface structure of SrTiO{sub 3}/LaAlO{sub 3} at elevated temperatures studied in situ by synchrotron x rays

    SciTech Connect (OSTI)

    Vonk, V.; Huijben, M.; Driessen, K. J. I.; Brinkman, A.; Harkema, S.; Tinnemans, P.; Graafsma, H.

    2007-06-15

    The atomic interface structure between SrTiO{sub 3} and LaAlO{sub 3} was studied at elevated temperatures employing in situ surface x-ray diffraction. The results at 473 K indicate that the lattice distorts significantly in two ways. First, the interatomic distances between the cations across the interface become as large as 4.03(2) A. Second, the TiO{sub 6} octahedra at the interface contract their principal axis along the surface normal considerably and the Ti displaces off center. These distortions can be ascribed to the charge inbalance introduced by the change in atomic species across the interface and to a Jahn-Teller effect. The latter distortion suggests the presence of extra electrons at the interface, which is important for understanding the electronic properties of this system.

  7. Evolution of titania nanotubes-supported WO{sub x} species by in situ thermo-Raman spectroscopy, X-ray diffraction and high resolution transmission electron microscopy

    SciTech Connect (OSTI)

    Cortes-Jacome, M.A.; Angeles-Chavez, C.; Morales, M.; Lopez-Salinas, E.; Toledo-Antonio, J.A.

    2007-10-15

    Structural evolution of WO{sub x} species on the surface of titania nanotubes was followed by in situ thermo-Raman spectroscopy. A total of 15 wt% of W atoms were loaded on the surface of a hydroxylated titania nanotubes by impregnation with ammonium metatungstate solution and then, the sample was thermally treated in a Linkam cell at different temperatures in nitrogen flow. The band characteristic of the W=O bond was observed at 962 cm{sup -1} in the dried sample, which vanished between 300 and 700 deg. C, and reappear again after annealing at 800 deg. C, along with a broad band centered at 935 cm{sup -1}, attributed to the v{sub 1} vibration of W=O in tetrahedral coordination. At 900 and 1000 deg. C, the broad band decomposed into four bands at 923, 934, 940 and 950 cm{sup -1}, corresponding to the symmetric and asymmetric vibration of W=O bonds in Na{sub 2}WO{sub 4} and Na{sub 2}W{sub 2}O{sub 7} phases as determined by X-ray diffraction and High resolution transmission electron microscopy (HRTEM). The structure of the nanotubular support was kept at temperatures below 450 deg. C, thereafter, it transformed into anatase being stabilized at temperatures as high as 900 deg. C. At 1000 deg. C, anatase phase partially converted into rutile. After annealing at 1000 deg. C, a core-shell model material was obtained, with a shell of ca. 5 nm thickness, composed of sodium tungstate nanoclusters, and a core composed mainly of rutile TiO{sub 2} phase. - Graphical abstract: Titania nanotubes loaded with 15 wt% W atoms were characterized from room temperature (rt) to 1000 deg. C by thermo-Raman spectroscopy in N{sub 2}. At 1000 deg. C, a core-shell model material was obtained, with a shell thickness of ca. 5 nm composed by nanoclusters of sodium tungstate, and a core composed mainly of rutile TiO{sub 2} phase.

  8. Total reflection x-ray fluorescence: Determination of an optimum geometry

    SciTech Connect (OSTI)

    Koo, Y.M.; Chang, C.H.; Padmore, H.A.

    1997-04-01

    Total reflection X-Ray Fluorescence (TXRF) is a widely used technique in which the normal trace element detection capability of hard x-ray fluorescence (XRF) is enhanced by use of an x-ray reflective substrate. TXRF is more sensitive than normal photon induced XRF due to the reduction of the substrate scattering and fluorescence signals. This reduction comes about because in total external reflection, the photon field only penetrates about 20 {angstrom} into the surface, instead of typically 50 {mu}m for a silicon substrate at normal incidence for 10 KeV photons. The technique is used in many fields of trace element analysis, and is widely used in the determination of metal impurity concentrations on and in the surface of silicon wafers. The Semiconductor Industry Association roadmap (SIA) indicates a need for wafer contamination detection at the 10{sup 7}atoms/cm{sup 2} level in the next few years. Current commercial systems using rotating anode x-ray sources presently routinely operate with a sensitivity level of around 10{sup 10} atoms/cm{sup 2} and this has led to interest in the use of synchrotron radiation to extend the sensitivity by three orders of magnitude. The pioneering work of Pianetta and co-workers at SSRL has clearly shown that this should be possible, using a fully optimized source and detector. The purpose of this work is to determine whether ALS would be a suitable source for this type of highly sensitive wafer TXRF. At first look it appears improbable as the SSRL work used a high flux multipole wiggler source, and it is clear that the detected fluorescence for relevant concentrations is small. In addition, SSRL operates at 3.0 GeV rather than 1.9 GeV, and is therefore more naturally suited to hard x-ray experiments. The aim of this work was therefore to establish a theoretical model for the scattering and fluorescence processes, so that one could predict the differences between alternative geometries and select an optimum configuration.

  9. Direct observation of the redistribution of sulfur and polysufides in Li-S batteries during first cycle by in situ X-Ray fluorescence microscopy

    SciTech Connect (OSTI)

    Yu, Xiquian; Pan, Huilin; Zhou, Yongning; Northrup, Paul; Xiao, Jie; Bak, Seongmin; Liu, Mingzhao; Nam, Kyung-Wan; Qu, Deyang; Liu, Jun; Wu, Tianpin; Yang, Xiao-Qing

    2015-03-25

    The demands on low cost and high energy density rechargeable batteries for both transportation and large-scale stationary energy storage are stimulating more and more research toward new battery systems. Since sulfur is an earth-abundant material with low cost, research on the high energy density LiS batteries (2600 W h kg?) are getting more and more attention. The reactions between sulfur and lithium during chargedischarge cycling are quite complicated, going through multiple electron transfer process associated with chemical and electrochemical equilibrium between long- and short-chain polysulfide Li?Sx intermediates (1 < x ? 8). It is reported that the long-chain polysulfides can be dissolved into electrolyte with aprotic organic solvents and migrated to the Li anode side. This so-called shuttle effect is believed to be the main reason for capacity loss and low columbic efficiency of the LiS batteries. In the past few years, a great deal of efforts have been made on how to overcome the problem of polysulfide dissolution through new sulfur electrode construction and cell designs, as well as the modification of the electrolyte. Although it has been reported by several publications that some LiS cells can sustain more than a thousand cycles based on the thin film electrode configurations, the long-term cycling stability is still one of the major barriers for the real application of LiS batteries. More in-depth studies on the fundamental understanding of the sulfur reaction mechanism and interactions among the different polysulfide species, the electrolyte and the electrodes are still greatly needed. Various in situ techniques have been developed and applied to study the mechanism of the sulfur chemistry in LiS batteries during electrochemical cycling, such as transmission X-ray microscopy (TXM), X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), UVvisible spectroscopy, and electron paramagnetic resonance (EPR). The applications of

  10. Direct observation of the redistribution of sulfur and polysufides in Li-S batteries during first cycle by in situ X-Ray fluorescence microscopy

    SciTech Connect (OSTI)

    Yu, Xiquian; Pan, Huilin; Zhou, Yongning; Northrup, Paul; Xiao, Jie; Bak, Seongmin; Liu, Mingzhao; Nam, Kyung-Wan; Qu, Deyang; Liu, Jun; Wu, Tianpin; Yang, Xiao-Qing

    2015-03-25

    The demands on low cost and high energy density rechargeable batteries for both transportation and large-scale stationary energy storage are stimulating more and more research toward new battery systems. Since sulfur is an earth-abundant material with low cost, research on the high energy density Li–S batteries (2600 W h kg⁻¹) are getting more and more attention. The reactions between sulfur and lithium during charge–discharge cycling are quite complicated, going through multiple electron transfer process associated with chemical and electrochemical equilibrium between long- and short-chain polysulfide Li₂Sx intermediates (1 < x ≤ 8). It is reported that the long-chain polysulfides can be dissolved into electrolyte with aprotic organic solvents and migrated to the Li anode side. This so-called “shuttle effect” is believed to be the main reason for capacity loss and low columbic efficiency of the Li–S batteries. In the past few years, a great deal of efforts have been made on how to overcome the problem of polysulfide dissolution through new sulfur electrode construction and cell designs, as well as the modification of the electrolyte. Although it has been reported by several publications that some Li–S cells can sustain more than a thousand cycles based on the thin film electrode configurations, the long-term cycling stability is still one of the major barriers for the real application of Li–S batteries. More in-depth studies on the fundamental understanding of the sulfur reaction mechanism and interactions among the different polysulfide species, the electrolyte and the electrodes are still greatly needed. Various in situ techniques have been developed and applied to study the mechanism of the sulfur chemistry in Li–S batteries during electrochemical cycling, such as transmission X-ray microscopy (TXM), X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), UV–visible spectroscopy, and electron paramagnetic resonance (EPR

  11. Direct observation of the redistribution of sulfur and polysufides in Li-S batteries during first cycle by in situ X-Ray fluorescence microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yu, Xiquian; Pan, Huilin; Zhou, Yongning; Northrup, Paul; Xiao, Jie; Bak, Seongmin; Liu, Mingzhao; Nam, Kyung-Wan; Qu, Deyang; Liu, Jun; et al

    2015-03-25

    The demands on low cost and high energy density rechargeable batteries for both transportation and large-scale stationary energy storage are stimulating more and more research toward new battery systems. Since sulfur is an earth-abundant material with low cost, research on the high energy density Li–S batteries (2600 W h kg⁻¹) are getting more and more attention. The reactions between sulfur and lithium during charge–discharge cycling are quite complicated, going through multiple electron transfer process associated with chemical and electrochemical equilibrium between long- and short-chain polysulfide Li₂Sx intermediates (1 < x ≤ 8). It is reported that the long-chain polysulfides canmore » be dissolved into electrolyte with aprotic organic solvents and migrated to the Li anode side. This so-called “shuttle effect” is believed to be the main reason for capacity loss and low columbic efficiency of the Li–S batteries. In the past few years, a great deal of efforts have been made on how to overcome the problem of polysulfide dissolution through new sulfur electrode construction and cell designs, as well as the modification of the electrolyte. Although it has been reported by several publications that some Li–S cells can sustain more than a thousand cycles based on the thin film electrode configurations, the long-term cycling stability is still one of the major barriers for the real application of Li–S batteries. More in-depth studies on the fundamental understanding of the sulfur reaction mechanism and interactions among the different polysulfide species, the electrolyte and the electrodes are still greatly needed. Various in situ techniques have been developed and applied to study the mechanism of the sulfur chemistry in Li–S batteries during electrochemical cycling, such as transmission X-ray microscopy (TXM), X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), UV–visible spectroscopy, and electron paramagnetic resonance (EPR

  12. In-situ synchrotron energy-dispersive x-ray diffraction study of thin Pd foils with Pd:D and Pd:H concentrations up to 1:1

    SciTech Connect (OSTI)

    Knies, D. L.; Grabowski, K. S.; Dominguez, D. D.; Qadri, S. B.; Hubler, G. K.; Violante, V.; Hu, J. Z.; He, J. H.

    2012-10-15

    Time resolved, in-situ, energy dispersive x-ray diffraction was performed in an electrolysis cell during electrochemical loading of palladium foil cathodes with hydrogen and deuterium. Concentrations of H:Pd (D:Pd) up to 1:1 in 0.1 M LiOH (LiOD) in H{sub 2}O (D{sub 2}O) electrolyte were obtained, as determined by both the Pd lattice parameter and cathode resistivity. In addition, some indications on the kinetics of loading and deloading of hydrogen from the Pd surface were obtained. The alpha-beta phase transformations were clearly delineated but no new phases at high concentration were determined.

  13. Predicting Fracture Toughness of TRIP 800 using Phase Properties Characterized by In-Situ High Energy X-Ray Diffraction

    SciTech Connect (OSTI)

    Soulami, Ayoub; Choi, Kyoo Sil; Liu, Wenning N.; Sun, Xin; Khaleel, Mohammad A.; Ren, Yang; Wang, Yan-Dong

    2010-05-01

    TRansformation Induced Plasticity (TRIP) steel is a typical representative of 1st generation advanced high strength steel (AHSS) which exhibits a combination of high strength and excellent ductility due to its multiphase microstructure. In this paper, we study the crack propagation behavior and fracture resistance of a TRIP 800 steel using a microstructure-based finite element method with the various phase properties characterized by in-situ high energy Xray diffraction (HEXRD) technique. Uniaxial tensile tests on the notched TRIP 800 sheet specimens were also conducted, and the experimentally measured tensile properties and R-curves (Resistance curves) were used to calibrate the modeling parameters and to validate the overall modeling results. The comparison between the simulated and experimentally measured results suggests that the micromechanics based modeling procedure can well capture the overall complex crack propagation behaviors and the fracture resistance of TRIP steels. The methodology adopted here may be used to estimate the fracture resistance of various multiphase materials.

  14. In-situ energy dispersive x-ray diffraction study of the growth of CuO nanowires by annealing method

    SciTech Connect (OSTI)

    Srivastava, Himanshu; Ganguli, Tapas; Deb, S. K.; Sant, Tushar; Poswal, H. K.; Sharma, Surinder M.

    2013-10-14

    The in-situ growth of CuO nanowires was studied by Energy Dispersive X-ray Diffraction (EDXRD) to observe the mechanism of growth. The study was carried out for comparison at two temperaturesat 500 C, the optimum temperature of the nanowires growth, and at 300 C just below the temperature range of the growth. The in situ observation revealed the successive oxidation of Cu foil to Cu{sub 2}O layer and finally to CuO layer. Further analysis showed the presence of a compressive stress in CuO layer due to interface at CuO and Cu{sub 2}O layers. The compressive stress was found to increase with the growth of the nanowires at 500 C while it relaxed with the growth of CuO layer at 300 C. The present results do not support the existing model of stress relaxation induced growth of nanowires. Based on the detailed Transmission Electron Microscope, Scanning Electron Microscope, and EDXRD results, a microstructure based growth model has been suggested.

  15. In situ X-ray absorption spectroscopic investigation of the electrochemical conversion reactions of CuF{sub 2}-MoO{sub 3} nanocomposite

    SciTech Connect (OSTI)

    Mansour, A.N.; Badway, F.; Yoon, W.-S.; Chung, K.Y.; Amatucci, G.G.

    2010-12-15

    We have used X-ray absorption spectroscopy at the Cu K-edge to investigate the electrochemical conversion reaction of 20 nm size 85 wt% CuF{sub 2}-15 wt% MoO{sub 3} nanocomposite under in situ conditions. The nanocomposite was prepared by high energy milling. Upon discharge, the lithiation reaction with the nanocomposite resulted in the formation of nanophase metallic Cu, which is consistent with the conversion of CuF{sub 2} into Cu and LiF. Based on XANES and Fourier transforms of EXAFS spectra, we show that the discharge process proceeded via the formation of highly dispersed Cu particles. Based on the coordination number of the first shell of Cu, the average size of the Cu particles was estimated to be in the 1-3 nm range in the fully discharged state. -- Graphical Abstract: Comparison of Fourier transform of in situ Cu K-edge EXAFS spectra for a fully discharged CuF{sub 2{center_dot}}MoO{sub 3} nanocomposite in a nonaqueous Li cell with that of a Cu foil. Quantitative analysis of the Fourier transforms confirmed that the discharge mechanism for the nanocomposite proceeds via the reaction CuF{sub 2}+2Li{yields}Cu+2LiF. The discharge product of Cu is in the form of highly dispersed nanoparticles. Display Omitted

  16. In situ X-ray diffraction strain-controlled study of TiNbZr and TiNbTa shape memory alloys: crystal lattice and transformation features

    SciTech Connect (OSTI)

    Dubinskiy, S.; Prokoshkin, S.; Brailovski, V.; Inaekyan, K.; Korotitskiy, A.

