National Library of Energy BETA

Sample records for determination field testing

  1. A New Method to Determine the Thermal Properties of Soil Formations from In Situ Field Tests

    SciTech Connect (OSTI)

    Shonder, J.A.

    2000-05-02

    local regulations; water is heated and pumped through the U-tube (using a field generator to power the equipment, or line voltage where available); and the inlet and outlet water temperatures are measured as a function of time. Data on inlet and outlet temperature, power input to the heater and pump, and water flow rate are collected at regular intervals--typically 1 to 15 min--for the duration of the experiment, which may be as long as 60 h. Two common methods for determining soil thermal properties from such measurements are the line source method and the cylinder source method. Both are based on long-term approximate solutions to the classical heat conduction problem of an infinitely long heat source in an infinite homogeneous medium. Although there are some differences in the way the two methods are implemented, the only difference between the two models is whether the heat source is considered to be a line or a cylinder. In both methods, power input to the water loop is assumed to be constant. The simplicity of these methods makes them attractive, but they also have some disadvantages. First of all, because the line source and cylinder source approximations are inaccurate for early time behavior, some of the initial data from the field test must be discarded. The amount of data discarded can affect the property measurement. Also, both methods assume that the heat transfer to the ground loop is constant. In practice, heat input to the loop may vary significantly over the course of a field test due to rough operation of the generator or short-term sags and swells in power line voltage. Presumably, this variation affects the accuracy of the thermal property measurement, but error analysis is rarely performed. This report presents a new method for determining thermal properties from short-term in situ tests using a parameter estimation technique. Because it is based on numerical solutions to the heat conduction equation, the new method is not affected by short

  2. Performance of a solar heating system on the LSU field house determined from test data

    SciTech Connect (OSTI)

    Maples, D.; Whitehouse, G.D.

    1981-01-01

    Performance data was collected and analyzed for a solar heating system installed on the Field House at Louisiana State University. The solar system performed as expected for periods that it operated. Problems encountered are discussed. Efficiency of flat-plate collectors used was determined. 2 refs.

  3. Field air injection tests to determine the effect of a heat cycle...

    Office of Scientific and Technical Information (OSTI)

    As part of a series of prototype tests conducted in preparation for site characterization at Yucca Mountain, air-injection tests were conducted in the welded tuffs in G-Tunnel at ...

  4. Air-injection field tests to determine the effect of a heat cycle...

    Office of Scientific and Technical Information (OSTI)

    As part of a series of prototype tests conducted in preparation for site characterization of the potential nuclear-waste repository site at Yucca Mountain, Nevada, air-injection ...

  5. The North Carolina Field Test

    SciTech Connect (OSTI)

    Sharp, T.R.; Ternes, M.P.

    1990-08-01

    The North Carolina Field Test will test the effectiveness of two weatherization approaches: the current North Carolina Low-Income Weatherization Assistance Program and the North Carolina Field Test Audit. The Field Test Audit will differ from North Carolina's current weatherization program in that it will incorporate new weatherization measures and techniques, a procedure for basing measure selection of the characteristics of the individual house and the cost-effectiveness of the measure, and also emphasize cooling energy savings. The field test will determine the differences of the two weatherization approaches from the viewpoints of energy savings, cost effectiveness, and implementation ease. This Experimental Plan details the steps in performing the field test. The field test will be a group effort by several participating organizations. Pre- and post-weatherization data will be collected over a two-year period (November 1989 through August 1991). The 120 houses included in the test will be divided into a control group and two treatment groups (one for each weatherization procedure) of 40 houses each. Weekly energy use data will be collected for each house representing whole-house electric, space heating and cooling, and water heating energy uses. Corresponding outdoor weather and house indoor temperature data will also be collected. The energy savings of each house will be determined using linear-regression based models. To account for variations between the pre- and post-weatherization periods, house energy savings will be normalized for differences in outdoor weather conditions and indoor temperatures. Differences between the average energy savings of treatment groups will be identified using an analysis of variance approach. Differences between energy savings will be quantified using multiple comparison techniques. 9 refs., 8 figs., 5 tabs.

  6. Accelerated Stress Testing, Qualification Testing, HAST, Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Stress Testing, Qualification Testing, HAST, Field Experience This presentation, which was the opening session of the NREL 2013 Photovoltaic Module Reliability Workshop ...

  7. Categorical Exclusion Determinations: Carlsbad Field Office ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carlsbad Field Office Categorical Exclusion Determinations: Carlsbad Field Office Categorical Exclusion Determinations issued by Carlsbad Field Office. DOCUMENTS AVAILABLE FOR ...

  8. Interagency Field Test & Evaluation: Field Test 2 Public Fact Sheet

    SciTech Connect (OSTI)

    Brian Connor

    2013-03-30

    This fact sheet summarizes the second field tests of technologies intended to address wind turbine interference with land-based surveillance radar, which took place in Lubbock, TX.

  9. ARM - Field Campaign - UAV Field Test IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : UAV Field Test IOP 1993.10.01 - 1993.10.31 Lead Scientist : John Vitko For data sets, see below. Abstract The UAV ...

  10. Trip Report-Produced-Water Field Testing

    SciTech Connect (OSTI)

    Sullivan, Enid J.

    2012-05-25

    Los Alamos National Laboratory (LANL) conducted field testing of a produced-water pretreatment apparatus with assistance from faculty at the Texas A&M University (TAMU) protein separation sciences laboratory located on the TAMU main campus. The following report details all of the logistics surrounding the testing. The purpose of the test was to use a new, commercially-available filter media housing containing modified zeolite (surfactant-modified zeolite or SMZ) porous medium for use in pretreatment of oil and gas produced water (PW) and frac-flowback waters. The SMZ was tested previously in October, 2010 in a lab-constructed configuration ('old multicolumn system'), and performed well for removal of benzene, toluene, ethylbenzene, and xylenes (BTEX) from PW. However, a less-expensive, modular configuration is needed for field use. A modular system will allow the field operator to add or subtract SMZ filters as needed to accommodate site specific conditions, and to swap out used filters easily in a multi-unit system. This test demonstrated the use of a commercial filter housing with a simple flow modification and packed with SMZ for removing BTEX from a PW source in College Station, Texas. The system will be tested in June 2012 at a field site in Pennsylvania for treating frac-flowback waters. The goals of this test are: (1) to determine sorption efficiency of BTEX in the new configuration; and (2) to observe the range of flow rates, backpressures, and total volume treated at a given flow rate.

  11. Numerical simulations of capillary barrier field tests

    SciTech Connect (OSTI)

    Morris, C.E.; Stormont, J.C.

    1997-12-31

    Numerical simulations of two capillary barrier systems tested in the field were conducted to determine if an unsaturated flow model could accurately represent the observed results. The field data was collected from two 7-m long, 1.2-m thick capillary barriers built on a 10% grade that were being tested to investigate their ability to laterally divert water downslope. One system had a homogeneous fine layer, while the fine soil of the second barrier was layered to increase its ability to laterally divert infiltrating moisture. The barriers were subjected first to constant infiltration while minimizing evaporative losses and then were exposed to ambient conditions. The continuous infiltration period of the field tests for the two barrier systems was modelled to determine the ability of an existing code to accurately represent capillary barrier behavior embodied in these two designs. Differences between the field test and the model data were found, but in general the simulations appeared to adequately reproduce the response of the test systems. Accounting for moisture retention hysteresis in the layered system will potentially lead to more accurate modelling results and is likely to be important when developing reasonable predictions of capillary barrier behavior.

  12. Test Proposal Document for Phased Field Thermal Testing in Salt |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Test Proposal Document for Phased Field Thermal Testing in Salt Test Proposal Document for Phased Field Thermal Testing in Salt The document summarizes how a new round of staged thermal field testing will help to augment the safety case for disposal of heat generating nuclear waste in salt. The objectives of the proposed test plan are to: (1) address features, events, and processes (FEPs), (2) build scientific and public confidence, (3) foster international

  13. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Date: 03252015 Location(s): Nationwide Office(s): Golden Field Office March 24, 2015 CX-100203 Categorical Exclusion Determination Solar Hot Water Project in Greenburgh,...

  14. E3T Emerging Technology Field Tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Test 1 February 5, 2015 Brown Bag Mira Vowles, BPA Wesley Saway, BPA 2 BPA is seeking utilities to participate in an ET Field Test that will fully fund up to 30 retrofits of...

  15. Longwall dust control field tests

    SciTech Connect (OSTI)

    Not Available

    1984-06-14

    Following are highlights of the observations and conclusions drawn from the certain field tests: The use of Kaiser's wing curtain significantly reduced the average air velocity around the face corner, particularly when the gob curtain was removed (Kaiser's existing procedure). The velocity reduction will result in a lessened tendency for headgate cutout dust to be blown directly into the walkway negatively impacting the operator's exposure. Dust will be more effectively channeled around the face corner and downstream past the shearer body. At shield No. 10, average air velocities were within 15 percent of each other over all four of the curtain configurations tested. This indicated that curtain usage had a minimal effect on airflow levels along the face for Kaiser's given condition of gob consolidation. The high air velocity (spot) readings occurring just downstream of the installed wing curtain were due to leakage through gaps in the curtain around the stageloader. The volume of leakage was not significant, but proved to be helpful in sweeping the downstream headgate region clean of contaminants and preventing recirculation. Kaiser's curtain system design has proven to be very rugged, practical and effective and would be suitable for use in many coal mines. Used in conjunction with the semipermanent stageloader curtain, the wing curtain can remain in position for nearly 30 to 40 feet of face advance before needing to be repositioned. The stageloader curtain itself could be mounted directly to the stageloader for automatic advance with headgate equipment. This would only be feasible if the headgate roof horizon was consistent. Kaiser currently hangs the curtain independently and repositions it as required.

