Powered by Deep Web Technologies
Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

area geological characterization: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Utilization Websites Summary: Geological Characterization of California's Offshore Carbon Dioxide Storage Capacity ENVIRONMENTAL sequestration pilot studies to determine...

2

Geological Characterization of California's Offshore  

E-Print Network [OSTI]

for the various data generated by the West Coast Regional Carbon Sequestration Partnership. The project's goals are to: · Perform a preliminary geologic characterization of the carbon dioxide sequestration of carbon sequestration potential. · For select formations previously studied in the Southern Sacramento

3

International Symposium on Site Characterization for CO2Geological Storage  

SciTech Connect (OSTI)

Several technological options have been proposed to stabilize atmospheric concentrations of CO{sub 2}. One proposed remedy is to separate and capture CO{sub 2} from fossil-fuel power plants and other stationary industrial sources and to inject the CO{sub 2} into deep subsurface formations for long-term storage and sequestration. Characterization of geologic formations for sequestration of large quantities of CO{sub 2} needs to be carefully considered to ensure that sites are suitable for long-term storage and that there will be no adverse impacts to human health or the environment. The Intergovernmental Panel on Climate Change (IPCC) Special Report on Carbon Dioxide Capture and Storage (Final Draft, October 2005) states that ''Site characterization, selection and performance prediction are crucial for successful geological storage. Before selecting a site, the geological setting must be characterized to determine if the overlying cap rock will provide an effective seal, if there is a sufficiently voluminous and permeable storage formation, and whether any abandoned or active wells will compromise the integrity of the seal. Moreover, the availability of good site characterization data is critical for the reliability of models''. This International Symposium on Site Characterization for CO{sub 2} Geological Storage (CO2SC) addresses the particular issue of site characterization and site selection related to the geologic storage of carbon dioxide. Presentations and discussions cover the various aspects associated with characterization and selection of potential CO{sub 2} storage sites, with emphasis on advances in process understanding, development of measurement methods, identification of key site features and parameters, site characterization strategies, and case studies.

Tsang, Chin-Fu

2006-02-23T23:59:59.000Z

4

Preliminary Geologic Characterization of West Coast States for Geologic Sequestration  

SciTech Connect (OSTI)

Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have potential for enhanced coal bed methane recovery (ECBM).

Larry Myer

2005-09-29T23:59:59.000Z

5

Geologic characterization of tight gas reservoirs  

SciTech Connect (OSTI)

The objectives of US Geological Survey (USGS) work during FY 89 were to conduct geologic research characterizing tight gas-bearing sandstone reservoirs and their resources in the western United States. Our research has been regional in scope but, in some basins, our investigations have focused on single wells or small areas containing several wells where a large amount of data is available. The investigations, include structure, stratigraphy, petrography, x-ray mineralogy, source-rock evaluation, formation pressure and temperature, borehole geophysics, thermal maturity mapping, fission-track age dating, fluid-inclusion thermometry, and isotopic geochemistry. The objectives of these investigations are to provide geologic models that can be compared and utilized in tight gas-bearing sequences elsewhere. Nearly all of our work during FY 89 was devoted to developing a computer-based system for the Uinta basin and collecting, analyzing, and storage of data. The data base, when completed will contain various types of stratigraphic, organic chemistry, petrographic, production, engineering, and other information that relate to the petroleum geology of the Uinta basin, and in particular, to the tight gas-bearing strata. 16 refs., 3 figs.

Law, B.E.

1990-12-01T23:59:59.000Z

6

Geologic flow characterization using tracer techniques  

SciTech Connect (OSTI)

A new tracer flow-test system has been developed for in situ characterization of geologic formations. This report describes two sets of test equipment: one portable and one for testing in deep formations. Equations are derived for in situ detector calibration, raw data reduction, and flow logging. Data analysis techniques are presented for computing porosity and permeability in unconfined isotropic media, and porosity, permeability and fracture characteristics in media with confined or unconfined two-dimensional flow. The effects of tracer pulse spreading due to divergence, dispersion, and porous formations are also included.

Klett, R. D.; Tyner, C. E.; Hertel, Jr., E. S.

1981-04-01T23:59:59.000Z

7

Strategic Petroleum Reserve (SPR) geological site characterization report, Big Hill Salt Dome  

SciTech Connect (OSTI)

Geological and geophysical analyses of the Big Hill Salt Dome were performed to determine the suitability of this site for use in the Strategic Petroleum Reserve (SPR). Development of 140 million barrels (MMB) of storage capacity in the Big Hill Salt Dome is planned as part of the SPR expansion to achieve 750 MMB of storage capacity. Objectives of the study were to: (1) Acquire, evaluate, and interpret existing data pertinent to geological characterization of the Big Hill Dome; (2) Characterize the surface and near-surface geology and hydrology; (3) Characterize the geology and hydrology of the overlying cap rock; (4) Define the geometry and geology of the dome; (5) Determine the feasibility of locating and constructing 14 10-MMB storage caverns in the south portion of the dome; and (6) Assess the effects of natural hazards on the SPR site. Recommendations are included. (DMC)

Hart, R.J.; Ortiz, T.S.; Magorian, T.R.

1981-09-01T23:59:59.000Z

8

Strategic petroleum reserve (SPR) geological site characterization report, Bayou Choctaw Salt Dome. Sections I and II  

SciTech Connect (OSTI)

This report comprises two sections: Bayou Choctaw cavern stability issues, and geological site characterization of Bayou Choctaw. (DLC)

Hogan, R.G. (ed.)

1981-03-01T23:59:59.000Z

9

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

Treatise of Petroleum Geology, Atlas of Oil and Gas Fields,A-A’). phy, geology, stratigraphic contacts, oil and gas andgeology, initial information available from hydrogeology, oil

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

10

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

Geo- logic Carbon Dioxide Sequestration: An Analysis of86 MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP,MONITORING OF GEOLOGIC CARBON SEQUESTRATION B. R. Strazisar,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

11

Recovery Act: Site Characterization of Promising Geologic Formations...  

Broader source: Energy.gov (indexed) [DOE]

Geologic Formations for CO2 Storage A Report on the The Department of Energy's (DOE's) Carbon Sequestration Program within the Office of Fossil Energy's (FE's) Coal Program...

12

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

host hydrocarbon reservoirs and oil and gas produc- tionthroat radius mm Radius (m) Reservoirs Oil Gas um GeologicalIn each of these reservoirs, oil fields have been dis-

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

13

Geological characterization of a sandstone reservoir in Eastern Kansas: Savonburg NE field, Allen County, Kansas  

SciTech Connect (OSTI)

Production on the Nelson leases of the Savonburg NE oil field in eastern Kansas is from sandstone that is part of the fill of a paleovalley that was eroded after deposition of the Tebo coal but before deposition of the Scammon coal. Sandstone in this interval is called the Chelsea Sandstone; the interval is referred to as the Skinner interval. (That interval is part of the Cabaniss Formation, Cherokee Group, and assigned to the Desmoinesian stage of the Middle Pennsylvanian). In addition to determining the stratigraphic relationships of the reservoir, geological characterization helped to understand the distribution of the most productive areas of the field and led to specific recommendations for abandonment of wells, workovers, well treatments, well conversions from producers to injectors, and drilling of new wells, all with the aim of increasing productivity and decreasing costs for the operator. The reservoir characterization used information routinely gathered in the course of oil field operations in eastern Kansas. Gamma-neutron logs indicated lithology as well as stratigraphy, while core descriptions provided insight into stratigraphic distinctions and depositional processes. Core analysis of porosity, permeability, and fluid saturations permitted depiction of the distribution of such attributes throughout the productive region. Key geological concepts of regional marker intervals and incised valley fills provided the theoretical framework for analyzing the reservoir.

Walton, A.W.; Beaty, D.S.

1995-12-31T23:59:59.000Z

14

SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY; APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS  

SciTech Connect (OSTI)

The objective of the project is to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study is performed at West Coalinga Field in California. We continued our investigation on the nature of seismic reactions from heterogeneous reservoirs. We began testing our algorithm to infer parameters of object-based reservoir models from seismic data. We began integration of seismic and geologic data to determine the deterministic limits of conventional seismic data interpretation. Lastly, we began integration of seismic and geologic heterogeneity using stochastic models conditioned both on wireline and seismic data.

Matthias G. Imhof; James W. Castle

2003-11-01T23:59:59.000Z

15

Dispersion measurement as a method of quantifying geologic characterization and defining reservoir heterogeneity. Final report  

SciTech Connect (OSTI)

The main objective of this research project is to investigate dispersion as a method of quantifying geological characterization and defining reservoir heterogeneity in order to enhance crude oil recovery. The dispersion of flow of a reservoir rock (dispersion coefficient and dispersivity) was identified as one of the physical properties of a reservoir rock by measuring the mixing of two miscible fluids, one displacing the other in a porous medium. A rock was 100% saturated with a resident fluid and displaced by a miscible fluid of equal viscosity and equal density. Some specific experiments were performed with unequal densities. Produced fluid was analyzed by refractometer, nuclear reaction, electrical conductivity and X-ray scan. Several physical and flow characteristics were measured on the sand rock sample in order to establish correlations with the measured dispersion property. Absolute permeability, effective porosity, relative permeability, capillary pressure, the heterogeneity factor and electrical conductivity were used to better understand the flow system. Linear, transverse, 2-D and 3-D dispersions were measured and used to characterize the rock heterogeneity of the flow system. A new system of measuring dispersion was developed using a gas displacing gas system in a porous medium. An attempt was also made to determine the dispersion property of an actual reservoir from present day well log data on a producing well. 275 refs., 102 figs., 17 tabs.

Menzie, D.E.

1995-05-01T23:59:59.000Z

16

Determination of the Effect of Geological Reservoir Variability on Carbon Dioxide Storage  

E-Print Network [OSTI]

Determination of the Effect of Geological Reservoir Variability on Carbon Dioxide Storage Using'expériences -- Dans le contexte de l'étude du stockage géologique du dioxyde de carbone dans les réservoirs al. (2007) Energy Convers. Manage. 48, 1782-1797; Gunter et al. (1999) Appl. Geochem. 4, 1

Paris-Sud XI, Université de

17

Conversion of the Bryan Mound geological site characterization reports to a three-dimensional model.  

SciTech Connect (OSTI)

The Bryan Mound salt dome, located near Freeport, Texas, is home to one of four underground crude oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Bryan Mound site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 20 oil-storage caverns at the site. This work provides an internally consistent geologic model of the Bryan Mound site that can be used in support of future work.

Stein, Joshua S.; Rautman, Christopher Arthur

2005-04-01T23:59:59.000Z

18

Conversion of the Big Hill geological site characterization report to a three-dimensional model.  

SciTech Connect (OSTI)

The Big Hill salt dome, located in southeastern Texas, is home to one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Big Hill site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 14 oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the Big Hill site that can be used in support of future work.

Stein, Joshua S.; Rautman, Christopher Arthur

2003-02-01T23:59:59.000Z

19

Conversion of the West Hackberry geological site characterization report to a three-dimensional model.  

SciTech Connect (OSTI)

The West Hackberry salt dome, in southwestern Louisiana, is one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the West Hackberry site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary layers, mapped faults, and a portion of the oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the West Hackberry site that can be used in support of future work.

Stein, Joshua S.; Rautman, Christopher Arthur; Snider, Anna C.

2004-08-01T23:59:59.000Z

20

Standard guide for characterization of spent nuclear fuel in support of geologic repository disposal  

E-Print Network [OSTI]

1.1 This guide provides guidance for the types and extent of testing that would be involved in characterizing the physical and chemical nature of spent nuclear fuel (SNF) in support of its interim storage, transport, and disposal in a geologic repository. This guide applies primarily to commercial light water reactor (LWR) spent fuel and spent fuel from weapons production, although the individual tests/analyses may be used as applicable to other spent fuels such as those from research and test reactors. The testing is designed to provide information that supports the design, safety analysis, and performance assessment of a geologic repository for the ultimate disposal of the SNF. 1.2 The testing described includes characterization of such physical attributes as physical appearance, weight, density, shape/geometry, degree, and type of SNF cladding damage. The testing described also includes the measurement/examination of such chemical attributes as radionuclide content, microstructure, and corrosion product c...

American Society for Testing and Materials. Philadelphia

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity: Characterization and  

E-Print Network [OSTI]

Invitation to Present, Sponsor, and Attend Geologic Carbon Sequestration Site Integrity and long-term sustainability of geologic carbon sequestration sites depends upon the ability on geologic carbon sequestration site monitoring. The management framework and costs will be similar

Daniels, Jeffrey J.

22

Remote sensing data exploiration for geologic characterization of difficult targets : Laboratory Directed Research and Development project 38703 final report.  

SciTech Connect (OSTI)

Characterizing the geology, geotechnical aspects, and rock properties of deep underground facility sites can enhance targeting strategies for both nuclear and conventional weapons. This report describes the results of a study to investigate the utility of remote spectral sensing for augmenting the geological and geotechnical information provided by traditional methods. The project primarily considered novel exploitation methods for space-based sensors, which allow clandestine collection of data from denied sites. The investigation focused on developing and applying novel data analysis methods to estimate geologic and geotechnical characteristics in the vicinity of deep underground facilities. Two such methods, one for measuring thermal rock properties and one for classifying rock types, were explored in detail. Several other data exploitation techniques, developed under other projects, were also examined for their potential utility in geologic characterization.

Costin, Laurence S.; Walker, Charles A.; Lappin, Allen R.; Hayat, Majeed M. (University of New Mexico, Albuquerque, NM); Ford, Bridget K.; Paskaleva, Biliana (University of New Mexico, Albuquerque, NM); Moya, Mary M.; Mercier, Jeffrey Alan (University of Arizona, Tucson, AZ); Stormont, John C. (University of New Mexico, Albuquerque, NM); Smith, Jody Lynn

2003-09-01T23:59:59.000Z

23

Information needs for characterization of high-level waste repository sites in six geologic media. Volume 1. Main report  

SciTech Connect (OSTI)

Evaluation of the geologic isolation of radioactive materials from the biosphere requires an intimate knowledge of site geologic conditions, which is gained through precharacterization and site characterization studies. This report presents the results of an intensive literature review, analysis and compilation to delineate the information needs, applicable techniques and evaluation criteria for programs to adequately characterize a site in six geologic media. These media, in order of presentation, are: granite, shale, basalt, tuff, bedded salt and dome salt. Guidelines are presented to assess the efficacy (application, effectiveness, and resolution) of currently used exploratory and testing techniques for precharacterization or characterization of a site. These guidelines include the reliability, accuracy and resolution of techniques deemed acceptable, as well as cost estimates of various field and laboratory techniques used to obtain the necessary information. Guidelines presented do not assess the relative suitability of media. 351 refs., 10 figs., 31 tabs.

NONE

1985-05-01T23:59:59.000Z

24

Geologic Maps Geology 200  

E-Print Network [OSTI]

Geologic Maps Geology 200 Geology for Environmental Scientists #12;Geologic Map of the US #12;Symbols found on geologic maps #12;Horizontal Strata #12;Geologic map of part of the Grand Canyon. Each color represents a different formation. #12;Inclined Strata #12;Dome #12;Geologic map of the Black Hills

Kammer, Thomas

25

Quality characterization of western Cretaceous coal from the Colorado Plateau as part of the U.S. Geological Survey's National Coal Resource Assessment Program  

SciTech Connect (OSTI)

The goal of the Colorado Plateau Coal Assessment program is to provide an overview of the geologic setting, distribution, resources, and quality of Cretaceous coal in the Colorado Plateau. This assessment, which is part of the US Geological Survey's National Coal Resource Assessment Program, is different from previous coal assessments in that the major emphasis is placed on coals that are most likely to provide energy over the next few decades. The data is also being collected and stored in digital format that can be updated as new information becomes available. Environmental factors may eventually control how coal will be mined, and determine to what extent measures will be implemented to reduce trace element emissions. In the future, increased emphasis will also be placed on coal combustion products and the challenges of waste product disposal or utilization. Therefore, coal quality characterization is an important aspect of the coal assessment program in that it provides important data that will influence future utilization of this resource. The Colorado Plateau study is being completed in cooperation with the US Bureau of Land Management, US Forest Service, Arizona Geological Survey, Colorado Geological Survey, New Mexico Bureau of Mines and Mineral Resources, and the Utah Geological Survey. Restrictions on coal thickness and overburden will be applied to the resource calculations and the resources will be categorized by land ownership. In some areas these studies will also delineate areas where coal mining may be restricted because of land use, industrial, social, or environmental factors. Emphasis is being placed on areas where the coal is controlled by the Federal Government.

Affolter, R.H.; Brownfield, M.E.

1999-07-01T23:59:59.000Z

26

In Situ Spectrophotometric Determination of pH under Geologic CO2 Sequestration Conditions: Method Development and Application  

SciTech Connect (OSTI)

Injecting massive amounts of CO2 into deep geologic formations will cause a range of coupled thermal, hydrodynamic, mechanical, and chemical changes. A significant perturbation in water-saturated formations is the pH drop in the reservoir fluids due to CO2 dissolution. Knowing the pH under geological CO2 sequestration conditions is important for a better understanding of the short- and long-term risks associated with geological CO2 sequestration and will help in the design of sustainable sequestration projects. Most previous studies on CO2-rock-brine interactions have utilized thermodynamic modeling to estimate the pH. In this work, a spectrophotometric method was developed to determine the in-situ pH in CO2-H2O-NaCl systems in the presence and absence of reservoir rock by observing the spectra of a pH indicator, bromophenol blue, with a UV-visible spectrophotometer. Effects of temperature, pressure, and ionic strength on the pH measurement were evaluated. Measured pH values in CO2-H2O-NaCl systems were compared with several thermodynamic models. Results indicate that bromophenol blue can be used to accurately determine the pH of brine in contact with supercritical CO2 under geologic CO2 sequestration conditions.

Shao, Hongbo; Thompson, Christopher J.; Qafoku, Odeta; Cantrell, Kirk J.

2013-02-25T23:59:59.000Z

27

Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, Bayou Choctaw salt dome, Louisiana  

SciTech Connect (OSTI)

This report revises and updates the geologic site characterization report that was published in 1980. Revised structure maps and sections show interpretative differences in the dome shape and caprock structural contours, especially a major east-west trending shear zone, not mapped in the 1980 report. Excessive gas influx in Caverns 18 and 20 may be associated with this shear zone. Subsidence values at Bayou Choctaw are among the lowest in the SPR system, averaging only about 10 mm/yr but measurement and interpretation issues persist, as observed values often approximate measurement accuracy. Periodic, temporary flooding is a continuing concern because of the low site elevation (less than 10 ft), and this may intensify as future subsidence lowers the surface even further. Cavern 4 was re-sonared in 1992 and the profiles suggest that significant change has not occurred since 1980, thereby reducing the uncertainty of possible overburden collapse -- as occurred at Cavern 7 in 1954. Other potential integrity issues persist, such as the proximity of Cavern 20 to the dome edge, and the narrow web separating Caverns 15 and 17. Injection wells have been used for the disposal of brine but have been only marginally effective thus far; recompletions into more permeable lower Pleistocene gravels may be a practical way of increasing injection capacity and brinefield efficiency. Cavern storage space is limited on this already crowded dome, but 15 MMBBL could be gained by enlarging Cavern 19 and by constructing a new cavern beneath and slightly north of abandoned Cavern 13. Environmental issues center on the low site elevation: the backswamp environment combined with the potential for periodic flooding create conditions that will require continuing surveillance.

Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R. [Magorian (Thomas R.), Amherst, NY (United States); Byrne, K.O.; Denzler, S. [Acres International Corp., Amherst, NY (United States)

1993-09-01T23:59:59.000Z

28

Reservoir architecture modeling: Nonstationary models for quantitative geological characterization. Final report, April 30, 1998  

SciTech Connect (OSTI)

The study was comprised of four investigations: facies architecture; seismic modeling and interpretation; Markov random field and Boolean models for geologic modeling of facies distribution; and estimation of geological architecture using the Bayesian/maximum entropy approach. This report discusses results from all four investigations. Investigations were performed using data from the E and F units of the Middle Frio Formation, Stratton Field, one of the major reservoir intervals in the Gulf Coast Basin.

Kerr, D.; Epili, D.; Kelkar, M.; Redner, R.; Reynolds, A.

1998-12-01T23:59:59.000Z

29

Use of integrated geologic and geophysical information for characterizing the structure of fracture systems at the US/BK Site, Grimsel Laboratory, Switzerland  

SciTech Connect (OSTI)

Fracture systems form the primary fluid flow paths in a number of rock types, including some of those being considered for high level nuclear waste repositories. In some cases, flow along fractures must be modeled explicitly as part of a site characterization effort. Fractures commonly are concentrated in fracture zones, and even where fractures are seemingly ubiquitous, the hydrology of a site can be dominated by a few discrete fracture zones. We have implemented a site characterization methodology that combines information gained from geophysical and geologic investigations. The general philosophy is to identify and locate the major fracture zones, and then to characterize their systematics. Characterizing the systematics means establishing the essential and recurring patterns in which fractures are organized within the zones. We make a concerted effort to use information on the systematics of the fracture systems to link the site-specific geologic, borehole and geophysical information. This report illustrates how geologic and geophysical information on geologic heterogeneities can be integrated to guide the development of hydrologic models. The report focuses on fractures, a particularly common type of geologic heterogeneity. However, many aspects of the methodology we present can be applied to other geologic heterogeneities as well. 57 refs., 40 figs., 1 tab.

Martel, S.J.; Peterson, J.E. Jr. (Lawrence Berkeley Lab., CA (USA))

1990-05-01T23:59:59.000Z

30

sRecovery Act: Geologic Characterization of the South Georgia Rift Basin for Source Proximal CO2 Storage  

SciTech Connect (OSTI)

This study focuses on evaluating the feasibility and suitability of using the Jurassic/Triassic (J/TR) sediments of the South Georgia Rift basin (SGR) for CO2 storage in southern South Carolina and southern Georgia The SGR basin in South Carolina (SC), prior to this project, was one of the least understood rift basin along the east coast of the U.S. In the SC part of the basin there was only one well (Norris Lightsey #1) the penetrated into J/TR. Because of the scarcity of data, a scaled approach used to evaluate the feasibility of storing CO2 in the SGR basin. In the SGR basin, 240 km (~149 mi) of 2-D seismic and 2.6 km2 3-D (1 mi2) seismic data was collected, process, and interpreted in SC. In southern Georgia 81.3 km (~50.5 mi) consisting of two 2-D seismic lines were acquired, process, and interpreted. Seismic analysis revealed that the SGR basin in SC has had a very complex structural history resulting the J/TR section being highly faulted. The seismic data is southern Georgia suggest SGR basin has not gone through a complex structural history as the study area in SC. The project drilled one characterization borehole (Rizer # 1) in SC. The Rizer #1 was drilled but due to geologic problems, the project team was only able to drill to 1890 meters (6200 feet) instead of the proposed final depth 2744 meters (9002 feet). The drilling goals outlined in the original scope of work were not met. The project was only able to obtain 18 meters (59 feet) of conventional core and 106 rotary sidewall cores. All the conventional core and sidewall cores were in sandstone. We were unable to core any potential igneous caprock. Petrographic analysis of the conventional core and sidewall cores determined that the average porosity of the sedimentary material was 3.4% and the average permeability was 0.065 millidarcy. Compaction and diagenetic studies of the samples determined there would not be any porosity or permeability at depth in SC. In Georgia there appears to be porosity in the J/TR section based on neutron log porosity values. The only zones in Rizer #1 that appear to be porous were fractured diabase units where saline formation water was flowing into the borehole. Two geocellular models were created for the SC and GA study area. Flow simulation modeling was performed on the SC data set. The injection simulation used the newly acquired basin data as well as the Petrel 3-D geologic model that included geologic structure. Due to the new basin findings as a result of the newly acquired data, during phase two of the modeling the diabase unit was used as reservoir and the sandstone units were used as caprock. Conclusion are: 1) the SGR basin is composed of numerous sub-basins, 2) this study only looked at portions of two sub-basins, 3) in SC, 30 million tonnes of CO2 can be injected into the diabase units if the fracture network is continuous through the units, 4) due to the severity of the faulting there is no way of assuring the injected CO2 will not migrate upward into the overlying Coastal Plain aquifers, 5) in Georgia there appears to porous zones in the J/TR sandstones, 6) as in SC there is faulting in the sub-basin and the seismic suggest the faulting extends upward into the Coastal Plain making that area not suitable for CO2 sequestration, 7) the complex faulting observed at both study areas appear to be associated with transfer fault zones (Heffner 2013), if sub-basins in the Georgia portion of the SGR basin can be located that are far away from the transfer fault zones there is a strong possibility of sequestering CO2 in these areas, and 9) the SGR basin covers area in three states and this project only studied two small areas so there is enormous potential for CO2 sequestration in other portions the basin and further research needs to be done to find these areas.

Waddell, Michael

2014-09-30T23:59:59.000Z

31

Geological SciencesGeological Sciences Geological EngineeringGeological Engineering  

E-Print Network [OSTI]

Geological SciencesGeological Sciences Geological EngineeringGeological Engineering Geosciences Careers in the ik ou ve n ver see t b f rel e y ' e n i e o ! Department of Geological Sciences and Geological Engineering Queen's University See the World Geological Sciences Arts and Science Faculty

Ellis, Randy

32

Geologic characterization of fractures as an aid to hydrologic modeling of the SCV block at the Stripa mine  

SciTech Connect (OSTI)

A series of hydrologic tests have been conducted at the Stripa research mine in Sweden to develop hydrologic characterization techniques for rock masses in which fractures form the primary flow paths. The structural studies reported here were conducted to aid in the hydrologic examination of a cubic block of granite with dimensions of 150 m on a side. This block (the SCV block) is located between the 310- and 460-m depth levels at the Stripa mine. this report describes and interprets the fracture system geology at Stripa as revealed in drift exposures, checks the interpretive model against borehole records and discusses the hydrologic implications of the model, and examines the likely effects of stress redistribution around a drift (the Validation drift) on inflow to the drift along a prominent fracture zone.

Martel, S.J.

1992-04-01T23:59:59.000Z

33

20 y 50 y 500 y Geological characterization of the TEEP study area is based on the examination of two deep wells,  

E-Print Network [OSTI]

Geological characterization of the TEEP study area is based on the examination of two deep by 360 km2) structural basin, bounded by the Big Horn Mountains and Casper Arch on the west, Miles City to the south, located in northeast Wyoming and eastern The Two Elk Energy Park (TEEP) is a commercialscale

Stanford University

34

Geologic reservoir characterization of Humphreys sandstone (Pennsylvanian), east Velma field, Oklahoma  

SciTech Connect (OSTI)

East Velma field is located in the Ardmore basin, Stephens County, Oklahoma, on the north flank of a truncated anticline with dips that range from 30/degrees/-60/degrees/. The discovery well of the Humphreys sand unit was drilled in April 1951 and an original oil in place of 32.7 million bbl was calculated. Primary depletion was by solution gas drive with gas reinjection and gravity drainage which was enhanced by the steep structural dip of the field. A waterflood that was initiated in 1983 and a proposed CO/sub 2/ miscible displacement program to further enhance field recovery prompted the need to develop a detailed geologic description of the reservoir. Core studies indicate that the Humphreys sandstone was deposited in a shallow marine, tidally dominated environment. Subfacies include sand-rich tidal flat and tidal channel deposits. The unit is primarily composed of very fine to fine-grained, moderately to well-sorted quartzarenites. Dominant sedimentary structures include bidirectional and unidirectional current ripples, cross-laminations, common slump structures, and zones abundant and scattered burrows.

McGowen, M.K.

1988-02-01T23:59:59.000Z

35

Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques.

Gibson, J.D. [Sandia National Labs., Albuquerque, NM (United States); Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A. [Geomatrix Consultants, Inc., San Francisco, CA (United States)

1992-01-01T23:59:59.000Z

36

Petrofacies analysis - the petrophysical tool for geologic/engineering reservoir characterization  

SciTech Connect (OSTI)

Petrofacies analysis is defined as the characterization and classification of pore types and fluid saturations as revealed by petrophysical measures of a reservoir. The word {open_quotes}petrofacies{close_quotes} makes an explicit link between petroleum engineers concerns with pore characteristics as arbiters of production performance, and the facies paradigm of geologists as a methodology for genetic understanding and prediction. In petrofacies analysis, the porosity and resistivity axes of the classical Pickett plot are used to map water saturation, bulk volume water, and estimated permeability, as well as capillary pressure information, where it is available. When data points are connected in order of depth within a reservoir, the characteristic patterns reflect reservoir rock character and its interplay with the hydrocarbon column. A third variable can be presented at each point on the crossplot by assigning a color scale that is based on other well logs, often gamma ray or photoelectric effect, or other derived variables. Contrasts between reservoir pore types and fluid saturations will be reflected in changing patterns on the crossplot and can help discriminate and characterize reservoir heterogeneity. Many hundreds of analyses of well logs facilitated by spreadsheet and object-oriented programming have provided the means to distinguish patterns typical of certain complex pore types for sandstones and carbonate reservoirs, occurrences of irreducible water saturation, and presence of transition zones. The result has been an improved means to evaluate potential production such as bypassed pay behind pipe and in old exploration holes, or to assess zonation and continuity of the reservoir. Petrofacies analysis is applied in this example to distinguishing flow units including discrimination of pore type as assessment of reservoir conformance and continuity. The analysis is facilitated through the use of color cross sections and cluster analysis.

Watney, W.L.; Guy, W.J.; Gerlach, P.M. [Kansas Geological Survey, Lawrence, KS (United States)] [and others

1997-08-01T23:59:59.000Z

37

SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY: APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS  

SciTech Connect (OSTI)

The objective of the project was to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study focused on West Coalinga Field in California. The project initially attempted to build reservoir models based on different geologic and geophysical data independently using different tools, then to compare the results, and ultimately to integrate them all. We learned, however, that this strategy was impractical. The different data and tools need to be integrated from the beginning because they are all interrelated. This report describes a new approach to geostatistical modeling and presents an integration of geology and geophysics to explain the formation of the complex Coalinga reservoir.

Matthias G. Imhof; James W. Castle

2005-02-01T23:59:59.000Z

38

Development of Enabling Scientific Tools to Characterize the Geologic Subsurface at Hanford  

SciTech Connect (OSTI)

This final report to the Department of Energy provides a summary of activities conducted under our exploratory grant, funded through U.S. DOE Subsurface Biogeochemical Research Program in the category of enabling scientific tools, which covers the period from July 15, 2010 to July 14, 2013. The main goal of this exploratory project is to determine the parameters necessary to translate existing borehole log data into reservoir properties following scientifically sound petrophysical relationships. For this study, we focused on samples and Ge-based spectral gamma logging system (SGLS) data collected from wells located in the Hanford 300 Area. The main activities consisted of 1) the analysis of available core samples for a variety of mineralogical, chemical and physical; 2) evaluation of selected spectral gamma logs, environmental corrections, and calibration; 3) development of algorithms and a proposed workflow that permits translation of log responses into useful reservoir properties such as lithology, matrix density, porosity, and permeability. These techniques have been successfully employed in the petroleum industry; however, the approach is relatively new when applied to subsurface remediation. This exploratory project has been successful in meeting its stated objectives. We have demonstrated that our approach can lead to an improved interpretation of existing well log data. The algorithms we developed can utilize available log data, in particular gamma, and spectral gamma logs, and continued optimization will improve their application to ERSP goals of understanding subsurface properties.

Kenna, Timothy C.; Herron, Michael M.

2014-07-08T23:59:59.000Z

39

Reservoir Characterization, Formation Evaluation, and 3D Geologic Modeling of the Upper Jurassic Smackover Microbial Carbonate Reservoir and Associated Reservoir Facies at Little Cedar Creek Field, Northeastern Gulf of Mexico  

E-Print Network [OSTI]

characterization, formation evaluation, and 3D geologic modeling provides a sound framework in the establishment of a field/reservoir-wide development plan for optimal primary and enhanced recovery for these Upper Jurassic microbial carbonate and associated...

Al Haddad, Sharbel

2012-10-19T23:59:59.000Z

40

YOUNG GEOLOGY GEOLOGY OF THE  

E-Print Network [OSTI]

YOUNG GEOLOGY UNIVERSITY May, 1962 GEOLOGY OF THE SOUTHERN WASATCH MOUNTAINS AND VICIN~IM,UTAH C O ....................J. Keith Rigby 80 Economic Geology of North-Central Utah ...,............... Kcnneth C.Bdodc 85 Rod Log ........................Lehi F. Hintze, J. Ka# Ri&, & ClydeT. Hardy 95 Geologic Map of Southern

Seamons, Kent E.

