National Library of Energy BETA

Sample records for determination improving atmospheric

  1. Improved determination of the atmospheric parameters of the pulsating sdB star Feige 48

    SciTech Connect (OSTI)

    Latour, M.; Fontaine, G.; Brassard, P.; Green, E. M.; Chayer, P.

    2014-06-10

    As part of a multifaceted effort to better exploit the asteroseismological potential of the pulsating sdB star Feige 48, we present an improved spectroscopic analysis of that star based on new grids of NLTE, fully line-blanketed model atmospheres. To that end, we gathered four high signal-to-noise ratio time-averaged optical spectra of varying spectral resolutions from 1.0 Å to 8.7 Å, and we made use of the results of four independent studies to fix the abundances of the most important metals in the atmosphere of Feige 48. The mean atmospheric parameters we obtained from our four spectra of Feige 48 are: T {sub eff} = 29,850 ± 60 K, log g = 5.46 ± 0.01, and log N(He)/N(H) = –2.88 ± 0.02. We also modeled, for the first time, the He II line at 1640 Å from the STIS archive spectrum of the star, and with this line we found an effective temperature and a surface gravity that match well with the values obtained with the optical data. With some fine tuning of the abundances of the metals visible in the optical domain, we were able to achieve a very good agreement between our best available spectrum and our best-fitting synthetic one. Our derived atmospheric parameters for Feige 48 are in rather good agreement with previous estimates based on less sophisticated models. This underlines the relatively small effects of the NLTE approach combined with line blanketing in the atmosphere of this particular star, implying that the current estimates of the atmospheric parameters of Feige 48 are reliable and secure.

  2. Quantitative determination of atmospheric hydroperoxyl radical

    DOE Patents [OSTI]

    Springston, Stephen R. (Upton, NY); Lloyd, Judith (Westbury, NY); Zheng, Jun (Stony Brook, NY)

    2007-10-23

    A method for the quantitative determination of atmospheric hydroperoxyl radical comprising: (a) contacting a liquid phase atmospheric sample with a chemiluminescent compound which luminesces on contact with hydroperoxyl radical; (b) determining luminescence intensity from the liquid phase atmospheric sample; and (c) comparing said luminescence intensity from the liquid phase atmospheric sample to a standard luminescence intensity for hydroperoxyl radical. An apparatus for automating the method is also included.

  3. Precision Determination of Atmospheric Extinction at Optical...

    Office of Scientific and Technical Information (OSTI)

    a technique to implement a new strategy to directly measure variations of atmospheric transmittance at optical wavelengths and application of these measurements to calibration...

  4. Precision Determination of Atmospheric Extinction at Optical...

    Office of Scientific and Technical Information (OSTI)

    spectra by their characteristic dependences on wavelength and airmass. State-of-the-art models of atmospheric radiation transport and modern codes are used to accurately...

  5. PRECISION DETERMINATION OF ATMOSPHERIC EXTINCTION AT OPTICAL AND

    Office of Scientific and Technical Information (OSTI)

    NEAR-INFRARED WAVELENGTHS (Journal Article) | SciTech Connect PRECISION DETERMINATION OF ATMOSPHERIC EXTINCTION AT OPTICAL AND NEAR-INFRARED WAVELENGTHS Citation Details In-Document Search Title: PRECISION DETERMINATION OF ATMOSPHERIC EXTINCTION AT OPTICAL AND NEAR-INFRARED WAVELENGTHS The science goals for future ground-based all-sky surveys, such as the Dark Energy Survey, PanSTARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time

  6. Good Is Not Enough: Improving Measurements of Atmospheric Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scatter sunlight, with other particle properties. These properties include particle size, chemical composition, and ability to soak up atmospheric water. By linking these...

  7. Improved atmosphere-ocean coupled modeling in the tropics for climate

    Office of Scientific and Technical Information (OSTI)

    prediction (Technical Report) | SciTech Connect Improved atmosphere-ocean coupled modeling in the tropics for climate prediction Citation Details In-Document Search Title: Improved atmosphere-ocean coupled modeling in the tropics for climate prediction We investigated the initial development of the double ITCZ in the Community Climate System Model (CCSM Version 3) in the central Pacific. Starting from a resting initial condition of the ocean in January, the model developed a warm bias of

  8. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  9. Introducing an Absolute Cavity Pyrgeometer for Improving the Atmospheric Longwave Irradiance Measurement (Presentation)

    SciTech Connect (OSTI)

    Reda, I.; Hansen, L.; Zeng, J.

    2012-08-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG. A total of 408 readings was collected over three different clear nights. The calculated irradiance measured by the ACP was 1.5 W/m2 lower than that measured by the two pyrgeometers that are traceable to WISG. Further development and characterization of the ACP might contribute to the effort of improving the uncertainty and traceability of WISG to SI.

  10. Determination of atmospheric carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect (OSTI)

    Lewin, E.E.; Taggart, R.L.; Lalevic, M.; Bandy, A.R.

    1987-05-01

    A gas chromatography/mass spectrometry (GB/MS) method for determining atmospheric carbonyl sulfide (OCS) with a precision better than 2% is reported. High precision and insensitivity to sample loss and changes in detector response were achieved by using isotopically labeled OCS as an internal standard. Tenax, Molecular Sieve 5A, Carbosieve B, and Carbosieve S were evaluated for collecting atmospheric OCS. Molecular Sieve 5A provided the best trapping and recovery efficiencies.

  11. Improvement of Moist and Radiative Processes in Highly Parallel Atmospheric General Circulation Models: Validation and Development

    SciTech Connect (OSTI)

    Frank, William M.; Hack, James J.; Kiehl, Jeffrey T.

    1997-02-24

    Research on designing an integrated moist process parameterization package was carried. This work began with a study that coupled an ensemble of cloud models to a boundary layer model to examine the feasibility of such a methodology for linking boundary layer and cumulus parameterization schemes. The approach proved feasible, prompting research to design and evaluate a coupled parameterization package for GCMS. This research contributed to the development of an Integrated Cumulus Ensemble-Turbulence (ICET) parameterization package. This package incorporates a higher-order turbulence boundary layer that feeds information concerning updraft properties and the variances of temperature and water vapor to the cloud parameterizations. The cumulus ensemble model has been developed, and initial sensitivity tests have been performed in the single column model (SCM) version of CCM2. It is currently being coupled to a convective wake/gust front model. The major function of the convective wake/gust front model is to simulate the partitioning of the boundary layer into disturbed and undisturbed regions. A second function of this model is to predict the nonlinear enhancement of surface to air sensible heat and moisture fluxes that occur in convective regimes due to correlations between winds and anomalously cold, dry air from downdrafts in the gust front region. The third function of the convective wake/gust front model is to predict the amount of undisturbed boundary layer air lifted by the leading edge of the wake and the height to which this air is lifted. The development of the wake/gust front model has been completed, and it has done well in initial testing as a stand-alone component. The current task, to be completed by the end of the funding period, is to tie the wake model to a cumulus ensemble model and to install both components into the single column model version of CCM3 for evaluation. Another area of parametrization research has been focused on the representation of cloud radiative properties. An examination of the CCM2 simulation characteristics indicated that many surface temperature and warm land precipitation problems were linked to deficiencies in the specification of cloud optical properties, which allowed too much shortwave radiation to reach the surface. In-cloud liquid water path was statically specified in the CCM2 using a "prescribed, meridionally and height varying, but time independent, cloud liquid water density profile, which was analytically determined from a meridionally specified liquid water scale height. Single-column model integrations were conducted to explore alternative formulations for the cloud liquid water path diagnostic, converging on an approach that employs a similar, but state-dependent technique for determining in-cloud liquid water concentration. The new formulation, results in significant improvements to both the top-of- atmosphere and surface energy budgets. In particular, when this scheme is incorporated in the three-dimensional GCM, simulated July surface temperature biases are substantially reduced, where summer precipitation over the northern hemisphere continents, as well as precipitation rates over most all warm land areas, is more consistent with observations". This improved parameterization has been incorporated in the CCM3.

  12. Improved Meteorological Input for Atmospheric Release Decision support Systems and an Integrated LES Modeling System for Atmospheric Dispersion of Toxic Agents: Homeland Security Applications

    SciTech Connect (OSTI)

    Arnold, E; Simpson, M; Larsen, S; Gash, J; Aluzzi, F; Lundquist, J; Sugiyama, G

    2010-04-26

    When hazardous material is accidently or intentionally released into the atmosphere, emergency response organizations look to decision support systems (DSSs) to translate contaminant information provided by atmospheric models into effective decisions to protect the public and emergency responders and to mitigate subsequent consequences. The Department of Homeland Security (DHS)-led Interagency Modeling and Atmospheric Assessment Center (IMAAC) is one of the primary DSSs utilized by emergency management organizations. IMAAC is responsible for providing 'a single piont for the coordination and dissemination of Federal dispersion modeling and hazard prediction products that represent the Federal position' during actual or potential incidents under the National Response Plan. The Department of Energy's (DOE) National Atmospheric Release Advisory Center (NARAC), locatec at the Lawrence Livermore National Laboratory (LLNL), serves as the primary operations center of the IMAAC. A key component of atmospheric release decision support systems is meteorological information - models and data of winds, turbulence, and other atmospheric boundary-layer parameters. The accuracy of contaminant predictions is strongly dependent on the quality of this information. Therefore, the effectiveness of DSSs can be enhanced by improving the meteorological options available to drive atmospheric transport and fate models. The overall goal of this project was to develop and evaluate new meteorological modeling capabilities for DSSs based on the use of NASA Earth-science data sets in order to enhance the atmospheric-hazard information provided to emergency managers and responders. The final report describes the LLNL contributions to this multi-institutional effort. LLNL developed an approach to utilize NCAR meteorological predictions using NASA MODIS data for the New York City (NYC) region and demonstrated the potential impact of the use of different data sources and data parameterizations on IMAAC/NARAC fate and transport predictions. A case study involving coastal sea breeze circulation patterns in the NYC region was used to investigate the sensitivity of atmospheric dispersion results on the source of three-dimensional wind field data.

  13. Improved determination of the width of the top quark

    SciTech Connect (OSTI)

    Abazov V. M.; Abbott B.; Acharya B. S.; Adams M.; Adams T.; Alexeev G. D.; Alkhazov G.; Alton A.; Alverson G.; Aoki M.; Askew A.; Asman B.; Atkins S.; Atramentov O.; Augsten K.; Avila C.; BackusMayes J.; Badaud F.; Bagby L.; Baldin B.; Bandurin D. V.; Banerjee S.; Barberis E.; Baringer P.; Barreto J.; Bartlett J. F.; Bassler U.; Bazterra V.; Bean A.; Begalli M.; Belanger-Champagne C.; Bellantoni L.; Beri S. B.; Bernardi G.; Bernhard R.; Bertram I.; Besancon M.; Beuselinck R.; Bezzubov V. A.; Bhat P. C.; Bhatia S.; Bhatnagar V.; Blazey G.; Blessing S.; Bloom K.; Boehnlein A.; Boline D.; Boos E. E.; Borissov G.; Bose T.; Brandt A.; Brandt O.; Brock R.; Brooijmans G.; Bross A.; Brown D.; Brown J.; Bu X. B.; Buehler M.; Buescher V.; Bunichev V.; Burdin S.; Burnett T. H.; Buszello C. P.; Calpas B.; Camacho-Perez E.; Carrasco-Lizarraga M. A.; Casey C. K.; Castilla-Valdez H.; Chakrabarti S.; Chakraborty D.; Chan M.; Chandra A.; Chapon E.; Chen G.; Chevalier-Thery S.; Cho D. K.; Cho S. W.; Choi S.; Choudhary B.; Cihangir S.; Claes D.; Clutter J.; Cooke M.; Cooper W. E.; Corcoran M.; Couderc F.; Cousinou M. -C.; Croc A.; Cutts D.; Das A.; Davies G.; de Jong S. J.; De La Cruz-Burelo E.; Deliot F.; Demina R.; Denisov D.; Denisov S. P.; Desai S.; Deterre C.; DeVaughan K.; Diehl H. T.; Diesburg M.; Ding P. F.; Dominguez A.; Dorland T.; Dubey A.; Dudko L. V.; Duggan D.; Duperrin A.; Dutt S.; Dyshkant A.; Eads M.; Edmunds D.; Ellison J.; Elvira V. D.; Enari Y.; Evans H.; Evdokimov A.; Evdokimov V. N.; Facini G.; Ferbel T.; Fiedler F.; Filthaut F.; Fisher W.; Fisk H. E.; Fortner M.; Fox H.; Fuess S.; Garcia-Bellido A.; Garcia-Guerra G. A.; Gavrilov V.; Gay P.; Geng W.; Gerbaudo D.; Gerber C. E.; Gershtein Y.; Ginther G.; Golovanov G.; Goussiou A.; Graf C. P.; Grannis P. D.; Greder S.; Greenlee H.; Greenwood Z. D.; Gregores E. M.; Grenier G.; Gris Ph.; Grivaz J. -F.; Grohsjean A.; Gruenendahl S.; Gruenewald M. W.; Guillemin T.; Gutierrez G.; Gutierrez P.; Haas A.; Hagopian S.; Haley J.; Han L.; Harder K.; Harel A.; Hauptman J. M.; Hays J.; Head T.; Hebbeker T.; Hedin D.; Hegab H.; Heinson A. P.; Heintz U.; Hensel C.; La Cruz I. Heredia-De; Herner K.; Hesketh G.; Hildreth M. D.; Hirosky R.; Hoang T.; Hobbs J. D.; Hoeneisen B.; Hohlfeld M.; Hubacek Z.; Hynek V.; Iashvili I.; Ilchenko Y.; Illingworth R.; Ito A. S.; Jabeen S.; Jaffre M.; Jamin D.; Jayasinghe A.; Jesik R.; Johns K.; Johnson M.; Jonckheere A.; Jonsson P.; Joshi J.; Jung A. W.; Juste A.; Kaadze K.; Kajfasz E.; Karmanov D.; Kasper P. A.; Katsanos I.; Kehoe R.; Kermiche S.; Khalatyan N.; Khanov A.; Kharchilava A.; Kharzheev Y. N.; Kohli J. M.; Kozelov A. V.; Kraus J.; Kulikov S.; Kumar A.; Kupco A.; Kurca T.; Kuzmin V. A.; Lammers S.; Landsberg G.; Lebrun P.; Lee H. S.; Lee S. W.; Lee W. M.; Lellouch J.; Li H.; Li L.; Li Q. Z.; Lietti S. M.; Lim J. K.; Lincoln D.; Linnemann J.; Lipaev V. V.; Lipton R.; Liu Y.; Lobodenko A.; Lokajicek M.; de Sa R. Lopes; Lubatti H. J.; Luna-Garcia R.; Lyon A. L.; Maciel A. K. A.; Mackin D.; Madar R.; Magana-Villalba R.; Malik S.; Malyshev V. L.; Maravin Y.; Martinez-Ortega J.; McCarthy R.; McGivern C. L.; Meijer M. M.; Melnitchouk A.; Menezes D.; Mercadante P. G.; Merkin M.; et al.

    2012-05-04

    We present an improved determination of the total width of the top quark, {Gamma}{sub t}, using 5.4 fb{sup -1} of integrated luminosity collected by the D0 Collaboration at the Tevatron p{bar p} Collider. The total width {Gamma}{sub t} is extracted from the partial decay width {Gamma}(t {yields} Wb) and the branching fraction {Beta}(t {yields} Wb). {Gamma}(t {yields} Wb) is obtained from the t-channel single top-quark production cross section and {Beta}(t {yields} Wb) is measured in t{bar t} events. For a top mass of 172.5 GeV, the resulting width is {Gamma}{sub t} = 2.00{sub -0.43}{sup +0.47} GeV. This translates to a top-quark lifetime of {tau}{sub t} = (3.29{sub -0.63}{sup +0.90}) x 10{sup -25} s. We also extract an improved direct limit on the Cabibbo-Kobayashi-Maskawa quark-mixing matrix element 0.81 < |V{sub tb}| {le} 1 at 95% C.L. and a limit of |V{sub tb}| < 0.59 for a high-mass fourth-generation bottom quark assuming unitarity of the fourth-generation quark-mixing matrix.

  14. Introducing an Absolute Cavity Pyrgeometer (ACP) for Improving the Atmospheric Longwave Irradiance Measurement (Poster)

    SciTech Connect (OSTI)

    Reda, I.; Stoffel, T.

    2012-03-01

    Advancing climate change research requires accurate and traceable measurement of the atmospheric longwave irradiance. Current measurement capabilities are limited to an estimated uncertainty of larger than +/- 4 W/m2 using the interim World Infrared Standard Group (WISG). WISG is traceable to the Systeme international d'unites (SI) through blackbody calibrations. An Absolute Cavity Pyrgeometer (ACP) is being developed to measure absolute outdoor longwave irradiance with traceability to SI using the temperature scale (ITS-90) and the sky as the reference source, instead of a blackbody. The ACP was designed by NREL and optically characterized by the National Institute of Standards and Technology (NIST). Under clear-sky and stable conditions, the responsivity of the ACP is determined by lowering the temperature of the cavity and calculating the rate of change of the thermopile output voltage versus the changing net irradiance. The absolute atmospheric longwave irradiance is then calculated with an uncertainty of +/- 3.96 W/m2 with traceability to SI. The measured irradiance by the ACP was compared with the irradiance measured by two pyrgeometers calibrated by the World Radiation Center with traceability to the WISG.

  15. Precision laser surveying instrument using atmospheric turbulence compensation by determining the absolute displacement between two laser beam components

    DOE Patents [OSTI]

    Veligdan, James T. (Manorville, NY)

    1993-01-01

    Atmospheric effects on sighting measurements are compensated for by adjusting any sighting measurements using a correction factor that does not depend on atmospheric state conditions such as temperature, pressure, density or turbulence. The correction factor is accurately determined using a precisely measured physical separation between two color components of a light beam (or beams) that has been generated using either a two-color laser or two lasers that project different colored beams. The physical separation is precisely measured by fixing the position of a short beam pulse and measuring the physical separation between the two fixed-in-position components of the beam. This precisely measured physical separation is then used in a relationship that includes the indexes of refraction for each of the two colors of the laser beam in the atmosphere through which the beam is projected, thereby to determine the absolute displacement of one wavelength component of the laser beam from a straight line of sight for that projected component of the beam. This absolute displacement is useful to correct optical measurements, such as those developed in surveying measurements that are made in a test area that includes the same dispersion effects of the atmosphere on the optical measurements. The means and method of the invention are suitable for use with either single-ended systems or a double-ended systems.

  16. Improving Convection Parameterization Using ARM Observations and NCAR Community Atmosphere Model

    SciTech Connect (OSTI)

    Zhang, Guang J

    2013-07-29

    Highlight of Accomplishments: We made significant contribution to the ASR program in this funding cycle by better representing convective processes in GCMs based on knowledge gained from analysis of ARM/ASR observations. In addition, our work led to a much improved understanding of the interaction among aerosol, convection, clouds and climate in GCMs.

  17. Improved atmosphere-ocean coupled modeling in the tropics for climate prediction

    SciTech Connect (OSTI)

    Zhang, Minghua

    2015-01-01

    We investigated the initial development of the double ITCZ in the Community Climate System Model (CCSM Version 3) in the central Pacific. Starting from a resting initial condition of the ocean in January, the model developed a warm bias of sea-surface temperature (SST) in the central Pacific from 5oS to 10oS in the first three months. We found this initial bias to be caused by excessive surface shortwave radiation that is also present in the standalone atmospheric model. The initial bias is further amplified by biases in both surface latent heat flux and horizontal heat transport in the upper ocean. These biases are caused by the responses of surface winds to SST bias and the thermocline structure to surface wind curls. We also showed that the warming biases in surface solar radiation and latent heat fluxes are seasonally offset by cooling biases from reduced solar radiation after the austral summer due to cloud responses and in the austral fall due to enhanced evaporation when the maximum SST is closest to the equator. The warming biases from the dynamic heat transport by ocean currents however stay throughout all seasons once they are developed, which are eventually balanced by enhanced energy exchange and penetration of solar radiation below the mixed layer. Our results also showed that the equatorial cold tongue develops after the warm biases in the south central Pacific, and the overestimation of surface shortwave radiation recurs in the austral summer in each year.

  18. CX-007901: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-007901: Categorical Exclusion Determination Improving Atmospheric Models for Offshore Wind Resource Mapping and Prediction Using LIDAR, Aircraft, and In-Ocean...

  19. Ambient-atmosphere glow discharge for determination of elemental concentration in solutions in a high-throughput or transient fashion

    DOE Patents [OSTI]

    Webb, Michael R. (Somerville, MA); Hieftje, Gary M. (Bloomington, IN); Andrade, Francisco (Leeds, GB)

    2011-04-19

    An ambient atmosphere glow discharge spectrometer is disclosed having a capillary, two electrodes and a means for recording the atomic emissions.

  20. Modeling global atmospheric CO2 with improved emission inventories and CO2 production from the oxidation of other carbon species

    SciTech Connect (OSTI)

    Nassar, Ray; Jones, DBA; Suntharalingam, P; Chen, j.; Andres, Robert Joseph; Wecht, K. J.; Yantosca, R. M.; Kulawik, SS; Bowman, K; Worden, JR; Machida, T; Matsueda, H

    2010-01-01

    The use of global three-dimensional (3-D) models with satellite observations of CO2 in inverse modeling studies is an area of growing importance for understanding Earth s carbon cycle. Here we use the GEOS-Chem model (version 8-02-01) CO2 mode with multiple modifications in order to assess their impact on CO2 forward simulations. Modifications include CO2 surface emissions from shipping (0.19 PgC yr 1), 3-D spatially-distributed emissions from aviation (0.16 PgC yr 1), and 3-D chemical production of CO2 (1.05 PgC yr 1). Although CO2 chemical production from the oxidation of CO, CH4 and other carbon gases is recognized as an important contribution to global CO2, it is typically accounted for by conversion from its precursors at the surface rather than in the free troposphere. We base our model 3-D spatial distribution of CO2 chemical production on monthly-averaged loss rates of CO (a key precursor and intermediate in the oxidation of organic carbon) and apply an associated surface correction for inventories that have counted emissions of CO2 precursors as CO2. We also explore the benefit of assimilating satellite observations of CO into GEOS-Chem to obtain an observation-based estimate of the CO2 chemical source. The CO assimilation corrects for an underestimate of atmospheric CO abundances in the model, resulting in increases of as much as 24% in the chemical source during May June 2006, and increasing the global annual estimate of CO2 chemical production from 1.05 to 1.18 Pg C. Comparisons of model CO2 with measurements are carried out in order to investigate the spatial and temporal distributions that result when these new sources are added. Inclusion of CO2 emissions from shipping and aviation are shown to increase the global CO2 latitudinal gradient by just over 0.10 ppm (3%), while the inclusion of CO2 chemical production (and the surface correction) is shown to decrease the latitudinal gradient by about 0.40 ppm (10%) with a complex spatial structure generally resulting in decreased CO2 over land and increased CO2 over the oceans. Since these CO2 emissions are omitted or misrepresented in most inverse modeling work to date, their implementation in forward simulations should lead to improved inverse modeling estimates of terrestrial biospheric fluxes.

  1. Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys

    DOE Patents [OSTI]

    Berman, Robert M. (Pittsburgh, PA); Cohen, Isadore (Pittsburgh, PA)

    1990-01-01

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.

  2. Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys

    DOE Patents [OSTI]

    Berman, R.M.; Cohen, I.

    1988-04-26

    A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.

  3. An improved thin film approximation to accurately determine the optical conductivity of graphene from infrared transmittance

    SciTech Connect (OSTI)

    Weber, J. W.; Bol, A. A. [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Sanden, M. C. M. van de [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Dutch Institute for Fundamental Energy Research (DIFFER), Nieuwegein (Netherlands)

    2014-07-07

    This work presents an improved thin film approximation to extract the optical conductivity from infrared transmittance in a simple yet accurate way. This approximation takes into account the incoherent reflections from the backside of the substrate. These reflections are shown to have a significant effect on the extracted optical conductivity and hence on derived parameters as carrier mobility and density. By excluding the backside reflections, the error for these parameters for typical chemical vapor deposited (CVD) graphene on a silicon substrate can be as high as 17% and 45% for the carrier mobility and density, respectively. For the mid- and near-infrared, the approximation can be simplified such that the real part of the optical conductivity is extracted without the need for a parameterization of the optical conductivity. This direct extraction is shown for Fourier transform infrared (FTIR) transmittance measurements of CVD graphene on silicon in the photon energy range of 370–7000?cm{sup ?1}. From the real part of the optical conductivity, the carrier density, mobility, and number of graphene layers are determined but also residue, originating from the graphene transfer, is detected. FTIR transmittance analyzed with the improved thin film approximation is shown to be a non-invasive, easy, and accurate measurement and analysis method for assessing the quality of graphene and can be used for other 2-D materials.

  4. Improving the chances of successful protein structure determination with a random forest classifier

    SciTech Connect (OSTI)

    Jahandideh, Samad [Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92307 (United States); Joint Center for Structural Genomics, (United States); Jaroszewski, Lukasz; Godzik, Adam, E-mail: adam@burnham.org [Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA 92307 (United States); Joint Center for Structural Genomics, (United States); University of California, San Diego, La Jolla, California (United States)

    2014-03-01

    Using an extended set of protein features calculated separately for protein surface and interior, a new version of XtalPred based on a random forest classifier achieves a significant improvement in predicting the success of structure determination from the primary amino-acid sequence. Obtaining diffraction quality crystals remains one of the major bottlenecks in structural biology. The ability to predict the chances of crystallization from the amino-acid sequence of the protein can, at least partly, address this problem by allowing a crystallographer to select homologs that are more likely to succeed and/or to modify the sequence of the target to avoid features that are detrimental to successful crystallization. In 2007, the now widely used XtalPred algorithm [Slabinski et al. (2007 ?), Protein Sci.16, 2472–2482] was developed. XtalPred classifies proteins into five ‘crystallization classes’ based on a simple statistical analysis of the physicochemical features of a protein. Here, towards the same goal, advanced machine-learning methods are applied and, in addition, the predictive potential of additional protein features such as predicted surface ruggedness, hydrophobicity, side-chain entropy of surface residues and amino-acid composition of the predicted protein surface are tested. The new XtalPred-RF (random forest) achieves significant improvement of the prediction of crystallization success over the original XtalPred. To illustrate this, XtalPred-RF was tested by revisiting target selection from 271 Pfam families targeted by the Joint Center for Structural Genomics (JCSG) in PSI-2, and it was estimated that the number of targets entered into the protein-production and crystallization pipeline could have been reduced by 30% without lowering the number of families for which the first structures were solved. The prediction improvement depends on the subset of targets used as a testing set and reaches 100% (i.e. twofold) for the top class of predicted targets.

  5. Geochemical determination of biospheric CO/sub 2/ fluxes to the atmosphere. Annual progress report, June 1, 1979-August 31, 1981

    SciTech Connect (OSTI)

    Stuiver, M

    1981-03-24

    Research progress is reported - for an investigation of aspects of the carbon cycle through the use of C13/C12 and C14/C12 abundance ratios. The objective is to increase knowledge of past biospheric carbon reservoir changes that have resulted in increases or reductions of atmospheric CO/sub 2/ levels. C13 trends in trees from Kodiak Island, Alaska, and from Chile were determined. (ACR)

  6. Improving the homogeneity of alternating current-drive atmospheric pressure dielectric barrier discharges in helium with an additional low-amplitude radio frequency power source: A numerical study

    SciTech Connect (OSTI)

    Wang Qi [Dalian Institute of Semiconductor Technology, School of Electronics Science and Technology, Dalian University of Technology, Dalian 116023 (China); Sun Jizhong; Zhang Jianhong; Wang Dezhen [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116023 (China); Liu Liying [Department of Electrical Engineering, Shenyang Institute of Engineering, Shenyang 110136 (China)

    2013-04-15

    It was proposed in this paper that the homogeneity of the atmospheric pressure discharge driven by an ac power source could be improved by applying an auxiliary low-amplitude rf power source. To verify the idea, a two-dimensional fluid model then was applied to study the atmospheric discharges in helium driven by ac power, low-amplitude rf power, and combined ac and low-amplitude rf power, respectively. Simulation results confirmed that an auxiliary rf power could improve the homogeneity of a discharge driven by an ac power source. It was further found that there existed a threshold voltage of the rf power source leading to the transition from inhomogeneous to homogeneous discharge. As the frequency of the rf power source increased from 2 to 22 MHz, the magnitude of the threshold voltage dropped first rapidly and then to a constant value. When the frequency was over 13.56 MHz, the magnitude of the threshold voltage was smaller than one-sixth of the ac voltage amplitude under the simulated discharge parameters.

  7. Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ginn, Helen M.; Messerschmidt, Marc; Ji, Xiaoyun; Zhang, Hanwen; Axford, Danny; Gildea, Richard J.; Winter, Graeme; Brewster, Aaron S.; Hattne, Johan; Wagner, Armin; et al

    2015-03-09

    The X-ray free-electron laser (XFEL) allows the analysis of small weakly diffracting protein crystals, but has required very many crystals to obtain good data. Here we use an XFEL to determine the room temperature atomic structure for the smallest cytoplasmic polyhedrosis virus polyhedra yet characterized, which we failed to solve at a synchrotron. These protein microcrystals, roughly a micron across, accrue within infected cells. We use a new physical model for XFEL diffraction, which better estimates the experimental signal, delivering a high-resolution XFEL structure (1.75 Å), using fewer crystals than previously required for this resolution. The crystal lattice and proteinmore » core are conserved compared with a polyhedrin with less than 10% sequence identity. We explain how the conserved biological phenotype, the crystal lattice, is maintained in the face of extreme environmental challenge and massive evolutionary divergence. Our improved methods should open up more challenging biological samples to XFEL analysis.« less

  8. Atmospheric Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    competencies Atmospheric Chemistry Atmospheric Chemistry is the study of the composition of the atmosphere, the sources and fates of gases and particles in air, and changes induced...

  9. Unquenched determination of the kaon parameter B{sub K} from improved staggered fermions

    SciTech Connect (OSTI)

    Gamiz, Elvira; Collins, Sara; Davies, Christine T.H.; Lepage, G. Peter; Shigemitsu, Junko; Wingate, Matthew

    2006-06-01

    The use of improved staggered actions (HYP, Asqtad) has been proved to reduce the scaling corrections that affected previous calculations of B{sub K} with unimproved (standard) staggered fermions in the quenched approximation. This improved behavior allows us to perform a reliable calculation of B{sub K} including quark vacuum polarization effects, using the MILC configurations with n{sub f}=2+1 flavors of sea fermions. We perform such a calculation for a single lattice spacing, a=0.125 fm, and with kaons made up of degenerate quarks with m{sub s}/2. The valence strange quark mass m{sub s} is fixed to its physical value and we use two different values of the light sea quark masses. After a chiral extrapolation of the results to the physical value of the sea quark masses, we find B-circumflex{sub K}=0.83{+-}0.18, where the error is dominated by the uncertainty in the lattice to continuum matching at O({alpha}{sub s}{sup 2}). The matching will need to be improved to get the precision needed to make full use of the experimental data on {epsilon}{sub K} to constrain the unitarity triangle.

  10. Improved Measurement of the Positive-Muon Lifetime and Determination of the Fermi Constant

    SciTech Connect (OSTI)

    Chitwood, D. B.; Clayton, S. M.; Crnkovic, J.; Debevec, P. T.; Hertzog, D. W.; Kammel, P.; Kiburg, B.; Kunkle, J.; McNabb, R.; Mulhauser, F.; Oezben, C. S.; Polly, C. C.; Webber, D. M.; Winter, P.; Banks, T. I.; Crowe, K. M.; Lauss, B.; Barnes, M. J.; Wait, G. D.; Battu, S.

    2007-07-20

    The mean life of the positive muon has been measured to a precision of 11 ppm using a low-energy, pulsed muon beam stopped in a ferromagnetic target, which was surrounded by a scintillator detector array. The result, {tau}{sub {mu}}=2.197 013(24) {mu}s, is in excellent agreement with the previous world average. The new world average {tau}{sub {mu}}=2.197 019(21) {mu}s determines the Fermi constant G{sub F}=1.166 371(6)x10{sup -5} GeV{sup -2} (5 ppm). Additionally, the precision measurement of the positive-muon lifetime is needed to determine the nucleon pseudoscalar coupling g{sub P}.

  11. The black hole binary V4641 Sagitarii: Activity in quiescence and improved mass determinations

    SciTech Connect (OSTI)

    MacDonald, Rachel K. D.; Bailyn, Charles D.; Buxton, Michelle; Cantrell, Andrew G.; Chatterjee, Ritaban; Kennedy-Shaffer, Ross; Orosz, Jerome A.; Markwardt, Craig B.; Swank, Jean H.

    2014-03-20

    We examine ?10 yr of photometric data and find that the black hole X-ray binary V4641 Sgr has two optical states, passive and active, during X-ray quiescence. The passive state is dominated by ellipsoidal variations and is stable in the shape and variability of the light curve. The active state is brighter and more variable. Emission during the active state varies over the course of the orbital period and is redder than the companion star. These optical/infrared states last for weeks or months. V4641 Sgr spends approximately 85% of X-ray quiescence in the passive state and 15% in the active. We analyze passive colors and spectroscopy of V4641 Sgr and show that they are consistent with a reddened B9III star (with E(B – V) = 0.37 ± 0.19) with little or no contribution from the accretion disk. We use X-ray observations with an updated ephemeris to place an upper limit on the duration of an X-ray eclipse of <8.°3 in phase (?1.6 hr). High-resolution spectroscopy yields a greatly improved measurement of the rotational velocity of the companion star of V {sub rot}sin i = 100.9 ± 0.8 km s{sup –1}. We fit ellipsoidal models to the passive state data and find an inclination angle of i = 72.3 ± 4.°1, a mass ratio of Q = 2.2 ± 0.2, and component masses for the system of M {sub BH} = 6.4 ± 0.6 M {sub ?} and M {sub 2} = 2.9 ± 0.4 M {sub ?}. Using these values we calculate an updated distance to V4641 Sgr of 6.2 ± 0.7 kpc.

  12. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of a Minimum Soiling Level to Affect Photovoltaic Devices Patrick D. Burton and Bruce H. King Sandia National Laboratories, Albuquerque, NM 87185 USA pdburto@sandia.gov Abstract-Soil accumulation on photovoltaic (PV) modules presents a challenge to long-term performance prediction and lifetime estimates due to the inherent difficulty in quantifying small changes over an extended period. Low mass loadings of soil are a common occurrence, but remain difficult to quantify. In order to

  13. Evaluation of Improved Pyrgeometer Calibration Method

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Pyrgeometer Calibration Method I. Reda, P. A. Gotseff, T. L. Stoffel, and C. Webb National Renewable Energy Laboratory Golden, Colorado Abstract Broadband longwave (atmospheric) irradiance measurements are important for determining the earth's total energy balance. The Atmospheric Radiation Measurement (ARM) Program has deployed more than 50 pyrgeometers for measuring the upwelling and downwelling longwave irradiance as part of Solar Infrared Station (SIRS), SKYRAD, and GNDRAD

  14. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, Roland L. (Bloomfield, CO); Cannon, Theodore W. (Golden, CO)

    1988-01-01

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions.

  15. Atmospheric optical calibration system

    DOE Patents [OSTI]

    Hulstrom, R.L.; Cannon, T.W.

    1988-10-25

    An atmospheric optical calibration system is provided to compare actual atmospheric optical conditions to standard atmospheric optical conditions on the basis of aerosol optical depth, relative air mass, and diffuse horizontal skylight to global horizontal photon flux ratio. An indicator can show the extent to which the actual conditions vary from standard conditions. Aerosol scattering and absorption properties, diffuse horizontal skylight to global horizontal photon flux ratio, and precipitable water vapor determined on a real-time basis for optical and pressure measurements are also used to generate a computer spectral model and for correcting actual performance response of a photovoltaic device to standard atmospheric optical condition response on a real-time basis as the device is being tested in actual outdoor conditions. 7 figs.

  16. Final report for the project "Improving the understanding of surface-atmosphere radiative interactions by mapping surface reflectance over the ARM CART site" (award DE-FG02-02ER63351)

    SciTech Connect (OSTI)

    Alexander P. Trishchenko; Yi Luo; Konstantin V. Khlopenkov, William M. Park; Zhanqing Li; Maureen Cribb

    2008-11-28

    Surface spectral reflectance (albedo) is a fundamental variable affecting the transfer of solar radiation and the Earth’s climate. It determines the proportion of solar energy absorbed by the surface and reflected back to the atmosphere. The International Panel on Climate Change (IPCC) identified surface albedo among key factors influencing climate radiative forcing. Accurate knowledge of surface reflective properties is important for advancing weather forecasting and climate change impact studies. It is also important for determining radiative impact and acceptable levels of greenhouse gases in the atmosphere, which makes this work strongly linked to major scientific objectives of the Climate Change Research Division (CCRD) and Atmospheric Radiation Measurement (ARM) Program. Most significant accomplishments of eth project are listed below. I) Surface albedo/BRDF datasets from 1995 to the end of 2004 have been produced. They were made available to the ARM community and other interested users through the CCRS public ftp site ftp://ftp.ccrs.nrcan.gc.ca/ad/CCRS_ARM/ and ARM IOP data archive under “PI data Trishchenko”. II) Surface albedo properties over the ARM SGP area have been described for 10-year period. Comparison with ECMWF data product showed some deficiencies in the ECMWF surface scheme, such as missing some seasonal variability and no dependence on sky-conditions which biases surface energy budget and has some influence of the diurnal cycle of upward radiation and atmospheric absorption. III) Four surface albedo Intensive Observation Period (IOP) Field Campaigns have been conducted for every season (August, 2002, May 2003, February 2004 and October 2004). Data have been prepared, documented and transferred to ARM IOP archive. Nine peer-reviewed journal papers and 26 conference papers have been published.

  17. Atmosphere to Electrons | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Atmosphere to Electrons Atmosphere to Electrons Atmosphere to Electrons Atmosphere to Electrons (A2e) is a multi-year U.S. Department of Energy (DOE) research initiative targeting significant reductions in the cost of wind energy through an improved understanding of the complex physics governing wind flow into and through wind farms. Better insight into the flow physics has the potential to reduce wind farm energy losses by up to 20%, to reduce annual operational

  18. ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement Pacific Northwest National Laboratory Pacific ...

  19. PRECISION DETERMINATION OF ATMOSPHERIC EXTINCTION AT OPTICAL...

    Office of Scientific and Technical Information (OSTI)

    Authors: Burke, David L. 1 ; Axelrod, T. 2 ; Blondin, Stephane 3 ; Claver, Chuck ; Saha, Abhijit 4 ; Ivezic, Zeljko ; Jones, Lynne 5 ; Smith, Allyn 6 ; Smith, R. Chris ...

  20. Atmospheric Radiation Measurement Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tom Ackerman Chief Scientist Tom Ackerman Chief Scientist ARM ARM Atmospheric Radiation Measurement Atmospheric Radiation Measurement WARNING WARNING Today is April 1 But that ...

  1. A technique for measuring winds in the lower atmosphere using incoherent Doppler lidar

    SciTech Connect (OSTI)

    DeSlover, D.H.; Slaughter, D.R.; Tulloch, W.M.; White, W.E.

    1993-04-14

    Wind speed is useful from a meteorological standpoint, in atmospheric modeling, and assessment of trace gas dispersal. A continuing effort is involved in improving the sensitivity of such measurements, and is exemplified by the literature. The Mobile Atmospheric Research Laboratory (MARL) at Lawrence Livermore National Laboratory (LLNL) is currently developing a method to improve the sensitivity of wind sounding in the lower through middle atmosphere using a pair of Fabry- Perot interferometers in parallel. This technique, first described by Chanin, et al., for the middle atmosphere using Doppler Rayleigh lidar, can be applied to the lower atmosphere where Mie (aerosol) backscatter is strong. Elastic events, inherent in both Rayleigh and Mie backscatter, dominate the return signal throughout the atmosphere. Both are susceptible to local wind vectors; which will Doppler shift the laser frequency proportional to the wind velocity. A pair of Fabry-Perot interferometers, tuned to either side of the laser frequency, will provide necessary data to determine the shift in frequency of the backscattered signal. Spectral drift and jitter of the laser and a lack of data points to determine the wind vector place limits on the sensitivity of the system. A method to minimize each of these is presented.

  2. A technique for measuring winds in the lower atmosphere using incoherent Doppler lidar

    SciTech Connect (OSTI)

    DeSlover, D.H.; Slaughter, D.R.; Tulloch, W.M.; White, W.E.