  16. Critical Magnetic Field Determination of Superconducting Materials

    SciTech Connect (OSTI)

    Canabal, A.; Tajima, T.; Dolgashev, V.A.; Tantawi, S.G.; Yamamoto, T.; /Tsukuba, Natl. Res. Lab. Metrol.

    2011-11-04

    Superconducting RF technology is becoming more and more important. With some recent cavity test results showing close to or even higher than the critical magnetic field of 170-180 mT that had been considered a limit, it is very important to develop a way to correctly measure the critical magnetic field (H{sup RF}{sub c}) of superconductors in the RF regime. Using a 11.4 GHz, 50-MW, <1 {mu}s, pulsed power source and a TE013-like mode copper cavity, we have been measuring critical magnetic fields of superconductors for accelerator cavity applications. This device can eliminate both thermal and field emission effects due to a short pulse and no electric field at the sample surface. A model of the system is presented in this paper along with a discussion of preliminary experimental data.

  17. IN SITU FIELD TESTING OF PROCESSES

    SciTech Connect (OSTI)

    J.S.Y. YANG

    2004-11-08

    analyses provide data useful for refining and confirming the understanding of flow, drift seepage, and transport processes in the UZ. The UZ testing activities included measurement of permeability distribution, quantification of the seepage of water into the drifts, evaluation of fracture-matrix interaction, study of flow along faults, testing of flow and transport between drifts, characterization of hydrologic heterogeneity along drifts, estimation of drying effects on the rock surrounding the drifts due to ventilation, monitoring of moisture conditions in open and sealed drifts, and determination of the degree of minimum construction water migration below drift. These field tests were conducted in two underground drifts at Yucca Mountain, the Exploratory Studies Facility (ESF) drift, and the cross-drift for Enhanced Characterization of the Repository Block (ECRB), as described in Section 1.2. Samples collected in boreholes and underground drifts have been used for additional hydrochemical and isotopic analyses for additional understanding of the UZ setting. The UZ transport tests conducted at the nearby Busted Butte site (see Figure 1-4) are also described in this scientific analysis report.

  18. FIELD TEST OF THE FLAME QUALITY INDICATOR

    SciTech Connect (OSTI)

    Andrew M. Rudin; Thomas Butcher; Henry Troost

    2003-02-04

    The flame quality indicator concept was developed at BNL specifically to monitor the brightness of the flame in a small oil burner and to provide a ''call for service'' notification when the brightness has changed from its setpoint, either high or low. In prior development work BNL has explored the response of this system to operational upsets such as excess air changes, fouled atomizer nozzles, poor fuel quality, etc. Insight Technologies, Inc. and Honeywell, Inc. have licensed this technology from the U.S. Department of Energy and have been cooperating to develop product offerings which meet industry needs with an optimal combination of function and price. Honeywell has recently completed the development of the Flame Quality Monitor (FQM or Honeywell QS7100F). This is a small module which connects via a serial cable to the burners primary operating control. Primary advantages of this approach are simplicity, cost, and ease of installation. Call-for-service conditions are output in the form of front panel indicator lights and contact closure which can trigger a range of external communication options. Under this project a field test was conducted of the FQM in cooperation with service organizations in Virginia, Pennsylvania, New Jersey, New York, and Connecticut. At total of 83 field sites were included. At each site the FQM was installed in parallel with another embodiment of this concept--the Insight AFQI. The AFQI incorporates a modem and provides the ability to provide detailed information on the trends in the flame quality over the course of the two year test period. The test site population was comprised of 79.5% boilers, 13.7% warm air furnaces, and 6.8% water heaters. Nearly all were of residential size--with firing rates ranging from 0.6 gallons of oil per hour to 1.25. During the course of the test program the monitoring equipment successfully identified problems including: plugged fuel lines, fouled nozzles, collapsed combustion chambers, and poor fuel

  19. Cone Penetrometer N Factor Determination Testing Results

    SciTech Connect (OSTI)

    Follett, Jordan R.

    2014-03-05

    This document contains the results of testing activities to determine the empirical 'N Factor' for the cone penetrometer in kaolin clay simulant. The N Factor is used to releate resistance measurements taken with the cone penetrometer to shear strength.

  20. Accelerated Stress Testing, Qualification Testing, HAST, Field Experience

    Broader source: Energy.gov [DOE]

    This presentation, which was the opening session of the NREL 2013 Photovoltaic Module Reliability Workshop held on February 26, 2013 in Golden, CO, was presented by John Wohlgemuth. Entitled "Accelerated Stress Testing, Qualification Testing, HAST, Field Experience -- What Do They All Mean?" the presentation details efforts to develop accelerated stress tests beyond the qualification test levels, which are necessary to predict PV module wear-out. The commercial success of PVs is ultimately based on the long-term reliability and safety of the deployed PV modules.

  1. SMART Wind Turbine Rotor: Design and Field Test | Department...

    Office of Environmental Management (EM)

    Design and Field Test SMART Wind Turbine Rotor: Design and Field Test This report documents the design, fabrication, and testing of the SMART Wind Turbine Rotor. This work ...

  2. Combustion Safety Simplified Test Protocol Field Study

    SciTech Connect (OSTI)

    Brand, L.; Cautley, D.; Bohac, D.; Francisco, P.; Shen, L.; Gloss, S.

    2015-11-01

    Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives. A survey of state weatherization agencies on combustion safety issues, details of a field data collection instrumentation package, summary of data collected over seven months, data analysis and results are included. The project team collected field data on 11 houses in 2015.

  3. Geothermal Testing Facilities in an Oil Field

    Broader source: Energy.gov [DOE]

    Engineered Geothermal Systems, Low Temp, Exploration Demonstration. The proposed project is to develop a long term testing facility and test geothermal power units for the evaluation of electrical power generation from low-temperature and co-produced fluids. The facility will provide the ability to conduct both long and short term testing of different power generation configurations to determine reliability, efficiency and to provide economic evaluation data.

  4. NREL: Performance and Reliability R&D - Field Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Testing Photo of an aerial view of the Outdoor Test Facility and array field. The Outdoor Test Facility forms the backbone of our field-testing capabilities. Photo of some of ...

  5. Split-field pupil plane determination apparatus

    DOE Patents [OSTI]

    Salmon, Joseph T.

    1996-01-01

    A split-field pupil plane determination apparatus (10) having a wedge assembly (16) with a first glass wedge (18) and a second glass wedge (20) positioned to divide a laser beam (12) into a first laser beam half (22) and a second laser beam half (24) which diverge away from the wedge assembly (16). A wire mask (26) is positioned immediately after the wedge assembly (16) in the path of the laser beam halves (22, 24) such that a shadow thereof is cast as a first shadow half (30) and a second shadow half (32) at the input to a relay telescope (14). The relay telescope (14) causes the laser beam halves (22, 24) to converge such that the first shadow half (30) of the wire mask (26) is aligned with the second shadow half (32) at any subsequent pupil plane (34).

  6. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFEREN...

    Office of Environmental Management (EM)

    INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION TECHNOLOGIES INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE - RADAR INTERFERENCE MITIGATION ...

  7. Design and Installation of a Disposal Cell Cover Field Test ...

    Office of Environmental Management (EM)

    Design and Installation of a Disposal Cell Cover Field Test Design and Installation of a Disposal Cell Cover Field Test Paper presented at the Waste Management 2011 Conference. ...

  8. DOE-Sponsored Field Test Demonstrates Viability of Simultaneous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 ...

  9. Text-Alternative Version of Building America Webinar: Field Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Test Best Practices, BEopt, and the National Residential Efficiency Measures Database Text-Alternative Version of Building America Webinar: Field Test Best Practices, BEopt, ...

  10. Project Impact Assessments … Building America FY14 Field Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Assessments - Building America FY14 Field Test Technical Support 2014 Building ... 9302014 Key Milestones : 1. Launch Field Test Best Practices web- based facilitated ...

  11. Project Impact Assessments: Building America FY14 Field Test...

    Energy Savers [EERE]

    Project Impact Assessments: Building America FY14 Field Test Technical Support - 2014 BTO Peer Review Project Impact Assessments: Building America FY14 Field Test Technical Support ...

  12. Field Testing of Pre-Production Prototype Residential Heat Pump...

    Energy Savers [EERE]

    Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters Provides and overview of ...

  13. Upcoming Funding Opportunity to Develop and Field Test Wind Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Field Test Wind Energy Bat Impact Minimization Technologies Upcoming Funding Opportunity to Develop and Field Test Wind Energy Bat Impact Minimization Technologies October 6, ...

  14. Combustion Safety Simplified Test Protocol Field Study

    SciTech Connect (OSTI)

    Brand, L; Cautley, D.; Bohac, D.; Francisco, P.; Shen, L.; Gloss, S.