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geology Publications 1 Fieldiana: Geology  

E-Print Network [OSTI]

in Ten Numbers) 73 No. 1. North American Plesiosaurs. By S. W. Williston. 1903. 78 pages, 34 illus. 77 No. Williston. 1903. 38 pages, 7 illus. 1 #12;Geology Publications 2 Fieldiana: Geology Pub. No. 82 No. 4

Westneat, Mark W.

42

Determination and Characterization of Ice Propagation Mechanisms on Surfaces Undergoing Dropwise Condensation  

E-Print Network [OSTI]

The mechanisms responsible for ice propagation on surfaces undergoing dropwise condensation have been determined and characterized. Based on experimental data acquired non-invasively with high speed quantitative microscopy, the freezing process...

Dooley, Jeffrey B.

2011-08-08T23:59:59.000Z

43

Information needs for characterization of high-level waste repository sites in six geologic media. Volume 2. Appendices  

SciTech Connect (OSTI)

Volume II contains appendices for the following: (1) remote sensing and surface mapping techniques; (2) subsurface mapping methods for site characterization; (3) gravity technique; (4) audio-frequency magnetotelluric technique; (5) seismic refraction technique; (6) direct-current electrical resistivity method; (7) magnetic technique; (8) seismic reflection technique; (9) seismic crosshole method; (10) mechanical downhole seismic velocity survey method; (11) borehole geophysical logging techniques; (12) drilling and coring methods for precharacterization studies; (13) subsurface drilling methods for site characterization; (14) geomechanical/thermomechanical techniques for precharacterization studies; (15)geomechanical/thermal techniques for site characterization studies; (16) exploratory geochemical techniques for precharacterization studies; (17) geochemical techniques for site characterization; (18) hydrologic techniques for precharacterization studies; (19) hydrologic techniques for site characterization; and (20) seismological techniques.

NONE

1985-05-01T23:59:59.000Z

44

Geology Major www.geology.pitt.edu/undergraduate/geology.html  

E-Print Network [OSTI]

Geology Major www.geology.pitt.edu/undergraduate/geology.html Revised: 03/2013 Geology is a scientific discipline that aims to understand every aspect of modern and ancient Earth. A degree in geology the field of geology, environmental and geotechnical jobs exist for people with BS degrees. A master

Jiang, Huiqiang

45

Geological and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, October 1, 1995--September 30, 1996  

SciTech Connect (OSTI)

The objective of the Ferron Sandstone project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic inter-well and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah was collected. Both new and existing data is being integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. This report covers research activities for fiscal year 1995-96, the third year of the project. Most work consisted of interpreting the large quantity of data collected over two field seasons. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) reservoirs models, and (4) field-scale evaluation of exploration strategies. The primary objective of the regional stratigraphic analysis is to provide a more detailed interpretation of the stratigraphy and gross reservoir characteristics of the Ferron Sandstone as exposed in outcrop. The primary objective of the case-studies work is to develop a detailed geological and petrophysical characterization, at well-sweep scale or smaller, of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir.

Chidsey, T.C. Jr.

1997-05-01T23:59:59.000Z

46

Determination of platinum and palladium in geologic samples by ion exchange chromatography with inductively coupled plasma atomic emission spectrometric detection  

SciTech Connect (OSTI)

An alternative procedure to the classical fire assay method for determining Pt and Pd in sulfide ores, concentrates, and furnace mattes is presented. A suitable amount of sample is digested with aqua regla and filtered and any remaining gangue is digested with a mixture of HF and HClO/sub 4/. The solution is filtered and the residue fused with sodium peroxide granules. The fused salts are dissolved in a dilute HCl acid solution and all three solutions combined. The resultant solution is passed through a Bio-Rad AG 50W-X8 cation exchange resin in the H/sup +/ form. The chlorocomplex anions of Pt and Pd are not retained by the cation exchange resin while the base metal cations are efficiently removed from the eluent. Pt and Pd concentrations are subsequently determined with an inductively coupled plasma (ICP). Preliminary experiments showing the method's potential expandability to Au are included.

Brown, R.J.; Biggs, W.R.

1984-04-01T23:59:59.000Z

47

Geological flows  

E-Print Network [OSTI]

In this paper geology and planetology are considered using new conceptual basis of high-speed flow dynamics. Recent photo technics allow to see all details of a flow, 'cause the flow is static during very short time interval. On the other hand, maps and images of many planets are accessible. Identity of geological flows and high-speed gas dynamics is demonstrated. There is another time scale, and no more. All results, as far as the concept, are new and belong to the author. No formulae, pictures only.

Yu. N. Bratkov

2008-11-19T23:59:59.000Z

48

Geological and petrophysical characterization of the ferron sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, October 1, 1994--September 30, 1995  

SciTech Connect (OSTI)

The objective of the Ferron Sandstone project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic interwell and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Quantitative geological and petrophysical information on the Cretaceous Ferron Sandstone in east-central Utah was collected. Both new and existing data is being integrated into a three-dimensional model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. Transfer of the project results to the petroleum industry is an integral component of the project. This report covers research activities for fiscal year 1994-95, the second year of the project. Most work consisted of developing field methods and collecting large quantities of existing and new data. We also continued to develop preliminary regional and case-study area interpretations. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) reservoirs models, and (4) field-scale evaluation of exploration strategies.

Chidsey, T.C. Jr.; Allison, M.L.

1996-05-01T23:59:59.000Z

49

Moderately to Poorly Welded Tuff, Bishop, California: Geophysical and Geological Characterization to Determine the Source of Radar  

E-Print Network [OSTI]

of Earth, Material, and Planetary Sciences, Southwest Research Institute, 6220 Culebra Road, San Antonio@swri.org) , Department of Earth, Material, and Planetary Sciences, Southwest Research Institute, 6220 Culebra Road, San in the Volcanic Tableland (Bishop, California) as an analog site because some Martian volcanoes and the Stealth

Stillman, David E.

50

MODERATELY TO POORLY WELDED TUFF, BISHOP, CALIFORNIA: GEOPHYSICAL AND GEOLOGICAL CHARACTERIZATION TO DETERMINE THE SOURCE OF RADAR SCATTERING.  

E-Print Network [OSTI]

. Stillman2 , 1 Dept. of Earth, Material, and Planetary Sci- ences, Southwest Research Institute,® 6220- bleland, Bishop, California (Fig. 1), as an analog [1] because some Martian volcanoes and the Stealth

Stillman, David E.

51

Geology and petrophysical characterization of the Ferron Sandstone for 3-D simulation of a fluvial-deltaic reservoir. Annual report, October 1, 1996--September 30, 1997  

SciTech Connect (OSTI)

The objective of the Ferron Sandstone (Utah) project is to develop a comprehensive, interdisciplinary, quantitative characterization of a fluvial-deltaic reservoir to allow realistic interwell and reservoir-scale models to be developed for improved oil-field development in similar reservoirs world-wide. Both new and existing data is being integrated into a 3-D model of spatial variations in porosity, storativity, and tensorial rock permeability at a scale appropriate for inter-well to regional-scale reservoir simulation. Simulation results could improve reservoir management through proper infill and extension drilling strategies, reduction of economic risks, increased recovery from existing oil fields, and more reliable reserve calculations. The project is divided into four tasks: (1) regional stratigraphic analysis, (2) case studies, (3) reservoirs models, and (4) field-scale evaluation of exploration strategies. The primary objective of the regional stratigraphic analysis is to provide a more detailed interpretation of the stratigraphy and gross reservoir characteristics of the Ferron Sandstone as exposed in outcrop. The primary objective of the case-studies work is to develop a detailed geological and petrophysical characterization, at well-sweep scale or smaller, of the primary reservoir lithofacies typically found in a fluvial-dominated deltaic reservoir. Work on tasks 3 and 4 consisted of developing two- and three-dimensional reservoir models at various scales. The bulk of the work on these tasks is being completed primarily during the last year of the project, and is incorporating the data and results of the regional stratigraphic analysis and case-studies tasks.

Chidsey, T.C. Jr.; Anderson, P.B.; Morris, T.H.; Dewey, J.A. Jr.; Mattson, A.; Foster, C.B.; Snelgrove, S.H.; Ryer, T.A.

1998-05-01T23:59:59.000Z

52

A Handbook for Geology Students Why study Geology?.............................................................................................3  

E-Print Network [OSTI]

1 A Handbook for Geology Students #12;2 Contents Why study Geology ..................................................................................7 Why Appalachian Geology?................................................................................10 Geology Faculty and Staff

Thaxton, Christopher S.

53

GEOLOGY (GEOL) Robinson Foundation  

E-Print Network [OSTI]

177Geology GEOLOGY (GEOL) Robinson Foundation PROFESSOR HARBOR ASSOCIATE PROFESSORS KNAPP, CONNORS ASSISTANT PROFESSORS GREER, RAHL MAJORS BACHELOR OF SCIENCE A major in geology leading to a Bachelor of Science degree consists of 50 credits as follows: 1. Geology 160, 185, 211, 311, 330, 350

Dresden, Gregory

54

Regional Geologic Map  

SciTech Connect (OSTI)

Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

Lane, Michael

2013-06-28T23:59:59.000Z

55

Regional Geologic Map  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

Lane, Michael

56

Geologic report for the Weldon Spring Raffinate Pits Site  

SciTech Connect (OSTI)

A preliminary geologic site characterization study was conducted at the Weldon Spring Raffinate Pits Site, which is part of the Weldon Spring Site, in St. Charles County, Missouri. The Raffinate Pits Site is under the custody of the Department of Energy (DOE). Surrounding properties, including the Weldon Spring chemical plant, are under the control of the Department of the Army. The study determined the following parameters: site stratigraphy, lithology and general conditions of each stratigraphic unit, and groundwater characteristics and their relation to the geology. These parameters were used to evaluate the potential of the site to adequately store low-level radioactive wastes. The site investigation included trenching, geophysical surveying, borehole drilling and sampling, and installing observation wells and piezometers to monitor groundwater and pore pressures.

none,

1984-10-01T23:59:59.000Z

57

Seismic characterization of fractures  

E-Print Network [OSTI]

Seismic characterization of fractures. José M. Carcione, OGS, Italy. Fractured geological formations are generally represented with a stress-strain relation.

JM Carcione

2014-06-07T23:59:59.000Z

58

Geologic Maps and Structures Name ______________________________ Geology 100 Harbor section  

E-Print Network [OSTI]

Geologic Maps and Structures Name ______________________________ Geology 100 ­ Harbor section The objectives of this lab are for you to learn the basic geologic structures in 3-D and to develop some facility in interpreting the nature of geologic structures from geologic maps and geologic cross sections. A big part

Harbor, David

59

BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES  

E-Print Network [OSTI]

#12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 33, Part 1 CONTENTS Tertiary Geologic History Geology of the Deadman Canyon 7112-Minute Quadrangle, Carbon County, Utah, Utah. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .James Douglas Smith 135 Geology

Seamons, Kent E.

60

Borehole Geologic Data for the 216-Z Crib Facilities, A Status of Data Assembled through the Hanford Borehole Geologic Information System (HBGIS)  

SciTech Connect (OSTI)

The Pacific Northwest National Laboratory (PNNL) is assembling existing borehole geologic information to aid in determining the distribution and potential movement of contaminants released to the environment and to aid selection of remedial alternatives. This information is being assembled via the Hanford Borehole Geologic Information System (HBGIS), which is being developed as part of the Characterization of Systems Project, managed by PNNL, and the Remediation Decision Support Task of the Groundwater Remediation Project, managed by Fluor Hanford, Inc. The purpose of this particular study was to assemble the existing borehole geologic data pertaining to sediments underlying the 216-Z Crib Facilities and the Plutonium Finishing Plant Closure Zone. The primary objective for Fiscal Year 2006 was to assemble the data, complete log plots, and interpret the location of major geologic contacts for each major borehole in and around the primary disposal facilities that received carbon tetrachloride. To date, 154 boreholes located within or immediately adjacent to 19 of the 216-Z crib facilities have been incorporated into HBGIS. Borehole geologic information for the remaining three Z-crib facilities is either lacking (e.g. 216-Z-13, -14, and -15), or has been identified as a lesser priority to be incorporated at a later date.

Last, George V.; Mackley, Rob D.; Lanigan, David C.

2006-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Department of Geology and Geological Engineering University of Mississippi Announces  

E-Print Network [OSTI]

Department of Geology and Geological Engineering University of Mississippi Announces Krista Pursuing a degree within the Geology & Geological Engineering department Record of financial need the University of Mississippi with a Bachelor of Science degree in geological engineering in 1982. After earning

Elsherbeni, Atef Z.

62

Geologic Maps and Structures Name ______________________________ Geology 100 Harbor section  

E-Print Network [OSTI]

Geologic Maps and Structures Name ______________________________ Geology 100 ­ Harbor section Read Ch. 7 before you begin. The objectives of this lab are for you to learn the basic geologic structures in 3-D and to develop some facility in interpreting the nature of geologic structures from geologic

Harbor, David

63

Environmental Geology Major www.geology.pitt.edu/uprogs.html  

E-Print Network [OSTI]

Environmental Geology Major www.geology.pitt.edu/uprogs.html Revised: 04/2004 Environmental geology in environmental geology provides the diverse skills required to work in many different employment settings issues. Within the field of geology, environmental and geotechnical jobs exist for people with BS degrees

Jiang, Huiqiang

64

EMSL - subsurface geological field  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

subsurface-geological-field en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-s...

65

subsurface geological field | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

field subsurface geological field Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a...

66

An Overview of Geologic Carbon Sequestration Potential in California  

SciTech Connect (OSTI)

As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

Cameron Downey; John Clinkenbeard

2005-10-01T23:59:59.000Z

67

Occurrence and Stability of Glaciations in Geologic Time  

E-Print Network [OSTI]

Earth is characterized by episodes of glaciations and periods of minimal or no ice through geologic time. Using the linear energy balance model (EBM), nonlinear EBM with empirical ice sheet schemes, the general circulation model coupled with an ice...

Zhuang, Kelin

2011-10-21T23:59:59.000Z

68

Remote geologic structural analysis of Yucca Flat  

SciTech Connect (OSTI)

The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA's characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL's RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

Foley, M.G.; Heasler, P.G.; Hoover, K.A. (Pacific Northwest Lab., Richland, WA (United States)); Rynes, N.J. (Northern Illinois Univ., De Kalb, IL (United States)); Thiessen, R.L.; Alfaro, J.L. (Washington State Univ., Pullman, WA (United States))

1991-12-01T23:59:59.000Z

69

Remote geologic structural analysis of Yucca Flat  

SciTech Connect (OSTI)

The Remote Geologic Analysis (RGA) system was developed by Pacific Northwest Laboratory (PNL) to identify crustal structures that may affect seismic wave propagation from nuclear tests. Using automated methods, the RGA system identifies all valleys in a digital elevation model (DEM), fits three-dimensional vectors to valley bottoms, and catalogs all potential fracture or fault planes defined by coplanar pairs of valley vectors. The system generates a cluster hierarchy of planar features having greater-than-random density that may represent areas of anomalous topography manifesting structural control of erosional drainage development. Because RGA uses computer methods to identify zones of hypothesized control of topography, ground truth using a well-characterized test site was critical in our evaluation of RGA`s characterization of inaccessible test sites for seismic verification studies. Therefore, we applied RGA to a study area centered on Yucca Flat at the Nevada Test Site (NTS) and compared our results with both mapped geology and geologic structures and with seismic yield-magnitude models. This is the final report of PNL`s RGA development project for peer review within the US Department of Energy Office of Arms Control (OAC) seismic-verification community. In this report, we discuss the Yucca Flat study area, the analytical basis of the RGA system and its application to Yucca Flat, the results of the analysis, and the relation of the analytical results to known topography, geology, and geologic structures. 41 refs., 39 figs., 2 tabs.

Foley, M.G.; Heasler, P.G.; Hoover, K.A. [Pacific Northwest Lab., Richland, WA (United States); Rynes, N.J. [Northern Illinois Univ., De Kalb, IL (United States); Thiessen, R.L.; Alfaro, J.L. [Washington State Univ., Pullman, WA (United States)

1991-12-01T23:59:59.000Z

70

CO2 Geologic Storage (Kentucky)  

Broader source: Energy.gov [DOE]

Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon...

71

1. BACKGROUND & OBJECTIVES For geological carbon sequestration, it is essential to  

E-Print Network [OSTI]

1. BACKGROUND & OBJECTIVES · For geological carbon sequestration, it is essential to understand Material Characterization for Intermediate-scale Testing to Develop Strategies for Geologic Sequestration to generate comprehensive data sets. Due to the nature of the CO2 geological sequestration where supercritical

72

Dispersion measurement as a method of quantifying geologic characterization and defining reservoir heterogeneity. Annual report, July 12, 1990--September 12, 1991  

SciTech Connect (OSTI)

Since reservoirs are heterogeneous, nonuniform, and anisotropic, the success or failure of many enhanced oil recovery techniques rests on our prediction of internal variability and the paths of fluid flow in the reservoir. The main objective of this project is to develop a greater understanding of reservoir heterogeneities through dispersion measurement. In this annual report, an approach to ways to estimate the dispersivities of reservoir rocks from well logs is presented. From a series of rock property measurements and dispersion tests the following studies have been made: A measure of rock heterogeneity is developed by using the effluent concentration at one pore volume injection in a matched viscosity miscible displacement. By this approach, a heterogeneity factor is determined from the measured S-shaped dispersion curve. The parameter f in the Coats-Smith capacitance model is redefined as the dispersion fraction f{sub d} (or mechanical mixing fraction). At the f{sub d} pore volume injection, the dynamic miscible displacement efficiency reaches maximum. Reflected on the dispersion curve, this number corresponds to the peak of the first derivative of concentration. With the concept of dispersion fraction, a unique solution to the capacitance model is obtained, and then an equivalent dispersivity is defined. Through experimental data on Berea and Brown sandstone samples, it has been found that the equivalent dispersivity is an exponential function of the heterogeneity factor and can be used as a reservoir characteristic. Through a key parameter of tortuosity, dispersivity is related to rock petrophysical properties. This semi-theoretical relationship forms the basis for determining dispersivities from well logs. The approach is validated through experimental studies on Berea and Brown sandstone samples. It has been found that the equivalent dispersivity is an exponential function of the heterogeneity factor and can be used as a reservoir characteristic.

Menzie, D.E.

1992-04-01T23:59:59.000Z

73

Method for determining formation quality factor from well log data and its application to seismic reservoir characterization  

DOE Patents [OSTI]

A method for seismic characterization of subsurface Earth formations includes determining at least one of compressional velocity and shear velocity, and determining reservoir parameters of subsurface Earth formations, at least including density, from data obtained from a wellbore penetrating the formations. A quality factor for the subsurface formations is calculated from the velocity, the density and the water saturation. A synthetic seismogram is calculated from the calculated quality factor and from the velocity and density. The synthetic seismogram is compared to a seismic survey made in the vicinity of the wellbore. At least one parameter is adjusted. The synthetic seismogram is recalculated using the adjusted parameter, and the adjusting, recalculating and comparing are repeated until a difference between the synthetic seismogram and the seismic survey falls below a selected threshold.

Walls, Joel; Taner, M. Turhan; Dvorkin, Jack

2006-08-08T23:59:59.000Z

74

REMOTE SENSING GEOLOGICAL SURVEY  

E-Print Network [OSTI]

-ASTER that operate in visible, near infrared and short wave infrared wavelengths of electromagnetic spectrum and Reflection Radiometer) Imagery Collection in CPRM Examples of sensors used in the CPRM geologic projects #12

75

Geology 102 --Earth, Life, and Time University of Tennessee --Fall 2011  

E-Print Network [OSTI]

-- tornados, hurricanes, volcanoes, earthquakes, tsunamis, and the constant threat of global warming. Yet interactions throughout the geologic past. Finally, we will examine the geologic record to determine the causes

Perfect, Ed

76

MINNESOTA GEOLOGICAL SURVEY Harvey Thorleifson, Director  

E-Print Network [OSTI]

for geologic carbon sequestration in the Midcontinent Rift System in Minnesota, Minnesota Geological Survey IN THE MIDCONTINENT RIFT SYSTEM OF MINNESOTA : ASSESSMENT OF POTENTIAL FOR DEEP GEOLOGIC SEQUESTRATION OF CARBONMINNESOTA GEOLOGICAL SURVEY Harvey Thorleifson, Director POTENTIAL CAPACITY FOR GEOLOGIC CARBON

77

Determination of NAPL-Water Interfacial Areas in Well-Characterized Porous  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData FilesShape, Density,TiO2(110). | EMSLDetermination of

78

Biochemical Characterization and Structure Determination of a Prolyl 4-Hydroxylase-like Protein from Bacillus anthracis  

E-Print Network [OSTI]

Assay 64 3.2.5.2 UV-Vis Spectroscopy Coupled Assay 65 3.2.5.3 O 2 Electrode Assay 66 3.2.6 Anaerobic UV-vis Spectroscopy Monitoring Anthrax-P4H Cofactor Binding 67 3.2.7 UV-vis Spectroscopic Titration of Anthrax-P4H with !KG 68 3.2.8 Determination.../Fe(II)-Oxygenases 83 3.3.7 O 2 Electrode Assay for Anthrax-P4H Activity 85 3.3.8 pH-Dependency of Uncoupled Reaction Catalyzed by Anthrax-P4H 88 3.3.9 Anaerobic UV-Vis Spectroscopy Monitoring Anthrax-P4H Binding 89 3.3.10 Recombinant Bacillus (Collagen...

Culpepper, Megen

2009-06-05T23:59:59.000Z

79

Wave Propagation in Jointed Geologic Media  

SciTech Connect (OSTI)

Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate representation of the heterogeneities that influence the material response. Constitutive models whose properties are determined from laboratory experiments on intact samples have been shown to over-predict the free field environment in large scale field experiments. Current methodologies for deriving in situ properties from laboratory measured properties are based on empirical equations derived for static geomechanical applications involving loads of lower intensity and much longer durations than those encountered in applications of interest involving wave propagation. These methodologies are not validated for dynamic applications, and they do not account for anisotropic behavior stemming from direcitonal effects associated with the orientation of joint sets in realistic geologies. Recent advances in modeling capabilities coupled with modern high performance computing platforms enable physics-based simulations of jointed geologic media with unprecedented details, offering a prospect for significant advances in the state of the art. This report provides a brief overview of these modern computational approaches, discusses their advantages and limitations, and attempts to formulate an integrated framework leading to the development of predictive modeling capabilities for wave propagation in jointed and fractured geologic materials.

Antoun, T

2009-12-17T23:59:59.000Z

80

Chapter 14 Geology and Soils  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

activity, could affect the project. Related information can be found in Chapter 15, Water and Appendix J, Geologic Hazard Assessment. 14.1 Affected Environment 14.1.1 Geology...

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

GEOLOGY, November 2008 871 INTRODUCTION  

E-Print Network [OSTI]

GEOLOGY, November 2008 871 INTRODUCTION A number of geodetic and morphotectonic techniques. 2). Geology, November 2008; v. 36; no. 11; p. 871­874; doi: 10.1130/G25073A.1; 3 figures; Data

Avouac, Jean-Philippe

82

Verification of geological/engineering model in waterflood areas  

SciTech Connect (OSTI)

The construction of a detailed geological/engineering model is the basis for development of the methodology for characterizing reservoir heterogeneity. The NIPER geological/engineering model is the subject of this report. The area selected for geological and production performance studies is a four-section area within the Powder River Basin which includes the Tertiary Incentive Project (TIP) pilot. Log, well test, production, and core data were acquired for construction of the geological model of a barrier island reservoir. In this investigation, emphasis was on the synthesis and quantification of the abundant geological information acquired from the literature and field studies (subsurface and outcrop) by mapping the geological heterogeneities that influence fluid flow. The geological model was verified by comparing it with the exceptionally complete production data available for Bell Creek field. This integration of new and existing information from various geological, geophysical, and engineering disciplines has enabled better definition of the heterogeneities that influence production during different recovery operations. 16 refs., 26 figs., 6 tabs.

Sharma, B.; Szpakiewicz, M.; Honarpour, M.; Schatzinger, R.A.; Tillman, R.

1988-12-01T23:59:59.000Z

83

CX-003827: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9,...

84

CX-000751: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pilocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide (Seismic) CX(s)...

85

CX-000752: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pilocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide (Pier F Drilling)...

86

CX-003818: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9,...

87

CX-003825: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9,...

88

CX-000750: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pilocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide (Terminal Island...

89

CX-003829: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9,...

90

CX-000753: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pilocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide (Literature and...

91

CX-003814: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles for Large Scale Geologic Storage of Carbon Dioxide CX(s) Applied: A9...

92

GEOLOGY, September 2010 823 INTRODUCTION  

E-Print Network [OSTI]

GEOLOGY, September 2010 823 INTRODUCTION Deformations around transpressive plate boundaries numerical models constrained by global positioning system (GPS) observations and Geology, September 2010; v. 38; no. 9; p. 823­826; doi: 10.1130/G30963.1; 3 figures; 1 table. © 2010 Geological Society

Demouchy, Sylvie

93

DEPARTMENT OF GEOLOGY & GEOPHYSICS UNDERGRADUATE  

E-Print Network [OSTI]

DEPARTMENT OF GEOLOGY & GEOPHYSICS UNDERGRADUATE SURVIVAL MANUAL 2013-2014 SCHOOL OF OCEAN & EARTH SCIENCE & TECHNOLOGY UNIVERSITY OF HAWAI`I AT MNOA Updated July 2013 #12;CONTENTS INTRODUCTION 1 Geology and Geophysics 1 Job Opportunities 1 Prepare Educationally 1 Challenges and Rewards 1 THE DEPARTMENT OF GEOLOGY

94

The Lapworth Museum of Geology  

E-Print Network [OSTI]

The Lapworth Museum of Geology www.lapworth.bham.ac.uk www.bham.ac.uk Events The Lapworth Lectures take place on evenings during University term time. These lectures are on a wide range of geological geological topics, usually based around collections in the museum. These provide an opportunity to see

Birmingham, University of

95

September 2012 BASIN RESEARCH AND ENERGY GEOLOGY  

E-Print Network [OSTI]

September 2012 BASIN RESEARCH AND ENERGY GEOLOGY STATE UNIVERSITY OF NEW YORK at BINGHAMTON research programs in geochemistry, sedimentary geology, or Earth surface processes with the potential the position, visit the Geological Sciences and Environmental Studies website (www.geology

Suzuki, Masatsugu

96

CX-005159: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005159: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Indiana Geological Survey CX(s) Applied: A9,...

97

Geologic Sequestration The National Energy Technology Laboratory and Los Alamos National Laboratory  

E-Print Network [OSTI]

Geologic Sequestration The National Energy Technology Laboratory and Los Alamos National Laboratory) and the National Energy Technology Laboratory (NETL) are collaborating to develop a national plan to determine

98

Co2 geological sequestration  

SciTech Connect (OSTI)

Human activities are increasingly altering the Earth's climate. A particular concern is that atmospheric concentrations of carbon dioxide (CO{sub 2}) may be rising fast because of increased industrialization. CO{sub 2} is a so-called ''greenhouse gas'' that traps infrared radiation and may contribute to global warming. Scientists project that greenhouse gases such as CO{sub 2} will make the arctic warmer, which would melt glaciers and raise sea levels. Evidence suggests that climate change may already have begun to affect ecosystems and wildlife around the world. Some animal species are moving from one habitat to another to adapt to warmer temperatures. Future warming is likely to exceed the ability of many species to migrate or adjust. Human production of CO{sub 2} from fossil fuels (such as at coal-fired power plants) is not likely to slow down soon. It is urgent to find somewhere besides the atmosphere to put these increased levels of CO{sub 2}. Sequestration in the ocean and in soils and forests are possibilities, but another option, sequestration in geological formations, may also be an important solution. Such formations could include depleted oil and gas reservoirs, unmineable coal seams, and deep saline aquifers. In many cases, injection of CO2 into a geological formation can enhance the recovery of hydrocarbons, providing value-added byproducts that can offset the cost of CO{sub 2} capture and sequestration. Before CO{sub 2} gas can be sequestered from power plants and other point sources, it must be captured. CO{sub 2} is also routinely separated and captured as a by-product from industrial processes such as synthetic ammonia production, H{sub 2} production, and limestone calcination. Then CO{sub 2} must be compressed into liquid form and transported to the geological sequestration site. Many power plants and other large emitters of CO{sub 2} are located near geological formations that are amenable to CO{sub 2} sequestration.

Xu, Tianfu

2004-11-18T23:59:59.000Z

99

High resolution reservoir geological modelling using outcrop information  

SciTech Connect (OSTI)

This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

1997-08-01T23:59:59.000Z

100

Petroleum geology of Tunisia  

SciTech Connect (OSTI)

Recent discoveries and important oil shows have proven the existence of hydrocarbons in newly identified depocenters and reservoirs. In general, except for some areas around the producing fields, Tunisia is largely underdrilled. The national company ETAP has decided to release data and to publish a synthesis on the petroleum geology of Tunisia. The geology of Tunisia provides a fine example of the contrast between Alpine folding, which typifies northern Tunisia and the African craton area of the Saharan part. Eastern Tunisia corresponds to an unstable platform forming plains or low hills and extending eastwards to the shallow Pelagian Sea. There are a wide variety of basins: central and northern Tunisia represents a front basin the Saharan Ghadames basin or the Chott trough are sag basins; the Gulf of Gabes was formed as a distension margin the Gulf of Hammamet is a composite basin and several transversal grabens cut across the country, including offshore, and are rift-type basins. All these features are known to be oil prolific throughout the world. Two large fields and many modest-size pools are known in Tunisia. Oil and gas fields in the surrounding countries, namely the Saharan fields of Algeria and Libya the large Bouri field offshore Tripolitania and discoveries in the Italian part of the Straits of Sicily, suggest a corresponding potential in Tunisia. Exposed paleogeographic and structural maps, balanced sections, and examples of fields and traps will support an optimistic evaluation of the future oil exploration in Tunisia.

Burollet, P.F. (CIFEG, Paris (France)); Ferjami, A.B.; Mejri, F. (ETAP, Tunis (Tunisia))

1990-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Montana State University 1 Geology Option  

E-Print Network [OSTI]

Montana State University 1 Geology Option The Geology Option is a degree program designed and private sectors in fields such as petroleum geology, mining geology, seismology (including earthquake and volcanic risk assessment), hydrology (surface and ground water) natural-hazard geology, environmental clean

Maxwell, Bruce D.

102

WSU B.S. Geology Curriculum (structural)  

E-Print Network [OSTI]

WSU B.S. Geology Curriculum Geology GEL 3300 (structural) GEL 3400 (sed/strat) Geology Elective 1 Geology Elective 2 Yr 1 Yr 2 Yr 3 Yr 4 PHY 2130/31 MAT 2010 PHY 2140/41 CHEM 1220/30 MAT 1800 Cognates GEL 5593 (writing intensive) GEL 3160 (petrology) GEL 3650 (field camp) Geology Elective 3 GEL 2130

Berdichevsky, Victor

103

Geologic Framework Model (GFM2000)  

SciTech Connect (OSTI)

The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the geologic framework model (200 feet [61 meters]), discussed in Section 6.4.2, limits the size of features that can be resolved by the model but is appropriate for the distribution of data available and its intended use. Uncertainty and limitations are discussed in Section 6.6 and model validation is discussed in Section 7.

T. Vogt

2004-08-26T23:59:59.000Z

104

GRADUATE PROGRAM IN GEOLOGICAL ENGINEERING  

E-Print Network [OSTI]

5342 Geological Engineering: Soils and Weak Rocks 3 2 EOSC 535 Transport Processes in Porous Media 3 2 Site Investigation and Management 3 2 CIVL 574 Experimental Soil Mechanics 3 2 CIVL 579 Geosynthetics 2 Geological Engineering Soils and Weak Rocks 3 2 CIVL 408 Geo-Environmental Engineering 3 2 CIVL 410

105

GEOLOGY AND FRACTURE SYSTEM AT STRIPA  

E-Print Network [OSTI]

of underground test site •• 1.5 Regional bedrock geology.Stripa mine, sub-till geology in the immediate mine area.Fig. 2.1 Stripa mine, sub-till geology in the immediate mine

Olkiewicz, O.

2010-01-01T23:59:59.000Z

106

Process for structural geologic analysis of topography and point data  

DOE Patents [OSTI]

A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

Eliason, Jay R. (Richland, WA); Eliason, Valerie L. C. (Richland, WA)

1987-01-01T23:59:59.000Z

107

Panel 2, Geologic Storage of Hydrogen  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geologic Storage - Types Types of Underground Storage Aquifers Aquifers are similar in geology to depleted reservoirs, but have not been proven to trap gas and must be developed....