    1993-04-14

    Wind speed is useful from a meteorological standpoint, in atmospheric modeling, and assessment of trace gas dispersal. A continuing effort is involved in improving the sensitivity of such measurements, and is exemplified by the literature. The Mobile Atmospheric Research Laboratory (MARL) at Lawrence Livermore National Laboratory (LLNL) is currently developing a method to improve the sensitivity of wind sounding in the lower through middle atmosphere using a pair of Fabry-Perot interferometers in parallel. This technique, first described by Chanin, et al., for the middle atmosphere using Doppler Rayleigh lidar, can be applied to the lower atmosphere where Mie (aerosol) backscatter is strong. Elastic events, inherent in both Rayleigh and Mie backscatter, dominate the return signal throughout the atmosphere. Both are susceptible to local wind vectors; which will Doppler shift the laser frequency proportional to the wind velocity. A pair of Fabry-Perot interferometers, tuned to either side of the laser frequency, will provide necessary data to determine the shift in frequency of the backscattered signal. Spectral drift and jitter of the laser and a lack of data points to determine the wind vector place limits on the sensitivity of the system. A method to minimize each of these is presented.

  3. IMPROVED Ni I log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect (OSTI)

    Wood, M. P.; Lawler, J. E.; Sneden, C.; Cowan, J. J. E-mail: jelawler@wisc.edu E-mail: cowan@nhn.ou.edu

    2014-04-01

    Atomic transition probability measurements for 371 Ni I lines in the UV through near-IR are reported. Branching fractions from data recorded using a Fourier transform spectrometer and a new echelle spectrograph are combined with published radiative lifetimes to determine these transition probabilities. Generally good agreement is found in comparisons to previously reported Ni I transition probability measurements. Use of the new echelle spectrograph, independent radiometric calibration methods, and independent data analysis routines enable a reduction of systematic errors and overall improvement in transition probability uncertainty over previous measurements. The new Ni I data are applied to high-resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to derive new, more accurate Ni abundances. Lines covering a wide range of wavelength and excitation potential are used to search for non-LTE effects.

  4. Improving Convective Parameterization Using ARM Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving Convective Parameterization Using ARM Data G. J. Zhang Center for Atmospheric Sciences Scripps Institution of Oceanography La Jolla, California Introduction Convective parameterization is one of the most challenging issues in global climate models (GCMs). Convection, as represented by convective parameterization schemes in GCMs, is controlled by the large- scale dynamic and thermodynamic fields through a closure condition. Such a closure condition is typically determined empirically by

  5. Atmospheric Radiation Measurement Program Science Plan

    SciTech Connect (OSTI)

    Ackerman, T

    2004-10-31

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: Maintain the data record at the fixed ARM sites for at least the next five years. Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM's Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

  6. Atmospheric Radiation Measurement Radiative Atmospheric Divergence...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    campaign is sponsored by the Atmospheric Radiation Measurement (ARM) Program, the largest global change research program within the U.S. Department of Energy's Office of Science. ...

  7. Posters Scanning Raman Lidar Measurements of Atmospheric Water...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program (ARM) is to develop a better understanding of the atmospheric radiative balance in order to improve the parameterization of radiative processes in general...

  8. Atmospheric Correction of Satellite Signal in Solar Domain: ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Correction of Satellite Signal in Solar Domain: Impact of Improved Molecular Spectroscopy A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada B....

  9. IMPROVED Ti II log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect (OSTI)

    Wood, M. P.; Lawler, J. E.; Sneden, C.; Cowan, J. J. E-mail: jelawler@wisc.edu E-mail: cowan@nhn.ou.edu

    2013-10-01

    Atomic transition probability measurements for 364 lines of Ti II in the UV through near-IR are reported. Branching fractions from data recorded using a Fourier transform spectrometer (FTS) and a new echelle spectrometer are combined with published radiative lifetimes to determine these transition probabilities. The new results are in generally good agreement with previously reported FTS measurements. Use of the new echelle spectrometer, independent radiometric calibration methods, and independent data analysis routines enables a reduction of systematic errors and overall improvement in transition probability accuracy over previous measurements. The new Ti II data are applied to high-resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to derive new, more accurate Ti abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. The Ti abundances derived using Ti II for these two stars match those derived using Ti I and support the relative Ti/Fe abundance ratio versus metallicity seen in previous studies.

  10. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  11. MO-G-18C-07: Improving T2 Determination and Quantification of Lipid Methylene Protons in Proton Magnetic Resonance Spectroscopy at 3 T

    SciTech Connect (OSTI)

    Breitkreutz, D.; Fallone, B. G.; Yahya, A.

    2014-06-15

    Purpose: To improve proton magnetic resonance spectroscopy (MRS) transverse relaxation (T{sub 2}) determination and quantification of lipid methylene chain (1.3 ppm) protons by rewinding their J-coupling evolution. Methods: MRS experiments were performed on four lipid phantoms, namely, almond, corn, sunflower and oleic acid, using a 3 T Philips MRI scanner with a transmit/receive birdcage head coil. Two PRESS (Point RESolved Spectroscopy) pulse sequences were used. The first PRESS sequence employed standard bandwidth (BW) (?550 Hz) RF (radiofrequency) refocussing pulses, while the second used refocussing pulses of narrow BW (?50 Hz) designed to rewind J-coupling evolution of the methylene protons in the voxel of interest. Signal was acquired with each sequence from a 5×5×5 mm{sup 3} voxel, with a repetition time (TR) of 3000 ms, and with echo times (TE) of 100 to 200 ms in steps of 20 ms. 2048 sample points were measured with a 2000 Hz sampling bandwidth. Additionally, 30 mm outer volume suppression slabs were used to suppress signal outside the voxel of interest. The frequency of the RF pulses was set to that of the methylene resonance. Methylene peak areas were calculated and fitted in MATLAB to a monexponentially decaying function of the form M{sub 0}exp(-TE/T{sub 2}), where M{sub 0} is the extrapolated area when TE = 0 ms and yields a measure of concentration. Results: The determined values of M{sub 0} and T{sub 2} increased for all fatty acids when using the PRESS sequence with narrow BW refocussing pulses. M{sub 0} and T{sub 2} values increased by an average amount (over all the phantoms) of 31% and 14%, respectively. Conclusion: This investigation has demonstrated that J-coupling interactions of lipid methylene protons causes non-negligible signal losses which, if not accounted for, Result in underestimations of their levels and T{sub 2} values when performing MRS measurements. Funded by the Natural Sciences and Engineering Research Council of Canada and the Canadian Breast Cancer Foundation - Prairies.NWT.

  12. Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atmosphere to Electrons Enabling the Wind Plant of Tomorrow 2 Atmosphere to Electrons Enabling the Wind Plant of Tomorrow The U.S. Department of Energy's (DOE's) Atmosphere to Electrons (A2e) research initiative is focused on improving the performance and reliability of wind plants by establishing an unprecedented under- standing of how the Earth's atmosphere interacts with the wind plants and developing innovative technologies to maximize energy extraction from the wind. The A2e initiative

  13. DOE - NNSA/NFO -- Photo Library Atmospheric Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Photo Library - Atmospheric Testing A total of 100 atmospheric tests were conducted at the Nevada Test Site. These tests were conducted to provide information on weapons effects, effects of the height of burst on overpressure, and information on nuclear phenomena to improve the design of nuclear weapons. Atmospheric testing ceased for good in 1963, after which nuclear testing moved underground. Instructions: Click the

  14. Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow Atmosphere to Electrons: Enabling the Wind Plant of Tomorrow a2e-fact-sheet-cover-thumbnail.jpg The U.S. Department of Energy's (DOE's) Atmosphere to Electrons (A2e) research initiative is focused on improving the performance and reliability of wind plants by establishing an unprecedented understanding of how the Earth's atmosphere interacts with the wind plants and developing innovative technologies to maximize energy

  15. Community Atmosphere Model

    Energy Science and Technology Software Center (OSTI)

    2004-10-18

    The Community Atmosphere Model (CAM) is an atmospheric general circulation model that solves equations for atmospheric dynamics and physics. CAM is an outgrowth of the Community Climate Model at the National Center for Atmospheric Research (NCAR) and was developed as a joint collaborative effort between NCAR and several DOE laboratories, including LLNL. CAM contains several alternative approaches for advancing the atmospheric dynamics. One of these approaches uses a finite-volume method originally developed by personnel atmore » NASNGSFC, We have developed a scalable version of the finite-volume solver for massively parallel computing systems. FV-CAM is meant to be used in conjunction with the Community Atmosphere Model. It is not stand-alone.« less

  16. ARM - Measurement - Atmospheric pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pressure ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric pressure The pressure exerted by the atmosphere as a consequence of gravitational attraction exerted upon the "column" of air lying directly above the point in question. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream

  17. ARM - Atmospheric Pressure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListAtmospheric Pressure Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Atmospheric Pressure Humans are subjected to the pressure produced by the weight of the gases of the atmosphere above us. The force exerted on a unit area of surface by the weight of the air above the surface is named

  18. New and Improved Data Logging and Collection System for Atmospheric Radiation Measurement Climate Research Facility, Tropical Western Pacific, and North Slope of Alaska Sky Radiation, Ground Radiation, and MET Systems

    SciTech Connect (OSTI)

    Ritsche, M.T.; Holdridge, D.J.; Pearson, R.

    2005-03-18

    Aging systems and technological advances mandated changes to the data collection systems at the Atmospheric Radiation Measurement (ARM) Program's Tropical Western Pacific (TWP) and North Slope of Alaska (NSA) ARM Climate Research Facility (ACRF) sites. Key reasons for the upgrade include the following: achieve consistency across all ACRF sites for easy data use and operational maintenance; minimize the need for a single mentor requiring specialized knowledge and training; provide local access to real-time data for operational support, intensive operational period (IOP) support, and public relations; eliminate problems with physical packaging (condensation, connectors, etc.); and increase flexibility in programming and control of the data logger.

  19. Ensemble Atmospheric Dispersion Modeling

    SciTech Connect (OSTI)

    Addis, R.P.

    2002-06-24

    Prognostic atmospheric dispersion models are used to generate consequence assessments, which assist decision-makers in the event of a release from a nuclear facility. Differences in the forecast wind fields generated by various meteorological agencies, differences in the transport and diffusion models, as well as differences in the way these models treat the release source term, result in differences in the resulting plumes. Even dispersion models using the same wind fields may produce substantially different plumes. This talk will address how ensemble techniques may be used to enable atmospheric modelers to provide decision-makers with a more realistic understanding of how both the atmosphere and the models behave.

  20. IMPROVED V I log(gf) VALUES AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect (OSTI)

    Lawler, J. E.; Wood, M. P.; Den Hartog, E. A.; Feigenson, T.; Sneden, C.; Cowan, J. J. E-mail: mpwood@wisc.edu E-mail: tfeigenson@wisc.edu E-mail: cowan@nhn.ou.edu

    2015-01-01

    New emission branching fraction measurements for 836 lines of the first spectrum of vanadium (V I) are determined from hollow cathode lamp spectra recorded with the National Solar Observatory 1 m Fourier transform spectrometer (FTS) and a high-resolution echelle spectrometer. The branching fractions are combined with recently published radiative lifetimes from laser-induced fluorescence measurements to determine accurate absolute atomic transition probabilities for the 836 lines. The FTS data are also used to extract new hyperfine structure A coefficients for 26 levels of neutral vanadium. These new laboratory data are applied to determine the V abundance in the Sun and metal-poor star HD 84937, yielding log ?(V) = 3.956 ± 0.004 (? = 0.037) based on 93 V I lines and log ?(V) = 1.89 ± 0.03 (? = 0.07) based on nine V I lines, respectively, using the Holweger-Müller 1D model. These new V I abundance values for the Sun and HD 84937 agree well with our earlier determinations based upon V II.

  1. ARM - Measurement - Atmospheric moisture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    moisture ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric moisture The moisture content of the air as indicated by several measurements including relative humidity, specific humidity, dewpoint, vapor pressure, water vapor mixing ratio, and water vapor density; note that precipitable water is a separate type. Categories Atmospheric State Instruments The above measurement is considered

  2. ARM - Measurement - Atmospheric temperature

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    temperature ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric temperature The temperature indicated by a thermometer exposed to the air in a place sheltered from direct solar radiation. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list

  3. ARM - Measurement - Atmospheric turbulence

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    turbulence ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Atmospheric turbulence High frequency velocity fluctuations that lead to turbulent transport of momentum, heat, mositure, and passive scalars, and often expressed in terms of variances and covariances. Categories Atmospheric State, Surface Properties Instruments The above measurement is considered scientifically relevant for the following

  4. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListAtmospheric Heat Budget Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Atmospheric Heat Budget The average temperature of the earth has remained approximately constant at about 15 degrees Celsius during the past century. It is therefore in a state of radiative balance, emitting the same

  5. SWiFT site atmospheric characterization

    SciTech Connect (OSTI)

    Kelley, Christopher Lee; Ennis, Brandon Lee

    2016-01-01

    Historical meteorological tall tower data are analyzed from the Texas Tech University 200 m tower to characterize the atmospheric trends of the Scaled Wind Farm Technologies (SWiFT) site. In this report the data are analyzed to reveal bulk atmospheric trends, temporal trends and correlations of atmospheric variables. Through this analysis for the SWiFT turbines the site International Electrotechnical Commission (IEC) classification is determined to be class III-C. Averages and distributions of atmospheric variables are shown, revealing large fluctuations and the importance of understanding the actual site trends as opposed to simply using averages. The site is significantly directional with the average wind speed from the south, and particularly so in summer and fall. Site temporal trends are analyzed from both seasonal (time of the year) to daily (hour of the day) perspectives. Atmospheric stability is seen to vary most with time of day and less with time of year. Turbulence intensity is highly correlated with stability, and typical daytime unstable conditions see double the level of turbulence intensity versus that experienced during the average stable night. Shear, veer and atmospheric stability correlations are shown, where shear and veer are both highest for stable atmospheric conditions. An analysis of the Texas Tech University tower anemometer measurements is performed which reveals the extent of the tower shadow effects and sonic tilt misalignment.

  6. Spectrometer for Sky-Scanning Sun-Tracking Atmospheric Research (4STAR): Instrument Technology

    SciTech Connect (OSTI)

    Dunagan, Stephen; Johnson, Roy; Zavaleta, Jhony; Russell, P. B.; Schmid, Beat; Flynn, Connor J.; Redemann, Jens; Shinozuka, Yohei; Livingston, J.; Segal Rozenhaimer, Michal

    2013-08-06

    The Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) combines airborne sun tracking and sky scanning with diffraction spectroscopy, to improve knowledge of atmospheric constituents and their links to air-pollution/climate. Direct beam hyper-spectral measurement of optical depth improves retrievals of gas constituents and determination of aerosol properties. Sky scanning enhances retrievals of aerosol type and size distribution. 4STAR measurements will tighten the closure between satellite and ground-based measurements. 4STAR incorporates a modular sun-tracking/ sky-scanning optical head with fiber optic signal transmission to rack mounted spectrometers, permitting miniaturization of the external optical head, and future detector evolution. Technical challenges include compact optical collector design, radiometric dynamic range and stability, and broad spectral coverage. Test results establishing the performance of the instrument against the full range of operational requirements are presented, along with calibration, engineering flight test, and scientific field campaign data and results.

  7. DOE Final Report for DE-FG02-01ER63198 Title: IMPROVING THE PROCESSES OF LAND-ATMOSPHERE INTERACTION IN CCSM 2.0 AT HIGHER RESOLUTION AND BETTER SUB-GRID SCALING

    SciTech Connect (OSTI)

    Dr. Robert Dickinson

    2008-08-16

    Our CCPP project consists of the development and testing of a systematic sub-grid scaling framework for the CLM. It consists of four elements: i) a complex vegetation tiling representation; ii) an orographic tiling system; iii) a tiling system to describe a distribution of water table parameters intended to provide a realistic statistical model of wetlands; and iv) improvements of past developed treatments of precipitation intensity.

  8. IMPROVED V II log(gf) VALUES, HYPERFINE STRUCTURE CONSTANTS, AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937

    SciTech Connect (OSTI)

    Wood, M. P.; Lawler, J. E.; Den Hartog, E. A.; Sneden, C.; Cowan, J. J. E-mail: jelawler@wisc.edu E-mail: chris@verdi.as.utexas.edu

    2014-10-01

    New experimental absolute atomic transition probabilities are reported for 203 lines of V II. Branching fractions are measured from spectra recorded using a Fourier transform spectrometer and an echelle spectrometer. The branching fractions are normalized with radiative lifetime measurements to determine the new transition probabilities. Generally good agreement is found between this work and previously reported V II transition probabilities. Two spectrometers, independent radiometric calibration methods, and independent data analysis routines enable a reduction in systematic uncertainties, in particular those due to optical depth errors. In addition, new hyperfine structure constants are measured for selected levels by least squares fitting line profiles in the FTS spectra. The new V II data are applied to high resolution visible and UV spectra of the Sun and metal-poor star HD 84937 to determine new, more accurate V abundances. Lines covering a range of wavelength and excitation potential are used to search for non-LTE effects. Very good agreement is found between our new solar photospheric V abundance, log ?(V) = 3.95 from 15 V II lines, and the solar-system meteoritic value. In HD 84937, we derive [V/H] = –2.08 from 68 lines, leading to a value of [V/Fe] = 0.24.

  9. Production of ⁶¹Cu by the natZn(p,α) reaction: Improved separation and specific activity determination by titration with three chelators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Asad, Ali H.; Smith, Suzanne V.; Morandeau, Laurence M.; Chan, Sun; Jeffery, Charmaine M.; Price, Roger I.

    2015-09-01

    In this study, the cyclotron-based production of position-emitting ⁶¹Cu using the (p,α) reaction at 11.7 MeV was investigated starting from natural-zinc (natZn) and enriched ⁶⁴Zn-foil targets, as well as its subsequent purification. For natZn, a combination of three resins were assessed to separate ⁶¹Cu from contaminating 66,67,68Ga and natZn. The specific activity of the purified ⁶¹Cu determined using ICP-MS analysis ranged from 143.3±14.3(SD) to 506.2±50.6 MBq/μg while the titration method using p-SCN-Bn-DOTA, p-SCN-Bn-NOTA and diamsar gave variable results (4.7±0.2 to 412.5±15.3 MBq/μg), with diamsar lying closest to the ICP-MS values. Results suggest that the p-SCN-Bn-DOTA and p-SCN-Bn-NOTA titration methods aremore » significantly affected by the presence of trace-metal contaminants.« less

  10. Production of ?¹Cu by the natZn(p,?) reaction: Improved separation and specific activity determination by titration with three chelators

    SciTech Connect (OSTI)

    Asad, Ali H.; Smith, Suzanne V.; Morandeau, Laurence M.; Chan, Sun; Jeffery, Charmaine M.; Price, Roger I.

    2015-09-01

    In this study, the cyclotron-based production of position-emitting ?¹Cu using the (p,?) reaction at 11.7 MeV was investigated starting from natural-zinc (natZn) and enriched ??Zn-foil targets, as well as its subsequent purification. For natZn, a combination of three resins were assessed to separate ?¹Cu from contaminating 66,67,68Ga and natZn. The specific activity of the purified ?¹Cu determined using ICP-MS analysis ranged from 143.3±14.3(SD) to 506.2±50.6 MBq/?g while the titration method using p-SCN-Bn-DOTA, p-SCN-Bn-NOTA and diamsar gave variable results (4.7±0.2 to 412.5±15.3 MBq/?g), with diamsar lying closest to the ICP-MS values. Results suggest that the p-SCN-Bn-DOTA and p-SCN-Bn-NOTA titration methods are significantly affected by the presence of trace-metal contaminants.

  11. Airborne Instrumentation Needs for Climate and Atmospheric Research

    SciTech Connect (OSTI)

    McFarquhar, Greg; Schmid, Beat; Korolev, Alexei; Ogren, John A.; Russell, P. B.; Tomlinson, Jason M.; Turner, David D.; Wiscombe, Warren J.

    2011-10-06

    Observational data are of fundamental importance for advances in climate and atmospheric research. Advances in atmospheric science are being made not only through the use of ground-based and space-based observations, but also through the use of in-situ and remote sensing observations acquired on instrumented aircraft. In order for us to enhance our knowledge of atmospheric processes, it is imperative that efforts be made to improve our understanding of the operating characteristics of current instrumentation and of the caveats and uncertainties in data acquired by current probes, as well as to develop improved observing methodologies for acquisition of airborne data.

  12. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    SciTech Connect (OSTI)

    Davis, K.J.; Richardson, S.J.; Miles, N.L.

    2007-03-07

    Inversions of atmospheric CO2 mixing ratio measurements to determine CO2 sources and sinks are typically limited to coarse spatial and temporal resolution. This limits our ability to evaluate efforts to upscale chamber- and stand-level CO2 flux measurements to regional scales, where coherent climate and ecosystem mechanisms govern the carbon cycle. As a step towards the goal of implementing atmospheric budget or inversion methodology on a regional scale, a network of five relatively inexpensive CO2 mixing ratio measurement systems was deployed on towers in northern Wisconsin. Four systems were distributed on a circle of roughly 150-km radius, surrounding one centrally located system at the WLEF tower near Park Falls, WI. All measurements were taken at a height of 76 m AGL. The systems used single-cell infrared CO2 analyzers (Licor, model LI-820) rather than the siginificantly more costly two-cell models, and were calibrated every two hours using four samples known to within ± 0.2 ppm CO2. Tests prior to deployment in which the systems sampled the same air indicate the precision of the systems to be better than ± 0.3 ppm and the accuracy, based on the difference between the daily mean of one system and a co-located NOAA-ESRL system, is consistently better than ± 0.3 ppm. We demonstrate the utility of the network in two ways. We interpret regional CO2 differences using a Lagrangian parcel approach. The difference in the CO2 mixing ratios across the network is at least 2?3 ppm, which is large compared to the accuracy and precision of the systems. Fluxes estimated assuming Lagrangian parcel transport are of the same sign and magnitude as eddy-covariance flux measurements at the centrally-located WLEF tower. These results indicate that the network will be useful in a full inversion model. Second, we present a case study involving a frontal passage through the region. The progression of a front across the network is evident; changes as large as four ppm in one minute are captured. Influence functions, derived using a Lagrangian Particle Dispersion model driven by the CSU Regional Atmospheric Modeling System and nudged to NCEP reanalysis meteorological fields, are used to determine source regions for the towers. The influence functions are combined with satellite vegetation observations to interpret the observed trends in CO2 concentration. Full inversions will combine these elements in a more formal analytic framework.

  13. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, Otto A. (Langhorne, PA); Stencel, Joseph R. (Skillman, NJ)

    1990-01-01

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The mixture then passes through a combustion chamber where hydrogen gas in the form of H.sub.2 or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  14. Differential atmospheric tritium sampler

    DOE Patents [OSTI]

    Griesbach, O.A.; Stencel, J.R.

    1987-10-02

    An atmospheric tritium sampler is provided which uses a carrier gas comprised of hydrogen gas and a diluting gas, mixed in a nonexplosive concentration. Sample air and carrier gas are drawn into and mixed in a manifold. A regulator meters the carrier gas flow to the manifold. The air sample/carrier gas mixture is pulled through a first moisture trap which adsorbs water from the air sample. The moisture then passes through a combustion chamber where hydrogen gas in the form of H/sub 2/ or HT is combusted into water. The manufactured water is transported by the air stream to a second moisture trap where it is adsorbed. The air is then discharged back into the atmosphere by means of a pump.

  15. Improved aethalometer

    DOE Patents [OSTI]

    Hansen, A.D.

    1988-01-25

    An improved aethalometer having a single light source and a single light detector and two light paths from the light source to the light detector. A quartz fiber filter is inserted in the device, the filter having a collection area in one light path and a reference area in the other light path. A gas flow path through the aethalometer housing allows ambient air to flow through the collection area of the filter so that aerosol particles can be collected on the filter. A rotating disk with an opening therethrough allows light for the light source to pass alternately through the two light paths. The voltage output of the detector is applied to a VCO and the VCO pulses for light transmission separately through the two light paths, are counted and compared to determine the absorption coefficient of the collected aerosol particles. 5 figs.

  16. ARM - Evolution of the Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListEvolution of the Atmosphere Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Evolution of the Atmosphere The earth's atmosphere plays a crucial role in shaping the weather, climate, and life-supporting systems. However, the ocean and atmosphere are the earth's fluid outer layers and are

  17. ARM - Composition of the Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ListComposition of the Atmosphere Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Composition of the Atmosphere The atmosphere is 1000 kilometers above mean sea level. In fact, only about 1 percent of the total mass of the atmosphere is above an altitude of approximately 30 kilometers above

  18. Preliminary Determination Regarding Energy Efficiency Improvements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Affected within the Standard Description of Changes Impact on Energy Efficiency (justification) 12 90.1-2010m 9. Lighting Adds some control requirements for lighting ...

  19. In situ wettability determination improves formation evalution

    SciTech Connect (OSTI)

    Desbrandes, R. )

    1989-08-01

    Wettability is an important petrophysic parameter which affects capillary pressure, relative permeability, electric properties, water cut production, waterflood behavior, and enhanced recovery. This article describes in situ wettability laboratory experiments and field studies. A laboratory model has been built with a 12-ft long 4-in. clear plastic pipe. A 1 7/8-in. slotted plastic liner has been placed on one side. Ottawa sand F-95 has been packed in the annulus either nontreated, in its naturally water wet condition, or after a silane treatment to render it oil wet. Provided in the sand pack for measurement are 12 pressure pickups with an accurate Omega digital pressure gage. A typical pressure profile recorded during oil drive in a water saturated water wet sand pack is shown. The front was left to stabilize for 60 days. A pressure profile recorded during a water drive in an oil saturated oil wet sand pack is shown. The abrupt change from the water pressure gradient can be seen clearly for the water wet and the oil wet sand. It occurs exactly as expected. The measurements show that the change occurs in less than 4 in. which is the distance between two pressure pickups.

  20. Improved atmosphere-ocean coupled modeling in the tropics for...

    Office of Scientific and Technical Information (OSTI)

    The warming biases from the dynamic heat transport by ocean currents however stay throughout all seasons once they are developed, which are eventually balanced by enhanced energy ...

  1. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility Argonne scientists study ... for climate research to the Atmospheric Radiation Measurement (ARM) Climate Research ...

  2. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility (ARM) Biological and ... BER Home About Research Facilities User Facilities Atmospheric Radiation Measurement ...

  3. ARM - Sources of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Sources of Atmospheric Carbon Atmospheric carbon represented a steady state system, where influx equaled outflow, before the Industrial Revolution. Currently, it is no longer a steady state system because the

  4. NETL SOFC: Atmospheric Pressure Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Pressure Systems ATMOSPHERIC PRESSURE SYSTEMS (INDUSTRY TEAMS)-This key technology focuses on the design, scaleup, and integration of the SOFC technology, ultimately resulting in atmospheric-pressure modules suitable to serve as the building blocks for distributed-generation, commercial, and utility-scale power systems. Activities include fabrication, testing, post-test analysis of cells; integrating cells into stacks; and the development and validation testing of progressively

  5. ARM - Destination of Atmospheric Carbon

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Destination of Atmospheric Carbon Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Destination of Atmospheric Carbon Oceans: 92 gigatonnes [(Gt) 1 gigatonne = 1x1012 kilograms] are recycled annually from the atmosphere to the oceans. This carbon is used for biosynthesis or remains dissolved

  6. Improving carbon fixation pathways

    SciTech Connect (OSTI)

    Ducat, DC; Silver, PA

    2012-08-01

    A recent resurgence in basic and applied research on photosynthesis has been driven in part by recognition that fulfilling future food and energy requirements will necessitate improvements in crop carbon-fixation efficiencies. Photosynthesis in traditional terrestrial crops is being reexamined in light of molecular strategies employed by photosynthetic microbes to enhance the activity of the Calvin cycle. Synthetic biology is well-situated to provide original approaches for compartmentalizing and enhancing photosynthetic reactions in a species independent manner. Furthermore, the elucidation of alternative carbon-fixation routes distinct from the Calvin cycle raises possibilities that novel pathways and organisms can be utilized to fix atmospheric carbon dioxide into useful materials.

  7. Polyport atmospheric gas sampler

    DOE Patents [OSTI]

    Guggenheim, S. Frederic (Teaneck, NJ)

    1995-01-01

    An atmospheric gas sampler with a multi-port valve which allows for multi, sequential sampling of air through a plurality of gas sampling tubes mounted in corresponding gas inlet ports. The gas sampler comprises a flow-through housing which defines a sampling chamber and includes a gas outlet port to accommodate a flow of gases through the housing. An apertured sample support plate defining the inlet ports extends across and encloses the sampling chamber and supports gas sampling tubes which depend into the sampling chamber and are secured across each of the inlet ports of the sample support plate in a flow-through relation to the flow of gases through the housing during sampling operations. A normally closed stopper means mounted on the sample support plate and operatively associated with each of the inlet ports blocks the flow of gases through the respective gas sampling tubes. A camming mechanism mounted on the sample support plate is adapted to rotate under and selectively lift open the stopper spring to accommodate a predetermined flow of gas through the respective gas sampling tubes when air is drawn from the housing through the outlet port.

  8. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect (OSTI)

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was to carry out reactions of representative anthropogenic and biogenic VOCs and organic particles with ozone (O3), and hydroxyl (OH), nitrate (NO3), and chlorine (Cl) radicals, which are the major atmospheric oxidants, under simulated atmospheric conditions in large-volume environmental chambers. A combination of on-line and off-line analytical techniques were used to monitor the chemical and physical properties of the particles including their hygroscopicity and CCN activity. The results of the studies were used to (1) improve scientific understanding of the relationships between the chemical composition of organic particles and their hygroscopicity and CCN activity, (2) develop an improved molecular level theoretical framework for describing these relationships, and (3) establish a large database that is being used to develop parameterizations relating organic aerosol chemical properties and SOA sources to particle hygroscopicity and CCN activity for use in regional and global atmospheric air quality and climate models.

  9. Solar Forecast Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Forecast Improvement Project Solar Forecast Improvement Project NOAA.png For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more accurate methods for solar forecasts using their state-of-the-art weather models. APPROACH NOAA solar.png SFIP has three main goals: 1) to develop solar forecasting metrics tailored to the utility sector; 2) to improve solar

  10. Efficiency Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that comprised the 120-Day Study implementation plan," said NIF Facility Manager Doug Larson. "It not only incorporated improving NIF's efficiency and shot rate, it also provides...

  11. Terrain-Responsive Atmospheric Code

    Energy Science and Technology Software Center (OSTI)

    1991-11-20

    The Terrain-Responsive Atmospheric Code (TRAC) is a real-time emergency response modeling capability designed to advise Emergency Managers of the path, timing, and projected impacts from an atmospheric release. TRAC evaluates the effects of both radiological and non-radiological hazardous substances, gases and particulates. Using available surface and upper air meteorological information, TRAC realistically treats complex sources and atmospheric conditions, such as those found in mountainous terrain. TRAC calculates atmospheric concentration, deposition, and dose for more thanmore »25,000 receptor locations within 80 km of the release point. Human-engineered output products support critical decisions on the type, location, and timing of protective actions for workers and the public during an emergency.« less

  12. CX-007901: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Improving Atmospheric Models for Offshore Wind Resource Mapping and Prediction Using LIDAR, Aircraft, and In-Ocean Observations CX(s) Applied: A9, A11, B3.1, B3.2 Date: 02/22/2012 Location(s): New York Offices(s): Golden Field Office

  13. CX-009575: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Improving Atmospheric Models for Offshore Wind Resource Mapping and Prediction Using LIDAR, Aircraft and In-Ocean Observations CX(s) Applied: A9, B3.1, B3.2 Date: 12/12/2012 Location(s): New York Offices(s): Golden Field Office

  14. Atmospheric science and power production

    SciTech Connect (OSTI)

    Randerson, D.

    1984-07-01

    This is the third in a series of scientific publications sponsored by the US Atomic Energy Commission and the two later organizations, the US Energy Research and Development Adminstration, and the US Department of Energy. The first book, Meteorology and Atomic Energy, was published in 1955; the second, in 1968. The present volume is designed to update and to expand upon many of the important concepts presented previously. However, the present edition draws heavily on recent contributions made by atmospheric science to the analysis of air quality and on results originating from research conducted and completed in the 1970s. Special emphasis is placed on how atmospheric science can contribute to solving problems relating to the fate of combustion products released into the atmosphere. The framework of this book is built around the concept of air-quality modeling. Fundamentals are addressed first to equip the reader with basic background information and to focus on available meteorological instrumentation and to emphasize the importance of data management procedures. Atmospheric physics and field experiments are described in detail to provide an overview of atmospheric boundary layer processes, of how air flows around obstacles, and of the mechanism of plume rise. Atmospheric chemistry and removal processes are also detailed to provide fundamental knowledge on how gases and particulate matter can be transformed while in the atmosphere and how they can be removed from the atmosphere. The book closes with a review of how air-quality models are being applied to solve a wide variety of problems. Separate analytics have been prepared for each chapter.

  15. Atmospheric Crude Oil Distillation Operable Capacity

    Gasoline and Diesel Fuel Update (EIA)

    (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum

  16. Working with SRNL - Our Facilities - Atmospheric Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The SRNL Atmospheric Technologies Center has extensive capabilities for world-wide meteorological forecasts and real-time atmospheric transport modeling and assessment. ...

  17. National Oceanic and Atmospheric Administration (NOAA) | Open...

    Open Energy Info (EERE)

    National Oceanic and Atmospheric Administration (NOAA) Jump to: navigation, search Logo: National Oceanic and Atmospheric Administration (NOAA) Name: National Oceanic and...

  18. Correcting radar range measurements for atmospheric propagation...

    Office of Scientific and Technical Information (OSTI)

    Correcting radar range measurements for atmospheric propagation effects. Citation Details In-Document Search Title: Correcting radar range measurements for atmospheric propagation...

  19. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion...

  20. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-001 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly ... DOESC-ARM-16-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  1. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  2. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-11-008 Atmospheric Radiation Measurement Program Climate Research Facility ...

  3. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-10-029 Atmospheric Radiation Measurement Program Climate Research Facility ...

  4. Atmospheric Radiation Measurement (ARM) Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) Science and Infrastructure Steering Committee CHARTER June 2012 DISCLAIMER ...

  5. Atmospheric Radiation Measurement Climate Research Facility ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of Energy (DOE) established the Atmospheric Radiation Measurement (ARM) Program. ... Fiscal Year 2004 Budget Summary and User Statistics Atmospheric Radiation Measurement ...

  6. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-11-002 Atmospheric Radiation Measurement Program Climate Research Facility ...

  7. Atmospheric Radiation Measurement Climate Research Facility Operations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-069 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  8. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-11-022 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  9. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly ... DOESC-ARM-11-019 Atmospheric Radiation Measurement Program Climate Research Facility ...

  10. Atmospheric Radiation Measurement Program Climate Research Facility...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  11. Atmospheric Radiation Measurement (ARM) Data from the North Slope Alaska (NSA) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. The North Slope of Alaska (NSA) site is a permanent site providing data about cloud and radiative processes at high latitudes. These data are being used to refine models and parameterizations as they relate to the Arctic. Centered at Barrow and extending to the south (to the vicinity of Atqasuk), west (to the vicinity of Wainwright), and east (towards Oliktok), the NSA site has become a focal point for atmospheric and ecological research activity on the North Slope. Approximately 300,000 NSA data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  12. Wind Forecasting Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Improvement Project Wind Forecasting Improvement Project October 3, 2011 - 12:12pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. In July, the Department of Energy launched a $6 million project with the National Oceanic and Atmospheric Administration (NOAA) and private partners to improve wind forecasting. Wind power forecasting allows system operators to anticipate the electrical output of wind plants and adjust the electrical

  13. Emulation to simulate low resolution atmospheric data

    SciTech Connect (OSTI)

    Hebbur Venkata Subba Rao, Vishwas [ORNL; Archibald, Richard K [ORNL; Evans, Katherine J [ORNL

    2012-08-01

    Climate simulations require significant compute power, they are complex and therefore it is time consuming to simulate them. We have developed an emulator to simulate unknown climate datasets. The emulator uses stochastic collocation and multi-dimensional in- terpolation to simulate the datasets. We have used the emulator to determine various physical quantities such as temperature, short and long wave cloud forcing, zonal winds etc. The emulation gives results which are very close to those obtained by simulations. The emulator was tested on 2 degree atmospheric datasets. The work evaluates the pros and cons of evaluating the mean first and inter- polating and vice versa. To determine the physical quantities, we have assumed them to be a function of time, longitude, latitude and a random parameter. We have looked at parameters that govern high stable clouds, low stable clouds, timescale for convection etc. The emulator is especially useful as it requires negligible compute times when compared to the simulation itself.

  14. Atmospheric Radiation Measurement Program Science Plan Current Status and Future Directions of the ARM Science Program

    SciTech Connect (OSTI)

    TP Ackerman; AD Del Genio; RG Ellingson; RA Ferrare; SA Klein; GM McFarquhar; PJ Lamb; CN Long; J Verlinde

    2004-10-30

    The Atmospheric Radiation Measurement (ARM) Program has matured into one of the key programs in the U.S. Climate Change Science Program. The ARM Program has achieved considerable scientific success in a broad range of activities, including site and instrument development, atmospheric radiative transfer, aerosol science, determination of cloud properties, cloud modeling, and cloud parameterization testing and development. The focus of ARM science has naturally shifted during the last few years to an increasing emphasis on modeling and parameterization studies to take advantage of the long time series of data now available. During the next 5 years, the principal focus of the ARM science program will be to: • Maintain the data record at the fixed ARM sites for at least the next five years. • Improve significantly our understanding of and ability to parameterize the 3-D cloud-radiation problem at scales from the local atmospheric column to the global climate model (GCM) grid square. • Continue developing techniques to retrieve the properties of all clouds, with a special focus on ice clouds and mixed-phase clouds. • Develop a focused research effort on the indirect aerosol problem that spans observations, physical models, and climate model parameterizations. • Implement and evaluate an operational methodology to calculate broad-band heating rates in the atmospheric columns at the ARM sites. • Develop and implement methodologies to use ARM data more effectively to test atmospheric models, both at the cloud-resolving model scale and the GCM scale. • Use these methodologies to diagnose cloud parameterization performance and then refine these parameterizations to improve the accuracy of climate model simulations. In addition, the ARM Program is actively developing a new ARM Mobile Facility (AMF) that will be available for short deployments (several months to a year or more) in climatically important regions. The AMF will have much of the same instrumentation as the remote facilities at ARM’s Tropical Western Pacific and the North Slope of Alaska sites. Over time, this new facility will extend ARM science to a much broader range of conditions for model testing.

  15. Unmanned Aerial Systems (UAS) Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    De Boer, Gijs

    2016-01-05

    Data were collected to improve understanding of the Arctic troposphere, and to provide researchers with a focused case-study period for future observational and modeling studies pertaining to Arctic atmospheric processes.

  16. INFERENCE OF INHOMOGENEOUS CLOUDS IN AN EXOPLANET ATMOSPHERE

    SciTech Connect (OSTI)

    Demory, Brice-Olivier; De Wit, Julien; Lewis, Nikole; Zsom, Andras; Seager, Sara; Fortney, Jonathan; Knutson, Heather; Desert, Jean-Michel; Heng, Kevin; Madhusudhan, Nikku; Gillon, Michael; Barclay, Thomas; Cowan, Nicolas B.

    2013-10-20

    We present new visible and infrared observations of the hot Jupiter Kepler-7b to determine its atmospheric properties. Our analysis allows us to (1) refine Kepler-7b's relatively large geometric albedo of Ag = 0.35 ± 0.02, (2) place upper limits on Kepler-7b thermal emission that remains undetected in both Spitzer bandpasses and (3) report a westward shift in the Kepler optical phase curve. We argue that Kepler-7b's visible flux cannot be due to thermal emission or Rayleigh scattering from H{sub 2} molecules. We therefore conclude that high altitude, optically reflective clouds located west from the substellar point are present in its atmosphere. We find that a silicate-based cloud composition is a possible candidate. Kepler-7b exhibits several properties that may make it particularly amenable to cloud formation in its upper atmosphere. These include a hot deep atmosphere that avoids a cloud cold trap, very low surface gravity to suppress cloud sedimentation, and a planetary equilibrium temperature in a range that allows for silicate clouds to potentially form in the visible atmosphere probed by Kepler. Our analysis does not only present evidence of optically thick clouds on Kepler-7b but also yields the first map of clouds in an exoplanet atmosphere.

  17. VOCALS: The VAMOS Ocean-Cloud-Atmosphere-Land Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wood, Robert [VOCALS-REx PI, University of Washington; Bretherton, Christopher [GEWEX/GCSS Representative, University of Washington; Huebert, Barry [SOLAS Representative, University of Hawaii; Mechoso, Roberto C. [VOCALS Science Working Group Chair, UCLA; Weller, Robert [Woods Hole Oceanographic Institution

    VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) is an international CLIVAR program the major goal of which is to develop and promote scientific activities leading to improved understanding of the Southeast Pacific (SEP) coupled ocean-atmosphere-land system on diurnal to inter-annual timescales. The principal program objectives are: 1) the improved understanding and regional/global model representation of aerosol indirect effects over the SEP; 2) the elimination of systematic errors in the region of coupled atmospheric-ocean general circulation models, and improved model simulations and predictions of the coupled climate in the SEP and global impacts of the system variability. VOCALS is organized into two tightly coordinated components: 1) a Regional Experiment (VOCALSREx), and 2) a Modeling Program (VOCALS-Mod). Extended observations (e.g. IMET buoy, satellites, EPIC/PACS cruises) will provide important additional contextual datasets that help to link the field and the modeling components. The coordination through VOCALS of observational and modeling efforts (Fig. 3) will accelerate the rate at which field data can be used to improve simulations and predictions of the tropical climate variability [Copied from the Vocals Program Summary of June 2007, available as a link from the VOCALS web at http://www.eol.ucar.edu/projects/vocals/]. The CLIVAR sponsored program to under which VOCALS falls is VAMOS, which stands for Variability of the American Monsoon Systems.