    2015-11-05

    "9Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives. A survey of state weatherization agencies on combustion safety issues, details of a field data collection instrumentation package, summary of data collected over seven months, data analysis and results are included. The project provides several key results. State weatherization agencies do not generally track combustion safety failures, the data from those that do suggest that there is little actual evidence that combustion safety failures due to spillage from non-dryer exhaust are common and that only a very small number of homes are subject to the failures. The project team collected field data on 11 houses in 2015. Of these homes, two houses that demonstrated prolonged and excessive spillage were also the only two with venting systems out of compliance with the National Fuel Gas Code. The remaining homes experienced spillage that only occasionally extended beyond the first minute of operation. Combustion zone depressurization, outdoor temperature, and operation of individual fans all provide statistically significant predictors of spillage.

  15. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... June 11, 2016 CX-100630 Categorical Exclusion Determination Interfacial Work Function ... May 26, 2016 CX-100621 Categorical Exclusion Determination Linear Fresnel Reflector Award ...

  16. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Conditioners RIN: 1904-AC82 CX(s) Applied: B5.1 EERE- Buildings Technology Program Date: 06172015 Location(s): Nationwide Office(s): Golden Field Office June 16, 2015...

  17. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultrasonic Bat Deterrent Award Number: DE-EE0007035 CX(s) Applied: B3.3 Wind Program Date: 07242015 Location(s): NY Office(s): Golden Field Office July 21, 2015 CX-100313...

  18. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Award Number: DE- EE-0007182 CX(s) Applied: A9, A11 Solar Energy Technologies Office Date: 10222015 Location(s): CA Office(s): Golden Field Office October 20, 2015 CX-100391...

  19. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Number: DE-EE0007137 CX(s) Applied: A9, B3.6, B3.11 Solar Energy Technologies Office Date: 09102015 Location(s): AL Office(s): Golden Field Office September 8, 2015 CX-100362...

  20. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination U.S. Department of Energy Collegiate Entrepreneurship Prize Award Number: TBD FOA CX(s) Applied: A9 Date: 12222014 Location(s): CO...

  1. Field Testing: Independent, Accredited Testing and Validation for the Wind Industry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    This fact sheet describes the field testing capabilities at the National Wind Technology Center (NWTC). NREL's specialized facilities and personnel at the NWTC provide the U.S. wind industry with scientific and engineering support that has proven critical to the development of wind energy for U.S. energy needs. The NWTC's specialized field-testing capabilities have evolved over 30 years of continuous support by the U.S. Department of Energy Wind and Hydropower Technologies Program and long standing industry partnerships. The NWTC provides wind industry manufacturers, developers, and operators with turbine and component testing all in one convenient location. Although industry utilizes sophisticated modeling tools to design and optimize turbine configurations, there are always limitations in modeling capabilities, and testing is a necessity to ensure performance and reliability. Designs require validation and testing is the only way to determine if there are flaws. Prototype testing is especially important in capturing manufacturing flaws that might require fleet-wide retrofits. The NWTC works with its industry partners to verify the performance and reliability of wind turbines that range in size from 400 Watts to 3 megawatts. Engineers conduct tests on components and full-scale turbines in laboratory environments and in the field. Test data produced from these tests can be used to validate turbine design codes and simulations that further advance turbine designs.

  2. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    31, 2015 CX-100349 Categorical Exclusion Determination Advanced Trough with Lower-cost System-architecture (ATLAS) Award Number: DE-EE0007121 CX(s) Applied: A9, B3.6, B5.17...

  3. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Categorical Exclusion Determination Highly Active, Durable, and Ultra-low PGM NSTF Thin Film ORR Catalysts and Supports Award Number: DE-FOA-0007270 CX(s) Applied: A9, B3.6...

  4. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Determination Current Energy Harnessing using Synergistic Kinematics of Schools of Fish-Shaped Bodies Award Number: DE-EE0006780 CX(s) Applied: A9, B3.6 Date: 12112014...

  5. FIELD INVESTIGATION AT THE FAULTLESS SITE CENTRAL NEVADA TEST

    Office of Legacy Management (LM)

    FIELD INVESTIGATION AT THE FAULTLESS SITE CENTRAL NEVADA TEST AREA DOEINV10845--T3 DE93 ... at the Faultless Site Central Nevada Test Area An evaluation of groundwater ...

  6. FIELD TEST AND EVALUATION OF RESIDENTIAL GROUND SOURCE HEAT PUMP...

    Office of Scientific and Technical Information (OSTI)

    TEST AND EVALUATION OF RESIDENTIAL GROUND SOURCE HEAT PUMP SYSTEMS USING ALTERNATIVE VERTICAL-BORE GROUND HEAT EXCHANGERS Citation Details In-Document Search Title: FIELD TEST AND ...

  7. Interagency Field Test Evaluates Co-operation of Turbines and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interagency Field Test Evaluates Co-operation of Turbines and Radar Interagency Field Test Evaluates Co-operation of Turbines and Radar May 1, 2012 - 2:56pm Addthis The Department ...

  8. Small-Scale Carbon Sequestration Field Test Yields Significant...

    Office of Environmental Management (EM)

    Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned Small-Scale Carbon Sequestration Field Test Yields Significant Lessons Learned May 20, 2009 - 1:00pm ...

  9. Field Testing of Environmentally Friendly Drilling System

    SciTech Connect (OSTI)

    David Burnett

    2009-05-31

    The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of the environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.

  10. Results of the fourth Hanna field test

    SciTech Connect (OSTI)

    Covell, J. R.; Wojdac, L. F.; Barbour, F. A.; Gardner, G. W.; Glass, R.; Hommert, P. J.

    1980-01-01

    The second phase (Hanna IVB) of a coal gasification experiment near Hanna, Wyoming, was completed in September 1979. The experiment attempted to link and gasify coal between process wells spaced 34.3 meters apart. Intermediate wells were positioned between the process wells so that the link could be relayed over shorter distances. Reverse combustion linking was attempted over a 22.9-meter and a 11.4-meter distance of the total well spacing. Thermal activity was generally noted in the upper 3 meters of the coal seam during the link. Two attempts to gasify over the 34.3-meter distance resulted in the propagation of the burn front at the coal overburden interface. Post-burn evaluation indicates fractures as major influencing factors of the combustion process. The Hanna IVB field test provided much insight into influence that geologic features have on in situ coal combustion. The influence of these faults, permeable zones, and cleats, on the air flow patterns can drastically change the overall results of a gasification experiment and should be studied further. The overall results of Hanna IVB were discouraging because of the rapid decline in the heating values for the production gas and the amount of coal gasified. With more complete geologic characerization prior to experimentation and proper well completions, it is believed that most of the subsurface operational problems encountered during Hanna IV could have been avoided.

  11. Efficient Determination of Accurate Force Fields for Porous Material...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficient Determination of Accurate Force Fields for Porous Material Using ab Initio Total Energy Calculations Previous Next List Jihan Kim, Li-Chiang Lin, Kyuho Lee, Jeffrey B. ...

  12. Kansas City Field Office Categorical Exclusion (CX) Determinations |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Kansas City Field Office Categorical Exclusion (CX) Determinations To further transparency and openness in its implementation of the National Environmental Policy Act (NEPA), the Department of Energy has established a new policy with regard to the online posting of certain categorical exclusion determinations. Applicable determinations made by the Kansas City Field Office (KCFO) are listed below: 10/30/2012, Additive Manufacturing using

  13. Geothermal Testing Facilities in an Oil Field - Rocky Mountain Oil Field

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Center; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Field - Rocky Mountain Oil Field Testing Center; 2010 Geothermal Technology Program Peer Review Report Geothermal Testing Facilities in an Oil Field - Rocky Mountain Oil Field Testing Center; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review lowtemp_014_johnson.pdf (258.37 KB) More Documents & Publications Electrical Power Generation Using

  14. Video: Appliance Standards Testing Ensures Level Playing Field | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Video: Appliance Standards Testing Ensures Level Playing Field Video: Appliance Standards Testing Ensures Level Playing Field August 3, 2016 - 11:45am Addthis The Intertek testing laboratory in Cortland, NY tests products for the U.S. Department of Energy to ensure that consumers are getting the savings promised by its federal Appliance and Equipment Standards Program. Mike Mueller Senior Digital Content Strategist, EERE Communications Learn more about standards & test

  15. IFT&E Field Test 2 Public Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Second Test Results for the Interagency Field Test &Evaluation of Wind Turbine - Radar Interference Mitigation Technologies PUBLIC RELEASE ASR-11 Campaign at Abilene, TX Test: October 18-28, 2012. Report: March 2013 Distribution Statement A: Approved for Public Release (April 30, 2013). Approved for Public Release IFT&E Field Test Report 2: ASR-11 2 Purpose of this Fact Sheet: This document includes background information and a summary of the second of three tests on the effectiveness of

  16. Pretest Caluculations of Temperature Changes for Field Thermal Conductivity Tests

    SciTech Connect (OSTI)

    N.S. Brodsky

    2002-07-17

    A large volume fraction of the potential monitored geologic repository at Yucca Mountain may reside in the Tptpll (Tertiary, Paintbrush Group, Topopah Spring Tuff, crystal poor, lower lithophysal) lithostratigraphic unit. This unit is characterized by voids, or lithophysae, which range in size from centimeters to meters. A series of thermal conductivity field tests are planned in the Enhanced Characterization of the Repository Block (ECRB) Cross Drift. The objective of the pretest calculation described in this document is to predict changes in temperatures in the surrounding rock for these tests for a given heater power and a set of thermal transport properties. The calculation can be extended, as described in this document, to obtain thermal conductivity, thermal capacitance (density x heat capacity, J {center_dot} m{sup -3} {center_dot} K{sup -1}), and thermal diffusivity from the field data. The work has been conducted under the ''Technical Work Plan For: Testing and Monitoring'' (BSC 2001). One of the outcomes of this analysis is to determine the initial output of the heater. This heater output must be sufficiently high that it will provide results in a reasonably short period of time (within several weeks or a month) and be sufficiently high that the heat increase is detectable by the instruments employed in the test. The test will be conducted in stages and heater output will be step increased as the test progresses. If the initial temperature is set too high, the experiment will not have as many steps and thus fewer thermal conductivity data points will result.