108

CX-011005: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-011005: Categorical Exclusion Determination Scalable, Automated, Semi permanent Seismic Method for Detecting Carbon Dioxide Plume Extent During Geological... CX(s) Applied:...

109

CX-011006: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-011006: Categorical Exclusion Determination Scalable, Automated, Semi Permanent Seismic Method for Detecting Carbon Dioxide Plume Extent During Geological... CX(s) Applied:...

110

OPTIMAL GEOLOGICAL ENVIRONMENTS FOR CARBON DIOXIDE DISPOSAL IN SALINE AQUIFERS IN THE UNITED STATES  

SciTech Connect (OSTI)

Recent research and applications have demonstrated technologically feasible methods, defined costs, and modeled processes needed to sequester carbon dioxide (CO{sub 2}) in saline-water-bearing formations (aquifers). One of the simplifying assumptions used in previous modeling efforts is the effect of real stratigraphic complexity on transport and trapping in saline aquifers. In this study we have developed and applied criteria for characterizing saline aquifers for very long-term sequestration of CO{sub 2}. The purpose of this pilot study is to demonstrate a methodology for optimizing matches between CO{sub 2} sources and nearby saline formations that can be used for sequestration. This project identified 14 geologic properties used to prospect for optimal locations for CO{sub 2} sequestration in saline-water-bearing formations. For this demonstration, we digitized maps showing properties of saline formations and used analytical tools in a geographic information system (GIS) to extract areas that meet variably specified prototype criteria for CO{sub 2} sequestration sites. Through geologic models, realistic aquifer properties such as discontinuous sand-body geometry are determined and can be used to add realistic hydrologic properties to future simulations. This approach facilitates refining the search for a best-fit saline host formation as our understanding of the most effective ways to implement sequestration proceeds. Formations where there has been significant drilling for oil and gas resources as well as extensive characterization of formations for deep-well injection and waste disposal sites can be described in detail. Information to describe formation properties can be inferred from poorly known saline formations using geologic models in a play approach. Resulting data sets are less detailed than in well-described examples but serve as an effective screening tool to identify prospects for more detailed work.

Susan D. Hovorka

1999-02-01T23:59:59.000Z

111

Reprinted February 2003 4-H Geology  

E-Print Network [OSTI]

4-H 340 Reprinted February 2003 4-H Geology Member Guide OREGON STATE UNIVERSITY EXTENSION SERVICE #12;Contents 4-H Geology Project 3 Project Recommendations 3 Books on Geology 4 Trip Planning 4 Contests 7 Identification of Rocks and Minerals 7 Physical Properties of Minerals 8 Generalized Geologic

Tullos, Desiree

112

Geology of the Shenandoah National Park Region  

E-Print Network [OSTI]

1 Geology of the Shenandoah National Park Region 39th Annual Virginia Geological Field Conference October 2nd - 3rd, 2009 Scott Southworth U. S. Geological Survey L. Scott Eaton James Madison University Meghan H. Lamoreaux College of William & Mary William C. Burton U. S. Geological Survey Christopher M

Eaton, L. Scott

113

242 Department of Geology Undergraduate Catalogue 201415  

E-Print Network [OSTI]

242 Department of Geology Undergraduate Catalogue 2014­15 Department of Geology Chairperson: Abdel. Assistant Instructor: P Hajj-Chehadeh, Abdel-Halim The Department of Geology offers programs leading to the degree of Bachelor of Science in Geology, and Master of Science degrees in certain areas of the vast

114

Assessment Report, Department of Geology August, 2012  

E-Print Network [OSTI]

Assessment Report, Department of Geology August, 2012 1. Learning Goals ALL students in geology, classification schemes, geologic history and processes, and the structure of the Earth. 3. demonstrate an understanding of the variability, complexity, and interdependency of processes within geologic systems. 4. use

Bogaerts, Steven

115

149Department of Geology Graduate Catalogue 201415  

E-Print Network [OSTI]

149Department of Geology Graduate Catalogue 2014­15 Department of Geology Chairperson: Abdel. Assistant Instructor: P Hajj-Chehadeh, Abdel-Halim MS in Geology Candidates pursuing the Master of Science program in geology must complete seven graduate courses (21 cr.) and a thesis (9 cr.). Students may select

116

Geological evaluation of Gulf Coast salt domes: overall assessment of the Gulf Interior Region  

SciTech Connect (OSTI)

The three major phases in site characterization and selection are regional studies, area studies, and location studies. This report characterizes regional geologic aspects of the Gulf Coast salt dome basins. It includes general information from published sources on the regional geology; the tectonic, domal, and hydrologic stability; and a brief description the salt domes to be investigated. After a screening exercise, eight domes were chosen for further characterization: Keechi, Oakwood, and Palestine Domes in Texas; Vacherie and Rayburn's domes in North Louisiana; and Cypress Creek and Richton domes in Mississippi. A general description of each, maps of the location, property ownership, and surface geology, and a geologic cross section were presented for each dome.

none,

1981-10-01T23:59:59.000Z

117

Environmental Responses to Carbon Mitigation through Geological Storage  

SciTech Connect (OSTI)

In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives. ? Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. ? Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

Cunningham, Alfred; Bromenshenk, Jerry

2013-08-30T23:59:59.000Z

118

BACHELOR OF SCIENCE IN ENVIRONMENTAL GEOLOGY DEPARTMENT OF GEOLOGY AND PLANETARY SCIENCE  

E-Print Network [OSTI]

BACHELOR OF SCIENCE IN ENVIRONMENTAL GEOLOGY DEPARTMENT OF GEOLOGY AND PLANETARY SCIENCE WWW.GEOLOGY" for a complete range of advising information plus the latest Environmental Geology requirements. CORE COURSES (check each as completed): (30 credits) ____Choose one of the following introductory geology classes

Jiang, Huiqiang

119

Current Status of The Romanian National Deep Geological Repository Program  

SciTech Connect (OSTI)

Construction of a deep geological repository is a very demanding and costly task. By now, countries that have Candu reactors, have not processed the spent fuel passing to the interim storage as a preliminary step of final disposal within the nuclear fuel cycle back-end. Romania, in comparison to other nations, represents a rather small territory, with high population density, wherein the geological formation areas with radioactive waste storage potential are limited and restricted not only from the point of view of the selection criteria due to the rocks natural characteristics, but also from the point of view of their involvement in social and economical activities. In the framework of the national R and D Programs, series of 'Map investigations' have been made regarding the selection and preliminary characterization of the host geological formation for the nation's spent fuel deep geological repository. The fact that Romania has many deposits of natural gas, oil, ore and geothermal water, and intensively utilizes soil and also is very forested, cause some of the apparent acceptable sites to be rejected in the subsequent analysis. Currently, according to the Law on the spent fuel and radioactive waste management, including disposal, The National Agency of Radioactive Waste is responsible and coordinates the national strategy in the field and, subsequently, further actions will be decided. The Romanian National Strategy, approved in 2004, projects the operation of a deep geological repository to begin in 2055. (authors)

Radu, M.; Nicolae, R.; Nicolae, D. [Center of Technology and Engineering for Nuclear Objectives (CITON), ILFOV County (Romania)

2008-07-01T23:59:59.000Z

120

Geologic and geochemical studies of the New Albany Shale Group (Devonian-Mississippian) in Illinois. Final report  

SciTech Connect (OSTI)

The Illinois State Geological Survey is conducting geological and geochemical investigations to evaluate the potential of New Albany Group shales as a source of hydrocarbons, particularly natural gas. Geological studies include stratigraphy and structure, mineralogic and petrographic characterization; analyses of physical properties; and development of a computer-based resources evaluation system. Geochemical studies include organic carbon content and trace elements; hydrocarbon content and composition; and adsorption/desorption studies of gas through shales. Separate abstracts have been prepared for each task reported.

Bergstrom, R.E.; Shimp, N.F.

1980-06-30T23:59:59.000Z

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

pre or co-requisite Geology Course Prerequisite Chart  

E-Print Network [OSTI]

pre or co-requisite Geology Course Prerequisite Chart 1101, 1102, 1103,1104, 1105 2250 3160 2500 hours geology junior standing; six hours geology depends on course senior standing, permission hours geology six hours geology Evolution of the Earth Geophysics Physical Geology , Historical Geology

Thaxton, Christopher S.

122

Pre-test geological and geochemical evaluation of the Caprock, St. Peter Sandstone and formation fluids, Yakley Field, Pike County, Illinois  

SciTech Connect (OSTI)

The goal of these studies is to ensure long-term stable containment of air in the underground reservoirs used in conjunction with compressed air energy storage (CAES) plants. The specific objective is to develop stability criteria and engineering guidelines for designing CAES reservoirs in each of the three major reservoir types, including aquifers, salt cavities, and mined hard rock caverns. This document characterizes the geologic nature of porous media constituents native to the aquifer field test site near Pittsfield, Illinois. The geologic samples were subjected to geochemical evaluations to determine anticipated responses to cyclic air injection, heating and moisture - conditions typical of an operating CAES reservoir. This report documents the procedures used and results obtained from these analyses.

Not Available

1983-03-01T23:59:59.000Z

123

Why Geology Matters: Decoding the Past, Anticipating the Future  

E-Print Network [OSTI]

Review: Why Geology Matters: Decoding the Past, AnticipatingUSA Macdougall, Doug. Why Geology Matters: Decoding theE-book available. Why Geology Matters pursues two goals: to

Anderson, Byron P.

2011-01-01T23:59:59.000Z

124

www.geology.pdx.edu Undergraduate Degrees Offered  

E-Print Network [OSTI]

electron microscope, atomic absorption spectrometer, ICP-mass spectrometer, ground penetrating radarGEOLOGY www.geology.pdx.edu Undergraduate Degrees Offered: Bachelor of Arts in Geology Bachelor

125

Risk assessment framework for geologic carbon sequestration sites  

E-Print Network [OSTI]

Framework for geologic carbon sequestration risk assessment,for geologic carbon sequestration risk assessment, Energyfor Geologic Carbon Sequestration, Int. J. of Greenhouse Gas

Oldenburg, C.

2010-01-01T23:59:59.000Z

126

Certification Framework Based on Effective Trapping for Geologic Carbon Sequestration  

E-Print Network [OSTI]

workshop on geologic carbon sequestration, 2002. Benson,verification of geologic carbon sequestration, Geophys. Res.CO 2 from geologic carbon sequestration sites, Vadose Zone

Oldenburg, Curtis M.

2009-01-01T23:59:59.000Z

127

Technical Geologic Overview of Long Valley Caldera for the Casa...  

Open Energy Info (EERE)

of geothermal production. This report addresses geologic considerations in preparing an EISEIR including:Geology, soils and mineralsGeologic hazardsSeismic hazardsFaulting...

128

Geological Disposal Concept Selection Aligned with a Voluntarism Process - 13538  

SciTech Connect (OSTI)

The UK's Radioactive Waste Management Directorate (RWMD) is currently at a generic stage in its implementation programme. The UK site selection process is a voluntarist process and, as yet, no communities have decided to participate. RWMD has set out a process to describe how a geological disposal concept would be selected for the range of higher activity wastes in the UK inventory, including major steps and decision making points, aligned with the stages of the UK site selection process. A platform of information is being developed on geological disposal concepts at various stages of implementation internationally and, in order to build on international experience, RWMD is developing its approach to technology transfer. The UK has a range of different types of higher activity wastes with different characteristics; therefore a range of geological disposal concepts may be needed. In addition to identifying key aspects for considering the compatibility of different engineered barrier systems for different types of waste, RWMD is developing a methodology to determine minimum separation distances between disposal modules in a co-located geological disposal facility. RWMD's approach to geological disposal concept selection is intended to be flexible, recognising the long term nature of the project. RWMD is also committed to keeping alternative radioactive waste management options under review; an approach has been developed and periodic reviews of alternative options will be published. (authors)

Crockett, Glenda; King, Samantha [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)] [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

2013-07-01T23:59:59.000Z

129

Geology in coal resource utilization  

SciTech Connect (OSTI)

The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base.

Peters, D.C. (ed.)

1991-01-01T23:59:59.000Z

130

GEOLOGY, February 2008 151 INTRODUCTION  

E-Print Network [OSTI]

College, 600 1st Street West, Mount Vernon, Iowa 52314, USA Yemane Asmerom Victor Y. Polyak Department of Miami, 4600 Rickenbacker Causeway, Miami, Florida 33149, USA Peter Cole Department of Geology, Cornell College, 600 1st Street West, Mount Vernon, Iowa 52314, USA Ann F. Budd Department of Geoscience

Asmerom, Yemane

131

Geologic history of the National Geotechnical Experimentation Sites, Texas A&M University Riverside Campus, Brazos County, Texas  

E-Print Network [OSTI]

Science Foundation. The NGES sites were created to accelerate research in geotechnical and geo-environmental engineering by allowing multi-user access to well characterized sand and clay areas. The geologic history in this report will contribute...

Jennings, Susan Patricia

1996-01-01T23:59:59.000Z

132

Geology, Environmental Science, Geography, Environmental Management  

E-Print Network [OSTI]

2011 Geology, Environmental Science, Geography, Environmental Management Postgraduate Handbook #12 Environmental Management 14 Environmental Science 18 Geography 22 Geographic Information Science 26 Geology, Environmental Science, Geography, Environmental Management Postgraduate Handbook Editors David Hayward, Ilse

Goodman, James R.

133

Geologic Framework Model Analysis Model Report  

SciTech Connect (OSTI)

The purpose of this report is to document the Geologic Framework Model (GFM), Version 3.1 (GFM3.1) with regard to data input, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, qualification status of the model, and the differences between Version 3.1 and previous versions. The GFM represents a three-dimensional interpretation of the stratigraphy and structural features of the location of the potential Yucca Mountain radioactive waste repository. The GFM encompasses an area of 65 square miles (170 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the GFM were chosen to encompass the most widely distributed set of exploratory boreholes (the Water Table or WT series) and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The GFM was constructed from geologic map and borehole data. Additional information from measured stratigraphy sections, gravity profiles, and seismic profiles was also considered. This interim change notice (ICN) was prepared in accordance with the Technical Work Plan for the Integrated Site Model Process Model Report Revision 01 (CRWMS M&O 2000). The constraints, caveats, and limitations associated with this model are discussed in the appropriate text sections that follow. The GFM is one component of the Integrated Site Model (ISM) (Figure l), which has been developed to provide a consistent volumetric portrayal of the rock layers, rock properties, and mineralogy of the Yucca Mountain site. The ISM consists of three components: (1) Geologic Framework Model (GFM); (2) Rock Properties Model (RPM); and (3) Mineralogic Model (MM). The ISM merges the detailed project stratigraphy into model stratigraphic units that are most useful for the primary downstream models and the repository design. These downstream models include the hydrologic flow models and the radionuclide transport models. All the models and the repository design, in turn, will be incorporated into the Total System Performance Assessment (TSPA) of the potential radioactive waste repository block and vicinity to determine the suitability of Yucca Mountain as a host for the repository. The interrelationship of the three components of the ISM and their interface with downstream uses are illustrated in Figure 2.

R. Clayton

2000-12-19T23:59:59.000Z

134

Hanford Borehole Geologic Information System (HBGIS)  

SciTech Connect (OSTI)

This is a user's guide for viewing and downloading borehold geologic data through a web-based interface.

Last, George V.; Mackley, Rob D.; Saripalli, Ratna R.

2005-09-26T23:59:59.000Z

135

A publication of the Department of Geology  

E-Print Network [OSTI]

#12;A publication of the Department of Geology Brigharn Young University Provo, Utah 84602 Editors W. Kenneth Hamblin Cynthia M. Gardner Brigham Young University Geology Studies is published semiannually by the department. Geology Studies consists of graduate-student and staff research

Seamons, Kent E.

136

, UNIVERSITY Brigham Young University Geology Studies  

E-Print Network [OSTI]

, UNIVERSITY #12;Brigham Young University Geology Studies Volume 1 5 - 1968 Part 2 Studies for Students No. 1 Guide to the Geology of the Wasatch Mountain Front, Between Provo Canyon and Y Mountain, Northeast of Provo, Utah by J. Keith Rigby and Lehi F. Hintze #12;A publication of the Department of Geology

Seamons, Kent E.

137

GeoloGy (Geol) Robinson Foundation  

E-Print Network [OSTI]

182 GeoloGy (Geol) Robinson Foundation PROFESSOR HARBoR ASSOCIATE PROFESSORS KNAPP, CONNORS ASSISTANT PROFESSORS GREER, RAHL MAJORS BACHELOR OF SCIENCE Amajor in geology leading to a Bachelor of Science degree consists of 50 credits as follows: 1. Geology160,185,211,311,330,350,andacom- prehensive

Dresden, Gregory

138

Geological carbon sequestration: critical legal issues  

E-Print Network [OSTI]

Geological carbon sequestration: critical legal issues Ray Purdy and Richard Macrory January 2004 Tyndall Centre for Climate Change Research Working Paper 45 #12;1 Geological carbon sequestration an integrated assessment of geological carbon sequestration (Project ID code T2.21). #12;2 1 Introduction

Watson, Andrew

139

ABOUT THE JOURNAL One of the oldest journals in geology, The Journal of Geology has  

E-Print Network [OSTI]

ABOUT THE JOURNAL One of the oldest journals in geology, The Journal of Geology has promoted the systematic philosophical and fundamental study of geology since 1893. The Journal publishes original research across a broad range of subfields in geology, including geophysics, geochemistry, sedimentology

Mateo, Jill M.

140

Courses: Geology (GEOL) Page 325Sonoma State University 2014-2015 Catalog Geology (GEOL)  

E-Print Network [OSTI]

Courses: Geology (GEOL) Page 325Sonoma State University 2014-2015 Catalog Geology (GEOL) geoL 102 our dynAMiC eArtH: introduCtion to geoLogy (3) Lecture, 2 hours; laboratory, 3 hours. A study. Empha- sis on local geology, including earthquakes and other environmental aspects. Labo- ratory study

Ravikumar, B.

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Geology and Geohazards in Taiwan Geologic Field Course and Study Abroad Experience  

E-Print Network [OSTI]

Geology and Geohazards in Taiwan Geologic Field Course and Study Abroad Experience Winter Break 2015 Interested in field geology? Interested in environmental hazards and climate? Want to visit #12;Geology and Geohazards in Taiwan This is a 3-week course for students interested in mixing field

Alpay, S. Pamir

142

Mathematical Geology, Vol. 34, No. 1, January 2002 ( C 2002) On Modelling Discrete Geological Structures  

E-Print Network [OSTI]

Mathematical Geology, Vol. 34, No. 1, January 2002 ( C 2002) On Modelling Discrete Geological there is a large amount of missing observations, which often is the case in geological applications. We make,predictions,MarkovchainMonteCarlo,simulatedannealing,incomplete observations. INTRODUCTION In many geological applications, there is an interest in predicting properties

Baran, Sándor

143

Roadmap: Geology Environmental Geology -Bachelor of Science [AS-BS-GEOL-EGEO  

E-Print Network [OSTI]

Roadmap: Geology ­ Environmental Geology - Bachelor of Science [AS-BS-GEOL-EGEO] College of Arts This roadmap is a recommended semester-by-semester plan of study for this major. However, courses on page 2 General Elective 8 #12;Roadmap: Geology ­ Environmental Geology - Bachelor of Science [AS

Sheridan, Scott

144

R. Jonk $ Department of Geology and Petro-leum Geology, University of Aberdeen, AB24  

E-Print Network [OSTI]

Kingdom) and a geological con- sultant for various oil companies. His research focused primarilyAUTHORS R. Jonk $ Department of Geology and Petro- leum Geology, University of Aberdeen, AB24 3UE, Texas 77060; rene.jonk@exxonmobil.com Rene Jonk received his M.Sc. degree in structural geology from

Mazzini, Adriano

145

Physical Geology Laboratory Manual Charles Merguerian and J Bret Bennington  

E-Print Network [OSTI]

Physical Geology Laboratory Manual Charles Merguerian and J Bret Bennington Geology Department Hofstra University © 2006 #12;i PHYSICAL GEOLOGY LABORATORY MANUAL Ninth Edition Professors Charles Merguerian and J Bret Bennington Geology Department Hofstra University #12;ii ACKNOWLEDGEMENTS We thank

Merguerian, Charles

146

MSc STUDY PROGRAMME IN THE FACULTY OF GEOLOGY AND GEOENVIRONMENT, UNIVERSITY OF ATHENS 201314 Geology and Geoenvironment  

E-Print Network [OSTI]

MSc STUDY PROGRAMME IN THE FACULTY OF GEOLOGY AND GEOENVIRONMENT, UNIVERSITY OF ATHENS 201314 1 Geology and Geoenvironment MSc Programme STUDENT HANDBOOK Applied Environmental Geology, Stratigraphy Paleontology, Geography and Environment, Dynamic Geology and Tectonics/ Hydrogeology, Geophysics

Kouroupetroglou, Georgios

147

Geologic analysis of Devonian Shale cores  

SciTech Connect (OSTI)

Cleveland Cliffs Iron Company was awarded a DOE contract in December 1977 for field retrieval and laboratory analysis of cores from the Devonian shales of the following eleven states: Michigan, Illinois, Indiana, Ohio, New York, Pennsylvania, West Virginia, Maryland, Kentucky, Tennessee and Virginia. The purpose of this project is to explore these areas to determine the amount of natural gas being produced from the Devonian shales. The physical properties testing of the rock specimens were performed under subcontract at Michigan Technological University (MTU). The study also included LANDSAT information, geochemical research, structural sedimentary and tectonic data. Following the introduction, and background of the project this report covers the following: field retrieval procedures; laboratory procedures; geologic analysis (by state); references and appendices. (ATT)

none,

1982-02-01T23:59:59.000Z

148

Geology and hydrocarbon prospects of Latvia  

SciTech Connect (OSTI)

Oil prospects in Latvia are associated with the Baltic syneclise. Latvia occupies about one fourth of that large tectonic depression; zones of oil accumulation continue there from adjacent areas: the Telshai rampart (Lithuania) and the Leba nose (Polish offshore). The oil prospects in separate areas are determined by their position regarding the sources of oil generation--the Gdansk-Kura and Liepaya depressions. The most prospective areas are the Liepaya-Saldus zone of highs and the Pape-Barta trough. The Liepaya-Saldus zone was situated so that the hydrocarbon migration path crossed it. It probably is an important oil accumulation zone. The paper describes the geology of Latvia and the one oil field in Latvia.

Freimanis, A. (Latvian Dept. of Geology, Riga (Latvia)); Margulis, L.; Brangulis, A.; Kanev, S.; Pomerantseva, R. (Inst. of Marine Geology and Geophysics, Riga (Latvia))

1993-12-06T23:59:59.000Z

149

Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The air intake shaft (AS) was geologically mapped from the surface to the Waste Isolation Pilot Plant (WIPP) facility horizon. The entire shaft section including the Mescalero Caliche, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation was geologically described. The air intake shaft (AS) at the Waste Isolation Pilot Plant (WIPP) site was constructed to provide a pathway for fresh air into the underground repository and maintain the desired pressure balances for proper underground ventilation. It was up-reamed to minimize construction-related damage to the wall rock. The upper portion of the shaft was lined with slip-formed concrete, while the lower part of the shaft, from approximately 903 ft below top of concrete at the surface, was unlined. As part of WIPP site characterization activities, the AS was geologically mapped. The shaft construction method, up-reaming, created a nearly ideal surface for geologic description. Small-scale textures usually best seen on slabbed core were easily distinguished on the shaft wall, while larger scale textures not generally revealed in core were well displayed. During the mapping, newly recognized textures were interpreted in order to refine depositional and post-depositional models of the units mapped. The objectives of the geologic mapping were to: (1) provide confirmation and documentation of strata overlying the WIPP facility horizon; (2) provide detailed information of the geologic conditions in strata critical to repository sealing and operations; (3) provide technical basis for field adjustments and modification of key and aquifer seal design, based upon the observed geology; (4) provide geological data for the selection of instrument borehole locations; (5) and characterize the geology at geomechanical instrument locations to assist in data interpretation. 40 refs., 27 figs., 1 tab.

Holt, R.M.; Powers, D.W. (IT Corporation (USA))

1990-12-01T23:59:59.000Z

150

Monitored Geologic Repository Project Description Document  

SciTech Connect (OSTI)

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the Yucca Mountain Site Characterization Project Requirements Document (YMP RD) (YMP 2001a) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) technical requirements in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The technical requirements documented in the PDD are to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the technical requirements from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the technical requirements captured in the SDDs and the design requirements captured in US Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M&O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 1-1, the MGR Architecture (Section 4.1), the Technical Requirements (Section 5), and the Controlled Project Assumptions (Section 6).

P. Curry

2001-06-26T23:59:59.000Z

151

Geological/geophysical study progresses  

SciTech Connect (OSTI)

Robertson Research (U.S.) Inc. of Houston is working on the second of a planned three-phase regional geological and geochemical study of Paleozoic rocks in the Williston Basin. The studies cover the entire Williston Basin in North Dakota, South Dakota, Montana, Saskatchewan and Manitoba. Each report is based largely on original petrographic, well log, and geochemical data that were developed by Robertson.

Savage, D.

1983-10-01T23:59:59.000Z

152

Geology of interior cratonic sag basins  

SciTech Connect (OSTI)

Interior cratonic sag basins are thick accumulations of sediment, generally more or less oval in shape, located entirely in the interiors of continental masses. Some are single-cycle basins and others are characterized by repeated sag cycles or are complex polyhistory basins. Many appear to have developed over ancient rift systems. Interior cratonic sag basins are typified by a dominance of flexural over fault-controlled subsidence, and a low ratio of sediment volume to surface area of the basin. The Baltic, Carpentaria, Illinois, Michigan, Parana, Paris, and Williston basins are examples of interior cratonic sag basins. Tectonics played a dominant role in controlling the shapes and the geometries of the juxtaposed packets of sedimentary sequences. While the mechanics of tectonic control are not clear, evidence suggests that the movements are apparently related to convergence of lithospheric plates and collision and breakup of continents. Whatever the cause, tectonic movements controlled the freeboard of continents, altering base level and initiating new tectono-sedimentologic regimes. Sag basins situated in low latitudes during their development commonly were sites of thick carbonates (e.g., Illinois, Michigan, Williston, and Paris basins). In contrast, siliciclastic sedimentation characterized basins that formed in higher latitudes (e.g., Parana and Carpentaria basins). Highly productive sag basins are characterized by widespread, mature, organic-rich source rocks, large structures, and good seals. Nonproductive basins have one or more of the following characteristics: immature source rocks, leaky plumbing, freshwater flushing, and/or complex geology due to numerous intrusions that inhibit mapping of plays.

Leighton, M.W.; Eidel, J.J.; Kolata, D.R.; Oltz, D.F. (Illinois Geological Survey, Champaign (USA))

1990-05-01T23:59:59.000Z

153

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect (OSTI)

The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

Not Available

1991-01-01T23:59:59.000Z

154

B.S. GEOLOGY (Geology Subplan) CHECKLIST of required courses for major Geology Core Courses: 9-10 courses, 33-34 credits  

E-Print Network [OSTI]

B.S. GEOLOGY (Geology Subplan) CHECKLIST of required courses for major Geology Core Courses: 9 - Experiencing Geology Lab and either GEOSCI 103 - Intro to Oceanography or GEOSCI 105 - Dynamic Earth 4 (1) (4 semester GEOSCI 201 ­ History of the Earth 4 1st or 2nd year, spring semester GEOSCI 231 ­ Geological Field

Massachusetts at Amherst, University of

155

Arizona Geological Society Digest 22  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACME | NationalTbilisi |Arizona Geological

156

Marine geology of the Bay of Campeche  

E-Print Network [OSTI]

LIBRARY /i & L IBRRAYA B/ iA&Co MARINE GEOLOGY OP SHE BAT OF CAMPECHE A Dissertation By JOE SCOTT CREAGER ? ? ? Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... for the degree of DOCTOR OF PHILOSOPHY August, 1958 Major Subject: Geological Oceanography MARINE GEOLOGY OF THE BAT OF CAMPECHE A Dissertation By JOE SCOTT CREAGEB Approved as to style and content by: JLN. Chairman of Committee Heady Department...

Creager, Joe S.

1958-01-01T23:59:59.000Z

157

A geologic investigation of Longhorn Cavern  

E-Print Network [OSTI]

A GEOLOGIC INVESTIGATION OF LONGHORN CAVERN A Thesis by VICTORIA LYNN WALTERS Submitted to the Office of Graduate Studies of Texas ASM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1992... Major Subject: Geology A GEOLOGIC INVESTIGATION OF LONGHORN CAVERN A Thesis by VICTORIA LYNN WALTERS Approved as to style and content by: Christ pher C. Mathewson (Chair of Committee) Wy M Ah (Member) J. R. Giardino (Member) John H. Spang...

Walters, Victoria Lynn

1992-01-01T23:59:59.000Z

158

Carbonic Acid Shows Promise in Geology, Biology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The Surprising Secrets of Carbonic Acid Probing the Surprising Secrets of Carbonic Acid Berkeley Lab Study Holds Implications for Geological and Biological Processes October 23,...

159

United States Geological Survey Geospatial Information Response  

E-Print Network [OSTI]

1 United States Geological Survey Geospatial Information Response Standard Operating Procedures May 20, 2013 Executive Summary The Geospatial, reporting requirements, and business processes for acquiring and providing geospatial

Torgersen, Christian

160

Regional geophysics, Cenozoic tectonics and geologic resources...  

Open Energy Info (EERE)

and adjoining regions Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Regional geophysics, Cenozoic tectonics and geologic resources of...

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA to extend our thanks to the authors of various West Coast Regional Carbon Sequestration Partnership

162

CX-008301: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage CX(s) Applied: B3.1, B3.7 Date: 04/25/2012 Location(s): New York Offices(s): National Energy Technology Laboratory

163

CX-004277: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Characterization of the Triassic Newark Basin of New York and New Jersey for Geologic Storage of Carbon DioxideCX(s) Applied: A9Date: 10/19/2010Location(s): Clarkstown, New YorkOffice(s): Fossil Energy, National Energy Technology Laboratory

164

Geology and engineering geology of a Wilcox lignite deposit in northeastern Rusk County, Texas  

E-Print Network [OSTI]

GEOLOGY AND ENGINEERING GEOLOGY OF A WILCOX LIGNITE DEPOSIT IN NORTHEASTERN RUSK COUNTY, TEXAS A Thesis by William F. Cole Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree...) (Member) (Member) (Member) (Member) ad of Department) August 1980 ABSTRACT Geology and Engineering Geology of a Wilcox Lignite Deposit in Northeastern Rusk County, Texas (August, 1980) William 7. Cole, B. S. , Texas ASM University Chairman...

Cole, William F.

1980-01-01T23:59:59.000Z

165

Coda-wave interferometry analysis of time-lapse VSP data for monitoring geological carbon sequestration  

E-Print Network [OSTI]

Monitoring Geological Carbon Sequestration Authors: RongmaoGeological Carbon Sequestration ABSTRACT Injection andmonitoring geological carbon sequestration. ACKNOWLEDGEMENTS

Zhou, R.

2010-01-01T23:59:59.000Z

166

26 AUGUST 2009, GSA TODAY Murray Hitzman, Dept. of Geology and Geological  

E-Print Network [OSTI]

geology. Economic geology flourished from the end of World War II into the early 1970s, with major, industrial minerals, construction aggregates, and uranium but excludes carbon-based energy resources geology in academia: An impending crisis? (~15%) of the 2007 U.S. gross domestic product. The United

Barton, Mark D.