  18. Differential absorption lidar measurements of atmospheric temperature profiles - Theory and experiment

    SciTech Connect (OSTI)

    Theopold, F.A.; Boesenberg, J. )

    1993-04-01

    The method of measuring atmospheric temperature profiles with differential absorption lidar (DIAL), based on the temperature dependence of oxygen absorption lines in the near-IR, is investigated in detail. Particularly, the influence of Doppler broadening on the Rayleigh-backscattered signal is evaluated, and a correction method for this effect is presented which requires an accurate estimate of the molecular and particle backscatter contributions; this is noted not to be achievable by the usual lidar inversion techniques. Under realistic conditions, resulting errors may be as high as 10 K. First range-resolved measurements using this technique are presented, using a slightly modified DIAL system originally constructed for water vapor measurements. While much better resolution can certainly be achieved by technical improvements, the errors introduced by the uncertainty of the backscatter contributions will remain and determine the accuracy that can be obtained with this method. 35 refs.

  19. Explosive Release Atmospheric Dispersal 3.2

    Energy Science and Technology Software Center (OSTI)

    2001-06-26

    ERAD (Explosive Release Atmospheric Dispersal) is a 3D numerical transport and diffusion model, used to model the consequences associated with the buoyant (or nonbuoyant) dispersal of radioactive material It incorporates an integral plume rise model to simulate the buoyant rise of heated gases following an explosive detonation. treating buoyancy effects from time zero onward, eliminating the need for the stabilized doud assumption, and enabling the penetration of inversions. Modeling of the atmospheric boundary layer usesmore » contemporary parameterization based on scaling theories derived from observational, laboratory and numerical studies. A Monte Carlo stochastic process simulates particle dispersion. Results were validated for both dose and deposition against measurements taken during Operation Roller Coaster (a joint US-UK test performed at NTS). Meteorology is defined using a single vertical sounding containing wind speed and direction and temperature as a function of height. Post processing applies 50-year CEDE DCFs (either ICRP 26 or 60) to determine the contribution of the relevant dose pathways (inhalation, submersion, and ground shine) as well as the total dose received. Dose and deposition contours are overlaid on a fully integrated worldwide GIS and tabulates hearth effects (fatalities and casualties) to resident population. The software runs on a laptop and takes less than 2 minutes to process. The Municipal version of ERAD does not include the ability to model the mitigation effects of aqueous foam.« less

  20. Atmospheric sensing for the H.E.S.S. array

    SciTech Connect (OSTI)

    Aye, K.-M.; Brown, A.M.; Chadwick, P.M.; Hadjichristidis, C.; Latham, I.J.; Le Gallou, R.; McComb, T.J.L.; Nolan, S.J.; Noutsos, A.; Orford, K.J.; Osborne, J.L.; Rayner, S.M.

    2005-02-21

    Several atmospheric monitoring instruments have been installed at the H.E.S.S. gamma-ray observatory in Namibia. Firstly, Heitronics KT19 infrared radiometers, aligned paraxially with the H.E.S.S. telescopes, measure the infrared radiation of the water molecules. These allow us to detect clouds crossing the telescopes' field of view and to estimate the humidity present in the atmosphere. For a general estimate of the atmosphere's transmittance, i.e. the detection of any light-attenuating aerosols, a ceilometer, which is a LIDAR with built-in atmospheric data reduction code, is being used. It will be complemented soon by an instrument which will measure the transmissivity of the atmosphere at different wavelengths up to 500m above the ground. The overall status of the weather is monitored by a fully automated weatherstation. This paper describes the setup, the data analysis and how this will be used in order to improve the knowledge of the telescopes' effective collection area.

  1. Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains (SGP) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. Scientists are using the information obtained from the permanent SGP site to improve cloud and radiative models and parameterizations and, thereby, the performance of atmospheric general circulation models used for climate research. More than 30 instrument clusters have been placed around the SGP site. The locations for the instruments were chosen so that the measurements reflect conditions over the typical distribution of land uses within the site. The continuous observations at the SGP site are supplemented by intensive observation periods, when the frequency of measurements is increased and special measurements are added to address specific research questions. During such periods, 2 gigabytes or more of data (two billion bytes) are generated daily. SGP data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/ http. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  2. Atmospheric Chemistry and Air Pollution

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  3. NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    NREL researchers have used high-tech instruments and high-performance computing to understand atmospheric turbulence and turbine wake behavior in order to improve wind turbine design and siting within wind farms.

  4. Atmosphere to Electrons Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atmosphere to Electrons (A2e) Initiative Overview DOE Wind and Water Power Technologies Office January 2014 2 * Motivation for a new R&D framework * A2e initiative overview - Strategic planning framework - Management construct - Executive Management Committee (EMC) - National Laboratory Leadership * Strategic thrust area planning introduction * Program objectives * Open discussion of approach Overview Agenda 3 Wind energy today ..... * Multi-Billion dollar industry with involvement of

  5. Atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM)

    1999-01-01

    Atmospheric-pressure plasma jet. A .gamma.-mode, resonant-cavity plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two concentric cylindrical electrodes are employed to generate a plasma in the annular region therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly shaping the rf-powered electrode. Because of the atmospheric pressure operation, no ions survive for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike low-pressure plasma sources and conventional plasma processing methods.

  6. DEFRA Global Atmosphere Dept | Open Energy Information

    Open Energy Info (EERE)

    Kingdom Zip: SW1E 6DE Product: Atmosphere research department of the UK Department of Food and Rural Affairs. References: DEFRA - Global Atmosphere Dept.1 This article is a...

  7. ORISE: Climate and Atmospheric Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATDD's objectives include: Developing better methods for predicting transport and dispersion of air pollutants. Collecting high-quality measurements and improving the modeling...

  8. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  9. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  10. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  11. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Composition and Reactions of Atmospheric Aerosol Particles Print Wednesday, 29 June 2005 00:00 Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the

  12. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  13. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Reactions of Atmospheric Aerosol Particles Print Microscopic aerosol particles in the atmosphere contain carbonaceous components from mineral dust and combustion emissions released from around the world. How long these tiny particles remain in the atmosphere can have a huge impact on the global climate. Measurements based on high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused

  14. Atmospheric process evaluation of mobile source emissions

    SciTech Connect (OSTI)

    1995-07-01

    During the past two decades there has been a considerable effort in the US to develop and introduce an alternative to the use of gasoline and conventional diesel fuel for transportation. The primary motives for this effort have been twofold: energy security and improvement in air quality, most notably ozone, or smog. The anticipated improvement in air quality is associated with a decrease in the atmospheric reactivity, and sometimes a decrease in the mass emission rate, of the organic gas and NO{sub x} emissions from alternative fuels when compared to conventional transportation fuels. Quantification of these air quality impacts is a prerequisite to decisions on adopting alternative fuels. The purpose of this report is to present a critical review of the procedures and data base used to assess the impact on ambient air quality of mobile source emissions from alternative and conventional transportation fuels and to make recommendations as to how this process can be improved. Alternative transportation fuels are defined as methanol, ethanol, CNG, LPG, and reformulated gasoline. Most of the discussion centers on light-duty AFVs operating on these fuels. Other advanced transportation technologies and fuels such as hydrogen, electric vehicles, and fuel cells, will not be discussed. However, the issues raised herein can also be applied to these technologies and other classes of vehicles, such as heavy-duty diesels (HDDs). An evaluation of the overall impact of AFVs on society requires consideration of a number of complex issues. It involves the development of new vehicle technology associated with engines, fuel systems, and emission control technology; the implementation of the necessary fuel infrastructure; and an appropriate understanding of the economic, health, safety, and environmental impacts associated with the use of these fuels. This report addresses the steps necessary to properly evaluate the impact of AFVs on ozone air quality.

  15. IMPROVED log(gf) VALUES FOR LINES OF Ti I AND ABUNDANCE DETERMINATIONS IN THE PHOTOSPHERES OF THE SUN AND METAL-POOR STAR HD 84937 (ACCURATE TRANSITION PROBABILITIES FOR Ti I)

    SciTech Connect (OSTI)

    Lawler, J. E.; Guzman, A.; Wood, M. P.; Sneden, C.; Cowan, J. J. E-mail: adrianaguzman2014@u.northwestern.edu E-mail: chris@verdi.as.utexas.edu

    2013-04-01

    New atomic transition probability measurements for 948 lines of Ti I are reported. Branching fractions from Fourier transform spectra and from spectra recorded using a 3 m echelle spectrometer are combined with published radiative lifetimes from laser-induced fluorescence measurements to determine these transition probabilities. Generally good agreement is found in comparisons to the NIST Atomic Spectra Database. The new Ti I data are applied to re-determine the Ti abundance in the photospheres of the Sun and metal-poor star HD 84937 using many lines covering a range of wavelength and excitation potential to explore possible non-local thermal equilibrium effects. The variation of relative Ti/Fe abundance with metallicity in metal-poor stars observed in earlier studies is supported in this study.

  16. Radar range measurements in the atmosphere. (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Radar range measurements in the atmosphere. Citation Details In-Document Search Title: Radar range measurements in the atmosphere. The earth's atmosphere affects the velocity of...

  17. Improved Biomass Cooking Stoves | Open Energy Information

    Open Energy Info (EERE)

    TOOL Name: Improved Biomass Cooking Stoves AgencyCompany Organization: various Sector: Energy Focus Area: Biomass Phase: Determine Baseline, Evaluate Options, Prepare a Plan,...

  18. ARESE (ARM Enhanced Shortwave Experiment) Science Plan [Atmospheric Radiation Program

    SciTech Connect (OSTI)

    Valero, F.P.J.; Schwartz, S.E.; Cess, R.D.; Ramanathan, V.; Collins, W.D.; Minnis, P.; Ackerman, T.P.; Vitko, J.; Tooman, T.P.

    1995-09-27

    Several recent studies have indicated that cloudy atmospheres may absorb significantly more solar radiation than currently predicted by models. The magnitude of this excess atmospheric absorption, is about 50% more than currently predicted and would have major impact on our understanding of atmospheric heating. Incorporation of this excess heating into existing general circulation models also appears to ameliorate some significant shortcomings of these models, most notably a tendency to overpredict the amount of radiant energy going into the oceans and to underpredict the tropopause temperature. However, some earlier studies do not show this excess absorption and an underlying physical mechanism that would give rise to such absorption has yet to be defined. Given the importance of this issue, the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program is sponsoring the ARM Enhanced Shortwave Experiment (ARESE) to study the absorption of solar radiation by clear and cloudy atmospheres. The experimental results will be compared with model calculations. Measurements will be conducted using three aircraft platforms (ARM-UAV Egrett, NASA ER-2, and an instrumented Twin Otter), as well as satellites and the ARM central and extended facilities in North Central Oklahoma. The project will occur over a four week period beginning in late September, 1995. Spectral broadband, partial bandpass, and narrow bandpass (10nm) solar radiative fluxes will be measured at different altitudes and at the surface with the objective to determine directly the magnitude and spectral characteristics of the absorption of shortwave radiation by the atmosphere (clear and cloudy). Narrow spectral channels selected to coincide with absorption by liquid water and ice will help in identifying the process of absorption of radiation. Additionally, information such as water vapor profiles, aerosol optical depths, cloud structure and ozone profiles, needed to use as input in radiative transfer calculations, will be acquired using the aircraft and surface facilities available to ARESE. This document outlines the scientific approach and measurement requirements of the project.

  19. Overview of the United States Department of Energy's ARM (Atmospheric Radiation Measurement) Program

    SciTech Connect (OSTI)

    Stokes, G.M. ); Tichler, J.L. )

    1990-06-01

    The Department of Energy (DOE) is initiating a major atmospheric research effort, the Atmospheric Radiation Measurement Program (ARM). The program is a key component of DOE's research strategy to address global climate change and is a direct continuation of DOE's decade-long effort to improve the ability of General Circulation Models (GCMs) to provide reliable simulations of regional, and long-term climate change in response to increasing greenhouse gases. The effort is multi-disciplinary and multi-agency, involving universities, private research organizations and more than a dozen government laboratories. The objective of the ARM Research is to provide an experimental testbed for the study of important atmospheric effects, particularly cloud and radiative processes, and to test parameterizations of these processes for use in atmospheric models. This effort will support the continued and rapid improvement of GCM predictive capability. 2 refs.

  20. Broadband Outdoor Radiometer Callibration Process for the Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement ... Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement ...

  1. Atmospheric Radiation Measurement Program facilities newsletter, April 2000

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2000-05-05

    This issue of the Atmospheric Radiation Measurement Program (ARM Program) monthly newsletter is about the ARM Program goal to improve scientific understanding of the interactions of sunlight (solar radiation) with the atmosphere, then incorporate this understanding into computer models of climate change. To model climate accurately all around the globe, a variety of data must be collected from many locations on Earth. For its Cloud and Radiation Testbed (CART) sites, ARM chose locations in the US Southern Great Plains, the North Slope of Alaska, and the Tropical Western Pacific Ocean to represent different climate types around the world. In this newsletter they consider the North Slope of Alaska site, with locations at Barrow and Atqasuk, Alaska.

  2. National Oceanic and Atmospheric Administration, Honolulu, Hawaii |

    Office of Environmental Management (EM)

    Department of Energy Oceanic and Atmospheric Administration, Honolulu, Hawaii National Oceanic and Atmospheric Administration, Honolulu, Hawaii Photo of a Staff Residence at the Pacific Tsunami Warning Center in Hawaii The staff residences at the Pacific Tsunami Warning Center in Hawaii now have solar water heating systems funded by the Federal Energy Management Program (FEMP). The Center is part of the Department of Commerce's National Oceanic and Atmospheric Administration (DOC-NOAA). New

  3. Dynamics of Arctic and Sub-Arctic Climate and Atmospheric Circulation: Diagnosis of Mechanisms and Biases Using Data Assimilation

    SciTech Connect (OSTI)

    Eric T. DeWeaver

    2010-01-19

    This is the final report for DOE grant DE-FG02-07ER64434 to Eric DeWeaver at the University of Wisconsin-Madison. The overall goal of work performed under this grant is to enhance understanding of simulations of present-day climate and greenhouse gas-induced climate change. Enhanced understanding is desirable 1) as a prerequisite for improving simulations; 2) for assessing the credibility of model simulations and their usefulness as tools for decision support; and 3) as a means to identify robust behaviors which commonly occur over a wide range of models, and may yield insights regarding the dominant physical mechanisms which determine mean climate and produce climate change. A furthe objective is to investigate the use of data assimilation as a means for examining and correcting model biases. Our primary focus is on the Arctic, but the scope of the work was expanded to include the global climate system to the extent that research targets of opportunity present themselves. Research performed under the grant falls into five main research areas: 1) a study of data assimilation using an ensemble filter with the atmospheric circulation model of the National Center for Atmospheric Research, in which both conventional observations and observations of the refraction of radio waves from GPS satellites were used to constrain the atmospheric state of the model; 2) research on the likely future status of polar bears, in which climate model simluations were used to assess the effectiveness of climate change mitigation efforts in preserving the habitat of polar bears, now considered a threatened species under global warming; 3) as assessment of the credibility of Arctic sea ice thickness simulations from climate models; 4) An examination of the persistence and reemergence of Northern Hemisphere sea ice area anomalies in climate model simulations and in observations; 5) An examination of the roles played by changes in net radiation and surface relative humidity in determine the response of the hydrological cycle to global warming.

  4. Composition and Reactions of Atmospheric Aerosol Particles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-resolution scanning transmission x-ray images obtained at the ALS have revealed chemical reactions on and in atmospheric aerosol particles that caused particle growth while...

  5. Atmospheric Dispersion Modeling in Safety Analyses; GENII

    Office of Environmental Management (EM)

    part of GENII) 5 GENII Acute Atmospheric Transport Straight-line (centerline) Gaussian plume for individuals For short duration releases (2 hours) Single source...

  6. Atmosphere to Electrons Program Overview Presentation

    Broader source: Energy.gov [DOE]

    This presentation provides an introduction to the Atmosphere to Electrons (A2e) initiative, including objectives, program areas, and a general timeline of activities.

  7. An Instrumentation Complex for Atmospheric Radiation Measurements...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation Complex for Atmospheric Radiation Measurements in Siberia S. M. Sakerin, F. V. Dorofeev, D. M. Kabanov, V. S. Kozlov, M. V. Panchenko, Yu. A. Pkhalagov, V. V. ...

  8. Session Papers Atmospheric Radiation Measurement Program- Unmanned...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Session Papers Atmospheric Radiation Measurement Program- Unmanned Aerospace Vehicle: The Follow-On Phase J. Vitko, Jr. ARM-UAV Technical Director Sandia National Laboratories ...

  9. Atmospheric Radiation Measurement Tropical Warm Pool International...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) was a collaborative effort led by the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Program ...

  10. Atmospheric Radiation Measurement Convective and Orographically...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Convective and Orographically Induced Precipitation Study The U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility is providing the ARM ...

  11. Asymmetry in the Diurnal Cycle of Atmospheric Downwelling Radiation at the ARM SGP CF Site Over 1995-2001 Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asymmetry in the Diurnal Cycle of Atmospheric Downwelling Radiation at the ARM SGP CF Site Over 1995-2001 Period A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction The shape of the diurnal cycle of atmospheric downwelling radiation is an important climatic feature of cloud-radiation interactions and atmospheric properties. Adequate characterization of this diurnal cycle is critical for accurate determination of monthly and seasonal radiation budgets from a

  12. CX-009199: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-009199: Categorical Exclusion Determination Access Road Improvement For the ... Bonneville Power Administration proposes to perform access road maintenance on several ...

  13. SULI Intern: Atmospheric Science | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Science Share Hear how Argonne intern Jane Pan helped scientists accurately represent atmospheric conditions in computer models and forecasts. Browse By - Any - Energy -Energy efficiency --Vehicles ---Alternative fuels ---Automotive engineering ---Diesel ---Electric drive technology ---Hybrid & electric vehicles ---Hydrogen & fuel cells ---Internal combustion ---Powertrain research --Building design ---Construction --Manufacturing -Energy sources --Renewable energy

  14. NREL: Process Development and Integration Laboratory - Atmospheric

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Processing Platform Capabilities Atmospheric Processing Platform Capabilities The Atmospheric Processing platform in the Process Development and Integration Laboratory offers powerful capabilities with integrated tools for depositing, processing, and characterizing photovoltaic materials and devices. In particular, this platform focuses on different methods to deposit ("write") materials onto a variety of substrates and then further process into optoelectronic materials using rapid

  15. Discovery of oxygen in atmosphere could mean life for Saturn's moon Dione

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Discovery of oxygen in atmosphere could mean life for Saturn's moon Dione Discovery of oxygen in atmosphere could mean life for Saturn's moon Dione Discovery could mean ingredients for life are abundant on icy space bodies. March 5, 2012 Curiosity rover bears three LANL technologies Inside Titan: This artist's concept shows a possible scenario for the internal structure of Titan, as suggested by data from NASA's Cassini spacecraft. Scientists have been trying to determine what is under Titan's

  16. The Atmospheric Muon Charge Ratio at the MINOS Near Detector

    SciTech Connect (OSTI)

    de Jong, J.K.; /IIT, Chicago /Oxford U.

    2011-11-01

    The magnetized MINOS near detector can accurately determine the charge sign of atmospheric muons, this facilitates a measurement of the atmospheric muon charge ratio. To reduce the systematic error associated with geometric bias and acceptance we have combined equal periods of data obtained with opposite magnetic field polarities. We report a charge ratio of 1.2666 {+-} 0.0015(stat.){sub -0.0088}{sup +0.0096}(syst.) at a mean E{sub {mu},0{sup cos}}({theta}) = 63 GeV. This measurement is consistent with the world average but significantly lower than the earlier observation at the MINOS far detector. This increase is shown to be consistent with the hypothesis that a greater fraction of the observed muons arise from kaon decay within the cosmic ray shower.

  17. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  18. Atmospheric sampling glow discharge ionization source

    DOE Patents [OSTI]

    McLuckey, Scott A. (Oak Ridge, TN); Glish, Gary L. (Oak Ridge, TN)

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  19. Improving Radar Antenna Performance with Eigenvalue Processing of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cross-Polarization Signals - Energy Innovation Portal Improving Radar Antenna Performance with Eigenvalue Processing of Cross-Polarization Signals Brookhaven National Laboratory Contact BNL About This Technology Technology Marketing Summary This invention comprises an atmospheric radar apparatus and a method for measuring a meteorological or other type of variable of a target having reflection symmetry without bias caused by coherent antenna cross-polar coupling in the atmospheric radar

  20. Critical review of studies on atmospheric dispersion in coastal regions

    SciTech Connect (OSTI)

    Shearer, D.L.; Kaleel, R.J.

    1982-09-01

    This study effort was required as a preliminary step prior to initiation of field measurements of atmospheric dispersion in coastal regions. The Nuclear Regulatory Commission (NRC) is in the process of planning an extensive field measurement program to generate data which will serve as improved data bases for licensing decisions, confirmation of regulations, standards, and guides, and for site characterizations. The study being reported here is an effort directed to obtaining as much information as is possible from existing studies that is relevant toward NRC's objectives. For this study, reports covering research and meteorological measurements conducted for industrial purposes, utility needs, military objectives, and academic studies were obtained and critically reviewed in light of NRC's current data needs. This report provides an interpretation of the extent of existing usable information, an indication of the potential for tailoring existing research toward current NRC information needs, and recommendations for several follow-on studies which could provide valuable additional information through reanalysis of the data. Recommendations are also offered regarding new measurement programs. Emphasis is placed on the identification and acquisition of data from atmospheric tracer studies conducted in coastal regions. A total of 225 references were identified which deal with the coastal atmosphere, including meteorological and tracer measurement programs, theoretical descriptions of the relevant processes, and dispersion models.

  1. Atmosphere contamination following repainting of a human hyperbaric chamber complex

    SciTech Connect (OSTI)

    Lillo, R.S.; Morris, J.W.; Caldwell, J.M.; Balk, D.M.; Flynn, E.T. )

    1990-09-01

    The Naval Medical Research Institute currently conducts hyperbaric research in a Man-Rated Chamber Complex (MRCC) originally installed in 1977. Significant engineering alterations to the MRCC and rusting of some of its interior sections necessitated repainting, which was completed in 1988. Great care was taken in selecting an appropriate paint (polyamide epoxy) and in ensuring correct application and curing procedures. Only very low levels of hydrocarbons were found in the MRCC atmosphere before initial pressurization after painting and curing. After pressurization, however, significant chemical contamination was found. The primary contaminants were aromatic hydrocarbons: xylenes (which were a major component of both the primer and topcoat paint) and ethyl benzene. The role that pressure played in stimulating off-gassing from the paint is not clear; the off-gassing rate was observed to be similar over a large range in chamber pressures from 1.6 to 31.0 atm abs. Scrubbing the chamber atmosphere with the chemical absorbent Purafil was effective in removing the contaminants. Contamination has been observed to slowly decline with chamber use and is expected to continue to improve with time. However, this contamination experience emphasizes the need for a high precision gas analysis program at any diving facility to ensure the safety of the breathing gas and chamber atmosphere.

  2. Atmospheric Radiation Measurement (ARM) Data from Black Forest Germany for the Convective and Orographically Induced Precipitation Study (COPS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility (AMF) to other sites as determined. In 2007 the AMF operated in the Black Forest region of Germany as part of the Convective and Orographically Induced Precipitation Study (COPS). Scientists studied rainfall resulting from atmospheric uplift (convection) in mountainous terrain, otherwise known as orographic precipitation. This was part of a six -year duration of the German Quantitative Precipitation Forecasting (QPF) Program. COPS was endorsed as a Research and Development Project by the World Weather Research Program. This program was established by the World Meteorological Organization to develop improved and cost-effective forecasting techniques, with an emphasis on high-impact weather. A large collection of data plots based on data streams from specific instruments used at Black Forest are available via a link from ARM's Black Forest site information page. Users will be requested to create a password, but the plots and the data files in the ARM Archive are free for viewing and downloading.

  3. Liquid chromatographic determination of water

    DOE Patents [OSTI]

    Fortier, Nancy E.; Fritz, James S.

    1990-11-13

    A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present.

  4. Liquid chromatographic determination of water

    DOE Patents [OSTI]

    Fortier, N.E.; Fritz, J.S.

    1990-11-13

    A sensitive method for the determination of water in the presence of common interferences is presented. The detection system is based on the effect of water on the equilibrium which results from the reaction aryl aldehydes, such as cinnamaldehyde and methanol in the eluent to form cinnamaldehyde dimethylacetal, plus water. This equilibrium is shifted in a catalytic atmosphere of a hydrogen ion form past column reactor. The extent of the shift and the resulting change in absorbance are proportional to the amount of water present. 1 fig.

  5. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Smith, C.; Brigmon, R.

    2009-10-20

    Legionnaires disease is a pneumonia caused by the inhalation of the bacterium Legionella pneumophila. The majority of illnesses have been associated with cooling towers since these devices can harbor and disseminate the bacterium in the aerosolized mist generated by these systems. Historically, Savannah River Site (SRS) cooling towers have had occurrences of elevated levels of Legionella in all seasons of the year and in patterns that are difficult to predict. Since elevated Legionella in cooling tower water are a potential health concern a question has been raised as to the best control methodology. In this work we analyze available chemical, biological, and atmospheric data to determine the best method or key parameter for control. The SRS 4Q Industrial Hygiene Manual, 4Q-1203, 1 - G Cooling Tower Operation and the SRNL Legionella Sampling Program, states that 'Participation in the SRNL Legionella Sampling Program is MANDATORY for all operating cooling towers'. The resulting reports include L. pneumophila concentration information in cells/L. L. pneumophila concentrations >10{sup 7} cells/L are considered elevated and unsafe so action must be taken to reduce these densities. These remedial actions typically include increase biocide addition or 'shocking'. Sometimes additional actions are required if the problem persists including increase tower maintenance (e.g. cleaning). Evaluation of 14 SRS cooling towers, seven water quality parameters, and five Legionella serogroups over a three-plus year time frame demonstrated that cooling tower water Legionella densities varied widely though out this time period. In fact there was no one common consistent significant variable across all towers. The significant factors that did show up most frequently were related to suspended particulates, conductivity, pH, and dissolved oxygen, not chlorine or bromine as might be expected. Analyses of atmospheric data showed that there were more frequent significant elevated Legionella concentrations when the dew point temperature was high--a summertime occurrence. However, analysis of the three years of Legionella monitoring data of the 14 different SRS Cooling Towers demonstrated that elevated concentrations are observed at all temperatures and seasons. The objective of this study is to evaluate the ecology of L. pneumophila including serogroups and population densities, chemical, and atmospheric data, on cooling towers at SRS to determine whether relationships exist among water chemistry, and atmospheric conditions. The goal is to more fully understand the conditions which inhibit or encourage L. pneumophila growth and supply this data and associated recommendations to SRS Cooling Tower personnel for improved management of operation. Hopefully this information could then be used to help control L. pneumophila growth more effectively in SRS cooling tower water.

  6. Experimental studies on atmospheric Stirling engine NAS-2

    SciTech Connect (OSTI)

    Watanabe, Hiroichi; Isshiki, Naotsugu; Ohtomo, Michihiro

    1996-12-31

    Atmospheric hot air Stirling engine NAS-1 and 2 have a simple flat rubber sheet diaphragm as their power piston, and they have been experimentally studied at Nihon University for several years continuously, with the target of to get more than 100 watts shaft power by atmospheric air with simple construction and cheap material. The first NAS-1 was intended to be a solar heated engine using television glass and wood for cheap cost, but it failed by thermal break of glass, so the improved NAS-2 is changed to be heated by gas burner, using metallic materials in all parts except rubber power piston. Other than this rubber sheet diaphragm, NAS-2 has many features as using James Watt crank mechanism, high finny copper tube for conventional commercial heat exchanger, and two kinds of hot gas heaters, etc. About the rubber sheet for the power piston, the thickness of the sheet was changed from 2 mm to 6 mm gradually to known what thickness is best, and it is found that about 5 mm is best for this engine. After trying many improvements on this engine, NAS-2 has produced about 130 watt shaft power with indicated power of 350 watt at 1994. In this paper detail of many features, history, results and experiments of these NAS engines are reported.

  7. Pavlos Kollias Associate Professor Department of Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pavlos Kollias Associate Professor Department of Atmospheric and Oceanic Sciences, McGill University Room 817, Burnside Hall, 805 Sherbrooke Street West, Montreal, Quebec, H3A 0B9...

  8. Operating Experience Level 3, Atmospheric Dispersion Parameter...

    Broader source: Energy.gov (indexed) [DOE]

    5 OE-3 2015-02: Atmospheric Dispersion Parameter (xQ) for Calculation of Co-located Worker Dose This Operating Experience Level 3 (OE-3) document informs the complex of the...

  9. Free Floating Atmospheric Pressure Ball Plasmas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Floating Atmospheric Pressure Ball Plasmas G. A. Wurden, Z. Wang, C. Ticos Los Alamos National Laboratory L Al NM 87545 USA Los Alamos, NM 87545 USA C. J. v. Wurden Los Alamos...

  10. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    2008-01-15

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  11. Air Activation Following an Atmospheric Explosion

    SciTech Connect (OSTI)

    Lowrey, Justin D.; McIntyre, Justin I.; Prichard, Andrew W.; Gesh, Christopher J.

    2013-03-13

    In addition to thermal radiation and fission products, nuclear explosions result in a very high flux of unfissioned neutrons. Within an atmospheric nuclear explosion, these neutrons can activate the various elemental components of natural air, potentially adding to the radioactive signature of the event as a whole. The goal of this work is to make an order-of-magnitude estimate of the total amount of air activation products that can result from an atmospheric nuclear explosion.

  12. Atmospheric and Climate Science | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric and Climate Science Argonne research in aerosols, micro-meteorology, remote sensing, and atmospheric chemistry combined with our scalable, portable, high-performance climate and weather applications offer a unique look at the complexities of a dynamic planet. Changes in climate can affect biodiversity, the cost of food, our health, and even whole economies. Argonne is developing computational models and tools designed to shed light on complex biological processes and their economic,

  13. Atmospheric State, Cloud Microphysics and Radiative Flux

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mace, Gerald

    Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the physical state of the atmospheric column compiled on a five-minute temporal and 90m vertical grid. Sources for this information include raw measurements, cloud property and radiative retrievals, retrievals and derived variables from other third-party sources, and radiative calculations using the derived quantities.

  14. NDE to Manage Atmospheric SCC in Canisters for Dry Storage of Spent Fuel: An Assessment

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Pardini, Allan F.; Cuta, Judith M.; Adkins, Harold E.; Casella, Andrew M.; Qiao, Hong; Larche, Michael R.; Diaz, Aaron A.; Doctor, Steven R.

    2013-09-01

    This report documents efforts to assess representative horizontal (Transuclear NUHOMS®) and vertical (Holtec HI-STORM) storage systems for the implementation of non-destructive examination (NDE) methods or techniques to manage atmospheric stress corrosion cracking (SCC) in canisters for dry storage of used nuclear fuel. The assessment is conducted by assessing accessibility and deployment, environmental compatibility, and applicability of NDE methods. A recommendation of this assessment is to focus on bulk ultrasonic and eddy current techniques for direct canister monitoring of atmospheric SCC. This assessment also highlights canister regions that may be most vulnerable to atmospheric SCC to guide the use of bulk ultrasonic and eddy current examinations. An assessment of accessibility also identifies canister regions that are easiest and more difficult to access through the ventilation paths of the concrete shielding modules. A conceivable sampling strategy for canister inspections is to sample only the easiest to access portions of vulnerable regions. There are aspects to performing an NDE inspection of dry canister storage system (DCSS) canisters for atmospheric SCC that have not been addressed in previous performance studies. These aspects provide the basis for recommendations of future efforts to determine the capability and performance of eddy current and bulk ultrasonic examinations for atmospheric SCC in DCSS canisters. Finally, other important areas of investigation are identified including the development of instrumented surveillance specimens to identify when conditions are conducive for atmospheric SCC, characterization of atmospheric SCC morphology, and an assessment of air flow patterns over canister surfaces and their influence on chloride deposition.

  15. Atmospheric Radiation Measurement Climate Research Facility (ACRF Instrumentation Status: New, Current, and Future)

    SciTech Connect (OSTI)

    JW Voyles

    2008-01-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  16. Atmospheric Neutrinos in the MINOS Far Detector

    SciTech Connect (OSTI)

    Howcroft, Caius L.F.

    2004-12-01

    The phenomenon of flavour oscillations of neutrinos created in the atmosphere was first reported by the Super-Kamiokande collaboration in 1998 and since then has been confirmed by Soudan 2 and MACRO. The MINOS Far Detector is the first magnetized neutrino detector able to study atmospheric neutrino oscillations. Although it was designed to detect neutrinos from the NuMI beam, it provides a unique opportunity to measure the oscillation parameters for neutrinos and anti-neutrinos independently. The MINOS Far Detector was completed in August 2003 and since then has collected 2.52 kton-years of atmospheric data. Atmospheric neutrino interactions contained within the volume of the detector are separated from the dominant background from cosmic ray muons. Thirty seven events are selected with an estimated background contamination of less than 10%. Using the detector's magnetic field, 17 neutrino events and 6 anti-neutrino events are identified, 14 events have ambiguous charge. The neutrino oscillation parameters for {nu}{sub {mu}} and {bar {nu}}{sub {mu}} are studied using a maximum likelihood analysis. The measurement does not place constraining limits on the neutrino oscillation parameters due to the limited statistics of the data set analysed. However, this thesis represents the first observation of charge separated atmospheric neutrino interactions. It also details the techniques developed to perform atmospheric neutrino analyses in the MINOS Far Detector.

  17. The Atmospheric Dynamics Mission on the International Space Station--A new technique for observing winds in the atmosphere

    SciTech Connect (OSTI)

    Ingmann, P.; Readings, C. J.; Knott, K.

    1999-01-22

    For the post-2000 time-frame two general classes of Earth Observation missions have been identified to address user requirements (see e.g. ESA, 1995), namely Earth Watch and Earth Explorer missions. One of the candidate Earth Explorer Missions selected for Phase A study is the Atmospheric Dynamics Mission which is intended to exploit a Doppler wind lidar, ALADIN, to measure winds in clear air (ESA, 1995 and ESA, 1996). It is being studied as a candidate for flight on the International Space Station (ISS) as an externally attached payload. The primary, long-term objective of the Atmospheric Dynamics Mission is to provide observations of wind profiles (e.g. radial wind component). Such data would be assimilated into numerical forecasting models leading to an improvement in objective analyses and hence in Numerical Weather Prediction. The mission would also provide data needed to address some of the key concerns of the World Climate Research Programme (WCRP) i.e. quantification of climate variability, validation and improvement of numerical models and process studies relevant to climate change. The newly acquired data would also help realize some of the objectives of the Global Climate Observing System (GCOS)

  18. Radon Measurements of Atmospheric Mixing (RAMIX) 2006-2014 Final...

    Office of Scientific and Technical Information (OSTI)

    Title: Radon Measurements of Atmospheric Mixing (RAMIX) 2006-2014 Final Campaign Summary ... estimates of regional land-atmosphere carbon exchange (i.e., estimates based on ...

  19. Global Atmospheric Pollution Forum Air Pollutant Emission Inventory...

    Open Energy Info (EERE)

    Atmospheric Pollution Forum Air Pollutant Emission Inventory Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Atmospheric Pollution (GAP) Forum Air Pollutant...

  20. Radar range measurements in the atmosphere. (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Radar range measurements in the atmosphere. Citation Details In-Document Search Title: Radar range measurements in the atmosphere. You are accessing a document from the...

  1. Simulation and Theory of Ions at Atmospherically Relevant Aqueous...

    Office of Scientific and Technical Information (OSTI)

    Simulation and Theory of Ions at Atmospherically Relevant Aqueous Liquid-Air Interfaces Citation Details In-Document Search Title: Simulation and Theory of Ions at Atmospherically...

  2. A marine biogenic source of atmospheric ice-nucleating particles...

    Office of Scientific and Technical Information (OSTI)

    A marine biogenic source of atmospheric ice-nucleating particles Citation Details In-Document Search Title: A marine biogenic source of atmospheric ice-nucleating particles The ...

  3. Model-Observation "Data Cubes" for the DOE Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Model-Observation "Data Cubes" for the DOE Atmospheric Radiation Measurement Facility's ... Program through its Atmospheric Radiation Measurement Facility. 2. Data Cube ...

  4. Posters Single-Column Model for Atmospheric Radiation Measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Posters Single-Column Model for AtmosphericRadiation Measurement Sites: Model Development ... Using observational data obtained from the Oklahoma Atmospheric Radiation Measurement ...

  5. A U. S. Department of Energy User Facility Atmospheric Radiation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. Department of Energy User Facility AtmosphericRadiationMeasurement Climate Research Facility U.S. Department of Energy Atmospheric Radiation Measurement Program DOESC-ARM...

  6. Session Papers Quality Measurement Experiments Within the Atmospheric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quality Measurement Experiments Within the Atmospheric Radiation Measurement Program N. E. ... Introduction The general goal of the Atmospheric RadiationMeasurement (ARM) Program is to ...

  7. Modeling Workflow for the DOE Atmospheric Radiation Measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Workflow for the DOE Atmospheric Radiation Measurement Facility's LES ARM Symbiotic ... and Environmental Research Program through its Atmospheric Radiation Measurement Facility. ...

  8. ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARMlUnmanned Air VehiclelSatelites The Atmospheric Radiation Measurement Unmanned ... This program has its origins in the Atmospheric RadiationMeasurement (ARM) Program's long ...

  9. DOE/SC-ARM-020 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-020 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  10. Posters Objective Analysis Schemes to Monitor Atmospheric Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Objective Analysis Schemes to Monitor AtmosphericRadiation Measurement Data in Near ... large networks of instruments such as the AtmosphericRadiation Measurement (ARM) Program. ...

  11. Style Guide Atmospheric Radiation Measurement (ARM) Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Style Guide Atmospheric Radiation Measurement (ARM) Climate Research Facility March 2013 Style Guide Atmospheric Radiation Measurement Climate Research Facility March 2013 Work ...

  12. A Decade of Atmospheric Research in the Tropical Western Pacific...

    Office of Science (SC) Website

    The Atmospheric Radiation Measurement (ARM) Climate Research Facility has three user ... The Science The Department of Energy's Atmospheric Radiation Measurement (ARM) Climate ...

  13. An Evaluation of the Nonlinearity Correction Applied to Atmospheric Emitted Radiance Interferometer (AERI) Data Collected by the Atmospheric Radiation Measurement Program

    SciTech Connect (OSTI)

    Turner, DD; Revercomb, HE; Knuteson, RO; Dedecker, RG; Feltz, WF

    2004-09-01

    Mercury Cadmium Telluride (MCT) detectors provide excellent sensitivity to infrared radiation and are used in passive infrared remote sensors such as the Atmospheric Emitted Radiance Interferometer (AERI). However, MCT detectors have a nonlinear response and thus this nonlinearity must be characterized and corrected to provide accurate infrared radiance observations. This paper discusses the significance of the nonlinearity correction applied to AERI data and its impacts on the parameters retrieved from the AERI spectra. It also evaluates the accuracy of the scheme used to determine the nonlinearity of the MCT detectors used in the Atmospheric Radiation Measurement (ARM) Program’s AERIs.

  14. Contributions of the Atmospheric Radiation Measurement (ARM) Program and the ARM Climate Research Facility to the U.S. Climate Change Science Program

    SciTech Connect (OSTI)

    SA Edgerton; LR Roeder

    2008-09-30

    The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhouse gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.

  15. Multi-scale Atmospheric Modeling of Green House Gas Dispersion in Complex Terrain. Atmospheric Methane at Four Corners

    SciTech Connect (OSTI)

    Costigan, Keeley Rochelle; Dubey, Manvendra Krishna

    2015-07-10

    Atmospheric models are compared in collaboration with LANL and the University of Michigan to understand emissions and the condition of the atmosphere from a model perspective.

  16. An experimental study of atmospheric pressure dielectric barrier discharge (DBD) in argon

    SciTech Connect (OSTI)

    Subedi, D. P.; Tyata, R. B.; Shrestha, R.; Wong, C. S.