  17. NREL: Wind Research - Field Test Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility-scale turbines tested at the NWTC include those manufactured by Siemens, GE, Gamesa, and Alstom. For more information, contact: David Simms, 303-384-6942. Printable Version ...

  18. DOE Approves Field Test for Promising Carbon Capture Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Approves Field Test for Promising Carbon Capture Technology DOE Approves Field Test for Promising Carbon Capture Technology November 20, 2012 - 12:00pm Addthis Washington, DC - A promising post combustion membrane technology that can separate and capture 90 percent of the carbon dioxide (CO2) from a pulverized coal plant has been successfully demonstrated and received Department of Energy (DOE) approval to advance to a larger-scale field test. In an $18.75 million

  19. Tank Manufacturing, Testing, Deployment and Field Performance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Tank Manufacturing, Testing, Deployment and Field Performance Tank Manufacturing, Testing, Deployment and Field Performance These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010, in Beijing, China. ihfpv_newhouse.pdf (5.48 MB) More Documents & Publications Fuel Tank Manufacturing, Testing, Field Performance, and Certification International Hydrogen Fuel and Pressure Vessel Forum 2010 Proceedings CNG and Hydrogen Tank

  20. NWTC Researchers Field-Test Advanced Control Turbine Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers Field-Test Advanced Control Turbine Systems to Increase Performance, Decrease ... damage that increase maintenance costs and shorten the life of a turbine or wind plant. ...

  1. Controller Field Tests on the NREL CART2 Turbine

    SciTech Connect (OSTI)

    Bossanyi, E.; Wright, A.; Fleming, P.

    2010-12-01

    This document presents the results of the field tests carried out on the CART2 turbine at NREL to validate individual pitch control and active tower damping.

  2. SMART Wind Turbine Rotor: Design and Field Test

    Broader source: Energy.gov [DOE]

    Design and field test results from the SMART Rotor project, a wind turbine rotor with integrated trailing-edge flaps designed for active control of the rotor aerodynamics.

  3. SNL Begins Field Testing on First SMART Blades | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    began field testing a set of wind turbine blades with active load control capabilities. ... control during peak loads experienced by the turbine blades and drivetrain components. ...

  4. Demonstrating Strong Electric Fields in Liquid Helium for Tests...

    Office of Science (SC) Website

    Image courtesy of Los Alamos National Laboratory The Medium Scale High Voltage Test apparatus in TA-53 Building 10 allowed scientists to test electric fields in liquid helium, a ...

  5. Field Test Best Practices Website | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    man standing in front of a door performing a blower door test. The Field Test Best Practices website is a start-to-finish best practice guide for building science researchers ...

  6. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    SciTech Connect (OSTI)

    Gary M. Blythe

    2006-03-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in

  7. UPS multifuel stratified charge engine development program - Field test

    SciTech Connect (OSTI)

    Lewis, J.M.

    1986-01-01

    The multifuel, stratified charge engine program launched by United Parcel Service in 1978 has progressed through two years of field tests. The mechanical and electronic experience with the field test engine is covered in detail, with problems and causes identified and solutions described. Also included are reports on research initiated as a consequence of problems that appeared in the field test engines. All aspects of engine performance are covered, including fuel economy, multifuel experience, emissions testing and tuning, maintenance expectations and driver reactions. The original 350-engine field test was run with many components newly designed or modified, and relatively untested. Component and reliability problems identified in the field test have prompted modifications, and the engines are being reworked for the start of a new 200-engine field test. Research studies conducted on the field test engine have produced very encouraging emissions data, which suggests that the low-load hydrocarbon problem historically associated with this technology is not a barrier to commercial application. The engine appears capable of passing the heavy duty gasoline engine transient test.

  8. IFT&E Field Test 1 Public Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet on the First Test Results of Interagency Field Test &Evaluation of Wind-Radar Mitigation Technologies PUBLIC RELEASE CARSR Campaign at Tyler, MN Test Period: April 23-May 4, 2012. Report: October 2012 Distribution Statement A: Approved for Public Release October 31, 2012. Approved for Public Release IFT&E Field Test Report 1: CARSR Purpose of this Fact Sheet: This document includes background information and a summary of the first of three tests on the effectiveness of mature

  9. Field Testing of Nano-PCM Enhanced Building Envelope Components

    SciTech Connect (OSTI)

    Biswas, Kaushik; Childs, Phillip W; Atchley, Jerald Allen

    2013-08-01

    The U.S. Department of Energy s (DOE) Building Technologies Program s goal of developing high-performance, energy efficient buildings will require more cost-effective, durable, energy efficient building envelopes. Forty-eight percent of the residential end-use energy consumption is spent on space heating and air conditioning. Reducing envelope-generated heating and cooling loads through application of phase change material (PCM)-enhanced envelope components can facilitate maximizing the energy efficiency of buildings. Field-testing of prototype envelope components is an important step in estimating their energy benefits. An innovative phase change material (nano-PCM) was developed with PCM encapsulated with expanded graphite (interconnected) nanosheets, which is highly conducive for enhanced thermal storage and energy distribution, and is shape-stable for convenient incorporation into lightweight building components. During 2012, two test walls with cellulose cavity insulation and prototype PCM-enhanced interior wallboards were installed in a natural exposure test (NET) facility at Charleston, SC. The first test wall was divided into four sections, which were separated by wood studs and thin layers of foam insulation. Two sections contained nano-PCM-enhanced wallboards: one was a three-layer structure, in which nano-PCM was sandwiched between two gypsum boards, and the other one had PCM dispersed homogeneously throughout graphite nanosheets-enhanced gypsum board. The second test wall also contained two sections with interior PCM wallboards; one contained nano-PCM dispersed homogeneously in gypsum and the other was gypsum board containing a commercial microencapsulated PCM (MEPCM) for comparison. Each test wall contained a section covered with gypsum board on the interior side, which served as control or a baseline for evaluation of the PCM wallboards. The walls were instrumented with arrays of thermocouples and heat flux transducers. Further, numerical modeling of

  10. Method of determining interwell oil field fluid saturation distribution

    DOE Patents [OSTI]

    Donaldson, Erle C.; Sutterfield, F. Dexter

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  11. Sandia Field Office NEPA Documents and Categorical Exclusion Determinations

    National Nuclear Security Administration (NNSA)

    | National Nuclear Security Administration | (NNSA) Sandia Field Office NEPA Documents and Categorical Exclusion Determinations NEPA Documents Date Title Document # June 2010 Draft Environmental Assessment for Removal Actions at the Technical Area III Classified Waste Landfill at Sandia National Laboratories/New Mexico DOE/EA-1729 January 2003 Final Site-Wide Environmental Assessment of the Sandia National Laboratories/California DOE/EA-1422 Categorical Exclusion Determinations Date Document

  12. Type 4 Tank Testing, Certification and Field Performance Data | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Type 4 Tank Testing, Certification and Field Performance Data Type 4 Tank Testing, Certification and Field Performance Data These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010, in Beijing, China. ihfpv_wong.pdf (2.29 MB) More Documents & Publications Hydrogen Tank Testing R&D CNG and Hydrogen Tank Safety, R&D, and Testing Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles (FCVs)

  13. Accelerated Stress Testing, Qualification Testing, HAST, Field Experience - What Do They All Mean? (Presentation)

    SciTech Connect (OSTI)

    Wohlgemuth, J.

    2013-05-01

    This presentation discusses the need for a set of tests for modules that would predict their long term-field performance.

  14. Field Testing Research at the NWTC (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-02-01

    The National Wind Technology Center (NWTC) at the National Renewable Laboratory (NREL) has extensive field testing capabilities that have been used in collaboration with the wind industry to accelerate wind technology development and deployment for more than 30 years.

  15. Project Impact Assessments: Building America FY14 Field Test Technical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Support - 2014 BTO Peer Review | Department of Energy Project Impact Assessments: Building America FY14 Field Test Technical Support - 2014 BTO Peer Review Project Impact Assessments: Building America FY14 Field Test Technical Support - 2014 BTO Peer Review Presenter: Lieko Earle, National Renewable Energy Laboratory The goal of this project is for the National Renewable Energy Laboratory to provide extensive, hands-on technical support to Building America teams in the areas of experiment

  16. Solar Energy Education. Home economics: teacher's guide. Field test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    edition. [Includes glossary] (Technical Report) | SciTech Connect Home economics: teacher's guide. Field test edition. [Includes glossary] Citation Details In-Document Search Title: Solar Energy Education. Home economics: teacher's guide. Field test edition. [Includes glossary] × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit

  17. Solar Energy Education. Industrial arts: student activities. Field test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    edition (Technical Report) | SciTech Connect Industrial arts: student activities. Field test edition Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: student activities. Field test edition × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in

  18. Solar Energy Education. Industrial arts: teacher's guide. Field test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    edition. [Includes glossary] (Technical Report) | SciTech Connect Industrial arts: teacher's guide. Field test edition. [Includes glossary] Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: teacher's guide. Field test edition. [Includes glossary] × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit

  19. Building America Technology Solutions Case Study: Field Testing an Unvented

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roof with Asphalt Shingles in a Cold Climate | Department of Energy Testing an Unvented Roof with Asphalt Shingles in a Cold Climate Building America Technology Solutions Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate In this project, Building America team Building Science Corporation devised an experiment to build and instrument unvented test roofs using air-permeable insulation (dense-pack cellulose and fiberglass) in a cold climate (Chicago, Illinois

  20. DOE Field Operations Program EV and HEV Testing

    SciTech Connect (OSTI)

    Francfort, James Edward; Slezak, L. A.