167

Petroleum Geology Conference series doi: 10.1144/0070921  

E-Print Network [OSTI]

Petroleum Geology Conference series doi: 10.1144/0070921 2010; v. 7; p. 921-936Petroleum Geology Collection to subscribe to Geological Society, London, Petroleum Geologyhereclick Notes on January 5, 2011Downloaded by by the Geological Society, London © Petroleum Geology Conferences Ltd. Published #12;An

Demouchy, Sylvie

168

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

and A.M. Jessop, Hydraulic fracturing experiment at theor pressures at which hydraulic fracturing of the cap rocka high potential for hydraulic fracturing occurs in the case

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

169

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

in depleted or abandoned oil and gas reservoirs; how- ever,abandoned wells represent a potentially direct route from reservoirabandoned in the 1930s with no barrier installed after it encountered a natural CO 2 reservoir

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

170

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

in depleted or abandoned oil and gas reservoirs; how- ever,oil well abandoned in the 1930s with no barrier installed after it encountered a natural CO 2 reservoir

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

171

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

IN DEPLETED AND NEAR- DEPLETED OIL RESERVOIRS V. A. KuuskraaDEPLETED AND NEAR-DEPLETED OIL RESERVOIRS Vello A. Kuuskraaof CO 2 in a depleted oil reservoir: an overview,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

172

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

coal bed methane recovery (ECBM). Data from reservoirs incoal bed methane (ECBM) recovery. Also, since oil and gas reservoirs

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

173

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

Marchetti, C. , On geoengineering and the CO2 prob- lem.to the location of geoengineering activities seems to be

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

174

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

of the rock volume. Oil-production data indicate that theal. , 2006). Historical oil production at depths around 2400logs in regionally dis- oil production tributed wells Well

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

175

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

Basin. The successful drill stem test re- covered 84.1 m (and fluid data from drill stem tests (as shown in Figure 3

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

176

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

be necessary to extract coal seam methane or groundwater inCalifornia, March 20-22, 2006 Unmineable coal seams Finally,unmineable coal seams pose substantial chal- lenges in all

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

177

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

157 WELL INTEGRITY IN CO 2 ENVIRONMENTS: PERFORMANCE, RISK,of CO 2 injection, wells integrity and long term behavior ofcan compromise the well integrity and thus its functional

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

178

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

FEASIBILITY: TEAPOT DOME EOR PILOT L. Chiaramonte, M.TO IDENTIFY OPTIMAL CO 2 EOR STORAGE SITES V. Núñez Lopez,from a carbon dioxide EOR/sequestration project. Energy

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

179

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

EOR) and enhanced coalbed methane recovery (ECBMR) becauseand potential for coalbed methane. The Mannville coals areCO 2 injectivity and coalbed methane producibility. Thus,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

180

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

carbon dioxide-enhanced oil recovery project as a prototypeCO 2 injection for enhanced oil recovery. Indeed, most near-as well as Enhanced Oil Recovery projects. REFERENCES

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

CONSTRAIN CO2 INJECTION FEASIBILITY: TEAPOT DOME EOR PILOTEOR, and coupled process modeling will investigate the total system including preliminary estimates of CO2

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

182

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

Watrous Formation, Williston Basin, Canada: a preliminaryaccumulation in the northern Williston Basin. The Watrous

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

183

RCSP Geologic Characterization Efforts | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298, and 323 K.Office ofMay 8,EMSL RBS/C,RCSPRCSP

184

Site Characterization of Promising Geologic Formations for CO2 Storage |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of Energy U.S. DepartmentCommitment for aIn thisA description of projects

185

The Suitable Geological Formations for Spent Fuel Disposal in Romania  

SciTech Connect (OSTI)

Using the experience in the field of advanced countries and formerly Romanian program data, ANDRAD, the agency responsible for the disposal of radioactive wastes, started the program for spent fuel disposal in deep geological formations with a documentary analysis at the national scale. The potential geological formations properly characterized elsewhere in the world: salt, clay, volcanic tuff, granite and crystalline rocks,. are all present in Romania. Using general or specific selection criteria, we presently consider the following two areas for candidate geological formations: 1. Clay formations in two areas in the western part of Romania: (1) The Pannonian basin Socodor - Zarand, where the clay formation is 3000 m thick, with many bentonitic strata and undisturbed structure, and (2) The Eocene Red Clay on the Somes River, extending 1200 m below the surface. They both need a large investigation program in order to establish and select the required homogeneous, dry and undisturbed zones at a suitable depth. 2. Old platform green schist formations, low metamorphosed, quartz and feldspar rich rocks, in the Central Dobrogea structural unit, not far from Cernavoda NPP (30 km average distance), 3000 m thick and including many homogeneous, fine granular, undisturbed, up to 300 m thick layers. (authors)

Marunteanu, C. [Bucharest Univ. (Romania); Ionita, G. [ANDRAD, Bucharest (Romania); Durdun, I. [S.C. GEOTEC S.A., Bucharest (Romania)

2007-07-01T23:59:59.000Z

186

US Geological Survey publications on western tight gas reservoirs  

SciTech Connect (OSTI)

This bibliography includes reports published from 1977 through August 1988. In 1977 the US Geological Survey (USGS), in cooperation with the US Department of Energy's, (DOE), Western Gas Sands Research program, initiated a geological program to identify and characterize natural gas resources in low-permeability (tight) reservoirs in the Rocky Mountain region. These reservoirs are present at depths of less than 2,000 ft (610 m) to greater than 20,000 ft (6,100 m). Only published reports readily available to the public are included in this report. Where appropriate, USGS researchers have incorporated administrative report information into later published studies. These studies cover a broad range of research from basic research on gas origin and migration to applied studies of production potential of reservoirs in individual wells. The early research included construction of regional well-log cross sections. These sections provide a basic stratigraphic framework for individual areas and basins. Most of these sections include drill-stem test and other well-test data so that the gas-bearing reservoirs can be seen in vertical and areal dimensions. For the convenience of the reader, the publications listed in this report have been indexed by general categories of (1) authors, (2) states, (3) geologic basins, (4) cross sections, (5) maps (6) studies of gas origin and migration, (7) reservoir or mineralogic studies, and (8) other reports of a regional or specific topical nature.

Krupa, M.P.; Spencer, C.W.

1989-02-01T23:59:59.000Z

187

Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs  

SciTech Connect (OSTI)

Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR). Although models that simulate the fracturing process exist, they can be significantly improved by extending the models to account for nonsymmetric, nonplanar fractures, coupling the models to more realistic reservoir simulators, and implementing advanced multiphase flow models for the transport of proppant. Third, it may be possible to deviate from current hydraulic fracturing technology by using different proppants (possibly waste materials that need to be disposed of, e.g., asbestos) combined with different hydraulic fracturing carrier fluids (possibly supercritical CO2 itself). Because current technology is mainly aimed at enhanced oil recovery, it may not be ideally suited for the injection and storage of CO2. Finally, advanced concepts such as increasing the injectivity of the fractured geologic formations through acidization with carbonated water will be investigated. Saline formations are located through most of the continental United States. Generally, where saline formations are scarce, oil and gas reservoirs and coal beds abound. By developing the technology outlined here, it will be possible to remove CO2 at the source (power plants, industry) and inject it directly into nearby geological formations, without releasing it into the atmosphere. The goal of the proposed research is to develop a technology capable of sequestering CO2 in geologic formations at a cost of US $10 per ton.

L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

2005-12-07T23:59:59.000Z

188

Characterization Activities to Determine the Extent of DNAPL in the Vadose Zone at the A-014 Outfall of A/M Area  

SciTech Connect (OSTI)

The purpose of this investigation was to perform characterization activities necessary to confirm the presence and extent of DNAPL in the shallow vadose zone near the headwaters of the A-014 Outfall. Following the characterization, additional soil vapor extraction wells and vadose monitoring probes were installed to promote and monitor remediation activities in regions of identified DNAPL.

Jackson, D.G.

2000-09-05T23:59:59.000Z

189

Standards for publication of isotope ratio and chemical data in Chemical Geology  

E-Print Network [OSTI]

Editorial Standards for publication of isotope ratio and chemical data in Chemical Geology Abstract reporting data for internation- al standards that were analyzed in the same laboratory, using the same and trace elements, there are a large number of reasonably well-characterized whole rock standards from

Rudnick, Roberta L.

190

The U.S. Geological Survey  

E-Print Network [OSTI]

U sing a geology-based assessment methodology, the U.S. Geological Survey estimated a total of 1.525 trillion barrels of oil in place in seventeen oil shale zones in the Eocene Green River Formation in the Piceance Basin, western Colorado.

unknown authors

191

Geological Sciences Jeffrey D. Keith, Chair  

E-Print Network [OSTI]

, such as assessment and forecasting of natural hazards, environmental change, and discovery of energy and mineral resources. Some of the diverse disciplines that can be studied in this department include general geology Catalog. Global Geology Program Each year the department provides opportunities for advanced

Hart, Gus

192

Geology, Society and the Environmental health  

E-Print Network [OSTI]

management Environmental analysis Sustainability Learning Objectives #12; As members of the biological The water we drink The air we breathe Geologic factors in environmental health #12; Health can be definedChapter 19 Geology, Society and the Future #12; Environmental health Air pollution Waste

Pan, Feifei

193

Careers in Geology Department of Geosciences  

E-Print Network [OSTI]

, coal, and water. Environmental geology ­ study of problems associated with pollution, waste disposal ­ study of earth materials of economic interest, including metals, minerals, building stone, petroleum Army Corps of Engineers, state geological surveys Industry Oil companies, environmental firms, mining

Logan, David

194

SRS Geology/Hydrogeology Environmental Information Document  

SciTech Connect (OSTI)

The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

Denham, M.E.

1999-08-31T23:59:59.000Z

195

Sandhills Geology Response by Professor James Goeke  

E-Print Network [OSTI]

. As it turns out, a good portion of the pipeline is not in the Sandhills and doesn't overlie the Ogallala1 Sandhills Geology Response by Professor James Goeke Providing a short, succinct description of the sandhills geology is a difficult and nebulous request. The sandhills themselves are primarily eolian

Nebraska-Lincoln, University of

196

GEOLOGICAL SURVEY OF CANADA OPEN FILE 7462  

E-Print Network [OSTI]

and the McArthur River uranium deposit, Athabasca Basin; Geological Survey of Canada, Open File 7462, 35 pGEOLOGICAL SURVEY OF CANADA OPEN FILE 7462 Alteration within the basement rocks associated with the P2 fault and the McArthur River uranium deposit, Athabasca Basin E.E. Adlakha, K. Hattori, G

197

Brigham Young University Geology Studies Volume 28, Part 3  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 28, Part 3 CONTENTS Three Creeks Caldera ................................................................................................................................... Scott Dean Geology of the Antelope Peak Area of the Southern .................................................................................................................. Craig D. Hall Geology of the Longlick and White Mountain Area, Southern San Francisco Mountains

Seamons, Kent E.

198

BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part I  

E-Print Network [OSTI]

#12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part I Preble Formation, a Cambrian Outer ..........................................................................J. Roger Olsen Geology of the Sterling Quadrangle, Sanpete County, Utah ..............................................................................James Michael Taylor Publications and Maps of the Geology Department Cover: Aertalphorograph rhowing

Seamons, Kent E.

199

Panel Organization 1. Panel on Structural Geology & Geoengineering  

E-Print Network [OSTI]

Appendix A Panel Organization 1. Panel on Structural Geology & Geoengineering Chair: Dr. Clarence R Technical Exchange (open) Panel on Structural Geology & Geoengineering Denver, Colorado Topic: DOE & Performance Analysis and the Panel on Structural Geology & Geoengineering Denver, Colorado Topic: Repository

200

Dynamic Evolution of Cement Composition and Transport Properties under Conditions Relevant to Geological Carbon Sequestration  

SciTech Connect (OSTI)

Assessing the possibility of CO{sub 2} leakage is one of the major challenges for geological carbon sequestration. Injected CO{sub 2} can react with wellbore cement, which can potentially change cement composition and transport properties. In this work, we develop a reactive transport model based on experimental observations to understand and predict the property evolution of cement in direct contact with CO{sub 2}-saturated brine under diffusion-controlled conditions. The model reproduced the observed zones of portlandite depletion and calcite formation. Cement alteration is initially fast and slows down at later times. This work also quantified the role of initial cement properties, in particular the ratio of the initial portlandite content to porosity (defined here as ?), in determining the evolution of cement properties. Portlandite-rich cement with large ? values results in a localized “sharp” reactive diffusive front characterized by calcite precipitation, leading to significant porosity reduction, which eventually clogs the pore space and prevents further acid penetration. Severe degradation occurs at the cement–brine interface with large ? values. This alteration increases effective permeability by orders of magnitude for fluids that preferentially flow through the degraded zone. The significant porosity decrease in the calcite zone also leads to orders of magnitude decrease in effective permeability, where fluids flow through the low-permeability calcite zone. The developed reactive transport model provides a valuable tool to link cement–CO{sub 2} reactions with the evolution of porosity and permeability. It can be used to quantify and predict long-term wellbore cement behavior and can facilitate the risk assessment associated with geological CO{sub 2} sequestration.

Brunet, Jean-Patrick Leopold; Li, Li; Karpyn, Zuleima T.; Strazisar, Brian; Bromhal Grant

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Geology and alteration of the Coso Geothermal Area, Inyo County...  

Open Energy Info (EERE)

California Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology and alteration of the Coso Geothermal Area, Inyo County, California Abstract Geology...

202

Idaho Geological Survey and University of Idaho Explore for Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Idaho Geological Survey and University of Idaho Explore for Geothermal Energy Idaho Geological Survey and University of Idaho Explore for Geothermal Energy January 11, 2013 -...

203

Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal...  

Open Energy Info (EERE)

Area are described. Geologic faults, sheared or brecciated rock, volcanic vents, geothermal wells, hydrothermal alteration, springs, thermal springs, fumaroles, and geologic...

204

On leakage and seepage from geological carbon sequestration sites  

E-Print Network [OSTI]

from Geologic Carbon Sequestration Sites Orlando Lawrencefrom Geologic Carbon Sequestration Sites Farrar, C.D. , M.L.1999. Reichle, D. et al. , Carbon sequestration research and

Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

2002-01-01T23:59:59.000Z

205

Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming  

SciTech Connect (OSTI)

The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO{sub 2} flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

Jackson, S.

1993-03-01T23:59:59.000Z

206

Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming  

SciTech Connect (OSTI)

The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO[sub 2] flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

Jackson, S.

1993-03-01T23:59:59.000Z

207

Geologic and geotechnical assessment RFETS Building 371, Rocky Flats, Colorado  

SciTech Connect (OSTI)

This report describes the review and evaluation of the geological, geotechnical and geophysical data supporting the design basis analysis for the Rocky Flats Environmental Test Site (RFETS) Building 371. The primary purpose of the geologic and geotechnical reviews and assessments described herein are to assess the adequacy of the crustal and near surface rock and soil model used in the seismic analysis of Building 371. This review was requested by the RFETS Seismic Evaluation Program. The purpose was to determine the adequacy of data to support the design basis for Building 371, with respect to seismic loading. The objectives required to meet this goal were to: (1) review techniques used to gather data (2) review analysis and interpretations of the data; and (3) make recommendations to gather additional data if required. Where there were questions or inadequacies in data or interpretation, recommendations were made for new data that will support the design basis analysis and operation of Building 371. In addition, recommendations are provided for a geologic and geophysical assessment for a new facility at the Rocky Flats Site.

Maryak, M.E.; Wyatt, D.E.; Bartlett, S.F.; Lewis, M.R.; Lee, R.C.

1995-12-13T23:59:59.000Z

208

Global Warming in Geologic Time  

ScienceCinema (OSTI)

The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

David Archer

2010-01-08T23:59:59.000Z

209

Global Warming in Geologic Time  

SciTech Connect (OSTI)

The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

David Archer

2008-02-27T23:59:59.000Z

210

JUDSON MEAD GEOLOGIC FIELD STATION OF INDIANA UNIVERSITY 2013 APPLICATION FOR ADMISSION  

E-Print Network [OSTI]

Geology G Structural Geology G Sedimentology/Stratigraphy G Sedimentology/Stratigraphy G Sophomore G

Polly, David

211

GEOL 102: Historical Geology Exam 1 Review  

E-Print Network [OSTI]

& Last Appearance Datum; Zone #12;Other Methods of Stratigraphy Magnetostratigraphy (Chron); Sequence Stratigraphy (Sequence) Geologic Column Chronostratigraphy (Rock) Geochronology (Time) Eonthem Eon Erathem Era (= clastic = siliciclastic), biogenic, chemical; strata Detrital Sedimentary Cycle: Source Weathering

Holtz Jr., Thomas R.

212

Carbon Trading Protocols for Geologic Sequestration  

E-Print Network [OSTI]

expensive, real reduction in CO2 emissions from their ownstored CO2 must create an actual reduction in the emissionsCO2 is instead obtained from geologic formations then the goal of the emission reduction

Hoversten, Shanna

2009-01-01T23:59:59.000Z

213

A geologic application of Biot's buckling theory  

E-Print Network [OSTI]

Subject: Geophysics A GEOLOGIC APPLlCATION OF BIOT'S BUCKLING THEORY A Thesis by WILLIAM DANIEL HEINZE Approved as to style and content by: (Chairman of Commit e) (Head of Department-Member) (Member) (Member) May 1972 ABSTRACT A Geologic..., et al. , (1967) indicates that the Georgetown was never buried by more than 2000 meters of sediment. The Del Rio Mark, 20 m thick, is predominantly clay and calcareous clay intercalated with thin lenses of clayey limestone. The thick-bedded Buda...

Heinze, William Daniel

1972-01-01T23:59:59.000Z

214

BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 25,Part 1  

E-Print Network [OSTI]

#12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 25,Part 1 Papers reviewing geology of field trip areas, 31st annual meeting, Rocky Mountain Section, Geological Society of America, April 28 ....................................................................................................................................................... Geology of Volcanic Rocks and Mineral Deposits in the Southern Thomas Range, Utah: A Brief Summary

Seamons, Kent E.

215

Missouri University of Science and Technology 1 Geology and Geophysics  

E-Print Network [OSTI]

Missouri University of Science and Technology 1 Geology and Geophysics Graduate work in Geology are designed to provide you with an understanding of the fundamentals and principles of geology, geochemistry and Environmental Geochemistry · Mineralogy/Petrology/Economic Geology · Geophysics/Tectonics/Remote Sensing

Missouri-Rolla, University of

216

BULLETIN OF CANADIAN PETROLEUM GEOLOGY  

E-Print Network [OSTI]

and hydraulic fracturing a more efficient development strategy than vertical wells. An area >3000 km2 a 17,500 km2 area (T58­72, R6-20W6M). These data provide the basis for characterization of fine in the plains, in the southern portion of the area studied (T58­70) and within the lower section of the Monteith

217

Natural phenomena hazards site characterization criteria  

SciTech Connect (OSTI)

The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

Not Available

1994-03-01T23:59:59.000Z

218

Page 1 | B.S. in Geology | Academic Plan of Study Updated April 2014 B.S. in Geology  

E-Print Network [OSTI]

Page 1 | B.S. in Geology | Academic Plan of Study Updated April 2014 B.S. in Geology Academic Plan Available: No · Other Information: GEO (Geology & Earth Science Organization); GTU (Gamma Theta Upsilon coordinator for METR, thsirle@uncc.edu PROGRAM REQUIREMENTS Geology at UNC Charlotte is for students who

Raja, Anita

219

Geologic and hydrologic investigations of a potential nuclear waste disposal site at Yucca Mountain, southern Nevada  

SciTech Connect (OSTI)

Yucca Mountain in southern Nye County, Nevada, has been selected by the United States Department of Energy as one of three potential sites for the nation`s first high-level nuclear waste repository. Its deep water table, closed-basin ground-water flow, potentially favorable host rock, and sparse population have made the Yucca Mountain area a viable candidate during the search for a nuclear waste disposal site. Yucca Mountain, however, lies within the southern Great Basin, a region of known contemporary tectonism and young volcanic activity, and the characterization of tectonism and volcanism remains as a fundamental problem for the Yucca Mountain site. The United States Geological Survey has been conducting extensive studies to evaluate the geologic setting of Yucca Mountain, as well as the timing and rates of tectonic and volcanic activity in the region. A workshop was convened by the Geologic Survey in Denver, Colorado, on August 19, 20, and 21, 1985, to review the scientific progress and direction of these studies. Considerable debate resulted. This collection of papers represents the results of some of the studies presented at the workshop, but by no means covers all of the scientific results and viewpoints presented. Rather, the volume is meant to serve as a progress report on some of the studies within the Geological Survey`s continuing research program toward characterizing the tectonic framework of Yucca Mountain. Individual papers were processed separately for the data base.

Carr, M.D.; Yount, J.C. (eds.)

1988-12-31T23:59:59.000Z

220

Publisher: GSA Journal: GEOL: Geology  

E-Print Network [OSTI]

Oceanographic Institution, 360 Woods Hole Rd, Woods Hole, Massachusetts10 02543, USA11 5 Centre de Recherches profiles have attempted to determine rates of OCpetro oxidation (e.g., Keller and40 Bacon ; 1998, Petsch et much attention (e.g., Galy et al., 2008b ; Hilton et al., 2008).42 The dissolved and particulate load

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Coal laboratory characterisation for CO2 geological storage E.C. Gaucher1  

E-Print Network [OSTI]

Coal laboratory characterisation for CO2 geological storage E.C. Gaucher1 *, P.D.C. Défossez1 storage of CO2 in unmineable coal seams could be a very interesting option in the sustainable management of coal basins. However, the various chemical and physical parameters that determine the success

Paris-Sud XI, Université de

222

Brine flow in heated geologic salt.  

SciTech Connect (OSTI)

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01T23:59:59.000Z

223

The conscience and the dream: an analysis of the influence of Mark Twain's determinism on characterization and thematic unity in Huckleberry Finn.  

E-Print Network [OSTI]

Finn in Review 89 2. The Determinist in 1885 101 BIB LI 0G RAP H Y . 102 CHAPTER I INTRODUCTION The Scholars on the Development of Twain's Determinism Most Mark Twain scholars agree that sometime during the last fifteen years of his life Mark... to his master- piece. Covici, in Mark Twain's Humor: The Ima e of a World, deals more directly with Twain's determinism than Blair; however, his scope of discussion is narrow ? even more so than Bellamy's, though it 10 Walter Blair, Mark Twain...

Capps, Mikie Leslene

1965-01-01T23:59:59.000Z

224

Geological aspects of the first horizontal well drilled in Romania  

SciTech Connect (OSTI)

In 1979 on the Lebada Est field of the Romanian Offshore of the Black Sea between the Albian and the Eocene hydrocarbon accumulations, the Upper Cretaceous hydrocarbon accumulation was discovered. Situated in the Coniacian-Santonian and Turonian limey rocks, this accumulation cannot be produced efficiently by conventional wells. Some geological aspects which characterize the field such as: the physical properties of the reservoir rocks, the low effective thickness, heterogeneity, the vertical fissure and microfissure system and other production and economic aspects led to the conclusion that oil can be produced efficiently by horizontal wells or high angle wells. The benefits of horizontal well trajectory to produce the oil from the reservoir with this geometry are many and they were proved by the high rate of production as compared with the production tests of the vertical wells. After a long period of time when the reservoir was considered to be economically inefficient it can be finally produced.

Baleanu, C.; Petrom, R.A. [Institute for Research and Technology, Prahova (Romania)

1995-08-01T23:59:59.000Z

225

Method of fracturing a geological formation  

DOE Patents [OSTI]

An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

1990-01-01T23:59:59.000Z

226

Preliminary Feasibility Assessment of Geologic Carbon Sequestration Potential for TVA's John Sevier and Kingston Power Plants  

SciTech Connect (OSTI)

This is a preliminary assessment of the potential for geologic carbon sequestration for the Tennessee Valley Authority's (TVA) John Sevier and Kingston power plants. The purpose of this assessment is to make a 'first cut' determination of whether there is sufficient potential for geologic carbon sequestration within 200 miles of the plants for TVA and Oak Ridge National Laboratory (ORNL) to proceed with a joint proposal for a larger project with a strong carbon management element. This assessment does not consider alternative technologies for carbon capture, but assumes the existence of a segregated CO{sub 2} stream suitable for sequestration.

Smith, Ellen D [ORNL; Saulsbury, Bo [ORNL

2008-03-01T23:59:59.000Z

227

Kinetics of the Dissolution of Scheelite in Groundwater: Implications for Environmental and Economic Geology  

E-Print Network [OSTI]

Tungsten, Its History, Geology, Ore-dressing, Metallurgy,5.1 Implications for Environmental Geology…………………………..26 5.2Implications for Economic Geology………………………………..27 6. Future

Montgomery, Stephanie Danielle

2012-01-01T23:59:59.000Z

228

Case studies of the application of the Certification Framework to two geologic carbon sequestration sites  

E-Print Network [OSTI]

from geologic carbon sequestration sites: unsaturated zoneverification of geologic carbon sequestration, Geophys. Res.to two geologic carbon sequestration sites Curtis M.

Oldenburg, Curtis M.

2009-01-01T23:59:59.000Z

229

Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk  

E-Print Network [OSTI]

from geologic carbon sequestration sites: unsaturated zone2 from geologic carbon sequestration sites: CO 2 migrationGeologic Carbon Sequestration as a Global Strategy to

Oldenburg, C.M.

2012-01-01T23:59:59.000Z

230

Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment  

E-Print Network [OSTI]

to two geologic carbon sequestration sites, Energy Procedia,for Geologic Carbon Sequestration Based on Effectivefor geologic carbon sequestration risk assessment, Energy

Oldenburg, Curtis M.

2009-01-01T23:59:59.000Z

231

Paris Basin, seal integrity Predicting long-term geochemical alteration of wellbore cement in a generic geological CO21  

E-Print Network [OSTI]

abandoned wells is particularly high, such as it often occurs in depleted gas and/or oil fields. The12 of an idealized abandoned wellbore at the top of the Dogger aquifer in Paris18 Basin, France, where CO2 geological from reservoir: (i) a first,24 "clogging" stage, characterized by a decrease in porosity due to calcite

Paris-Sud XI, Université de

232

Geological evolution and analysis of confirmed or suspected gas hydrate localities  

SciTech Connect (OSTI)

Geological factors controlling the formation, stability, and distribution of gas hydrates of the Beaufort Sea region were investigated by basin analysis. Geological, geophysical, and geochemical data from the region were assembled and evaluated to determine the relationships of geological environments and gas hydrates. The Beaufort Sea is the southern part of the Arctic Ocean offshore of the North Slope of Alaska and the Yukon and Mackenzie districts of Canada. The Beaufort Sea study region extends northward from the Arctic coasts of Alaska and Canada between Point Barrow on the west to Cape Beaufort on the east. The northern boundary of the Beaufort Sea study region is 72.5{degrees}N. The study region comprises broad continental shelves, slopes, rises, and the Arctic abyssal plain. 84 refs., 76 figs., 9 tabs.

Finley, P.D.; Krason, J.

1988-10-01T23:59:59.000Z

233

Geologic and production characteristics of the Tight Mesaverde Group: Piceance Basin, Colorado  

SciTech Connect (OSTI)

The Mesaverde Group of the Piceance Basin in western Colorado has been a pilot study area for government-sponsored tight gas sand research for over 20 years. This study provides a critical comparison of the geologic, production and reservoir characteristics of existing Mesaverde gas producing areas within the basin to those same characteristics at the MWX site near Rifle, Colorado. As will be discussed, the basin has been partitioned into three areas having similar geologic and production characteristics. Stimulation techniques have been reviewed for each partitioned area to determine the most effective stimulation technique currently used in the Mesaverde. This study emphasizes predominantly the southern Piceance Basin because of the much greater production and geologic data there. There may be Mesaverde gas production in northern areas but because of the lack of production and relatively few penetrations, the northern Piceance Basin was not included in the detailed parts of this study. 54 refs., 31 figs., 7 tabs.

Myal, F.R.; Price, E.H.; Hill, R.E.; Kukal, G.C.; Abadie, P.A.; Riecken, C.C.

1989-07-01T23:59:59.000Z

234

Assessment of effectiveness of geologic isolation systems: a short description of the AEGIS approach  

SciTech Connect (OSTI)

To meet licensing criteria and protection standards for HLW disposal, research programs are in progress to determine acceptable waste forms, canisters, backfill materials for the repository, and geological formations. Methods must be developed to evaluate the effectiveness of the total system. To meet this need, methods are being developed to assess the long-term effectiveness of isolating nuclear wastes in geologic formations. This work was started in 1976 in the Waste Isolation Safety Assessment Program (WISAP) and continues in the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program. The evaluation of this long-term effectiveness involves a number of distinct steps. AEGIS currently has the methods for performing these evaluation steps. These methods are continuously being improved to meet the inreasing level of sophistication which will be required. AEGIS develops a conceptual description of the geologic systems and uses computer models to simulate the existing ground-water pathways. AEGIS also uses a team of consulting experts, with the assistance of a computer model of the geologic processes, to develop and evaluate plausible release scenarios. Then other AEGIS computer models are used to simulate the transport of radionuclides to the surface and the resultant radiation doses to individuals and populations. (DLC)

Silviera, D.J.; Harwell, M.A.; Napier, B.A.; Zellmer, J.T.; Benson, G.L.

1980-09-01T23:59:59.000Z

235

Department of Geological Sciences Undergraduate Handbook 2014  

E-Print Network [OSTI]

about future sea-level rise, and are there untapped energy and mineral resources both onshore and offshore New Zealand; are also increasingly important concerns both at the regional and global scales. Come-exploration, volcanology, hazard management, engineering geology, environmental planning, water resources, science teaching

Hickman, Mark

236

Department of Geological Sciences Postgraduate Handbook 2013  

E-Print Network [OSTI]

about future sea-level rise, and are there untapped energy and mineral resources both onshore and offshore New Zealand; are also increasingly important concerns both at the regional and global scales. Come-exploration, volcanology, hazard management, engineering geology, environmental planning, water resources, science teaching

Hickman, Mark

237

145Department of Geology Graduate Catalogue 201314  

E-Print Network [OSTI]

in the exploration for petroleum and other resources. GEOL 305 Geophysics II 3.0; 3 cr. A course on electrical and their methods of interpretation. Pre- or corequisites: GEOL 221 and GEOL 222. GEOL 306 Economic Minerals Geology of their formation; ore forming processes and ore deposit models; advanced techniques to evaluate ore genesis

Shihadeh, Alan

238

APPLIED GEOPHYSICS FIELD CLASS GEOLOGY 437  

E-Print Network [OSTI]

APPLIED GEOPHYSICS FIELD CLASS GEOLOGY 437 SPRING 2014 OF NATURAL RESOURCES INCLUDING OIL, COAL, MINERALS AND GROUNDWATER. OTHER APPLICATIONS OF GEOPHYSICS MAY, IF AVAILABLE, WE WILL VISIT AN OIL DRILLING RIG IN OPERATION. DATES FOR FIELD TRIPS WILL DEPEND ON THE WEATHER

Nickrent, Daniel L.

239

INTEGRATING GEOLOGIC AND GEOPHYSICAL DATA THROUGH  

E-Print Network [OSTI]

INTEGRATING GEOLOGIC AND GEOPHYSICAL DATA THROUGH ADVANCED CONSTRAINED INVERSIONS by Peter George framework (i.e. minimization of an objective function). I developed several methods to reach this goal constraints to the inverse problem. Lastly, I developed an iterative procedure for cooperatively inverting

Oldenburg, Douglas W.

240

Internal Geology and Evolution of the Redondo Dome, Valles Caldera...  

Open Energy Info (EERE)

Geology and Evolution of the Redondo Dome, Valles Caldera, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Internal Geology and...

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

System-level modeling for geological storage of CO2  

E-Print Network [OSTI]

of Geologic Storage of CO2, in Carbon Dioxide Capture forFormations - Results from the CO2 Capture Project: GeologicBenson, Process Modeling of CO2 Injection into Natural Gas

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-01-01T23:59:59.000Z

242

Paleontology and Geology of Indiana Department of Geological Sciences | P. David Polly 1  

E-Print Network [OSTI]

. Iowa Tracheophyta (vascular plants) Spores, New Albany Shale Sporing bodies, Dugger Fm. #12;Department (conifers) Walchia, Abo Fm. New Mexico (Permian) #12;Department of Geological Sciences | P. David Polly 5

Polly, David

243

Intraseasonal characterization of tropospheric O3 in the North of the Buenos Aires Province: determining four months cycle and teleconnection evidence  

E-Print Network [OSTI]

Tropospheric ozone (O3T) is a secondary pollutant whose formation involved primarily solar radiation, NOx and volatile organic compounds. The North of the Buenos Aires Province has great agricultural-industrial activity; therefore, O3T study is an important issue in the area. In this paper, we present the first results tend to estimate and characterize O3T in San Nicol\\'as de los Arroyos, North of Buenos Aires. Due to a lack of in situ data, we analyse the observations of the instrument OMI (Ozone Monitoring Instrument) of land remote sensing satellite AURA (GSFC/NASA). The data cover the years 2004-2013. Applying the multitaper technique (MTM), very suitable for short and noisy data series, spectral analysis is performed on a grid corresponding 1{\\deg} in latitude by 1.5{\\deg} in longitude, centred South of the Province of Santa Fe. The most remarkable result is the emergence of a significant peak (95%) of four months cycle. To test the validity of this signal in San Nicol\\'as, daily solar radiation data (Q)...