    2014-03-05

    In this paper, experimental results on atmospheric pressure argon dielectric barrier discharge (DBD) have been presented. The discharge was generated using a high voltage (0 to 20 kV) power supply operating at frequency of 10 to 30 kHz and was studied by means of electrical and optical measurements. A homogeneous and steady discharge was observed between the electrodes with gap spacing from 1 mm to 3 mm and with a dielectric barrier of thickness 1.5 mm while argon gas is fed at a controlled flow rate of 2liter per min. The electron temperature (T{sub e}) and electron density (n{sub e}) of the plasma have been determined by means of optical emission spectroscopy. Our results show that the electron density is of the order of 10{sup 16} cm{sup ?3} while the electron temperature is estimated to be ? 1 eV. The homogeneity and non-thermal nature of the discharge were utilized in the investigation of the change in wettabilty of a polymer sample subjected to the treatment by the discharge. Contact angle analysis showed that the discharge was effective in improving the wettability of low density Polyethylene (LDPE) polymer sample after the treatment.

  17. Environmental assessment for the Atmospheric Radiation Measurement (ARM) Program: Southern Great Plains Cloud and Radiation Testbed (CART) site

    SciTech Connect (OSTI)

    Policastro, A.J.; Pfingston, J.M.; Maloney, D.M.; Wasmer, F.; Pentecost, E.D.

    1992-03-01

    The Atmospheric Radiation Measurement (ARM) Program is aimed at supplying improved predictive capability of climate change, particularly the prediction of cloud-climate feedback. The objective will be achieved by measuring the atmospheric radiation and physical and meteorological quantities that control solar radiation in the earth`s atmosphere and using this information to test global climate and related models. The proposed action is to construct and operate a Cloud and Radiation Testbed (CART) research site in the southern Great Plains as part of the Department of Energy`s Atmospheric Radiation Measurement Program whose objective is to develop an improved predictive capability of global climate change. The purpose of this CART research site in southern Kansas and northern Oklahoma would be to collect meteorological and other scientific information to better characterize the processes controlling radiation transfer on a global scale. Impacts which could result from this facility are described.

  18. ARRA Home Improvement Funds Application for Canton, Michigan | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Home Improvement Funds Application for Canton, Michigan ARRA Home Improvement Funds Application for Canton, Michigan Federal Energy Regulatory Commission Loan Program Limited Stimulus Funding Application PDF icon ARRA Home Improvement Funds Application for Canton, Michigan More Documents & Publications American Reinvestment Recovery Act CX-002410: Categorical Exclusion Determination CX-002820: Categorical Exclusion Determination

  19. Atmospheric Pressure Plasma Process And Applications

    SciTech Connect (OSTI)

    Peter C. Kong; Myrtle

    2006-09-01

    This paper provides a general discussion of atmospheric-pressure plasma generation, processes, and applications. There are two distinct categories of atmospheric-pressure plasmas: thermal and nonthermal. Thermal atmospheric-pressure plasmas include those produced in high intensity arcs, plasma torches, or in high intensity, high frequency discharges. Although nonthermal plasmas are at room temperatures, they are extremely effective in producing activated species, e.g., free radicals and excited state atoms. Thus, both thermal and nonthermal atmosphericpressure plasmas are finding applications in a wide variety of industrial processes, e.g. waste destruction, material recovery, extractive metallurgy, powder synthesis, and energy conversion. A brief discussion of recent plasma technology research and development activities at the Idaho National Laboratory is included.

  20. Controlled atmosphere for fabrication of cermet electrodes

    DOE Patents [OSTI]

    Ray, Siba P. (Murrysville, PA); Woods, Robert W. (New Kensington, PA)

    1998-01-01

    A process for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750.degree. C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5-3000 ppm in order to obtain a desired composition in the resulting composite.

  1. Our Dusty Atmosphere | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dusty Atmosphere Our Dusty Atmosphere September 6, 2011 - 4:26pm Addthis A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest National Laboratory show the importance of including the small-scale effects of aerosols in climate modeling. | Image courtesy of PNNL A heavy layer of air pollution, a mix of aerosol particles and vapors, obscures the view over Mexico City. Two studies by the Pacific Northwest

  2. Controlled atmosphere for fabrication of cermet electrodes

    DOE Patents [OSTI]

    Ray, S.P.; Woods, R.W.

    1998-08-11

    A process is disclosed for making an inert electrode composite wherein a metal oxide and a metal are reacted in a gaseous atmosphere at an elevated temperature of at least about 750 C. The metal oxide is at least one of the nickel, iron, tin, zinc and zirconium oxides and the metal is copper, silver, a mixture of copper and silver or a copper-silver alloy. The gaseous atmosphere has an oxygen content that is controlled at about 5--3000 ppm in order to obtain a desired composition in the resulting composite. 2 figs.

  3. Improving Compressed Air System Performance Third Edition | Department of

    Energy Savers [EERE]

    Energy Improving Compressed Air System Performance Third Edition Improving Compressed Air System Performance Third Edition PDF icon Improving Compressed Air Sourcebook version 3.pdf More Documents & Publications Improving Compressed Air System Performance: A Sourcebook for Industry Determining the Right Air Quality for Your Compressed Air System Effect of Intake on Compressor Performance

  4. Connectivity To Atmospheric Release Advisory Capability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-02-26

    To establish DOE and NNSA connectivity to Atmospheric Release Advisory Capability (ARAC) for sites and facilities that have the potential for releasing hazardous materials sufficient to generate certain emergency declarations and to promote efficient use of resources for consequence assessment activities at DOE sites, facilities, operations, and activities in planning for and responding to emergency events. No cancellations.

  5. Application of lidar to current atmospheric topics

    SciTech Connect (OSTI)

    Sedlacek, A.J. III

    1996-12-31

    The goal of the conference was to address the various applications of lidar to topics of interest in the atmospheric community. Specifically, with the development of frequency-agile, all solid state laser systems, high-quantum-efficiency detectors, increased computational power along with new and more powerful algorithms, and novel detection schemes, the application of lidar to both old and new problems has expanded. This expansion is evidenced by the contributions to the proceedings, which demonstrate the progress made on a variety of atmospheric remote sensing problems, both theoretically and experimentally. The first session focused on aerosol, ozone, and temperature profile measurements from ground-based units. The second session, Chemical Detection, provided applications of lidar to the detection of atmospheric pollutants. Papers in the third session, Wind and Turbulence Measurements, described the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiments, Doppler techniques for ground-based wind profiling and mesopause radial wind and temperature measurements utilizing a frequency-agile lidar system. The papers in the last two sessions, Recent Advanced in Lidar Technology and Techniques and Advanced Operational Lidars, provided insights into novel approaches, materials, and techniques that would be of value to the lidar community. Papers have been processed separately for inclusion on the data base.

  6. Atmospheric Science: Solving Challenges of Climate Change

    SciTech Connect (OSTI)

    Geffen, Charlette

    2015-08-05

    PNNL’s atmospheric science research provides data required to make decisions about challenges presented by climate change: Where to site power plants, how to manage water resources, how to prepare for severe weather events and more. Our expertise in fundamental observations and modeling is recognized among the national labs and the world.

  7. CHARACTERIZATION OF CLOUDS IN TITAN'S TROPICAL ATMOSPHERE

    SciTech Connect (OSTI)

    Griffith, Caitlin A.; Penteado, Paulo; Rodriguez, Sebastien; Baines, Kevin H.; Buratti, Bonnie; Sotin, Christophe; Clark, Roger; Nicholson, Phil; Jaumann, Ralf

    2009-09-10

    Images of Titan's clouds, possible over the past 10 years, indicate primarily discrete convective methane clouds near the south and north poles and an immense stratiform cloud, likely composed of ethane, around the north pole. Here we present spectral images from Cassini's Visual Mapping Infrared Spectrometer that reveal the increasing presence of clouds in Titan's tropical atmosphere. Radiative transfer analyses indicate similarities between summer polar and tropical methane clouds. Like their southern counterparts, tropical clouds consist of particles exceeding 5 {mu}m. They display discrete structures suggestive of convective cumuli. They prevail at a specific latitude band between 8 deg. - 20 deg. S, indicative of a circulation origin and the beginning of a circulation turnover. Yet, unlike the high latitude clouds that often reach 45 km altitude, these discrete tropical clouds, so far, remain capped to altitudes below 26 km. Such low convective clouds are consistent with the highly stable atmospheric conditions measured at the Huygens landing site. Their characteristics suggest that Titan's tropical atmosphere has a dry climate unlike the south polar atmosphere, and despite the numerous washes that carve the tropical landscape.

  8. Refines Efficiency Improvement

    SciTech Connect (OSTI)

    WRI

    2002-05-15

    Refinery processes that convert heavy oils to lighter distillate fuels require heating for distillation, hydrogen addition or carbon rejection (coking). Efficiency is limited by the formation of insoluble carbon-rich coke deposits. Heat exchangers and other refinery units must be shut down for mechanical coke removal, resulting in a significant loss of output and revenue. When a residuum is heated above the temperature at which pyrolysis occurs (340 C, 650 F), there is typically an induction period before coke formation begins (Magaril and Aksenova 1968, Wiehe 1993). To avoid fouling, refiners often stop heating a residuum before coke formation begins, using arbitrary criteria. In many cases, this heating is stopped sooner than need be, resulting in less than maximum product yield. Western Research Institute (WRI) has developed innovative Coking Index concepts (patent pending) which can be used for process control by refiners to heat residua to the threshold, but not beyond the point at which coke formation begins when petroleum residua materials are heated at pyrolysis temperatures (Schabron et al. 2001). The development of this universal predictor solves a long standing problem in petroleum refining. These Coking Indexes have great potential value in improving the efficiency of distillation processes. The Coking Indexes were found to apply to residua in a universal manner, and the theoretical basis for the indexes has been established (Schabron et al. 2001a, 2001b, 2001c). For the first time, a few simple measurements indicates how close undesired coke formation is on the coke formation induction time line. The Coking Indexes can lead to new process controls that can improve refinery distillation efficiency by several percentage points. Petroleum residua consist of an ordered continuum of solvated polar materials usually referred to as asphaltenes dispersed in a lower polarity solvent phase held together by intermediate polarity materials usually referred to as resins. The Coking Indexes focus on the amount of these intermediate polarity species since coke formation begins when these are depleted. Currently the Coking Indexes are determined by either titration or solubility measurements which must be performed in a laboratory. In the current work, various spectral, microscopic, and thermal techniques possibly leading to on-line analysis were explored for measuring the Coking Indexes.

  9. Atmospheric characterization of the hot Jupiter Kepler-13Ab

    SciTech Connect (OSTI)

    Shporer, Avi; O'Rourke, Joseph G.; Knutson, Heather A.; Szabó, Gyula M.; Zhao, Ming; Burrows, Adam; Fortney, Jonathan; Agol, Eric; Cowan, Nicolas B.; Desert, Jean-Michel; Howard, Andrew W.; Isaacson, Howard; Lewis, Nikole K.; Showman, Adam P.; Todorov, Kamen O.

    2014-06-10

    Kepler-13Ab (= KOI-13.01) is a unique transiting hot Jupiter. It is one of very few known short-period planets orbiting a hot A-type star, making it one of the hottest planets currently known. The availability of Kepler data allows us to measure the planet's occultation (secondary eclipse) and phase curve in the optical, which we combine with occultations observed by warm Spitzer at 4.5 ?m and 3.6 ?m and a ground-based occultation observation in the K{sub s} band (2.1 ?m). We derive a day-side hemisphere temperature of 2750 ± 160 K as the effective temperature of a black body showing the same occultation depths. Comparing the occultation depths with one-dimensional planetary atmosphere models suggests the presence of an atmospheric temperature inversion. Our analysis shows evidence for a relatively high geometric albedo, A {sub g} = 0.33{sub ?0.06}{sup +0.04}. While measured with a simplistic method, a high A {sub g} is supported also by the fact that the one-dimensional atmosphere models underestimate the occultation depth in the optical. We use stellar spectra to determine the dilution, in the four wide bands where occultation was measured, due to the visual stellar binary companion 1.''15 ± 0.''05 away. The revised stellar parameters measured using these spectra are combined with other measurements, leading to revised planetary mass and radius estimates of M{sub p} = 4.94-8.09 M {sub J} and R{sub p} = 1.406 ± 0.038 R {sub J}. Finally, we measure a Kepler midoccultation time that is 34.0 ± 6.9 s earlier than expected based on the midtransit time and the delay due to light-travel time and discuss possible scenarios.

  10. Categorical Exclusion Determinations: Louisiana | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Louisiana Categorical Exclusion Determinations: Louisiana Location Categorical Exclusion Determinations issued for actions in Louisiana. DOCUMENTS AVAILABLE FOR DOWNLOAD February 18, 2015 CX-100185 Categorical Exclusion Determination Pump Station Improvements (Transcontinental) Award Number: DE-EE0006212 CX(s) Applied: B5.1, B2.5 State Energy Program Date: 02/18/2015 Location(s): LA Office(s): Golden Field Office February 18, 2015 CX-100186 Categorical Exclusion Determination Pump Station

  11. Categorical Exclusion Determinations: Oklahoma | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oklahoma Categorical Exclusion Determinations: Oklahoma Location Categorical Exclusion Determinations issued for actions in Oklahoma. DOCUMENTS AVAILABLE FOR DOWNLOAD May 29, 2014 CX-012125: Categorical Exclusion Determination Pressure Prediction and Hazard Avoidance Through Improved Seismic Imaging CX(s) Applied: A1, A9, A11 Date: 05/29/2014 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory May 21, 2014 CX-012147: Categorical Exclusion Determination Ion Advanced Solvent

  12. Improved fermentative alcohol production. [Patent application

    DOE Patents [OSTI]

    Wilke, C.R.; Maiorella, B.L.; Blanch, H.W.; Cysewski, G.R.

    1980-11-26

    An improved fermentation process is described for producing alcohol which includes the combination of vacuum fermentation and vacuum distillation. Preferably, the vacuum distillation is carried out in two phases, one a fermentor proper operated at atmospheric pressure and a flash phase operated at reduced pressure with recycle of fermentation brew having a reduced alcohol content to the fermentor, using vapor recompression heating of the flash-pot recycle stream to heat the flash-pot or the distillation step, and using water load balancing (i.e., the molar ratio of water in the fermentor feed is the same as the molar ratio of water in the distillation overhead).

  13. Challenges for improving estimates of soil organic carbon stored...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    determined, and research efforts that will reduce this discrepancy were identified. Five research challenges for improving empirical assessments of the distribution and potential...

  14. Characteristic emission enhancement in the atmosphere with Rn trace using metal assisted LIBS

    SciTech Connect (OSTI)

    Hashemi, M. M.; Parvin, P. Moosakhani, A.; Mortazavi, S. Z.; Reyhani, A.; Majdabadi, A.; Abachi, S.

    2014-06-15

    Several characteristic emission lines from the metal targets (Cu, Zn and Pb) were investigated in trace presence of radon gas in the atmospheric air, using Q-SW Nd:YAG laser induced plasma inside a control chamber. The emission lines of metal species are noticeably enhanced in (Rn+air), relative to those in the synthetic air alone. Similar spectra were also taken in various sub-atmospheric environments in order to determine the optimum pressure for enhancement. Solid-state nuclear track detectors were also employed to count the tracks due to alpha particles for the activity assessment.

  15. Zeroing and testing units developed for Gerdien atmospheric ion detectors

    SciTech Connect (OSTI)

    Kolarz, P.; Marinkovic, B.P.; Filipovic, D.M.

    2005-04-01

    Low current measurements in atmospheric ion detection using a Gerdien condenser are subjected to numerous sources of error. Zeroing and testing units described in this article, connected as modules to this type of detector, enable some of these errors to be found and eliminated. The zeroing unit provides digital compensation of the zero drift with a digital sample and hold circuit of 12-bit resolution. It overcomes difficulties related to zero drift and techniques used in the zero conductivity determination when the accelerating potential or airflow rate are zero. The testing unit is a current reference of nominally 10{sup -12} A intended for testing and correcting the system on current leakage and other measuring deviations due to changes in atmospheric parameters. This unit is an independent battery-powered module, which provides a charge of 10{sup -12} C per cycle (frequency of order 1 Hz) to the collecting electrode. The control of Gerdien devices is substantially simplified using the zeroing and testing units realized here. Both units are used during 'zero conductivity' regime only.

  16. Atmospheric Radiation Measurement (ARM) Data from Niamey, Niger for the Radiative Atmospheric Divergence using AMF, GERB and AMMA Stations (RADAGAST)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. The ARM Mobile Facility (AMF) operates at non-permanent sites selected by the ARM Program. Sometimes these sites can become permanent ARM sites, as was the case with Graciosa Island in the Azores. It is now known as the Eastern North Atlantic permanent site. In January 2006 the AMF deployed to Niamey, Niger, West Africa, at the Niger Meteorological Office at Niamey International Airport. This deployment was timed to coincide with the field phases and Special Observing Periods of the African Monsoon Multidisciplinary Analysis (AMMA). The ARM Program participated in this international effort as a field campaign called "Radiative Divergence using AMF, GERB and AMMA Stations (RADAGAST).The primary purpose of the Niger deployment was to combine an extended series of measurements from the AMF with those from the Geostationary Earth Radiation Budget (GERB) Instrument on the Meteosat operational geostationary satellite in order to provide the first well-sampled, direct estimates of the divergence of solar and thermal radiation across the atmosphere. A large collection of data plots based on data streams from specific instruments used at Niamey are available via a link from ARM's Niamey, Niger site information page. Other data can be found at the related websites mentioned above and in the ARM Archive. Users will be requested to create a password, but the plots and data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  17. ANALYTICAL MODELS OF EXOPLANETARY ATMOSPHERES. I. ATMOSPHERIC DYNAMICS VIA THE SHALLOW WATER SYSTEM

    SciTech Connect (OSTI)

    Heng, Kevin; Workman, Jared E-mail: jworkman@coloradomesa.edu

    2014-08-01

    Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

  18. Atmospheric Radiation Measurement Program facilities newsletter, November 2002.

    SciTech Connect (OSTI)

    Holdridge, D. J.

    2002-12-03

    Fall 2002 Intensive Operation Periods: Single Column Model and Unmanned Aerospace Vehicle--In an Intensive Operation Period (IOP) on November 3-23, 2002, researchers at the SGP CART site are collecting a detailed data set for use in improving the Single Column Model (SCM), a scaled-down climate model. The SCM represents one vertical column of air above Earth's surface and requires less computation time than a full-scale global climate model. Researchers first use the SCM to efficiently improve submodels of clouds, solar radiation transfer, and atmosphere-surface interactions, then implement the results in large-scale global models. With measured values for a starting point, the SCM predicts atmospheric variables during prescribed time periods. A computer calculates values for such quantities as the amount of solar radiation reaching the surface and predicts how clouds will evolve and interact with incoming light from the sun. Researchers compare the SCM's predictions with actual measurements made during the IOP, then adjust the submodels to make predictions more reliable. A second IOP conducted concurrently with the SCM IOP involves high-altitude, long-duration aircraft flights. The original plan was to use an unmanned aerospace vehicle (UAV), but the National Aeronautics and Space Administration (NASA) aircraft Proteus will be substituted because all UAVs have been deployed elsewhere. The UAV is a small, instrument-equipped, remote-control plane that is operated from the ground by a computer. The Proteus is a manned aircraft, originally designed to carry telecommunications relay equipment, that can be reconfigured for uses such as reconnaissance and surveillance, commercial imaging, launching of small space satellites, and atmospheric research. The plane is designed for two on-board pilots in a pressurized cabin, flying to altitudes up to 65,000 feet for as long as 18 hours. The Proteus has a variable wingspan of 77-92 feet and is 56 feet long. The plane can carry up to 7,260 pounds of equipment, making it a versatile research tool. The Proteus is making measurements at the very top of the cirrus cloud layer to characterize structures of these clouds. These new measurements will provide more accurate, more abundant data for use in improving the representation of clouds in the SCM. 2002-2003 Winter Weather Forecast--Top climate forecasters at the National Oceanic and Atmospheric Administration's (NOAA's) Climate Prediction Center say that an El Nino condition in the tropical Pacific Ocean will influence our winter weather this year. Although this El Nino is not as strong as the event of the 1997-1998 winter season, the United States will nevertheless experience some atypical weather. Strong impacts could be felt in several areas. Nationally, forecasters are predicting warmer-than-average temperatures over the northern tier of states and wetter-than-average conditions in the southern tier of states during the 2002-2003 winter season. Kansas residents should expect warmer and wetter conditions, while Oklahoma will be wetter than average.

  19. Ergonomic Improvements for Foundries

    SciTech Connect (OSTI)

    Frank Peters; Patrick Patterson

    2002-06-18

    The goal of this project was to make improvements to the production systems of the steel casting industry through ergonomic improvements. Because of the wide variety of products, the wide range of product sizes, and the relatively small quantities of any particular product, manual operations remain a vital part of the production systems of the steel casting companies. Ergonomic improvements will assist the operators to more efficiently and consistently produce quality products.

  20. Milestone Plan Process Improvement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Milestone Plan Process Improvement Milestone Plan Process Improvement Background In response to our community's concern over the milestone plan (MP) process within the system, the STRIPES Project Office initiated an in-depth evaluation of the required steps and issues surrounding this process. We concluded that the MP process could be improved for most users by tuning the system configuration. With the approval of both the STRIPES Executive Steering Committee and the STRIPES Project Office, we

  1. Efficiency Improvements - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NIF & Photon Science News Press Releases Experimental Highlights Efficiency Improvements Science & Technology Meetings and Workshops Papers and Presentations NIF&PS People In the News Press Kit S&TR Articles home / news / efficiency improvements Efficiency Improvements - 2015 December ATLAS Laser Tracking System Will Speed NIF Alignment November Automating NIF Beam-Timing Delays New Power Supplies Will Keep NIF on Target September What Goes Into a NIF Shot? August NIF Fires 300th

  2. Perspective: Water cluster mediated atmospheric chemistry

    SciTech Connect (OSTI)

    Vaida, Veronica

    2011-07-14

    The importance of water in atmospheric and environmental chemistry initiated recent studies with results documenting catalysis, suppression and anti-catalysis of thermal and photochemical reactions due to hydrogen bonding of reagents with water. Water, even one water molecule in binary complexes, has been shown by quantum chemistry to stabilize the transition state and lower its energy. However, new results underscore the need to evaluate the relative competing rates between reaction and dissipation to elucidate the role of water in chemistry. Water clusters have been used successfully as models for reactions in gas-phase, in aqueous condensed phases and at aqueous surfaces. Opportunities for experimental and theoretical chemical physics to make fundamental new discoveries abound. Work in this field is timely given the importance of water in atmospheric and environmental chemistry.

  3. Pulsed atmospheric fluidized bed combustor apparatus

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-10-26

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g., organic and medical waste, drying materials, heating air, calcining and the like.

  4. Atmosphere to Electrons Initiative Takes Shape

    Broader source: Energy.gov [DOE]

    Since DOE launched its Atmosphere to Electrons (A2e) Initiative last July, the A2e executive committee has been developing a comprehensive approach for working with multiple stakeholders (industry, national laboratories, international experts, and universities) over the next 5- to 7 years. In February, they held an external merit review to lay the groundwork for an A2e multi-year strategic research plan.

  5. Emerging Technology for Measuring Atmospheric Aerosol Properties

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology for Measuring Atmospheric Aerosol Properties Bruce Gandrud Greg Kok Droplet Measurement Technologies Darrel Baumgardner Centro de Ciencias de la Atmósfera Universidad Nacional Autónoma de México Acknowledgements * The DMT staff * Bob Bluth and Haflidi Jonsson * Pat Arnott * Greg Roberts and Thanos Nenes * Dave Fahey, Shuka Schwarz and Ru-Shan Gao * NSF, NASA, ONR, NOAA and DOE Introducing Droplet Measurement Technologies * Founded in 1987 * Specializing in aerosol and cloud

  6. Large area atmospheric-pressure plasma jet

    DOE Patents [OSTI]

    Selwyn, Gary S. (Los Alamos, NM); Henins, Ivars (Los Alamos, NM); Babayan, Steve E. (Huntington Beach, CA); Hicks, Robert F. (Los Angeles, CA)

    2001-01-01

    Large area atmospheric-pressure plasma jet. A plasma discharge that can be operated at atmospheric pressure and near room temperature using 13.56 MHz rf power is described. Unlike plasma torches, the discharge produces a gas-phase effluent no hotter than 250.degree. C. at an applied power of about 300 W, and shows distinct non-thermal characteristics. In the simplest design, two planar, parallel electrodes are employed to generate a plasma in the volume therebetween. A "jet" of long-lived metastable and reactive species that are capable of rapidly cleaning or etching metals and other materials is generated which extends up to 8 in. beyond the open end of the electrodes. Films and coatings may also be removed by these species. Arcing is prevented in the apparatus by using gas mixtures containing He, which limits ionization, by using high flow velocities, and by properly spacing the rf-powered electrode. Because of the atmospheric pressure operation, there is a negligible density of ions surviving for a sufficiently long distance beyond the active plasma discharge to bombard a workpiece, unlike the situation for low-pressure plasma sources and conventional plasma processing methods.

  7. Atmospheric and combustion chemistry of dimethyl ether

    SciTech Connect (OSTI)

    Nielsen, O.J.; Egsgaard, H.; Larsen, E.; Sehested, J.; Wallington, T.J.

    1997-12-31

    It has been demonstrated that dimethyl ether (DME) is an ideal diesel fuel alternative. DME, CH{sub 3}OCH{sub 3}, combines good fuel properties with low exhaust emissions and low combustion noise. Large scale production of this fuel can take place using a single step catalytic process converting CH{sub 4} to DME. The fate of DME in the atmosphere has previously been studied. The atmospheric degradation is initiated by the reaction with hydroxyl radicals, which is also a common feature of combustion processes. Spectrokinetic investigations and product analysis were used to demonstrate that the intermediate oxy radical, CH{sub 3}OCH{sub 2}O, exhibits a novel reaction pathway of hydrogen atom ejection. The application of tandem mass spectrometry to chemi-ions based on supersonic molecular beam sampling has recently been demonstrated. The highly reactive ionic intermediates are sampled directly from the flame and identified by collision activation mass spectrometry and ion-molecule reactions. The mass spectrum reflects the distribution of the intermediates in the flame. The atmospheric degradation of DME as well as the unique fuel properties of a oxygen containing compound will be discussed.

  8. CX-011377: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    National Oceanic and Atmospheric Administration Project Sagebrush Atmospheric Tracer Dispersion Study Revision 1 CX(s) Applied: B3.1 Date: 09/13/2013 Location(s): Idaho Offices(s): Idaho Operations Office

  9. Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Science Plan

    SciTech Connect (OSTI)

    de Boer, G; Bland, G; Elston, J; Lawrence, D; Maslanik, J; Palo, S; Tschudi, M

    2015-12-01

    The use of unmanned aerial systems (UAS) is becoming increasingly popular for a variety of applications. One way in which these systems can provide revolutionary scientific information is through routine measurement of atmospheric conditions, particularly properties related to clouds, aerosols, and radiation. Improved understanding of these topics at high latitudes, in particular, has become very relevant because of observed decreases in ice and snow in polar regions.

  10. Atmospheric Radiation Measurement (ARM) Data from the ARM Aerial Facility

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. ARM data is collected both through permanent monitoring stations and field campaigns around the world. Airborne measurements required to answer science questions from researchers or to validate ground data are also collected. To find data from all categories of aerial operations, follow the links from the AAF information page at http://www.arm.gov/sites/aaf. Tables of information will provide start dates, duration, lead scientist, and the research site for each of the named campaigns. The title of a campaign leads, in turn, to a project description, contact information, and links to the data. Users will be requested to create a password, but the data files are free for viewing and downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  11. A methodology for evaluating air pollution strategies to improve the air quality in Mexico City

    SciTech Connect (OSTI)

    Barrera-Roldan, A.S.; Guzman, F.; Hardie, R.W.; Thayer, G.R.

    1995-05-01

    The Mexico City Air Quality Research Initiative has developed a methodology to assist decision makers in determining optimum pollution control strategies for atmospheric pollutants. The methodology introduces both objective and subjective factors in the comparison of various strategies for improving air quality. Strategies or group of options are first selected using linear programming. These strategies are then compared using Multi-Attribute Decision Analysis. The decision tree for the Multi-Attribute Decision Analysis was generated by a panel of experts representing the organizations in Mexico that are responsible for formulating policy on air quality improvement. Three sample strategies were analyzed using the methodology: one to reduce ozone by 33% using the most cost effective group of options, the second to reduce ozone by 43% using the most cost effective group of options and the third to reduce ozone by 43% emphasizing the reduction of emissions from industrial sources. Of the three strategies, the analysis indicated that strategy 2 would be the preferred strategy for improving air quality in Mexico City.

  12. Improved wire chamber

    DOE Patents [OSTI]

    Atac, M.

    1987-05-12

    An improved gas mixture for use with proportional counter devices, such as Geiger-Mueller tubes and drift chambers. The improved gas mixture provides a stable drift velocity while eliminating wire aging caused by prior art gas mixtures. The new gas mixture is comprised of equal parts argon and ethane gas and having approximately 0.25% isopropyl alcohol vapor. 2 figs.

  13. Improved solid aerosol generator

    DOE Patents [OSTI]

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  14. Hydropower Process Improvements

    Office of Environmental Management (EM)

    Process Improvements William J. Palmer Hydropower Program Manager South Atlantic Division 2 April 2015 BUILDING STRONG ® Focus Areas For Process Improvements Inspections\Condition Assessments Project Identification & Prioritization Budget\PRC Funding Request Design Pre-solicitation Solicitation and Award Contract Execution and Administration Commissioning Contract Closeout Project Identification/Funding Solicitation Design BUILDING STRONG ® Project Identification/Funding  Utilize

  15. Atmospheric Carbon Dioxide and the Global Carbon Cycle: The Key Uncertainties

    DOE R&D Accomplishments [OSTI]

    Peng, T. H.; Post, W. M.; DeAngelis, D. L.; Dale, V. H.; Farrell, M. P.

    1987-12-01

    The biogeochemical cycling of carbon between its sources and sinks determines the rate of increase in atmospheric CO{sub 2} concentrations. The observed increase in atmospheric CO{sub 2} content is less than the estimated release from fossil fuel consumption and deforestation. This discrepancy can be explained by interactions between the atmosphere and other global carbon reservoirs such as the oceans, and the terrestrial biosphere including soils. Undoubtedly, the oceans have been the most important sinks for CO{sub 2} produced by man. But, the physical, chemical, and biological processes of oceans are complex and, therefore, credible estimates of CO{sub 2} uptake can probably only come from mathematical models. Unfortunately, one- and two-dimensional ocean models do not allow for enough CO{sub 2} uptake to accurately account for known releases. Thus, they produce higher concentrations of atmospheric CO{sub 2} than was historically the case. More complex three-dimensional models, while currently being developed, may make better use of existing tracer data than do one- and two-dimensional models and will also incorporate climate feedback effects to provide a more realistic view of ocean dynamics and CO{sub 2} fluxes. The instability of current models to estimate accurately oceanic uptake of CO{sub 2} creates one of the key uncertainties in predictions of atmospheric CO{sub 2} increases and climate responses over the next 100 to 200 years.

  16. New analysis indicates no thermal inversion in the atmosphere of HD 209458b

    SciTech Connect (OSTI)

    Diamond-Lowe, Hannah; Stevenson, Kevin B.; Bean, Jacob L.; Line, Michael R.; Fortney, Jonathan J.

    2014-11-20

    An important focus of exoplanet research is the determination of the atmospheric temperature structure of strongly irradiated gas giant planets, or hot Jupiters. HD 209458b is the prototypical exoplanet for atmospheric thermal inversions, but this assertion does not take into account recently obtained data or newer data reduction techniques. We reexamine this claim by investigating all publicly available Spitzer Space Telescope secondary-eclipse photometric data of HD 209458b and performing a self-consistent analysis. We employ data reduction techniques that minimize stellar centroid variations, apply sophisticated models to known Spitzer systematics, and account for time-correlated noise in the data. We derive new secondary-eclipse depths of 0.119% ± 0.007%, 0.123% ± 0.006%, 0.134% ± 0.035%, and 0.215% ± 0.008% in the 3.6, 4.5, 5.8, and 8.0 ?m bandpasses, respectively. We feed these results into a Bayesian atmospheric retrieval analysis and determine that it is unnecessary to invoke a thermal inversion to explain our secondary-eclipse depths. The data are well fitted by a temperature model that decreases monotonically between pressure levels of 1 and 0.01 bars. We conclude that there is no evidence for a thermal inversion in the atmosphere of HD 209458b.

  17. Method for improving instrument response

    DOE Patents [OSTI]

    Hahn, David W. (7528 Oxford Cir., Dublin, Alameda County, CA 94568); Hencken, Kenneth R. (2665 Calle Alegre, Pleasanton, Alameda County, CA 94566); Johnsen, Howard A. (5443 Celeste Ave., Livermore, Alameda County, CA 94550); Flower, William L. (5447 Theresa Way, Livermore, Alameda County, CA 94550)

    2000-01-01

    This invention pertains generally to a method for improving the accuracy of particle analysis under conditions of discrete particle loading and particularly to a method for improving signal-to-noise ratio and instrument response in laser spark spectroscopic analysis of particulate emissions. Under conditions of low particle density loading (particles/m.sup.3) resulting from low overall metal concentrations and/or large particle size uniform sampling can not be guaranteed. The present invention discloses a technique for separating laser sparks that arise from sample particles from those that do not; that is, a process for systematically "gating" the instrument response arising from "sampled" particles from those responses which do not, is dislosed as a solution to his problem. The disclosed approach is based on random sampling combined with a conditional analysis of each pulse. A threshold value is determined for the ratio of the intensity of a spectral line for a given element to a baseline region. If the threshold value is exceeded, the pulse is classified as a "hit" and that data is collected and an average spectrum is generated from an arithmetic average of "hits". The true metal concentration is determined from the averaged spectrum.

  18. Categorical Exclusion Determinations: A1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... June 3, 2014 CX-012298: Categorical Exclusion Determination Wisconsin Biofuels Retail Availability Improvement Network (BRAIN) CX(s) Applied: A1, A9 Date: 06032014 Location(s): ...

  19. Categorical Exclusion Determinations: B5.22 | Department of Energy

    Office of Environmental Management (EM)

    ... June 3, 2014 CX-012297: Categorical Exclusion Determination Wisconsin Biofuels Retail Availability Improvement Network (BRAIN) - E85 Station Installation CX(s) Applied: B5.22 Date: ...

  20. Categorical Exclusion Determinations: Nevada | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada Categorical Exclusion Determinations: Nevada Location Categorical Exclusion Determinations issued for actions in Nevada. DOCUMENTS AVAILABLE FOR DOWNLOAD November 12, 2015 CX-100399 Categorical Exclusion Determination Quantifying EGS Reservoir Complexity with an Integrated Geophysical Approach and Improved Resolution Ambient Seismic Noise Interferometry Award Number: DE- EE-0006767 CX(s) Applied: B3.1 Geothermal Technologies Office Date: 11/12/2015 Location(s): Nevada Office(s): Golden

  1. Categorical Exclusion Determinations: Virginia | Department of Energy

    Office of Environmental Management (EM)

    Virginia Categorical Exclusion Determinations: Virginia Location Categorical Exclusion Determinations issued for actions in Virginia. DOCUMENTS AVAILABLE FOR DOWNLOAD March 7, 2016 CX-100548 Categorical Exclusion Determination Cost Of Energy reduction for offshore Tension Leg Platform (TLP) wind turbine systems through advanced control strategies for energy yield improvement, load mitigation and stabilization Award Number: DE-EE00005494 CX(s) Applied: A9, B3.1, B5.15 Geothermal Technology Office

  2. Nonlinear symmetric stability of planetary atmospheres

    SciTech Connect (OSTI)

    Bowman, J.C.; Shepherd, T.G.

    1994-11-01

    The energy-Casimir method is applied to the problem of symmetric stability in the context of a compressible, hydrostatic planetary atmosphere with a general equation of state. Linear stability criteria for symmetric disturbances to a zonally symmetric baroclinic flow are obtained. In the special case of a perfect gas the results of Stevens (1983) are recovered. Nonlinear stability conditions are also obtained that, in addition to implying linear stability, provide an upper bound on a certain positive-definite measure of disturbance amplitude.

  3. Improving Project Management

    Office of Environmental Management (EM)

    Improving Project Management Report of the Contract and Project Management Working Group November 2014 1 TABLE OF CONTENTS 1. Foreword ........................................................................................................................................................................... 2 2. Executive Summary ...................................................................................................................................................... 3 2.1 Summary of

  4. Efficiency Improvements - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    efficiency improvements / 2015 Efficiency Improvements - 2015 July Electronic Checklists Keep NIF Running Smoothly Target Fabrication Steps Up to the Challenges Every NIF experiment needs a target. That might seem obvious, but it's far from routine. Fabricating targets for NIF is a multi-faceted process requiring constant adjustments to meet the changing demands of experimenters and to deal with new engineering and material science issues that have a way of cropping up unexpectedly. Annual

  5. Infrastructure Improvements - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrastructure Improvements As the designated Community Reuse Organization for the Department of Energy's (DOE) Savannah River Site (SRS), our 22-member citizen-led Board of Directors has undertaken a study to point out the critical need for improving the deteriorating infrastructure at SRS. Priority attention needs to be made now to maximize SRS contributions and potential in the years ahead. SRS has all the assets required in people, land, expertise and community support to continue to play a

  6. Improving Meningococcal Vaccines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Digg: ALSBerkeleyLab Facebook Page: 208064938929 Flickr: advancedlightsource Twitter: AdvLightSource YouTube: AdvancedLightSource Home Science Highlights Science Briefs Improving Meningococcal Vaccines Improving Meningococcal Vaccines Print Tuesday, 16 February 2016 12:50 Two recently licensed vaccines against bacterial meningitis contain a bacterial surface protein antigen known as Factor H binding protein (FHbp). This protein can have low thermal stability, which affects its activity even at

  7. Improving Entrainment Rate Parameterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Entrainment Rate Parameterization For original submission and image(s), see ARM Research Highlights http://www.arm.gov/science/highlights/ Research Highlight Parameterization of entrainment rate is critical for improving representation of cloud- and convection-related processes in climate models; however, much remains unclear. This work seeks to improve understanding and parameterization of entrainment rate by use of aircraft observations and large-eddy simulations of shallow cumulus clouds over

  8. Energy considerations in the Community Atmosphere Model (CAM)

    SciTech Connect (OSTI)

    Williamson, David L.; Olson, Jerry G.; Hannay, Cécile; Toniazzo, Thomas; Yudin, Valery; Taylor, Mark

    2015-06-30

    An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for the state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.

  9. Energy considerations in the Community Atmosphere Model (CAM)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Williamson, David L.; Olson, Jerry G.; Hannay, Cécile; Toniazzo, Thomas; Yudin, Valery; Taylor, Mark

    2015-06-30

    An error in the energy formulation in the Community Atmosphere Model (CAM) is identified and corrected. Ten year AMIP simulations are compared using the correct and incorrect energy formulations. Statistics of selected primary variables all indicate physically insignificant differences between the simulations, comparable to differences with simulations initialized with rounding sized perturbations. The two simulations are so similar mainly because of an inconsistency in the application of the incorrect energy formulation in the original CAM. CAM used the erroneous energy form to determine the states passed between the parameterizations, but used a form related to the correct formulation for themore » state passed from the parameterizations to the dynamical core. If the incorrect form is also used to determine the state passed to the dynamical core the simulations are significantly different. In addition, CAM uses the incorrect form for the global energy fixer, but that seems to be less important. The difference of the magnitude of the fixers using the correct and incorrect energy definitions is very small.« less

  10. Pre/post-strike atmospheric assessment system (PAAS)

    SciTech Connect (OSTI)

    Peglow, S. G., LLNL; Molitoris, J. D., LLNL

    1997-02-03

    The Pre/Post-Strike Atmospheric Assessment System was proposed to show the importance of local meteorological conditions in the vicinity of a site suspected of storing or producing toxic agents and demonstrate a technology to measure these conditions, specifically wind fields. The ability to predict the collateral effects resulting from an attack on a facility containing hazardous materials is crucial to conducting effective military operations. Our study approach utilized a combination of field measurements with dispersion modeling to better understand which variables in terrain and weather were most important to collateral damage predictions. To develop the PAAS wind-sensing technology, we utilized a combination of emergent and available technology from micro-Doppler and highly coherent laser systems. The method used for wind sensing is to probe the atmosphere with a highly coherent laser beam. As the beam probes, light is back-scattered from particles entrained in the air to the lidar transceiver and detected by the instrument. Any motion of the aerosols with a component along the beam axis leads to a Doppler shift of the received light. Scanning in a conical fashion about the zenith results in a more accurate and two-dimensional measurement of the wind velocity. The major milestones in the benchtop system development were to verify the design by demonstrating the technique in the laboratory, then scale the design down to a size consistent with a demonstrator unit which could be built to take data in the field. The micro-Doppler heterodyne system we developed determines absolute motion by optically mixing a reference beam with the return signal and has shown motion sensitivity to better than 1 cm/s. This report describes the rationale, technical approach and laboratory testing undertaken to demonstrate the feasibility and utility of a system to provide local meteorological data and predict atmospheric particulate motion. The work described herein was funded by the Laboratory Science and Technology Office as a part of the 1996 Laboratory Directed Research and Development Program at Lawrence Livermore National Laboratory.