    2001-10-01

    The United States Department of Energy’s (DOE) Field Operations Program tests advanced technology vehicles (ATVs) and disseminates the testing results to provide fleet managers and other potential ATV users with accurate and unbiased information on vehicle performance. The ATVs (including electric, hybrid, and other alternative fuel vehicles) are tested using one or more methods - Baseline Performance Testing (EVAmerica and Pomona Loop), Accelerated Reliability Testing, and Fleet Testing. The Program (http://ev.inel.gov/sop) and its nine industry testing partners have tested over 30 full-size electric vehicle (EV) models and they have accumulated over 4 million miles of EV testing experience since 1994. In conjunction with several original equipment manufacturers, the Program has developed testing procedures for the new classes of hybrid, urban, and neighborhood EVs. The testing of these vehicles started during 2001. The EVS 18 presentation will include (1) EV and hybrid electric vehicle (HEV) test results, (2) operating experience with and performance trends of various EV and HEV models, and (3) experience with operating hydrogen-fueled vehicles. Data presented for EVs will include vehicle efficiency (km/kWh), average distance driven per charge, and range testing results. The HEV data will include operating considerations, fuel use rates, and range testing results.

  1. The use of computed radiography plates to determine light and radiation field coincidence

    SciTech Connect (OSTI)

    Kerns, James R.; Anand, Aman

    2013-11-15

    Purpose: Photo-stimulable phosphor computed radiography (CR) has characteristics that allow the output to be manipulated by both radiation and optical light. The authors have developed a method that uses these characteristics to carry out radiation field and light field coincidence quality assurance on linear accelerators.Methods: CR detectors from Kodak were used outside their cassettes to measure both radiation and light field edges from a Varian linear accelerator. The CR detector was first exposed to a radiation field and then to a slightly smaller light field. The light impinged on the detector's latent image, removing to an extent the portion exposed to the light field. The detector was then digitally scanned. A MATLAB-based algorithm was developed to automatically analyze the images and determine the edges of the light and radiation fields, the vector between the field centers, and the crosshair center. Radiographic film was also used as a control to confirm the radiation field size.Results: Analysis showed a high degree of repeatability with the proposed method. Results between the proposed method and radiographic film showed excellent agreement of the radiation field. The effect of varying monitor units and light exposure time was tested and found to be very small. Radiation and light field sizes were determined with an uncertainty of less than 1 mm, and light and crosshair centers were determined within 0.1 mm.Conclusions: A new method was developed to digitally determine the radiation and light field size using CR photo-stimulable phosphor plates. The method is quick and reproducible, allowing for the streamlined and robust assessment of light and radiation field coincidence, with no observer interpretation needed.

  2. Horizontal-well pilot waterflood tests shallow, abandoned field

    SciTech Connect (OSTI)

    McAlpine, J.L. ); Joshi, S.D. )

    1991-08-05

    This paper reports on the suitability of using horizontal wells in a waterflood of shallow, partially depleted sands which will be tested in the Jennings field in Oklahoma. The vertical wells drilled in the Jennings field intersect several well-known formations such as Red Fork, Misner, and Bartlesville sand. Most of these formations have been produced over a number of years, and presently no wells are producing in the field. In the 1940s, 1950s, and 1960s, wells were drilled on 10-acre spacing, and the last well was plugged in 1961. The field was produced only on primary production and produced approximately 1 million bbl of oil. Because the field was not waterflooded, a large potential exists to produce from the field using secondary methods. To improve the economics for the secondary process, a combination of horizontal and vertical wells was considered.

  3. Advanced Rooftop Control (ARC) Retrofit: Field-Test Results

    SciTech Connect (OSTI)

    Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

    2013-07-31

    The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

  4. Smart Infrared Inspection System Field Operational Test Final Report

    SciTech Connect (OSTI)

    Siekmann, Adam; Capps, Gary J; Franzese, Oscar; Lascurain, Mary Beth

    2011-06-01

    The Smart InfraRed Inspection System (SIRIS) is a tool designed to assist inspectors in determining which vehicles passing through the SIRIS system are in need of further inspection by measuring the thermal data from the wheel components. As a vehicle enters the system, infrared cameras on the road measure temperatures of the brakes, tires, and wheel bearings on both wheel ends of commercial motor vehicles (CMVs) in motion. This thermal data is then presented to enforcement personal inside of the inspection station on a user friendly interface. Vehicles that are suspected to have a violation are automatically alerted to the enforcement staff. The main goal of the SIRIS field operational test (FOT) was to collect data to evaluate the performance of the prototype system and determine the viability of such a system being used for commercial motor vehicle enforcement. From March 2010 to September 2010, ORNL facilitated the SIRIS FOT at the Greene County Inspection Station (IS) in Greeneville, Tennessee. During the course of the FOT, 413 CMVs were given a North American Standard (NAS) Level-1 inspection. Of those 413 CMVs, 384 were subjected to a SIRIS screening. A total of 36 (9.38%) of the vehicles were flagged by SIRIS as having one or more thermal issues; with brakes issues making up 33 (91.67%) of those. Of the 36 vehicles flagged as having thermal issues, 31 (86.11%) were found to have a violation and 30 (83.33%) of those vehicles were placed out-of-service (OOS). Overall the enforcement personnel who have used SIRIS for screening purposes have had positive feedback on the potential of SIRIS. With improvements in detection algorithms and stability, the system will be beneficial to the CMV enforcement community and increase overall trooper productivity by accurately identifying a higher percentage of CMVs to be placed OOS with minimal error. No future evaluation of SIRIS has been deemed necessary and specifications for a production system will soon be drafted.

  5. Field test of the Rapid Transuranic Monitoring Laboratory

    SciTech Connect (OSTI)

    McIsaac, C.V.; Sill, C.W.; Gehrke, R.J.; Killian, E.W.; Watts, K.D.; Amaro, C.R.

    1993-12-01

    A field test of the Rapid Transuranic Monitoring Laboratory (RTML) developed at the Idaho National Engineering Laboratory (INEL) was conducted as part of a demonstration sponsored by the Buried Waste Integrated Demonstration (BWID). The RTML is a mobile, field- deployable laboratory developed for use at buried radioactive waste remediation sites to allow onsite preparation and analysis of soil, smear, and air filter samples for alpha and gamma-emitting contaminants. Analytical instruments installed in the RTML include an extended range, germanium photon analysis spectrometer with an automatic sample changer, two large-area ionization chamber alpha spectrometers, and four alpha continuous air monitors. The performance of the RTML was tested at the Test Reactor Area and Cold Test Pit near the Radioactive Waste Management Complex at the INEL. Objectives, experimental procedures, and an evaluation of the performance of the RTML are presented.

  6. Sludge formation in engine testing and field service

    SciTech Connect (OSTI)

    Graf, R.T.; Copan, W.G.; Kornbrekke, R.E.; Murphy, J.P.

    1988-01-01

    The relationship of engine test sludge to field sludge was investigated by a variety of analytical techniques. Engine oil drains and sludges are suspensions of aggregated, resinous particles in oil. The sludges, in particular, contain large particle networks which are readily broken under shear. The resinous phase itself contains highly oxidated fuel fragments, and is enriched in aromatics, acidic species, and additive elements relative to the bulk oil. Field sludge and drain oil samples from the U.S., Europe, and the Far East are shown to be chemically similar to sequence VE engine test sludge and drain oil. Fleet test drain oils from vehicles powered by the Daimler Benz M102E engine are shown to be chemically similar to M102E engine test drain oils.

  7. Gas characterization system 241-AN-105 field acceptance test procedure

    SciTech Connect (OSTI)

    Schneider, T.C.

    1996-03-01

    This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AN-105. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

  8. Gas characterization system 241-AW-101 field acceptance test procedure

    SciTech Connect (OSTI)

    Schneider, T.C.

    1996-03-01

    This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AW-101. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

  9. High performance CLSM field mixing and pumping test results

    SciTech Connect (OSTI)

    Rajendran, N.; Langton, C.A.

    1997-05-14

    An improved low bleed water CLSM mix was field tested on May 13, 1997 at the Throop portable auger batching plant. Production and pumping tests were very successful. The four cubic yards of material pumped into a ply wood form where it flowed 48 feet (the entire length of the form). The CLSM slurry was very uniform, self leveling, cohesive, showed no segregation, and had no bleed water. Properties of the High Performance CLSM were the same for material collected at the auger and at the end of the pipeline except for the air content which was 5.5% at the auger and 3.2% at the end of the pipeline. This is exactly what was expected and indicates that this CLSM is easy to mix and pump in the Throop/BSRI equipment. CLSM Mix TW-10 is recommended for Tank Closure based on the field batching and pumping tests.