    2014-02-15

    Phase and structure transformations in biomedical Ti21.8Nb6.0Zr (TNZ) and Ti19.7Nb5.8Ta (TNT) shape memory alloys (at.%) under and without load in the ? 150 to 100 S temperature range are studied in situ using an original tensile module for a low-temperature chamber of an X-ray diffractometer. Alpha?- and beta-phase lattice parameters, the crystallographic resource of recovery strain, phase and structure transformation sequences, and microstress appearance and disappearance are examined, compared and discussed. For both alloys, the crystallographic resource of recovery strain decreases with temperature increase to become 4.5% for TNZ and 2.5% for TNT alloy (at RT). Loading at low temperatures leads to additional ??-phase formation and reorientation. Heating under load, as compared to strain-free heating, affects the reverse transformation sequence of both alloys in different ways. For TNZ alloy, strain-free heating results in simultaneous ??? and ???? transformations, whereas during heating under stress, they are sequential: ? + ???? precedes ????. For TNT alloy, strain-free heating results in reverse ???? transformation, whereas during heating under stress, ???? transformation is preceded by ??-phase reorientation. - Highlights: Comparative in situ XRD analysis of TiNbZr(Ta) shape memory alloys is realized. Lattice parameters of ?- and ??-phases are calculated in the ? 150 to + 100 C range. The higher the temperature, the lower the ???? transformation strain. Loading at low temperatures results in ??-phase formation and reorientation. Transformation sequences upon heating with and without loading are different.

  17. A x-ray radiography-densitometry technique for the quantitative determination of metal deposit profiles

    SciTech Connect (OSTI)

    Will, F.G.; Iacovangelo, C.D.

    1984-03-01

    The application of x-ray radiography in conjunction with high resolution optical densitometry for the quantitative determination of metal deposit profiles parallel and perpendicular to the substrate surface is described. The principles of the technique and the range of its applicability are discussed. The technique is applied to the study of zinc deposition on highly porous carbon foams from circulating aqueous zinc bromide solutions. The effect of substrate pore size on the zinc distribution is explored. Zinc is found to deposit predominantly on the porous substrate/electrolyte and substrate/current collector interfaces. Smaller pore size favors smoother and more uniform deposits throughout the substrate.

  18. Reflection thermal diffuse x-ray scattering for quantitative determination of phonon dispersion relations

    SciTech Connect (OSTI)

    Mei, A. B.; Hellman, O.; Schlepuetz, C. M.; Rockett, A.; Chiang, T. -C.; Hultman, L.; Petrov, I.; Greene, J. E.

    2015-11-03

    Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than previously reported transmission TDS, are carried out at room temperature and analyzed using a formalism based upon second-order interatomic force constants and long-range Coulomb interactions to obtain quantitative determinations of MgO phonon dispersion relations (h) over bar omega(j) (q), phonon densities of states g((h) over bar omega), and isochoric temperature-dependent vibrational heat capacities cv (T). We use MgO as a model system for investigating reflection TDS due to its harmonic behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations and densities of states are found to be in good agreement with independent reports from inelastic neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities cv (T), computed within the harmonic approximation from (h) over bar omega(j) (q) values, increase with temperature from 0.4 x 10-4 eV/atom K at 100 K to 1.4 x 10-4 eV/atom K at 200 K and 1.9 x 10-4 eV/atom K at 300 K, in excellent agreement with isobaric heat capacity values cp (T) between 4 and 300 K. We anticipate that the experimental approach developed here will be valuable for determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence (θ ≲ θc where θc is the density-dependent critical angle) allows selective tuning of x-ray penetration depths to ≲ 10 nm.

  19. Reflection thermal diffuse x-ray scattering for quantitative determination of phonon dispersion relations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mei, A. B.; Hellman, O.; Schlepuetz, C. M.; Rockett, A.; Chiang, T. -C.; Hultman, L.; Petrov, I.; Greene, J. E.

    2015-11-03

    Synchrotron reflection x-ray thermal diffuse scattering (TDS) measurements, rather than previously reported transmission TDS, are carried out at room temperature and analyzed using a formalism based upon second-order interatomic force constants and long-range Coulomb interactions to obtain quantitative determinations of MgO phonon dispersion relations (h) over bar omega(j) (q), phonon densities of states g((h) over bar omega), and isochoric temperature-dependent vibrational heat capacities cv (T). We use MgO as a model system for investigating reflection TDS due to its harmonic behavior as well as its mechanical and dynamic stability. Resulting phonon dispersion relations and densities of states are found tomore » be in good agreement with independent reports from inelastic neutron and x-ray scattering experiments. Temperature-dependent isochoric heat capacities cv (T), computed within the harmonic approximation from (h) over bar omega(j) (q) values, increase with temperature from 0.4 x 10-4 eV/atom K at 100 K to 1.4 x 10-4 eV/atom K at 200 K and 1.9 x 10-4 eV/atom K at 300 K, in excellent agreement with isobaric heat capacity values cp (T) between 4 and 300 K. We anticipate that the experimental approach developed here will be valuable for determining vibrational properties of heteroepitaxial thin films since the use of grazing-incidence (θ ≲ θc where θc is the density-dependent critical angle) allows selective tuning of x-ray penetration depths to ≲ 10 nm.« less

  20. Multiple x-ray diffraction to determine transverse and longitudinal lattice deformation in shocked lithium fluoride

    SciTech Connect (OSTI)

    Rigg, P. A.; Gupta, Y. M.

    2001-03-01

    Experimental and analytic developments are described that utilize multiple x-ray diffraction to determine real-time, lattice deformation in directions parallel and perpendicular to shock-wave propagation in single crystals. Using a monochromatic x-ray source, two Bragg reflections were obtained simultaneously from LiF crystals shocked along the [111] and [100] directions. Symmetry permitted the transverse lattice deformation to be determined by measuring interplanar spacing longitudinally and in one other direction. We chose this to be a [110] direction in both cases because the intensity of the (220) reflection is high and because the transverse deformation component from this measurement is relatively large. Due to the complex geometry involved, an analytic model was required to calculate the (220) peak shift under the deformation conditions of interest. This model was used both to design experiments and to analyze the results. It was determined that shock compression below 4 GPa along the [111] orientation -- which results in macroscopic elastic deformation -- produced, as expected, no transverse lattice deformation. In contrast, shock compression along the [100] orientation -- which results in macroscopic elastic-plastic deformation -- produced equal interplanar spacing changes along the longitudinal and transverse directions. The analytic developments and the implications of our results are discussed.

  1. Determination of plutonium in spent nuclear fuel using high resolution X-ray

    SciTech Connect (OSTI)

    McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.

    2015-05-30

    Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39 ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.

  2. Determination of plutonium in spent nuclear fuel using high resolution X-ray

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McIntosh, Kathryn G.; Reilly, Sean D.; Havrilla, George J.

    2015-05-30

    Characterization of Pu is an essential aspect of safeguards operations at nuclear fuel reprocessing facilities. A novel analysis technique called hiRX (high resolution X-ray) has been developed for the direct measurement of Pu in spent nuclear fuel dissolver solutions. hiRX is based on monochromatic wavelength dispersive X-ray fluorescence (MWDXRF), which provides enhanced sensitivity and specificity compared with conventional XRF techniques. A breadboard setup of the hiRX instrument was calibrated using spiked surrogate spent fuel (SSF) standards prepared as dried residues. Samples of actual spent fuel were utilized to evaluate the performance of the hiRX. The direct detection of just 39more » ng of Pu is demonstrated. Initial quantitative results, with error of 4–27% and precision of 2% relative standard deviation (RSD), were obtained for spent fuel samples. The limit of detection for Pu (100 s) within an excitation spot of 200 μm diameter was 375 pg. This study demonstrates the potential for the hiRX technique to be utilized for the rapid, accurate, and precise determination of Pu. Moreover, the results highlight the analytical capability of hiRX for other applications requiring sensitive and selective nondestructive analyses.« less

  3. In-situ x-ray diffraction studies of host-guest properties in nanoporous zinc-triazolate-based framework materials.

    SciTech Connect (OSTI)

    Halder, G. J.; Park, H.; Funk, R. J.; Chapman, K. W.; Engerer, L. K.; Geiser, U.; Schlueter, J. A.

    2009-08-01

    Two nanoporous metal-organic framework materials incorporating the exotridentate bridging ligand 3-amino-1,2,4-triazolate (AmTAZ) have been synthesized through variation of secondary bridging anions: [Zn{sub 3}(AmTAZ){sub 3}S](NO{sub 3}) {center_dot} (H{sub 2}O) (1 {center_dot} (H{sub 2}O)) and Zn{sub 7}(AmTAZ){sub 8}(CO{sub 3}){sub 2}(OH){sub 2} {center_dot} 2(EtOH) (2 {center_dot} 2(EtOH); EtOH = ethanol). 1 {center_dot} (H{sub 2}O) crystallizes in the cubic space group I23 and is constructed from triangular Zn{sub 3}S units that are bridged through AmTAZ ligands into a cationic three-dimensional (3D) network with nitrate and water molecules residing in the cavities. 2 {center_dot} 2(EtOH) crystallizes in the monoclinic space group C2/c and shows a complex 3D network constructed from seven crystallographically unique zinc centers bridged by AmTAZ, carbonate, and hydroxide anions. The porous nature of both materials has been explored by thermogravimetric analysis, nitrogen sorption, and in situ synchrotron-based powder X-ray diffraction.

  4. Thermal equation of state of solid naphthalene to 13 GPa and 773 K: In situ X-ray diffraction study and first principles calculations

    SciTech Connect (OSTI)

    Likhacheva, Anna Y.; Rashchenko, Sergey V.; Chanyshev, Artem D.; Litasov, Konstantin D.; Department of Geology and Geophysics, Novosibirsk State University, Novosibirsk 630090 ; Inerbaev, Talgat M.; Kilin, Dmitry S.

    2014-04-28

    In a wide range of P-T conditions, such fundamental characteristics as compressibility and thermoelastic properties remain unknown for most classes of organic compounds. Here we attempt to clarify this issue by the example of naphthalene as a model representative of polycyclic aromatic hydrocarbons (PAHs). The elastic behavior of solid naphthalene was studied by in situ synchrotron powder X-ray diffraction up to 13 GPa and 773 K and first principles computations to 20 GPa and 773 K. Fitting of the P-V experimental data to Vinet equation of state yielded T 0 = 8.4(3) GPa and T' = 7.2 (3) at V0 = 361 (3), whereas the thermal expansion coefficient was found to be extremely low at P > 3 GPa (about 10(-5) K(-1)), in agreement with theoretical estimation. Such a diminishing of thermal effects with the pressure increase clearly demonstrates a specific feature of the high-pressure behavior of molecular crystals like PAHs, associated with a low energy of intermolecular interactions.

  5. Determination of the polarization state of x rays with the help of anomalous transmission

    SciTech Connect (OSTI)

    Schulze, K. S. Uschmann, I.; Frster, E.; Marx, B.; Paulus, G. G.; Sthlker, T.

    2014-04-14

    Besides intensity and direction, the polarization of an electromagnetic wave provides characteristic information on the crossed medium. Here, we present two methods for the determination of the polarization state of x rays by polarizers based on anomalous transmission (Borrmann effect). Using a polarizer-analyzer setup, we have measured a polarization purity of less than 1.5??10{sup ?5}, three orders of magnitude better than obtained in earlier work. Using the analyzer crystal in multiple-beam case with slightly detuned azimuth, we show how the first three Stokes parameters can be determined with a single angular scan. Thus, polarization analyzers based on anomalous transmission make it possible to detect changes of the polarization in a range from degrees down to arcseconds.

  6. Determination of Diffusion Profiles in Altered Wellbore Cement Using X-ray Computed Tomography Methods

    SciTech Connect (OSTI)

    Mason, Harris E.; Walsh, Stuart D. C.; DuFrane, Wyatt L.; Carroll, Susan A.

    2014-06-17

    The development of accurate, predictive models for use in determining wellbore integrity requires detailed information about the chemical and mechanical changes occurring in hardened Portland cements. X-ray computed tomography (XRCT) provides a method that can nondestructively probe these changes in three dimensions. Here, we describe a method for extracting subvoxel mineralogical and chemical information from synchrotron XRCT images by combining advanced image segmentation with geochemical models of cement alteration. The method relies on determining effective linear activity coefficients (ELAC) for the white light source to generate calibration curves that relate the image grayscales to material composition. The resulting data set supports the modeling of cement alteration by CO2-rich brine with discrete increases in calcium concentration at reaction boundaries. The results of these XRCT analyses can be used to further improve coupled geochemical and mechanical models of cement alteration in the wellbore environment.

  7. X-Ray Fluorescence to Determine Zn in Bolivian Children using Hair Samples

    SciTech Connect (OSTI)

    Tellería Narvaez, C.A.; Fernández Alcázar, S.; Barrientos Zamora, F.G.; Chungara Castro, J.; Luna Lauracia, I.; Mamani Tola, H.; Mita Peralta, E.; Muñoz Gosálvez, A.O.; Romero Bolaños, L.E.; Ramírez Ávila, G.M.

    2014-06-15

    As a first step in the evaluation of nutritional levels in Bolivian children (8–13 years-old), we carried out X-Ray Fluorescence measurements in hair samples of children belonging to different social classes and living either in rural areas or in cities. The aim of this study is to contribute to health policies tending to improve the global health of children and consequently avoid malnutrition. Our method intends to have maximum reliability and at the same time be as simple as possible from an experimental point of view. Additionally, we use this method to determine some other elements such as Fe, Cu, Pb, As and Hg, the latter three considered as contaminants that could be present in children living in areas which neighbor mines and industries. This work will be complemented by some biological and medical tests.

  8. TMX-upgrade. X-ray diagnostic: low-energy temperature determination

    SciTech Connect (OSTI)

    Jacoby, B.A.

    1981-05-01

    In order to properly design the x-ray filter set, a reasonable computational model of the plasma emission had to be developed. The radiation continuum computed consisted of two components: bremsstrahlung and recombination radiation. The contribution of line radiation from low Z impurities was estimated to be negligible for x-ray energies above 1 keV.

  9. Correlation between Active Center Structure and Enhanced Dioxygen Binding in Co(salen) Nanoparticles: Characterization by In Situ Infrared, Raman, and X-ray Absorption Spectroscopies

    SciTech Connect (OSTI)

    Johnson,C.; Long, B.; Nguyen, J.; Day, V.; Borovik, A.; Subramaniam, B.; Guzman, J.