  11. Cold atmospheric plasma in cancer therapy

    SciTech Connect (OSTI)

    Keidar, Michael; Shashurin, Alex; Volotskova, Olga; Ann Stepp, Mary; Srinivasan, Priya; Sandler, Anthony; Trink, Barry

    2013-05-15

    Recent progress in atmospheric plasmas has led to the creation of cold plasmas with ion temperature close to room temperature. This paper outlines recent progress in understanding of cold plasma physics as well as application of cold atmospheric plasma (CAP) in cancer therapy. Varieties of novel plasma diagnostic techniques were developed recently in a quest to understand physics of CAP. It was established that the streamer head charge is about 10{sup 8} electrons, the electrical field in the head vicinity is about 10{sup 7} V/m, and the electron density of the streamer column is about 10{sup 19} m{sup ?3}. Both in-vitro and in-vivo studies of CAP action on cancer were performed. It was shown that the cold plasma application selectively eradicates cancer cells in-vitro without damaging normal cells and significantly reduces tumor size in-vivo. Studies indicate that the mechanism of action of cold plasma on cancer cells is related to generation of reactive oxygen species with possible induction of the apoptosis pathway. It is also shown that the cancer cells are more susceptible to the effects of CAP because a greater percentage of cells are in the S phase of the cell cycle.

  12. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect (OSTI)

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  13. Long-Term Operation Of Ground-Based Atmospheric Sensing Systems In The Tropical Western Pacific

    SciTech Connect (OSTI)

    Ivey, Mark; Jones, Larry J.; Porch, W. M.; Apple, Monty L.; Widener, Kevin B.

    2004-10-14

    Three semi-autonomous atmospheric sensing systems were installed in the tropical western Pacific region. The first of these Atmospheric Radiation and Cloud Stations (ARCS) began operation in 1996. Each ARCS is configured as a system-of-systems since it comprises an ensemble of independent instrument systems. The ARCS collect, process, and transmit large volumes of cloud, solar and thermal radiation, and meteorological data to support climate studies and climate-modeling improvements as part of the U.S Department of Energy’s Atmospheric and Radiation Measurement (ARM) Program. Data from these tropical ARCS stations have been used for satellite ground-truth data comparisons and validations, including comparisons for MTI and AQUA satellite data. Our experiences with these systems in the tropics led to modifications in their design. An ongoing international logistics effort is required to keep gigabytes per day of quality-assured data flowing to the ARM program’s archives. Design criteria, performance, communications methods, and the day-to-day logistics required to support long-term operations of ground-based remote atmospheric sensing systems are discussed. End-to-end data flow from the ARCS systems to the ARM Program archives is discussed.

  14. Proposed ground-based incoherent Doppler lidar with iodine filter discriminator for atmospheric wind profiling

    SciTech Connect (OSTI)

    Liu, Z.S.; Chen, W.B.; Hair, J.W.; She, C.Y.

    1996-12-31

    A new incoherent lidar for measuring atmospheric wind using iodine molecular filter is proposed. A unique feature of the proposed lidar lies in its capability for simultaneous measurement of aerosol mixing ratio, with which the radial wind can be determined uniquely from lidar return. A preliminary laboratory experiment using a dye laser at 589 nm and a rotating wheel has been performed demonstrating the feasibility of the proposed wind measurement.

  15. An Improved Daylight Correction for IR Loss in ARM Diffuse SW Measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Improved Daylight Correction for IR Loss in ARM Diffuse SW Measurements C. N. Long, K. Younkin, and K. L. Gaustad Pacific Northwest National Laboratory Richland, Washington J. A. Augustine National Oceanic and Atmospheric Administration Air Resources Laboratory Surface Radiation Research Branch Boulder, Colorado Introduction A paper by Cess et al. (2000) notes that some clear-sky diffuse shortwave (SW) measurements they were using from the Atmospheric Radiation Measurement (ARM) Southern

  16. Forthcoming Upgrades to the ARM MMCRs: Improved Radar Processor and Dual-Polarization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forthcoming Upgrades to the ARM MMCRs: Improved Radar Processor and Dual-Polarization K. P. Moran, B. E. Martner, and K. A. Clark National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado C. Chanders Science and Technology Corporation Background The Atmospheric Radiation Measurement (ARM) Millimeter Wavelength Cloud Radars (MMCRs) are vertically pointing ground-based Doppler systems, designed for long-term, unattended operations. In spite of very low

  17. Improved Humidity Profiling by Combining Passive and Active Remote Sensors at the Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Humidity Profiling by Combining Passive and Active Remote Sensors at the Southern Great Plains L. Bianco, D. Cimini, and F. Marzano Center of Excellence CETEMPS University of L'Aquila L'Aquila, Italy L. Bianco and E. R. Westwater Cooperative Institute for Research in Environmental Sciences University of Colorado National Oceanic and Atmospheric Administration Environmental Technology Laboratory Boulder, Colorado R. Ware Radiometrics Co. and University Consortium for Atmospheric Research

  18. Mesh Quality Improvement Toolkit

    Energy Science and Technology Software Center (OSTI)

    2002-11-15

    MESQUITE is a linkable software library to be used by simulation and mesh generation tools to improve the quality of meshes. Mesh quality is improved by node movement and/or local topological modifications. Various aspects of mesh quality such as smoothness, element shape, size, and orientation are controlled by choosing the appropriate mesh qualtiy metric, and objective function tempate, and a numerical optimization solver to optimize the quality of meshes, MESQUITE uses the TSTT mesh interfacemore » specification to provide an interoperable toolkit that can be used by applications which adopt the standard. A flexible code design makes it easy for meshing researchers to add additional mesh quality metrics, templates, and solvers to develop new quality improvement algorithms by making use of the MESQUITE infrastructure.« less

  19. Efficiency Improvements - 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    improvements / 2015 Efficiency Improvements - 2015 April NIF Lasers Continue to Fire at a Record Rate When the first half of Fiscal Year 2015 ended on March 31, NIF was on track to meet its "stretch goal" of 300 target shots for the year, compared to 191 target shots in FY 2014. The record pace reflects a nearly 50 percent reduction in the average time between NIF shots in the past six months, resulting in an average of 7.9 target shots per five-day week in the second quarter of FY

  20. Aeras: A next generation global atmosphere model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not componentsmore » of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.« less

  1. Aeras: A next generation global atmosphere model

    SciTech Connect (OSTI)

    Spotz, William F.; Smith, Thomas M.; Demeshko, Irina P.; Fike, Jeffrey A.

    2015-06-01

    Sandia National Laboratories is developing a new global atmosphere model named Aeras that is performance portable and supports the quantification of uncertainties. These next-generation capabilities are enabled by building Aeras on top of Albany, a code base that supports the rapid development of scientific application codes while leveraging Sandia's foundational mathematics and computer science packages in Trilinos and Dakota. Embedded uncertainty quantification (UQ) is an original design capability of Albany, and performance portability is a recent upgrade. Other required features, such as shell-type elements, spectral elements, efficient explicit and semi-implicit time-stepping, transient sensitivity analysis, and concurrent ensembles, were not components of Albany as the project began, and have been (or are being) added by the Aeras team. We present early UQ and performance portability results for the shallow water equations.

  2. Atmospheric transmittance model for photosynthetically active radiation

    SciTech Connect (OSTI)

    Paulescu, Marius; Stefu, Nicoleta; Gravila, Paul; Paulescu, Eugenia; Boata, Remus; Pacurar, Angel; Mares, Oana; Pop, Nicolina; Calinoiu, Delia

    2013-11-13

    A parametric model of the atmospheric transmittance in the PAR band is presented. The model can be straightforwardly applied for calculating the beam, diffuse and global components of the PAR solar irradiance. The required inputs are: air pressure, ozone, water vapor and nitrogen dioxide column content, Ångström's turbidity coefficient and single scattering albedo. Comparison with other models and ground measured data shows a reasonable level of accuracy for this model, making it suitable for practical applications. From the computational point of view the calculus is condensed into simple algebra which is a noticeable advantage. For users interested in speed-intensive computation of the effective PAR solar irradiance, a PC program based on the parametric equations along with a user guide are available online at http://solar.physics.uvt.ro/srms.

  3. Atmospheric Dispersion Effects in Weak Lensing Measurements

    SciTech Connect (OSTI)

    Plazas, Andrés Alejandro; Bernstein, Gary

    2012-10-01

    The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed the statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.

  4. Atmospheric Dispersion Effects in Weak Lensing Measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Plazas, Andrés Alejandro; Bernstein, Gary

    2012-10-01

    The wavelength dependence of atmospheric refraction causes elongation of finite-bandwidth images along the elevation vector, which produces spurious signals in weak gravitational lensing shear measurements unless this atmospheric dispersion is calibrated and removed to high precision. Because astrometric solutions and PSF characteristics are typically calibrated from stellar images, differences between the reference stars' spectra and the galaxies' spectra will leave residual errors in both the astrometric positions (dr) and in the second moment (width) of the wavelength-averaged PSF (dv) for galaxies.We estimate the level of dv that will induce spurious weak lensing signals in PSF-corrected galaxy shapes that exceed themore »statistical errors of the DES and the LSST cosmic-shear experiments. We also estimate the dr signals that will produce unacceptable spurious distortions after stacking of exposures taken at different airmasses and hour angles. We also calculate the errors in the griz bands, and find that dispersion systematics, uncorrected, are up to 6 and 2 times larger in g and r bands,respectively, than the requirements for the DES error budget, but can be safely ignored in i and z bands. For the LSST requirements, the factors are about 30, 10, and 3 in g, r, and i bands,respectively. We find that a simple correction linear in galaxy color is accurate enough to reduce dispersion shear systematics to insignificant levels in the r band for DES and i band for LSST,but still as much as 5 times than the requirements for LSST r-band observations. More complex corrections will likely be able to reduce the systematic cosmic-shear errors below statistical errors for LSST r band. But g-band effects remain large enough that it seems likely that induced systematics will dominate the statistical errors of both surveys, and cosmic-shear measurements should rely on the redder bands.« less

  5. Collaborative project. Ocean-atmosphere interaction from meso-to planetary-scale. Mechanisms, parameterization, and variability

    SciTech Connect (OSTI)

    Small, Richard; Bryan, Frank; Tribbia, Joseph; Park, Sungsu; Dennis, John; Saravanan, R.; Schneider, Niklas; Kwon, Young-Oh

    2015-06-11

    This project aims to improve long term global climate simulations by resolving ocean mesoscale activity and the corresponding response in the atmosphere. The main computational objectives are; i) to perform and assess Community Earth System Model (CESM) simulations with the new Community Atmospheric Model (CAM) spectral element dynamical core; ii) use static mesh refinement to focus on oceanic fronts; iii) develop a new Earth System Modeling tool to investigate the atmospheric response to fronts by selectively filtering surface flux fields in the CESM coupler. The climate research objectives are 1) to improve the coupling of ocean fronts and the atmospheric boundary layer via investigations of dependency on model resolution and stability functions: 2) to understand and simulate the ensuing tropospheric response that has recently been documented in observations: and 3) to investigate the relationship of ocean frontal variability to low frequency climate variability and the accompanying storm tracks and extremes in high resolution simulations. This is a collaborative multi-institution project consisting of computational scientists, climate scientists and climate model developers. It specifically aims at DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  6. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, James P. (Lakewood, CO); Scahill, John W. (Evergreen, CO)

    1995-01-01

    An improved vortex reactor system for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor.

  7. MCNP Progress & Performance Improvements

    SciTech Connect (OSTI)

    Brown, Forrest B.; Bull, Jeffrey S.; Rising, Michael Evan

    2015-04-14

    Twenty-eight slides give information about the work of the US DOE/NNSA Nuclear Criticality Safety Program on MCNP6 under the following headings: MCNP6.1.1 Release, with ENDF/B-VII.1; Verification/Validation; User Support & Training; Performance Improvements; and Work in Progress. whisper methodology will be incorporated into the code, and run speed should be increased.

  8. Improvements of biomass deconstruction enzymes

    SciTech Connect (OSTI)

    Sale, K. L.

    2012-03-01

    Sandia National Laboratories and DSM Innovation, Inc. collaborated on the investigation of the structure and function of cellulases from thermophilic fungi. Sandia's role was to use its expertise in protein structure determination and X-ray crystallography to solve the structure of these enzymes in their native state and in their substrate and product bound states. Sandia was also tasked to work with DSM to use the newly solved structure to, using computational approaches, analyze enzyme interactions with both bound substrate and bound product; the goal being to develop approaches for rationally designing improved cellulases for biomass deconstruction. We solved the structures of five cellulases from thermophilic fungi. Several of these were also solved with bound substrate/product, which allowed us to predict mutations that might enhance activity and stability.

  9. Fungi in the future: Interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities

    SciTech Connect (OSTI)

    Cotton, T. E. Anne; Fitter, Alastair H.; Miller, R. Michael; Dumbrell, Alex J.; Helgason, Thorunn

    2015-01-05

    Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO2) and ozone (O3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean (Glycine max) grown under elevated and ambient atmospheric concentrations of both CO2 and O3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO2 altered the community composition of AM fungi, increasing the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi.

  10. Fungi in the future: Interannual variation and effects of atmospheric change on arbuscular mycorrhizal fungal communities

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cotton, T. E. Anne; Fitter, Alastair H.; Miller, R. Michael; Dumbrell, Alex J.; Helgason, Thorunn

    2015-01-05

    Understanding the natural dynamics of arbuscular mycorrhizal (AM) fungi and their response to global environmental change is essential for the prediction of future plant growth and ecosystem functions. We investigated the long-term temporal dynamics and effect of elevated atmospheric carbon dioxide (CO2) and ozone (O3) concentrations on AM fungal communities. Molecular methods were used to characterize the AM fungal communities of soybean (Glycine max) grown under elevated and ambient atmospheric concentrations of both CO2 and O3 within a free air concentration enrichment experiment in three growing seasons over 5 yr. Elevated CO2 altered the community composition of AM fungi, increasingmore » the ratio of Glomeraceae to Gigasporaceae. By contrast, no effect of elevated O3 on AM fungal communities was detected. However, the greatest compositional differences detected were between years, suggesting that, at least in the short term, large-scale interannual temporal dynamics are stronger mediators than atmospheric CO2 concentrations of AM fungal communities. We conclude that, although atmospheric change may significantly alter AM fungal communities, this effect may be masked by the influences of natural changes and successional patterns through time. We suggest that changes in carbon availability are important determinants of the community dynamics of AM fungi.« less

  11. Study of the atmospheric chemistry of radon progeny in laboratory and real indoor atmospheres. Final project report

    SciTech Connect (OSTI)

    Hopke, P.K.

    1996-09-01

    This report completes Clarkson University`s study of the chemical and physical behavior of the {sup 218}Po atom immediately following its formation by the alpha decay of radon. Because small changes in size for activity in the sub-10 nm size range result in large changes in the delivered dose per unit exposure, this behavior must be understood if the exposure to radon progeny and it dose to the cells in the respiratory tract are to be fully assessed. In order to pursue this general goal, two areas of radon progeny behavior are being pursued; laboratory studies under controlled conditions to better understand the fundamental physical and chemical processes that affect the progeny`s atmospheric behavior and studies in actual indoor environments to develop a better assessment of the exposure of the occupants of that space to the size and concentration of the indoor radioactive aerosol. Thus, two sets of specific goals have been established for this project. The specific tasks of the controlled laboratory studies are (1) Determine the formation rates of {circ}OH radicals formed by the radiolysis of air following radon decay; (2) Examine the formation of particles by the radiolytic oxidation of substances like SO{sub 2}, ethylene, and H{sub 2}S to lower vapor pressure compounds and determine the role of gas phase additives such as H{sub 2}O and NH{sub 3} in determining the particle size; (3) Measure the rate of ion-induced nucleation using a thermal diffusion cloud chamber, and (4) Measure the neutralization rate of {sup 218}PoO{sub x}{sup +} in O{sub 2} at low radon concentrations.

  12. Oxygen detected in atmosphere of Saturn's moon Dione

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oxygen detected in atmosphere of Saturn's moon Dione Oxygen detected in atmosphere of Saturn's moon Dione Scientists and an international research team have announced discovery of molecular oxygen ions in the upper-most atmosphere of Dione. March 3, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics

  13. Clear Skies S. A. Clough Atmospheric and Environmental Research, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. A. Clough Atmospheric and Environmental Research, Inc. Cambridge, MA 02139 The objective of this research effort is to develop radiative transfer models that are consistent with Atmospheric Radiation Measurement (ARM) Program spectral radiance measurements for clear and cloudy atmospheres. Our approach is to develop the model physics and related databases with a line-by-line model in the context of available spectral radiance measurements. The line-by- line mode! then functions as an

  14. ARM - PI Product - Atmospheric State, Cloud Microphysics & Radiative Flux

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsAtmospheric State, Cloud Microphysics & Radiative Flux ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Atmospheric State, Cloud Microphysics & Radiative Flux [ ARM Principal Investigator (PI) Data Product ] Atmospheric thermodynamics, cloud properties, radiative fluxes and radiative heating rates for the ARM Southern Great Plains (SGP) site. The data represent a characterization of the

  15. ARM - Amount of Greenhouse Gases in the Global Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PlansAmount of Greenhouse Gases in the Global Atmosphere Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Amount of Greenhouse Gases in the Global Atmosphere Objective The objective is to feel the changes of the amounts of greenhouse gases in the global atmosphere. Materials Each group of

  16. Origin of particulate organic carbon in the marine atmosphere as indicated by it stable carbon isotopic composition

    SciTech Connect (OSTI)

    Chesselet, R.; Fontugne, M.; Buat-Menard, P.; Ezat, U.; Lambert, C.E.

    1981-04-01

    Organic carbon concentration and isotopic composition were determined in samples of atmospheric particulate matter collected in 1979 at remote marine locations (Enewetak atoll, Sargasso Sea) during the SEAREX (Sea-Air Exchange) program field experiments. Atmospheric Particulate Organic Carbon (POC) concentrations were found to be in the range of 0.3 to 1.2 mg. m/sup -3/, in agreement with previous literature data. The major mass of POC was found on the smallest particles (r<0.5 mm). The /sup 13/C//sup 12/C of the small particles is close to the one expected (d/sup 13/C = 26 +- 2/sup 0///sub infinity/) for atmospheric POC of continental origin. For all the samples analysed so far, it appears that more than 80% of atmospheric POC over remote marine areas is of continental origin. This can be explained either by long-range transport of small sized continental organic aserosols or by the production of POC in the marine atmosphere from a vapor phase organic carbon pool of continental origin. The POC in the large size fraction of marine aerosols (<20% of the total concentration) is likely to have a direct marine origin since its carbon isotopic composition is close to the expected value (d/sup 13/C = -21 +- 2/sup 0///sub 00/) for POC associated with sea-salt droplets transported to the marine atmosphere.

  17. Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tmospheric R R esearch esearch 4STAR: 4STAR: Spectrometer Spectrometer for for Sky Sky - - Scanning Scanning , , Sun Sun - - Tracking Tracking Atmospheric Research...

  18. Simulation of atmospheric temperature effects on cosmic ray muon flux

    SciTech Connect (OSTI)

    Tognini, Stefano Castro; Gomes, Ricardo Avelino

    2015-05-15

    The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s effective temperature: an increase in the effective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, consequently, resulting in a major number of meson decays. Such correlation between the muon flux and the atmosphere’s effective temperature was measured by a set of experiments, such as AMANDA, Borexino, MACRO and MINOS. This phenomena can be investigated by simulating the final muon flux produced by two different parameterizations of the isothermal atmospheric model in CORSIKA, where each parameterization is described by a depth function which can be related to the muon flux in the same way that the muon flux is related to the temperature. This research checks the agreement among different high energy hadronic interactions models and the physical expected behavior of the atmosphere temperature effect by analyzing a set of variables, such as the height of the primary interaction and the difference in the muon flux.

  19. An ensemble constrained variational analysis of atmospheric forcing...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: An ensemble constrained variational analysis of atmospheric forcing data and its application to evaluate clouds in CAM5: Ensemble 3DCVA and Its Application ...

  20. Atmospheric Dispersion Parameter (x/Q) for Calculation of Co...

    Energy Savers [EERE]

    Nuclear facilities that are potentially affected by the situation described above should review their atmospheric dispersion assumptions and NSRD- 2015-TD01. Attachment E of...

  1. Estimating atmospheric parameters and reducing noise for multispectral imaging

    DOE Patents [OSTI]

    Conger, James Lynn

    2014-02-25

    A method and system for estimating atmospheric radiance and transmittance. An atmospheric estimation system is divided into a first phase and a second phase. The first phase inputs an observed multispectral image and an initial estimate of the atmospheric radiance and transmittance for each spectral band and calculates the atmospheric radiance and transmittance for each spectral band, which can be used to generate a "corrected" multispectral image that is an estimate of the surface multispectral image. The second phase inputs the observed multispectral image and the surface multispectral image that was generated by the first phase and removes noise from the surface multispectral image by smoothing out change in average deviations of temperatures.

  2. Technical Sessions M. C. MacCracken Atmospheric amj Geophysical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... system, including treatment of the deep ocean and horizontal transport by ocean currents 4 Separate, uncoupled, and limited treatment of atmospheric composition, chemical ...

  3. NSRD-2015-TD01, Technical Report for Calculations of Atmospheric...

    Broader source: Energy.gov (indexed) [DOE]

    an evaluation of the technical bases for the default value for the atmospheric dispersion parameter Q. This parameter appears in the calculation of radiological dose at...

  4. ARM - Field Campaign - Evaluation of Routine Atmospheric Sounding...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) Campaign Links ERASMUS Backgrounder News & Press Images Comments? We would love to hear from...

  5. A Framework for Integrated Modeling of Perturbations in Atmospheres...

    Office of Scientific and Technical Information (OSTI)

    Conjunction Tracking (IMPACT) Citation Details In-Document Search Title: A Framework for Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking (IMPACT) ...

  6. Radon Measurements of Atmospheric Mixing (RAMIX) 2006-2014 Final...

    Office of Scientific and Technical Information (OSTI)

    Publisher: DOE ARM Climate Research Facility, Pacific Northwest National Laboratory; Richland, Washington. Research Org: DOE Office of Science Atmospheric Radiation Measurement ...

  7. Duplex Rules June 2010 Atmospheric Radiation Measurement Climate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Duplex Rules June 2010 Atmospheric Radiation Measurement Climate Research Facility North Slope of AlaskaAdjacent Arctic Ocean (ACRFNSAAAO) Duplex Rules Who can stay in the ...

  8. Nanostructured Materials for Improved Photovoltaics

    SciTech Connect (OSTI)

    Morgan, Sarah E.; Cannon, Gordon C.; Heinhorst, Sabine; Rawlins, James W.

    2004-07-18

    This research addresses the fundamental issues of cell morphology and phase dimensions that determine conversion efficiency in polymeric organic photovoltaic devices. The approach will help explain the relationships between morphological control, domain size, and power conversion efficiency in OPV devices, with the goal of providing direction for development of OPV systems with greater efficiency. The program addresses the DOE Office of Energy Efficiency and Renewable Energy goals of providing economically sustainable clean energy technologies to reduce dependence on foreign oil. This research focused on synthesis, fabrication and analysis of both active and protective layers for improved organic and inorganic hybrid PV (PhotoVoltaic) materials. A systematic study of phase size, shape, and distance was conducted to determine the effects of morphology in each process. Four classes of nanostructured materials were studied: 1) functional block copolymers (AB, acceptor-donor blocks) that self-assemble into matched domain sizes 2) synthetic core-shell particles with separate acceptor and donor layers 3) bacterial micro-compartment (BMC) proteins as self-assembling shells for core-shell nanoparticle constructs and 4) polyhedral oligomeric silsesquioxane (POSS) nanostructured chemicals for enhanced efficiency and durability.

  9. Improved solar heating systems

    DOE Patents [OSTI]

    Schreyer, J.M.; Dorsey, G.F.

    1980-05-16

    An improved solar heating system is described in which the incident radiation of the sun is absorbed on collector panels, transferred to a storage unit and then distributed as heat for a building and the like. The improvement is obtained by utilizing a storage unit comprising separate compartments containing an array of materials having different melting points ranging from 75 to 180/sup 0/F. The materials in the storage system are melted in accordance with the amount of heat absorbed from the sun and then transferred to the storage system. An efficient low volume storage system is provided by utilizing the latent heat of fusion of the materials as they change states in storing ad releasing heat for distribution.

  10. Improved vortex reactor system

    DOE Patents [OSTI]

    Diebold, J.P.; Scahill, J.W.

    1995-05-09

    An improved vortex reactor system is described for affecting fast pyrolysis of biomass and Refuse Derived Fuel (RDF) feed materials comprising: a vortex reactor having its axis vertically disposed in relation to a jet of a horizontally disposed steam ejector that impels feed materials from a feeder and solids from a recycle loop along with a motive gas into a top part of said reactor. 12 figs.

  11. Improving haul truck productivity

    SciTech Connect (OSTI)

    Fiscor, S.

    2007-06-15

    The paper reviews developments in payload management and cycle times. These were discussed at a roundtable held at the Haulage and Loading 2007 conference held in May in Phoenix, AZ, USA. Several original equipment manufacturers (OEMs) explaind what their companies were doing to improve cycle times for trucks, shovels and excavators used in surface coal mining. Quotations are given from Dion Domaschenz of Liebherr and Steve Plott of Cat Global Mining. 4 figs.

  12. Causes and Implications of Persistent Atmospheric Carbon Dioxide Biases in Earth System Models

    SciTech Connect (OSTI)

    Hoffman, Forrest M [ORNL] [ORNL; Randerson, James T. [University of California, Irvine] [University of California, Irvine; Arora, Vivek K. [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada] [Canadian Centre for Climate Modelling and Analysis, Meteorological Service of Canada; Bao, Qing [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics] [State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics; Cadule, Patricia [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment] [Institut Pierre Simon Laplace, Laboratoire des Sciences du Climat et de l'Environment; Ji, Duoying [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing] [State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing; Jones, Chris D. [Hadley Centre, U.K. Met Office] [Hadley Centre, U.K. Met Office; Kawamiya, Michio [Japan Agency for Marine-Earth Science and Technology (JAMSTEC)] [Japan Agency for Marine-Earth Science and Technology (JAMSTEC); Khatiwala, Samar [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY] [Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY; Lindsay, Keith [National Center for Atmospheric Research (NCAR)] [National Center for Atmospheric Research (NCAR); Obata, Atsushi [Meteorological Research Institute, Japan] [Meteorological Research Institute, Japan; Shevliakova, Elena [Princeton University] [Princeton University; Six, Katharina D. [Max Planck Institute for Meteorology, Hamburg, Germany] [Max Planck Institute for Meteorology, Hamburg, Germany; Tjiputra, Jerry F. [Uni Climate, Uni Research] [Uni Climate, Uni Research; Volodin, Evgeny M. [Institute of Numerical Mathematics, Russian Academy of Science, Moscow] [Institute of Numerical Mathematics, Russian Academy of Science, Moscow; Wu, Tongwen [China Meteorological Administration (CMA), Beijing] [China Meteorological Administration (CMA), Beijing

    2014-01-01

    The strength of feedbacks between a changing climate and future CO2 concentrations are uncertain and difficult to predict using Earth System Models (ESMs). We analyzed emission-driven simulations--in which atmospheric CO2 levels were computed prognostically--for historical (1850-2005) and future periods (RCP 8.5 for 2006-2100) produced by 15 ESMs for the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5). Comparison of ESM prognostic atmospheric CO2 over the historical period with observations indicated that ESMs, on average, had a small positive bias in predictions of contemporary atmospheric CO2. Weak ocean carbon uptake in many ESMs contributed to this bias, based on comparisons with observations of ocean and atmospheric anthropogenic carbon inventories. We found a significant linear relationship between contemporary atmospheric CO2 biases and future CO2 levels for the multi-model ensemble. We used this relationship to create a contemporary CO2 tuned model (CCTM) estimate of the atmospheric CO2 trajectory for the 21st century. The CCTM yielded CO2 estimates of 600 {plus minus} 14 ppm at 2060 and 947 {plus minus} 35 ppm at 2100, which were 21 ppm and 32 ppm below the multi-model mean during these two time periods. Using this emergent constraint approach, the likely ranges of future atmospheric CO2, CO2-induced radiative forcing, and CO2-induced temperature increases for the RCP 8.5 scenario were considerably narrowed compared to estimates from the full ESM ensemble. Our analysis provided evidence that much of the model-to-model variation in projected CO2 during the 21st century was tied to biases that existed during the observational era, and that model differences in the representation of concentration-carbon feedbacks and other slowly changing carbon cycle processes appear to be the primary driver of this variability. By improving models to more closely match the long-term time series of CO2 from Mauna Loa, our analysis suggests uncertainties in future climate projections can be reduced.

  13. Photochemistry in terrestrial exoplanet atmospheres. III. Photochemistry and thermochemistry in thick atmospheres on super Earths and mini Neptunes

    SciTech Connect (OSTI)

    Hu, Renyu; Seager, Sara

    2014-03-20

    Some super Earths and mini Neptunes will likely have thick atmospheres that are not H{sub 2}-dominated. We have developed a photochemistry-thermochemistry kinetic-transport model for exploring the compositions of thick atmospheres on super Earths and mini Neptunes, applicable for both H{sub 2}-dominated atmospheres and non-H{sub 2}-dominated atmospheres. Using this model to study thick atmospheres for wide ranges of temperatures and elemental abundances, we classify them into hydrogen-rich atmospheres, water-rich atmospheres, oxygen-rich atmospheres, and hydrocarbon-rich atmospheres. We find that carbon has to be in the form of CO{sub 2} rather than CH{sub 4} or CO in a H{sub 2}-depleted water-dominated thick atmosphere and that the preferred loss of light elements from an oxygen-poor carbon-rich atmosphere leads to the formation of unsaturated hydrocarbons (C{sub 2}H{sub 2} and C{sub 2}H{sub 4}). We apply our self-consistent atmosphere models to compute spectra and diagnostic features for known transiting low-mass exoplanets GJ 1214 b, HD 97658 b, and 55 Cnc e. For GJ 1214 b, we find that (1) C{sub 2}H{sub 2} features at 1.0 and 1.5 ?m in transmission and C{sub 2}H{sub 2} and C{sub 2}H{sub 4} features at 9-14 ?m in thermal emission are diagnostic for hydrocarbon-rich atmospheres; (2) a detection of water-vapor features and a confirmation of the nonexistence of methane features would provide sufficient evidence for a water-dominated atmosphere. In general, our simulations show that chemical stability has to be taken into account when interpreting the spectrum of a super Earth/mini Neptune. Water-dominated atmospheres only exist for carbon to oxygen ratios much lower than the solar ratio, suggesting that this kind of atmospheres could be rare.

  14. IMPROVED CORROSION RESISTANCE OF ALUMINA REFRACTORIES

    SciTech Connect (OSTI)

    John P. Hurley; Patty L. Kleven

    2001-09-30

    The initial objective of this project was to do a literature search to define the problems of refractory selection in the metals and glass industries. The problems fall into three categories: Economic--What do the major problems cost the industries financially? Operational--How do the major problems affect production efficiency and impact the environment? and Scientific--What are the chemical and physical mechanisms that cause the problems to occur? This report presents a summary of these problems. It was used to determine the areas in which the EERC can provide the most assistance through bench-scale and laboratory testing. The final objective of this project was to design and build a bench-scale high-temperature controlled atmosphere dynamic corrosion application furnace (CADCAF). The furnace will be used to evaluate refractory test samples in the presence of flowing corrodents for extended periods, to temperatures of 1600 C under controlled atmospheres. Corrodents will include molten slag, steel, and glass. This test should prove useful for the glass and steel industries when faced with the decision of choosing the best refractory for flowing corrodent conditions.

  15. The generation and damping of propagating MHD kink waves in the solar atmosphere

    SciTech Connect (OSTI)

    Morton, R. J.; Verth, G.; Erdélyi, R.; Hillier, A. E-mail: g.verth@sheffield.ac.uk

    2014-03-20

    The source of the non-thermal energy required for the heating of the upper solar atmosphere to temperatures in excess of a million degrees and the acceleration of the solar wind to hundreds of kilometers per second is still unclear. One such mechanism for providing the required energy flux is incompressible torsional Alfvén and kink magnetohydrodynamic (MHD) waves, which are magnetically dominated waves supported by the Sun's pervasive and complex magnetic field. In particular, propagating MHD kink waves have recently been observed to be ubiquitous throughout the solar atmosphere, but, until now, critical details of the transport of the kink wave energy throughout the Sun's atmosphere were lacking. Here, the ubiquity of the waves is exploited for statistical studies in the highly dynamic solar chromosphere. This large-scale investigation allows for the determination of the chromospheric kink wave velocity power spectra, a missing link necessary for determining the energy transport between the photosphere and corona. Crucially, the power spectra contain evidence for horizontal photospheric motions being an important mechanism for kink wave generation in the quiescent Sun. In addition, a comparison with measured coronal power spectra is provided for the first time, revealing frequency-dependent transmission profiles, suggesting that there is enhanced damping of kink waves in the lower corona.

  16. Determining Electric Motor Load and Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DETERMINING ELECTRIC MOTOR LOAD AND EFFICIENCY Most likely your operation's motors account for a large part of your monthly electric bill. Far too often motors are mismatched-or oversized-for the load they are intended to serve, or have been re- wound multiple times. To compare the operating costs of an existing standard motor with an appropriately-sized energy- efficient replacement, you need to determine operating hours, efficiency improvement values, and load. Part-load is a term used to

  17. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, Frederick E. (Reading, MA); Smolensky, Leo A. (Concord, MA); Doyle, Edward F. (Dedham, MA); DiBella, Francis A. (Roslindale, MA)

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  18. Steam atmosphere drying exhaust steam recompression system

    DOE Patents [OSTI]

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  19. Antineutrino Oscillations in the Atmospheric Sector

    SciTech Connect (OSTI)

    Himmel, Alexander I.; /Caltech

    2011-05-01

    This thesis presents measurements of the oscillations of muon antineutrinos in the atmospheric sector, where world knowledge of antineutrino oscillations lags well behind the knowledge of neutrinos, as well as a search for {nu}{sub {mu}} {yields} {bar {nu}}{sub {mu}} transitions. Differences between neutrino and antineutrino oscillations could be a sign of physics beyond the Standard Model, including non-standard matter interactions or the violation of CPT symmetry. These measurements leverage the sign-selecting capabilities of the magnetized steel-scintillator MINOS detectors to analyze antineutrinos from the NuMI beam, both when it is in neutrino-mode and when it is in antineutrino-mode. Antineutrino oscillations are observed at |{Delta}{bar m}{sub atm}{sup 2}| = (3.36{sub -0.40}{sup +0.46}(stat) {+-} 0.06(syst)) x 10{sup -3} eV{sup 2} and sin{sup 2}(2{bar {theta}}{sub 23}) = 0.860{sub -0.12}{sup +0.11}(stat) {+-} 0.01(syst). The oscillation parameters measured for antineutrinos and those measured by MINOS for neutrinos differ by a large enough margin that the chance of obtaining two values as discrepant as those observed is only 2%, assuming the two measurements arise from the same underlying mechanism, with the same parameter values. No evidence is seen for neutrino-to-antineutrino transitions.

  20. Method to improve commercial bonded SOI material

    DOE Patents [OSTI]

    Maris, Humphrey John (Barrington, RI); Sadana, Devendra Kumar (Pleasantville, NY)

    2000-07-11

    A method of improving the bonding characteristics of a previously bonded silicon on insulator (SOI) structure is provided. The improvement in the bonding characteristics is achieved in the present invention by, optionally, forming an oxide cap layer on the silicon surface of the bonded SOI structure and then annealing either the uncapped or oxide capped structure in a slightly oxidizing ambient at temperatures greater than 1200.degree. C. Also provided herein is a method for detecting the bonding characteristics of previously bonded SOI structures. According to this aspect of the present invention, a pico-second laser pulse technique is employed to determine the bonding imperfections of previously bonded SOI structures.

  1. Untangling the Chemical Evolution of Titan's Atmosphere and Surface -- From Homogeneous to Heterogeneous Chemistry

    SciTech Connect (OSTI)

    Kaiser, Ralf I.; Maksyutenko, Pavlo; Ennis, Courtney; Zhang, Fangtong; Gu, Xibin; Krishtal, Sergey P.; Mebel, Alexander M.; Kostko, Oleg; Ahmed, Musahid

    2010-03-16

    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date.

  2. Improved cycling cryopump

    DOE Patents [OSTI]

    Batzer, T.H.; Call, W.R.

    1984-12-04

    The present invention is designed to achieve continuous high efficiency cryopumping of a vacuum vessel by improving upon and combining in a novel way the cryopumping in a novel way the cryopumping methods. The invention consists of a continuous operation cryopump, with movable louvres, with a high efficiency pumping apparatus. The pumping apparatus includes three cryogenic tubes. They are constructed of a substance of high thermal conductivity, such as aluminum and their exterior surfaces are cryogenic condensing surfaces. Through their interior liquid or gaseous helium from two reservoirs can be made to flow, alternately promoting extreme cooling or allowing some warming.

  3. Improved ion detector

    DOE Patents [OSTI]

    Tullis, A.M.

    1986-01-30

    An improved ion detector device of the ionization detection device chamber type comprises an ionization chamber having a central electrode therein surrounded by a cylindrical electrode member within the chamber with a collar frictionally fitted around at least one of the electrodes. The collar has electrical contact means carried in an annular groove in an inner bore of the collar to contact the outer surface of the electrode to provide electrical contact between an external terminal and the electrode without the need to solder leads to the electrode.

  4. Improved ion source

    DOE Patents [OSTI]

    Leung, K.N.; Ehlers, K.W.

    1982-05-04

    A magnetic filter for an ion source reduces the production of undesired ion species and improves the ion beam quality. High-energy ionizing electrons are confined by the magnetic filter to an ion source region, where the high-energy electrons ionize gas molecules. One embodiment of the magnetic filter uses permanent magnets oriented to establish a magnetic field transverse to the direction of travel of ions from the ion source region to the ion extraction region. In another embodiment, low energy 16 eV electrons are injected into the ion source to dissociate gas molecules and undesired ion species into desired ion species,

  5. Petroleum Processing Efficiency Improvement

    SciTech Connect (OSTI)

    John Schabron; Joseph Rovani; Mark Sanderson; Jenny Loveridge

    2012-09-01

    A series of volatile crude oils was characterized using the Asphaltene Determinator oncolumn precipitation and re-dissolution method developed at Western Research Institute (WRI). Gravimetric asphaltenes and polars fractions from silica gel chromatography separation of the oils were characterized also. A study to define the differences in composition of asphaltenes in refinery desalter rag layer emulsions and the corresponding feed and desalter oils was conducted. Results indicate that the most polar and pericondensed aromatic material in the asphaltenes is enriched in the emulsions. The wax types and carbon number distributions in the two heptaneeluting fractions from the Waxphaltene Determinator separation were characterized by repetitive collection of the fractions followed by high temperature gas chromatography (GC) and Fourier transform infrared spectroscopy (FTIR). High resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) was conducted by researchers at the Florida State University National High Magnetic Field laboratory in a no-cost collaboration with the study.

  6. Track 10: Feedback and Improvement

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 10: Feedback and Improvement

  7. Improved Transport Processes for CCSM

    SciTech Connect (OSTI)

    Henry Tufo

    2011-05-05

    In atmospheric modeling, global spectral methods have dominated weather and climate simulation for the past two decades. However, global methods based upon the spherical harmonic basis functions require expensive non-local communication and thus have difficulty in exploiting the full potential of current high-performance parallel computers. The primary objective of HOMME ((11)) is the development of a class of high-order scalable conservative atmospheric models for climate and general atmospheric modeling applications. The spatial discretizations are based on continuous Galerkin (spectral element method) and discontinuous Galerkin (DG). These are local methods based on high-order accurate spectral basis functions which have been shown to perform well on massively parallel supercomputers at any resolution (18). HOMME employs a cubed-sphere geometry (26) exhibiting none of the singularities present in conventional latitude-longitude spherical geometries. The element based formulation enables the use of general curvilinear geometries and adaptive conforming or non-conforming meshes.

  8. Strategic Environmental Research and Development Program: Atmospheric Remote Sensing and Assessment Program -- Final Report. Part 1: The lower atmosphere

    SciTech Connect (OSTI)

    Tooman, T.P.