  10. Field Testing of a Portable Radiation Detector and Mapping System

    SciTech Connect (OSTI)

    Hofstetter, K.J.; Hayes, D.W.; Eakle, R.F.

    1998-03-01

    Researchers at the Savannah River Site (SRS) have developed a man- portable radiation detector and mapping system (RADMAPS) which integrates the accumulation of radiation information with precise ground locations. RADMAPS provides field personnel with the ability to detect, locate, and characterize nuclear material at a site or facility by analyzing the gamma or neutron spectra and correlating them with position. the man-portable field unit records gamma or neutron count rate information and its location, along with date and time, using an embedded Global Positioning System (GPS). RADMAPS is an advancement in data fusion, integrating several off-the-shelf technologies with new computer software resulting in a system that is simple to deploy and provides information useful to field personnel in an easily understandable form. Decisions on subsequent actions can be made in the field to efficiently use available field resources. The technologies employed in this system include: recording GPS, radiation detection (typically scintillation detectors), pulse height analysis, analog-to-digital converters, removable solid-state (Flash or SRAM) memory cards, Geographic Information System (GIS) software and personal computers with CD-ROM supporting digital base maps. RADMAPS includes several field deployable data acquisition systems designed to simultaneously record radiation and geographic positions. This paper summarizes the capabilities of RADMAPS and some of the results of field tests performed with the system.

  11. SMART wind turbine rotor. Design and field test

    SciTech Connect (OSTI)

    Berg, Jonathan Charles; Resor, Brian Ray; Paquette, Joshua A.; White, Jonathan Randall

    2014-01-01

    The Wind Energy Technologies department at Sandia National Laboratories has developed and field tested a wind turbine rotor with integrated trailing-edge flaps designed for active control of rotor aerodynamics. The SMART Rotor project was funded by the Wind and Water Power Technologies Office of the U.S. Department of Energy (DOE) and was conducted to demonstrate active rotor control and evaluate simulation tools available for active control research. This report documents the design, fabrication, and testing of the SMART Rotor. This report begins with an overview of active control research at Sandia and the objectives of this project. The SMART blade, based on the DOE / SNL 9-meter CX-100 blade design, is then documented including all modifications necessary to integrate the trailing edge flaps, sensors incorporated into the system, and the fabrication processes that were utilized. Finally the test site and test campaign are described.

  12. Wind Program Announces $2 Million to Develop and Field Test Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Announces 2 Million to Develop and Field Test Wind Energy Bat Impact Minimization Technologies Wind Program Announces 2 Million to Develop and Field Test Wind Energy Bat Impact ...

  13. Mathematical model of testing of pipeline integrity by thermal fields

    SciTech Connect (OSTI)

    Vaganova, Nataliia

    2014-11-18

    Thermal fields testing at the ground surface above a pipeline are considered. One method to obtain and investigate an ideal thermal field in different environments is a direct numerical simulation of heat transfer processes taking into account the most important physical factors. In the paper a mathematical model of heat propagation from an underground source is described with accounting of physical factors such as filtration of water in soil and solar radiation. Thermal processes are considered in 3D origin where the heat source is a pipeline with constant temperature and non-uniform isolated shell (with 'damages'). This problem leads to solution of heat diffusivity equation with nonlinear boundary conditions. Approaches to analysis of thermal fields are considered to detect damages.

  14. Deep Borehole Field Test Requirements and Controlled Assumptions.

    SciTech Connect (OSTI)

    Hardin, Ernest

    2015-07-01

    This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientific characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.

  15. Field test comparison of natural gas engine exhaust valves

    SciTech Connect (OSTI)

    Bicknell, W.B.; Hay, S.C.; Shade, W.N.; Statler, G.R.

    1996-12-31

    As part of a product improvement program, an extensive spark-ignited, turbocharged, natural gas engine exhaust valve test program was conducted using laboratory and field engines. Program objectives were to identify a valve and seat insert combination that increased mean time between overhauls (MTBO) while reducing the risk of premature valve cracking and failure. Following a thorough design review, a large number of valve and seat insert configurations were tested in a popular 900 RPM, 166 BHP (0.123 Mw) per cylinder industrial gas engine series. Material, head geometry, seat angle and other parameters were compared. Careful in-place measurements and post-test inspections compared various configurations and identified optimal exhaust valving for deployment in new units and upgrades of existing engines.

  16. Expert system for testing industrial processes and determining sensor status

    DOE Patents [OSTI]

    Gross, K.C.; Singer, R.M.

    1998-06-02

    A method and system are disclosed for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test. 24 figs.

  17. Expert system for testing industrial processes and determining sensor status

    DOE Patents [OSTI]

    Gross, Kenneth C.; Singer, Ralph M.

    1998-01-01

    A method and system for monitoring both an industrial process and a sensor. The method and system include determining a minimum number of sensor pairs needed to test the industrial process as well as the sensor for evaluating the state of operation of both. The technique further includes generating a first and second signal characteristic of an industrial process variable. After obtaining two signals associated with one physical variable, a difference function is obtained by determining the arithmetic difference between the pair of signals over time. A frequency domain transformation is made of the difference function to obtain Fourier modes describing a composite function. A residual function is obtained by subtracting the composite function from the difference function and the residual function (free of nonwhite noise) is analyzed by a statistical probability ratio test.

  18. Exploration 3-D Seismic Field Test/Native Tribes Initiative

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Chen, K.C.; Guo, Genliang; Johnson, W.I.; Reeves,T.K.; Sharma,Bijon

    1999-04-27

    To determine current acquisition procedures and costs and to further the goals of the President's Initiative for Native Tribes, a seismic-survey project is to be conducted on Osage tribal lands. The goals of the program are to demonstrate the capabilities, costs, and effectiveness of 3-D seismic work in a small-operator setting and to determine the economics of such a survey. For these purposes, typical small-scale independent-operator practices are being followed and a shallow target chose in an area with a high concentration of independent operators. The results will be analyzed in detail to determine if there are improvements and/or innovations which can be easily introduced in field-acquisition procedures, in processing, or in data manipulation and interpretation to further reduce operating costs and to make the system still more active to the small-scale operator.

  19. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results

    SciTech Connect (OSTI)

    Gary Blythe

    2007-05-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing

  20. NREL Determines Better Testing Methods for Photovoltaic Module Durability (Fact Sheet), NREL Highlights, Research & Development

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    NREL discoveries will enable manufacturers to produce more robust photovoltaic modules. Over the past decade, some photovoltaic (PV) modules have experienced power losses because of the system voltage stress that modules experience in fielded arrays. This is partly because qualification tests and standards do not adequately evaluate the durability of modules that undergo the long-term effects of high voltage. Scientists at the National Renewable Energy Laboratory (NREL) tried various testing methods and stress levels to demonstrate module durability to system voltage potential-induced degradation (PID) mechanisms. The results of these accelerated tests, along with outdoor testing, were used to estimate the acceleration factors needed to more accurately evaluate the durability of modules to system voltage stress. NREL was able to determine stress factors, levels, and methods for testing based on the stresses experienced by modules in the field. These results, in combination with those in the literature, suggest that constant stress with humidity and system voltage is more damaging than stress applied intermittently or with periods of recovery comprising hot and dry conditions or alternating bias in between. NREL has determined some module constructions to be extremely durable to PID. These findings will help the manufacturers of PV materials and components produce more durable products that better satisfy their customers. NREL determined that there is rapid degradation of some PV modules under system voltage stress and evaluated degradation rates in the field to develop more accurate accelerated testing methods. PV module manufacturers will be better able to choose robust materials and durable designs and guarantee sturdier, longer-lasting products. As PV modules become more durable, and thus more efficient over the long term, the risks and the cost of PV power will be reduced.

  1. Near-field modeling in Frenchman Flat, Nevada Test Site

    SciTech Connect (OSTI)

    Pohlmann, K.; Shirley, C.; Andricevic, R.

    1996-12-01

    The US Department of Energy (DOE) is investigating the effects of nuclear testing in underground test areas (the UGTA program) at the Nevada Test Site. The principal focus of the UGTA program is to better understand and define subsurface radionuclide migration. The study described in this report focuses on the development of tools for generating maps of hydrogeologic characteristics of subsurface Tertiary volcanic units at the Frenchman Flat corrective Action Unit (CAU). The process includes three steps. The first step involves generation of three-dimensional maps of the geologic structure of subsurface volcanic units using geophysical logs to distinguish between two classes: densely welded tuff and nonwelded tuff. The second step generates three-dimensional maps of hydraulic conductivity utilizing the spatial distribution of the two geologic classes obtained in the first step. Each class is described by a correlation structure based on existing data on hydraulic conductivity, and conditioned on the generated spatial location of each class. The final step demonstrates the use of the maps of hydraulic conductivity for modeling groundwater flow and radionuclide transport in volcanic tuffs from an underground nuclear test at the Frenchman Flat CAU. The results indicate that the majority of groundwater flow through the volcanic section occurs through zones of densely welded tuff where connected fractures provide the transport pathway. Migration rates range between near zero to approximately four m/yr, with a mean rate of 0.68 m/yr. This report presents the results of work under the FY96 Near-Field Modeling task of the UGTA program.

  2. Lithium bromide absorption chiller passes gas conditioning field test

    SciTech Connect (OSTI)

    Lane, M.J.; Huey, M.A.