    2008-01-01

    The structure and ligand environment of Co(salen) nanoparticles and unprocessed Co(salen) have been determined by the combined application of infrared, Raman, X-ray absorption near edge structure (XANES), and extended X-ray absorption fine structure (EXAFS) spectroscopies, and X-ray diffraction (XRD) experiments before and during interaction with O2. The Co(salen) nanoparticles were prepared by the precipitation with compressed antisolvent (PCA) technique using commercially obtained Co(salen) [denoted as unprocessed Co(salen)] as the parent compound. The unprocessed Co(salen) particles exist as dimer species with a square-pyramidal coordination geometry that display no measurable O2 binding at room temperature. In sharp contrast, the Co(salen) nanoparticles show near-stoichiometric O2 adsorption, as demonstrated by microbalance gas binding experiments. The spectroscopy results indicate the presence of CoII centers with distorted tetrahedral geometry in the Co(salen) nanoparticles with no evidence of metallic Co clusters, confirmed by the lack of Co-Co contributions at bonding distances in the EXAFS spectra and the presence of characteristic features of CoII in the XANES spectra. The EXAFS data also indicate that there are on average two Co-N and two Co-O bonds with a distance of 1.81 {+-} 0.02 and 1.90 {+-} 0.02 Angstroms, respectively, consistent with typical metal salen structures. Upon O2 binding on the Co(salen) nanoparticles, the XANES results indicate oxidation of the CoII to CoIII, consistent with the vibrational data showing new bands associated with oxygen species bonded to Co centers and the increase in the oxygen coordination number from 1.8 to 2.9 in the EXAFS data. The results indicate that the enhanced O2 binding properties of Co(salen) nanoparticles are related to the unique distorted tetrahedral geometry, which is not observed in the unprocessed samples that contain mainly dimers with square planar geometry. The results presented here provide a

  10. Unambiguous determination of H-atom positions: comparing results from neutron and high-resolution X-ray crystallography

    SciTech Connect (OSTI)

    Gardberg, Anna S.; Del Castillo, Alexis R.; Weiss, Kevin L.; Meilleur, Flora; Blakeley, Matthew P.; Myles, Dean A.A.

    2010-11-19

    The locations of H atoms in biological structures can be difficult to determine using X-ray diffraction methods. Neutron diffraction offers a relatively greater scattering magnitude from H and D atoms. Here, 1.65 {angstrom} resolution neutron diffraction studies of fully perdeuterated and selectively CH{sub 3}-protonated perdeuterated crystals of Pyrococcus furiosus rubredoxin (D-rubredoxin and HD-rubredoxin, respectively) at room temperature (RT) are described, as well as 1.1 {angstrom} resolution X-ray diffraction studies of the same protein at both RT and 100 K. The two techniques are quantitatively compared in terms of their power to directly provide atomic positions for D atoms and analyze the role played by atomic thermal motion by computing the {sigma} level at the D-atom coordinate in simulated-annealing composite D-OMIT maps. It is shown that 1.65 {angstrom} resolution RT neutron data for perdeuterated rubredoxin are {approx}8 times more likely overall to provide high-confidence positions for D atoms than 1.1 {angstrom} resolution X-ray data at 100 K or RT. At or above the 1.0{sigma} level, the joint X-ray/neutron (XN) structures define 342/378 (90%) and 291/365 (80%) of the D-atom positions for D-rubredoxin and HD-rubredoxin, respectively. The X-ray-only 1.1 {angstrom} resolution 100 K structures determine only 19/388 (5%) and 8/388 (2%) of the D-atom positions above the 1.0{sigma} level for D-rubredoxin and HD-rubredoxin, respectively. Furthermore, the improved model obtained from joint XN refinement yielded improved electron-density maps, permitting the location of more D atoms than electron-density maps from models refined against X-ray data only.

  11. DETERMINATION OF HLW GLASS MELT RATE USING X-RAY COMPUTED TOMOGRAPHY

    SciTech Connect (OSTI)

    Choi, A.; Miller, D.; Immel, D.

    2011-10-06

    significant amount of glassy material interspersed among the gas bubbles will be excluded, thus underestimating the melt rate. Likewise, if they are drawn too high, many large voids will be counted as glass, thus overestimating the melt rate. As will be shown later in this report, there is also no guarantee that a given distribution of glass and gas bubbles along a particular sectioned plane will always be representative of the entire sample volume. Poor reproducibility seen in some LMR data may be related to these difficulties of the visual method. In addition, further improvement of the existing melt rate model requires that the overall impact of feed chemistry on melt rate be reflected on measured data at a greater quantitative resolution on a more consistent basis than the visual method can provide. An alternate method being pursued is X-ray computed tomography (CT). It involves X-ray scanning of glass samples, performing CT on the 2-D X-ray images to build 3-D volumetric data, and adaptive segmentation analysis of CT results to not only identify but quantify the distinct regions within each sample based on material density and morphologies. The main advantage of this new method is that it can determine the relative local density of the material remaining in the beaker after the heat treatment regardless of its morphological conditions by selectively excluding all the voids greater than a given volumetric pixel (voxel) size, thus eliminating much of the subjectivity involved in the visual method. As a result, the melt rate data obtained from CT scan will give quantitative descriptions not only on the fully-melted glass, but partially-melted and unmelted feed materials. Therefore, the CT data are presumed to be more reflective of the actual melt rate trends in continuously-fed melters than the visual data. In order to test the applicability of X-ray CT scan to the HLW glass melt rate study, several new series of HLW simulant/frit mixtures were melted in the Melt Rate

  12. Neutron and X-ray Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron and X-ray Scattering Neutron and X-ray Scattering When used together, neutrons and high-energy x-rays provide a supremely powerful scientific tool for mining details about the structure of materials. Combining neutrons and high-energy x-rays to explore the frontiers of materials in extreme environments. Illuminating previously inaccessible time and spatial scales. Enabling in situ research to design, discover, and control materials. Get Expertise Donald Brown Email Pushing the limits of

  13. In situ measurement of interfacial tension of Fe-S and Fe-P liquids under high pressure using X-ray radiography and tomography techniques

    SciTech Connect (OSTI)

    Terasakia, H; Urakawa, S; Funakoshi, K; Nishiyama, N; Wang, Y; Nishida, K; Sakamaki, T; Suzuki, A; Ohtani, E

    2009-09-14

    Interfacial tension is one of the most important properties of the liquid iron alloy that controls the core formation process in the early history of the Earth and planets. In this study, we made high-pressure X-ray radiography and micro-tomography measurements to determine the interfacial tension between liquid iron alloys and silicate melt using the sessile drop method. The measured interfacial tension of liquid Fe-S decreased significantly (802-112 mN/m) with increasing sulphur content (0-40 at%) at 1.5 GPa. In contrast, the phosphorus content of Fe had an almost negligible effect on the interfacial tension of liquid iron. These tendencies in the effects of light elements are consistent with those measured at ambient pressure. Our results suggest that the effect of sulphur content on the interfacial tension of liquid Fe-S (690 mN/m reduction with the addition of 40 at% S) is large compared with the effect of temperature (~273 mN/m reduction with an increase of 200 K). The three-dimensional structure of liquid Fe-S was obtained at ~2 GPa and 1373-1873 K with a high-pressure tomography technique. The Fe-S droplet was quite homogeneous when evaluated in a slice of the three-dimensional image.

  14. X-ray absorption fine structure spectroscopic determination of plutonium speciation at the Rocky Flats environmental technology

    SciTech Connect (OSTI)

    Lezama-pacheco, Juan S; Conradson, Steven D; Clark, David L

    2008-01-01

    X-ray Absorption Fine Structure spectroscopy was used to probe the speciation of the ppm level Pu in thirteen soil and concrete samples from the Rocky Flats Environmental Technology Site in support of the site remediation effort that has been successfully completed since these measurements. In addition to X-ray Absorption Near Edge Spectra, two of the samples yielded Extended X-ray Absorption Fine Structure spectra that could be analyzed by curve-fits. Most of these spectra exhibited features consistent with PU(IV), and more specificaJly, PuO{sub 2+x}-type speciation. Two were ambiguous, possibly indicating that Pu that was originally present in a different form was transforming into PuO{sub 2+x}, and one was interpreted as demonstrating the presence of an unusual Pu(VI) compound, consistent with its source being spills from a PUREX purification line onto a concrete floor and the resultant extreme conditions. These experimental results therefore validated models that predicted that insoluble PuO{sub 2+x} would be the most stable form of Pu in equilibrium with air and water even when the source terms were most likely Pu metal with organic compounds or a Pu fire. A corollary of these models' predictions and other in situ observations is therefore that the minimal transport of Pu that occurred on the site was via the resuspension and mobilization of colloidal particles. Under these conditions, the small amounts of diffusely distributed Pu that were left on the site after its remediation pose only a negligible hazard.

  15. In-Situ Monitoring of the Microstructure of TATB-based Explosive Formulations During Temperature Cycling using Ultra-small Angle X-ray Scattering

    SciTech Connect (OSTI)

    Willey, T M; Hoffman, D M; van Buuren, T; Lauderbach, L; Ilavsky, J; Gee, R H; Maiti, A; Overturf, G; Fried, L

    2008-02-06

    TATB (1,3,5 triamino-2,4,6-trinitrobenzene), an extremely insensitive explosive, is used both in plastic-bonded explosives (PBXs) and as an ultra-fine pressed powder (UFTATB). With both PBXs and UFTATB, an irreversible expansion occurs with temperature cycling known as ratchet growth. In TATB-based explosives using Kel-F 800 as binder (LX-17 and PBX-9502), additional voids, sizes hundreds of nanometers to a few microns account for much of the volume expansion caused by temperature cycling. These voids are in the predicted size regime for hot-spot formation during ignition and detonation, and thus an experimental measure of these voids is important feedback for hot-spot theory and for determining the relationship between void size distributions and detonation properties. Also, understanding the mechanism of ratchet growth allows future choice of explosive/binder mixtures to minimize these types of changes to explosives, further extending PBX shelf life. This paper presents the void size distributions of LX-17, UFTATB, and PBXs using commercially available Cytop M, Cytop A, and Hyflon AD60 binders during temperature cycling between -55 C and 70 C. These void size distributions are derived from ultra-small angle x-ray scattering (USAXS), a technique sensitive to structures from about 10 nm to about 2 mm. Structures with these sizes do not appreciably change in UFTATB, indicating voids or cracks larger than a few microns appear in UFTATB during temperature cycling. Compared to Kel-F 800 binders, Cytop M and Cytop A show relatively small increases in void volume from 0.9% to 1.3% and 0.6% to 1.1%, respectively, while Hyflon fails to prevent irreversible volume expansion (1.2% to 4.6%). Computational mesoscale models of ratchet growth and binder wetting and adhesion properties point to mechanisms of ratchet growth, and are discussed in combination with the experimental results.

  16. In situ synchrotron x-ray studies of dense thin-film strontium-doped lanthanum manganite solid oxide fuel cell cathodes.

    SciTech Connect (OSTI)

    Chang, K. C.; Ingram, B.; Kavaipatti, B.; Yildiz, B.; Hennessy, D.; Salvador, P.; Leyarovski, N.; You, H.; Carnegie Mellon Univ.; Massachusetts Inst. of Tech.

    2009-01-01

    Using a model cathode-electrolyte system composed of epitaxial thin-films of La{sub 1-x}Sr{sub x}MnO{sub 3-{delta}} (LSM) on single crystal yttria-stabilized zirconia (YSZ), we investigated changes in the cation concentration profile in the LSM during heating and under applied potential using grazing incidence x-rays. Pulsed laser deposition (PLD) was used to grow epitaxial LSM(011) on YSZ(111). At room temperature, we find that Sr segregates to form Sr enriched nanoparticles and upon heating the sample to 700 C, Sr is slowly reincorporated into the film. We also find different amounts of Sr segregation as the X-ray beam is moved across the sample. The variation in the amount of Sr segregation is greater on the sample that has been subject to 72 hours of applied potential, suggesting that the electrochemistry plays a role in the Sr segregation.

  17. Polarization periodicity in the B1 columnar phase determined by resonant x-ray scattering

    SciTech Connect (OSTI)

    Folcia, C.L.; Pindak, R.; Ortega, J.; Etxebarria, J.; Pan, L.; Wang, S.; Huang, C.C.; Ponsinet, V.; Barois, P. and Gimeno, N.

    2011-07-14

    We report structural results that evidence the polarization distribution of the blocks in the columnar phase of an achiral bent-core liquid crystal. The study was performed using resonant x-ray diffraction at the sulfur K edge on oriented samples aligned on substrates. The extra periodicity is revealed through the violation of the systematic extinction rule of the structural symmetry group along the experimentally accessible diffraction direction. Further data obtained from the polarization analysis of a resonant reflection give information concerning the transition mechanism between B{sub 1} and B{sub 2} phases.

  18. Polarization Periodicity in the B(1) Columnar Phase Determined by Resonant X-ray Scattering

    SciTech Connect (OSTI)

    C Folcia; J Ortega; J Etxebarria; L Pan; S Wang; C Huang; V Ponsinet; P Barois; R Pindak; N Gimeno

    2011-12-31

    We report structural results that evidence the polarization distribution of the blocks in the columnar phase of an achiral bent-core liquid crystal. The study was performed using resonant x-ray diffraction at the sulfur K edge on oriented samples aligned on substrates. The extra periodicity is revealed through the violation of the systematic extinction rule of the structural symmetry group along the experimentally accessible diffraction direction. Further data obtained from the polarization analysis of a resonant reflection give information concerning the transition mechanism between B{sub 1} and B{sub 2} phases.

  19. Ordering in bio-inorganic hybrid nanomaterials probed by in situ scanning transmission X-ray microscopy

    SciTech Connect (OSTI)

    Lee, Jonathan R. I.; Bagge-Hansen, Michael; Tunuguntla, Ramya; Kim, Kyunghoon; Bangar, Mangesh; Willey, Trevor M.; Tran, Ich C.; Kilcoyne, David A.; Noy, Aleksandr; van Buuren, Tony

    2015-04-15

    Here, phospholipid bilayer coated Si nanowires are one-dimensional (1D) composites that provide versatile bio-nanoelectronic functionality via incorporation of a wide variety of biomolecules into the phospholipid matrix. The physiochemical behaviour of the phospholipid bilayer is strongly dependent on its structure and, as a consequence, substantial modelling and experimental efforts have been directed at the structural characterization of supported bilayers and unsupported phospholipid vesicles; nonetheless, the experimental studies conducted to date have exclusively involved volume-averaged techniques, which do not allow for the assignment of spatially resolved structural variations that could critically impact the performance of the 1D phospholipid-Si NW composites. In this manuscript, we use scanning transmission X-ray microscopy (STXM) to probe bond orientation and bilayer thickness as a function of position with a spatial resolution of ~30 nm for Δ9-cis 1,2-dioleoyl-sn-glycero-3-phosphocholine layers prepared Si NWs. When coupled with small angle X-ray scattering measurements, the STXM data reveal structural motifs of the Si NWs that give rise to multi-bilayer formation and enable assignment of the orientation of specific bonds known to affect the order and rigidity of phospholipid bilayers.

  20. Direct Observation of Phase Transformations in Austenitic Stainless Steel Welds Using In-situ Spatially Resolved and Time-resolved X-ray Diffraction

    SciTech Connect (OSTI)

    Elmer, J.; Wong, J.; Ressler, T.