Cionco, Rodolfo G; Quaranta, Nancy; Agosta, Eduardo

2013-01-01T23:59:59.000Z

244

GEOLOGY O F THE NORTHERN PCIRT O F DRY MOUNTAXN,  

E-Print Network [OSTI]

GEOLOGY O F THE NORTHERN PCIRT O F DRY MOUNTAXN, SOUTHERN UASCSTCH H Q - W T A X H E i i - UT&H #12;BRIGHAM YOUNG UNIVERSITY RESEARCH STUDIES Geology Seri,es Vol. 3 No. 2 April, 1956 GEOLOGY OF THE NORTHERN Department of Gedogy Provo, Utah #12;GEOLOGY OF THE NORTHERN PART OF DRY MOUNTAIN, SOUTHERN WASATCH M O U N

Seamons, Kent E.

245

What can I do with a degree in Geology?  

E-Print Network [OSTI]

What can I do with a degree in Geology? Science Planning your career Choosing a career involves.canterbury.ac.nz/liaison/best_prep.shtml What is Geology? Geology in the twenty-first century is a fascinating, exciting,incredibly diverse,earthquakes,dramatic and varied geomorphology,and its 500 million years of pre and post-Gondwana geological history,is one

Hickman, Mark

246

FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN  

E-Print Network [OSTI]

Chapter WF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE WILLISTON BASIN By R.M. Flores,1 C.W. Keighin,1 A.M. Ochs,2 P.D. Warwick,1 L.R. Bader,1 and E.C. Murphy3 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 3 North

247

Panel Organization 1. Panel on Structural Geology & Geoengineering  

E-Print Network [OSTI]

in Geological Engineering CEE 330 & GLE 474 or instructor consent 3 0.0 CEE 631 Toxicants in the Environment

248

Summary Report on CO2 Geologic Sequestration & Water Resources Workshop  

E-Print Network [OSTI]

geochemistry in carbon sequestration environments. Abstractimplications for carbon sequestration. Environ Earth Sci. ,from geologic carbon sequestration: Static and dynamic

Varadharajan, C.

2013-01-01T23:59:59.000Z

249

Assessment of Brine Management for Geologic Carbon Sequestration  

E-Print Network [OSTI]

for  Geologic  Carbon  Sequestration. ”   International  of  Energy.  “Carbon  Sequestration  Atlas  of  the  Water  Extracted  from  Carbon  Sequestration  Projects."  

Breunig, Hanna M.

2014-01-01T23:59:59.000Z

250

Map of Geologic Sequestration Training and Research Projects  

Broader source: Energy.gov [DOE]

A larger map of FE's Geologic Sequestration Training and Research Projects awarded as part of the Recovery Act.

251

Preliminary geology of eastern Umtanum Ridge, South-Central Washington  

SciTech Connect (OSTI)

The basalt stratigraphy and geologic structures of eastern Umtanum Ridge have been mapped and studied in detail to help assess the feasibility of nuclear waste terminal storage on the Hanford Site in southeastern Washington State. Eastern Umtanum Ridge is an asymmetric east-west-trending anticline of Columbia River basalt that plunges 5 degrees eastward into the Pasco Basin. Geologic mapping and determination of natural remanent magnetic polarity and chemical composition reveal that flows of the Pomona and Umatilla Members (Saddle Mountains Basalt), Priest Rapids and Frenchman Springs Members (Wanapum Basalt), and Grande Ronde Basalt were erupted as fairly uniform sheets. The Wahluke and Huntzinger flows (Saddle Mountains Basalt) fill a paleovalley cut into Wanapum Basalt. No evidence was found to indicate Quaternary-age movement on any structures in the map area. The basalt strata on the south limb of the Umtanum anticline display relatively little tectonic deformation since Miocene-Pliocene time. Thus, the buried south flank of Umtanum Ridge may provide an excellent location for a nuclear waste repository beneath the Hanford Site.

Goff, F.E.

1981-01-01T23:59:59.000Z

252

Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

1992-01-01T23:59:59.000Z

253

Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region (RMCCS)  

SciTech Connect (OSTI)

The primary objective of the “Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region” project, or RMCCS project, is to characterize the storage potential of the most promising geologic sequestration formations within the southwestern U.S. and the Central Rocky Mountain region in particular. The approach included an analysis of geologic sequestration formations under the Craig Power Station in northwestern Colorado, and application or extrapolation of those local-scale results to the broader region. A ten-step protocol for geologic carbon storage site characterization was a primary outcome of this project.

McPherson, Brian; Matthews, Vince

2013-09-30T23:59:59.000Z

254

Panel Organization 1. Panel on Structural Geology & Geoengineering  

E-Print Network [OSTI]

to ductivities. Geologic logs sometimes show thin layers limit further spreading of contaminants. This flow model accounts for of potentially high hydraulic conductivity embedded complex geologic units that vary measured different methods can be employed to represent thein a geologic unit. A composite model was used

255

BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part 3  

E-Print Network [OSTI]

#12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 27, Part 3 CONTENTS Studies for Students #lo, Geologic Guide to Provo Canyon and Weber Canyon, Central Wasatch Mountains, Utah ............................................................................................................................. Randy L. Chamberlain The Geology of the Drum Mountains, Millard and Juab Counties, Utah

Seamons, Kent E.

256

Brigham Young University Geology Studies Volume 26, Part I  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 26, Part I Papers presented at the 31st annual meeting, Rocky Mountain Section, Geological Society of America, April 28-29, 1978, at Brig- ham Young ............................................................................................................................Publications and Maps of the Geology Department 91 Cover The Great Basrn seen from a htgh

Seamons, Kent E.

257

Brigham Young University Geology Studies Volume 27, Part 2  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 27, Part 2 CONTENTS The Kinnikinic Quartzite ........................................................Robert Q. Oaks,Jr., and W . Calvin James Geology of the Sage Valley 7 W'Quadrangle, Caribou County, Idaho, and Lincoln County, Wyoming ....................J ohn L. Conner Geology of the Elk Valley Quadrangle, Bear

Seamons, Kent E.

258

Semantic e-Science and Geology Clinton Smyth1  

E-Print Network [OSTI]

Semantic e-Science and Geology Clinton Smyth1 , David Poole2 and Rita Sharma3 1 Georeference Online@cs.ubc.ca Abstract e-Science, as implemented for the study of geology with Geographic Information Systems over the Internet, has highlighted the need for standardization in the semantics of geology, and stimulated

Poole, David

259

CHAPTER II GEOLOGY Blank page retained for pagination  

E-Print Network [OSTI]

CHAPTER II GEOLOGY #12;Blank page retained for pagination #12;SHORELINES AND COASTS OF THE GULF or discordant with the grain (dominant trend) of the geologic structures of a coastal regi?n, but King (1942, pIOnal geology, geomorphology, sedimentation, oceanography of the inshore zone, meteorology, climatology, biol

260

SEPM (Society for Sedementary Geology) Twenhofel medal awarded to USGS  

E-Print Network [OSTI]

SEPM (Society for Sedementary Geology) Twenhofel medal awarded to USGS Scientist Emeritus Walter the highest award given by the Society for Sedimentary Geology (SEPM) -- the Twenhofel medal. Walt joins an illustrious list of past Twenhofel recipients, which reads as a veritable "Who's Who" of sedimentary geology

Torgersen, Christian

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Ronald Greeley Planetary Geology Scholarship for Undergraduate Students  

E-Print Network [OSTI]

Ronald Greeley Planetary Geology Scholarship for Undergraduate Students Fall 2013 Application ASU No #12;Page 2 of 5 RESEARCH PROJECT The Ronald Greeley Planetary Geology Scholarship includes an undergraduate research component in planetary geology, which must be conducted in collaboration with a member

Rhoads, James

262

Panel Organization 1. Panel on Structural Geology & Geoengineering  

E-Print Network [OSTI]

by pressure perturbation from geologic carbon sequestration: Static and dynamic evaluations. Int. J.elsevier.com/locate/ijggc Brine flow up a well caused by pressure perturbation from geologic carbon sequestration: Static, Berkeley, CA 94720, USA b Bureau of Economic Geology, The University of Texas at Austin, Austin, TX 78713

263

Job Vacancy Notice Job Title: Assistant Professor -Geology  

E-Print Network [OSTI]

1 Job Vacancy Notice Job Title: Assistant Professor - Geology Job ID: 6477 Location: Regular-track Assistant Professor in the general area of "hardrock" geology. The SEES community includes 14 full-time faculty members, 25 Masters and PhD candidates, and approximately 150 Geology, Environmental Science

Johnson Jr.,, Ray

264

DEPARTMENT OF GEOLOGY & GEOPHYSICS School of Ocean & Earth Science & Technology  

E-Print Network [OSTI]

DEPARTMENT OF GEOLOGY & GEOPHYSICS School of Ocean & Earth Science & Technology University of Hawaii at Manoa REQUIREMENTS FOR A MINOR IN GEOLOGY & GEOPHYSICS The minor requires GG 101 (or 103) & 101L or GG 170, 200, and 11 credits hours of non-introductory Geology and Geophysics courses at the 300

265

Geology and Geophysics College of Science code-BS  

E-Print Network [OSTI]

Geology and Geophysics College of Science code-BS Code-GEOP 120 Credits "C-"or better required Geology Field Experience (summer) (3) Science/Engineering Elective (2xxxx or above) (3) Science ******************************************************************************************************************************** (effective Fall 2013) #12;Geology and Geophysics http

Kihara, Daisuke

266

BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 26, Part 4  

E-Print Network [OSTI]

#12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES Volume 26, Part 4 The Fossil Vertebrates of Utah Salt Lake Gty, Utah 84102 W .E. Miller Deparlment~of Geology and Zoology Bngham Young Unrwerrrly Provo of Geology Brigham Young University Provo, Utah 84602 Editors W. Kenneth Hamblln Cynthia M. Gardner Issue

Seamons, Kent E.

267

Wednesday, March 25, 2009 VENUS GEOLOGY, VOLCANISM, TECTONICS, AND RESURFACING  

E-Print Network [OSTI]

Wednesday, March 25, 2009 VENUS GEOLOGY, VOLCANISM, TECTONICS, AND RESURFACING 3:00 p.m. Waterway. The Geological History of Venus: Constraints from Buffered Crater Densities [#1096] We apply buffered crater density technique to a new global geological map of Venus (Ivanov, 2008) and obtain robust constraints

Rathbun, Julie A.

268

Ronald Greeley Planetary Geology Scholarship for Undergraduate Students  

E-Print Network [OSTI]

Ronald Greeley Planetary Geology Scholarship for Undergraduate Students Fall 2012 Application ASU No #12;Page 2 of 5 RESEARCH PROJECT The Ronald Greeley Planetary Geology Scholarship includes an undergraduate research component in planetary geology, which must be conducted in collaboration with a member

Rhoads, James

269

MAJOR TO CAREER GUIDE B.S. Geology  

E-Print Network [OSTI]

MAJOR TO CAREER GUIDE B.S. Geology College of Sciences geoscience.unlv.edu/ Mission of the College: MPE-A 130 www.unlv.edu/sciences/advising About the Geology Career Geoscientists are stewards understanding of Earth processes and history. Value of the Geology Degree Opportunities for interesting

Walker, Lawrence R.

270

SAN DIEGO STATE UNIVERSITY GEOL 508 Advanced Field Geology  

E-Print Network [OSTI]

SAN DIEGO STATE UNIVERSITY GEOL 508 Advanced Field Geology Course Syllabus Spring 2011 Instructor: Professor David L. Kimbrough email: dkimbrough@geology.sdsu.edu, Phone: 594-1385 Office: GMCS-229A; Office Necessary: Field notebook similar to "Rite in the Rain" all-weather Geological Field Book No., 540F J

Kimbrough, David L.

271

Junior Research Fellowship in Geology (Test Codes: GEA and GEB)  

E-Print Network [OSTI]

1 Junior Research Fellowship in Geology (Test Codes: GEA and GEB) The candidates for Junior Research Fellowship in Geology will have to take two tests: Test GEA (forenoon session) and Test GEB and Geostatistics: Analysis of orientation and time-series data, Mohr's Circle of stress and strain, Geological

Bandyopadhyay, Antar

272

Brigham Young University Geology Studies Volume 24, Part 2  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 24, Part 2 CONTENTS Studies for Students ............................................................................................................................... Robert C. Ahlborn Publications and Maps of the Geology Department Cover: Sahara dune sand, X130. Photo, Univer~ityof Cincinnati, Cincinnati, Ohio 45221. #12;A publication of the Department of Geology Brigham

Seamons, Kent E.

273

Brigham Young University Geology Studies Volume 29, Part 2  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 29, Part 2 CONTENTS Stratigraphy ...................................................................................................... Terry C. Gosney 27 Geology of the Champlin Peak Quadrangle,Juab and Millard Counties, Utah ..................................................................................................................................... David R. Keller 103 Publications and Maps of the Department of Geology 117 Cover: Rafted orjoreign

Seamons, Kent E.

274

Inverse Modelling in Geology by Interactive Evolutionary Computation  

E-Print Network [OSTI]

Inverse Modelling in Geology by Interactive Evolutionary Computation Chris Wijns a,b,, Fabio of geological processes, in the absence of established numerical criteria to act as inversion targets, requires evolutionary computation provides for the inclusion of qualitative geological expertise within a rigorous

Boschetti, Fabio

275

Brigham Young University Geology Studies Volume 30, Part 1  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 30, Part 1 CONTENTS Diagenetic Aspects ................................................................................................... Steven G. Driese Geology of the Dog Valley-Red Ridge Area, Southern Pavant Mountains, Millard County .................................................................................................. Lynn C Meibos Geology of the Southwestern Quarter of the Scipio North (15-Minute) Quadrangle, Millard

Seamons, Kent E.

276

Ronald Greeley Planetary Geology Scholarship for Undergraduate Students  

E-Print Network [OSTI]

Ronald Greeley Planetary Geology Scholarship for Undergraduate Students Fall 2014 Application ASU No #12;Page 2 of 5 RESEARCH PROJECT The Ronald Greeley Planetary Geology Scholarship includes an undergraduate research component in planetary geology, which must be conducted in collaboration with a member

Rhoads, James

277

Brigham Young University Geology Studies Volume 25, Part 3  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 25, Part 3 CONTENTS Remains of Ornithopod ...........................................................................................................................................................ames M. Stolle Publications and Maps of the Geology Department Index to volumes 21-25 of Brigham Young University Geology Studies ........................................Carol T . Smith and Nathan M. Smith Cwec

Seamons, Kent E.

278

Brigham Young University Geology Studies Volume 26, Part 2  

E-Print Network [OSTI]

#12;Brigham Young University Geology Studies Volume 26, Part 2 CONTENTS A New Large Theropod................................................................................................................................................................ Danny J. Wyatt Publications and Maps of the Geology Department Cover: Cretaceouscoals near Castle Gate, Utab. #12;A publication of the Department of Geology Brigham Young University Provo, Utah 84602 Editors

Seamons, Kent E.

279

Brigham Young University Geology Studies Volume 26, Part 3  

E-Print Network [OSTI]

#12;P I - #12;Brigham Young University Geology Studies Volume 26, Part 3 Conodont Biostratigraphy-meeting field trip held in conjunction with the Rocky Mountain section, Geological Society of America of the Department of Geology Brigham Young University Provo, Utah 84602 Editors W. Kenneth Hamblin Cynthia M

Seamons, Kent E.

280

Geology and Geophysics College of Science code-BS  

E-Print Network [OSTI]

Geology and Geophysics College of Science code-BS Code-GEOP 120 Credits "C-"or better required Professional Elective (3xxxx and above) (6) EAPS 49000 Geology Field Experience (summer) (3) Science ******************************************************************************************************************************** (effective Fall 2013) #12;Geology and Geophysics Fall 2014 Department of Earth, Atmospheric, and Planetary

Kihara, Daisuke

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

VOLUMF -31, PART 1 BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES  

E-Print Network [OSTI]

Y O U N G VOLUMF -31, PART 1 #12;BRIGHAM YOUNG UNIVERSITY GEOLOGY STUDIES VOLUME 31.PART 1 CONTENTS .................................................................. Ralph E.Lambert Geology of the Mount Ellen Quadrangle. Henry Mountains. Garfield County. Utah near White Horse Pass. Elko County. Nevada ............Stephen M Smith Geology of the Steele Butte

Seamons, Kent E.

282

CX-004198: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-004198: Categorical Exclusion Determination Lurance Canyon Burn Site Soil and Groundwater Site Characterization CX(s) Applied: B3.1 Date: 06142010 Location(s):...

283

CX-005708: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005708: Categorical Exclusion Determination Phase 3 - Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems CX(s) Applied: A9,...

284

CX-003495: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003495: Categorical Exclusion Determination Seismic Fracture Characterization Methodologies for Enhanced Geothermal Systems CX(s) Applied: A9,...

285

CX-005052: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005052: Categorical Exclusion Determination Shoot 2-Dimensional Seismic at Characterization Site CX(s) Applied: B3.1 Date: 01192011 Location(s): Craig,...

286

CX-009327: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009327: Categorical Exclusion Determination Gas Hydrate Dynamics on the Alaskan Beaufort Continental Slope: Modeling and Field Characterization CX(s)...

287

CX-009329: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009329: Categorical Exclusion Determination Gas Hydrate Dynamics on the Alaskan Beaufort Continental Slope: Modeling and Field Characterization CX(s)...

288

CX-009330: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009330: Categorical Exclusion Determination Gas Hydrate Dynamics on the Alaskan Beaufort Continental Slope: Modeling and Field Characterization CX(s)...

289

CX-009328: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-009328: Categorical Exclusion Determination Gas Hydrate Dynamics on the Alaskan Beaufort Continental Slope: Modeling and Field Characterization CX(s)...

290

CX-002474: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Full Scale Testing Characterization, System Optimization, Demonstration of Grid Connected Wind Turbines and Wind Powered Water Desalination...

291

Geology Department Graduate Certificates: These certificates are designed to provide practicing professionals an opportunity to  

E-Print Network [OSTI]

Geology Department Graduate Certificates: These certificates are designed to provide practicing are offered: Certificate in Engineering Geology Purpose The Graduate Certificate in Engineering Geology provides practicing geologists an opportunity to upgrade their engineering geology credentials while

292

International Journal of Geography and Geology, 2013, 2(1):1-13 THE REMOTE SENSING IMAGERY, NEW CHALLENGES FOR GEOLOGICAL  

E-Print Network [OSTI]

International Journal of Geography and Geology, 2013, 2(1):1-13 1 THE REMOTE SENSING IMAGERY, NEW CHALLENGES FOR GEOLOGICAL AND MINING MAPPING IN THE WEST AFRICAN CRATON - THE EXAMPLE OF CÔTE D'IVOIRE Gbele of the evolution on the use of remote sensing imagery for geological and mining mapping in West Africa

Paris-Sud XI, Université de

293

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology and imple- #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture

294

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Using Combined Snowpack and  

E-Print Network [OSTI]

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture, BCMOF 1 Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture

295

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS SUMMARY

296

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

297

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS

298

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Biology, Ecology, and Management  

E-Print Network [OSTI]

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS ABSTRACT

299

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife Extension Note EN-007

300

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife Extension Note

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Assessing Habitat Quality of  

E-Print Network [OSTI]

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS

302

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Silvicultural Treatments for Enhancing  

E-Print Network [OSTI]

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife CONTENTS EXECUTIVE SUMMARY

303

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Relationships between Elevation and Slope  

E-Print Network [OSTI]

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife

304

The consequences of failure should be considered in siting geologic carbon sequestration projects  

E-Print Network [OSTI]

2007. Geologic Carbon Sequestration Strategies forfor carbon capture and sequestration. Environmental Sciencein Siting Geologic Carbon Sequestration Projects Phillip N.

Price, P.N.

2009-01-01T23:59:59.000Z

305

Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes  

SciTech Connect (OSTI)

The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

2003-11-15T23:59:59.000Z

306

Hanford Site Guidelines for Preparation and Presentation of Geologic Information  

SciTech Connect (OSTI)

A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

2010-04-30T23:59:59.000Z

307

Geology of Damon Mound Salt Dome, Texas  

SciTech Connect (OSTI)

Geological investigation of the stratigraphy, cap-rock characteristics, deformation and growth history, and growth rate of a shallow coastal diapir. Damon Mound salt dome, located in Brazoria County, has salt less than 600 feet and cap rock less than 100 feet below the surface; a quarry over the dome provides excellent exposures of cap rock as well as overlying Oligocene to Pleistocene strata. These conditions make it ideal as a case study for other coastal diapirs that lack bedrock exposures. Such investigations are important because salt domes are currently being considered by chemical waste disposal companies as possible storage and disposal sites. In this book, the author reviews previous research, presents additional data on the subsurface and surface geology at Damon Mound, and evaluates Oligocene to post-Pleistocene diapir growth.

Collins, E.W.

1989-01-01T23:59:59.000Z

308

License for the Konrad Deep Geological Repository  

SciTech Connect (OSTI)

Deep geological disposal of long-lived radioactive waste is currently considered a major challenge. Until present, only three deep geological disposal facilities have worldwide been operated: the Asse experimental repository (1967-1978) and the Morsleben repository (1971-1998) in Germany as well as the Waste Isolation Pilot Plant (WIPP) in the USA (1999 to present). Recently, the licensing procedure for the fourth such facility, the German Konrad repository, ended with a positive ''Planfeststellung'' (plan approval). With its plan approval decision, the licensing authority, the Ministry of the Environment of the state of Lower Saxony, approved the single license needed pursuant to German law to construct, operate, and later close down this facility.

Biurrun, E.; Hartje, B.

2003-02-24T23:59:59.000Z

309

Overburden characterization and post-burn study of the Hoe Creek, Wyoming underground coal gasification site and comparison with the Hanna, Wyoming site  

SciTech Connect (OSTI)

In 1978 the third test (Hoe Creek III) in a series of underground coal gasification (UCG) experiments was completed at a site south of Gillette, Wyoming. The post-burn study of the geology of the overburden and interlayered rock of the two coal seams affected by the experiment is based on the study of fifteen cores. The primary purpose of the study was to characterize the geology of the overburden and interlayered rock and to determine and evaluate the mineralogical and textural changes that were imposed by the experiment. Within the burn cavity the various sedimentary units have been brecciated and thermally altered to form several pyrometamorphic rock types of paralava rock, paralava breccia, buchite, buchite breccia and hornfels. High temperature minerals of mullite, cordierite, oligo-clase-andesine, tridymite, cristobalite, clinopyroxenes, and magnetite are common in the pyrometamorphic rocks. The habit of these minerals indicates that they crystallized from a melt. These minerals and textures suggest that the rocks were formed at temperatures between 1200/sup 0/ and 1400/sup 0/C. A comparison of geologic and geological-technological factors between the Hoe Creek III site, which experienced substantial roof collapse, and the Hanna II site, which had only moderate roof collapse, indicates that overburden thickness relative to coal seam thickness, degree of induration of overburden rock, injection-production well spacing, and ultimate cavity size are important controls of roof collapse in the structural setting of the two sites.

Ethridge, F.C.; Burns, L.K.; Alexander, W.G.; Craig, G.N. II; Youngberg, A.D.

1983-01-01T23:59:59.000Z

310

DETERMINATION OF IMPORTANCE EVALUATION FOR THE SURFACE EXPLORATORY STUDIES FACILITY  

SciTech Connect (OSTI)

This DIE applies to the surface facilities component of the Yucca Mountain Site Characterization Project (W) ESF. The ESF complex-including surface and subsurface accommodations--encompasses an area that is approximately six miles wide and nine miles long (approximately 30,000 acres total) (United States Department of Energy [DOE] 1997, p. 9.04). It is located on federally withdrawn lands, near the southwest border of the Nevada Test Site (NTS) in southern Nevada (DOE 1997, p. 9.04). Site characterization activities are conducted within the subsurface ESF to obtain the information necessary to determine whether the Yucca Mountain Site is suitable as a geologic repository for spent nuclear fuel and high-level radioactive waste. Most ESF surface facilities are located within the Conceptual Controlled Area Boundary (CCAB) (DOE 1997, p. 9.04), with the exception of the southeastern most portions of the H-Road and the Water Supply System. Various SBT activities are also conducted throughout the Yucca Mountain region as a part of the overall site-characterization effort. In general, the DIE for SBT Activities (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 1998a) evaluates activities associated with SBT. Potential test-to-test interference and waste isolation impacts associated with SBT activities are also evaluated in CRWMS M&O (1998a).

C.J. Byrne

2000-07-25T23:59:59.000Z

311

Geological problems in radioactive waste isolation  

SciTech Connect (OSTI)

The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

Witherspoon, P.A. (ed.)

1991-01-01T23:59:59.000Z

312

An Assessment of Geological Carbon Storage Options in the Illinois Basin: Validation Phase  

SciTech Connect (OSTI)

The Midwest Geological Sequestration Consortium (MGSC) assessed the options for geological carbon dioxide (CO{sub 2}) storage in the 155,400 km{sup 2} (60,000 mi{sup 2}) Illinois Basin, which underlies most of Illinois, western Indiana, and western Kentucky. The region has annual CO{sub 2} emissions of about 265 million metric tonnes (292 million tons), primarily from 122 coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year (U.S. Department of Energy, 2010). Validation Phase (Phase II) field tests gathered pilot data to update the Characterization Phase (Phase I) assessment of options for capture, transportation, and storage of CO{sub 2} emissions in three geological sink types: coal seams, oil fields, and saline reservoirs. Four small-scale field tests were conducted to determine the properties of rock units that control injectivity of CO{sub 2}, assess the total storage resources, examine the security of the overlying rock units that act as seals for the reservoirs, and develop ways to control and measure the safety of injection and storage processes. The MGSC designed field test operational plans for pilot sites based on the site screening process, MVA program needs, the selection of equipment related to CO{sub 2} injection, and design of a data acquisition system. Reservoir modeling, computational simulations, and statistical methods assessed and interpreted data gathered from the field tests. Monitoring, Verification, and Accounting (MVA) programs were established to detect leakage of injected CO{sub 2} and ensure public safety. Public outreach and education remained an important part of the project; meetings and presentations informed public and private regional stakeholders of the results and findings. A miscible (liquid) CO{sub 2} flood pilot project was conducted in the Clore Formation sandstone (Mississippian System, Chesterian Series) at Mumford Hills Field in Posey County, southwestern Indiana, and an immiscible CO{sub 2} flood pilot was conducted in the Jackson sandstone (Mississippian System Big Clifty Sandstone Member) at the Sugar Creek Field in Hopkins County, western Kentucky. Up to 12% incremental oil recovery was estimated based on these pilots. A CO{sub 2} huff â??nâ?? puff (HNP) pilot project was conducted in the Cypress Sandstone in the Loudon Field. This pilot was designed to measure and record data that could be used to calibrate a reservoir simulation model. A pilot project at the Tanquary Farms site in Wabash County, southeastern Illinois, tested the potential storage of CO{sub 2} in the Springfield Coal Member of the Carbondale Formation (Pennsylvanian System), in order to gauge the potential for large-scale CO{sub 2} storage and/or enhanced coal bed methane recovery from Illinois Basin coal beds. The pilot results from all four sites showed that CO{sub 2} could be injected into the subsurface without adversely affecting groundwater. Additionally, hydrocarbon production was enhanced, giving further evidence that CO{sub 2} storage in oil reservoirs and coal beds offers an economic advantage. Results from the MVA program at each site indicated that injected CO{sub 2} did not leave the injection zone. Topical reports were completed on the Middle and Late Devonian New Albany Shale and Basin CO{sub 2} emissions. The efficacy of the New Albany Shale as a storage sink could be substantial if low injectivity concerns can be alleviated. CO{sub 2} emissions in the Illinois Basin were projected to be dominated by coal-fired power plants.

Robert Finley

2012-12-01T23:59:59.000Z

313

Joint flow-seismic inversion for characterizing fractured reservoirs: theoretical approach and numerical modeling  

E-Print Network [OSTI]

Traditionally, seismic interpretation is performed without any account of the flow behavior. Here, we present a methodology to characterize fractured geologic media by integrating flow and seismic data. The key element of ...

Kang, Peter K.

2013-01-01T23:59:59.000Z

314

NRC staff site characterization analysis of the Department of Energy`s Site Characterization Plan, Yucca Mountain Site, Nevada  

SciTech Connect (OSTI)

This Site Characterization Analysis (SCA) documents the NRC staff`s concerns resulting from its review of the US Department of Energy`s (DOE`s) Site Characterization Plan (SCP) for the Yucca Mountain site in southern Nevada, which is the candidate site selected for characterization as the nation`s first geologic repository for high-level radioactive waste. DOE`s SCP explains how DOE plans to obtain the information necessary to determine the suitability of the Yucca Mountain site for a repository. NRC`s specific objections related to the SCP, and major comments and recommendations on the various parts of DOE`s program, are presented in SCA Section 2, Director`s Comments and Recommendations. Section 3 contains summaries of the NRC staff`s concerns for each specific program, and Section 4 contains NRC staff point papers which set forth in greater detail particular staff concerns regarding DOE`s program. Appendix A presents NRC staff evaluations of those NRC staff Consultation Draft SCP concerns that NRC considers resolved on the basis of the SCP. This SCA fulfills NRC`s responsibilities with respect to DOE`s SCP as specified by the Nuclear Waste Policy Act (NWPA) and 10 CFR 60.18. 192 refs., 2 tabs.

NONE

1989-08-01T23:59:59.000Z

315

Monitored Geologic Repository Project Description Document  

SciTech Connect (OSTI)

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the ''Monitored Geologic Repository Requirements Document'' (MGR RD) (CRWMS M&O 2000b) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) engineering design basis in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The engineering design basis documented in the PDD is to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the engineering design basis from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the engineering design basis captured in the SDDs and the design requirements captured in U.S. Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M&O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 2-1, the MGR Architecture (Section 4.1),the Engineering Design Bases (Section 5), and the Controlled Project Assumptions (Section 6).

P. Curry

2000-06-01T23:59:59.000Z

316

Monitored Geologic Repository Project Description Document  

SciTech Connect (OSTI)

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the ''Monitored Geologic Repository Requirements Document'' (MGR RD) (YMP 2000a) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) technical requirements in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The technical requirements documented in the PDD are to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the technical requirements from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the technical requirements captured in the SDDs and the design requirements captured in US Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M and O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 1-1, the MGR Architecture (Section 4.1), the Technical Requirements (Section 5), and the Controlled Project Assumptions (Section 6).

P. M. Curry

2001-01-30T23:59:59.000Z

317

Cigeo, the French Geological Repository Project - 13022  

SciTech Connect (OSTI)

The Cigeo industrial-scale geological disposal centre is designed for the disposal of the most highly-radioactive French waste. It will be built in an argillite formation of the Callovo-Oxfordian dating back 160 million years. The Cigeo project is located near the Bure village in the Paris Basin. The argillite formation was studied since 1974, and from the Meuse/Haute-Marne underground research laboratory since end of 1999. Most of the waste to be disposed of in the Cigeo repository comes from nuclear power plants and from reprocessing of their spent fuel. (authors)

Labalette, Thibaud; Harman, Alain; Dupuis, Marie-Claude; Ouzounian, Gerald [ANDRA, 1-7, rue Jean Monnet, 92298 Chatenay-Malabry Cedex (France)] [ANDRA, 1-7, rue Jean Monnet, 92298 Chatenay-Malabry Cedex (France)

2013-07-01T23:59:59.000Z

318

North Carolina Geological Survey | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartmentAUDIT REPORTOpenWende New Energy CoFirst SecondTianjingNordwindGeological Survey

319

Property:AreaGeology | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformationInyo County, California | Open Energy InformationAirQualityPermitProcessAreaGeology

320

Geologic Map and GIS Data for the Tuscarora Geothermal Area  

SciTech Connect (OSTI)

Tuscarora—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Detailed unit descriptions of stratigraphic units. - Five cross?sections. - Locations of production, injection, and monitor wells. - 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

Faulds, James E.

2013-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Geology and Marine Science Departments invite you to: Annual Symposium of Caribbean Geology  

E-Print Network [OSTI]

The Geology and Marine Science Departments invite you to: The 28th Annual Symposium of Caribbean Caribbean Tsunami Warning Program) Conference Title: Multipurpose Sea Level Network in the Caribbean Time: 3, and Adaptation in the Caribbean Region Time: 5:00 PM ­ 5:30 PM #12;

Gilbes, Fernando

322

Characterization of oil and gas reservoir heterogeneity. Annual report, November 1, 1990--October 31, 1991  

SciTech Connect (OSTI)

The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

Not Available

1991-12-31T23:59:59.000Z

323

Geology and Geothermal Potential of the Roosevelt Hot Springs...  