    1997-01-01

    This report documents work done between FY91 and FY95 for the lower atmospheric portion of the joint Department of Defense (DoD) and Department of Energy (DOE) Atmospheric Remote Sensing and Assessment Program (ARSAP) within the Strategic Environmental Research and Development Program (SERDP). The work focused on (1) developing new measurement capabilities and (2) measuring atmospheric heating in a well-defined layer and then relating it to cloud properties an water vapor content. Seven new instruments were develop3ed for use with Unmanned Aerospace Vehicles (UAVs) as the host platform for flux, radiance, cloud, and water vapor measurements. Four major field campaigns were undertaken to use these new as well as existing instruments to make critically needed atmospheric measurements. Scientific results include the profiling of clear sky fluxes from near surface to 14 km and the strong indication of cloudy atmosphere absorption of solar radiation considerably greater than predicted by extant models.

  9. Deceleration Orbit Improvements

    SciTech Connect (OSTI)

    Church, M.

    1991-04-26

    During the accelerator studies period of 12/90-1/91 much study time was dedicated to improving the E760 deceleration ramps. 4 general goals were in mind: (1) Reduce the relative orbit deviations from the nominal reference orbit as much as possible. This reduces the potential error in the orbit length calculation - which is the primary source of error in the beam energy calculation. (2) Maximize the transverse apertures. This minimizes beam loss during deceleration and during accidental beam blow-ups. (3) Measure and correct lattice parameters. Knowledge of {gamma}{sub T}, {eta}, Q{sub h}, Q{sub v}, and the dispersion in the straight sections allows for a more accurate energy calculation and reliable SYNCH calculations. (4) Minimize the coupling. This allows one to discern between horizontal and vertical tunes.

  10. Regulatory Streamlining and Improvement

    SciTech Connect (OSTI)

    Mark A. Carl

    2006-07-11

    The Interstate Oil and Gas Compact Commission (IOGCC) engaged in numerous projects outlined under the scope of work discussed in the United States Department of Energy (DOE) grant number DE-FC26-04NT15456 awarded to the IOGCC. Numerous projects were completed that were extremely valuable to state oil and gas agencies as a result of work performed utilizing resources provided by the grant. There are numerous areas in which state agencies still need assistance. This additional assistance will need to be addressed under future scopes of work submitted annually to DOE's Project Officer for this grant. This report discusses the progress of the projects outlined under the grant scope of work for the 2005-2006 areas of interest, which are as follows: Area of Interest No. 1--Regulatory Streamlining and Improvement: This area of interest continues to support IOGCC's regulatory streamlining efforts that include the identification and elimination of unnecessary duplications of efforts between and among state and federal programs dealing with exploration and production on public lands. Area of Interest No. 2--Technology: This area of interest seeks to improve efficiency in states through the identification of technologies that can reduce costs. Area of Interest No. 3--Training and Education: This area of interest is vital to upgrading the skills of regulators and industry alike. Within the National Energy Policy, there are many appropriate training and education opportunities. Education was strongly endorsed by the President's National Energy Policy Development group. Acting through the governors offices, states are very effective conduits for the dissemination of energy education information. While the IOGCC favors the development of a comprehensive, long-term energy education plan, states are also supportive of immediate action on important concerns, such as energy prices, availability and conservation. Area of Interest No. 4--Resource Assessment and Development: This area of interest relates directly to helping maximize production of domestic oil and natural gas resources, including areas that are under explored or have not been adequately defined.

  11. ARM - Field Campaign - 2013 Lower Atmospheric Boundary Layer Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaigns2013 Lower Atmospheric Boundary Layer Experiment ARM Data Discovery Browse Data Related Campaigns Lower Atmospheric Boundary Layer Experiment 2012.09.17, Turner, SGP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : 2013 Lower Atmospheric Boundary Layer Experiment 2013.05.28 - 2013.07.01 Lead Scientist : David Turner For data sets, see below. Abstract Instruments were deployed at the SGP Central Facility to investigate how

  12. ARM - Field Campaign - Lower Atmospheric Boundary Layer Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsLower Atmospheric Boundary Layer Experiment Campaign Links LABLE Website Field Campaign Report ARM Data Discovery Browse Data Related Campaigns 2013 Lower Atmospheric Boundary Layer Experiment 2013.05.28, Turner, SGP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Lower Atmospheric Boundary Layer Experiment 2012.09.17 - 2012.11.13 Lead Scientist : David Turner For data sets, see below. Abstract Boundary layer turbulence is

  13. ARM - Field Campaign - Radon Measurements of Atmospheric Mixing (RAMIX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2008) govCampaignsRadon Measurements of Atmospheric Mixing (RAMIX 2008) ARM Data Discovery Browse Data Related Campaigns Radon Measurements of Atmospheric Mixing (RAMIX) 2006.11.01, Fischer, SGP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Radon Measurements of Atmospheric Mixing (RAMIX 2008) 2008.04.01 - 2009.03.31 Lead Scientist : Marc Fischer For data sets, see below. Abstract At present, uncertainty in vertical mixing

  14. JGR-Atmospheres Papers from the RADAGAST Research Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JGR-Atmospheres Papers from the RADAGAST Research Team Bharmal, N.A., A. Slingo, G.J. Robinson, and J.J. Settle, 2009: Simulation of surface and top of atmosphere thermal fluxes and radiances from the RADAGAST experiment. Journal of Geophysical Research-Atmospheres, 114, doi:10.1029/2008JD010504, in press. Kollias, P., M.A. Miller, K.L. Johnson, M.P. Jensen, and D.T. Troyan, 2009: Cloud, thermodynamic, and precipitation observations in West Africa during 2006. Journal of Geophysical Research-

  15. Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battlefield of the Cold War: The Nevada Test Site, Volume I | Department of Energy Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Terrence R. Fehner and F.G. Gosling. Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I (pdf). DOE/MA-0003. Washington,

  16. Flow injection trace gas analysis method for on-site determination of organoarsenicals

    DOE Patents [OSTI]

    Aldstadt, J.H. III

    1997-06-24

    A method is described for real-time determination of the concentration of Lewisite in the ambient atmosphere, the method includes separating and collecting a Lewisite sample from the atmosphere in a collection chamber, converting the collected Lewisite to an arsenite ion solution sample, pumping the arsenite ion containing sample to an electrochemical detector connected to the collection chamber, and electrochemically detecting the converted arsenite ions in the sample, whereby the concentration of arsenite ions detected is proportional to the concentration of Lewisite in the atmosphere. 2 figs.

  17. Flow injection trace gas analysis method for on-site determination of organoarsenicals

    DOE Patents [OSTI]

    Aldstadt, III, Joseph H. (Orland Park, IL)

    1997-01-01

    A method for real-time determination of the concentration of Lewisite in the ambient atmosphere, the method includes separating and collecting a Lewisite sample from the atmosphere in a collection chamber, converting the collected Lewisite to an arsenite ion solution sample, pumping the arsenite ion containing sample to an electrochemical detector connected to the collection chamber, and electrochemically detecting the converted arsenite ions in the sample, whereby the concentration of arsenite ions detected is proportional to the concentration of Lewisite in the atmosphere.

  18. Oil and gas exploration system and method for detecting trace amounts of hydrocarbon gases in the atmosphere

    DOE Patents [OSTI]

    Wamsley, Paula R. (Littleton, CO); Weimer, Carl S. (Littleton, CO); Nelson, Loren D. (Evergreen, CO); O'Brien, Martin J. (Pine, CO)

    2003-01-01

    An oil and gas exploration system and method for land and airborne operations, the system and method used for locating subsurface hydrocarbon deposits based upon a remote detection of trace amounts of gases in the atmosphere. The detection of one or more target gases in the atmosphere is used to indicate a possible subsurface oil and gas deposit. By mapping a plurality of gas targets over a selected survey area, the survey area can be analyzed for measurable concentration anomalies. The anomalies are interpreted along with other exploration data to evaluate the value of an underground deposit. The system includes a differential absorption lidar (DIAL) system with a spectroscopic grade laser light and a light detector. The laser light is continuously tunable in a mid-infrared range, 2 to 5 micrometers, for choosing appropriate wavelengths to measure different gases and avoid absorption bands of interference gases. The laser light has sufficient optical energy to measure atmospheric concentrations of a gas over a path as long as a mile and greater. The detection of the gas is based on optical absorption measurements at specific wavelengths in the open atmosphere. Light that is detected using the light detector contains an absorption signature acquired as the light travels through the atmosphere from the laser source and back to the light detector. The absorption signature of each gas is processed and then analyzed to determine if a potential anomaly exists.

  19. Improving Gas Flooding Efficiency

    SciTech Connect (OSTI)

    Reid Grigg; Robert Svec; Zheng Zeng; Alexander Mikhalin; Yi Lin; Guoqiang Yin; Solomon Ampir; Rashid Kassim

    2008-03-31

    This study focuses on laboratory studies with related analytical and numerical models, as well as work with operators for field tests to enhance our understanding of and capabilities for more efficient enhanced oil recovery (EOR). Much of the work has been performed at reservoir conditions. This includes a bubble chamber and several core flood apparatus developed or modified to measure interfacial tension (IFT), critical micelle concentration (CMC), foam durability, surfactant sorption at reservoir conditions, and pressure and temperature effects on foam systems.Carbon dioxide and N{sub 2} systems have been considered, under both miscible and immiscible conditions. The injection of CO2 into brine-saturated sandstone and carbonate core results in brine saturation reduction in the range of 62 to 82% brine in the tests presented in this paper. In each test, over 90% of the reduction occurred with less than 0.5 PV of CO{sub 2} injected, with very little additional brine production after 0.5 PV of CO{sub 2} injected. Adsorption of all considered surfactant is a significant problem. Most of the effect is reversible, but the amount required for foaming is large in terms of volume and cost for all considered surfactants. Some foams increase resistance to the value beyond what is practical in the reservoir. Sandstone, limestone, and dolomite core samples were tested. Dissolution of reservoir rock and/or cement, especially carbonates, under acid conditions of CO2 injection is a potential problem in CO2 injection into geological formations. Another potential change in reservoir injectivity and productivity will be the precipitation of dissolved carbonates as the brine flows and pressure decreases. The results of this report provide methods for determining surfactant sorption and can be used to aid in the determination of surfactant requirements for reservoir use in a CO{sub 2}-foam flood for mobility control. It also provides data to be used to determine rock permeability changes during CO{sub 2} flooding due to saturation changes, dissolution, and precipitation.

  20. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G.; Gurary, Alexander I.; Boguslavskiy, Vadim

    2002-01-01

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  1. CX-011320: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Continuous Regional Methane Emissions Estimates in Northern Pennsylvania Gas Field Using Atmospheric Inversions CX(s) Applied: A9, B3.1 Date: 10/01/2013 Location(s): Colorado Offices(s): National Energy Technology Laboratory

  2. CX-011318: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Continuous Regional Methane Emissions Estimates in Northern Pennsylvania Gas Field Using Atmospheric Inversions CX(s) Applied: A9, B3.1 Date: 10/01/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  3. CX-011319: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Continuous Regional Methane Emissions Estimates in Northern Pennsylvania Gas Field Using Atmospheric Inversions CX(s) Applied: A9, B3.1 Date: 10/01/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  4. CX-009600: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Operation of Argon Atmosphere Furnace in 773-A, Lab C-118 CX(s) Applied: B3.6 Date: 12/10/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office

  5. CX-005498: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Operation of Argon Atmosphere Furnace in C-118CX(s) Applied: B3.6Date: 02/28/2011Location(s): Aiken, South CarolinaOffice(s): Environmental Management, Savannah River Operations Office

  6. CX-100382 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Atmospheric CO2 Capture and Membrane Delivery Award Number: DE-EE0007093 CX(s) Applied: A9 Bioenergy Technologies Office Date: 09/21/2015 Location(s): Arizona Office(s): Golden Field Office

  7. CX-011711: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Commercialization of an Atmospheric Iron-Based Coal Direct CX(s) Applied: A9, B3.6 Date: 01/09/2014 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  8. CX-009790: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    National Oceanic and Atmospheric Administration (NOAA) Birch Creek Canyon Wind Study CX(s) Applied: B3.1 Date: 12/17/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  9. IMPROVED BONDING METHOD

    DOE Patents [OSTI]

    Padgett, E.V. Jr.; Warf, D.H.

    1964-04-28

    An improved process of bonding aluminum to aluminum without fusion by ultrasonic vibrations plus pressure is described. The surfaces to be bonded are coated with an aqueous solution of alkali metal stearate prior to assembling for bonding. (AEC) O H19504 Present information is reviewed on steady state proliferation, differentiation, and maturation of blood cells in mammals. Data are cited from metabolic tracer studies, autoradiographic studies, cytologic studies, studies of hematopoietic response to radiation injuries, and computer analyses of blood cell production. A 3-step model for erythropoiesis and a model for granulocyte kinetics are presented. New approaches to the study of lymphocytopoiesis described include extracorporeal blood irradiation to deplete lymphocytic tissue without direct injury to the formative tissues as a means to study the stressed system, function control, and rates of proliferation. It is pointed out that present knowledge indicates that lymphocytes comprise a mixed family, with diverse life spans, functions, and migration patterns with apparent aimless recycling from modes to lymph to blood to nodes that has not yet been quantitated. Areas of future research are postulated. (70 references.) (C.H.)

  10. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    SciTech Connect (OSTI)

    Sachs, M. Schmitt, A. Schmidt, J. Peukert, W. Wirth, K-E

    2014-05-15

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  11. NEPA Determination Complete

    Broader source: Energy.gov [DOE]

    DOE has determined that this proposed project is a major Federal action that may significantly affect the quality of the human environment. To comply with the National Environmental Policy Act ...

  12. Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program

    SciTech Connect (OSTI)

    Dooraghi, Michael

    2015-09-01

    The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise as part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.

  13. Development of NEXRAD Wind Retrievals as Input to Atmospheric Dispersion Models

    SciTech Connect (OSTI)

    Fast, Jerome D.; Newsom, Rob K.; Allwine, K Jerry; Xu, Qin; Zhang, Pengfei; Copeland, Jeffrey H.; Sun, Jenny

    2007-03-06

    The objective of this study is to determine the feasibility that routinely collected data from the Doppler radars can appropriately be used in Atmospheric Dispersion Models (ADMs) for emergency response. We have evaluated the computational efficiency and accuracy of two variational mathematical techniques that derive the u- and v-components of the wind from radial velocities obtained from Doppler radars. A review of the scientific literature indicated that the techniques employ significantly different approaches in applying the variational techniques: 2-D Variational (2DVar), developed by NOAA¹s (National Oceanic and Atmospheric Administration's) National Severe Storms Laboratory (NSSL) and Variational Doppler Radar Analysis System (VDRAS), developed by the National Center for Atmospheric Research (NCAR). We designed a series of numerical experiments in which both models employed the same horizontal domain and resolution encompassing Oklahoma City for a two-week period during the summer of 2003 so that the computed wind retrievals could be fairly compared. Both models ran faster than real-time on a typical single dual-processor computer, indicating that they could be used to generate wind retrievals in near real-time. 2DVar executed ~2.5 times faster than VDRAS because of its simpler approach.

  14. High-voltage atmospheric breakdown across intervening rutile dielectrics.

    SciTech Connect (OSTI)

    Williamson, Kenneth Martin; Simpson, Sean; Coats, Rebecca Sue; Jorgenson, Roy Eberhardt; Hjalmarson, Harold Paul; Pasik, Michael Francis

    2013-09-01

    This report documents work conducted in FY13 on electrical discharge experiments performed to develop predictive computational models of the fundamental processes of surface breakdown in the vicinity of high-permittivity material interfaces. Further, experiments were conducted to determine if free carrier electrons could be excited into the conduction band thus lowering the effective breakdown voltage when UV photons (4.66 eV) from a high energy pulsed laser were incident on the rutile sample. This report documents the numerical approach, the experimental setup, and summarizes the data and simulations. Lastly, it describes the path forward and challenges that must be overcome in order to improve future experiments for characterizing the breakdown behavior for rutile.

  15. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E. (Hempfield Township, Westmoreland County, PA)

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  16. Distribution of neptunium and plutonium in New Mexico lichen samples (Usnea arizonica) contaminated by atmospheric fallout

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Oldham, Jr., Warren J.; Hanson, Susan K.; Lavelle, Kevin B.; Miller, Jeffrey L.

    2015-08-30

    In this study, the concentrations of 237Np, 239Pu and 240Pu were determined in lichen samples (Usnea arizonica) that were collected from ten locations in New Mexico between 2011 and 2013 using isotope dilution inductively-coupled plasma mass spectrometry (ID-ICP-MS). The observed isotopic ratios for 237Np/239Pu and 240Pu/239Pu indicate trace contamination from global and regional fallout (e.g. Trinity test and atmospheric testing at the Nevada Test Site). The fact that actinide contamination is detected in recent lichen collections suggests continuous re-suspension of fallout radionuclides even 50 years after ratification of the Limited Test Ban Treaty.

  17. HEATING THE SOLAR ATMOSPHERE BY THE SELF-ENHANCED THERMAL WAVES CAUSED BY THE DYNAMO PROCESSES

    SciTech Connect (OSTI)

    Dumin, Yurii V. E-mail: dumin@izmiran.ru

    2012-05-20

    We discuss a possible mechanism for heating the solar atmosphere by the ensemble of thermal waves, generated by the photospheric dynamo and propagating upward with increasing magnitudes. These waves are self-sustained and amplified due to the specific dependence of the efficiency of heat release by Ohmic dissipation on the ratio of the collisional to gyrofrequencies, which in its turn is determined by the temperature profile formed in the wave. In the case of sufficiently strong driving, such a mechanism can increase the plasma temperature by a few times, i.e., it may be responsible for heating the chromosphere and the base of the transition region.

  18. Pulsed microwave discharge in a capillary filled with atmospheric-pressure gas

    SciTech Connect (OSTI)

    Gritsinin, S. I.; Gushchin, P. A.; Davydov, A. M.; Ivanov, E. V.; Kossyi, I. A.

    2013-08-15

    A pulsed microwave coaxial capillary plasma source generating a thin plasma filament along the capillary axis in an atmospheric-pressure argon flow is described. The dynamics of filament formation is studied, and the parameters of the gas and plasma in the contraction region are determined. A physical model of discharge formation and propagation is proposed. The model is based on the assumption that, under the conditions in which the electric fields is substantially below the threshold value, the discharge operates in a specific form known as a self-sustained-non-self-sustained (SNS) microwave discharge.

  19. Computer support to run models of the atmosphere. Final report

    SciTech Connect (OSTI)

    Fung, I.

    1996-08-30

    This research is focused on a better quantification of the variations in CO{sub 2} exchanges between the atmosphere and biosphere and the factors responsible for these exchangers. The principal approach is to infer the variations in the exchanges from variations in the atmospheric CO{sub 2} distribution. The principal tool involves using a global three-dimensional tracer transport model to advect and convect CO{sub 2} in the atmosphere. The tracer model the authors used was developed at the Goddard institute for Space Studies (GISS) and is derived from the GISS atmospheric general circulation model. A special run of the GCM is made to save high-frequency winds and mixing statistics for the tracer model.

  20. PNNL: Atmospheric Sciences & Global Change Search for Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Science & Global Change Search for Staff Search for an ASGC staff member (Last, First) Search Search for staff member by Group View Alphabetical List of all ASGC Staff...

  1. Integrated Study of MFRSR-derived Parameters of Atmospheric Aerosols...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program CART site, in Remote Sensing of Clouds and the Atmosphere VI, K. Schafer, O. Lado- Bordowsky, A. Comeron, M. R. Carleer, J. S. Fender, Editors, Proc. SPIE Vol. 4539,...

  2. North America's net terrestrial CO2 exchange with the atmosphere...

    Office of Scientific and Technical Information (OSTI)

    a synthesis of net land-atmosphere CO2 exchange for North America (Canada, United States, and Mexico) over the period 1990-2009. Only CO2 is considered, not methane or...

  3. ARM - Field Campaign - Cross-Scale Land-Atmosphere Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Cross-Scale Land-Atmosphere Experiment 2016.09.01 - 2019.05.31 Lead Scientist :...

  4. The Atmosphere as a Laboratory: Aerosols, Air Quality, and Climate...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to 11:00am Science On Saturday MBG Auditorium The Atmosphere as a Laboratory: Aerosols, Air Quality, and Climate Peter DeCarlo, Assistant Professor of Environmental Engineering...

  5. Free Floating Atmospheric Pressure Ball Plasmas | Princeton Plasma...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7, 2008, 4:15pm to 5:30pm Colloquia MBG Auditorium Free Floating Atmospheric Pressure Ball Plasmas Dr. Glen Wurden Los Alamos National Laboratory Presentation: PDF icon Free...

  6. Project Management Improvements Drive Progress

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Improving project management has been a top priority of EM’s senior leadership.

  7. Improve Your Boiler's Combustion Efficiency

    Broader source: Energy.gov [DOE]

    This tip sheet outlines how to improve boiler combustion efficiency as part of an optimized steam system.

  8. Accurate atmospheric parameters at moderate resolution using spectral indices: Preliminary application to the marvels survey

    SciTech Connect (OSTI)

    Ghezzi, Luan; Da Costa, Luiz N.; Maia, Marcio A. G.; Ogando, Ricardo L. C.; Dutra-Ferreira, Letícia; Lorenzo-Oliveira, Diego; Porto de Mello, Gustavo F.; Santiago, Basílio X.; De Lee, Nathan; Lee, Brian L.; Ge, Jian; Wisniewski, John P.; González Hernández, Jonay I.; Stassun, Keivan G.; Cargile, Phillip; Pepper, Joshua; Fleming, Scott W.; Schneider, Donald P.; Mahadevan, Suvrath; Wang, Ji; and others

    2014-12-01

    Studies of Galactic chemical, and dynamical evolution in the solar neighborhood depend on the availability of precise atmospheric parameters (effective temperature T {sub eff}, metallicity [Fe/H], and surface gravity log g) for solar-type stars. Many large-scale spectroscopic surveys operate at low to moderate spectral resolution for efficiency in observing large samples, which makes the stellar characterization difficult due to the high degree of blending of spectral features. Therefore, most surveys employ spectral synthesis, which is a powerful technique, but relies heavily on the completeness and accuracy of atomic line databases and can yield possibly correlated atmospheric parameters. In this work, we use an alternative method based on spectral indices to determine the atmospheric parameters of a sample of nearby FGK dwarfs and subgiants observed by the MARVELS survey at moderate resolving power (R ? 12,000). To avoid a time-consuming manual analysis, we have developed three codes to automatically normalize the observed spectra, measure the equivalent widths of the indices, and, through a comparison of those with values calculated with predetermined calibrations, estimate the atmospheric parameters of the stars. The calibrations were derived using a sample of 309 stars with precise stellar parameters obtained from the analysis of high-resolution FEROS spectra, permitting the low-resolution equivalent widths to be directly related to the stellar parameters. A validation test of the method was conducted with a sample of 30 MARVELS targets that also have reliable atmospheric parameters derived from the high-resolution spectra and spectroscopic analysis based on the excitation and ionization equilibria method. Our approach was able to recover the parameters within 80 K for T {sub eff}, 0.05 dex for [Fe/H], and 0.15 dex for log g, values that are lower than or equal to the typical external uncertainties found between different high-resolution analyses. An additional test was performed with a subsample of 138 stars from the ELODIE stellar library, and the literature atmospheric parameters were recovered within 125 K for T {sub eff}, 0.10 dex for [Fe/H], and 0.29 dex for log g. These precisions are consistent with or better than those provided by the pipelines of surveys operating with similar resolutions. These results show that the spectral indices are a competitive tool to characterize stars with intermediate resolution spectra.

  9. Atmospheric Pressure Deposition for Electrochromic Windows | Department of

    Office of Environmental Management (EM)

    Energy Atmospheric Pressure Deposition for Electrochromic Windows Atmospheric Pressure Deposition for Electrochromic Windows Emerging Technologies Project for the 2013 Building Technologies Office's Program Peer Review PDF icon emrgtech22_tenent_040413.pdf More Documents & Publications NREL senior scientist, Robert Tenent, Ph.D., with equipment for low cost processing (deposition) of window coatings materials. Dynamic Windows Low-Cost Solutions for Dynamic Window Material CX-003799:

  10. Atmospheric Radiation Measurement Program Facilities Newsletter - September 1999

    SciTech Connect (OSTI)

    Holdridge, D. J., ed

    1999-09-27

    The Atmospheric Radiation Measurement Program September 1999 Facilities Newsletter discusses the several Intensive Observation Periods (IOPs) that the ARM SGP CART site will host in the near future. Two projects of note are the International Pyrgeometer Intercomparison and the Fall Single Column Model (SCM)/Nocturnal Boundary Layer (NBL) IOP. Both projects will bring many US and international scientists to the SGP CART site to participate in atmospheric research.

  11. Technical Sessions B. E. Manner National Oceanic and Atmospheric Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B. E. Manner National Oceanic and Atmospheric Administration Wave Propagation Laboratory 130ulder, CO 80303 The Atmospheric Radiation Measurement (ARM) pirog ram goals are ambitious, and its schedule is demanding. Many of the instruments, proposed for operations at the first Cloud and Radiation Testbed (CART) site as early alS 1992 represent emerging technology and exist only as :special research prototypes. Therefore, an important preparatory step for ARM was an intensive field project in

  12. ARM - Field Campaign - ASSIST: Atmospheric Sounder Spectrometer for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Spectral Technology govCampaignsASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ASSIST: Atmospheric Sounder Spectrometer for Infrared Spectral Technology 2008.07.08 - 2008.07.18 Lead Scientist : Michael Howard For data sets, see below. Abstract Goals of assist were to intercompare radiance spectra and profile retrievals

  13. A Framework for Integrated Modeling of Perturbations in Atmospheres for

    Office of Scientific and Technical Information (OSTI)

    Conjunction Tracking (IMPACT) (Conference) | SciTech Connect Framework for Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking (IMPACT) Citation Details In-Document Search Title: A Framework for Integrated Modeling of Perturbations in Atmospheres for Conjunction Tracking (IMPACT) Authors: Linares, Richard [1] ; Klimenko, Alexei V. [1] ; Brennan, Sean M. [1] ; Godinez Vazquez, Humberto C. [1] ; Higdon, David M. [1] ; Koller, Josef [1] ; Lawrence, Earl C. [1] ; Palmer,

  14. A comparison between characteristics of atmospheric-pressure plasma jets

    Office of Scientific and Technical Information (OSTI)

    sustained by nanosecond- and microsecond-pulse generators in helium (Journal Article) | SciTech Connect A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium Citation Details In-Document Search Title: A comparison between characteristics of atmospheric-pressure plasma jets sustained by nanosecond- and microsecond-pulse generators in helium Power source is an important parameter that can affect the

  15. Carbonyl sulfide: potential agent of atmospheric sulfur corrosion

    SciTech Connect (OSTI)

    Graedel, T.E.; Kammlott, G.W.; Franey, J.P.

    1981-05-08

    Laboratory exposure experiments demonstrate that carbonyl sulfide in wet air corrodes copper at 22/sup 0/C at a rate that is approximately linear with total exposure (the product of exposure time and carbonyl sulfide concentration). The corrosion rate is similar to that of hydrogen sulfide, a widely recognized corrodant. The much greater average atmospheric abundance of carbonyl sulfide compared with that of hydrogen sulfide or sulfur dioxide suggests that carbonyl sulfide may be a major agent of atmospheric sulfur corrosion.

  16. DOE/ER-0441 Atmospheric Radiation Measurement Plan - February 1990

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Program Plan ARM Program Plan Forward In 1978 the Department of Energy initiated the Carbon Dioxide Research Program to address climate change from the increasing concentration of carbon dioxide in the atmosphere. Over the years the Program has studied the many facets of the issue, from the carbon cycle, the climate diagnostics, the vegetative effects, to the societal impacts. The Program is presently the Department's principal entry in the U.S. Global Change

  17. Diesel and Gasoline Engine Emissions: Characterization of Atmosphere

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Composition and Health Responses to Inhaled Emissions | Department of Energy and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions Diesel and Gasoline Engine Emissions: Characterization of Atmosphere Composition and Health Responses to Inhaled Emissions 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters PDF icon 2005_deer_mcdonald.pdf More Documents & Publications The Effect of Changes in Diesel

  18. Determining the Right Air Quality for Your Compressed Air System |

    Office of Environmental Management (EM)

    Department of Energy Determining the Right Air Quality for Your Compressed Air System Determining the Right Air Quality for Your Compressed Air System This tip sheet outlines the main factors for determining the right air quality for compressed air systems. COMPRESSED AIR TIP SHEET #5 PDF icon Determining the Right Air Quality for Your Compressed Air System (August 2004) More Documents & Publications Effect of Intake on Compressor Performance Improving Compressed Air System Performance:

  19. Improved DC Gun Insulator

    SciTech Connect (OSTI)

    M.L. Neubauer, K.B. Beard, R. Sah, C. Hernandez-Garcia, G. Neil

    2009-05-01

    Many user facilities such as synchrotron light sources and free electron lasers require accelerating structures that support electric fields of 10-100 MV/m, especially at the start of the accelerator chain where ceramic insulators are used for very high gradient DC guns. These insulators are difficult to manufacture, require long commissioning times, and have poor reliability, in part because energetic electrons bury themselves in the ceramic, creating a buildup of charge and causing eventual puncture. A novel ceramic manufacturing process is proposed. It will incorporate bulk resistivity in the region where it is needed to bleed off accumulated charge caused by highly energetic electrons. This process will be optimized to provide an appropriate gradient in bulk resistivity from the vacuum side to the air side of the HV standoff ceramic cylinder. A computer model will be used to determine the optimum cylinder dimensions and required resistivity gradient for an example RF gun application. A ceramic material example with resistivity gradient appropriate for use as a DC gun insulator will be fabricated by glazing using doping compounds and tested.

  20. Coupled ocean-atmosphere model system for studies of interannual-to-decadal climate variability over the North Pacific Basin and precipitation over the Southwestern United States

    SciTech Connect (OSTI)

    Lai, Chung-Chieng A.

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The ultimate objective of this research project is to make understanding and predicting regional climate easier. The long-term goals of this project are (1) to construct a coupled ocean-atmosphere model (COAM) system, (2) use it to explore the interannual-to-decadal climate variability over the North Pacific Basin, and (3) determine climate effects on the precipitation over the Southwestern United States. During this project life, three major tasks were completed: (1) Mesoscale ocean and atmospheric model; (2) global-coupled ocean and atmospheric modeling: completed the coupling of LANL POP global ocean model with NCAR CCM2+ global atmospheric model; and (3) global nested-grid ocean modeling: designed the boundary interface for the nested-grid ocean models.

  1. Interstate Electrification Improvement Project

    SciTech Connect (OSTI)

    Puckette, Margaret; Kim, Jeff

    2015-07-01

    The Interstate Electrification Improvement Project, publicly known as the Shorepower Truck Electrification Project (STEP), started in May 2011 and ended in March 2015. The project grant was awarded by the Department of Energy’s Vehicles Technology Office in the amount of $22.2 million. It had three overarching missions: 1. Reduce the idling of Class 8 tractors when parked at truck stops, to reduce diesel fuel consumption and thus U.S. dependence on foreign petroleum; 2. Stimulate job creation and economic activity as part of the American Reinvestment and Recovery Act of 2009; 3. Reduce greenhouse gas emissions (GHG) from diesel combustion and the carbon footprint of the truck transportation industry. The project design was straightforward. First, build fifty Truck Stop Electrification (TSE) facilities in truck stop parking lots across the country so trucks could plug-in to 110V, 220V, or 480VAC, and shut down the engine instead of idling. These facilities were strategically located at fifty truck stops along major U.S. Interstates with heavy truck traffic. Approximately 1,350 connection points were installed, including 150 high-voltage electric standby Transport Refrigeration Unit (eTRU) plugs--eTRUs are capable of plugging in to shore power1 to cool the refrigerated trailer for loads such as produce, meats and ice cream. Second, the project provided financial incentives on idle reduction equipment to 5,000 trucks in the form of rebates, to install equipment compatible with shore power. This equipment enables drivers to shut down the main engine when parked, to heat or cool their cab, charge batteries, or use other household appliances without idling—a common practice that uses approximately 1 gallon of diesel per hour. The rebate recipients were intended to be the first fleets to plug into Shorepower to save diesel fuel and ensure there is significant population of shore power capable trucks. This two part project was designed to complement each other by providing: 1) the infrastructure to plug into and 2) the on-board equipment capable of plugging into the infrastructure. This project generated the largest dataset to date on shore power TSE utilization and use patterns, providing: insight into driver behavior and acceptance; evidence of cost savings; experience with system operations and management; and data for guiding future development of shore power, whether as a private enterprise or a publicly-subsidized service for meeting air quality goals.

  2. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, A.R.; Gruen, D.M.

    1999-05-11

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  3. Method of improving field emission characteristics of diamond thin films

    DOE Patents [OSTI]

    Krauss, Alan R. (Naperville, IL); Gruen, Dieter M. (Downer Grove, IL)

    1999-01-01

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  4. DOE/SC-ARM-13-013 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-013 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  5. DOE/SC-ARM-14-025 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-025 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  6. DOE/SC-ARM-15-037 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-037 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  7. DOE/SC-ARM-12-021 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-021 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  8. DOE/SC-ARM-14-007 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  9. DOE/SC-ARM-15-018 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-018 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  10. FACT SHEET U.S. Department of Energy Atmospheric Radiation Measurement...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atmospheric Radiation Measurement Climate Research Facility The Atmospheric Radiation Measurement (ARM) Climate Research Facility is a key component of the U.S. Department of ...

  11. DOE/SC-ARM-14-019 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-019 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  12. DOE/SC-ARM-15-001 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-15-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  13. DOE/SC-ARM-14-001 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-14-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  14. DOE/SC-ARM-13-007 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-007 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  15. DOE/SC-ARM-12-015 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-12-015 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  16. DOE/SC-ARM-13-001 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-001 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  17. DOE/SC-ARM-13-020 Atmospheric Radiation Measurement Climate Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Atmospheric Radiation Measurement Climate Research Facility Operations Quarterly Report ... DOESC-ARM-13-020 Atmospheric Radiation Measurement Climate Research Facility Operations ...

  18. Atmospheric Neutrino Induced Muons in the MINOS Far Detector

    SciTech Connect (OSTI)

    Rahman, Dipu; /Minnesota U.

    2007-02-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment. The MINOS Far Detector, located in the Soudan Underground Laboratory in Soudan MN, has been collecting data since August 2003. The scope of this dissertation involves identifying the atmospheric neutrino induced muons that are created by the neutrinos interacting with the rock surrounding the detector cavern, performing a neutrino oscillation search by measuring the oscillation parameter values of {Delta}m{sub 23}{sup 2} and sin{sup 2} 2{theta}{sub 23}, and searching for CPT violation by measuring the charge ratio for the atmospheric neutrino induced muons. A series of selection cuts are applied to the data set in order to extract the neutrino induced muons. As a result, a total of 148 candidate events are selected. The oscillation search is performed by measuring the low to high muon momentum ratio in the data sample and comparing it to the same ratio in the Monte Carlo simulation in the absence of neutrino oscillation. The measured double ratios for the ''all events'' (A) and high resolution (HR) samples are R{sub A} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.60{sub -0.10}{sup +0.11}(stat) {+-} 0.08(syst) and R{sub HR} = R{sub low/high}{sup data}/R{sub low/high}{sup MC} = 0.58{sub -0.11}{sup +0.14}(stat) {+-} 0.05(syst), respectively. Both event samples show a significant deviation from unity giving a strong indication of neutrino oscillation. A combined momentum and zenith angle oscillation fit is performed using the method of maximum log-likelihood with a grid search in the parameter space of {Delta}m{sup 2} and sin{sup 2} 2{theta}. The best fit point for both event samples occurs at {Delta}m{sub 23}{sup 2} = 1.3 x 10{sup -3} eV{sup 2}, and sin{sup 2} 2{theta}{sub 23} = 1. This result is compatible with previous measurements from the Super Kamiokande experiment and Soudan 2 experiments. The MINOS Far Detector is the first underground neutrino detector to be able to distinguish the charge of the muons. The measured charge is used to test the rate of the neutrino to the anti-neutrino oscillations by measuring the neutrino induced muon charge ratio. Using the high resolution sample, the {mu}{sup +} to {mu}{sup -} double charge ratio has been determined to be R{sub CPT} = R{sub {mu}{sup -}/{mu}{sup +}}{sup data}/R{sub {mu}{sup -}/{mu}{sup +}}{sup MC} = 0.90{sub -0.18}{sup +0.24}(stat) {+-} 0.09(syst). With the uncertainties added in quadrature, the CPT double ratio is consistent with unity showing no indication for CPT violation.

  19. CX-006834: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    34: Categorical Exclusion Determination CX-006834: Categorical Exclusion Determination Biomass Pre-Extraction, Hydrolysis and Conversion Process Improvements for an Integrated Biorefinery CX(s) Applied: B3.6, B5.1 Date: 09/22/2011 Location(s): Virginia Office(s): Energy Efficiency and Renewable Energy The Department of Energy proposes to provide federal funding to HCL CleanTech to perform multiple research tasks that would test biomass energy conversion improvements including: processes for

  20. CX-008763: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Categorical Exclusion Determination CX-008763: Categorical Exclusion Determination Building Space Modifications and Security Improvements, and Related Activities for the Westminster, Colorado, Office Location CX(s) Applied: B1.3, B2.2 Date: 06/07/2012 Location(s): Colorado Offices(s): Legacy Management The Department of Energy currently occupies approximately 16,000 square feet of leased space in the Walnut Creek Business Park in Westminster, Colorado. Modifications and improvements to the

  1. Investigation on coal pyrolysis in CO{sub 2} atmosphere

    SciTech Connect (OSTI)

    Lunbo Duan; Changsui Zhao; Wu Zhou; Chengrui Qu; Xiaoping Chen [Institute for Thermal Power Engineering of Southeast University, Nanjing (China)

    2009-07-15

    Considerable studies have been reported on the coal pyrolysis process and the formation of SO{sub 2} and NOx processors such as H{sub 2}S, COS, SO{sub 2}, HCN, and NH{sub 3} in inert atmospheres. Similar studies in CO{sub 2} atmosphere also need to be accomplished for better understanding of the combustion characteristics and the SO{sub 2}/NOx formation mechanism of oxy-fuel combustion, which is one of the most important technologies for CO{sub 2} capture. In this study, thermogravimetry coupled with Fourier Transform Infrared (TG-FTIR) analysis was employed to measure the volatile yield and gas evolution features during coal pyrolysis process in CO{sub 2} atmosphere. Results show that replacing N{sub 2} with CO{sub 2} does not influence the starting temperature of volatile release but seems to enhance the volatile releasing rate even at 480{sup o}C. At about 760{sup o}C, CO{sub 2} prevents the calcite from decomposing. In CO{sub 2} atmosphere, the volatile yield increases as the temperature increases and decreases as the heating rate increases. COS is monitored during coal pyrolysis in CO{sub 2} atmosphere while there are only H{sub 2}S and SO{sub 2} formed in N{sub 2} atmosphere. The COS is most likely formed by the reaction between CO{sub 2} and H{sub 2}S. No NH{sub 3} was monitored in this study. In CO{sub 2} atmosphere, the gasification of char elevates the conversion of char-N to HCN. The HCN yield increases as the temperature increases and decreases as the heating rate increases. 20 refs., 13 figs., 3 tabs.

  2. Operating Experience Level 3, Atmospheric Dispersion Parameter (x/Q) for Calculation of Co-located Worker Dose

    Broader source: Energy.gov [DOE]

    This Operating Experience Level 3 (OE-3) document informs the complex of the issuance of a technical document on the basis for the default atmospheric dispersion parameter (x/Q) used to determine co¬-located worker dose in accident analysis calculations. It also provides recommendations for ensuring an appropriate x/Q is used where the default x/Q may not result in a conservative estimate of dispersion.

  3. CX-007561: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    561: Categorical Exclusion Determination CX-007561: Categorical Exclusion Determination A High Performance Computing "Cyber Wind Facility" Incorporating Fully-Coupled CFD/CSD for Turbine-Platform-Wake Interactions with the Atmosphere and Ocean CX(s) Applied: A9, A11 Date: 01/18/2012 Location(s): Pennsylvania Offices(s): Golden Field Office Pennsylvania State University (PSU) would utilize DOE and cost share funds to develop and integrate central modules of the PSU Cyber Wind Facility

  4. Categorical Exclusion Determinations: Environmental Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consolidated Business Service Center Categorical Exclusion Determinations: Environmental Management Consolidated Business Service Center Categorical Exclusion Determinations issued...

  5. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    SciTech Connect (OSTI)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-25

    Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice nucleation effciencies and can serve as effcient IN at atmospheric conditions typical for cirrus and mixed phase clouds. This indicates a potential link between human activities and cloud formation, and thus climate.