    1999-09-23

    Spatially resolved x-ray diffraction (SRXRD) and time resolved x-ray diffraction (TRXRD) were used to investigate real time solid state phase transformations and solidification in AISI type 304 stainless steel gas tungsten arc (GTA) welds. These experiments were conducted at Stanford Synchrotron Radiation Laboratory (SSRL) using a high flux beam line. Spatially resolved observations of {gamma} {leftrightarrow} {delta} solid state phase transformations were performed in the heat affected zone (HAZ) of moving welds and time-resolved observations of the solidification sequence were performed in the fusion zone (FZ) of stationary welds after the arc had been terminated. Results of the moving weld experiments showed that the kinetics of the {gamma}{yields}{delta} phase transformation on heating in the HAZ were sufficiently rapid to transform a narrow region surrounding the liquid weld pool to the {delta} ferrite phase. Results of the stationary weld experiments showed, for the first time, that solidification can occur directly to the {delta} ferrite phase, which persisted as a single phase for 0.5s. Upon solidification to {delta}, the {delta} {yields} {gamma} phase transformation followed and completed in 0.2s as the weld cooled further to room temperature.

  1. Simultaneous determination of thorium, niobium, lead, and zinc by photon-induced x-ray fluorescence of lateritic material

    SciTech Connect (OSTI)

    LaBrecque, J.J.; Adames, D.; Parker, W.C.

    1981-01-01

    A rapid method is presented for the simultaneous determinations of thorium, niobium, lead, and zinc in lateritic material from Cerro Impacto, Estado Bolivar, Venezuela. This technique uses a PDP - 11/05 processor - based photon induced x-ray fluorescence system. The total variations of approximately 5% for concentrations of approximately 1 and 10% for concentrations of approximately 0.1% were obtained with only 500 s of fluorescent time. The values obtained by this method were in agreement with values measured by conventional flame atomic absorption spectroscopy for lead and zinc. The values for thorium measured were in agreement with the reported values for the reference materials supplied by NBL.

  2. Oxygen storage properties of La1-xSrxFeO3-δ for chemical-looping reactions–An in-situ neutron and synchrotron X-ray study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Taylor, Daniel D.; Schreiber, Nathaniel J.; Levitas, Benjamin D.; Xu, Wenqian; Rodriguez, Efrain E.; Whitfield, Pamela S.

    2016-05-16

    Oxygen storage materials (OSMs) provide lattice oxygen for a number of chemical-looping reactions including natural gas combustion and methane reforming. La1–xSrxFeO3-δ has shown promise for use as an OSM in methane reforming reactions due to its high product selectivity, fast oxide diffusion, and cycle stability. Here, we investigate the structural evolution of the series La1–xSrxFeO3-δ for x = 0, 1/3, 1/2, 2/3, and 1, using in situ synchrotron X-ray and neutron diffraction, as it is cycled under the conditions of a chemical-looping reactor (methane and oxygen atmospheres). In the compositions x = 1/3, 1/2, 2/3, and 1, we discover anmore » envelope , or temperature range, of oxygen storage capacity (OSC), where oxygen can easily and reversibly be inserted and removed from the OSM. Our in situ X-ray and neutron diffraction results reveal that while samples with higher Sr contents had a higher OSC, those same samples suffered from slower reaction kinetics and some, such as the x = 1/2 and x = 2/3 compositions, had local variations in Sr content, which led to inhomogeneous regions with varying reaction rates. Therefore, we highlight the importance of in situ diffraction studies, and we propose that these measurements are required for the thorough evaluation of future candidate OSMs. Furthermore, we recommend La2/3Sr1/3FeO3-δ as the optimal OSM in the series because its structure remains homogeneous throughout the reaction, and its OSC envelope is similar to that of the higher doped materials.« less

  3. In situ wettability determination improves formation evalution

    SciTech Connect (OSTI)

    Desbrandes, R. )

    1989-08-01

    Wettability is an important petrophysic parameter which affects capillary pressure, relative permeability, electric properties, water cut production, waterflood behavior, and enhanced recovery. This article describes in situ wettability laboratory experiments and field studies. A laboratory model has been built with a 12-ft long 4-in. clear plastic pipe. A 1 7/8-in. slotted plastic liner has been placed on one side. Ottawa sand F-95 has been packed in the annulus either nontreated, in its naturally water wet condition, or after a silane treatment to render it oil wet. Provided in the sand pack for measurement are 12 pressure pickups with an accurate Omega digital pressure gage. A typical pressure profile recorded during oil drive in a water saturated water wet sand pack is shown. The front was left to stabilize for 60 days. A pressure profile recorded during a water drive in an oil saturated oil wet sand pack is shown. The abrupt change from the water pressure gradient can be seen clearly for the water wet and the oil wet sand. It occurs exactly as expected. The measurements show that the change occurs in less than 4 in. which is the distance between two pressure pickups.

  4. Simultaneous detection of electronic structure changes from two elements of a bifunctional catalyst using wavelength-dispersive X-ray emission spectroscopy and in situ electrochemistry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gul, Sheraz; Ng, Jia Wei Desmond; Alonso-Mori, Roberto; Kern, Jan; Sokaras, Dimosthenis; Anzenberg, Eitan; Lassalle-Kaiser, Benedikt; Gorlin, Yelena; Weng, Tsu-Chien; Zwart, Petrus H.; et al

    2015-02-25

    Multielectron catalytic reactions, such as water oxidation, nitrogen reduction, or hydrogen production in enzymes and inorganic catalysts often involve multimetallic clusters. In these systems, the reaction takes place between metals or metals and ligands to facilitate charge transfer, bond formation/breaking, substrate binding, and release of products. In this study, we present a method to detect X-ray emission signals from multiple elements simultaneously, which allows for the study of charge transfer and the sequential chemistry occurring between elements. Kβ X-ray emission spectroscopy (XES) probes charge and spin states of metals as well as their ligand environment. A wavelength-dispersive spectrometer based onmore » the von Hamos geometry was used to disperse Kβ signals of multiple elements onto a position detector, enabling an XES spectrum to be measured in a single-shot mode. This overcomes the scanning needs of the scanning spectrometers, providing data free from temporal and normalization errors and therefore ideal to follow sequential chemistry at multiple sites. We have applied this method to study MnOx-based bifunctional electrocatalysts for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In particular, we investigated the effects of adding a secondary element, Ni, to form MnNiOx and its impact on the chemical states and catalytic activity, by tracking the redox characteristics of each element upon sweeping the electrode potential. In conclusion, the detection scheme we describe here is general and can be applied to time-resolved studies of materials consisting of multiple elements, to follow the dynamics of catalytic and electron transfer reactions.« less

  5. Effect of Cl{sub 2}- and HBr-based inductively coupled plasma etching on InP surface composition analyzed using in situ x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Bouchoule, S.; Vallier, L.; Patriarche, G.; Chevolleau, T.; Cardinaud, C.

    2012-05-15

    A Cl{sub 2}-HBr-O{sub 2}/Ar inductively coupled plasma (ICP) etching process has been adapted for the processing of InP-based heterostructures in a 300-mm diameter CMOS etching tool. Smooth and anisotropic InP etching is obtained at moderate etch rate ({approx}600 nm/min). Ex situ x-ray energy dispersive analysis of the etched sidewalls shows that the etching anisotropy is obtained through a SiO{sub x} passivation mechanism. The stoichiometry of the etched surface is analyzed in situ using angle-resolved x-ray photoelectron spectroscopy. It is observed that Cl{sub 2}-based ICP etching results in a significantly P-rich surface. The phosphorous layer identified on the top surface is estimated to be {approx}1-1.3-nm thick. On the other hand InP etching in HBr/Ar plasma results in a more stoichiometric surface. In contrast to the etched sidewalls, the etched surface is free from oxides with negligible traces of silicon. Exposure to ambient air of the samples submitted to Cl{sub 2}-based chemistry results in the complete oxidation of the P-rich top layer. It is concluded that a post-etch treatment or a pure HBr plasma step may be necessary after Cl{sub 2}-based ICP etching for the recovery of the InP material.

  6. Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; van Veenendaal, M.; Rebizant, J.; Lander, G. H.; Zhu, J. -X.; Thompson, J. D.; Bauer, E. D.

    2015-01-01

    Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M?,? edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [?L = 2.8(1)?B/Pu] and spin moments [?S = ?2.0(1)?B/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of ?Lz? and ?Sz? are in excellent agreement with the values that have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. Finally, we demonstrate that a split M? as well as a narrow M? XMCD signal may serve as a signature of 5f electron localization in actinide compounds.

  7. Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; van Veenendaal, M.; Rebizant, J.; Lander, G. H.; Zhu, J. -X.; Thompson, J. D.; Bauer, E. D.

    2015-01-14

    Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M₄,₅ edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [μL = 2.8(1)μB/Pu] and spin moments [μS = –2.0(1)μB/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of Lz and Sz are in excellent agreement with the values thatmore » have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. We demonstrate that a split M₅ as well as a narrow M₄ XMCD signal may serve as a signature of 5f electron localization in actinide compounds.« less

  8. Dissolution of thin iron oxide films used as models for iron passive films studied by in situ X-ray absorption near-edge spectroscopy

    SciTech Connect (OSTI)

    Virtanen, S; Schmuki, P.; Davenport, A.J.; Vitus, C.M.

    1997-01-01

    This paper reports results from X-ray absorption near-edge spectroscopy (XANES) studies during polarization of thin sputter-deposited iron oxide films in acidic solutions. The dissolution rate of iron oxides in acidic solutions was found to be strongly increased by the presence of Fe{sup 2+} in the oxide. During anodic polarization in acidic solutions, it is found that dissolution is accelerated by chloride anions in comparison with sulfates. In HCl solutions of increasing concentration, not only does the pH decrease, but also the increasing chloride concentration accelerates dissolution. On the other hand, the dissolution rate in sulfuric acid does not depend on the sulfate (bisulfate) concentration. During anodic polarization, the dissolution rate is fairly independent of the potential, except at very high anodic potentials, and the XANES spectra reveal no changes in the average oxide valence during anodic polarization. Thus the dissolution that takes place is mostly chemical rather than electrochemical. During cathodic polarization, the dissolution rate is independent of the anion in the electrolyte. The findings are interpreted in terms of the negative surface charge of n-type oxides at potentials lower than the flatband potential, retarding anion adsorption on the surface. Hence it is suggested that the detrimental role of chloride anions on the stability of iron oxide films is due to a surface complexation effect. The findings and their relevance to the stability of natural passive films on iron surfaces are discussed.

  9. In situ ultra-small-angle X-ray scattering study under uniaxial stretching of colloidal crystals prepared by silica nanoparticles bearing hydrogen-bonding polymer grafts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ishige, Ryohei; Williams, Gregory A.; Higaki, Yuji; Ohta, Noboru; Sato, Masugu; Takahara, Atsushi; Guan, Zhibin

    2016-04-19

    A molded film of single-component polymer-grafted nanoparticles (SPNP), consisting of a spherical silica core and densely grafted polymer chains bearing hydrogen-bonding side groups capable of physical crosslinking, was investigated byin situultra-small-angle X-ray scattering (USAXS) measurement during a uniaxial stretching process. Static USAXS revealed that the molded SPNP formed a highly oriented twinned face-centered cubic (f.c.c.) lattice structure with the [11-1] plane aligned nearly parallel to the film surface in the initial state. Structural analysis ofin situUSAXS using a model of uniaxial deformation induced by rearrangement of the nanoparticles revealed that the f.c.c. lattice was distorted in the stretching direction inmore » proportion to the macroscopic strain until the strain reached 35%, and subsequently changed into other f.c.c. lattices with different orientations. The lattice distortion and structural transition behavior corresponded well to the elastic and plastic deformation regimes, respectively, observed in the stress–strain curve. The attractive interaction of the hydrogen bond is considered to form only at the top surface of the shell and then plays an effective role in cross-linking between nanoparticles. The rearrangement mechanism of the nanoparticles is well accounted for by a strong repulsive interaction between the densely grafted polymer shells of neighboring particles.« less

  10. In situ X-ray data collection and structure phasing of protein crystals at Structural Biology Center 19-ID

    SciTech Connect (OSTI)

    Michalska, Karolina; Tan, Kemin; Chang, Changsoo; Li, Hui; Hatzos-Skintges, Catherine; Molitsky, Michael; Alkire, Randy; Joachimiak, Andrzej

    2015-10-15

    A prototype of a 96-well plate scanner forin situdata collection has been developed at the Structural Biology Center (SBC) beamline 19-ID, located at the Advanced Photon Source, USA. The applicability of this instrument for protein crystal diffraction screening and data collection at ambient temperature has been demonstrated. Several different protein crystals, including selenium-labeled, were used for data collection and successful SAD phasing. Without the common procedure of crystal handling and subsequent cryo-cooling for data collection atT= 100 K, crystals in a crystallization buffer show remarkably low mosaicity (<0.1°) until deterioration by radiation damage occurs. Data presented here show that cryo-cooling can cause some unexpected structural changes. Based on the results of this study, the integration of the plate scanner into the 19-ID end-station with automated controls is being prepared. With improvement of hardware and software,in situdata collection will become available for the SBC user program including remote access.

  11. Boron carbide coatings for neutron detection probed by x-rays, ions, and neutrons to determine thin film quality

    SciTech Connect (OSTI)

    Nowak, G. Strmer, M.; Horstmann, C.; Kampmann, R.; Hche, D.; Lorenz, U.; Mller, M.; Schreyer, A.; Becker, H.-W.; Haese-Seiller, M.; Moulin, J.-F.; Pomm, M.; Randau, C.; Hall-Wilton, R.

    2015-01-21

    Due to the present shortage of {sup 3}He and the associated tremendous increase of its price, the supply of large neutron detection systems with {sup 3}He becomes unaffordable. Alternative neutron detection concepts, therefore, have been invented based on solid {sup 10}B converters. These concepts require development in thin film deposition technique regarding high adhesion, thickness uniformity and chemical purity of the converter coating on large area substrates. We report on the sputter deposition of highly uniform large-area {sup 10}B{sub 4}C coatings of up to 2??m thickness with a thickness deviation below 4% using the Helmholtz-Zentrum Geesthacht large area sputtering system. The {sup 10}B{sub 4}C coatings are x-ray amorphous and highly adhesive to the substrate. Material analysis by means of X-ray-Photoelectron Spectroscopy, Secondary-Ion-Mass-Spectrometry, and Rutherford-Back-Scattering (RBS) revealed low impurities concentration in the coatings. The isotope composition determined by Secondary-Ion-Mass-Spectrometry, RBS, and inelastic nuclear reaction analysis of the converter coatings evidences almost identical {sup 10}B isotope contents in the sputter target and in the deposited coating. Neutron conversion and detection test measurements with variable irradiation geometry of the converter coating demonstrate an average relative quantum efficiency ranging from 65% to 90% for cold neutrons as compared to a black {sup 3}He-monitor. Thus, these converter coatings contribute to the development of {sup 3}He-free prototype detectors based on neutron grazing incidence. Transferring the developed coating process to an industrial scale sputtering system can make alternative {sup 3}He-free converter elements available for large area neutron detection systems.

  12. The determination of sulfur and chlorine in used oil by X-ray fluorescence, ICP and ion chromatography

    SciTech Connect (OSTI)

    Kendall, D.S.; Siao, M.; Hendricks, S.; Schoenwald, S.D.

    1995-12-31

    Methods for the determination of total sulfur and chlorine in used oil were evaluated and compared using actual waste oil samples. Oxygen bomb combustion was followed by either ion chromatographic determination of sulfate and chloride or determination of sulfur by inductively coupled plasma (ICP) optical emission spectroscopy. Total sulfur and chlorine were determined by X-ray fluorescence (XRF) spectroscopy in samples prepared by fivefold dilution in mineral spirits. Oxygen bomb combustion and XRF gave results with good precision, and, by comparison with each other, very little bias. Problems with the settling of particulates in the XRF analyses were largely overcome by using a thin layer method for sample presentation to the spectrometer. Due to the presence of particulates and emulsified water, the determination of sulfur and chlorine in used oil is more difficult than in pristine oil. Bomb combustion, when followed by IC or ICP, and XRF have been shown to be satisfactory analytical methods for determining total sulfur and chlorine in used or waste oil. 12 refs., 1 fig., 3 tabs.