Open Energy Info (EERE)

Utah Jump to: navigation, search OpenEI Reference LibraryAdd to library Thesis: Geology and Geothermal Potential of the Roosevelt Hot Springs Area, Beaver County,...

324

Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Abstract Abstract...

325

Geological Problems in Radioactive Waste Isolation: Second Worldwide Review  

E-Print Network [OSTI]

c. contamination from Chernobyl m. Technologic complexity a.and Complications from the Chernobyl Disaster . . . .5by radionuclides from Chernobyl Geological division of

2010-01-01T23:59:59.000Z

326

State Geological Survey Contributions to NGDS Data Development...  

Open Energy Info (EERE)

Contributions to NGDS Data Development, Collection and Maintenance Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title State Geological...

327

Geologic interpretation of gravity and magnetic data in the Salida...  

Open Energy Info (EERE)

interpretation of gravity and magnetic data in the Salida region, Colorado Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geologic interpretation of...

328

Final Supplemental Environmental Impact Statement for a Geologic...  

Broader source: Energy.gov (indexed) [DOE]

Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County,...

329

Final Supplemental Environmental Impact Statement for a Geologic...  

Broader source: Energy.gov (indexed) [DOE]

- Nevada Rail Transportation Corridor DOEEIS-0250F-S2 and Final Env Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear...

330

Development of a Geological and GeomechanicalFramework for the...  

Broader source: Energy.gov (indexed) [DOE]

during shearing; geological study of the mechanisms accommodating deformation at fracture walls using literature review, core observations, and numerical simulations 5 | US...

331

Seismic modeling to monitor CO2 geological storage: The Atzbach ...  

E-Print Network [OSTI]

Jun 8, 2012 ... greenhouse effect. In order to avoid these emissions, one of the options is the geological storage of carbon dioxide in depleted hydrocarbon ...

2012-05-30T23:59:59.000Z

332

Geological Problems in Radioactive Waste Isolation: Second Worldwide Review  

E-Print Network [OSTI]

insulation. These characteristics CROATIA CH. Figure 7.3.Geologic map of Croatia:. 1- Precambrian (metamorphicChina Other Studies China Croatia Site Selection of Low and

2010-01-01T23:59:59.000Z

333

Summary Report on CO2 Geologic Sequestration & Water Resources Workshop  

E-Print Network [OSTI]

CO 2 Geological Storage and Ground Water Resources U.S.and Ground Water Protection Council (GWPC) State and Federal Statutes Storage,

Varadharajan, C.

2013-01-01T23:59:59.000Z

334

SciTech Connect: Deep Borehole Disposal Research: Geological...  

Office of Scientific and Technical Information (OSTI)

Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Citation Details In-Document Search Title: Deep Borehole Disposal Research:...

335

Geologic setting of the low-level burial grounds  

SciTech Connect (OSTI)

This report describes the regional and site specific geology of the Hanford Sites low-level burial grounds in the 200 East and West Areas. The report incorporates data from boreholes across the entire 200 Areas, integrating the geology of this area into a single framework. Geologic cross-sections, isopach maps, and structure contour maps of all major geological units from the top of the Columbia River Basalt Group to the surface are included. The physical properties and characteristics of the major suprabasalt sedimentary units also are discussed.

Lindsey, K.A.; Jaeger, G.K. [CH2M Hill Hanford, Inc., Richland, WA (United States); Slate, J.L. [Associated Western Universities Northwest, Richland, WA (United States); Swett, K.J.; Mercer, R.B. [Westinghouse Hanford Co., Richland, WA (United States)

1994-10-13T23:59:59.000Z

336

Geologic and thermochronologic constraints on the initial orientation...  

Open Energy Info (EERE)

footwall shear zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geologic and thermochronologic constraints on the initial...

337

Geologic Map and GIS Data for the Tuscarora Geothermal Area  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

- 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

Faulds, James E.

338

Paleomagnetism, Potassium-Argon Ages, and Geology of Rhyolites...  

Open Energy Info (EERE)

and Dalrymple, 1966). Authors Richard R. Doell, G. Brent Dalrymple, Robert Leland Smith and Roy A. Bailey Published Journal Geological Society of America Memoirs, 1968 DOI...

339

Geophysics, Geology and Geothermal Leasing Status of the Lightning...  

Open Energy Info (EERE)

Leasing Status of the Lightning Dock KGRA, Animas Valley, New Mexico Author C. Smith Published New Mexico Geological Society Guidebook, 1978 DOI Not Provided Check for DOI...

340

A seismic modeling methodology for monitoring CO2 geological ...  

E-Print Network [OSTI]

May 20, 2011 ... possible causes of the greenhouse effect. In order to avoid these emissions, one of the. 30 options is the geological storage of carbon dioxide ...

2011-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

State Geological Survey Contributions to the National Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Publications AASG State Geological Survey National Geothermal Data Systems Data Acquisition and Access National Geothermal Data System Architecture Design, Testing and Maintenance...

342

Geology and Temperature Gradient Surveys Blue Mountain Geothermal...  

Open Energy Info (EERE)

Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and...

343

System-level modeling for geological storage of CO2  

E-Print Network [OSTI]

Gas Reservoirs for Carbon Sequestration and Enhanced Gasfrom geologic carbon sequestration sites, Vadose Zonethe feasibility of carbon sequestration with enhanced gas

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-01-01T23:59:59.000Z

344

Comprehensive, Quantitative Risk Assessment of CO{sub 2} Geologic Sequestration  

SciTech Connect (OSTI)

A Quantitative Failure Modes and Effects Analysis (QFMEA) was developed to conduct comprehensive, quantitative risk assessments on CO{sub 2} capture, transportation, and sequestration or use in deep saline aquifers, enhanced oil recovery operations, or enhanced coal bed methane operations. The model identifies and characterizes potential risks; identifies the likely failure modes, causes, effects and methods of detection; lists possible risk prevention and risk mitigation steps; estimates potential damage recovery costs, mitigation costs and costs savings resulting from mitigation; and ranks (prioritizes) risks according to the probability of failure, the severity of failure, the difficulty of early failure detection and the potential for fatalities. The QFMEA model generates the necessary information needed for effective project risk management. Diverse project information can be integrated into a concise, common format that allows comprehensive, quantitative analysis, by a cross-functional team of experts, to determine: What can possibly go wrong? How much will damage recovery cost? How can it be prevented or mitigated? What is the cost savings or benefit of prevention or mitigation? Which risks should be given highest priority for resolution? The QFMEA model can be tailored to specific projects and is applicable to new projects as well as mature projects. The model can be revised and updated as new information comes available. It accepts input from multiple sources, such as literature searches, site characterization, field data, computer simulations, analogues, process influence diagrams, probability density functions, financial analysis models, cost factors, and heuristic best practices manuals, and converts the information into a standardized format in an Excel spreadsheet. Process influence diagrams, geologic models, financial models, cost factors and an insurance schedule were developed to support the QFMEA model. Comprehensive, quantitative risk assessments were conducted on three (3) sites using the QFMEA model: (1) SACROC Northern Platform CO{sub 2}-EOR Site in the Permian Basin, Scurry County, TX, (2) Pump Canyon CO{sub 2}-ECBM Site in the San Juan Basin, San Juan County, NM, and (3) Farnsworth Unit CO{sub 2}-EOR Site in the Anadarko Basin, Ochiltree County, TX. The sites were sufficiently different from each other to test the robustness of the QFMEA model.

Lepinski, James

2013-09-30T23:59:59.000Z

345

MONITORED GEOLOGIC REPOSITORY SYSTEMS REQUIREMENTS DOCUMENT  

SciTech Connect (OSTI)

This document establishes the Monitored Geologic Repository system requirements for the U.S. Department of Energy's (DOE's) Civilian Radioactive Waste Management System (CRWMS). These requirements are based on the ''Civilian Radioactive Waste Management System Requirements Document'' (CRD) (DOE 2004a). The ''Monitored Geologic Repository Systems Requirements Document'' (MGR-RD) is developed in accordance with LP-3.3 SQ-OCRWM, ''Preparation, Review, and Approval of Office of Repository Development Requirements Document''. As illustrated in Figure 1, the MGR-RD forms part of the DOE Office of Civilian Radioactive Waste Management Technical Requirements Baseline. Revision 0 of this document identifies requirements for the current phase of repository design that is focused on developing a preliminary design for the repository and will be included in the license application submitted to the U.S. Nuclear Regulatory Commission for a repository at Yucca Mountain in support of receiving a construction authorization and subsequent operating license. As additional information becomes available, more detailed requirements will be identified in subsequent revisions to this document.

V. Trebules

2006-06-02T23:59:59.000Z

346

Salvo: Seismic imaging software for complex geologies  

SciTech Connect (OSTI)

This report describes Salvo, a three-dimensional seismic-imaging software for complex geologies. Regions of complex geology, such as overthrusts and salt structures, can cause difficulties for many seismic-imaging algorithms used in production today. The paraxial wave equation and finite-difference methods used within Salvo can produce high-quality seismic images in these difficult regions. However this approach comes with higher computational costs which have been too expensive for standard production. Salvo uses improved numerical algorithms and methods, along with parallel computing, to produce high-quality images and to reduce the computational and the data input/output (I/O) costs. This report documents the numerical algorithms implemented for the paraxial wave equation, including absorbing boundary conditions, phase corrections, imaging conditions, phase encoding, and reduced-source migration. This report also describes I/O algorithms for large seismic data sets and images and parallelization methods used to obtain high efficiencies for both the computations and the I/O of seismic data sets. Finally, this report describes the required steps to compile, port and optimize the Salvo software, and describes the validation data sets used to help verify a working copy of Salvo.

OBER,CURTIS C.; GJERTSEN,ROB; WOMBLE,DAVID E.

2000-03-01T23:59:59.000Z

347

Geology. Most of the Guadalupe River flows through either Glen Rose Limestone, or Fluviatile Terrace Deposits. Combined geologic categories are designated where two geologic units exist in cross section and the channel flows along a boundary between the t  

E-Print Network [OSTI]

Results Geology. Most of the Guadalupe River flows through either Glen Rose Limestone, or Fluviatile Terrace Deposits. Combined geologic categories are designated where two geologic units exist length. The highest percentage of bedrock coverage per geologic type appears in combined categories (Fig

Curran, Joanna C.

348

doi: 10.1130/0091-7613(1975)32.0.CO;2 1975;3;361-363Geology  

E-Print Network [OSTI]

Geology doi: 10.1130/0091-7613(1975)32.0.CO;2 1975;3;361-363Geology R. Gordon Gastil Geological Society of America on July 8, 2011geology.gsapubs.orgDownloaded from #12;on July 8, 2011geology.gsapubs.orgDownloaded from #12;on July 8, 2011geology.gsapubs.orgDownloaded from #12;on July 8, 2011geology

Lee, Cin-Ty Aeolus

349

Page 204 Geology Sonoma State University 2006-2008 Catalog Department Office  

E-Print Network [OSTI]

Page 204 Geology Sonoma State University 2006-2008 Catalog Department Office Darwin Hall 116 (707) 664-2334 www.sonoma.edu/geology Department chair Matthew J. James aDministrative cOOrDinatOr Gayle Offered Bachelor of Science in Geology Bachelor of Arts in Geology Minor in Geology Secondary Education

Ravikumar, B.

350

Geology Page 145Sonoma State University 2012-2013 Catalog DEPARTMENT OFFICE  

E-Print Network [OSTI]

Geology Page 145Sonoma State University 2012-2013 Catalog GEOLOGY DEPARTMENT OFFICE Darwin Hall 116 (707) 664-2334 www.sonoma.edu/geology DEPARTMENT CHAIR Matthew J. James ADMINISTRATIVE COORDINATOR Cory Programs Offered Bachelor of Science in Geology Bachelor of Arts in Earth Sciences Minor in Geology Minor

Ravikumar, B.

351

Page 148 Geology Sonoma State University 2014-2015 Catalog DEPARTMENT OFFICE  

E-Print Network [OSTI]

Page 148 Geology Sonoma State University 2014-2015 Catalog GEOLOGY DEPARTMENT OFFICE Darwin Hall 116 (707) 664-2334 www.sonoma.edu/geology DEPARTMENT CHAIR Matthew J. James ADMINISTRATIVE COORDINATOR. Smith Programs Offered Bachelor of Science in Geology Bachelor of Arts in Earth Science Minor in Geology

Ravikumar, B.

352

Page144 Geology Sonoma State University 2013-2014 Catalog Department Office  

E-Print Network [OSTI]

Page144 Geology Sonoma State University 2013-2014 Catalog geology Department Office DarwinHall116 (707)664-2334 www.sonoma.edu/geology Department chair MatthewJ.James aDministrative cE.Smith Programs Offered Bachelor of Science in Geology Bachelor of Arts in Earth Science Minor in Geology Minor

Ravikumar, B.

353

Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site  

SciTech Connect (OSTI)

This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

Reidel, Steve P.; Chamness, Mickie A.

2007-01-01T23:59:59.000Z

354

The Department of Geology at Wayne State University is located in a urban environmental set-  

E-Print Network [OSTI]

of geological resources, geological hazards and environmental pollution. The curriculum includes courses fromThe Department of Geology at Wayne State University is located in a urban environmental set- ting (Structural Geology). The Geology Department is housed in the historic and newly renovated Old Main Building

Baskaran, Mark

355

GEO-SEQ Best Practices Manual. Geologic Carbon Dioxide Sequestration: Site Evaluation to Implementation  

SciTech Connect (OSTI)

The first phase of the GEO-SEQ project was a multidisciplinary effort focused on investigating ways to lower the cost and risk of geologic carbon sequestration. Through our research in the GEO-SEQ project, we have produced results that may be of interest to the wider geologic carbon sequestration community. However, much of the knowledge developed in GEO-SEQ is not easily accessible because it is dispersed in the peer-reviewed literature and conference proceedings in individual papers on specific topics. The purpose of this report is to present key GEO-SEQ findings relevant to the practical implementation of geologic carbon sequestration in the form of a Best Practices Manual. Because our work in GEO-SEQ focused on the characterization and project development aspects, the scope of this report covers practices prior to injection, referred to as the design phase. The design phase encompasses activities such as selecting sites for which enhanced recovery may be possible, evaluating CO{sub 2} capacity and sequestration feasibility, and designing and evaluating monitoring approaches. Through this Best Practices Manual, we have endeavored to place our GEO-SEQ findings in a practical context and format that will be useful to readers interested in project implementation. The overall objective of this Manual is to facilitate putting the findings of the GEO-SEQ project into practice.

Benson, Sally M.; Myer, Larry R.; Oldenburg, Curtis M.; Doughty, Christine A.; Pruess, Karsten; Lewicki, Jennifer; Hoversten, Mike; Gasperikova, Erica; Daley, Thomas; Majer, Ernie; Lippmann, Marcelo; Tsang, Chin-Fu; Knauss, Kevin; Johnson, James; Foxall, William; Ramirez, Abe; Newmark, Robin; Cole, David; Phelps, Tommy J.; Parker, J.; Palumbo, A.; Horita, J.; Fisher, S.; Moline, Gerry; Orr, Lynn; Kovscek, Tony; Jessen, K.; Wang, Y.; Zhu, J.; Cakici, M.; Hovorka, Susan; Holtz, Mark; Sakurai, Shinichi; Gunter, Bill; Law, David; van der Meer, Bert

2004-10-23T23:59:59.000Z

356

Geology of the Waste Treatment Plant Seismic Boreholes  

SciTech Connect (OSTI)

In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 ft of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5-million-year-old Elephant Mountain Member, was emplaced above the Pomona Member.

Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

2007-05-11T23:59:59.000Z

357

Leakage and Sepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water  

E-Print Network [OSTI]

from geologic carbon sequestration sites: unsaturated zoneCO 2 from Geologic Carbon Sequestration Sites, Vadose Zoneseepage from geologic carbon sequestration sites may occur.

Oldenburg, Curt M.; Lewicki, Jennifer L.

2005-01-01T23:59:59.000Z

358

Modeling the effects of topography and wind on atmospheric dispersion of CO2 surface leakage at geologic carbon sequestration sites  

E-Print Network [OSTI]

CO 2 from geologic carbon sequestration sites, Vadose Zoneleakage at geologic carbon sequestration sites Fotini K.assessment for geologic carbon sequestration sites. We have

Chow, Fotini K.

2009-01-01T23:59:59.000Z

359

Geologic Map and GIS Data for the Patua Geothermal Area  

SciTech Connect (OSTI)

Patua—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units. - Locations of geothermal wells. - Locations of 40Ar/39Ar and tephra samples.

Faulds, James E.

2011-10-31T23:59:59.000Z

360

FourYear Academic Plan 20122013 BA in Geology  

E-Print Network [OSTI]

FourYear Academic Plan 20122013 BA in Geology Internal Use Version Year 1 Year 2 Year 3 Year 4: Total UD Credits: 46 Total Credits: 120 3/19/12 #12;FourYear Academic Plan 20122013 BA in Geology

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

A Catalog of Geologic Data for the Hanford Site  

SciTech Connect (OSTI)

This revision of the geologic data catalog incorporates new boreholes drilled after September 2002 as well as other older wells, particularly from the 600 Area, omitted from the earlier catalogs. Additionally, borehole geophysical log data have been added to the catalog. This version of the geologic data catalog now contains 3,519 boreholes and is current with boreholes drilled as of November 2004.

Horton, Duane G.; Last, George V.; Gilmore, Tyler J.; Bjornstad, Bruce N.; Mackley, Rob D.

2005-08-01T23:59:59.000Z

362

US Geological Survey, Geospatial Information Response Team Team Charter  

E-Print Network [OSTI]

US Geological Survey, Geospatial Information Response Team Team Charter Revised December 15, 2010 This charter outlines the purpose, responsibility and structure of the U.S. Geological Survey Geospatial Information Response Team (GIRT). Purpose--The primary purpose of the Geospatial Information Response Team

Torgersen, Christian

363

Geologic Map and GIS Data for the Wabuska Geothermal Area  

SciTech Connect (OSTI)

Wabuska—ESRI geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata. - List of stratigraphic units and stratigraphic correlation diagram. - One cross?section.

Hinz, Nick

2013-09-30T23:59:59.000Z

364

PNNL's Community Science & Technology Seminar Series Geology and the  

E-Print Network [OSTI]

PNNL's Community Science & Technology Seminar Series Geology and the Nuclear Fuel Cycle Presented, the nuclear industry faces unique hurdles to expansion and waste management. Geology plays a critical role in the nuclear fuel cycle beyond just the mining of uranium for nuclear fuel. Come hear Frannie Skomurski

365

1919-32: Geology Department In School of Commerce: 190508 Geology taught by Prof. John F. Fulton, Metallurgy and Mining Engineering  

E-Print Network [OSTI]

1919-32: Geology Department In School of Commerce: 1905­08 Geology taught by Prof. John F. Fulton, Metallurgy and Mining Engineering 1907­13 Geology course o ered in the School of Engineering and Mechanical Art 1900­04 Geology course o ered in the Department of Chemistry and Pharmacy 1913­1923 Henry Parks

366

The Geology of North America as Illustrated by Native American Stories by Robert G. McWilliams 1 The Geology of North America as  

E-Print Network [OSTI]

The Geology of North America as Illustrated by Native American Stories by Robert G. McWilliams 1 The Geology of North America as Illustrated by Native American Stories Robert G. McWilliams Professor Emeritus Department of Geology Miami University Oxford, Ohio 45056 mcwillrg@muohio.edu #12;The Geology of North

Lee Jr., Richard E.

367

Checklist for Minor in GEOLOGY The minor in geology is flexible, so that it can complement the student's major in the best  

E-Print Network [OSTI]

Checklist for Minor in GEOLOGY The minor in geology is flexible, so that it can complement the student's major in the best possible manner. Students minoring in Geology are strongly encouraged to plan their programs with an undergraduate geology advisor. A total of 20 credits are required for the minor as follows

Massachusetts at Amherst, University of

368

Mathematical Geology, Vol. 31, No. 1, 1999 0882-8121/99/0100-0113$16.00/1 1999 International Association for Mathematical Geology  

E-Print Network [OSTI]

Association for Mathematical Geology 113 On the Ergodicity Hypothesis in Heterogeneous Formations1 Hongbin

Zhan, Hongbin

369

Geology of the Olkaria Geothermal Field  

SciTech Connect (OSTI)

Up to now development of the resource in Olkaria geothermal field, Kenya, has been based on fragmental information that is inconclusive in most respects. Development has been concentrated in an area of 4 km/sup 2/ at most, with well to well spacing of less than 300 m. The move now is to understand the greater Olkaria field by siting exploratory wells in different parts of the area considered of reasonable potential. To correlate the data available from the different parts of the field, the geology of the area, as a base for the composite field model, is discussed and shown to have major controls over fluid movements in the area and other features.

Ogoso-Odongo, M.E.

1986-01-01T23:59:59.000Z

370

Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469  

SciTech Connect (OSTI)

To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all about the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific commun

Conca, James [RJLee Group, Inc., Pasco WA 509.205.7541 (United States); Wright, Judith [UFA Ventures, Inc., Richland, WA (United States)

2012-07-01T23:59:59.000Z

371

Isolation, Characterization of an Intermediate in an Oxygen Atom...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization of an Intermediate in an Oxygen Atom-Transfer Reaction, and the Determination of the Bond Isolation, Characterization of an Intermediate in an Oxygen Atom-Transfer...

372

Geologic Assessment of the Damage Zone from the Second Test at Source Physics Experiment-Nevada (SPE-N)  

SciTech Connect (OSTI)

The National Center for Nuclear Security (NCNS), established by the U.S. Department of Energy, National Nuclear Security Administration, is conducting a series of explosive tests at the Nevada National Security Site (NNSS; formerly the Nevada Test Site) that are designed to increase the understanding of certain basic physical phenomena associated with underground explosions. These tests will aid in developing technologies that might be used to detect underground nuclear explosions in support of verification activities for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The initial NCNS project is a series of explosive tests, known collectively as the Source Physics Experiment at the NNSS (SPE-N), being conducted in granitic rocks at the Climax stock in northern Yucca Flat. The SPE-N test series is designed to study the generation and propagation of seismic waves. The data will be used to improve the predictive capability of calculational models for detecting and characterizing underground explosions. The first SPE-N test (SPE-N-1) was a “calibration” shot conducted in May 2011, using 100 kilograms (kg) of explosives at the depth of 54.9 meters (m) (180 feet [ft]) in the U-15n source hole. SPE-N-2 was conducted in October 2011, using 1,000 kg of explosives at the depth of 45.7 m (150 ft) in the same source hole. Following the SPE-N-2 test, the core hole U-15n#10 was drilled at an angle from the surface to intercept the SPE-N-2 shot point location to obtain information necessary to characterize the damage zone. The desire was to determine the position of the damage zone near the shot point, at least on the northeast side, where the core hole penetrated it. The three-dimensional shape and symmetry of the damage zone are unknown at this time. Rather than spherical in shape, the dimensions of the damage zone could be influenced by the natural fracture sets in the vicinity. Geologic characterization of the borehole included geophysical logging, a directional survey, and geologic description of the core to document visual evidence of damage. Selected core samples were provided to Sandia National Laboratories (SNL) for laboratory tests (to be reported by SNL). A significant natural fault zone was encountered in the U-15n#10 angle core hole between the drilled depths of 149 and 155 ft (straight-line distance or range station [RS] from the shot point of 7.5 to 5.7 m). However, several of the fractures observed in the U-15n#10 hole are interpreted as having been caused by the explosion. These fractures are characterized by a “fresh,” mechanically broken look, with uncoated and very irregular surfaces. They tend to terminate against natural fractures and have orientations that differ from the previously defined natural fracture sets. The most distant fracture from the shot point that could be interpreted as having been caused by the explosion was seen at approximately RS 10.0 m. No other possibly explosion-induced fractures are apparent above the fault, but are common starting at RS 5.4 m, which is below the fault. It is unknown how the fault zone might have affected the propagation of seismic waves or how the materials in the fault zone (altered granite, breccia, gouge) were affected by the explosion. From RS 3.3 m to the end of the recovered core at RS 1.6 m, some of the core samples are softer and lighter in color, but do not appear to be weathered. It is thought this could be indicative of the presence of distributed microfracturing.

,

2012-09-18T23:59:59.000Z

373

Public Geology at Griffith Park in Los Angeles: A Sample Teachers’ Guide  

E-Print Network [OSTI]

http://www.geo.cornell.edu/geology/faculty/RWA/programs.htmlR. J. (1987). Quaternary geology and seismic hazard of the1953). Special Report 33: Geology of the Griffith Park area,

Helman, Daniel S

2012-01-01T23:59:59.000Z

374

Graduate Studies in Volcanology, Igneous Petrology & Economic Geology For more information  

E-Print Network [OSTI]

Graduate Studies in Volcanology, Igneous Petrology & Economic Geology VIPER For more information Volcanology, Igneous Petrology and Economic geology Research group Interested in Volcanoes? Magmas? Ore) John Dilles (ore deposits, igneous petrology) Randy Keller (igneous petrology, marine geology) Roger

Kurapov, Alexander

375

Mathematical Geology, Vol. 4, No. 3, 1972 Mathematical Techniques for Paleocurrent Analysis  

E-Print Network [OSTI]

Mathematical Geology, Vol. 4, No. 3, 1972 Mathematical Techniques for Paleocurrent Analysis procedure. Finally, theprocedures for testing the homogeneity of directional data from several geological directions from different geological formations belong to significantly different populations. KEY WORDS

Jammalamadaka, S. Rao

376

GARY KOCUREK Department of Geological Sciences, Jackson School, University of Texas, 1 University Station  

E-Print Network [OSTI]

.D., Geology, University of Wisconsin, 1980 RESEARCH AREAS: Sedimentology, stratigraphy, geomorphology, aeolian ­ Sedimentary Geology, Sedimentology, Summer Field Camp, Field Methods, Geology of the National Parks, Earth Committee, First International Conference on Mars Sedimentology & Stratigraphy, 2009 - 2010, El Paso Field

Yang, Zong-Liang

377

Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration  

E-Print Network [OSTI]

Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration of Geological Carbon Sequestration Article Type: Manuscript Keywords: Semi-Analytical Modeling; Iterative Methods; Geological Carbon Sequestration; Injection Site Assessment Corresponding Author: Brent Cody

Bau, Domenico A.

378

Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Efforts, US Geological Survey Report, 2004-2005 Annual Report.  

SciTech Connect (OSTI)

This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attended to three main objectives of the Rattlesnake Creek project. The first objective was to characterize stream and riparian habitat conditions. This effort included measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective was to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the fourth year of a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

Allen, M. Brady; Connolly, Patrick J.; Jezorek, Ian G. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

2006-06-01T23:59:59.000Z

379

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year)  

E-Print Network [OSTI]

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Martinez (email: judy.martinez@utah.edu, office: 383 FASB, phone: 801-581-6553) Faculty Advisors-581-7250) Faculty Advisor for Environmental Science Emphasis, Geoscience Major ­ Prof. Dave Dinter (email: david

Johnson, Cari

380

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2013-14 academic year)  

E-Print Network [OSTI]

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Martinez (email: judy.martinez@utah.edu, office: 383 FASB, phone: 801-581-6553) Faculty Advisors Advisor for Environmental Science Emphasis, Geoscience Major ­ Prof. Dave Dinter (email: david

Johnson, Cari

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

LOCATIONS OF LIBRARY MATERIALS Syracuse University Libraries include Bird Library, Carnegie Library, and the Geology Library in Heroy Geology  

E-Print Network [OSTI]

LOCATIONS OF LIBRARY MATERIALS Syracuse University Libraries include Bird Library, Carnegie Library, and the Geology Library in Heroy Geology Laboratory. Our catalog also includes material housed in the separately administered Law Library in White Hall and the Martin Luther King Jr. Memorial Library in the Department

McConnell, Terry

382

U.S. Geological Survey Open-File Report 02328 Geological Survey of Canada Open File 4350  

E-Print Network [OSTI]

U.S. Geological Survey Open-File Report 02­328 Geological Survey of Canada Open File 4350 August, University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC, V8W 3P6, Canada #12;ISBN: 0 of Canada and the University of Victoria. This meeting was held at the University of Victoria's Dunsmuir

Goldfinger, Chris

383

Instrumental neutron activation analysis (INAA) characterization of pre-contact basalt quarries on the American Samoan Island of Tutuila  

E-Print Network [OSTI]

This thesis presents a material-centered characterization of 120 geologic samples from four fine-grained basalt quarries on the Samoan Island of Tutuila. Previous unsuccessful attempts at definitive Tutuilan quarry differentiation have utilized x...

Johnson, Phillip Ray, II

2007-04-25T23:59:59.000Z

384

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife Using Airphotos to Interpret  

E-Print Network [OSTI]

Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture March 2004 Research Section, Coast Forest Region, BCMOF 1 Research Disciplines: Ecology ~ Geology

385

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology-748-1331. mdeact@shaw.ca #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology

386

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture Systems ~ Wildlife  

E-Print Network [OSTI]

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology.for.gov.bc.ca/vancouvr/research/research_index.htm #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture

387

Society for Geology Applied to Ore Deposits GENEVA MINERALS: Industry and Academia  

E-Print Network [OSTI]

Society for Geology Applied to Ore Deposits GENEVA MINERALS: Industry and Academia Creating links Tripodi, Vanga Resources, Geneva · A student view of economic geology. Honza Catchpole, President

Halazonetis, Thanos

388

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Technical Report Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology.for.gov.bc.ca/vancouvr/research/research_index.htm #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture

389

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology, BC, V9J 1G4 #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology

390

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Rd., Black Creek, BC, V9J 1G4 #12;Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology

391

E-Print Network 3.0 - annual engineering geology Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manhattan Summary: , C. A., 1994, Bedrock and engineering geology maps of New York County and parts of Kings and Queens... -199 in New York (State) Geological Survey Annual...

392

Proceedings of the U.S. Geological Survey Fifth Biennial Geographic Information  

E-Print Network [OSTI]

Organizations ........................................................................ 2 Review Process, SRTM, Digital Photogrammetry, and LIDAR- Derived Digital Elevation Models: Implications for Geological Digital Geologic Mapping at Yucca Mountain, Nevada ............................................. 13

Torgersen, Christian

393

E-Print Network 3.0 - assessment geologic procedures Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

geologic procedures Search Powered by Explorit Topic List Advanced Search Sample search results for: assessment geologic procedures Page: << < 1 2 3 4 5 > >> 1 INTRODUCTION By...

394

Predicting New Hampshire Indoor Radon Concentrations from geologic information and other covariates  

E-Print Network [OSTI]

uranium concentrations (NURE). Fig. 3. Geologic map of Newuranium concentrations (NURE). New Hampshire Geology Geol.Uranium Resource Evaluation (NURE), which were processed (

Apte, M.G.

2011-01-01T23:59:59.000Z

395

LUCI: A facility at DUSEL for large-scale experimental study of geologic carbon sequestration  

E-Print Network [OSTI]

study of geologic carbon sequestration Catherine A. Petersleakage at geologic carbon sequestration sites. Env EarthDOE) Conference on Carbon Sequestration, 2005. Alexandria,

Peters, C. A.

2011-01-01T23:59:59.000Z

396

Geological and production characteristics of strandplain/barrier island reservoirs in the United States  

SciTech Connect (OSTI)

The Department of Energy`s (DOE`s) primary mission in the oil research program is to maximize the economically and environmentally sound recovery of oil from domestic reservoirs and to preserve access to this resource. The Oil Recovery Field Demonstration Program supports DOE`s mission through cost-shared demonstrations of improved Oil Recovery (IOR) processes and reservoir characterization methods. In the past 3 years, the DOE has issued Program Opportunity Notices (PONs) seeking cost-shared proposals for the three highest priority, geologically defined reservoir classes. The classes have been prioritized based on resource size and risk of abandonment. This document defines the geologic, reservoir, and production characteristics of the fourth reservoir class, strandplain/barrier islands. Knowledge of the geological factors and processes that control formation and preservation of reservoir deposits, external and internal reservoir heterogeneities, reservoir characterization methodology, and IOR process application can be used to increase production of the remaining oil-in-place (IOR) in Class 4 reservoirs. Knowledge of heterogeneities that inhibit or block fluid flow is particularly critical. Using the TORIS database of 330 of the largest strandplain/barrier island reservoirs and its predictive and economic models, the recovery potential which could result from future application of IOR technologies to Class 4 reservoirs was estimated to be between 1.0 and 4.3 billion barrels, depending on oil price and the level of technology advancement. The analysis indicated that this potential could be realized through (1) infill drilling alone and in combination with polymer flooding and profile modification, (2) chemical flooding (sufactant), and (3) thermal processes. Most of this future potential is in Texas, Oklahoma, and the Rocky Mountain region. Approximately two-thirds of the potentially recoverable resource is at risk of abandonment by the year 2000.