  6. Waste Determination Equivalency - 12172

    SciTech Connect (OSTI)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposed of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)

  7. Categorical Exclusion Determinations: B2.5 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Categorical Exclusion Determinations: B2.5 Existing Regulations B2.5: Facility safety and environmental improvements Safety and environmental improvements of a facility (including, but not limited to, replacement and upgrade of facility components) that do not result in a significant change in the expected useful life, design capacity, or function of the facility and during which operations may be suspended and then resumed. Improvements include, but are not limited to, replacement/upgrade of

  8. Corrective Action Investigation Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-08-01

    CAU 104 comprises the 15 CASs listed below: (1) 07-23-03, Atmospheric Test Site T-7C; (2) 07-23-04, Atmospheric Test Site T7-1; (3) 07-23-05, Atmospheric Test Site; (4) 07-23-06, Atmospheric Test Site T7-5a; (5) 07-23-07, Atmospheric Test Site - Dog (T-S); (6) 07-23-08, Atmospheric Test Site - Baker (T-S); (7) 07-23-09, Atmospheric Test Site - Charlie (T-S); (8) 07-23-10, Atmospheric Test Site - Dixie; (9) 07-23-11, Atmospheric Test Site - Dixie; (10) 07-23-12, Atmospheric Test Site - Charlie (Bus); (11) 07-23-13, Atmospheric Test Site - Baker (Buster); (12) 07-23-14, Atmospheric Test Site - Ruth; (13) 07-23-15, Atmospheric Test Site T7-4; (14) 07-23-16, Atmospheric Test Site B7-b; (15) 07-23-17, Atmospheric Test Site - Climax These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 104. The releases at CAU 104 consist of surface-deposited radionuclides from 30 atmospheric nuclear tests. The presence and nature of contamination at CAU 104 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) to the dose-based final action level (FAL). The presence of TED exceeding the FAL is considered a radiological contaminant of concern (COC). Anything identified as a COC will require corrective action. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters will be used to measure external radiological dose. Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plume, it was determined that the releases from the nuclear tests are co-located and will be investigated concurrently. A field investigation will be performed to define areas where TED exceeds the FAL and to determine whether other COCs are present at the site. The investigation will also collect information to determine the presence and nature of contamination associated with migration and excavation, as well as any potential releases discovered during the investigation. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  9. Trinity / NERSC-8 Capability Improvement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Trinity / NERSC-8 Capability Improvement Trinity / NERSC-8 Capability Improvement As stated in Section 3.5 of the Technical Requirements, The performance of the ASC and NERSC capability improvement code suites will be evaluated at acceptance and used as acceptance criteria. All performance tests must continue to meet acceptance criteria throughout the lifetime of the system. These spreadsheets are here to provide examples but do not have to be returned with RFP response and will be required of

  10. Future missions require improving LANSCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future missions require improving LANSCE capabilities to support five principal research areas. 1) Improving capabilities at the Lujan Center-to use neutrons to probe soft materials-will improve understanding of the performance and aging of weapons materials, and will support development of the broad spectrum of materials needed for stockpile stewardship and threat reduction. 2) Enhancing high-accuracy nuclear cross-section measurements of actinide and short-lived isotopes for higher-fidelity

  11. ORISE: Peer Review Process Improvement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Education (ORISE) uses process evaluation techniques to identify opportunities for continuous improvement. Input from independent reviewers, sponsors and ORISE staff are...

  12. Improved Saltstone Facilities Restart Operations

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – The Saltstone Facilities at the Savannah River Site (SRS) have restarted operations following a nine-month planned improvement outage.

  13. Determining Electric Motor Load and Efficiency

    Broader source: Energy.gov [DOE]

    To compare the operating costs of an existing standard motor with an appropriately-sized energy-efficient replacement, you need to determine operating hours, efficiency improvement values, and load. Part-load is a term used to describe the actual load served by the motor as compared to the rated full-load capability of the motor. Motor part-loads may be estimated through using input power, amperage, or speed measurements. This fact sheet briefly discusses several load estimation techniques.

  14. Energy Department Announces $2.5 Million to Improve Wind Forecasting |

    Office of Environmental Management (EM)

    Department of Energy .5 Million to Improve Wind Forecasting Energy Department Announces $2.5 Million to Improve Wind Forecasting January 8, 2015 - 12:00pm Addthis The Energy Department today announced $2.5 million for a new project to research the atmospheric processes that generate wind in mountain-valley regions. This in-depth research, conducted by Vaisala of Louisville, Colorado, will be used to improve the wind industry's weather models for short-term wind forecasts, especially for

  15. Award Fee Determination Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 CH2M Hill Plateau Remediation Company Contract Number: DE-AC06-08RL14788 Final Fee Determination for Base funded Performance Measures Basis of Evaluation: Completion of Performance Measures contained in Section J, Attachment J.4, Performance Evaluation and Measurement Plan, according to the identified completion criteria. Evaluation Results: FY 2012 Base Period Fee Available Fee allocated to FY 2012* Performance Measures $10,399,033.60 Incremental Fee $4,490,000.00 Provisional Fee

  16. Award Fee Determination Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 CH2M Hill Plateau Remediation Company Contract Number: DE-AC06-08RL14788 Final Fee Determination for Base funded and American Recovery and Reinvestment Act (Recovery) funded Performance Measures Basis of Evaluation: Completion of Performance Measures contained in Section J, AttachmentJ.4, Performance Evaluation and Measurement Plan, according to the identified completion criteria. Evaluation Results: Fiscal Year 2011 (Oct 1, 2010 - Sept 30, 2011) Base Funded Fee Recovery Funded Fee Available

  17. Interim Action Determination

    Office of Environmental Management (EM)

    Interim Action Determination Processing of Plutonium Materials from the DOE Standard 3013 Surveillance Program in H-Canyon at the Savannah River Site The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS, DOE/EIS-0283-S2). DOE is evaluating alternatives for disposition of non-pit plutonium that is surplus to the national security needs of the United States. Although the Deputy Secretary of Energy approved Critical

  18. Atmospheric benzenoid emissions from plants rival those from fossil fuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Misztal, P. K.; Hewitt, C. N.; Wildt, J.; Blande, J. D.; Eller, A. S.D.; Fares, S.; Gentner, D. R.; Gilman, J. B.; Graus, M.; Greenberg, J.; et al

    2015-07-13

    Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functionsmore » of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y-1), pointing to the importance of these natural emissions in atmospheric physics and chemistry.« less

  19. Atmospheric dispersion modeling: Challenges of the Fukushima Daiichi response

    SciTech Connect (OSTI)

    Sugiyama, Gayle; Nasstrom, John; Pobanz, Brenda; Foster, Kevin; Simpson, Matthew; Vogt, Phil; Aluzzi, Fernando; Homann, Steve

    2012-05-01

    In this research, the U.S. Department of Energy’s (DOE) National Atmospheric Release Advisory Center (NARAC) provided a wide range of predictions and analyses as part of the response to the Fukushima Daiichi Nuclear Power Plant accident including: daily Japanese weather forecasts and atmospheric transport predictions to inform planning for field monitoring operations and to provide U.S. government agencies with ongoing situational awareness of meteorological conditions; estimates of possible dose in Japan based on hypothetical U.S. Nuclear Regulatory Commission scenarios of potential radionuclide releases to support protective action planning for U.S. citizens; predictions of possible plume arrival times and dose levels at U.S. locations; and source estimation and plume model refinement based on atmospheric dispersion modeling and available monitoring data.

  20. An active atmospheric methane sink in high Arctic mineral cryosols

    SciTech Connect (OSTI)

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; Renholm, J.; Hettich, R. L.; Pollard, W. H.; Omelon, C. R.; Medvigy, David M.; Pffifner, Susan M.; Whyte, L. G.; Onstott, T. C.

    2015-04-14

    The transition of Arctic carbon-rich cryosols into methane (CH?)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH? emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH?-oxidizing bacteria; (2) the atmospheric CH? uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH? sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineral cryosols have previously unrecognized potential of negative CH? feedback.

  1. An active atmospheric methane sink in high Arctic mineral cryosols

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lau, Maggie C.Y.; Stackhouse, B.; Layton, Alice C.; Chauhan, Archana; Vishnivetskaya, T. A.; Chourey, Karuna; Mykytczuk, N. C.S.; Bennett, Phil C.; Lamarche-Gagnon, G.; Burton, N.; et al

    2015-04-14

    The transition of Arctic carbon-rich cryosols into methane (CH₄)-emitting wetlands due to global warming is a rising concern. However, the spatially predominant mineral cryosols and their CH₄ emission potential are poorly understood. Fluxes measured in situ and estimated under laboratory conditions coupled with -omics analysis indicate (1) mineral cryosols in the Canadian high Arctic contain atmospheric CH₄-oxidizing bacteria; (2) the atmospheric CH⁺ uptake flux increases with ground temperature; and, as a result, (3) the atmospheric CH₄ sink strength will increase by a factor of 5-30 as the Arctic warms by 5-15 °C over a century. We demonstrated that acidic mineralmore » cryosols have previously unrecognized potential of negative CH₄ feedback.« less

  2. Atmospheric-pressure guided streamers for liposomal membrane disruption

    SciTech Connect (OSTI)

    Svarnas, P.; Aleiferis, Sp.; Matrali, S. H.; Gazeli, K.; Clement, F.; Antimisiaris, S. G.

    2012-12-24

    The potential to use liposomes (LIPs) as a cellular model in order to study interactions of cold atmospheric-pressure plasma with cells is herein investigated. Cold atmospheric-pressure plasma is formed by a dielectric-barrier discharge reactor. Large multilamellar vesicle liposomes, consisted of phosphatidylcholine and cholesterol, are prepared by the thin film hydration technique, to encapsulate a small hydrophilic dye, i.e., calcein. The plasma-induced release of calcein from liposomes is then used as a measure of liposome membrane integrity and, consequently, interaction between the cold atmospheric plasma and lipid bilayers. Physical mechanisms leading to membrane disruption are suggested, based on the plasma characterization including gas temperature calculation.

  3. Atmospheric benzenoid emissions from plants rival those from fossil fuels

    SciTech Connect (OSTI)

    Misztal, P. K.; Hewitt, C. N.; Wildt, J.; Blande, J. D.; Eller, A. S.D.; Fares, S.; Gentner, D. R.; Gilman, J. B.; Graus, M.; Greenberg, J.; Guenther, A. B.; Hansel, A.; Harley, P.; Huang, M.; Jardine, K.; Karl, T.; Kaser, L.; Keutsch, F. N.; Kiendler-Scharr, A.; Kleist, E.; Lerner, B. M.; Li, T.; Mak, J.; Nölscher, A. C.; Schnitzhofer, R.; Sinha, V.; Thornton, B.; Warneke, C.; Wegener, F.; Werner, C.; Williams, J.; Worton, D. R.; Yassaa, N.; Goldstein, A. H.

    2015-07-13

    Despite the known biochemical production of a range of aromatic compounds by plants and the presence of benzenoids in floral scents, the emissions of only a few benzenoid compounds have been reported from the biosphere to the atmosphere. Here, using evidence from measurements at aircraft, ecosystem, tree, branch and leaf scales, with complementary isotopic labeling experiments, we show that vegetation (leaves, flowers, and phytoplankton) emits a wide variety of benzenoid compounds to the atmosphere at substantial rates. Controlled environment experiments show that plants are able to alter their metabolism to produce and release many benzenoids under stress conditions. The functions of these compounds remain unclear but may be related to chemical communication and protection against stress. We estimate the total global secondary organic aerosol potential from biogenic benzenoids to be similar to that from anthropogenic benzenoids (~10 Tg y-1), pointing to the importance of these natural emissions in atmospheric physics and chemistry.

  4. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    SciTech Connect (OSTI)

    Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.; Seymour, D.L.; Stoffels, E.

    2006-05-15

    Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture. In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.

  5. ChEAS Data: The Chequamegon Ecosystem Atmosphere Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Davis, Kenneth J. [Penn State

    The Chequamegon Ecosystem-Atmosphere Study (ChEAS) is a multi-organizational research effort studying biosphere/atmosphere interactions within a northern mixed forest in Northern Wisconsin. A primary goal is to understand the processes controlling forest-atmosphere exchange of carbon dioxide and the response of these processes to climate change. Another primary goal is to bridge the gap between canopy-scale flux measurements and the global CO2 flask sampling network. The ChEAS flux towers participate in AmeriFlux, and the region is an EOS-validation site. The WLEF tower is a NOAA-CMDL CO2 sampling site. ChEAS sites are primarily located within or near the Chequamegon-Nicolet National Forest in northern Wisconsin, with one site in the Ottawa National Forest in the upper peninsula of Michigan. Current studies observe forest/atmosphere exchange of carbon dioxide at canopy and regional scales, forest floor respiration, photosynthesis and transpiration at the leaf level and use models to scale to canopy and regional levels. EOS-validation studies quantitatively assess the land cover of the area using remote sensing and conduct extensive ground truthing of new remote sensing data (i.e. ASTER and MODIS). Atmospheric remote sensing work is aimed at understanding atmospheric boundary layer dynamics, the role of entrainment in regulating the carbon dioxide mixing ratio profiles through the lower troposphere, and feedback between boundary layer dynamics and vegetation (especially via the hydrologic cycle). Airborne studies have included include balloon, kite and aircraft observations of the CO2 profile in the troposphere.

  6. ATMOSPHERIC CIRCULATION OF BROWN DWARFS: JETS, VORTICES, AND TIME VARIABILITY

    SciTech Connect (OSTI)

    Zhang, Xi; Showman, Adam P.

    2014-06-10

    A variety of observational evidence demonstrates that brown dwarfs exhibit active atmospheric circulations. In this study we use a shallow-water model to investigate the global atmospheric dynamics in the stratified layer overlying the convective zone on these rapidly rotating objects. We show that the existence and properties of the atmospheric circulation crucially depend on key parameters including the energy injection rate and radiative timescale. Under conditions of strong internal heat flux and weak radiative dissipation, a banded flow pattern comprised of east-west jet streams spontaneously emerges from the interaction of atmospheric turbulence with the planetary rotation. In contrast, when the internal heat flux is weak and/or radiative dissipation is strong, turbulence injected into the atmosphere damps before it can self-organize into jets, leading to a flow dominated by transient eddies and isotropic turbulence instead. The simulation results are not very sensitive to the form of the forcing. Based on the location of the transition between jet-dominated and eddy-dominated regimes, we suggest that many brown dwarfs may exhibit atmospheric circulations dominated by eddies and turbulence (rather than jets) due to the strong radiative damping on these worlds, but a jet structure is also possible under some realistic conditions. Our simulated light curves capture important features from observed infrared light curves of brown dwarfs, including amplitude variations of a few percent and shapes that fluctuate between single-peak and multi-peak structures. More broadly, our work shows that the shallow-water system provides a useful tool to illuminate fundamental aspects of the dynamics on these worlds.

  7. Impact of atmospheric refraction: how deeply can we probe exo-earth's atmospheres during primary eclipse observations?

    SciTech Connect (OSTI)

    Bétrémieux, Yan; Kaltenegger, Lisa

    2014-08-10

    Most models used to predict or fit exoplanet transmission spectra do not include all the effects of atmospheric refraction. Namely, the angular size of the star with respect to the planet can limit the lowest altitude, or highest density and pressure, probed during primary eclipses as no rays passing below this critical altitude can reach the observer. We discuss this geometrical effect of refraction for all exoplanets and tabulate the critical altitude, density, and pressure for an exoplanet identical to Earth with a 1 bar N{sub 2}/O{sub 2} atmosphere as a function of both the incident stellar flux (Venus, Earth, and Mars-like) at the top of the atmosphere and the spectral type (O5-M9) of the host star. We show that such a habitable exo-Earth can be probed to a surface pressure of 1 bar only around the coolest stars. We present 0.4-5.0 ?m model transmission spectra of Earth's atmosphere viewed as a transiting exoplanet, and show how atmospheric refraction modifies the transmission spectrum depending on the spectral type of the host star. We demonstrate that refraction is another phenomenon that can potentially explain flat transmission spectra over some spectral regions.

  8. Hydrocarbon saturation determination using acoustic velocities obtained through casing

    DOE Patents [OSTI]

    Moos, Daniel (Houston, TX)

    2010-03-09

    Compressional and shear velocities of earth formations are measured through casing. The determined compressional and shear velocities are used in a two component mixing model to provides improved quantitative values for the solid, the dry frame, and the pore compressibility. These are used in determination of hydrocarbon saturation.

  9. Atmospheric PSF Interpolation for Weak Lensing in Short Exposure Imaging Data

    SciTech Connect (OSTI)

    Chang, C.; Marshall, P.J.; Jernigan, J.G.; Peterson, J.R.; Kahn, S.M.; Gull, S.F.; AlSayyad, Y.; Ahmad, Z.; Bankert, J.; Bard, D.; Connolly, A.; Gibson, R.R.; Gilmore, K.; Grace, E.; Hannel, M.; Hodge, M.A.; Jones, L.; Krughoff, S.; Lorenz, S.; Marshall, S.; Meert, A.

    2012-09-19

    A main science goal for the Large Synoptic Survey Telescope (LSST) is to measure the cosmic shear signal from weak lensing to extreme accuracy. One difficulty, however, is that with the short exposure time ({approx_equal}15 seconds) proposed, the spatial variation of the Point Spread Function (PSF) shapes may be dominated by the atmosphere, in addition to optics errors. While optics errors mainly cause the PSF to vary on angular scales similar or larger than a single CCD sensor, the atmosphere generates stochastic structures on a wide range of angular scales. It thus becomes a challenge to infer the multi-scale, complex atmospheric PSF patterns by interpolating the sparsely sampled stars in the field. In this paper we present a new method, psfent, for interpolating the PSF shape parameters, based on reconstructing underlying shape parameter maps with a multi-scale maximum entropy algorithm. We demonstrate, using images from the LSST Photon Simulator, the performance of our approach relative to a 5th-order polynomial fit (representing the current standard) and a simple boxcar smoothing technique. Quantitatively, psfent predicts more accurate PSF models in all scenarios and the residual PSF errors are spatially less correlated. This improvement in PSF interpolation leads to a factor of 3.5 lower systematic errors in the shear power spectrum on scales smaller than {approx} 13, compared to polynomial fitting. We estimate that with psfent and for stellar densities greater than {approx_equal}1/arcmin{sup 2}, the spurious shear correlation from PSF interpolation, after combining a complete 10-year dataset from LSST, is lower than the corresponding statistical uncertainties on the cosmic shear power spectrum, even under a conservative scenario.

  10. 2010 Atmospheric System Research (ASR) Science Team Meeting Summary

    SciTech Connect (OSTI)

    Dupont, DL

    2011-05-04

    This document contains the summaries of papers presented in poster format at the March 2010 Atmospheric System Research Science Team Meeting held in Bethesda, Maryland. More than 260 posters were presented during the Science Team Meeting. Posters were sorted into the following subject areas: aerosol-cloud-radiation interactions, aerosol properties, atmospheric state and surface, cloud properties, field campaigns, infrastructure and outreach, instruments, modeling, and radiation. To put these posters in context, the status of ASR at the time of the meeting is provided here.

  11. ARM - Field Campaign - The MOSAiC Atmosphere

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsThe MOSAiC Atmosphere Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : The MOSAiC Atmosphere 2019.09.01 - 2020.10.31 Lead Scientist : Matthew Shupe Abstract Arctic climate change is amplified relative to global change and is embodied by a dramatic decline in the perennial sea-ice pack. These cryospheric transitions carry significant implications for regional resource development, geopolitics, and global climate patterns.

  12. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    SciTech Connect (OSTI)

    Klein, P; Bonin, TA; Newman, JF; Turner, DD; Chilson, P; Blumberg, WG; Mishra, S; Wainwright, CE; Carney, M; Jacobsen, EP; Wharton, S

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  13. Estimates of Radioxenon Released from Southern Hemisphere Medical isotope Production Facilities Using Measured Air Concentrations and Atmospheric Transport Modeling

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Friese, Judah I.; Lowrey, Justin D.; McIntyre, Justin I.; Miley, Harry S.; Schrom, Brian T.

    2014-09-01

    Abstract The International Monitoring System (IMS) of the Comprehensive-Nuclear-Test-Ban-Treaty monitors the atmosphere for radioactive xenon leaking from underground nuclear explosions. Emissions from medical isotope production represent a challenging background signal when determining whether measured radioxenon in the atmosphere is associated with a nuclear explosion prohibited by the treaty. The Australian Nuclear Science and Technology Organisation (ANSTO) operates a reactor and medical isotope production facility in Lucas Heights, Australia. This study uses two years of release data from the ANSTO medical isotope production facility and Xe-133 data from three IMS sampling locations to estimate the annual releases of Xe-133 from medical isotope production facilities in Argentina, South Africa, and Indonesia. Atmospheric dilution factors derived from a global atmospheric transport model were used in an optimization scheme to estimate annual release values by facility. The annual releases of about 6.8×1014 Bq from the ANSTO medical isotope production facility are in good agreement with the sampled concentrations at these three IMS sampling locations. Annual release estimates for the facility in South Africa vary from 1.2×1016 to 2.5×1016 Bq and estimates for the facility in Indonesia vary from 6.1×1013 to 3.6×1014 Bq. Although some releases from the facility in Argentina may reach these IMS sampling locations, the solution to the objective function is insensitive to the magnitude of those releases.

  14. Scientific Final Report: COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    William J. Gutowski; Joseph M. Prusa, Piotr K. Smolarkiewicz

    2012-04-09

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG's advanced dynamics core with the 'physics' of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer-reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  15. Method and apparatus for simulating atmospheric absorption of solar energy due to water vapor and CO{sub 2}

    DOE Patents [OSTI]

    Sopori, B.L.

    1995-06-20

    A method and apparatus for improving the accuracy of the simulation of sunlight reaching the earth`s surface includes a relatively small heated chamber having an optical inlet and an optical outlet, the chamber having a cavity that can be filled with a heated stream of CO{sub 2} and water vapor. A simulated beam comprising infrared and near infrared light can be directed through the chamber cavity containing the CO{sub 2} and water vapor, whereby the spectral characteristics of the beam are altered so that the output beam from the chamber contains wavelength bands that accurately replicate atmospheric absorption of solar energy due to atmospheric CO{sub 2} and moisture. 8 figs.

  16. Clean Diesel Component Improvement Program

    SciTech Connect (OSTI)

    2005-06-30

    The research conducted in this program significantly increased the knowledge and understanding in the fields of plasma physics and chemistry in diesel exhaust, the performance and characteristics of multifunctional catalysts in diesel exhaust, and the complexities of controlling a combination of such systems to remove NOx. Initially this program was designed to use an in-line plasma system (know as a plasma assisted catalyst system or PAC) to convert NO {yields} NO{sub 2}, a more catalytically active form of nitrogen oxides, and to crack hydrocarbons (diesel fuel in particular) into active species. The NO{sub 2} and the cracked hydrocarbons were then flowed over an in-line ceramic NOx catalyst that removed NO{sub 2} from the diesel exhaust. Even though the PAC system performed well technically and was able to remove over 95% of NOx from diesel exhaust the plasma component proved not to be practical or commercially feasible. The lack of practical and commercial viability was due to high unit costs and lack of robustness. The plasma system and its function was replaced in the NOx removal process by a cracking reforming catalyst that converted diesel fuel to a highly active reductant for NOx over a downstream ceramic NOx catalyst. This system was designated the ceramic catalyst system (CCS). It was also determined that NO conversion to NO{sub 2} was not required to achieve high levels of NOx reduction over ceramic NOx catalyst if that catalyst was properly formulated and the cracking reforming produced a reductant optimized for that NOx catalyst formulation. This system has demonstrated 92% NOx reduction in a diesel exhaust slipstream and 65% NOx reduction from the full exhaust of a 165 hp diesel engine using the FTP cycle. Although this system needs additional development to be commercial, it is simple, cost effective (does not use precious metals), sulfur tolerant, operates at high space velocities, does not require a second fluid be supplied as a reductant, has low parasitic loss of 2-3% and achieves high levels of NOx reduction. This project benefits the public by providing a simple low-cost technology to remove NOx pollutants from the exhaust of almost any combustion source. The reduction of NOx emissions emitted into the troposphere provides well documented improvement in health for the majority of United States citizens. The emissions reduction produced by this technology helps remove the environmental constraints to economic growth.

  17. THE SIMULATION OF FINE SCALE NOCTURNAL BOUNDARY LAYER MOTIONS WITH A MESO-SCALE ATMOSPHERIC MODEL

    SciTech Connect (OSTI)

    Werth, D.; Kurzeja, R.; Parker, M.

    2009-04-02

    A field project over the Atmospheric Radiation Measurement-Clouds and Radiation Testbed (ARM-CART) site during a period of several nights in September, 2007 was conducted to explore the evolution of the low-level jet (LLJ). Data was collected from a tower and a sodar and analyzed for turbulent behavior. To study the full range of nocturnal boundary layer (NBL) behavior, the Regional Atmospheric Modeling System (RAMS) was used to simulate the ARM-CART NBL field experiment and validated against the data collected from the site. This model was run at high resolution, and is ideal for calculating the interactions among the various motions within the boundary layer and their influence on the surface. The model reproduces adequately the synoptic situation and the formation and dissolution cycles of the low-level jet, although it suffers from insufficient cloud production and excessive nocturnal cooling. The authors suggest that observed heat flux data may further improve the realism of the simulations both in the cloud formation and in the jet characteristics. In a higher resolution simulation, the NBL experiences motion on a range of timescales as revealed by a wavelet analysis, and these are affected by the presence of the LLJ. The model can therefore be used to provide information on activity throughout the depth of the NBL.

  18. COLLABORATIVE RESEARCH: CONTINUOUS DYNAMIC GRID ADAPTATION IN A GLOBAL ATMOSPHERIC MODEL: APPLICATION AND REFINEMENT

    SciTech Connect (OSTI)

    Prusa, Joseph

    2012-05-08

    This project had goals of advancing the performance capabilities of the numerical general circulation model EULAG and using it to produce a fully operational atmospheric global climate model (AGCM) that can employ either static or dynamic grid stretching for targeted phenomena. The resulting AGCM combined EULAG�s advanced dynamics core with the �physics� of the NCAR Community Atmospheric Model (CAM). Effort discussed below shows how we improved model performance and tested both EULAG and the coupled CAM-EULAG in several ways to demonstrate the grid stretching and ability to simulate very well a wide range of scales, that is, multi-scale capability. We leveraged our effort through interaction with an international EULAG community that has collectively developed new features and applications of EULAG, which we exploited for our own work summarized here. Overall, the work contributed to over 40 peer- reviewed publications and over 70 conference/workshop/seminar presentations, many of them invited.

  19. CX-012006: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2006: Categorical Exclusion Determination CX-012006: Categorical Exclusion Determination Minto Lodge Rehabilitation CX(s) Applied: B5.1 Date: 04/15/2014 Location(s): Alaska Offices(s): Golden Field Office Minto Village Council would utilize Department of Energy funds to weatherize and improve the energy efficiency of their community facility, the Minto Lodge. PDF icon CX-012006.pdf More Documents & Publications CX-011401: Categorical Exclusion Determination CX-012093: Categorical Exclusion

  20. Categorical Exclusion Determinations: Nuclear Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Energy Categorical Exclusion Determinations: Nuclear Energy Categorical Exclusion Determinations issued by Nuclear Energy. DOCUMENTS AVAILABLE FOR DOWNLOAD August 26, 2014 CX-012670: Categorical Exclusion Determination Development of Self-Healing Zirconium Silicide Coatings for Improved Performance of Zirconium- Alloy Fuel Cladding - University of Wisconsin CX(s) Applied: B3.6 Date: 41877 Location(s): Wisconsin Offices(s): Nuclear Energy August 26, 2014 CX-012687: Categorical Exclusion

  1. CX-011806: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Commercialization of an Atmospheric Iron-Based Coal Direct Chemical Looping (CDCL) Process for Power… CX(s) Applied: A9, B3.6 Date: 01/27/2014 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  2. CX-100567 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Atmospheric CO2 Capture and Membrane Delivery Award Number: DE-EE0007093 CX(s) Applied: A9, B3.6, B3.11 Bioenergy Technology Office Date: 03/10/2016 Location(s): AZ Office(s): Golden Field Office

  3. CX-000372: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Analysis of Microbial Activity Under a Supercritical Carbon Dioxide AtmosphereCX(s) Applied: A1, A9, B3.1, B3.6Date: 11/20/2009Location(s): Cambridge, MassachusettsOffice(s): Fossil Energy, National Energy Technology Laboratory

  4. CX-000570: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Cloud Radar, Balloon Launcher, Data System, Utility, and Road Upgrades for Atmospheric Radiation Measurement Climate Research Facility in Barrow, AlaskaCX(s) Applied: B1.3, B3.6, B4.13Date: 12/30/2009Location(s): Barrow, AlaskaOffice(s): Sandia Site Office

  5. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. II. H{sub 2}S AND SO{sub 2} PHOTOCHEMISTRY IN ANOXIC ATMOSPHERES

    SciTech Connect (OSTI)

    Hu Renyu; Seager, Sara; Bains, William

    2013-05-20

    Sulfur gases are common components in the volcanic and biological emission on Earth, and are expected to be important input gases for atmospheres on terrestrial exoplanets. We study the atmospheric composition and the spectra of terrestrial exoplanets with sulfur compounds (i.e., H{sub 2}S and SO{sub 2}) emitted from their surfaces. We use a comprehensive one-dimensional photochemistry model and radiative transfer model to investigate the sulfur chemistry in atmospheres ranging from reducing to oxidizing. The most important finding is that both H{sub 2}S and SO{sub 2} are chemically short-lived in virtually all types of atmospheres on terrestrial exoplanets, based on models of H{sub 2}, N{sub 2}, and CO{sub 2} atmospheres. This implies that direct detection of surface sulfur emission is unlikely, as their surface emission rates need to be extremely high (>1000 times Earth's volcanic sulfur emission) for these gases to build up to a detectable level. We also find that sulfur compounds emitted from the surface lead to photochemical formation of elemental sulfur and sulfuric acid in the atmosphere, which would condense to form aerosols if saturated. For terrestrial exoplanets in the habitable zone of Sun-like stars or M stars, Earth-like sulfur emission rates result in optically thick haze composed of elemental sulfur in reducing H{sub 2}-dominated atmospheres for a wide range of particle diameters (0.1-1 {mu}m), which is assumed as a free parameter in our simulations. In oxidized atmospheres composed of N{sub 2} and CO{sub 2}, optically thick haze, composed of elemental sulfur aerosols (S{sub 8}) or sulfuric acid aerosols (H{sub 2}SO{sub 4}), will form if the surface sulfur emission is two orders of magnitude more than the volcanic sulfur emission of Earth. Although direct detection of H{sub 2}S and SO{sub 2} by their spectral features is unlikely, their emission might be inferred by observing aerosol-related features in reflected light with future generation space telescopes.

  6. Non-equilibrium atmospheric pressure microplasma jet: An approach to endoscopic therapies

    SciTech Connect (OSTI)

    Zuo, Xiao; Wei, Yu; Wei Chen, Long; Dong Meng, Yue; Collaboration: Plasma Medicine Team

    2013-08-15

    Atmospheric pressure microplasma jet generated in a long hollow core optical fiber is studied to verify the potential feasibility of endoscopic therapies. Thermal damage and electric shock to the human body were suppressed by two technical methods, i.e., the high-voltage resistant flexible tube wrapped on the optical fiber and a power resistor of 100 k? connected between the power supply and the copper foil electrode. Optical emission spectra analysis indicated that many kinds of active radicals like excited atomic O and OH, were generated in the microplasma jet. In addition, the applications of the microplasma jet on sterilization and lung cancer cell apoptosis were presented. After 5 min of exposures to the microplasma jet, the cell viability and the bacillus subtilis replication decreased to about 3% and zero, respectively. More investigations are needed to improve the plasma-aided endoscopic therapies.

  7. Excitation of electron Langmuir frequency harmonics in the solar atmosphere

    SciTech Connect (OSTI)

    Fomichev, V. V.; Fainshtein, S. M.; Chernov, G. P.

    2013-05-15

    An alternative mechanism for the excitation of electron Langmuir frequency harmonics as a result of the development of explosive instability in a weakly relativistic beam-plasma system in the solar atmosphere is proposed. The efficiency of the new mechanism as compared to the previously discussed ones is analyzed.

  8. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOE Patents [OSTI]

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  9. Connectivity to National Atmospheric Release Advisory Center (NARAC)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-08-11

    To establish requirements for connectivity with the National Atmospheric Release Advisory Center (NARAC) at Lawrence Livermore National Laboratory for all DOE and NNSA sites and facilities with potential for hazardous materials releases at levels that require emergency response. The requirements of this Notice have been incorporated into DOE O 151.1C, Comprehensive Emergency Management System, dated 11-2-05. No cancellations.

  10. LARGE ABUNDANCES OF POLYCYCLIC AROMATIC HYDROCARBONS IN TITAN'S UPPER ATMOSPHERE

    SciTech Connect (OSTI)

    Lopez-Puertas, M.; Funke, B.; Garcia-Comas, M.; Dinelli, B. M.; Adriani, A.; D'Aversa, E.; Moriconi, M. L.; Boersma, C.; Allamandola, L. J.

    2013-06-20

    In this paper, we analyze the strong unidentified emission near 3.28 {mu}m in Titan's upper daytime atmosphere recently discovered by Dinelli et al. We have studied it by using the NASA Ames PAH IR Spectroscopic Database. The polycyclic aromatic hydrocarbons (PAHs), after absorbing UV solar radiation, are able to emit strongly near 3.3 {mu}m. By using current models for the redistribution of the absorbed UV energy, we have explained the observed spectral feature and have derived the vertical distribution of PAH abundances in Titan's upper atmosphere. PAHs have been found to be present in large concentrations, about (2-3) Multiplication-Sign 10{sup 4} particles cm{sup -3}. The identified PAHs have 9-96 carbons, with a concentration-weighted average of 34 carbons. The mean mass is {approx}430 u; the mean area is about 0.53 nm{sup 2}; they are formed by 10-11 rings on average, and about one-third of them contain nitrogen atoms. Recently, benzene together with light aromatic species as well as small concentrations of heavy positive and negative ions have been detected in Titan's upper atmosphere. We suggest that the large concentrations of PAHs found here are the neutral counterpart of those positive and negative ions, which hence supports the theory that the origin of Titan main haze layer is located in the upper atmosphere.

  11. Program Abstracts: Formation and Growth of Atmospheric Aerosols

    SciTech Connect (OSTI)

    Peter H. McMurry; Markku Kulmala

    2006-09-07

    DOE provided $11,000 to sponsor the Workshop on New Particle Formation in the Atmosphere, which was held at The Riverwood Inn and Conference Center near Minneapolis, MN from September 7 to 9, 2006. Recent work has shown that new particle formation is an important atmospheric process that must be better understood due to its impact on cloud cover and the Earth's radiation balance. The conference was an informal gathering of atmospheric and basic scientists with expertise pertinent to this topic. The workshop included discussions of: • atmospheric modeling; • computational chemistry pertinent to clustering; • ions and ion induced nucleation; • basic laboratory and theoretical studies of nucleation; • studies on neutral molecular clusters; • interactions of organic compounds and sulfuric acid; • composition of freshly nucleated particles. Fifty six scientists attended the conference. They included 27 senior scientists, 9 younger independent scientists (assistant professor or young associate professor level), 7 postdocs, 13 graduate students, 10 women, 35 North Americans (34 from the U.S.), 1 Asian, and 20 Europeans. This was an excellent informal workshop on an important topic. An effort was made to include individuals from communities that do not regularly interact. A number of participants have provided informal feedback indicating that the workshop led to research ideas and possible future collaborations.

  12. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOE Patents [OSTI]

    Rice, Gary (Gloucester, VA); D'Silva, Arthur P. (Ames, IA); Fassel, Velmer A. (Ames, IA)

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  13. National Atmospheric Release Advisory Center | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Atmospheric Release Advisory Center | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Countering Nuclear Terrorism About Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Library Bios Congressional Testimony Fact Sheets Newsletters Press Releases Photo Gallery Jobs Apply

  14. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, Fang C. (Knoxville, TN); Mei, Viung C. (Oak Ridge, TN); Murphy, Richard W. (Knoxville, TN)

    1998-01-01

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger.

  15. Heat pump having improved defrost system

    DOE Patents [OSTI]

    Chen, F.C.; Mei, V.C.; Murphy, R.W.

    1998-12-08

    A heat pump system includes, in an operable relationship for transferring heat between an exterior atmosphere and an interior atmosphere via a fluid refrigerant: a compressor; an interior heat exchanger; an exterior heat exchanger; an accumulator; and means for heating the accumulator in order to defrost the exterior heat exchanger. 2 figs.

  16. ARM Data Help Improve Precipitation in Global Climate Models...

    Office of Science (SC) Website

    Image courtesy of the Atmospheric Radiation Measurement (ARM) Climate Research Facility ... of Graciosa Island where Atmospheric Radiation Measurement observations were collected ...

  17. Overview of the first Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) experiment: Conversion of a ground-based lidar for airborne applications

    SciTech Connect (OSTI)

    Howell, J.N.; Hardesty, R.M.; Rothermel, J.; Menzies, R.T.

    1996-12-31

    The first Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) field experiment demonstrated an airborne high energy TEA CO{sub 2} Doppler lidar system for measurement of atmospheric wind fields and aerosol structure. The system was deployed on the NASA DC-8 during September 1995 in a series of checkout flights to observe several important atmospheric phenomena, including upper level winds in a Pacific hurricane, marine boundary layer winds, cirrus cloud properties, and land-sea breeze structure. The instrument, with its capability to measure three-dimensional winds and backscatter fields, promises to be a valuable tool for climate and global change, severe weather, and air quality research. In this paper, the authors describe the airborne instrument, assess its performance, discuss future improvements, and show some preliminary results from September experiments.

  18. Rising atmospheric CO{sub 2} and crops: Research methodology and direct effects

    SciTech Connect (OSTI)

    Rogers, H.; Acock, B.

    1993-12-31

    Carbon dioxide is the food of trees and grass. Our relentless pursuit of a better life has taken us down a traffic jammed road, past smoking factories and forests. This pursuit is forcing a rise in the atmospheric CO{sub 2} level, and no one know when and if flood stage will be reached. Some thinkers have suggested that this increase of CO{sub 2} in the atmosphere will cause warming. No matter whether this prediction is realized or not, more CO{sub 2} will directly affect plants. Data from controlled observations have usually, but not always, shown benefits. Our choices of scientific equipment for gathering CO{sub 2} response data are critical since we must see what is happening through the eye of the instrument. The signals derived from our sensors will ultimately determine the truth of our conclusions, conclusion which will profoundly influence our policy decisions. Experimental gear is selected on the basis of scale of interest and problem to be addressed. Our imaginations and our budgets interact to set bounds on our objectives and approaches. Techniques run the gamut from cellular microprobes through whole-plant controlled environment chambers to field-scale exposure systems. Trade-offs exist among the various CO{sub 2} exposure techniques, and many factors impinge on the choice of a method. All exposure chambers are derivatives of three primary types--batch, plug flow, and continuous stirred tank reactor. Systems for the generation of controlled test atmospheres of CO{sub 2} vary in two basic ways--size and degree of control. Among the newest is free-air CO{sub 2} enrichment which allows tens of square meters of cropland to be studied.

  19. THE LOS ALAMOS NATIONAL LABORATORY ATMOSPHERIC TRANSPORT AND DIFFUSION MODELS

    SciTech Connect (OSTI)

    M. WILLIAMS

    1999-08-01

    The LANL atmospheric transport and diffusion models are composed of two state-of-the-art computer codes. The first is an atmospheric wind model called HOThlAC, Higher Order Turbulence Model for Atmospheric circulations. HOTMAC generates wind and turbulence fields by solving a set of atmospheric dynamic equations. The second is an atmospheric diffusion model called RAPTAD, Random Particle Transport And Diffusion. RAPTAD uses the wind and turbulence output from HOTMAC to compute particle trajectories and concentration at any location downwind from a source. Both of these models, originally developed as research codes on supercomputers, have been modified to run on microcomputers. Because the capability of microcomputers is advancing so rapidly, the expectation is that they will eventually become as good as today's supercomputers. Now both models are run on desktop or deskside computers, such as an IBM PC/AT with an Opus Pm 350-32 bit coprocessor board and a SUN workstation. Codes have also been modified so that high level graphics, NCAR Graphics, of the output from both models are displayed on the desktop computer monitors and plotted on a laser printer. Two programs, HOTPLT and RAPLOT, produce wind vector plots of the output from HOTMAC and particle trajectory plots of the output from RAPTAD, respectively. A third CONPLT provides concentration contour plots. Section II describes step-by-step operational procedures, specifically for a SUN-4 desk side computer, on how to run main programs HOTMAC and RAPTAD, and graphics programs to display the results. Governing equations, boundary conditions and initial values of HOTMAC and RAPTAD are discussed in Section III. Finite-difference representations of the governing equations, numerical solution procedures, and a grid system are given in Section IV.