  13. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including film developing and scanning, and image plate scanning. Related images X-ray framing camera being loaded into the TIM in the Trident North Target Area. X-ray framing...

  14. Determining Orientational Structure of Diamondoid Thiols Attached to Silver Using Near Edge X-ray Absorption Fine Structure Spectroscopy

    SciTech Connect (OSTI)

    Willey, T M; Lee, J I; Fabbri, J D; Wang, D; Nielsen, M; Randel, J C; Schreiner, P R; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J P; Carlson, R K; Terminello, L J; Melosh, N A; van Buuren, T

    2008-10-07

    Near-edge x-ray absorption fine structure spectroscopy (NEXAFS) is a powerful tool for determination of molecular orientation in self-assembled monolayers and other surface-attached molecules. A general framework for using NEXAFS to simultaneously determine molecular tilt and twist of rigid molecules attached to surfaces is presented. This framework is applied to self-assembled monolayers of higher diamondoid, hydrocarbon molecules with cubic-diamond-cage structures. Diamondoid monolayers chemisorbed on metal substrates are known to exhibit interesting electronic and surface properties. This work compares molecular orientation in monolayers prepared on silver substrates using two different thiol positional isomers of [121]tetramantane, and thiols derived from two different pentamantane structural isomers, [1212]pentamantane and [1(2,3)4]pentamantane. The observed differences in monolayer structure demonstrate the utility and limitations of NEXAFS spectroscopy and the framework. The results also demonstrate the ability to control diamondoid assembly, in particular the molecular orientational structure, providing a flexible platform for the modification of surface properties with this exciting new class of nanodiamond materials.

  15. History and Solution of the Phase Problem in theTheory of Structure Determination of Crystals from X-ray Diffraction Experiments

    ScienceCinema (OSTI)

    Wolf, Emil [University of Rochester, Rochester, New York, United States

    2010-09-01

    Since the pioneering work of Max von Laue on interference and diffraction of x-rays, carried out almost 100 years ago, numerous attempts have been made to determine structures of crystalline media from x-ray diffraction experiments. The usefulness of all of them has been limited by the inability of measuring phases of the diffracted beams. In this talk, the most important research carried out in this field will be reviewed and a recently obtained solution of the phase problem will be presented.

  16. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diagnostics X-Ray Diagnostics Maintenance of existing devices and development of advanced concepts Contact John Oertel (505) 665-3246 Email Hot, dense matter produced by intense laser interaction with a solid target often produces x-rays with energies from 100 eV to those exceeding 100 keV. A suite of diagnostics and methods have been deployed at Trident to diagnose the x-ray emission from laser-matter interaction experiments, or to use the x-rays as a probe of dense matter. These

  17. Temperature, pressure, and size dependence of Pd-H interaction in size selected Pd-Ag and Pd-Cu alloy nanoparticles: In-situ X-ray diffraction studies

    SciTech Connect (OSTI)

    Sengar, Saurabh K.; Mehta, B. R.; Kulriya, P. K.

    2014-03-21

    In this study, in-situ X-ray diffraction has been carried out to investigate the effect of temperature and pressure on hydrogen induced lattice parameter variation in size selected Pd-Ag and Pd-Cu alloy nanoparticles. The nanoparticles of three different mobility equivalent diameters (20, 40, and 60 nm) having a narrow size distribution were prepared by gas phase synthesis method. In the present range of temperature (350 K to 250 K) and pressure (10{sup −4} to 100 millibars), no α (H/Pd ≤ 0.03) ↔ β (H/Pd ≥ 0.54) phase transition is observed. At temperature higher than 300 °C or pressure lower than 25 millibars, there is a large difference in the rate at which lattice constant varies as a function of pressure and temperature. Further, the lattice variation with temperature and pressure is also observed to depend upon the nanoparticle size. At lower temperature or higher pressure, size of the nanoparticle seems to be relatively less important. These results are explained on the basis of the relative dominance of physical absorption and diffusion of H in Pd alloy nanoparticles at different temperature and pressure. In the present study, absence of α ↔ β phase transition points towards the advantage of using Pd-alloy nanoparticles in applications requiring long term and repeated hydrogen cycling.

  18. Nitrogen termination of single crystal (100) diamond surface by radio frequency N{sub 2} plasma process: An in-situ x-ray photoemission spectroscopy and secondary electron emission studies

    SciTech Connect (OSTI)

    Chandran, Maneesh E-mail: choffman@tx.technion.ac.il; Shasha, Michal; Michaelson, Shaul; Hoffman, Alon E-mail: choffman@tx.technion.ac.il

    2015-09-14

    In this letter, we report the electronic and chemical properties of nitrogen terminated (N-terminated) single crystal (100) diamond surface, which is a promising candidate for shallow NV{sup −} centers. N-termination is realized by an indirect RF nitrogen plasma process without inducing a large density of surface defects. Thermal stability and electronic property of N-terminated diamond surface are systematically investigated under well-controlled conditions by in-situ x-ray photoelectron spectroscopy and secondary electron emission. An increase in the low energy cut-off of the secondary electron energy distribution curve (EDC), with respect to a bare diamond surface, indicates a positive electron affinity of the N-terminated diamond. Exposure to atomic hydrogen results in reorganization of N-terminated diamond to H-terminated diamond, which exhibited a negative electron affinity surface. The change in intensity and spectral features of the secondary electron EDC of the N-terminated diamond is discussed.

  19. Unraveling the Hydrogenation of TiO 2 and Graphene Oxide/TiO 2 Composites in Real Time by in Situ Synchrotron X-ray Powder Diffraction and Pair Distribution Function Analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nguyen-Phan, Thuy-Duong; Liu, Zongyuan; Luo, Si; Gamalski, Andrew D.; Vovchok, Dimitry; Xu, Wenqian; Stach, Eric A.; Polyansky, Dmitry E.; Fujita, Etsuko; Rodriguez, José A.; et al

    2016-02-18

    The functionalization of graphene oxide (GO) and graphene by TiO2 and other metal oxides has attracted considerable attention due to numerous promising applications in catalysis, energy conversion, and storage. We propose hydrogenation of this class of materials as a promising way to tune catalytic properties by altering the structural and chemical transformations that occur upon H incorporation. We also investigate the structural changes that occur during the hydrogenation process using in situ powder X-ray diffraction and pair distribution function analysis of GO–TiO2 and TiO2 under H2 reduction. Sequential Rietveld refinement was employed to gain insight into the evolution of crystalmore » growth of TiO2 nanoparticles in the presence of two-dimensional (2D) GO nanosheets. GO sheets not only significantly retarded the nucleation and growth of rutile impurities, stabilizing the anatase structure, but was also partially reduced to hydrogenated graphene by the introduction of atomic hydrogen into the honeycomb lattice. We discuss the hydrogenation processes and the resulting composite structure that occurs during the incorporation of atomic H and the dynamic structural transformations that leads to a highly active photocatalyst.« less

  20. Determining copper and lead binding in Larrea tridentata through chemical modification and X-ray absorption spectroscopy

    SciTech Connect (OSTI)

    Polette, L.; Gardea-Torresdey, J.L.; Chianelli, R.; Pickering, I.J.; George, G.N.

    1997-12-31

    Metal contamination in soils has become a widespread problem. Emerging technologies, such as phytoremediation, may offer low cost cleanup methods. The authors have identified a desert plant, Larrea tridentata (creosote bush), which naturally grows and uptakes copper and lead from a contaminated area near a smelting operation. They determined, through chemical modification of carboxyl groups with methanol, that these functional groups may be responsible for a portion of copper(II) binding. In contrast, lead binding was minimally affected by modification of carboxyl groups. X-ray absorption spectroscopy studies conducted at Stanford Synchrotron Radiation Laboratory (SSRL) further support copper binding to oxygen-coordinated ligands and also imply that the binding is not solely due to phytochelatins. The EXAFS data indicate the presence of both Cu-O and Cu-S back scatters, no short Cu-Cu interactions, but with significant Cu-Cu back scattering at 3.7 {angstrom} (unlike phytochelatins with predominantly Cu-S coordination and short Cu-Cu interactions at 2.7 {angstrom}). Cu EXAFS of roots and leaves also vary depending on the level of heavy metal contamination in the environment from which the various creosote samples were obtained. In contrast, Pb XANES data of roots and leaves of creosote collected from different contaminated sites indicate no difference in valence states or ligand coordination.

  1. In-situ x-ray diffraction and resistivity analysis of CoSi{sub 2} phase formation with and without a Ti interlayer at rapid thermal annealing rates

    SciTech Connect (OSTI)

    Cabral, C. Jr.; Clevenger, L.A.; Stephenson, G.B.; Brauer, S.; Morales, G.; Ludwig, K.F. Jr.

    1995-09-01

    It has been demonstrated, using synchrotron radiation, that at rapid thermal annealing rates (3 C/s) the 2formation of CoSi{sub 2} shifts to higher temperatures when a thin Ti interlayer is placed between Co and polycrystalline Si. It has also been shown that the Ti interlayer reduces the temperature range between the start of CoSi formation and CoSi{sub 2} formation (i.e. the range over which CoSi is present). 13 nm of Co deposited by physical vapor deposition on polycrystalline Si with and without either a 2 nm or 3.4 nm interlayer of Ti was analyzed in-situ by monitoring x-ray diffraction (XRD) peak intensity as a function of temperature using monochromatic radiation from a synchrotron beam line and by monitoring resistivity as a function of temperature i a rapid thermal annealing (RTA) system. The XRD analysis indicates that the phase formation proceeds from CoSi to CoSi{sub 2} in a temperature range that decreases from about 200 C to 140 C to 115 C with pure Co, Co/2 nm Ti and Co/3.4 nm Ti films respectively. The onset of the CoSi formation increases by about 135 C and 160 C for Co/2 nm Ti and Co/3.4 nm Ti compared to pure Co. The CoSi temperature range decreases from about 75 C in pure Co to less than 50 C in Co/Ti. In-situ RTA resistance along with in-situ XRD analysis indicates that the onset formation temperatures for CoSi are about 440 C, 575 C and 600 C and the temperatures for the completion of CoSi{sub 2} formation are about 640 C, 715 C and 715 C for Co, Co/2 nm Ti and Co/3.4 nm Ti films respectively. The results are consistent with he Ti interlayer acting as a diffusion barrier during the initial stages of the Co-Si reaction.

  2. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm R.; Jacobsen, Chris

    1995-01-01

    A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

  3. Systematics of ground-state quadrupole moments of odd-A deformed nuclei determined with muonic M x rays

    SciTech Connect (OSTI)

    Tanaka, Y.; Steffen, R.M.; Shera, E.B.; Reuter, W.; Hoehn, M.V.; Zumbro, J.D.

    1984-05-01

    The ground-state quadrupole moments of /sup 151/Eu, /sup 153/Eu, /sup 159/Tb, /sup 163/Dy, /sup 167/Er, /sup 177/Hf, /sup 179/Hf, /sup 191/Ir, and /sup 193/Ir were determined by measuring the quadrupole hyperfine-splitting energies of muonic M x rays. The results are Q = 0.903(10) e b for /sup 151/Eu, Q = 2.412(21) e b for /sup 153/Eu, Q = 1.432(8) e b for /sup 159/Tb, Q = 2.648(21) e b for /sup 163/Dy, Q = 3.565(29) e b for /sup 167/Er, Q = 3.365(29) e b for /sup 177/Hf, Q = 3.793(33) e b for /sup 179/Hf, Q = 0.816(9) e b for /sup 191/Ir, and Q = 0.751(9) e b for /sup 193/Ir. The present quadrupole moments, compared with values obtained from electronic-atom hyperfine measurements, show that the Sternheimer correction factors used in the rare-earth electronic-atom analysis are unreliable. Systematics of deformation parameters ..beta../sub 2/ calculated from the present quadrupole moments for odd-A nuclei, and from B(E2) values of Coulomb excitation measurements for even-A nuclei, also indicate that the largest deformation change so far known exists between /sup 151/Eu and /sup 153/Eu. Except at the onset of nuclear deformation, the deformation parameters of the odd-A nuclei are quite consistent with those of the even-A neighbors.

  4. Mass fractal characteristics of silica sonogels as determined by small-angle x-ray scattering and nitrogen adsorption

    SciTech Connect (OSTI)

    Donatti, D.A.; Vollet, D.R.; Ibanez Ruiz, A.; Mesquita, A.; Silva, T.F.P. [Unesp-Universidade Estadual Paulista, IGCE, Departamento de Fisica, P.O. Box 178 CEP, 13500-970 Rio Claro, Sao Paulo (Brazil)

    2005-01-01

    A sample series of silica sonogels was prepared using different water-tetraethoxysilane molar ratio (r{sub w}) in the gelation step of the process in order to obtain aerogels with different bulk densities after the supercritical drying. The samples were analyzed by means of small-angle x-ray-scattering (SAXS) and nitrogen-adsorption techniques. Wet sonogels exhibit mass fractal structure with fractal dimension D increasing from {approx}2.1 to {approx}2.4 and mass-fractal correlation length {xi} diminishing from {approx}13 nm to {approx}2 nm, as r{sub w} is changed in the nominal range from 66 to 6. The process of obtaining aerogels from sonogels and heat treatment at 500 deg. C, in general, increases the mass-fractal dimension D, diminishes the characteristic length {xi} of the fractal structure, and shortens the fractal range at the micropore side for the formation of a secondary structured particle, apparently evolved from the original wet structure at a high resolution level. The overall mass-fractal dimension D of aerogels was evaluated as {approx}2.4 and {approx}2.5, as determined from SAXS and from pore-size distribution by nitrogen adsorption, respectively. The fine structure of the 'secondary particle' developed in the obtaining of aerogels could be described as a surface-mass fractal, with the correlated surface and mass-fractal dimensions decreasing from {approx}2.4 to {approx}2.0 and from {approx}2.7 to {approx}2.5, respectively, as the aerogel bulk density increases from 0.25 (r{sub w}=66) up to 0.91 g/cm{sup 3} (r{sub w}=6)

  5. Mass fractal characteristics of wet sonogels as determined by small-angle x-ray scattering and differential scanning calorimetry

    SciTech Connect (OSTI)

    Vollet, D. R.; Donatti, D. A.; Ibanez Ruiz, A.; Gatto, F. R. [Departamento de Fisica, Unesp-Univerisdade Estadual Paulista, IGCE, P.O. Box 178 CEP 13500-970 Rio Claro, SP (Brazil)

    2006-07-01

    Low density silica sonogels were prepared from acid sonohydrolysis of tetraethoxysilane. Wet gels were studied by small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC tests were carried out under a heating rate of 2 deg. C/min from -120 deg. C up to 30 deg. C. Aerogels were obtained by CO{sub 2} supercritical extraction and characterized by nitrogen adsorption and SAXS. The DSC thermogram displays two distinct endothermic peaks. The first, a broad peak extending from about -80 deg. C up to practically 0 deg. C, was associated to the melting of ice nanocrystals with a crystal size distribution with 'pore' diameter ranging from 1 or 2 nm up to about 60 nm, as estimated from Thomson's equation. The second, a sharp peak with onset temperature close to 0 deg. C, was attributed to the melting of macroscopic crystals. The DSC incremental 'nanopore' volume distribution is in reasonable agreement with the incremental pore volume distribution of the aerogel as determined from nitrogen adsorption. No macroporosity was detected by nitrogen adsorption, probably because the adsorption method applies stress on the sample during measurement, leading to a underestimation of pore volume, or because often positive curvature of the solid surface is in aerogels, making the nitrogen condensation more difficult. According to the SAXS results, the solid network of the wet gels behaves as a mass fractal structure with mass fractal dimension D=2.20{+-}0.01 in a characteristic length scale below {xi}=7.9{+-}0.1 nm. The mass fractal characteristics of the wet gels have also been probed from DSC data by means of an earlier applied modeling for generation of a mass fractal from the incremental ''pore'' volume distribution curves. The results are shown to be in interesting agreement with the results from SAXS.