    1995-07-31

    A lithium bromide absorption chiller has been successfully used to provide refrigeration for field conditioning of natural gas. The intent of the study was to identify a process that could provide a moderate level of refrigeration necessary to meet the quality restrictions required by natural-gas transmission companies, minimize the initial investment risk, and reduce operating expenses. The technology in the test proved comparatively less expensive to operate than a propane refrigeration plant. Volatile product prices and changes in natural-gas transmission requirements have created the need for an alternative to conventional methods of natural-gas processing. The paper describes the problems with the accumulation of condensed liquids in pipelines, gas conditioning, the lithium bromide absorption cycle, economics, performance, and operating and maintenance costs.

  3. Advanced Utility Mercury-Sorbent Field-Testing Program

    SciTech Connect (OSTI)

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  4. Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests

    SciTech Connect (OSTI)

    Ward, Anderson L.; Gee, Glendon W.

    2000-06-23

    This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptual models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.

  5. Results of field testing of waste forms using lysimeters

    SciTech Connect (OSTI)

    McConnell, J.W., Jr.; Rogers, R.D.

    1988-01-01

    The purpose of the field testing task, using lysimeter arrays, is to expose samples of solidified resin waste to the actual physical, chemical, and microbiological conditions of disposal enviroment. Wastes used in the experiment include a mixture of synthetic organic ion exchange resins and a mixture of organic exchange resins and an inorganic zeolite. Solidification agents used to produce the 4.8-by 7.6-cm cylindrical waste forms used in the study were Portland Type I-II cement and Dow vinyl ester-styrene. Seven of these waste forms were stacked end-to-end and inserted into each lysimeter to provide a 1-L volume. There are 10 lysimeters, 5 at ORNL and 5 at ANL-E. Lysimeters used in this study were designed to be self-contained units which will be disposed at the termination of the 20-year study. Each is a 0.91-by 3.12-m right-circular cylinder divided into an upper compartment, which contains fill material, waste forms, and instrumentation, and an empty lower compartment, which collects leachate. Four lysimeters at each site are filled with soil, while a fifth (used as a control) is filled with inert silica oxide sand. Instrumentation within each lysimeter includes porous cup soil-water samplers and soil moisture/temperature probes. The probes are connected to an on-site data acquisition and storage system (DAS) which also collects data from a field meteorological station located at each site. 9 refs.

  6. Field Lysimeter Test Facility status report IV: FY 1993

    SciTech Connect (OSTI)

    Gee, G.W.; Felmy, D.G.; Ritter, J.C.; Campbell, M.D.; Downs, J.L.; Fayer, M.J.; Kirkham, R.R.; Link, S.O.

    1993-10-01

    At the U.S. Department of Energy`s Hanford Site near Richland, Washington, a unique facility, the Field Lysimeter Test Facility (FLTF) is used to measure drainage from and water storage in soil covers. Drainage has ranged from near zero amounts to more than 50% of the applied water, with the amount depending on vegetative cover and soil type. Drainage occurred from lysimeters with coarse soils and gravel covers, but did not occur from capillary barrier-type lysimeters (1.5 m silt loam soil over coarse sands and gravels) except under the most extreme condition tested. For capillary barriers that were irrigated and kept vegetation-free (bare surface), no drainage occurred in 5 of the past 6 years. However, this past year (1992--1993) a record snowfall of 1,425 mm occurred and water storage in the irrigated, bare-surfaced capillary barriers exceeded 500 mm resulting in drainage of more than 30 mm from these barriers. In contrast, capillary barriers, covered with native vegetation (i.e., shrubs and grasses) did not drain under any climatic condition (with or without irrigation). In FY 1994, the FLTF treatments will be increased from 11 to 17 with the addition of materials that will simulate portions of a prototype barrier planned for construction in 1994 at the Hanford Site. The 17 FLTF treatments are designed to test the expected range of surface soil, vegetation, and climatic conditions encountered at the Hanford Site and will assist in evaluating final surface barrier designs for a waste disposal facility.

  7. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    SciTech Connect (OSTI)

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

  8. Kansas City Field Office Categorical Exclusion (CX) Determinations...

    National Nuclear Security Administration (NNSA)

    made by the Kansas City Field Office (KCFO) are listed below: 10302012, Additive Manufacturing using EOSINT M280, KCP12-03 10302012, Magnetic Pulser, KCP12-04 10302012,...

  9. NREL Gearbox Reliability Collaborative: Comparing In-Field Gearbox Response to Different Dynamometer Test Conditions: Preprint

    SciTech Connect (OSTI)

    LaCava, W.; van Dam, J.; Wallen, R.; McNiff, B.

    2011-08-01

    This paper presents the results of NREL's Gearbox Reliability Collaborative comparison of dynamometer tests conducted on a 750-kW gearbox to field testing.

  10. Field Scale Test and Verification of CHP System at the Ritz Carlton...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007 Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, ...

  11. Field Test Best Practices: A Dynamic Web Tool for Practical Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    o perated b y t he A lliance f or S ustainable E nergy, L LC. Field Test Best Practices ... Difficult to find general guidelines and examples of well-designed field test plans No ...

  12. High-Voltage Broadband-Over-Powerline (HV-BPL) Field Test Report...

    Open Energy Info (EERE)

    Voltage Broadband-Over-Powerline (HV-BPL) Field Test Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: High-Voltage Broadband-Over-Powerline (HV-BPL) Field Test...

  13. Well test imaging - a new method for determination of boundaries from well test data

    SciTech Connect (OSTI)

    Slevinsky, B.A.

    1997-08-01

    A new method has been developed for analysis of well test data, which allows the direct calculation of the location of arbitrary reservoir boundaries which are detected during a well test. The method is based on elements of ray tracing and information theory, and is centered on the calculation of an instantaneous {open_quote}angle of view{close_quote} of the reservoir boundaries. In the absence of other information, the relative reservoir shape and boundary distances are retrievable in the form of a Diagnostic Image. If other reservoir information, such as 3-D seismic, is available; the full shape and orientation of arbitrary (non-straight line or circular arc) boundaries can be determined in the form of a Reservoir Image. The well test imaging method can be used to greatly enhance the information available from well tests and other geological data, and provides a method to integrate data from multiple disciplines to improve reservoir characterization. This paper covers the derivation of the analytical technique of well test imaging and shows examples of application of the technique to a number of reservoirs.

  14. Interagency Field Test Evaluates Co-operation of Turbines and Radar |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Interagency Field Test Evaluates Co-operation of Turbines and Radar Interagency Field Test Evaluates Co-operation of Turbines and Radar May 1, 2012 - 2:56pm Addthis The Department of Energy and federal agency partners recently completed the first in a series of three radar technology field tests and demonstrations. The Interagency Field Test and Evaluation of Wind-Radar Mitigation Technologies is an $8 million demonstration initiative co-funded by the Energy Department,

  15. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho presentation at the April 2013 peer review meeting held in Denver, Colorado. raft_river_peer2013.pdf (3.68 MB) More Documents & Publications Concept Testing and Development at the Raft River Geothermal Field, Idaho track 4: enhanced geothermal

  16. Field test of a post-closure radiation monitor

    SciTech Connect (OSTI)

    Reed, S.E.; Christy, C.E.; Heath, R.E.

    1995-10-01

    The DOE is conducting remedial actions at many sites contaminated with radioactive materials. After closure of these sites, long-term subsurface monitoring is typically required by law. This monitoring is generally labor intensive and expensive using conventional sampling and analysis techniques. The U.S. Department of Energy`s Morgantown Energy Technology Center (METC) has contracted with Babcock and Wilcox to develop a Long-Term Post-Closure Radiation Monitoring System (LPRMS) to reduce these monitoring costs. The system designed in Phase I of this development program monitors gamma radiation using a subsurface cesium iodide scintillator coupled to above-ground detection electronics using optical waveguide. The radiation probe can be installed to depths up to 50 meters using cone penetrometer techniques, and requires no downhole electrical power. Multiplexing, data logging and analysis are performed at a central location. A prototype LPRMS probe was built, and B&W and FERMCO field tested this monitoring probe at the Fernald Environmental Management Project in the fall of 1994 with funding from the DOE`s Office of Technology Development (EM-50) through METC. The system was used measure soil and water with known uranium contamination levels, both in drums and in situ depths up to 3 meters. For comparison purposes measurements were also performed using a more conventional survey probe with a sodium iodide scintillator directly butt-coupled to detection electronics.

  17. Field Testing of the Advanced Worker Protection System

    Office of Scientific and Technical Information (OSTI)

    ... simulate actual decontamination activities. + to shake down the new IUOE test facilities. ... words about the implications of the test results to DoE missions. Acknowledgments ...

  18. Experimental determination of radiated internal wave power without pressure field data

    SciTech Connect (OSTI)

    Lee, Frank M.; Morrison, P. J. [Physics Department and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 787121192 (United States)] [Physics Department and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 787121192 (United States); Paoletti, M. S.; Swinney, Harry L. [Physics Department, The University of Texas at Austin, Austin, Texas 787121192 (United States)] [Physics Department, The University of Texas at Austin, Austin, Texas 787121192 (United States)

    2014-04-15

    We present a method to determine, using only velocity field data, the time-averaged energy flux (J) and total radiated power P for two-dimensional internal gravity waves. Both (J) and P are determined from expressions involving only a scalar function, the stream function ?. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife edge, and the results are found to agree with the direct numerical simulation. The supplementary material includes a Matlab code with a graphical user interface that can be used to compute the energy flux and power from two-dimensional velocity field data.