  20. INTEGRATED SAFETY MANAGEMENT SYSTEM SAFETY CULTURE IMPROVEMENT INITIATIVE

    SciTech Connect (OSTI)

    MCDONALD JA JR

    2009-01-16

    In 2007, the Department of Energy (DOE) identified safety culture as one of their top Integrated Safety Management System (ISMS) related priorities. A team was formed to address this issue. The team identified a consensus set of safety culture principles, along with implementation practices that could be used by DOE, NNSA, and their contractors. Documented improvement tools were identified and communicated to contractors participating in a year long pilot project. After a year, lessons learned will be collected and a path forward determined. The goal of this effort was to achieve improved safety and mission performance through ISMS continuous improvement. The focus of ISMS improvement was safety culture improvement building on operating experience from similar industries such as the domestic and international commercial nuclear and chemical industry.

  1. Hamilton County- Home Improvement Program

    Broader source: Energy.gov [DOE]

    The Home Improvement Program (HIP) in Hamilton County, Ohio, originally opened in 2002, and was reinstated in May 2008. The HIP loan allows homeowners in Hamilton County communities to borrow money...

  2. Local Option- Special Improvement Districts

    Broader source: Energy.gov [DOE]

    Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessme...

  3. Local Option- Special Improvement Districts

    Broader source: Energy.gov [DOE]

    Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment...

  4. Local Option- Local Improvement Districts

    Broader source: Energy.gov [DOE]

    Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessme...

  5. Sandia Energy - Atmosphere Component in Community Earth System...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    climate models is a key step toward improving the ability to simulate regional details of climate change and improving our assessments of the impacts of climate change on extreme...

  6. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G.; Gerritsen, W.; Stewart, A.; Robinson, K.

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock & Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  7. Materials performance in the atmospheric fluidized-bed cogeneration air heater experiment

    SciTech Connect (OSTI)

    Natesan, K.; Podolski, W.; Wang, D.Y.; Teats, F.G. ); Gerritsen, W.; Stewart, A.; Robinson, K. )

    1991-02-01

    The Atmospheric Fluidized-Bed Cogeneration Air Heater Experiment (ACAHE) sponsored by the US Department of Energy (DOE) was initiated to assess the performance of various heat-exchanger materials to be used in fluidized-bed combustion air heater systems. Westinghouse Electric Corporation, through subcontracts with Babcock Wilcox, Foster Wheeler, and ABB Combustion Engineering Systems, prepared specifications and hardware for the ACAHE tests. Argonne National Laboratory contracted with Rockwell International to conduct tests in the DOE atmospheric fluidized-bed combustion facility. This report presents an overview of the project, a description of the facility and the test hardware, the test operating conditions, a summary of the operation, and the results of analyzing specimens from several uncooled and cooled probes exposed in the facility. Extensive microstructural analyses of the base alloys, claddings, coatings, and weldments were performed on specimens exposed in several probes for different lengths of time. Alloy penetration data were determined for several of the materials as a function of specimen orientation and the exposure location in the combustor. Finally, the data were compared with earlier laboratory test data, and the long-term performance of candidate materials for air-heater applications was assessed.

  8. Calibrating Pyrgeometers Outdoors Independent from the Reference Value of the Atmospheric Longwave Irradiance

    SciTech Connect (OSTI)

    Reda, I.; Hickey, J. R.; Grobner, J.; Andreas, A.; Stoffel, T.

    2006-08-01

    In this article, we describe a method for the calibration of thermopile pyrgeometers in the absence of a reference for measurement of atmospheric longwave irradiance. This is referred to as the incoming longwave irradiance in this article. The method is based on an indoor calibration using a low-temperature blackbody source to obtain the calibration coefficients that determine the pyrgeometer's radiation characteristics. From these coefficients the outgoing irradiance of the pyrgeometer can be calculated. The pyrgeometer is then installed outdoors on an aluminum plate that is connected to a circulating temperature bath. By adjusting the temperature bath to the approximate value of the effective sky temperature, the pyrgeometer's body temperature is lowered changing the pyrgeometer's thermopile output. If the incoming longwave irradiance is stable, the slope of the outgoing irradiance versus the pyrgeometer's thermopile output is the outdoor net irradiance responsivity (RSnet), independent of the absolute value of the atmospheric longwave irradiance. The indoor calibration coefficients and the outdoor RSnet are then used in the pyrgeometer equation to calculate the incoming longwave irradiance. To evaluate this method, the calculated irradiance using the derived coefficients was compared to the irradiance measured using a pyrgeometer with direct traceability to the World Infrared Standard Group (WISG). This is maintained at the Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Switzerland. Based on results from four pyrgeometers calibrations, this method suggests measurement agreement with the WISG to within +/- 3 W/m2 for all sky conditions.

  9. Financial Program Management for Continuous Improvement

    Broader source: Energy.gov [DOE]

    This webinar, held on March 16, 2011, focuses on ways to improve financial programs and discusses strategies for continuous improvements.

  10. Supertruck - Improving Transportation Efficiency through Integrated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improving Transportation Efficiency through Integrated Vehicle, Engine and Powertrain Research Supertruck - Improving Transportation Efficiency through Integrated Vehicle, Engine ...

  11. Acquisition and Project Management Continuous Improvement Presentation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Project Management Continuous Improvement Presentation Acquisition and Project Management Continuous Improvement Presentation Presentation on Acquisition and Project Management...

  12. Atmospheric Radiation Measurement (ARM) Data from Point Reyes, California for the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) Project

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Point Reyes National Seashore, on the California coast north of San Francisco, was the location of the first deployment of the DOE's Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF). The ARM Program collaborated with the U.S. Office of Naval Research and DOE's Aerosol Science Program in the Marine Stratus, Radiation, Aerosol, and Drizzle (MASRAD) project. Their objectives were to collect data from cloud/aerosol interactions and to improve understanding of cloud organization that is often associated with patches of drizzle. Between March and September 2005, the AMF and at least two research aircraft were used to collect data.

  13. NREL Studies Wind Farm Aerodynamics to Improve Siting (Fact Sheet), Innovation Impact: Wind, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Wind Farm Aerodynamics to Improve Siting NREL researchers are using advanced remote sensing instruments and high- performance computing to understand atmospheric turbulence and turbine wake behavior-a key to improving wind turbine design and siting within wind farms. As turbines and wind farms grow in size, they create bigger wakes and present more complex challenges to wind turbine and wind farm designers and operators. NREL researchers have confirmed through both observation and

  14. Determination of 3-D Cloud Ice Water Contents by Combining Multiple Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sources from Satellite, Ground Radar, and a Numerical Model Determination of 3-D Cloud Ice Water Contents by Combining Multiple Data Sources from Satellite, Ground Radar, and a Numerical Model Liu, Guosheng Florida State University Seo, Eun-Kyoung Florida State University Category: Cloud Properties This study aims at determining the 3-dimensional distribution of ice water content over a broad area near the Atmospheric Radiation Measurement Southern Great Plain site, where cloud radar and

  15. Influence of oxygen traces on an atmospheric-pressure radio-frequency capacitive argon plasma discharge

    SciTech Connect (OSTI)

    Li Shouzhe; Wu Qi; Yan Wen; Wang Dezhen [Key Laboratory of Materials Modification by Laser, Ion, Electron Beams, Dalian University of Technology, Ministry of Education, Dalian 116024 (China) and School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Uhm, Han S. [Kwangwoon Academy of Advanced Studies, Kwangwoon University, 447-1 Wolgye-dong, Nowon-gu, Seoul 137-701 (Korea, Republic of)

    2011-10-15

    An atmospheric-pressure capacitive discharge source driven by radio-frequency power supply at 13.56 MHz has been developed experimentally that is capable of producing a homogeneous and cold glow discharge in O{sub 2}/Ar. With respect to the influence of oxygen component when diluted into argon plasma discharge on the discharge characteristics, the measurements of the electrical parameters (impedance, phase angle, resistance, and reactance) are made systematically and the densities of the metastable and resonant state of argon are determined by means of optical emission spectroscopy (OES). It is shown that the admixture of oxygen into argon plasma not only changes the electric characteristics but also alters the optical emission spectra greatly due to strong interaction between the oxygen content and the argon in the plasma environment.

  16. The role of moisture transport between ground and atmosphere in global change

    SciTech Connect (OSTI)

    Rind, D.; Rosenzweig, C.; Stieglitz, M.

    1997-12-31

    Projections of the effect of climate change on future water availability are examined by reviewing the formulations used to calculate moisture transport between the ground and the atmosphere. General circulation models and climate change impact models have substantially different formulations for evapotranspiration, so their projections of future water availability often disagree, even though they use the same temperature and precipitation forecasts. General circulation models forecast little change in tropical and subtropical water availability, while impact models show severe water and agricultural shortages. A comparison of observations and modeling techniques shows that the parameterizations in general circulation models likely lead to an underestimate of the impacts of global warming on soil moisture and vegetation. Such errors would crucially affect the temperature and precipitation forecasts used in impact models. Some impact model evaporation formulations are probably more appropriate than those in general circulation models, but important questions remain. More observations are needed, especially in the vicinity of forests, to determine appropriate parameterizations.

  17. Microwave plasma based single step method for free standing graphene synthesis at atmospheric conditions

    SciTech Connect (OSTI)

    Tatarova, E.; Henriques, J.; Dias, A.; Ferreira, C. M.; Luhrs, C. C.; Phillips, J.; Abrashev, M. V.

    2013-09-23

    Microwave atmospheric pressure plasmas driven by surface waves were used to synthesize graphene sheets from vaporized ethanol molecules carried through argon plasma. In the plasma, ethanol decomposes creating carbon atoms that form nanostructures in the outlet plasma stream, where external cooling/heating was applied. It was found that the outlet gas stream temperature plays an important role in the nucleation processes and the structural quality of the produced nanostructures. The synthesis of few layers (from one to five) graphene has been confirmed by high-resolution transmission electron microscopy. Raman spectral studies were conducted to determine the ratio of the 2D to G peaks (>2). Disorder D-peak to G-peak intensity ratio decreases when outlet gas stream temperature decreases.

  18. Dynamic and spectroscopic characteristics of atmospheric gliding arc in gas-liquid two-phase flow

    SciTech Connect (OSTI)

    Tu, X.; Yu, L.; Yan, J. H.; Cen, K. F.; Cheron, B. G.

    2009-11-15

    In this study, an atmospheric alternating-current gliding arc device in gas-liquid two-phase flow has been developed for the purpose of waste water degradation. The dynamic behavior of the gas-liquid gliding arc is investigated through the oscillations of electrical signals, while the spatial evolution of the arc column is analyzed by high speed photography. Different arc breakdown regimes are reported, and the restrike mode is identified as the typical fluctuation characteristic of the hybrid gliding arc in air-water mixture. Optical emission spectroscopy is employed to investigate the active species generated in the gas-liquid plasma. The axial evolution of the OH (309 nm) intensity is determined, while the rotational and vibrational temperatures of the OH are obtained by a comparison between the experimental and simulated spectra. The significant discrepancy between the rotational and translational temperatures has also been discussed.

  19. Role of metastable atoms in the propagation of atmospheric pressure dielectric barrier discharge jets

    SciTech Connect (OSTI)

    Li Qing; Zhu Ximing; Li Jiangtao; Pu Yikang [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2010-02-15

    In the experiment of plasma jets generated in a tube dielectric barrier discharge configuration, three distinguishable modes, namely, laminar, transition, and turbulent jet modes, have been identified. Flows of helium, neon, and argon gases shared the hydrodynamic law when their plasma jets spraying into ambient air of atmospheric pressure and room temperature. Aiming to reveal the basic processes, we propose that plasma jet length is mainly determined by reactions involving metastable atoms. These processes are responsible for the variation in plasma jet length versus gas flow rate and working gas species. To investigate this proposal in detail, we have obtained three significant experimental results, i.e., (1) the plasma jet lengths of helium, neon, and argon are different; (2) the plasma jet length of krypton slightly changes with gas flow rate, with three modes indistinguishable; and (3) there are large differences between optical emission spectra of helium, neon, argon, and krypton flow gases. These observations are in good agreement with our proposal.

  20. Dynamic characteristic of intense short microwave propagation in an atmosphere

    SciTech Connect (OSTI)

    Yee, J.H.; Alvarez, R.A.; Mayhall, D.J.; Madsen, N.K.; Cabayan, H.S.

    1983-07-01

    The dynamic behavior of an intense microwave pulse which propagates through the atmosphere will be presented. Our theoretical results are obtained by solving Maxwell's equations, together with the electron fluid equations. Our calculations show that although large portions of the initial energy are absorbed by the electrons that are created through the avalanche process, a significant amount of energy is still able to reach the earth's surface. The amount of energy that reaches the earth's surface as a function of initial energy and wave shape after having propagated through 100 km in the atmosphere are investigated. Results for the air breakdown threshold intensity as a function of the pressure for different pulse widths and different frequencies will also be presented. In addition, we will present a comparison between the theoretical and the experimental results for the pulse shape of a short microwave pulse after it has traveled through a rectangular wave guide which contains a section of air. 23 references, 9 figures.

  1. National Atmospheric Release Advisory Center (NARAC) Capabilities for Homeland Security

    SciTech Connect (OSTI)

    Sugiyama, G; Nasstrom, J; Baskett, R; Simpson, M

    2010-03-08

    The Department of Energy's National Atmospheric Release Advisory Center (NARAC) provides critical information during hazardous airborne releases as part of an integrated national preparedness and response strategy. Located at Lawrence Livermore National Laboratory, NARAC provides 24/7 tools and expert services to map the spread of hazardous material accidentally or intentionally released into the atmosphere. NARAC graphical products show affected areas and populations, potential casualties, and health effect or protective action guideline levels. LLNL experts produce quality-assured analyses based on field data to assist decision makers and responders. NARAC staff and collaborators conduct research and development into new science, tools, capabilities, and technologies in strategically important areas related to airborne transport and fate modeling and emergency response. This paper provides a brief overview of some of NARAC's activities, capabilities, and research and development.

  2. Cellular membrane collapse by atmospheric-pressure plasma jet

    SciTech Connect (OSTI)

    Kim, Kangil; Sik Yang, Sang E-mail: ssyang@ajou.ac.kr; Jun Ahn, Hak; Lee, Jong-Soo E-mail: ssyang@ajou.ac.kr; Lee, Jae-Hyeok; Kim, Jae-Ho

    2014-01-06

    Cellular membrane dysfunction caused by air plasma in cancer cells has been studied to exploit atmospheric-pressure plasma jets for cancer therapy. Here, we report that plasma jet treatment of cervical cancer HeLa cells increased electrical conductivity across the cellular lipid membrane and caused simultaneous lipid oxidation and cellular membrane collapse. We made this finding by employing a self-manufactured microelectrode chip. Furthermore, increased roughness of the cellular lipid membrane and sequential collapse of the membrane were observed by atomic force microscopy following plasma jet treatment. These results suggest that the cellular membrane catastrophe occurs via coincident altered electrical conductivity, lipid oxidation, and membrane roughening caused by an atmospheric-pressure plasma jet, possibly resulting in cellular vulnerability to reactive species generated from the plasma as well as cytotoxicity to cancer cells.

  3. Atmospheric Science Program. Summaries of research in FY 1994

    SciTech Connect (OSTI)

    1995-06-01

    This report provides descriptions for all projects funded by ESD under annual contracts in FY 1994. Each description contains the project`s title; three-year funding history (in thousands of dollars); the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date (for most projects older than one year). Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states it goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used.

  4. Geneva Steel blast furnace improvements

    SciTech Connect (OSTI)

    Fowles, R.D.; Hills, L.S.

    1993-01-01

    Geneva Steel is located in Utah and is situated near the western edge of the Rocky Mountains adjacent to the Wasatch Front. Geneva's No. 1, 2 and 3 are the only remaining operating blast furnaces in the United States west of the Mississippi River. They were originally constructed in 1943 to support steelmaking during World War II. During the early 60's all three furnaces were enlarged to their current working volume. Very few major improvements were made until recently. This discussion includes a brief historical perspective of operating difficulties associated with practice, design and equipment deficiencies. Also included is an overview of blast furnace improvements at Geneva found necessary to meet the demands of modern steelmaking. Particular emphasis will be placed on casthouse improvements.

  5. Pacific Northwest Laboratory annual report for 1991 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    SciTech Connect (OSTI)

    Not Available

    1992-05-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division Is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and Implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and quantitative links programs to form DOEs contribution to the US Global Change Research Program. Climate research in the ESD has the common goal of improving our understanding of the physical, chemical, biological, and social processes that influence the Earth system so that national and international policymaking relating to natural and human-induced changes in the Earth system can be given a firm scientific basis. This report describes the progress In FY 1991 in each of these areas.

  6. Unintended consequences of atmospheric injection of sulphate aerosols.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Kobos, Peter Holmes; Goldstein, Barry

    2010-10-01

    Most climate scientists believe that climate geoengineering is best considered as a potential complement to the mitigation of CO{sub 2} emissions, rather than as an alternative to it. Strong mitigation could achieve the equivalent of up to -4Wm{sup -2} radiative forcing on the century timescale, relative to a worst case scenario for rising CO{sub 2}. However, to tackle the remaining 3Wm{sup -2}, which are likely even in a best case scenario of strongly mitigated CO{sub 2} releases, a number of geoengineering options show promise. Injecting stratospheric aerosols is one of the least expensive and, potentially, most effective approaches and for that reason an examination of the possible unintended consequences of the implementation of atmospheric injections of sulphate aerosols was made. Chief among these are: reductions in rainfall, slowing of atmospheric ozone rebound, and differential changes in weather patterns. At the same time, there will be an increase in plant productivity. Lastly, because atmospheric sulphate injection would not mitigate ocean acidification, another side effect of fossil fuel burning, it would provide only a partial solution. Future research should aim at ameliorating the possible negative unintended consequences of atmospheric injections of sulphate injection. This might include modeling the optimum rate and particle type and size of aerosol injection, as well as the latitudinal, longitudinal and altitude of injection sites, to balance radiative forcing to decrease negative regional impacts. Similarly, future research might include modeling the optimum rate of decrease and location of injection sites to be closed to reduce or slow rapid warming upon aerosol injection cessation. A fruitful area for future research might be system modeling to enhance the possible positive increases in agricultural productivity. All such modeling must be supported by data collection and laboratory and field testing to enable iterative modeling to increase the accuracy and precision of the models, while reducing epistemic uncertainties.

  7. T AMS ARAC (Atmospheric Release Advisory Capability) NEST RAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T AMS ARAC (Atmospheric Release Advisory Capability) NEST RAP . . INTRODUCTION ARAC ARAC he Department of Energy's (DOE) National Nuclear Security Administration (NNSA) has the world's leading scientists, engineers and technicians from over 50 years of managing the nation's nuclear weapons program. When the need arises, DOE is prepared to respond immediately to any type of radiological accident or incident anywhere in the world with the following seven radiological emergency response assets.

  8. ARM - Publications: Science Team Meeting Documents: Atmospheric Modes of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drizzling Stratus at the ARM SGP Site Atmospheric Modes of Drizzling Stratus at the ARM SGP Site Kollias, Pavlos RSMAS/University of Miami Albrecht, Bruce University of Miami The representation of boundary layer clouds in GCMs remains a source of uncertainty in climate simulations. The cloud amount in the boundary layer is sensitive to the boundary layer scheme. Furthermore, little is known on the climatology of drizzling or precipitating boundary layer clouds, their seasonal variability and

  9. Hierardlicsl Diagnosis V. V. Zuev Institute of Atmospheric Optics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hierardlicsl Diagnosis V. V. Zuev Institute of Atmospheric Optics Siberian Branch of the Russian Academy of Sciences Tomsk, Russia Systematic observations of the earth's ozone layer over the last ten years indicate a steady decrease of ozone content in the stratospheric maximum and, on the contrary, a increase of ozone concentrations in the troposphere. This trend is illustrated clearly by the results of 20 years' observations of high-altitude ozone concentration distribution in the troposphere

  10. MONTE CARLO SIMULATION OF METASTABLE OXYGEN PHOTOCHEMISTRY IN COMETARY ATMOSPHERES

    SciTech Connect (OSTI)

    Bisikalo, D. V.; Shematovich, V. I. [Institute of Astronomy of the Russian Academy of Sciences, Moscow (Russian Federation); Gérard, J.-C.; Hubert, B. [Laboratory for Planetary and Atmospheric Physics (LPAP), University of Liège, Liège (Belgium); Jehin, E.; Decock, A. [Origines Cosmologiques et Astrophysiques (ORCA), University of Liège (Belgium); Hutsemékers, D. [Extragalactic Astrophysics and Space Observations (EASO), University of Liège (Belgium); Manfroid, J., E-mail: B.Hubert@ulg.ac.be [High Energy Astrophysics Group (GAPHE), University of Liège (Belgium)

    2015-01-01

    Cometary atmospheres are produced by the outgassing of material, mainly H{sub 2}O, CO, and CO{sub 2} from the nucleus of the comet under the energy input from the Sun. Subsequent photochemical processes lead to the production of other species generally absent from the nucleus, such as OH. Although all comets are different, they all have a highly rarefied atmosphere, which is an ideal environment for nonthermal photochemical processes to take place and influence the detailed state of the atmosphere. We develop a Monte Carlo model of the coma photochemistry. We compute the energy distribution functions (EDF) of the metastable O({sup 1}D) and O({sup 1}S) species and obtain the red (630 nm) and green (557.7 nm) spectral line shapes of the full coma, consistent with the computed EDFs and the expansion velocity. We show that both species have a severely non-Maxwellian EDF, that results in broad spectral lines and the suprathermal broadening dominates due to the expansion motion. We apply our model to the atmosphere of comet C/1996 B2 (Hyakutake) and 103P/Hartley 2. The computed width of the green line, expressed in terms of speed, is lower than that of the red line. This result is comparable to previous theoretical analyses, but in disagreement with observations. We explain that the spectral line shape does not only depend on the exothermicity of the photochemical production mechanisms, but also on thermalization, due to elastic collisions, reducing the width of the emission line coming from the O({sup 1}D) level, which has a longer lifetime.

  11. Evaluation of Routine Atmospheric Sounding Measurements Using Unmanned Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Routine Atmospheric Sounding Measurements Using Unmanned Systems but also to understand the different processes involved in a cloud's life cycle by providing measurements complimentary to those concurrently obtained by instruments stationed at the third ARM Mobile Facility (AMF3) at Oliktok Point. ERASMUS will supply data to address the following science questions: * How does temperature and humidity evolve during transitions between clear and cloudy skies? * How do aerosol properties vary with

  12. Interactive Uses of the NSDL: .Atmospheric Visualization Collection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Uses of the NSDL: Atmospheric Visualization Collection C. M. Klaus, E. N. Vernon, T. McCollum, T. R. Gobble, H. M. Anthony, and D. Johnson Argonne National Laboratory Argonne, Illinois K. Andrew Eastern Illinois University Charleston, Illinois G. G. Mace University of Utah Salt Lake City, Utah C. P. Bahrmann University of Oklahoma Norman, Oklahoma User Interfaces The National Science Digital Library (NSDL) has three user interfaces for accessing data images. 1. The Geophysical Focus

  13. Pulsed atmospheric fluidized bed combustor apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1992-01-01

    A pulsed atmospheric fluidized bed reactor system is disclosed and claimed along with a process for utilization of same for the combustion of, e.g. high sulfur content coal. The system affords a economical, ecologically acceptable alternative to oil and gas fired combustors. The apparatus may also be employed for endothermic reaction, combustion of waste products, e.g. organic and medical waste, drying, calcining and the like.

  14. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B. M.

    2014-09-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This study examines the value of improved solar power forecasting for the Independent System Operator-New England system. The results show how 25% solar power penetration reduces net electricity generation costs by 22.9%.

  15. Process for diffusing metallic coatings into ceramics to improve their voltage withstanding capabilities

    DOE Patents [OSTI]

    Miller, H. Craig (Clearwater, FL); Zuhr, Herbert F. (St. Petersburg, FL)

    1978-01-01

    The disclosure relates to a method for diffusing a coating of manganese powder and titanium powder into a ceramic to improve its voltage hold off withstanding capability. The powder coated ceramic is fired for from about 30 to about 90 minutes within about one atmosphere of wet hydrogen at a temperature within the range of from about 1450.degree. to about 1520.degree. C to cause the mixture to penetrate into the ceramic to a depth on the order of a millimeter.

  16. LASSO: Tying ARM Data and LES Modeling Together to Improve Climate Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LASSO: Tying ARM Data and LES Modeling Together to Improve Climate Science New Routine Modeling The pilot modeling project, called LASSO-the LES ARM Symbiotic Simulation and Observation workflow-is laying the groundwork to produce routine LES modeling at the ARM Southern Great Plains (SGP) megasite starting in 2017. The initial LASSO implementation will target shallow clouds and will later expand to other phenomena and ARM sites. A key to creating the next-generation Atmospheric Radiation

  17. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B.M.

    2014-11-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This presentation is an overview of a study that examines the value of improved solar forecasts on Bulk Power System Operations.

  18. Improving OpenMP Scaling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improving OpenMP Scaling Improving OpenMP Scaling Introduction Cori's Knights Landing (KNL) processors will each have more than 60 cores, with each core having the ability to support 4 hardware threads, leading to the possibility of up to 240 threads per single-socket node. Your application is likely to run on KNL without significant modification, but achieving good performance while using all the cores and threads may be more difficult. Applications may not fit into the memory of a Cori node if

  19. Atmospheric Sciences Program summaries of research in FY 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    This document describes the activities and products of the Atmospheric Science Program of the Environmental Sciences Division, Office of Health and Environmental Research, Office of Energy Research, in FY 1993. Each description contains the project`s title; three-year funding history; the contract period over which the funding applies; the name(s) of the principal investigator(s); the institution(s) conducting the projects; and the project`s objectives, products, approach, and results to date. Project descriptions are categorized within the report according to program areas: atmospheric chemistry, atmospheric dynamics, and support operations. Within these categories, the descriptions are ordered alphabetically by principal investigator. Each program area is preceded by a brief text that defines the program area, states its goals and objectives, lists principal research questions, and identifies program managers. Appendixes provide the addresses and telephone numbers of the principal investigators and define the acronyms used. This document has been indexed to aid the reader in locating research topics, participants, and research institutions in the text and the project descriptions. Comprehensive subject, principal investigator, and institution indexes are provided at the end of the text for this purpose. The comprehensive subject index includes keywords from the introduction and chapter texts in addition to those from the project descriptions.

  20. Stable microwave coaxial cavity plasma system at atmospheric pressure

    SciTech Connect (OSTI)

    Song, H. [Department of Electrical and Computer Engineering, University of Colorado, Colorado Springs, Colorado 80918 (United States); Hong, J. M.; Lee, K. H. [Plasma Systems and Materials (PSM) Inc., Sungnam-Si, Gyonggi-Do 190-1 (Korea, Republic of); Choi, J. J. [Department of Radio Science and Engineering, Kwangwoon University, Nowon-Gu, Seoul 447-1 (Korea, Republic of)

    2008-05-15

    We present a systematic study of the development of a novel atmospheric microwave plasma system for material processing in the pressure range up to 760 torr and the microwave input power up to 6 kW. Atmospheric microwave plasma was reliably produced and sustained by using a cylindrical resonator with the TM{sub 011} cavity mode. The applicator and the microwave cavity, which is a cylindrical resonator, are carefully designed and optimized with the time dependent finite element Maxwell equation solver. The azimuthal apertures are placed at the maximum magnetic field positions between the cavity and the applicator to maximize the coupling efficiency into the microwave plasma at a resonant frequency of 2.45 GHz. The system consists of a magnetron power supply, a circulator, a directional coupler, a three-stub tuner, a dummy load, a coaxial cavity, and a central cavity. Design and construction of the resonant structures and diagnostics of atmospheric plasma using optical experiments are discussed in various ranges of pressure and microwave input power for different types of gases.

  1. Retention of elemental mercury in fly ashes in different atmospheres

    SciTech Connect (OSTI)

    M.A. Lopez-Anton; M. Diaz-Somoano; M.R. Martinez-Tarazona

    2007-01-15

    Mercury is an extremely volatile element, which is emitted from coal combustion to the environment mostly in the vapor phase. To avoid the environmental problems that the toxic species of this element may cause, control technologies for the removal of mercury are necessary. Recent research has shown that certain fly ash materials have an affinity for mercury. Moreover, it has been observed that fly ashes may catalyze the oxidation of elemental mercury and facilitate its capture. However, the exact nature of Hg-fly ash interactions is still unknown, and mercury oxidation through fly ash needs to be investigated more thoroughly. In this work, the influence of a gas atmosphere on the retention of elemental mercury on fly ashes of different characteristics was evaluated. The retention capacity was estimated comparatively in inert and two gas atmospheres containing species present in coal gasification and coal combustion. Fly ashes produced in two pulverized coal combustion (PCC) plants, produced from coals of different rank (CTA and CTSR), and a fly ash (CTP) produced in a fluidized bed combustion (FBC) plant were used as raw materials. The mercury retention capacity of these fly ashes was compared to the retention obtained in different activated carbons. Although the capture of mercury is very similar in the gasification atmosphere and N{sub 2}, it is much more efficient in a coal combustion retention, being greater in fly ashes from PCC than those from FBC plants. 22 refs., 6 figs., 3 tabs.

  2. Determination of the Neutron Magnetic Moment

    DOE R&D Accomplishments [OSTI]

    Greene, G. L.; Ramsey, N. F.; Mampe, W.; Pendlebury, J. M.; Smith, K.; Dress, W. B.; Miller, P. D.; Perrin, P.

    1981-06-01

    The neutron magnetic moment has been measured with an improvement of a factor of 100 over the previous best measurement. Using a magnetic resonance spectrometer of the separated oscillatory field type capable of determining a resonance signal for both neutrons and protons (in flowing H{sub 2}O), we find ..mu..{sub n}/..mu..{sub p} = 0.68497935(17) (0.25 ppM). The neutron magnetic moment can also be expressed without loss of accuracy in a variety of other units.

  3. A NEW UNDERSTANDING OF THE EUROPA ATMOSPHERE AND LIMITS ON GEOPHYSICAL ACTIVITY

    SciTech Connect (OSTI)

    Shemansky, D. E.; Liu, X.; Yoshii, J.; Yung, Y. L.; Hansen, C. J.; Hendrix, A. R.; Esposito, L. W.

    2014-12-20

    Deep extreme ultraviolet spectrograph exposures of the plasma sheet at the orbit of Europa, obtained in 2001 using the Cassini Ultraviolet Imaging Spectrograph experiment, have been analyzed to determine the state of the gas. The results are in basic agreement with earlier results, in particular with Voyager encounter measurements of electron density and temperature. Mass loading rates and lack of detectable neutrals in the plasma sheet, however, are in conflict with earlier determinations of atmospheric composition and density at Europa. A substantial fraction of the plasma species at the Europa orbit are long-lived sulfur ions originating at Io, with ?25% derived from Europa. During the outward radial diffusion process to the Europa orbit, heat deposition forces a significant rise in plasma electron temperature and latitudinal size accompanied with conversion to higher order ions, a clear indication that mass loading from Europa is very low. Analysis of far ultraviolet spectra from exposures on Europa leads to the conclusion that earlier reported atmospheric measurements have been misinterpreted. The results in the present work are also in conflict with a report that energetic neutral particles imaged by the Cassini ion and neutral camera experiment originate at the Europa orbit. An interpretation of persistent energetic proton pitch angle distributions near the Europa orbit as an effect of a significant population of neutral gas is also in conflict with the results of the present work. The general conclusion drawn here is that Europa is geophysically far less active than inferred in previous research, with mass loading of the plasma sheet ?4.5 × 10{sup 25} atoms s{sup –1} two orders of magnitude below earlier published calculations. Temporal variability in the region joining the Io and Europa orbits, based on the accumulated evidence, is forced by the response of the system to geophysical activity at Io. No evidence for the direct injection of H{sub 2}O into the Europa atmosphere or from Europa into the magnetosphere system, as has been observed at Enceladus in the Saturn system, is obtained in the present investigation.

  4. Estimations of atmospheric boundary layer fluxes and other turbulence parameters from Doppler lidar data

    SciTech Connect (OSTI)

    Tzvi Galchen; Mei Xu ); Eberhard, W.L. )

    1992-11-30

    This work is part of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE), an international land-surface-atmosphere experiment aimed at improving the way climate models represent energy, water, heat, and carbon exchanges, and improving the utilization of satellite based remote sensing to monitor such parameters. Here the authors present results on doppler LIDAR measurements used to measure a range of turbulence parameters in the region of the unstable planetary boundary layer (PBL). The parameters include, averaged velocities, cartesian velocities, variances in velocities, parts of the covariance associated with vertical fluxes of horizontal momentum, and third moments of the vertical velocity. They explain their analysis technique, especially as it relates to error reduction of the averaged turbulence parameters from individual measurements with relatively large errors. The scales studied range from 150m to 12km. With this new diagnostic they address questions about the behavior of the convectively unstable PBL, as well as the stable layer which overlies it.

  5. CX-012653: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Holcomb-Naselle #1 Access Road Improvements CX(s) Applied: B1.3Date: 41855 Location(s): WashingtonOffices(s): Bonneville Power Administration

  6. CX-012810: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    St. Johns-Keeler Minor Access Road Improvement CX(s) Applied: B1.3Date: 41901 Location(s): OregonOffices(s): Bonneville Power Administration

  7. CX-008168: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Snohomish High School Field Improvements CX(s) Applied: B4.9 Date: 03/20/2012 Location(s): Washington Offices(s): Bonneville Power Administration

  8. CX-012816: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Rogue-Gold Beach Access Road Improvement CX(s) Applied: B1.3Date: 41890 Location(s): OregonOffices(s): Bonneville Power Administration

  9. Managing Critical Management Improvement Initiatives

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-01

    Provides requirements and responsibilities for planning, executing and assessing critical management improvement initiatives within DOE. DOE N 251.59, dated 9/27/2004, extends this Notice until 10/01/2005. Archived 11-8-10. Does not cancel other directives.

  10. Improved photovoltaic cells and electrodes

    DOE Patents [OSTI]

    Skotheim, T.A.

    1983-06-29

    Improved photovoltaic cells and electrodes for use therein, particularly electrodes employing amorphous silicon or polyacetylene coating are produced by a process which includes filling pinholes or porous openings in the coatings by electrochemical oxidation of selected monomers to deposit insulating polymer in the openings.

  11. Zymomonas with improved xylose utilization

    DOE Patents [OSTI]

    Viitanen, Paul V.; Tao, Luan; Zhang, Yuying; Caimi, Perry G.; McCutchen, Carol M.; McCole, Laura; Zhang, Min; Chou, Yat-Chen; Franden, Mary Ann

    2011-08-16

    Strains of Zymomonas were engineered by introducing a chimeric xylose isomerase gene that contains a mutant promoter of the Z. mobilis glyceraldehyde-3-phosphate dehydrogenase gene. The promoter directs increased expression of xylose isomerase, and when the strain is in addition engineered for expression of xylulokinase, transaldolase and transketolase, improved utilization of xylose is obtained.

  12. Categorical Exclusion Determinations: B1.5 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Categorical Exclusion Determinations: B1.5 Existing Regulations B1.5: Existing steam plants and cooling water systems Minor improvements to existing steam plants and cooling water systems (including, but not limited to, modifications of existing cooling towers and ponds), provided that the improvements would not: (1) create new sources of water or involve new receiving waters; (2) have the potential to significantly alter water withdrawal rates; (3) exceed the permitted temperature of

  13. Categorical Exclusion Determinations: B6.3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Categorical Exclusion Determinations: B6.3 Existing Regulations B6.3: Improvements to environmental control systems Improvements to environmental monitoring and control systems of an existing building or structure (such as changes to scrubbers in air quality control systems or ion-exchange devices and other filtration processes in water treatment systems), provided that during subsequent operations (1) any substance collected by the environmental control systems would be recycled, released, or

  14. Atmospheric Rivers Coming to a Cloud Near You (Other) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Other: Atmospheric Rivers Coming to a Cloud Near You Citation Details In-Document Search Title: Atmospheric Rivers Coming to a Cloud Near You You are accessing a document from...

  15. Ordered iron aluminide alloys having an improved room-temperature ductility and method thereof

    DOE Patents [OSTI]

    Sikka, Vinod K.

    1992-01-01

    A process is disclosed for improving the room temperature ductility and strength of iron aluminide intermetallic alloys. The process involves thermomechanically working an iron aluminide alloy by means which produce an elongated grain structure. The worked alloy is then heated at a temperature in the range of about 650.degree. C. to about 800.degree. C. to produce a B2-type crystal structure. The alloy is rapidly cooled in a moisture free atmosphere to retain the B2-type crystal structure at room temperature, thus providing an alloy having improved room temperature ductility and strength.

  16. DEVELOPMENT OF IMPROVED TECHNIQUES FOR SATELLITE REMOTE SENSING OF CLOUDS AND RADIATION USING ARM DATA, FINAL REPORT

    SciTech Connect (OSTI)

    Minnis, Patrick

    2013-06-28

    During the period, March 1997 – February 2006, the Principal Investigator and his research team co-authored 47 peer-reviewed papers and presented, at least, 138 papers at conferences, meetings, and workshops that were supported either in whole or in part by this agreement. We developed a state-of-the-art satellite cloud processing system that generates cloud properties over the Atmospheric Radiation (ARM) surface sites and surrounding domains in near-real time and outputs the results on the world wide web in image and digital formats. When the products are quality controlled, they are sent to the ARM archive for further dissemination. These products and raw satellite images can be accessed at http://cloudsgate2.larc.nasa.gov/cgi-bin/site/showdoc?docid=4&cmd=field-experiment-homepage&exp=ARM and are used by many in the ARM science community. The algorithms used in this system to generate cloud properties were validated and improved by the research conducted under this agreement. The team supported, at least, 11 ARM-related or supported field experiments by providing near-real time satellite imagery, cloud products, model results, and interactive analyses for mission planning, execution, and post-experiment scientific analyses. Comparisons of cloud properties derived from satellite, aircraft, and surface measurements were used to evaluate uncertainties in the cloud properties. Multiple-angle satellite retrievals were used to determine the influence of cloud structural and microphysical properties on the exiting radiation field.

  17. About EffectiveŽ Height of the Aerosol Atmosphere in Visible and IR Wavelength Range

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "Effective" Height of the Aerosol Atmosphere in Visible and IR Wavelength Range V. N. Uzhegov, D. M. Kabanov, M. V. Panchenko, Yu. A. Pkhalagov, and S. M. Sakerin Institute of Atmospheric Optics Tomsk, Russia Introduction Aerosol component of the atmosphere is one of the important factors affecting the radiation budget of the space - atmosphere - underlying surface system in visible and infrared (IR) wavelength ranges. It is extremely important to take into account the contribution of

  18. The mean climate of the Community Atmosphere Model (CAM4) in forced SST and

    Office of Scientific and Technical Information (OSTI)

    fully coupled experiments (Journal Article) | SciTech Connect Journal Article: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments Citation Details In-Document Search Title: The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments The Community Atmosphere Model, version 4 (CAM4) was released as the atmosphere component of the Community Climate System Model, version 4 (CCSM4) and is described. The

  19. CX-100314 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Categorical Exclusion Determination CX-100314 Categorical Exclusion Determination NREL- STM Exterior Improvements Project 2015: NREL Tracking No. 15-012 Award Number: DE-AC36-08GO28308 CX(s) Applied: DOE/EA-1968 National Renewable Energy Laboratory (NREL) Date: 07/20/15 Location(s): CO Office(s): Golden Field Office The U.S. Department of Energy (DOE) proposes a project to address several site improvements at the National Renewable Laboratory (NREL) South Table Mountain (STM) campus located in

  20. IGNITION IMPROVEMENT OF LEAN NATURAL GAS MIXTURES

    SciTech Connect (OSTI)

    Jason M. Keith

    2005-02-01

    This report describes work performed during a thirty month project which involves the production of dimethyl ether (DME) on-site for use as an ignition-improving additive in a compression-ignition natural gas engine. A single cylinder spark ignition engine was converted to compression ignition operation. The engine was then fully instrumented with a cylinder pressure transducer, crank shaft position sensor, airflow meter, natural gas mass flow sensor, and an exhaust temperature sensor. Finally, the engine was interfaced with a control system for pilot injection of DME. The engine testing is currently in progress. In addition, a one-pass process to form DME from natural gas was simulated with chemical processing software. Natural gas is reformed to synthesis gas (a mixture of hydrogen and carbon monoxide), converted into methanol, and finally to DME in three steps. Of additional benefit to the internal combustion engine, the offgas from the pilot process can be mixed with the main natural gas charge and is expected to improve engine performance. Furthermore, a one-pass pilot facility was constructed to produce 3.7 liters/hour (0.98 gallons/hour) DME from methanol in order to characterize the effluent DME solution and determine suitability for engine use. Successful production of DME led to an economic estimate of completing a full natural gas-to-DME pilot process. Additional experimental work in constructing a synthesis gas to methanol reactor is in progress. The overall recommendation from this work is that natural gas to DME is not a suitable pathway to improved natural gas engine performance. The major reasons are difficulties in handling DME for pilot injection and the large capital costs associated with DME production from natural gas.