  6. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    SciTech Connect (OSTI)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of λ-MnO2 transforming to β-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  7. Thermal stability in the blended lithium manganese oxide – Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25°C-580°C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250°C. Formation of MnO with rocksalt structure started at 520°C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of λ-MnO2 transforming to β-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumptionmore » by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.« less

  8. Thermal stability in the blended lithium manganese oxide Lithium nickel cobalt manganese oxide cathode materials: An in situ time-resolved X-Ray diffraction and mass spectroscopy study

    SciTech Connect (OSTI)

    Hu, Enyuan; Bak, Seong Min; Senanayake, Sanjaya D.; Yang, Xiao-Qing; Nam, Kyung-Wan; Zhang, Lulu; Shao, Minhua

    2015-03-01

    Thermal stabilities of a series of blended LiMn2O4(LMO)-LiNi1/3Co1/3Mn1/3O2 (NCM) cathode materials with different weight ratios were studied by in situ time-resolved X-ray diffraction (XRD) combined with mass spectroscopy in the temperature range of 25C-580C under helium atmosphere. Upon heating, the electrochemically delithiated LMO changed into Mn3O4 phase at around 250C. Formation of MnO with rocksalt structure started at 520C. This observation is in contrast to the previous report for chemically delithiate LMO in air, in which a process of ?-MnO2 transforming to ?-MnO2 was observed. Oxygen peak was not observed in all cases, presumably as a result of either consumption by the carbon or detection limit. CO2 profile correlates well with the phase transition and indirectly suggests the oxygen release of the cathode. Introducing NCM into LMO has two effects: first, it makes the high temperature rock-salt phase formation more complicated with more peaks in CO2 profile due to different MO (M = Ni, Mn, Co) phases; secondly, the onset temperature of CO2 release is lowered, implying lowered oxygen release temperature. Upon heating, XRD patterns indicate the NCM part reacts first, followed by the LMO part. This confirms the better thermal stability of LMO over NCM.

  9. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, Natale M.; Stearns, Daniel S.; Hawryluk, Andrew M.; Barbee, Jr., Troy W.

    1989-01-01

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

  10. X-ray beamsplitter

    DOE Patents [OSTI]

    Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

    1987-08-07

    An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

  11. Chest x-Rays

    Broader source: Energy.gov [DOE]

    The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

  12. X-ray generator

    DOE Patents [OSTI]

    Dawson, John M.

    1976-01-01

    Apparatus and method for producing coherent secondary x-rays that are controlled as to direction by illuminating a mixture of high z and low z gases with an intense burst of primary x-rays. The primary x-rays are produced with a laser activated plasma, and these x-rays strip off the electrons of the high z atoms in the lasing medium, while the low z atoms retain their electrons. The neutral atoms transfer electrons to highly excited states of the highly striped high z ions giving an inverted population which produces the desired coherent x-rays. In one embodiment, a laser, light beam provides a laser spark that produces the intense burst of coherent x-rays that illuminates the mixture of high z and low z gases, whereby the high z atoms are stripped while the low z ones are not, giving the desired mixture of highly ionized and neutral atoms. To this end, the laser spark is produced by injecting a laser light beam, or a plurality of beams, into a first gas in a cylindrical container having an adjacent second gas layer co-axial therewith, the laser producing a plasma and the intense primary x-rays in the first gas, and the second gas containing the high and low atomic number elements for receiving the primary x-rays, whereupon the secondary x-rays are produced therein by stripping desired ions in a neutral gas and transfer of electrons to highly excited states of the stripped ions from the unionized atoms. Means for magnetically confining and stabilizing the plasma are disclosed for controlling the direction of the x-rays.

  13. X-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph

    1991-01-01

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  14. Anomalous lattice expansion in yttria stabilized zirconia under simultaneous applied electric and thermal fields: A time-resolved in situ energy dispersive x-ray diffractometry study with an ultrahigh energy synchrotron probe

    SciTech Connect (OSTI)

    Akdogan, E. K.; Savkl Latin-Small-Letter-Dotless-I y Latin-Small-Letter-Dotless-I ld Latin-Small-Letter-Dotless-I z, I.; Bicer, H.; Paxton, W.; Toksoy, F.; Tsakalakos, T.; Zhong, Z.

    2013-06-21

    Nonisothermal densification in 8% yttria doped zirconia (8YSZ) particulate matter of 250 nm median particle size was studied under 215 V/cm dc electric field and 9 Degree-Sign C/min heating rate, using time-resolved in-situ high temperature energy dispersive x-ray diffractometry with a polychromatic 200 keV synchrotron probe. Densification occurred in the 876-905 Degree-Sign C range, which resulted in 97% of the theoretical density. No local melting at particle-particle contacts was observed in scanning electron micrographs, implying densification was due to solid state mass transport processes. The maximum current draw at 905 Degree-Sign C was 3 A, corresponding to instantaneous absorbed power density of 570 W/cm{sup 3}. Densification of 8YSZ was accompanied by anomalous elastic volume expansions of the unit cell by 0.45% and 2.80% at 847 Degree-Sign C and 905 Degree-Sign C, respectively. The anomalous expansion at 905 Degree-Sign C at which maximum densification was observed is characterized by three stages: (I) linear stage, (II) anomalous stage, and (III) anelastic recovery stage. The densification in stage I (184 s) and II (15 s) was completed in 199 s, while anelastic relaxation in stage III lasted 130 s. The residual strains ({epsilon}) at room temperature, as computed from tetragonal (112) and (211) reflections, are {epsilon}{sub (112)} = 0.05% and {epsilon}{sub (211)} = 0.13%, respectively. Time dependence of (211) and (112) peak widths ({beta}) show a decrease with both exhibiting a singularity at 905 Degree-Sign C. An anisotropy in (112) and (211) peak widths of {l_brace} {beta}{sub (112)}/{beta}{sub (211)}{r_brace} = (3:1) magnitude was observed. No phase transformation occurred at 905 Degree-Sign C as verified from diffraction spectra on both sides of the singularity, i.e., the unit cell symmetry remains tetragonal. We attribute the reduction in densification temperature and time to ultrafast ambipolar diffusion of species arising from the

  15. X-Ray Detection

    Office of Scientific and Technical Information (OSTI)

    ratio, I I on I off , recorded with plus (+, blue) and minus (-, red) x-ray helicities. This measurement was taken at -5 mA, which corresponds to a current...

  16. Azine bridged silver coordination polymers: Powder X-ray diffraction route to crystal structure determination of silver benzotriazole

    SciTech Connect (OSTI)

    Rajeswaran, Manju . E-mail: manju.rajeswaran@kodak.com; Blanton, Thomas N.; Giesen, David J.; Whitcomb, David R.; Zumbulyadis, Nicholas; Antalek, Brian J.; Neumann, Marcus M.; Misture, Scott T.

    2006-04-15

    In continuation of our interest in solid-state structures of silver complexes of photographic importance, the structure for silver benzotriazole (AgBZT), has now been obtained. The preferred method for solving crystal structures is via single-crystal X-ray diffraction (XRD). However, for some materials, growing single crystals of appropriate size and quality is often difficult or even impossible. AgBZT is an example of such a silver complex with poor solubility. The usual routes to preparing single crystals using recrystallization from a cooperating solvent resulted in polycrystalline powder samples. We propose a crystal structure for AgBZT, solved from synchrotron X-ray powder diffraction data, using a direct-space Monte Carlo simulated annealing approach. AgBZT crystals are monoclinic (P2{sub 1} /c), with unit cell dimensions, a=14.8052(3) A, b=3.7498(4) A, c=12.3495(12) A, and {beta}=114.200(6){sup o}. The AgBZT complex is constructed from all three of the Benzotriazole (BZT) nitrogens bonding to a separate silver atom. As a consequence of this bonding mode, the structure is a highly cross-linked, coordination polymer.

  17. X-ray Imaging Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray...

  18. X-ray fluorescence mapping

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Microscopy and Imaging: X-ray Fluorescence Mapping Of increasing scientific interest is the detection, quantification and mapping of elemental content of samples, often down...

  19. X-ray microtomography

    SciTech Connect (OSTI)

    Landis, Eric N.; Keane, Denis T.

    2010-12-15

    In this tutorial, we describe X-ray microtomography as a technique to nondestructively characterize material microstructure in three dimensions at a micron level spatial resolution. While commercially available laboratory scale instrumentation is available, we focus our attention on synchrotron-based systems, where we can exploit a high flux, monochromatic X-ray beam to produce high fidelity three-dimensional images. A brief description of the physics and the mathematical analysis behind the technique is followed by example applications to specific materials characterization problems, with a particular focus on the utilization of three-dimensional image processing that can be used to extract a wide range of useful information.

  20. X-ray beam finder

    DOE Patents [OSTI]

    Gilbert, H.W.

    1983-06-16

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  1. DETERMINATION OF THE INTRINSIC LUMINOSITY TIME CORRELATION IN THE X-RAY AFTERGLOWS OF GAMMA-RAY BURSTS

    SciTech Connect (OSTI)

    Dainotti, Maria Giovanna; Petrosian, Vahe'; Singal, Jack; Ostrowski, Michal, E-mail: mdainott@stanford.edu, E-mail: vahep@stanford.edu, E-mail: jacks@slac.stanford.edu, E-mail: dainotti@oa.uj.edu.pl, E-mail: mio@oa.uj.edu.pl [Department of Physics and Astronomy, Stanford University, Via Pueblo Mall 382, Stanford, CA 94305-4060 (United States)

    2013-09-10

    Gamma-ray bursts (GRBs), which have been observed up to redshifts z Almost-Equal-To 9.5, can be good probes of the early universe and have the potential to test cosmological models. Dainotti's analysis of GRB Swift afterglow light curves with known redshifts and a definite X-ray plateau shows an anti-correlation between the rest-frame time when the plateau ends (the plateau end time) and the calculated luminosity at that time (or approximately an anti-correlation between plateau duration and luminosity). Here, we present an update of this correlation with a larger data sample of 101 GRBs with good light curves. Since some of this correlation could result from the redshift dependences of these intrinsic parameters, namely, their cosmological evolution, we use the Efron-Petrosian method to reveal the intrinsic nature of this correlation. We find that a substantial part of the correlation is intrinsic and describe how we recover it and how this can be used to constrain physical models of the plateau emission, the origin of which is still unknown. The present result could help to clarify the debated nature of the plateau emission.

  2. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  3. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  4. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the

  5. Probing convex polygons with X-rays

    SciTech Connect (OSTI)

    Edelsbrunner, H.; Skiena, S.S. )

    1988-10-01

    An X-ray probe through a polygon measures the length of intersection between a line and the polygon. This paper considers the properties of various classes of X-ray probes, and shows how they interact to give finite strategies for completely describing convex n-gons. It is shown that (3n/2)+6 probes are sufficient to verify a specified n-gon, while for determining convex polygons (3n-1)/2 X-ray probes are necessary and 5n+O(1) sufficient, with 3n+O(1) sufficient given that a lower bound on the size of the smallest edge of P is known.

  6. Conduction band offset at GeO{sub 2}/Ge interface determined by internal photoemission and charge-corrected x-ray photoelectron spectroscopies

    SciTech Connect (OSTI)

    Zhang, W. F.; Nishimula, T.; Nagashio, K.; Kita, K.; Toriumi, A.

    2013-03-11

    We report a consistent conduction band offset (CBO) at a GeO{sub 2}/Ge interface determined by internal photoemission spectroscopy (IPE) and charge-corrected X-ray photoelectron spectroscopy (XPS). IPE results showed that the CBO value was larger than 1.5 eV irrespective of metal electrode and substrate type variance, while an accurate determination of valence band offset (VBO) by XPS requires a careful correction of differential charging phenomena. The VBO value was determined to be 3.60 {+-} 0.2 eV by XPS after charge correction, thus yielding a CBO (1.60 {+-} 0.2 eV) in excellent agreement with the IPE results. Such a large CBO (>1.5 eV) confirmed here is promising in terms of using GeO{sub 2} as a potential passivation layer for future Ge-based scaled CMOS devices.

  7. Soft-x-ray

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soft-x-ray emission, plasma equilibrium, and fluctuation studies on Madison Symmetric Torus C. Xiao Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin and Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Canada P. Franz Consorzio RFX-Associazione EURATOM ENEA Sulla Fusione, Italy and Istituto Nazionale di Fisica della Materia, Unita' di Ricerca di Padova, Italy B. E. Chapman and D. Craig Department of Physics, University of

  8. Fluctuation X-Ray Scattering

    SciTech Connect (OSTI)

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  9. Tunable X-ray source

    DOE Patents [OSTI]

    Boyce, James R.

    2011-02-08

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  10. X-ray chemical analyzer for field applications

    DOE Patents [OSTI]

    Gamba, Otto O. M.

    1977-01-01

    A self-supporting portable field multichannel X-ray chemical analyzer system comprising a lightweight, flexibly connected, remotely locatable, radioisotope-excited sensing probe utilizing a cryogenically-cooled solid state semi-conductor crystal detector for fast in situ non-destructive, qualitative and quantitative analysis of elements in solid, powder, liquid or slurried form, utilizing an X-ray energy dispersive spectrometry technique.

  11. Femtosecond nanocrystallography using X-ray lasers for membrane protein

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    structure determination Femtosecond nanocrystallography using X-ray lasers for membrane protein structure determination Authors: Fromme, P., and Spence, J. C. H. Title: Femtosecond nanocrystallography using X-ray lasers for membrane protein structure determination Source: Current Opinion in Structural Biology Year: 2011 Volume: 21 Pages: 509-516 ABSTRACT: The invention of free electron X-ray lasers has opened a new era for membrane protein structure determination with the recent first

  12. SMB, X-ray Emission Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    include X-ray Emission Spectroscopy (XES), Resonant Inelastic X-ray Scattering (RIXS), High Energy Resolution Fluorescence Detection (HERFD) and X-ray Raman Spectroscopy (XRS). ...

  13. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  14. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  15. Single-particle structure determination by correlations of snapshot X-ray diffraction patterns (CXIDB ID 20)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Starodub, D.

    2013-03-25

    This deposition includes the diffraction images generated by the paired polystyrene spheres in random orientations. These images were used to determine and phase the single particle diffraction volume from their autocorrelation functions.

  16. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ

    Office of Scientific and Technical Information (OSTI)

    Transesterification: Laboratory Analytical Procedure (LAP) (Technical Report) | SciTech Connect Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP) Citation Details In-Document Search Title: Determination of Total Lipids as Fatty Acid Methyl Esters (FAME) by in situ Transesterification: Laboratory Analytical Procedure (LAP) This procedure is based on a whole biomass transesterification of lipids to fatty acid

  17. Bandpass x-ray diode and x-ray multiplier detector

    DOE Patents [OSTI]

    Wang, C.L.