Cole, E.L.; Fowler, M.; Jackson, S.; Madden, M.P.; Reeves, T.K.; Salamy, S.P.; Young, M.A.

1994-12-01T23:59:59.000Z

397

The Department of Geology at Wayne State University consists of five full-time faculty and five  

E-Print Network [OSTI]

Geology (Site Assessment, Soils and Soil Pollution, Environmental Isotope Geochemistry, Environmental (Economic Geology). The Geology Department is housed in the historic Old Main Building, and owns in traditional fields (Hydrogeology, Eco- nomic Geology, Geochronology), and in the field of Environmental

Baskaran, Mark

398

Status report on the geology of the Oak Ridge Reservation  

SciTech Connect (OSTI)

This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth.

Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L. [Tennessee Univ., Knoxville, TN (United States). Dept. of Geological Sciences; Dreier, R.B.; Ketelle, R.H.; Lee, R.R.; Lee, Suk Young [Oak Ridge National Lab., TN (United States); Lietzke, D.A. [Lietzke (David A.), Rutledge, TN (United States); McMaster, W.M. [McMaster (William M.), Heiskell, TN (United States)

1992-10-01T23:59:59.000Z

399

Collector/Receiver Characterization (Fact Sheet)  

SciTech Connect (OSTI)

Fact sheet describing NREL CSP Program capabilities for collector/receiver characterization: determining optical efficiency, measuring heat loss, developing and testing concentrators, concentrating the sun's power, and optically characterizing CSP plants.

Not Available

2010-08-01T23:59:59.000Z

400

Influence of site-specific geology on oil shale fragmentation experiments at the Colony Mine, Garfield County, Colorado  

SciTech Connect (OSTI)

The Los Alamos National Laboratory executed 19 intermediate scale cratering experiments in oil shale at the Colony Mine in Garfield County, Colorado. These experiments have led to a better understanding of fracture characteristics and fragmentation of in situ oil shale by use of a conventional high explosive. Geologic site characterization included detailed mapping, coring, and sample analyses. Site-specific geology was observed to be a major influence on the resulting crater geometry. The joint patterns at the experimental site frequently defined the final crater symmetry. Secondary influences included vugs, lithology changes, and grade fluctuations in the local stratigraphy. Most experiments, in both the rib and floor, were conducted to obtain data to investigate the fragmentation results within the craters. The rubble was screened for fragment-size distributions. Geologic features in proximity to the explosive charge had minimal effect on the rubble due to the overpowering effect of the detonation. However, these same features became more influential on the fracture and rubble characteristics with greater distances from the shothole. Postshot cores revealed a direct relationship between the grade of the oil shale and its susceptibility to fracturing. The Colony Mine experiments have demonstrated the significant role of geology in high explosive/oil shale interaction. It is probable that this role will have to be considered for larger applications to blast patterns and potential problems in retort stability in the future of oil shale development.

Ray, J.M.; Harper, M.D.; Craig, J.L.; Edwards, C.L.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

CX-005689: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Joint Inversion of Electrical and Seismic Data for Fracture Characterization and Imaging of Fluid Flow in Geothermal Systems CX(s) Applied: A9,...

402

CX-001057: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

new wells. The project will also focus on determining the location of the fractures, fracture spacing and orientation during drilling as well as characterizing open fractures...

403

CX-009465: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: B3.6 Date: 10182012...

404

CX-009462: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: A9, A11 Date: 1018...

405

CX-009463: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics Beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: B3.6 Date: 10182012...

406

CX-009464: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Temporal Characterization of Hydrates System Dynamics beneath Seafloor Mounds: Integrating Time-Lapse CX(s) Applied: A9, A11 Date: 1018...

407

CX-002604: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-002604: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s)...

408

CX-002605: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-002605: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s)...

409

CX-000413: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-000413: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s)...

410

CX-000416: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-000416: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s)...

411

CX-000415: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-000415: Categorical Exclusion Determination Characterization of Most Promising Carbon Capture and Sequestration Formations in the Central Rocky Mountain Region CX(s)...

412

ADVANCED NUCLEAR FUEL CYCLE EFFECTS ON THE TREATMENT OF UNCERTAINTY IN THE LONG-TERM ASSESSMENT OF GEOLOGIC DISPOSAL SYSTEMS - EBS INPUT  

SciTech Connect (OSTI)

The Used Fuel Disposition (UFD) Campaign within the Department of Energy's Office of Nuclear Energy (DOE-NE) Fuel Cycle Technology (FCT) program has been tasked with investigating the disposal of the nation's spent nuclear fuel (SNF) and high-level nuclear waste (HLW) for a range of potential waste forms and geologic environments. The planning, construction, and operation of a nuclear disposal facility is a long-term process that involves engineered barriers that are tailored to both the geologic environment and the waste forms being emplaced. The UFD Campaign is considering a range of fuel cycles that in turn produce a range of waste forms. The UFD Campaign is also considering a range of geologic media. These ranges could be thought of as adding uncertainty to what the disposal facility design will ultimately be; however, it may be preferable to thinking about the ranges as adding flexibility to design of a disposal facility. For example, as the overall DOE-NE program and industrial actions result in the fuel cycles that will produce waste to be disposed, and the characteristics of those wastes become clear, the disposal program retains flexibility in both the choice of geologic environment and the specific repository design. Of course, other factors also play a major role, including local and State-level acceptance of the specific site that provides the geologic environment. In contrast, the Yucca Mountain Project (YMP) repository license application (LA) is based on waste forms from an open fuel cycle (PWR and BWR assemblies from an open fuel cycle). These waste forms were about 90% of the total waste, and they were the determining waste form in developing the engineered barrier system (EBS) design for the Yucca Mountain Repository design. About 10% of the repository capacity was reserved for waste from a full recycle fuel cycle in which some actinides were extracted for weapons use, and the remaining fission products and some minor actinides were encapsulated in borosilicate glass. Because the heat load of the glass was much less than the PWR and BWR assemblies, the glass waste form was able to be co-disposed with the open cycle waste, by interspersing glass waste packages among the spent fuel assembly waste packages. In addition, the Yucca Mountain repository was designed to include some research reactor spent fuel and naval reactor spent fuel, within the envelope that was set using the commercial reactor assemblies as the design basis waste form. This milestone report supports Sandia National Laboratory milestone M2FT-12SN0814052, and is intended to be a chapter in that milestone report. The independent technical review of this LLNL milestone was performed at LLNL and is documented in the electronic Information Management (IM) system at LLNL. The objective of this work is to investigate what aspects of quantifying, characterizing, and representing the uncertainty associated with the engineered barrier are affected by implementing different advanced nuclear fuel cycles (e.g., partitioning and transmutation scenarios) together with corresponding designs and thermal constraints.

Sutton, M; Blink, J A; Greenberg, H R; Sharma, M

2012-04-25T23:59:59.000Z

413

Geology of the Waste Treatment Plant Seismic Boreholes  

SciTech Connect (OSTI)

In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5 million year old Elephant Mountain Member was emplaced above the Pomona Member.

Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

2007-02-28T23:59:59.000Z

414

Geologic Study of the Coso Formation  

SciTech Connect (OSTI)

There have been great advances in the last 20 years in understanding the volcanic, structural, geophysical, and petrologic development of the Coso Range and Coso geothermal field. These studies have provided a wealth of knowledge concerning the geology of the area, including general structural characteristics and kinematic history. One element missing from this dataset was an understanding of the sedimentology and stratigraphy of well-exposed Cenozoic sedimentary strata - the Coso Formation. A detailed sedimentation and tectonics study of the Coso Formation was undertaken to provide a more complete picture of the development of the Basin and Range province in this area. Detailed mapping and depositional analysis distinguishes separate northern and southern depocenters, each with its own accommodation and depositional history. While strata in both depocenters is disrupted by faults, these faults show modest displacement, and the intensity and magnitude of faulting does no t record significant extension. For this reason, the extension between the Sierran and Coso blocks is interpreted as minor in comparison to range bounding faults in adjacent areas of the Basin and Range.

D. L. Kamola; J. D. Walker

1999-12-01T23:59:59.000Z

415

Constructing Hydraulic Barriers in Deep Geologic Formations  

SciTech Connect (OSTI)

Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

416

Federal Control of Geological Carbon Sequestration  

SciTech Connect (OSTI)

The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­?burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­?fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

Reitze, Arnold

2011-04-11T23:59:59.000Z

417

doi: 10.1130/0091-7613(1994)0222.3.CO;2 1994;22;1023-1026Geology  

E-Print Network [OSTI]

Geology doi: 10.1130/0091-7613(1994)0222.3.CO;2 1994;22;1023-1026Geology Michael.S. government employees within scope of their Notes Geological Society of America on May 27, 2010geology.gsapubs.orgDownloaded from #12;on May 27, 2010geology.gsapubs.orgDownloaded from #12;on May 27, 2010geology

Torsvik, Trond Helge

418

Geological challenges in radioactive waste isolation: Third worldwide review  

SciTech Connect (OSTI)

The broad range of activities on radioactive waste isolation that are summarized in Table 1.1 provides a comprehensive picture of the operations that must be carried out in working with this problem. A comparison of these activities with those published in the two previous reviews shows the important progress that is being made in developing and applying the various technologies that have evolved over the past 20 years. There are two basic challenges in perfecting a system of radioactive waste isolation: choosing an appropriate geologic barrier and designing an effective engineered barrier. One of the most important developments that is evident in a large number of the reports in this review is the recognition that a URL provides an excellent facility for investigating and characterizing a rock mass. Moreover, a URL, once developed, provides a convenient facility for two or more countries to conduct joint investigations. This review describes a number of cooperative projects that have been organized in Europe to take advantage of this kind of a facility in conducting research underground. Another critical development is the design of the waste canister (and its accessory equipment) for the engineered barrier. This design problem has been given considerable attention in a number of countries for several years, and some impressive results are described and illustrated in this review. The role of the public as a stakeholder in radioactive waste isolation has not always been fully appreciated. Solutions to the technical problems in characterizing a specific site have generally been obtained without difficulty, but procedures in the past in some countries did not always keep the public and local officials informed of the results. It will be noted in the following chapters that this procedure has caused some problems, especially when approval for a major component in a project was needed. It has been learned that a better way to handle this problem is to keep all stakeholders fully informed of project plans and hold periodic meetings to brief the public, especially in the vicinity of the selected site. This procedure has now been widely adopted and represents one of the most important developments in the Third Worldwide Review.

Witherspoon Editor, P.A.; Bodvarsson Editor, G.S.

2001-12-01T23:59:59.000Z

419

Performance Characterization  

Broader source: Energy.gov [DOE]

Performance characterization efforts within the SunShot Systems Integration activities focus on collaborations with U.S. solar companies to:

420

THE CAPE ANN PLUTONIC SUITE: A FIELD TRIP FOR PETROLOGY CLASSES John B. Brady, Department of Geology, Smith College, Northampton, MA 01060  

E-Print Network [OSTI]

of Geology, Smith College, Northampton, MA 01060 John T. Cheney, Department of Geology, Amherst College

Brady, John B.

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geologic Assessment of the Damage Zone from the Second Test at Source Physics Experiment-Nevada (SPE-N)  

SciTech Connect (OSTI)

The National Center for Nuclear Security, established by the U.S. Department of Energy, National Nuclear Security Administration (NNSA), is conducting a series of explosive tests at the Nevada National Security Site that are designed to increase the understanding of certain basic physical phenomena associated with underground explosions. These tests will aid in developing technologies that might be used to detect underground nuclear explosions in support of verification activities for the Comprehensive Nuclear-Test-Ban Treaty. The initial project is a series of explosive tests, known collectively as the Source Physics Experiment-Nevada (SPE-N), being conducted in granitic rocks. The SPE-N test series is designed to study the generation and propagation of seismic waves. The results will help advance the seismic monitoring capability of the United States by improving the predictive capability of physics-based modeling of explosive phenomena. The first SPE N (SPE-N-1) test was conducted in May 2011, using 100 kg of explosives at the depth of 54.9 m in the U 15n source hole. SPE-N-2 was conducted in October 2011, using 1,000 kg of explosives at the depth of 45.7 m in the same source hole. The SPE-N-3 test was conducted in the same source hole in July 2012, using the same amount and type of explosive as for SPE-N-2, and at the same depth as SPE-N-2, within the damage zone created by the SPE-N-2 explosion to investigate damage effects on seismic wave propagation. Following the SPE-N-2 shot and prior to the SPE-N-3 shot, the core hole U-15n#10 was drilled at an angle from the surface to intercept the SPE-N-2 shot point location to obtain information necessary to characterize the damage zone. The objective was to determine the position of the damage zone near the shot point, at least on the northeast, where the core hole penetrated it, and obtain information on the properties of the damaged medium. Geologic characterization of the post-SPE-N-2 core hole included geophysical logging, a directional survey, and geologic description of the core to document visual evidence of damage. Selected core samples were provided to Sandia National Laboratories (SNL) for measurement of physical and mechanical properties. A video was also run in the source hole after it was cleaned out. A significant natural fault zone was encountered in the angle core hole between 5.7 and 7.5 m from the shot point. However, several of the fractures observed in the core hole are interpreted as having been caused by the explosion. The fractures are characterized by a “fresh,” mechanically broken look, with uncoated and very irregular surfaces. They tend to terminate against natural fractures and have orientations that differ from the previously defined natural fracture sets; they are common starting at about 5.4 m from the shot point. Within about 3.3 m of the shot point to the end of the recovered core at 1.6 m from the shot point, some of the core samples are softer and lighter in color, but do not appear to be weathered. It is thought this could be indicative of the presence of distributed microfracturing.

Townsend, M. J.; Huckins-Gang, H. E.; Prothro, L. B.; Reed, D. N.

2012-12-01T23:59:59.000Z

422

Minor actinide waste disposal in deep geological boreholes  

E-Print Network [OSTI]

The purpose of this investigation was to evaluate a waste canister design suitable for the disposal of vitrified minor actinide waste in deep geological boreholes using conventional oil/gas/geothermal drilling technology. ...

Sizer, Calvin Gregory

2006-01-01T23:59:59.000Z

423

Geology of the Florida Canyon gold deposit, Pershing County,...  

Open Energy Info (EERE)

Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology of the Florida Canyon gold deposit, Pershing County, Nevada, in: Gold and Silver...

424

Cenozoic volcanic geology of the Basin and Range province in...  

Open Energy Info (EERE)

volcanic geology of the Basin and Range province in Hidalgo County, southwestern New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

425

Statistical approaches to leak detection for geological sequestration  

E-Print Network [OSTI]

Geological sequestration has been proposed as a way to remove CO? from the atmosphere by injecting it into deep saline aquifers. Detecting leaks to the atmosphere will be important for ensuring safety and effectiveness of ...

Haidari, Arman S

2011-01-01T23:59:59.000Z

426

Geology, Water Geochemistry And Geothermal Potential Of The Jemez...  

Open Energy Info (EERE)

Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library...

427

GEOL 102: Historical Geology Online Exam 1 Review  

E-Print Network [OSTI]

& Last Appearance Datum; Zone Other Methods of Stratigraphy Magnetostratigraphy (Chron); Sequence Stratigraphy (Sequence) #12;Geologic Column Chronostratigraphy (Rock) Geochronology (Time) Eonthem Eon Erathem: detrital (= clastic = siliciclastic), biogenic, chemical; strata Detrital Sedimentary Cycle: Source

Holtz Jr., Thomas R.

428

12.001 Introduction to Geology, Spring 2008  

E-Print Network [OSTI]

This undergraduate level course presents a basic study in geology. It introduces major minerals and rock types, rock-forming processes, and time scales; temperatures, pressures, compositions, structure of the Earth, and ...

Elkins-Tanton, Lindy

429

GEOL 102: Historical Geology Online Exam 2 Review  

E-Print Network [OSTI]

boundary types (transform, divergent, convergent); microplates Orogenesis Cycles of mountain building, ophiolites Examples in the modern world Wilson (Supercontinent) Cycles Geochemical Cycles Energy sources for geology: solar, gravity, internal heat Reservoirs (sources and sinks) and fluxes; residence time Positive

Holtz Jr., Thomas R.

430

Louisiana Geologic Sequestration of Carbon Dioxide Act (Louisiana)  

Broader source: Energy.gov [DOE]

This law establishes that carbon dioxide and sequestration is a valuable commodity to the citizens of the state. Geologic storage of carbon dioxide may allow for the orderly withdrawal as...

431

Geologic Survey of the Ewing Bank, Northern Gulf of Mexico  

E-Print Network [OSTI]

Located along the edge of the continental shelf in the northwestern Gulf of Mexico, the Ewing Bank is a significant geologic feature: yet, little information about the bank is generally available. This thesis represents a preliminary survey...

Brooks, Daniel M

2014-04-04T23:59:59.000Z

432

DOE Manual Studies 11 Major CO2 Geologic Storage Formations  

Broader source: Energy.gov [DOE]

A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy.

433

CX-000515: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-000515: Categorical Exclusion Determination Characterization of the Coal Pile Runoff Basin 788-3A, Ash Pile 788-A, Outfalls A-013 and A-024 CX(s) Applied: B3.1...

434

GEOLOGY, January 2007 1 GSA Data Repository item 2007010, Figures  

E-Print Network [OSTI]

GEOLOGY, January 2007 1 1 GSA Data Repository item 2007010, Figures DR1A (photo of speleothem PP1 and methods for uranium-series chronology), and DR2, (18 O and 13 C data), is available online at www 9140, Boulder, CO 80301, USA. Geology, January 2007; v. 35; no. 1; p.1­4; doi: 10.1130/G22865A.1; 3

Massachusetts at Amherst, University of

435

Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 2, Geology report  

SciTech Connect (OSTI)

This report presents geologic considerations that are pertinent to the Remedial Action Plan for Slick Rock mill tailings. Topics covered include regional geology, site geology, geologic stability, and geologic suitability.

Not Available

1993-07-01T23:59:59.000Z

436

Characterization of Amorphous Zinc Tin Oxide Semiconductors....  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Amorphous Zinc Tin Oxide Semiconductors. Characterization of Amorphous Zinc Tin Oxide Semiconductors. Abstract: Amorphous zinc tin oxide (ZTO) was investigated to determine the...

437

APOLLO 17 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE  

E-Print Network [OSTI]

APOLLO 17 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE #12;APOLLO 17 VOICE TRANSCRIPT Pertaining to the geology of the landing site by N.G. Bai ley and G.E. Ulrich U.s. Geological 5. Report Date Apollo 17 Voice Transcript 1975 Pertaining to the Geology of the Landing Site 6. 7

Rathbun, Julie A.

438

Page 156 Geology Sonoma State University 2008-2010 Catalog Department Office  

E-Print Network [OSTI]

Page 156 Geology Sonoma State University 2008-2010 Catalog Department Office Darwin Hall 116 (707) 664-2334 www.sonoma.edu/geology Department chair Matthew J. James aDministrative cOOrDinatOr Gayle Early Retirement Program Programs Offered Bachelor of science in Geology Bachelor of arts in Geology

Ravikumar, B.

439

FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE EASTERN ROCK SPRINGS UPLIFT,  

E-Print Network [OSTI]

Chapter GF FRAMEWORK GEOLOGY OF FORT UNION COAL IN THE EASTERN ROCK SPRINGS UPLIFT, GREATER GREEN RIVER BASIN, WYOMING By R.M. Flores,1 A.M. Ochs,2 and L.R. Bader1 in U.S. Geological Survey Professional Paper 1625-A 1 U.S. Geological Survey 2 Consultant, U.S. Geological Survey, Denver, Colorado 1999

440

College of Natural Science and Mathematics Department of Geology and Geophysics  

E-Print Network [OSTI]

gEology College of Natural Science and Mathematics Department of Geology and Geophysics 907-474-7565 www.uaf.edu/geology/ MS, phD Degrees Minimum Requirements for Degrees: MS: 30 credits; PhD: 18 thesis credits Graduates in geology have broad backgrounds in the earth sciences and firm foundations

Hartman, Chris

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Physical Geology Laboratory J Bret Bennington, Charles Merguerian and John E. Sanders  

E-Print Network [OSTI]

Physical Geology Laboratory Manual J Bret Bennington, Charles Merguerian and John E. Sanders Geology Department Hofstra University © 1999 #12;PHYSICAL GEOLOGY LABORATORY MANUAL Third Edition (Revised) by J Bret Bennington, Charles Merguerian, and John E. Sanders Department of Geology Hofstra University

Merguerian, Charles

442

University of Calgary, Department of Geoscience Sessional Instructor Position in Petroleum Engineering Geology  

E-Print Network [OSTI]

in Petroleum Engineering Geology The Department of Geoscience at the University of Calgary is seeking a Sessional Instructor to fill 1/3 of course as lecturer for Geology 377 (Petroleum Engineering Geology to engineering students as part of the course GLGY 377 (Petroleum Engineering Geology). The topics covered

Garousi, Vahid

443

* * * *APOLLO 12 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE  

E-Print Network [OSTI]

* * * *APOLLO 12 VOICE TRANSCRIPT PERTAINING TO THE GEOLOGY OF THE LANDING SITE #12;APOLLO 12 VOICE TRANSCRIPT Pertaining to the geology of the landing site by N.G. Bailey and G.E. Ulrich U.S. Geological to the Geology of the Landing Site 7. Auchor(s) 8. Performing Organization Repr. N. G. Bailey and G. E. Ulrich No

Rathbun, Julie A.

444

Northwestern University Archives Evanston, Illinois Department of Geology Field Notebooks and Catalogs, 1881-1953  

E-Print Network [OSTI]

geology. Mathematical techniques were applied to the exploitation of oil-bearing formations and otherNorthwestern University Archives · Evanston, Illinois Department of Geology Field Notebooks, instructors, and students of the Geology Department between the years 1881 through 1953. History Geology

445

Slope design and implementation in open pit mines; geological and geomechanical Jean-Alain FLEURISSON  

E-Print Network [OSTI]

stability, slope design, engineering geology, fault, open pit mines, SOMAIR uranium mine, OCP phosphate mine1 GHGT-9 Slope design and implementation in open pit mines; geological and geomechanical approach all natural geological and geomechanical features and the geological structures as well

Boyer, Edmond

446

Geology and geohydrology of the east Texas Basin. Report on the progress of nuclear waste isolation feasibility studies (1979)  

SciTech Connect (OSTI)

The program to investigate the suitability of salt domes in the east Texas Basin for long-term nuclear waste repositories addresses the stability of specific domes for potential repositories and evaluates generically the geologic and hydrogeologic stability of all the domes in the region. Analysis during the second year was highlighted by a historical characterization of East Texas Basin infilling, the development of a model to explain the growth history of the domes, the continued studies of the Quaternary in East Texas, and a better understanding of the near-dome and regional hydrology of the basin. Each advancement represents a part of the larger integrated program addressing the critical problems of geologic and hydrologic stabilities of salt domes in the East Texas Basin.

Kreitler, C.W.; Agagu, O.K.; Basciano, J.M.

1980-01-01T23:59:59.000Z

447

An Assessment of Geological Carbon Sequestration Options in the Illinois Basin  

SciTech Connect (OSTI)

The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climate change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline reservoirs deep beneath geological structures, and 30,000 to 35,000 million tonnes (33,069 to 38,580 million tons) of capacity in saline reservoirs on a regional dip >1,219 m (4,000 ft) deep. The major part of this effort assessed each of the three geological sinks: coals, oil reservoirs, and saline reservoirs. We linked and integrated options for capture, transportation, and geological storage with the environmental and regulatory framework to define sequestration scenarios and potential outcomes for the region. Extensive use of Geographic Information Systems (GIS) and visualization technology was made to convey results to project sponsors, other researchers, the business community, and the general public. An action plan for possible technology validation field tests involving CO{sub 2} injection was included in a Phase II proposal (successfully funded) to the U.S. Department of Energy with cost sharing from Illinois Clean Coal Institute.

Robert Finley

2005-09-30T23:59:59.000Z

448

CO{sub 2} Sequestration Capacity and Associated Aspects of the Most Promising Geologic Formations in the Rocky Mountain Region: Local-Scale Analyses  

SciTech Connect (OSTI)

The purpose of this report is to provide a summary of individual local-­?scale CCS site characterization studies conducted in Colorado, New Mexico and Utah. These site-­? specific characterization analyses were performed as part of the “Characterization of Most Promising Sequestration Formations in the Rocky Mountain Region” (RMCCS) project. The primary objective of these local-­?scale analyses is to provide a basis for regional-­?scale characterization efforts within each state. Specifically, limits on time and funding will typically inhibit CCS projects from conducting high-­? resolution characterization of a state-­?sized region, but smaller (< 10,000 km{sup 2}) site analyses are usually possible, and such can provide insight regarding limiting factors for the regional-­?scale geology. For the RMCCS project, the outcomes of these local-­?scale studies provide a starting point for future local-­?scale site characterization efforts in the Rocky Mountain region.

Laes, Denise; Eisinger, Chris; Morgan, Craig; Rauzi, Steve; Scholle, Dana; Scott, Phyllis; Lee, Si-Yong; Zaluski, Wade; Esser, Richard; Matthews, Vince; McPherson, Brian

2013-07-30T23:59:59.000Z

449

Land subsidence in the Cerro Prieto Geothermal Field, 1 Baja California, Mexico, from 1994 to 2005. An integrated analysis of DInSAR, levelingand geological data.  

SciTech Connect (OSTI)

Cerro Prieto is the oldest and largest Mexican geothermal field in operation and has been producing electricity since 1973. The large amount of geothermal fluids extracted to supply steam to the power plants has resulted in considerable deformation in and around the field. The deformation includes land subsidence and related ground fissuring and faulting. These phenomena have produced severe damages to infrastructure such as roads, irrigation canals and other facilities. In this paper, the technique of Differential Synthetic Aperture Radar Interferometry (DInSAR) is applied using C-band ENVISAR ASAR data acquired between 2003 and 2006 to determine the extent and amount of land subsidence in the Mexicali Valley near Cerro Prieto Geothermal Field. The DInSAR results were compared with published data from precise leveling surveys (1994- 1997 and 1997-2006) and detailed geological information in order to improve the understanding of temporal and spatial distributions of anthropogenic subsidence in the Mexicali Valley. The leveling and DInSAR data were modeled to characterize the observed deformation in terms of fluid extraction. The results confirm that the tectonic faults control the spatial extent of the observed subsidence. These faults likely act as groundwater flow barriers for aquifers and reservoirs. The shape of the subsiding area coincides with the Cerro Prieto pull-apart basin. In addition, the spatial pattern of the subsidence as well as changes in rate are highly correlated with the development of the Cerro Prieto Geothermal Field.

Sarychikhina, O; Glowacka, E; Mellors, R; Vidal, F S

2011-03-03T23:59:59.000Z

450

Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site  

SciTech Connect (OSTI)

The microbial diversity in subsurface sediments at the Hanford Site's 300 Area in southeastern Washington State was investigated by analyzing 21 samples recovered from depths that ranged from 9 to 52 m. Approximately 8000 non-chimeric Bacterial and Archaeal 16S rRNA gene sequences were analyzed across geological strata that contain a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units, defined at the 97% identity level). Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (based upon Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic transition zone, richness was about 325 and declined to less than 50 in the deeper reduced zones. The Bacterial community in the oxic Hanford and Ringold Formations contained members of 9 major well-recognized phyla as well 30 as unusually high proportions of 3 candidate divisions (GAL15, NC10, and SPAM). The deeper Ringold strata were characterized by low OTU richness and a very high preponderance (ca. 90%) of Proteobacteria. The study has greatly expanded the intralineage phylogenetic diversity within some major divisions. These subsurface sediments have been shown to contain a large number of phylogenetically novel microbes, with substantial heterogeneities between sediment samples from the same geological formation.

Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan

2012-02-01T23:59:59.000Z

451

Geologic Controls of Hydrocarbon Occurrence in the Southern Appalachian Basin in Eastern Tennessee, Southwestern Virginia, Eastern Kentucky, and Southern West Virginia  

SciTech Connect (OSTI)

This report summarizes the first-year accomplishments of a three-year program to investigate the geologic controls of hydrocarbon occurrence in the southern Appalachian basin in eastern Tennessee, southwestern Virginia, eastern Kentucky, and southern West Virginia. The project: (1) employs the petroleum system approach to understand the geologic controls of hydrocarbons; (2) attempts to characterize the T-P parameters driving petroleum evolution; (3) attempts to obtain more quantitative definitions of reservoir architecture and identify new traps; (4) is working with USGS and industry partners to develop new play concepts and geophysical log standards for subsurface correlation; and (5) is geochemically characterizing the hydrocarbons (cooperatively with USGS). First-year results include: (1) meeting specific milestones (determination of thrust movement vectors, fracture analysis, and communicating results at professional meetings and through publication). All milestones were met. Movement vectors for Valley and Ridge thrusts were confirmed to be west-directed and derived from pushing by the Blue Ridge thrust sheet, and fan about the Tennessee salient. Fracture systems developed during Paleozoic, Mesozoic, and Cenozoic to Holocene compressional and extensional tectonic events, and are more intense near faults. Presentations of first-year results were made at the Tennessee Oil and Gas Association meeting (invited) in June, 2003, at a workshop in August 2003 on geophysical logs in Ordovician rocks, and at the Eastern Section AAPG meeting in September 2003. Papers on thrust tectonics and a major prospect discovered during the first year are in press in an AAPG Memoir and published in the July 28, 2003, issue of the Oil and Gas Journal. (2) collaboration with industry and USGS partners. Several Middle Ordovician black shale samples were sent to USGS for organic carbon analysis. Mississippian and Middle Ordovician rock samples were collected by John Repetski (USGS) and RDH for conodont alteration index determination to better define regional P-T conditions. Efforts are being made to calibrate and standardize geophysical log correlation, seismic reflection data, and Ordovician lithologic signatures to better resolve subsurface stratigraphy and structure beneath the poorly explored Plateau in Tennessee and southern Kentucky. We held a successful workshop on Ordovician rocks geophysical log correlation August 7, 2003 that was cosponsored by the Appalachian PTTC, the Kentucky and Tennessee geological surveys, the Tennessee Oil and Gas Association, and small independents. Detailed field structural and stratigraphic mapping of a transect across part of the Ordovician clastic wedge in Tennessee was begun in January 2003 to assist in 3-D reconstruction of part of the southern Appalachian basin and better assess the nature of a major potential source rock assemblage. (3) Laying the groundwork through (1) and (2) to understand reservoir architecture, the petroleum systems, ancient fluid migration, and conduct 3-D analysis of the southern Appalachian basin.

Robert D. Hatcher

2003-05-31T23:59:59.000Z

452

Field geology with a wearable computer: 1st results of the Cyborg Astrobiologist System  

E-Print Network [OSTI]

We present results from the first geological field tests of the `Cyborg Astrobiologist', which is a wearable computer and video camcorder system that we are using to test and train a computer-vision system towards having some of the autonomous decision-making capabilities of a field-geologist. The Cyborg Astrobiologist platform has thus far been used for testing and development of these algorithms and systems: robotic acquisition of quasi-mosaics of images, real-time image segmentation, and real-time determination of interesting points in the image mosaics. This work is more of a test of the whole system, rather than of any one part of the system. However, beyond the concept of the system itself, the uncommon map (despite its simplicity) is the main innovative part of the system. The uncommon map helps to determine interest-points in a context-free manner. Overall, the hardware and software systems function reliably, and the computer-vision algorithms are adequate for the first field tests. In addition to the proof-of-concept aspect of these field tests, the main result of these field tests is the enumeration of those issues that we can improve in the future, including: dealing with structural shadow and microtexture, and also, controlling the camera's zoom lens in an intelligent manner. Nonetheless, despite these and other technical inadequacies, this Cyborg Astrobiologist system, consisting of a camera-equipped wearable-computer and its computer-vision algorithms, has demonstrated its ability of finding genuinely interesting points in real-time in the geological scenery, and then gathering more information about these interest points in an automated manner. We use these capabilities for autonomous guidance towards geological points-of-interest.