    1982-09-27

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  18. Solar X-ray physics

    SciTech Connect (OSTI)

    Bornmann, P.L. )

    1991-01-01

    Research on solar X-ray phenomena performed by American scientists during 1987-1990 is reviewed. Major topics discussed include solar images observed during quiescent times, the processes observed during solar flares, and the coronal, interplanetary, and terrestrial phenomena associated with solar X-ray flares. Particular attention is given to the hard X-ray emission observed at the start of the flare, the energy transfer to the soft X-ray emitting plasma, the late resolution of the flare as observed in soft X-ray, and the rate of occurrence of solar flares as a function of time and latitude. Pertinent aspects of nonflaring, coronal X-ray emission and stellar flares are also discussed. 175 refs.

  19. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E.; Stone, Gary F.; Bell, Perry M.; Robinson, Ronald B.; Chornenky, Victor I.

    2002-01-01

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  20. Structure of a complex of uridine phosphorylase from Yersinia pseudotuberculosis with the modified bacteriostatic antibacterial drug determined by X-ray crystallography and computer analysis

    SciTech Connect (OSTI)

    Balaev, V. V.; Lashkov, A. A. Gabdoulkhakov, A. G.; Seregina, T. A.; Dontsova, M. V.; Mikhailov, A. M.

    2015-03-15

    Pseudotuberculosis and bubonic plague are acute infectious diseases caused by the bacteria Yersinia pseudotuberculosis and Yersinia pestis. These diseases are treated, in particular, with trimethoprim and its modified analogues. However, uridine phosphorylases (pyrimidine nucleoside phosphorylases) that are present in bacterial cells neutralize the action of trimethoprim and its modified analogues on the cells. In order to reveal the character of the interaction of the drug with bacterial uridine phosphorylase, the atomic structure of the unligated molecule of uridine-specific pyrimidine nucleoside phosphorylase from Yersinia pseudotuberculosis (YptUPh) was determined by X-ray diffraction at 1.7 Å resolution with high reliability (R{sub work} = 16.2, R{sub free} = 19.4%; r.m.s.d. of bond lengths and bond angles are 0.006 Å and 1.005°, respectively; DPI = 0.107 Å). The atoms of the amino acid residues of the functionally important secondary-structure elements—the loop L9 and the helix H8—of the enzyme YptUPh were located. The three-dimensional structure of the complex of YptUPh with modified trimethoprim—referred to as 53I—was determined by the computer simulation. It was shown that 53I is a pseudosubstrate of uridine phosphorylases, and its pyrimidine-2,4-diamine group is located in the phosphate-binding site of the enzyme YptUPh.

  1. Evaluation of field-portable X-ray fluorescence spectrometry for the determination of lead contamination on small-arms firing ranges

    SciTech Connect (OSTI)

    Schneider, J.F.; Taylor, J.D.; Bass, D.A.; Zellmer, D.; Rieck, M.

    1995-02-01

    Field analytical methods for the characterization of lead contamination in soil are being developed. In this study, the usefulness of a commercially available, field-portable energy-dispersive X-ray fluorescence spectrometer (XRF) is evaluated for determining the extent of lead contamination in soils on small-arms firing ranges at a military installation. This field screening technique provides significant time and cost savings for the study of sites with lead-contaminated soil. Data obtained with the XRF unit in the field are compared with data obtained from soil samples analyzed in an analytical laboratory by inductively coupled plasma atomic emission spectroscopy. Results indicate that the field-portable XRF unit evaluated in this study provides data that are useful in determining the extent and relative magnitude of lead contamination. For the commercial unit used in this study, improvements in the spectral resolution and in the limit of detection would be required to make the unit more than just a screening tool.

  2. X-Ray Science Education

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TV Network external link DNA Interactive external link Reciprocal Net external link X-ray Science Courses and Programs Various educational efforts are closely related to the...

  3. Determination of the ReA Electron Beam Ion Trap electron beam radius and current density with an X-ray pinhole camera

    SciTech Connect (OSTI)

    Baumann, Thomas M. Lapierre, Alain Kittimanapun, Kritsada; Schwarz, Stefan; Leitner, Daniela; Bollen, Georg

    2014-07-15

    The Electron Beam Ion Trap (EBIT) of the National Superconducting Cyclotron Laboratory at Michigan State University is used as a charge booster and injector for the currently commissioned rare isotope re-accelerator facility ReA. This EBIT charge breeder is equipped with a unique superconducting magnet configuration, a combination of a solenoid and a pair of Helmholtz coils, allowing for a direct observation of the ion cloud while maintaining the advantages of a long ion trapping region. The current density of its electron beam is a key factor for efficient capture and fast charge breeding of continuously injected, short-lived isotope beams. It depends on the radius of the magnetically compressed electron beam. This radius is measured by imaging the highly charged ion cloud trapped within the electron beam with a pinhole camera, which is sensitive to X-rays emitted by the ions with photon energies between 2 keV and 10 keV. The 80%-radius of a cylindrical 800 mA electron beam with an energy of 15 keV is determined to be r{sub 80%}=(212±19)μm in a 4 T magnetic field. From this, a current density of j = (454 ± 83)A/cm{sup 2} is derived. These results are in good agreement with electron beam trajectory simulations performed with TriComp and serve as a test for future electron gun design developments.

  4. X-ray imaging crystal spectrometer for extended X-ray sources

    DOE Patents [OSTI]

    Bitter, Manfred L.; Fraenkel, Ben; Gorman, James L.; Hill, Kenneth W.; Roquemore, A. Lane; Stodiek, Wolfgang; von Goeler, Schweickhard E.

    2001-01-01

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  5. X-ray shearing interferometer

    DOE Patents [OSTI]

    Koch, Jeffrey A.

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  6. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  7. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, Richard M.; Makowiecki, Daniel M.; Skulina, Kenneth M.

    1995-01-01

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  8. Femtosecond X-ray protein nanocrystallography

    SciTech Connect (OSTI)

    Chapman, Henry N.; Barty, Anton; White, Thomas A.; Aquila, Andrew; Schulz, Joachim; DePonte, Daniel P.; Martin, Andrew V.; Coppola, Nicola; Liang, Mengning; Caleman, Carl; Gumprecht, Lars; Stern, Stephan; Nass, Karol; Fromme, Petra; Hunter, Mark S.; Grotjohann, Ingo; Fromme, Raimund; Kirian, Richard A.; Weierstall, Uwe; Doak, R. Bruce; Schmidt, Kevin E.; Wang, Xiaoyu; Spence, John C. H.; Schlichting, Ilme; Epp, Sascha W.; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Rudek, Benedikt; Erk, Benjamin; Schmidt, Carlo; Hömke, André; Strüder, Lothar; Ullrich, Joachim; Krasniqi, Faton; Lomb, Lukas; Shoeman, Robert L.; Bott, Mario; Barends, Thomas R. M.; Kuhnel, Kai-Uwe; Schroter, Claus-Dieter; Hartmann, Robert; Holl, Peter; Reich, Christian; Soltau, Heike; Kimmel, Nils; Weidenspointner, Georg; Pietschner, Daniel; Hauser, Günter; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Andritschke, Robert; Boutet, Sébastien; Krzywinski, Jacek; Bostedt, Christoph; Messerschmidt, Marc; Bozek, John D.; Williams, Garth J.; Bogan, Michael J.; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Gorke, Hubert; Hau-Riege, Stefan P.; Frank, Matthias; Maia, Filipe R. N. C.; Hajdu, Janos; Timneanu, Nicusor; Seibert, M. Marvin; Andreasson, Jakob; Rocker, Andrea; Jönsson, Olof; Svenda, Martin; Holton, James M.; Marchesini, Stefano; Neutze, Richard; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Andersson, Inger; Barthelmess, Miriam; Bajt, Saša; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Björn

    2011-02-03

    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.

  9. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E.; Bell, Perry M.; Robinson, Ronald B.

    2000-01-01

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  10. X-ray microtomographic scanners

    SciTech Connect (OSTI)

    Syryamkin, V. I. Klestov, S. A.

    2015-11-17

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. In conclusion, the main applications of X-ray tomography are presented.

  11. X-Ray Interactions with Matter from the Center for X-Ray Optics...

    Office of Scientific and Technical Information (OSTI)

    X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO) Title: X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO) The primary interactions of ...

  12. Electromechanical x-ray generator

    DOE Patents [OSTI]

    Watson, Scott A; Platts, David; Sorensen, Eric B

    2016-05-03

    An electro-mechanical x-ray generator configured to obtain high-energy operation with favorable energy-weight scaling. The electro-mechanical x-ray generator may include a pair of capacitor plates. The capacitor plates may be charged to a predefined voltage and may be separated to generate higher voltages on the order of hundreds of kV in the AK gap. The high voltage may be generated in a vacuum tube.

  13. X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Henke, B. L.; Gullikson, E. M.; Davis, J. C.

    The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

  14. X-ray spectroscopy of manganese clusters

    SciTech Connect (OSTI)

    Grush, M.M.

    1996-06-01

    Much of this thesis represents the groundwork necessary in order to probe Mn clusters more productively than with conventional Mn K-edge XAS and is presented in Part 1. Part 2 contains the application of x-ray techniques to Mn metalloproteins and includes a prognosis at the end of each chapter. Individual Mn oxidation states are more readily distinguishable in Mn L-edge spectra. An empirical mixed valence simulation routine for determining the average Mn oxidation state has been developed. The first Mn L-edge spectra of a metalloprotein were measured and interpreted. The energy of Mn K{beta} emission is strongly correlated with average Mn oxidation state. K{beta} results support oxidation states of Mn(III){sub 2}(IV){sub 2} for the S{sub 1} state of Photosystem II chemical chemically reduced preparations contain predominantly Mn(II). A strength and limitation of XAS is that it probes all of the species of a particular element in a sample. It would often be advantageous to selectively probe different forms of the same element. The first demonstration that chemical shifts in x-ray fluorescence energies can be used to obtain oxidation state-selective x-ray absorption spectra is presented. Spin-dependent spectra can also be used to obtain a more simplified picture of local structure. The first spin-polarized extended x-ray absorption fine structure using Mn K{beta} fluorescence detection is shown.

  15. Structure of a B{sub 6}-like phase formed from bent-core liquid crystals determined by microbeam x-ray diffraction

    SciTech Connect (OSTI)

    Kang, Sungmin; Tokita, Masatoshi; Takanishi, Yoichi; Takezoe, Hideo; Watanabe, Junji

    2007-10-15

    We studied the structure of the B{sub x} phase formed from the short terminal homolog, 1,3-(4-bromobenzene) bis[4-(4-n-butoxyphenylliminomethyl)benzoate] (4Br-P-4-O-PIMB), by focusing a microbeam of x ray on the well-developed fan-shaped texture. From the highly oriented x-ray patterns detected at the two states of DC-ON and DC-OFF, the B{sub x} structure was definitely illustrated. It is a kind of frustrated one similar to the B{sub 1} phase: the molecules lie perpendicularly to the layer, and the frustration takes place perpendicularly to the bent direction. Unlike in the B{sub 1} phase, however, the size of the resulting antidomain is not definite, but fluctuates from position to position as observed in the B{sub 6} phase.

  16. Synthesis and X-ray crystal structure determination of N-p-methylphenyl-4-benzoyl-3,4-diphenyl-2-azetidinone

    SciTech Connect (OSTI)

    Kabak, Mehmet; Senoez, Huelya; Elmali, Ayhan; Adar, Vildan; Svoboda, Ingrid; Dusek, Michal; Fejfarova, Karla

    2010-12-15

    The title compound, C{sub 29}H{sub 23}NO{sub 2}, has been characterized by single-crystal X-ray diffraction at two different temperatures (303 K and 120 K) and wavelengths (MoK{sub {alpha}} and CuK{sub {alpha}}). The non-centrosymmetric hexagonal crystal structure contains four-membered planar {beta}-lactam ring with an unusually long C-C bond. The {beta}-lactam ring is almost planar.

  17. SMB, X-ray Absorption Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Absorption Spectroscopy X-ray Absorption Spectroscopy X-ray absorption spectroscopy (XAS) is a well-established technique for simultaneous local geometric and electronic structure...

  18. Iran Thomas Auditorium, 8600 Materials For Energy: In Situ Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Energy: In Situ Synchrotron X-Ray Studies for Materials Design and Discovery Stephen K. Streiffer Deputy Associate Laboratory Director Physical Sciences and Engineering...

  19. In-situ determination of energy species yields of intense particle beams

    DOE Patents [OSTI]

    Kugel, Henry W.; Kaita, Robert

    1987-01-01

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  20. In-situ determination of energy species yields of intense particle beams

    DOE Patents [OSTI]

    Kugel, Henry W.; Kaita, Robert

    1987-03-03

    An arrangement is provided for the in-situ determination of energy species yields of intense particle beams. The beam is directed onto a target surface of known composition, such that Rutherford backscattering of the beam occurs. The yield-energy characteristic response of the beam to backscattering from the target is analyzed using Rutherford backscattering techniques to determine the yields of energy species components of the beam.

  1. High resolution energy-sensitive digital X-ray

    DOE Patents [OSTI]

    Nygren, David R.

    1995-01-01

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays From the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detect or such that each one of the of semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction.

  2. High resolution energy-sensitive digital X-ray

    DOE Patents [OSTI]

    Nygren, D.R.

    1995-07-18

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays from the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detector such that each one of the semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction. 5 figs.

  3. Compact x-ray source and panel

    DOE Patents [OSTI]

    Sampayon, Stephen E.

    2008-02-12

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  4. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  5. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary I.; Maccagno, Pierre

    1990-01-01

    An intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator.

  6. Probing Spatial, Electronic Structures with X-ray Scattering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wednesday, September 5, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Gang Chen Seminar: Structures at atomic scales are traditionally determined through X-ray crystallography that ...

  7. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect (OSTI)

    Guo, J.-H.

    2005-07-30

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  8. In situ Nanotomography and Operando Transmission X-ray Microscopy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In order to successfully replace fossil fuels with cleaner, renewable energy sources, rechargeable battery technology for electric vehicles requires dramatic increases in ...

  9. In situ X-ray Characterization of Energy Storage Materials |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A key factor in the global move towards clean, renewable energy is the electrification of the automobile. Current battery technology limits EV (electric vehicles) to a short travel ...

  10. In-situ Characterization of Highly Reversible Phase Transformation by

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron X-ray Laue Microdiffraction In-situ Characterization of Highly Reversible Phase Transformation by Synchrotron X-ray Laue Microdiffraction In-situ Characterization of Highly Reversible Phase Transformation by Synchrotron X-ray Laue Microdiffraction Print Monday, 23 May 2016 09:50 In situ measurement of the orientation matrices for the austenite and martensite phases of the alloy Cu25Au30Zn45 across the interface was performed by synchrotron x-ray Laue microdiffraction at the ALS.

  11. Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Reabsorption of Soft X-Ray Emission at High X-Ray Free-Electron Laser Fluences Citation Details In-Document Search Title: Reabsorption of Soft X-Ray Emission at ...

  12. Hard x-ray delay line for x-ray photon correlation spectroscopy...

    Office of Scientific and Technical Information (OSTI)

    Hard x-ray delay line for x-ray photon correlation spectroscopy and jitter-free pump-probe experiments at LCLS Citation Details In-Document Search Title: Hard x-ray delay line for...

  13. A computational study of x-ray emission from high-Z x-ray sources...

    Office of Scientific and Technical Information (OSTI)

    A computational study of x-ray emission from high-Z x-ray sources on the National Ignition Facility laser Citation Details In-Document Search Title: A computational study of x-ray ...

  14. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free...

    Office of Scientific and Technical Information (OSTI)

    Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser: Application to Spin Crossover Dynamics Citation Details In-Document Search Title: Femtosecond X-ray...

  15. A computational study of x-ray emission from high-Z x-ray sources...

    Office of Scientific and Technical Information (OSTI)

    study of x-ray emission from high-Z x-ray sources on the National Ignition Facility laser Citation Details In-Document Search Title: A computational study of x-ray emission...

  16. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, Craig R.; Bionta, Richard M.; Ables, Elden

    1994-01-01

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  17. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  18. Single-Crystal Raman Spectroscopy and X-ray Crystallography at Beamline X26-C of the NSLS

    SciTech Connect (OSTI)

    D Stoner-Ma; J Skinner; D Schneider; M Cowan; R Sweet; A Orville

    2011-12-31

    Three-dimensional structures derived from X-ray diffraction of protein crystals provide a wealth of information. Features and interactions important for the function of macromolecules can be deduced and catalytic mechanisms postulated. Still, many questions can remain, for example regarding metal oxidation states and the interpretation of 'mystery density', i.e. ambiguous or unknown features within the electron density maps, especially at {approx}2 {angstrom} resolutions typical of most macromolecular structures. Beamline X26-C at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL), provides researchers with the opportunity to not only determine the atomic structure of their samples but also to explore the electronic and vibrational characteristics of the sample before, during and after X-ray diffraction data collection. When samples are maintained under cryo-conditions, an opportunity to promote and follow photochemical reactions in situ as a function of X-ray exposure is also provided. Plans are in place to further expand the capabilities at beamline X26-C and to develop beamlines at NSLS-II, currently under construction at BNL, which will provide users access to a wide array of complementary spectroscopic methods in addition to high-quality X-ray diffraction data.

  19. Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Techniques | Stanford Synchrotron Radiation Lightsource Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic Techniques Wednesday, September 5, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Gang Chen Seminar: Structures at atomic scales are traditionally determined through X-ray crystallography that amplifies scattering intensities by introducing spatial periodicity. For amorphous materials and many macromolecules, such as viruses, proteins and biofilms, it is hard to

  20. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and

  1. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and

  2. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and

  3. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and

  4. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and

  5. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light ... wavelengths relevant to atomic and molecular phenomena) with the advantages of ...

  6. Producing X-rays at the APS

    ScienceCinema (OSTI)

    None

    2013-04-19

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  7. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Nanoimaging: Instruments and Methods X-Ray Nanoimaging: Instruments and Methods Print To be held as part of SPIE. http://spie.org/OP318 August 28-29, 2013; San Diego, California, USA

  8. Phased-Resolved Strain Measuremetns in Hydrated Ordinary Portland Cement Using Synchrotron x-Rays (Prop. 2003-033)

    SciTech Connect (OSTI)

    BIernacki, Joseph J.; Watkins, Thomas R; Parnham, C. J.; Hubbard, Camden R; Bai, J.

    2006-01-01

    X-ray diffraction methods developed for the determination of residual stress states in crystalline materials have been applied to study residual strains and strains because of mechanical loading of ordinary portland cement paste. Synchrotron X-rays were used to make in situ measurements of interplanar spacings in the calcium hydroxide (CH) phase of hydrated neat portland cement under uniaxial compression. The results indicate that strains on the order of 1/100 000 can be resolved providing an essentially new technique by which to measure the phase-resolved meso-scale mechanical behavior of cement under different loading conditions. Evaluation of these strain data in view of published elastic parameters for CH suggests that the CH carries a large fraction of the applied stress and that plastic interactions with the matrix are notable.

  9. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  10. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  11. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  12. Phase-sensitive X-ray imager

    DOE Patents [OSTI]

    Baker, Kevin Louis

    2013-01-08

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  13. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging

  14. Cryotomography x-ray microscopy state

    DOE Patents [OSTI]

    Le Gros, Mark; Larabell, Carolyn A.

    2010-10-26

    An x-ray microscope stage enables alignment of a sample about a rotation axis to enable three dimensional tomographic imaging of the sample using an x-ray microscope. A heat exchanger assembly provides cooled gas to a sample during x-ray microscopic imaging.

  15. Direct detection of x-rays for protein crystallography employing a thick, large area CCD

    DOE Patents [OSTI]

    Atac, Muzaffer; McKay, Timothy

    1999-01-01

    An apparatus and method for directly determining the crystalline structure of a protein crystal. The crystal is irradiated by a finely collimated x-ray beam. The interaction of the x-ray beam with the crystal produces scattered x-rays. These scattered x-rays are detected by means of a large area, thick CCD which is capable of measuring a significant number of scattered x-rays which impact its surface. The CCD is capable of detecting the position of impact of the scattered x-ray on the surface of the CCD and the quantity of scattered x-rays which impact the same cell or pixel. This data is then processed in real-time and the processed data is outputted to produce a image of the structure of the crystal. If this crystal is a protein the molecular structure of the protein can be determined from the data received.

  16. X-rays at Solid-Liquid Surfaces

    SciTech Connect (OSTI)

    Dosch, Helmut (Max Planck Institute for Metals Research) [Max Planck Institute for Metals Research

    2007-05-02

    Solid-liquid interfaces play an important role in many areas of current and future technologies, and in our biosphere. They play a key role in the development of nanofluidics and nanotribology, which sensitively depend on our knowledge of the microscopic structures and phenomena at the solid-liquid interface. The detailed understanding of how a fluid meets a wall is also a theoretical challenge. In particular, the phenomena at repulsive walls are of interest, since they affect many different phenomena, such as water-repellent surfaces or the role of the hydrophobic interaction in protein folding. Recent x-ray reflectivity studies of various solid-liquid interfaces have disclosed rather intriguiing phenomena, which will be discussed in this lecture: premelting of ice in contact with silica; liquid Pb in contact with Si; water in contact with hydrophobic surfaces. These experiments, carried out with high-energy x-ray microbeams, reveal detailed insight into the liquid density profile closest to the wall. A detailed insight into atomistic phenomena at solid-liquid interfaces is also a prerequisite in the microscopic control of electrochemical reactions at interfaces. Recent x-ray studies show the enormous future potential of such non-destructive analytical tools for the in situ observation of (electro-)chemical surface reactions. This lecture will review recent x-ray experiments on solid-liquid interfaces.

  17. CORONAL PROPERTIES OF THE SEYFERT 1.9 GALAXY MCG-05-23-016 DETERMINED FROM HARD X-RAY SPECTROSCOPY WITH NuSTAR

    SciTech Connect (OSTI)

    Balokovi?, M.; Harrison, F. A.; Esmerian, C. J.; Frst, F.; Walton, D. J.; Matt, G.; Marinucci, A.; Zoghbi, A.; Reynolds, C. S.; Ballantyne, D. R.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Fabian, A. C.; Parker, M. L.; Hailey, C. J.; Stern, D.; Zhang, W. W.

    2015-02-10

    Measurements of the high-energy cut-off in the coronal continuum of active galactic nuclei have long been elusive for all but a small number of the brightest examples. We present a direct measurement of the cut-off energy in the nuclear continuum of the nearby Seyfert 1.9 galaxy MCG-05-23-016 with unprecedented precision. The high sensitivity of NuSTAR up to 79 keV allows us to clearly disentangle the spectral curvature of the primary continuum from that of its reflection component. Using a simple phenomenological model for the hard X-ray spectrum, we constrain the cut-off energy to 116{sub ?5}{sup +6} keV with 90% confidence. Testing for more complex models and nuisance parameters that could potentially influence the measurement, we find that the cut-off is detected robustly. We further use simple Comptonized plasma models to provide independent constraints for both the kinetic temperature of the electrons in the corona and its optical depth. At the 90% confidence level, we find kT{sub e} = 29 2 keV and ? {sub e} = 1.23 0.08 assuming a slab (disk-like) geometry, and kT{sub e} = 25 2 keV and ? {sub e} = 3.5 0.2 assuming a spherical geometry. Both geometries are found to fit the data equally well and their two principal physical parameters are correlated in both cases. With the optical depth in the ? {sub e} ? 1 regime, the data are pushing the currently available theoretical models of the Comptonized plasma to the limits of their validity. Since the spectral features and variability arising from the inner accretion disk have been observed previously in MCG-05-23-016, the inferred high optical depth implies that a spherical or disk-like corona cannot be homogeneous.

  18. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  19. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  20. X-Ray Microscopy | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Microscopy X-Ray Microscopy This group exploits the unique capabilities of hard X-ray microscopy to visualize and understand the structure and behavior of hybrid, energy-related, and tailored nanomaterials The Hard X-Ray Nanoprobe, located at Sector 26 of the Advanced Photon Source (APS) and operated by our group and APS, is the only dedicated X-ray microscopy beamline within the portfolios of the nation's Nanoscale Science Research Centers. Our scientific program seeks to understand

  1. Dose optimization in cardiac x-ray imaging

    SciTech Connect (OSTI)

    Gislason-Lee, Amber J.; McMillan, Catherine; Cowen, Arnold R.; Davies, Andrew G.

    2013-09-15

    Purpose: The aim of this research was to optimize x-ray image quality to dose ratios in the cardiac catheterization laboratory. This study examined independently the effects of peak x-ray tube voltage (kVp), copper (Cu), and gadolinium (Gd) x-ray beam filtration on the image quality to radiation dose balance for adult patient sizes.Methods: Image sequences of polymethyl methacrylate (PMMA) phantoms representing two adult patient sizes were captured using a modern flat panel detector based x-ray imaging system. Tin and copper test details were used to simulate iodine-based contrast medium and stents/guide wires respectively, which are used in clinical procedures. Noise measurement for a flat field image and test detail contrast were used to calculate the contrast to noise ratio (CNR). Entrance surface dose (ESD) and effective dose measurements were obtained to calculate the figure of merit (FOM), CNR{sup 2}/dose. This FOM determined the dose efficiency of x-ray spectra investigated. Images were captured with 0.0, 0.1, 0.25, 0.4, and 0.9 mm Cu filtration and with a range of gadolinium oxysulphide (Gd{sub 2}O{sub 2}S) filtration.Results: Optimum x-ray spectra were the same for the tin and copper test details. Lower peak tube voltages were generally favored. For the 20 cm phantom, using 2 Lanex Fast Back Gd{sub 2}O{sub 2}S screens as x-ray filtration at 65 kVp provided the highest FOM considering ESD and effective dose. Considering ESD, this FOM was only marginally larger than that from using 0.4 mm Cu at 65 kVp. For the 30 cm phantom, using 0.25 mm copper filtration at 80 kVp was most optimal; considering effective dose the FOM was highest with no filtration at 65 kVp.Conclusions: These settings, adjusted for x-ray tube loading limits and clinically acceptable image quality, should provide a useful option for optimizing patient dose to image quality in cardiac x-ray imaging. The same optimal x-ray beam spectra were found for both the tin and copper details, suggesting

  2. Non-destructive in-situ method and apparatus for determining radionuclide depth in media

    DOE Patents [OSTI]

    Xu, X. George; Naessens, Edward P.

    2003-01-01

    A non-destructive method and apparatus which is based on in-situ gamma spectroscopy is used to determine the depth of radiological contamination in media such as concrete. An algorithm, Gamma Penetration Depth Unfolding Algorithm (GPDUA), uses point kernel techniques to predict the depth of contamination based on the results of uncollided peak information from the in-situ gamma spectroscopy. The invention is better, faster, safer, and/cheaper than the current practice in decontamination and decommissioning of facilities that are slow, rough and unsafe. The invention uses a priori knowledge of the contaminant source distribution. The applicable radiological contaminants of interest are any isotopes that emit two or more gamma rays per disintegration or isotopes that emit a single gamma ray but have gamma-emitting progeny in secular equilibrium with its parent (e.g., .sup.60 Co, .sup.235 U, and .sup.137 Cs to name a few). The predicted depths from the GPDUA algorithm using Monte Carlo N-Particle Transport Code (MCNP) simulations and laboratory experiments using .sup.60 Co have consistently produced predicted depths within 20% of the actual or known depth.

  3. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalystsEnabling correlative characterization techniques

    SciTech Connect (OSTI)

    Baier, S.; Rochet, A.; Hofmann, G.; Kraut, M.; Grunwaldt, J.-D.

    2015-06-15

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  4. Controlling X-rays With Light

    SciTech Connect (OSTI)

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  5. X-Ray Diffraction Project Final Report, Fiscal Year 2006

    SciTech Connect (OSTI)

    Dane V. Morgan

    2006-10-01

    An x-ray diffraction diagnostic system was developed for determining real-time shock-driven lattice parameter shifts in single crystals at the gas gun at TA-IV at Sandia National Laboratories (SNL). The signal-to-noise ratio and resolution of the system were measured using imaging plates as the detector and by varying the slit width. This report includes tests of the x-ray diffraction system using a phosphor coupled to a charge-coupled device (CCD) camera by a coherent fiber-optic bundle. The system timing delay was measured with a newly installed transistor-transistor logic (TTL) bypass designed to reduce the x-ray delay time. The axial misalignment of the Bragg planes was determined with respect to the optical axis for a set of eight LiF [lithium fluoride] crystals provided by SNL to determine their suitability for gas gun experiments.

  6. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B.

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  7. High speed x-ray beam chopper

    DOE Patents [OSTI]

    McPherson, Armon; Mills, Dennis M.

    2002-01-01

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  8. X-RAY EMISSION FROM MAGNETIC MASSIVE STARS

    SciTech Connect (OSTI)

    Naz, Yal; Petit, Vronique; Rinbrand, Melanie; Owocki, Stan; Cohen, David; Ud-Doula, Asif; Wade, Gregg A.

    2014-11-01

    Magnetically confined winds of early-type stars are expected to be sources of bright and hard X-rays. To clarify the systematics of the observed X-ray properties, we have analyzed a large series of Chandra and XMM-Newton observations, corresponding to all available exposures of known massive magnetic stars (over 100 exposures covering ?60% of stars compiled in the catalog of Petit et al.). We show that the X-ray luminosity is strongly correlated with the stellar wind mass-loss rate, with a power-law form that is slightly steeper than linear for the majority of the less luminous, lower- M-dot B stars and flattens for the more luminous, higher- M-dot O stars. As the winds are radiatively driven, these scalings can be equivalently written as relations with the bolometric luminosity. The observed X-ray luminosities, and their trend with mass-loss rates, are well reproduced by new MHD models, although a few overluminous stars (mostly rapidly rotating objects) exist. No relation is found between other X-ray properties (plasma temperature, absorption) and stellar or magnetic parameters, contrary to expectations (e.g., higher temperature for stronger mass-loss rate). This suggests that the main driver for the plasma properties is different from the main determinant of the X-ray luminosity. Finally, variations of the X-ray hardnesses and luminosities, in phase with the stellar rotation period, are detected for some objects and they suggest that some temperature stratification exists in massive stars' magnetospheres.

  9. X-ray laser microscope apparatus

    DOE Patents [OSTI]

    Suckewer, Szymon; DiCicco, Darrell S.; Hirschberg, Joseph G.; Meixler, Lewis D.; Sathre, Robert; Skinner, Charles H.

    1990-01-01

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  10. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). ...