Patrick C. McGuire; Javier Gomez-Elvira; Jose Antonio Rodriguez-Manfredi; Eduardo Sebastian-Martinez; Jens Ormo; Enrique Diaz-Martinez; Markus Oesker; Robert Haschke; Joerg Ontrup; Helge Ritter

2005-06-24T23:59:59.000Z

453

doi: 10.1130/0091-7613(1985)132.0.CO;2 1985;13;231-233Geology  

E-Print Network [OSTI]

Geology doi: 10.1130/0091-7613(1985)132.0.CO;2 1985;13;231-233Geology V. R. Todd and S Geological Society of America on July 8, 2011geology.gsapubs.orgDownloaded from #12;on July 8, 2011geology.gsapubs.orgDownloaded from #12;on July 8, 2011geology.gsapubs.orgDownloaded from #12;on July 8, 2011geology

Lee, Cin-Ty Aeolus

454

All majors in geology are required to complete GLY 4750 (Field Methods) which includes classroom lectures on Appalachian Geology, a nine day trip to the Southern Appalachians, and  

E-Print Network [OSTI]

All majors in geology are required to complete GLY 4750 (Field Methods) which includes classroom lectures on Appalachian Geology, a nine day trip to the Southern Appalachians, and two oneday field trips geological data and interpretations, and requires the student to demonstrate proficiency in integrating

Fernandez, Eduardo

455

Geology and Photometric Variation of Solar System Bodies with Minor Atmospheres: Implications for Solid Exoplanets  

E-Print Network [OSTI]

A reasonable basis for future astronomical investigations of exoplanets lies in our best knowledge of the planets and satellites in the Solar System. Solar System bodies exhibit a wide variety of surface environments, even including potential habitable conditions beyond Earth, and it is essential to know how they can be characterized from outside the Solar System. In this study, we provide an overview of geological features of major Solar System solid bodies with minor atmospheres (i.e., the Terrestrial Moon, Mercury, the Galilean moons, and Mars) that affect surface albedo at local to global scale, and we survey how they influence point-source photometry in UV, visible, and near IR (i.e., the reflection-dominant range). We simulate them based on recent mapping products and also compile observed light curves where available. We show a 5-50% peak-to-trough variation amplitude in one spin rotation associated with various geological processes including heterogeneous surface compositions due to igneous activities...

Fujii, Yuka; Dohm, James; Ohtake, Makiko

2014-01-01T23:59:59.000Z

456

Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site  

SciTech Connect (OSTI)

Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington State (USA) was investigated by analyzing samples recovered from depths of 9 to 52 m. Approximately 8000 near full-length 16S rRNA gene sequences were analyzed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units at the 97% identity level), respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (ca. 90%) of Proteobacteria. The Bacterial community in the oxic sediments contained not only members of 9 well-recognized phyla but also an unusually high proportion of 3 candidate divisions (GAL15, NC10, and SPAM). Additionally, novel phylogenetic orders were identified within the Delta-proteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site.

Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan

2011-11-29T23:59:59.000Z

457

The Geologic and Hydrogeologic Setting of the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) is a mined repository constructed by the US Department of Energy for the permanent disposal of transuranic wastes generated since 1970 by activities related to national defense. The WIPP is located 42 km east of Carlsbad, New Mexico, in bedded salt (primarily halite) of the Late Permian (approximately 255 million years old) Salado Formation 655 m below the land surface. Characterization of the site began in the mid-1970s. Construction of the underground disposal facilities began in the early 1980s, and the facility received final certification from the US Environmental Protection Agency in May 1998. Disposal operations are planned to begin following receipt of a final permit from the State of New Mexico and resolution of legal issues. Like other proposed geologic repositories for radioactive waste, the WIPP relies on a combination of engineered and natural barriers to isolate the waste from the biosphere. Engineered barriers at the WIPP, including the seals that will be emplaced in the access shafts when the facility is decommissioned, are discussed in the context of facility design elsewhere in this volume. Physical properties of the natural barriers that contribute to the isolation of radionuclides are discussed here in the context of the physiographic, geologic, and hydrogeologic setting of the site.

Swift, P.N.; Corbet, T.F.

1999-03-04T23:59:59.000Z

458

Methods and apparatus for measurement of electronic properties of geological formations through borehole casing  

DOE Patents [OSTI]

Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into the formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figures.

Vail, W.B. III.

1991-08-27T23:59:59.000Z

459

Methods and apparatus for measurement of electronic properties of geological formations through borehole casing  

DOE Patents [OSTI]

Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figs.

Vail, W.B. III.

1989-11-21T23:59:59.000Z

460

Multiblock Grid Generation for Simulations in Geological Formations  

E-Print Network [OSTI]

Simulating fluid flow in geological formations requires mesh generation, lithology mapping to the cells, and computing geometric properties such as normal vectors and volume of cells. The purpose of this research work is to compute and process the geometrical information required for performing numerical simulations in geological formations. We present algebraic techniques, named Transfinite Interpolation, for mesh generation. Various transfinite interpolation techniques are derived from 1D projection operators. Many geological formations such as the Utsira formation (Torp and Gale, 2004; Khattri, Hellevang, Fladmark and Kvamme, 2006) and the Snohvit gas field (Maldal and Tappel, 2004) can be divided into layers or blocks based on the geometrical or lithological properties of the layers. We present the concept of block structured mesh generation for handling such formations.

Sanjay Kumar Khattri

2006-07-17T23:59:59.000Z

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment  

SciTech Connect (OSTI)

We have developed a framework for assessing the leakage risk of geologic carbon sequestration sites. This framework, known as the Certification Framework (CF), emphasizes wells and faults as the primary potential leakage conduits. Vulnerable resources are grouped into compartments, and impacts due to leakage are quantified by the leakage flux or concentrations that could potentially occur in compartments under various scenarios. The CF utilizes several model components to simulate leakage scenarios. One model component is a catalog of results of reservoir simulations that can be queried to estimate plume travel distances and times, rather than requiring CF users to run new reservoir simulations for each case. Other model components developed for the CF and described here include fault characterization using fault-population statistics; fault connection probability using fuzzy rules; well-flow modeling with a drift-flux model implemented in TOUGH2; and atmospheric dense-gas dispersion using a mesoscale weather prediction code.

Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe; Kumar, Navanit; Zhang, Yingqi; Jordan, Preston; Pan, Lehua; Granvold, Patrick; Chow, Fotini K.

2009-06-01T23:59:59.000Z

462

Analysis on the use of engineered barriers for geologic isolation of spent fuel in a reference salt site repository  

SciTech Connect (OSTI)

A perspective on the potential durability and effectiveness requirements for the waste form, container and other engineered barriers for geologic disposal of spent nuclear fuel has been developed. This perspective is based on calculated potential doses to individuals who may be exposed to radioactivity released from a repository via a groundwater transport pathway. These potential dose commitments were calculated with an integrated geosphere transport and bioshpere transport model. A sensitivity analysis was accomplished by varying four important system parameters, namely the waste radionuclide release rate from the repository, the delay prior to groundwater contact with the waste (leach initiation), aquifer flow velocity and flow path length. The nuclide retarding capacity of the geologic media, a major determinant of the isolation effectiveness, was not varied as a parameter but was held constant for a particular reference site. This analysis is limited to looking only at engineered barriers whose net effect is either to delay groundwater contact with the waste form or to limit the rate of release of radionuclides into the groundwater once contact has occurred. The analysis considers only leach incident scenarios, including a water well intrusion into the groundwater near a repository, but does not consider other human intrusion events or catastrophic events. The analysis has so far been applied to a reference salt site repository system and conclusions are presented.Basically, in nearly all cases, the regional geology is the most effective barrier to release of radionuclides to the biosphere; however, for long-lived isotopes of carbon, technetium and iodine, which were poorly sorbed on the geologic media, the geology is not very effective once a leach incident is initiated.

Cloninger, M.O.; Cole, C.R.; Washburn, J.F.

1980-12-01T23:59:59.000Z

463

National Uranium Resource Evaluation. Volume 1. Summary of the geology and uranium potential of Precambrian conglomerates in southeastern Wyoming  

SciTech Connect (OSTI)

A series of uranium-, thorium-, and gold-bearing conglomerates in Late Archean and Early Proterozoic metasedimentary rocks have been discovered in southern Wyoming. The mineral deposits were found by applying the time and strata bound model for the origin of uranium-bearing quartz-pebble conglomerates to favorable rock types within a geologic terrane known from prior regional mapping. No mineral deposits have been discovered that are of current (1981) economic interest, but preliminary resource estimates indicate that over 3418 tons of uranium and over 1996 tons of thorium are present in the Medicine Bow Mountains and that over 440 tons of uranium and 6350 tons of thorium are present in Sierra Madre. Sampling has been inadequate to determine gold resources. High grade uranium deposits have not been detected by work to date but local beds of uranium-bearing conglomerate contain as much as 1380 ppM uranium over a thickness of 0.65 meters. This project has involved geologic mapping at scales from 1/6000 to 1/50,000 detailed sampling, and the evaluation of 48 diamond drill holes, but the area is too large to fully establish the economic potential with the present information. This first volume summarizes the geologic setting and geologic and geochemical characteristics of the uranium-bearing conglomerates. Volume 2 contains supporting geochemical data, lithologic logs from 48 drill holes in Precambrian rocks, and drill site geologic maps and cross-sections from most of the holes. Volume 3 is a geostatistical resource estimate of uranium and thorium in quartz-pebble conglomerates.

Karlstrom, K.E.; Houston, R.S.; Flurkey, A.J.; Coolidge, C.M.; Kratochvil, A.L.; Sever, C.K.

1981-02-01T23:59:59.000Z

464

doi: 10.1130/0091-7613(1993)0212.3.CO;2 1993;21;579-582Geology  

E-Print Network [OSTI]

Geology doi: 10.1130/0091-7613(1993)0212.3.CO;2 1993;21;579-582Geology Paul W. Jewell on content prepared wholly by U.S. government employees within scope of their Notes Geological Society of America on July 11, 2011geology.gsapubs.orgDownloaded from #12;on July 11, 2011geology

Johnson, Cari

465

doi: 10.1130/0091-7613(2002)0302.0.CO;2 2002;30;175-178Geology  

E-Print Network [OSTI]

Geology doi: 10.1130/0091-7613(2002)0302.0.CO;2 2002;30;175-178Geology Sean D. Willett not claimed on content prepared wholly by U.S. government employees within scope of Notes Geological Society of America on June 9, 2014geology.gsapubs.orgDownloaded from on June 9, 2014geology

466

doi: 10.1130/0091-7613(1986)142.0.CO;2 1986;14;115-118Geology  

E-Print Network [OSTI]

Geology doi: 10.1130/0091-7613(1986)142.0.CO;2 1986;14;115-118Geology A.J.R. White, J on content prepared wholly by U.S. government employees within scope of their Notes Geological Society of America on July 8, 2011geology.gsapubs.orgDownloaded from #12;on July 8, 2011geology

Lee, Cin-Ty Aeolus

467

Study on fine geological modelling of the fluvial sandstone reservoir in Daqing oilfield  

SciTech Connect (OSTI)

These paper aims at developing a method for fine reservoir description in maturing oilfields by using close spaced well logging data. The main productive reservoirs in Daqing oilfield is a set of large fluvial-deltaic deposits in the Songliao Lake Basin, characterized by multi-layers and serious heterogeneities. Various fluvial channel sandstone reservoirs cover a fairly important proportion of reserves. After a long period of water flooding, most of them have turned into high water cut layers, but there are considerable residual reserves within them, which are difficult to find and tap. Making fine reservoir description and developing sound a geological model is essential for tapping residual oil and enhancing oil recovery. The principal reason for relative lower precision of predicting model developed by using geostatistics is incomplete recognition of complex distribution of fluvial reservoirs and their internal architecture`s. Tasking advantage of limited outcrop data from other regions (suppose no outcrop data available in oilfield) can only provide the knowledge of subtle changing of reservoir parameters and internal architecture. For the specific geometry distribution and internal architecture of subsurface reservoirs (such as in produced regions) can be gained only from continuous infilling logging well data available from studied areas. For developing a geological model, we think the first important thing is to characterize sandbodies geometries and their general architecture`s, which are the framework of models, and then the slight changing of interwell parameters and internal architecture`s, which are the contents and cells of the model. An excellent model should possess both of them, but the geometry is the key to model, because it controls the contents and cells distribution within a model.

Zhoa Han-Qing [Daqing Research Institute, Helongjiang (China)

1997-08-01T23:59:59.000Z

468

Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site  

SciTech Connect (OSTI)

This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 {mu}g/L in the aqueous phase and from approximately 10 to 290 {mu}g/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone.

Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

1995-03-01T23:59:59.000Z

469

The Aespoe Hard Rock Laboratory -- A preparation for the licensing of the deep geological repository for spent fuel in Sweden  

SciTech Connect (OSTI)

The Aespoe Hard Rock Laboratory is being constructed in preparation for the deep geological repository for demonstration deposition of spent fuel in Sweden. This paper describes the main and stage goals of the project. The site characterization prior to construction of the laboratory is described, as well as the on-going studies during construction of the laboratory. Excavation of the laboratory is planned to reach the final depth of 460 m below the surface in 1994. The program for the Operating Phase is in progress. It will be developed in cooperation with the seven organizations from six countries that are now participating in the Aespoe Hard Rock Laboratory.

Backblom, G. [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

1993-12-31T23:59:59.000Z

470

Fractal Location and Anomalous Diffusion Dynamics for Oil Wells from the KY Geological Survey  

E-Print Network [OSTI]

Utilizing data available from the Kentucky Geonet (KYGeonet.ky.gov) the fossil fuel mining locations created by the Kentucky Geological Survey geo-locating oil and gas wells are mapped using ESRI ArcGIS in Kentucky single plain 1602 ft projection. This data was then exported into a spreadsheet showing latitude and longitude for each point to be used for modeling at different scales to determine the fractal dimension of the set. Following the porosity and diffusivity studies of Tarafdar and Roy1 we extract fractal dimensions of the fossil fuel mining locations and search for evidence of scaling laws for the set of deposits. The Levy index is used to determine a match to a statistical mechanically motivated generalized probability function for the wells. This probability distribution corresponds to a solution of a dynamical anomalous diffusion equation of fractional order that describes the Levy paths which can be solved in the diffusion limit by the Fox H function ansatz.

Andrew, Keith; Andrew, Kevin A

2009-01-01T23:59:59.000Z

471

Significant Radionuclides Determination  

SciTech Connect (OSTI)

The purpose of this calculation is to identify radionuclides that are significant to offsite doses from potential preclosure events for spent nuclear fuel (SNF) and high-level radioactive waste expected to be received at the potential Monitored Geologic Repository (MGR). In this calculation, high-level radioactive waste is included in references to DOE SNF. A previous document, ''DOE SNF DBE Offsite Dose Calculations'' (CRWMS M&O 1999b), calculated the source terms and offsite doses for Department of Energy (DOE) and Naval SNF for use in design basis event analyses. This calculation reproduces only DOE SNF work (i.e., no naval SNF work is included in this calculation) created in ''DOE SNF DBE Offsite Dose Calculations'' and expands the calculation to include DOE SNF expected to produce a high dose consequence (even though the quantity of the SNF is expected to be small) and SNF owned by commercial nuclear power producers. The calculation does not address any specific off-normal/DBE event scenarios for receiving, handling, or packaging of SNF. The results of this calculation are developed for comparative analysis to establish the important radionuclides and do not represent the final source terms to be used for license application. This calculation will be used as input to preclosure safety analyses and is performed in accordance with procedure AP-3.12Q, ''Calculations'', and is subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (DOE 2000) as determined by the activity evaluation contained in ''Technical Work Plan for: Preclosure Safety Analysis, TWP-MGR-SE-000010'' (CRWMS M&O 2000b) in accordance with procedure AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''.

Jo A. Ziegler

2001-07-31T23:59:59.000Z

472

Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations in Midwestern United States  

SciTech Connect (OSTI)

Obtaining subsurface data for developing a regional framework for geologic storage of CO{sub 2} can require drilling and characterization in a large number of deep wells, especially in areas with limited pre-existing data. One approach for achieving this objective, without the prohibitive costs of drilling costly standalone test wells, is to collaborate with the oil and gas drilling efforts in a piggyback approach that can provide substantial cost savings and help fill data gaps in areas that may not otherwise get characterized. This leveraging with oil/gas drilling also mitigates some of the risk involved in standalone wells. This collaborative approach has been used for characterizing in a number of locations in the midwestern USA between 2005 and 2009 with funding from U.S. Department of Energy's National Energy Technology Laboratory (DOE award: DE-FC26-05NT42434) and in-kind contributions from a number of oil and gas operators. The results are presented in this final technical report. In addition to data collected under current award, selected data from related projects such as the Midwestern Regional Carbon Sequestration Partnership (MRCSP), the Ohio River Valley CO{sub 2} storage project at and near the Mountaineer Plant, and the drilling of the Ohio Stratigraphic well in Eastern Ohio are discussed and used in the report. Data from this effort are also being incorporated into the MRCSP geologic mapping. The project activities were organized into tracking and evaluation of characterization opportunities; participation in the incremental drilling, basic and advanced logging in selected wells; and data analysis and reporting. Although a large number of opportunities were identified and evaluated, only a small subset was carried into the field stage. Typical selection factors included reaching an acceptable agreement with the operator, drilling and logging risks, and extent of pre-existing data near the candidate wells. The region of study is primarily along the Ohio River Valley corridor in the Appalachian Basin, which underlies large concentrations of CO{sub 2} emission sources. In addition, some wells in the Michigan basin are included. Assessment of the geologic and petrophysical properties of zones of interest has been conducted. Although a large number of formations have been evaluated across the geologic column, the primary focus has been on evaluating the Cambrian sandstones (Mt. Simon, Rose Run, Kerbel) and carbonates layers (Knox Dolomite) as well as on the Silurian-Devonian carbonates (Bass Island, Salina) and sandstones (Clinton, Oriskany, Berea). Factors controlling the development of porosity and permeability, such as the depositional setting have been explored. In northern Michigan the Bass Islands Dolomite appears to have favorable reservoir development. In west central Michigan the St. Peter sandstone exhibits excellent porosity in the Hart and Feuring well and looks promising. In Southeastern Kentucky in the Appalachian Basin, the Batten and Baird well provided valuable data on sequestration potential in organic shales through adsorption. In central and eastern Ohio and western West Virginia, the majority of the wells provided an insight to the complex geologic framework of the relatively little known Precambrian through Silurian potential injection targets. Although valuable data was acquired and a number of critical data gaps were filled through this effort, there are still many challenges ahead and questions that need answered. The lateral extent to which favorable potential injection conditions exist in most reservoirs is still generally uncertain. The prolongation of the characterization of regional geologic framework through partnership would continue to build confidence and greatly benefit the overall CO{sub 2} sequestration effort.

Neeraj Gupta

2009-09-30T23:59:59.000Z

473

Technical Report TR-011 March 2000 Research Section, Vancouver Forest Region, BCMOF Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife  

E-Print Network [OSTI]

Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife TR-011 Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife #12;Technical ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife Page Summary

474

Discrete-event simulation of nuclear-waste transport in geologic sites subject to disruptive events. Final report  

SciTech Connect (OSTI)

This report outlines a methodology to study the effects of disruptive events on nuclear waste material in stable geologic sites. The methodology is based upon developing a discrete events model that can be simulated on the computer. This methodology allows a natural development of simulation models that use computer resources in an efficient manner. Accurate modeling in this area depends in large part upon accurate modeling of ion transport behavior in the storage media. Unfortunately, developments in this area are not at a stage where there is any consensus on proper models for such transport. Consequently, our work is directed primarily towards showing how disruptive events can be properly incorporated in such a model, rather than as a predictive tool at this stage. When and if proper geologic parameters can be determined, then it would be possible to use this as a predictive model. Assumptions and their bases are discussed, and the mathematical and computer model are described.

Aggarwal, S.; Ryland, S.; Peck, R.

1980-06-19T23:59:59.000Z

475

AEGIS technology demonstration for a nuclear waste repository in basalt. Assessment of effectiveness of geologic isolation systems  

SciTech Connect (OSTI)

A technology demonstration of current performance assessment techniques as applied to a nuclear waste repository in the Columbia Plateau Basalts was conducted. Hypothetical repository coordinates were selected for an actual geographical setting on the Hanford Reservation in the state of Washington. Published hydrologic and geologic data used in the analyses were gathered in 1979 or earlier. The following report documents the technology demonstration in basalt. Available information has been used to establish the data base and initial hydrologic and geologic interpretations for this site-specific application. A simplified diagram of the AEGIS analyses is shown. Because an understanding of the dynamics of ground-water flow is essential to the development of release scenarios and consequence analyses, a key step in the demonstration is the systems characterization contained in the conceptual model. Regional and local ground-water movement patterns have been defined with the aid of hydrologic computer models. Hypothetical release scenarios have been developed and evaluated by a process involving expert opinion and a Geologic Simulation Model for basalt. (The Geologic Simulation Model can also be used to forecast future boundary conditions for the hydrologic simulation.) Chemical reactivity of the basalt with ground water will influence the leaching and transport of radionuclides; solubility equilibria based on available data are estimated with geochemical models. After the radionuclide concentrations are mathematically introduced into the ground-water movement patterns, waste movement patterns are outlined over elapsed time. Contaminant transport results are summarized for significant radionuclides that are hypothetically released to the accessible environment and to the biosphere.

Dove, F.H.; Cole, C.R.; Foley, M.G.

1982-09-01T23:59:59.000Z

476

References on Bentonite U.S. Geological Survey  

E-Print Network [OSTI]

.S. Geological Survey Mineral Investigations Resources Map, MR-92, 1 p. Hosterman, J.W. and Orris, G. J., 1998 minerals: New Mexico Bureau of Mines & Mineral Resources Bulletin 154, p 267-273. Ciullo, P.A., 1996, White, Steven, 1998, Wyoming bentonite-a niche in mineral globalization: in Proceedings of the 3rd North

477

1 INSTRODUCTION In the concept of geological radioactive waste disposal,  

E-Print Network [OSTI]

1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being of the radioactive waste disposal, the host rock will be subjected to various thermo-hydro-mechanical loadings, thermal solicitation comes from the heat emitting from the radioactive waste packages. On one hand

Boyer, Edmond

478

GEOLOGY | August 2012 | www.gsapubs.org 747 INTRODUCTION  

E-Print Network [OSTI]

GEOLOGY | August 2012 | www.gsapubs.org 747 INTRODUCTION Reduced organic carbon is the primary carbon and light, alternative energy sources, such as Fe(II), must be avail- able in order for life(II) as an energy source for microbial metabolism as well as supply a source of inorganic carbon for fixation

Loope, David B.

479

Geological problems in radioactive waste isolation - second worldwide review  

SciTech Connect (OSTI)

The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

Witherspoon, P.A. [ed.

1996-09-01T23:59:59.000Z

480

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology Hudson and Axel Anderson KEYWORDS: Water management, Coastal watersheds, hydrological modeling CITATIONPractice. ResearchSection,Coast ForestRegion, BCMOF,Nanaimo, BC. Extension Note EN-022. EN-022 Hydrology March 2006

Note: This page contains sample records for the topic "determination geologic characterization" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~  

E-Print Network [OSTI]

Extension Note Research Disciplines: Ecology ~ Geology ~ Geomorphology ~ Hydrology ~ Pedology,Tsitika Watershed.Research Section,CoastForest Region,BCMOF, Nanaimo, BC. Extension Note EN-021. EN-021 Hydrology ~ Geomorphology ~ Hydrology ~ Pedology ~ Silviculture ~ Wildlife Extension Note EN-021 March 2006 Forest Research

482

SCALING OF FRACTURE SYSTEMS IN GEOLOGICAL MEDIA E. Bonnet,1  

E-Print Network [OSTI]

SCALING OF FRACTURE SYSTEMS IN GEOLOGICAL MEDIA E. Bonnet,1 O. Bour,2 N. E. Odling,1,3 P. Davy,2 I. Main,4 P. Cowie,4 and B. Berkowitz5 Abstract. Scaling in fracture systems has become an active field spread widely through the literature. Although it is rec- ognized that some fracture systems are best

Cowie, Patience

483

GEOL 104 Dinosaurs: A Natural History Geology Assignment  

E-Print Network [OSTI]

rocks is the energy of the environment: that is, how fast the water (or wind) was moving. EssentiallyName: 1 GEOL 104 Dinosaurs: A Natural History Geology Assignment DUE: Mon. Sept. 18 Part I, the higher the energy, the larger the size of the particles of sediment. Slow moving water can only move

Holtz Jr., Thomas R.

484

State of Oregon Department of Geology and Mineral Industries  

E-Print Network [OSTI]

://www.naturenw.org or these DOGAMI field offices: Baker City Field Office 1510 Campbell St. Baker City, OR 97814-3442 Telephone (541 ON LIMITED GEOLOGIC AND GEOPHYSICAL DATA. AT ANY GIVEN SITE IN ANY MAP AREA, SITE-SPECIFIC DATA COULD GIVE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Energy Resources

Goldfinger, Chris

485

The subsurface fluid mechanics of geologic carbon dioxide storage  

E-Print Network [OSTI]

In carbon capture and storage (CCS), CO? is captured at power plants and then injected into deep geologic reservoirs for long-term storage. While CCS may be critical for the continued use of fossil fuels in a carbon-constrained ...

Szulczewski, Michael Lawrence

2013-01-01T23:59:59.000Z

486

Deborah K. Smith Department of Geology and Geophysics, MS 22  

E-Print Network [OSTI]

Deborah K. Smith Department of Geology and Geophysics, MS 22 Woods Hole Oceanographic Institution: Jordan, T. H., H. W. Menard, and D.K. Smith, Density and size distribution of seamounts in the eastern. Smith, H. W. Menard, J. A. Orcutt and T. H. Jordan, Seismic reflection site survey: correlation

Smith, Deborah K.

487

Scaled Experimental Modeling of Geologic Structures Rutgers University  

E-Print Network [OSTI]

of uncertainty associated with hydrocarbon exploration and production. Furthermore, experimental models allow us in the Department of Geological Sciences at Rutgers University. She has thirty years of experience in the oil & gas experimental models provide valuable information about structural processes, especially those not observed

488

Geologic map of the Mount Adams Quadrangle, Washington  

SciTech Connect (OSTI)

This report is comprised of a 1:100,000 scale geologic map and accompanying text. The text consists of unit descriptions, a table of age dates, a table of major element geochemistry, correlation diagram, and a source of mapping diagram. (ACR)

Korosec, M.A. (comp.)

1987-01-01T23:59:59.000Z

489

WALKING GUIDE NATURAL SCIENCES MUSEUM AND GEOLOGY MUSEUM  

E-Print Network [OSTI]

WALKING GUIDE NATURAL SCIENCES MUSEUM AND GEOLOGY MUSEUM This tour may be done in groups-guided group tours are asked to book a time to prevent too many groups from being in the museum at once. Tour MUSEUM LEVEL IMPORTANT: MANY EXHIBITS ARE ALIVE. DO NOT TOUCH OR TAP TANKS OR GLASS DISPLAY FRONTS

Patterson, William P.

490

WALKING GUIDE NATURAL SCIENCES MUSEUM AND GEOLOGY MUSEUM  

E-Print Network [OSTI]

WALKING GUIDE NATURAL SCIENCES MUSEUM AND GEOLOGY MUSEUM This tour may be done in groups-guided group tours are asked to book a time to prevent too many groups from being in the museum at once. Tour. DINOSAUR AND OTHER REPLICAS ARE ALSO FRAGILE AND SHOULD NOT BE TOUCHED OR HANDLED. MAIN FLOOR MUSEUM LEVEL

Patterson, William P.

491

Geology 460:301 Fall 2007 Mineralogy Lab  

E-Print Network [OSTI]

Geology 460:301 Fall 2007 Mineralogy Lab Professor Jeremy Delaney Teaching Assistant: Alissa Henza Science by Cornelius Klein (22nd edition) Introduction to Optical Mineralogy by William Nesse Grading Policy: Lab is 33% of your Mineralogy grade. This 33% is made up of: Labs: 70% Quizzes: 5% Final Exam: 25

492

Location and Geology Fig 1. The Macasty black shale  

E-Print Network [OSTI]

, Quebec, is organic-rich black shale and hosting oil and gas. It is equivalent to the Ithaca shaleLocation and Geology Fig 1. The Macasty black shale in the Anticosti Island in the Gulf of St. d13C for calcite disseminated in the black shale range from 2.6o to 2.8 / The values are lower

493

Characterizing fault-plume intersection probability for geologic carbon sequestration risk assessment  

E-Print Network [OSTI]

storage of carbon dioxide: comparison of hysteretic and non-hysteretic characteristic curves, Energy

Jordan, Preston D.

2009-01-01T23:59:59.000Z

494

The role of optimality in characterizing CO2 seepage from geological carbon sequestration sites  

E-Print Network [OSTI]

Clim. Change 2002. Workshop carbon capture storage. Proc.this concern, various Carbon Capture and Storage (CCS)Special Report on carbon dioxide capture and storage, ISBN

Cortis, Andrea

2009-01-01T23:59:59.000Z

495

Application of the 2-D Continuous Wavelet Transforms for Characterization of Geological and Geophysical Data  

E-Print Network [OSTI]

the 2-D CWT to character- ize the surface of two samples of Fe_(2)O_(3) and three samples of calcite. For a fresh surface of the calcite mineral, a cleavage plane exposed by fracturing, the surface measurements show discrete jumps in height because...

Vuong, Au K

2014-05-05T23:59:59.000Z

496

Strategic Petroleum Reserve (SPR) additional geologic site characterization studies, Bryan Mound Salt Dome, Texas  

SciTech Connect (OSTI)

This report revises the original report that was published in 1980. Some of the topics covered in the earlier report were provisional and it is now practicable to reexamine them using new or revised geotechnical data and that obtained from SPR cavern operations, which involves 16 new caverns. Revised structure maps and sections show interpretative differences as compared with the 1980 report and more definition in the dome shape and caprock structural contours, especially a major southeast-northwest trending anomalous zone. The original interpretation was of westward tilt of the dome, this revision shows a tilt to the southeast, consistent with other gravity and seismic data. This interpretation refines the evaluation of additional cavern space, by adding more salt buffer and allowing several more caverns. Additional storage space is constrained on this nearly full dome because of low-lying peripheral wetlands, but 60 MMBBL or more of additional volume could be gained in six or more new caverns. Subsidence values at Bryan Mound are among the lowest in the SPR system, averaging about 11 mm/yr (0.4 in/yr), but measurement and interpretation issues persist, as observed values are about the same as survey measurement accuracy. Periodic flooding is a continuing threat because of the coastal proximity and because peripheral portions of the site are at elevations less than 15 ft. This threat may increase slightly as future subsidence lowers the surface, but the amount is apt to be small. Caprock integrity may be affected by structural features, especially the faulting associated with anomalous zones. Injection wells have not been used extensively at Bryan Mound, but could be a practicable solution to future brine disposal needs. Environmental issues center on the areas of low elevation that are below 15 feet above mean sea level: the coastal proximity and lowland environment combined with the potential for flooding create conditions that require continuing surveillance.

Neal, J.T. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Magorian, T.R.; Ahmad, S. [Acres International Corp., Amherst, NY (United States)] [Acres International Corp., Amherst, NY (United States)

1994-11-01T23:59:59.000Z

497

M.S. Economic Geology, Oregon State University College of Earth, Ocean, and Atmospheric Sciences, Corvallis, OR Expected Spring, 2015  

E-Print Network [OSTI]

EDUCATION M.S. Economic Geology, Oregon State University College of Earth, Ocean. Dilles Relevant Courses Interpretation of Geologic Maps Igneous Petrology Tectonic Geomorphology B.S. Geology, University of Idaho College of Science, Moscow, ID; GPA: 3

Kurapov, Alexander

498

Advancing the Science of Geologic Carbon Sequestration (Registration: www.earthsciences.osu.edu/~jeff/carbseq/carbseq 2009)  

E-Print Network [OSTI]

Advancing the Science of Geologic Carbon Sequestration (Registration: www & American Electric Power Agenda March 9 ­ Morning Session 1 ­ Geological Carbon Sequestration: Introductions, AEP) 3. Field Testing: The Laboratory for Geological Carbon Sequestration (Neeraj Gupta, Battelle

Daniels, Jeffrey J.

499

Department of Civil and Geological Engineering Assistant Professor in Geoenvironmental Engineering  

E-Print Network [OSTI]

management, contaminated site remediation, and engineered barriers or containment systems. Applicants mustDepartment of Civil and Geological Engineering Assistant Professor in Geoenvironmental Engineering The Department of Civil and Geological Engineering at the University of Saskatchewan invites applications from

Saskatchewan, University of

500

Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California  

E-Print Network [OSTI]

the subsurface geology and the gas bubble (with oil) plumesgeology and gas-phase (methane) seepage for the Coal Oilwith offshore oil production. Geology 27:1047–1050 Shindell

Leifer, Ira; Kamerling, Marc J.; Luyendyk, Bruce P.; Wilson, Douglas S.

2010-01-01T23:59:59.000Z