  19. Support to DHS Chemical Detection Field Testing and Countermeasures Studies: Report to Sponsors

    SciTech Connect (OSTI)

    Sohn, Michael; Black, Douglas; Delp, William

    2011-09-01

    This document reports on work that Lawrence Berkeley National Laboratory performed to support the Department of Homeland Security's testing of ARFCAM and LACIS systems. In the sections that follow, LBNL lists the scope of work, field analyses conducted, and preliminary results. LBNL developed a model of the Port Gaston building at the Nevada Test Site and calibrated it using data from field experiments, both blower door and tracer gas tests. Model development and comparison to data show very good agreement. The model was developed to (1) support the interpretation of data from field trials performed by Signature Science LLC, (2) support the placement of sampler equipment, and (3) predict if meteorological differences between the Wet-Run/Dry-Run and the Hot-Run might adversely affect the development of the Hot Run Test Plan. LBNL reported its findings on each task to the experiment team at scheduled planning meetings. In the end, we note that the model was used limitedly because the data from the Wet-Run/Dry Run were if such high quality. Lastly, LBNL conducted a research experiment at the end of the Wet-Run/Dry-Run to study if, and to what degree, specific TICs sorb and desorb on indoor surfaces. We found that several of the TICs either sorb onto surfaces or are lost through chemical reactions. These findings may have important implications on determining sheltering-in-place concepts of operation.

  20. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results

    SciTech Connect (OSTI)

    Gary Blythe; MariJon Owens

    2007-12-01

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management

  1. Vadose zone transport field study: Detailed test plan for simulated leak tests

    SciTech Connect (OSTI)

    AL Ward; GW Gee

    2000-06-23

    : identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford's waste disposal sites; reduce uncertainty in conceptual models; develop a detailed and accurate database of hydraulic and transport parameters for validation of three-dimensional numerical models; identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. This plan provides details for conducting field tests during FY 2000 to accomplish these objectives. Details of additional testing during FY 2001 and FY 2002 will be developed as part of the work planning process implemented by the Integration Project.

  2. Residual-oil-saturation-technology test, Bell Creek Field, Montana. Final report

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    A field test was conducted of the technology available to measure residual oil saturation following waterflood secondary oil recovery processes. The test was conducted in a new well drilled solely for that purpose, located immediately northwest of the Bell Creek Micellar Polymer Pilot. The area where the test was conducted was originally drilled during 1968, produced by primary until late 1970, and was under line drive waterflood secondary recovery until early 1976, when the area was shut in at waterflood depletion. This report presents the results of tests conducted to determine waterflood residual oil saturation in the Muddy Sandstone reservoir. The engineering techniques used to determine the magnitude and distribution of the remaining oil saturation included both pressure and sidewall cores, conventional well logs (Dual Laterolog - Micro Spherically Focused Log, Dual Induction Log - Spherically Focused Log, Borehole Compensated Sonic Log, Formation Compensated Density-Compensated Neutron Log), Carbon-Oxygen Logs, Dielectric Logs, Nuclear Magnetism Log, Thermal Decay Time Logs, and a Partitioning Tracer Test.

  3. Modeling of a Parabolic Trough Solar Field for Acceptance Testing...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY; 30 ... LABORATORY; PERFORMANCE; PERFORMANCE TESTING; RECOMMENDATIONS; SIMULATION; ...

  4. Field Testing of Pre-Production Prototype Residential Heat Pump Water

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heaters | Department of Energy Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters Field Testing of Pre-Production Prototype Residential Heat Pump Water Heaters Provides and overview of field testing of 18 pre-production prototype residential heat pump water heaters heat_pump_water_heater_testing.pdf (565.45 KB) More Documents & Publications Building America Technology Solutions for New and Existing Homes: Performance of a Heat Pump Water Heater in the Hot-Humid

  5. Fuel Assembly Shaker Test for Determining Loads on a PWR Assembly...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assembly Shaker Test for Determining Loads on a PWR Assembly under Surrogate Normal Conditions of Truck Transport R0.1 Fuel Assembly Shaker Test for Determining Loads on a PWR...

  6. Development of a Test Technique to Determine the Thermal Conductivity...

    Office of Scientific and Technical Information (OSTI)

    Tests have been performed to validate the method and preliminary results are presented in this paper. Authors: Hemrick, James Gordon 1 ; Dinwiddie, Ralph Barton 1 ; Loveland, ...

  7. Field Test of Advanced Duct-Sealing Technologies Within the Weatherization Assistance Program

    SciTech Connect (OSTI)

    Ternes, MP

    2001-12-05

    A field test of an aerosol-spray duct-sealing technology and a conventional, best-practice approach was performed in 80 homes to determine the efficacy and programmatic needs of the duct-sealing technologies as applied in the U.S. Department of Energy Weatherization Assistance Program. The field test was performed in five states: Iowa, Virginia, Washington, West Virginia, and Wyoming. The study found that, compared with the best-practice approach, the aerosol-spray technology is 50% more effective at sealing duct leaks and can potentially reduce labor time and costs for duct sealing by 70%, or almost 4 crew-hours. Further study to encourage and promote use of the aerosol-spray technology within the Weatherization Assistance Program is recommended. A pilot test of full production weatherization programs using the aerosol-spray technology is recommended to develop approaches for integrating this technology with other energy conservation measures and minimizing impacts on weatherization agency logistics. In order to allow or improve adoption of the aerosol spray technology within the Weatherization Assistance Program, issues must be addressed concerning equipment costs, use of the technology under franchise arrangements with Aeroseal, Inc. (the holders of an exclusive license to use this technology), software used to control the equipment, safety, and training. Application testing of the aerosol-spray technology in mobile homes is also recommended.

  8. Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Fernandez, J.A.; Case, J.B.; Tyburski, J.R.

    1993-05-01

    This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

  9. Field testing the Raman gas composition sensor for gas turbine operation

    SciTech Connect (OSTI)

    Buric, M.; Chorpening, B.; Mullem, J.; Ranalli, J.; Woodruff, S.

    2012-01-01

    A gas composition sensor based on Raman spectroscopy using reflective metal lined capillary waveguides is tested under field conditions for feed-forward applications in gas turbine control. The capillary waveguide enables effective use of low powered lasers and rapid composition determination, for computation of required parameters to pre-adjust burner control based on incoming fuel. Tests on high pressure fuel streams show sub-second time response and better than one percent accuracy on natural gas fuel mixtures. Fuel composition and Wobbe constant values are provided at one second intervals or faster. The sensor, designed and constructed at NETL, is packaged for Class I Division 2 operations typical of gas turbine environments, and samples gas at up to 800 psig. Simultaneous determination of the hydrocarbons methane, ethane, and propane plus CO, CO2, H2O, H2, N2, and O2 are realized. The capillary waveguide permits use of miniature spectrometers and laser power of less than 100 mW. The capillary dimensions of 1 m length and 300 μm ID also enable a full sample exchange in 0.4 s or less at 5 psig pressure differential, which allows a fast response to changes in sample composition. Sensor operation under field operation conditions will be reported.

  10. Field test and evaluation of the passive neutron coincidence collar for prototype fast reactor fuel subassemblies

    SciTech Connect (OSTI)

    Menlove, H.O.; Keddar, A.

    1982-08-01

    The passive neutron Coincidence Collar, which was developed for the verification of plutonium content in fast reactor fuel subassemblies, has been field tested using Prototype Fast Reactor fuel. For passive applications, the system measures the /sup 240/Pu-effective mass from the spontaneous fission rate, and in addition, a self-interrogation technique is used to determine the fissile content in the subassembly. Both the passive and active modes were evaluated at the Windscale Works in the United Kingdom. The results of the tests gave a standard deviation 0.75% for the passive count and 3 to 7% for the active measurement for a 1000-s counting time. The unit will be used in the future for the verification of plutonium in fresh fuel assemblies.

  11. SMART Wind Turbine Rotor: Design and Field Test

    SciTech Connect (OSTI)

    Berg, Jonathan C.; Resor, Brian R.; Paquette, Joshua A.; White, Jonathan R.

    2014-01-29

    This report documents the design, fabrication, and testing of the SMART Rotor. This work established hypothetical approaches for integrating active aerodynamic devices (AADs) into the wind turbine structure and controllers.

  12. Field Testing Research at the NWTC (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance to IEC 61400- 12-1 and MEASNET * Mechanical loads to IEC 61400-13 * Power quality to IEC 61400-21 and MEASNET * Duration testing to IEC 61400-2 * Safety and function ...

  13. Building America Technology Solutions Case Study: Field Testing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    test roofs using air-permeable insulation (dense-pack cellulose and fiberglass) in a cold climate (Chicago, Illinois area, zone 5A) and to analyze the moisture effects over time. ...

  14. Text-Alternative Version of Building America Webinar: Field Test Best

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Practices, BEopt, and the National Residential Efficiency Measures Database | Department of Energy Field Test Best Practices, BEopt, and the National Residential Efficiency Measures Database Text-Alternative Version of Building America Webinar: Field Test Best Practices, BEopt, and the National Residential Efficiency Measures Database Building America Research Tools: Field Test Best Practices, BEopt, and the National Residential Efficiency Measures Database March 18, 2015 Lieko Earle, Senior

  15. Upcoming Funding Opportunity to Develop and Field Test Wind Energy Bat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impact Minimization Technologies | Department of Energy and Field Test Wind Energy Bat Impact Minimization Technologies Upcoming Funding Opportunity to Develop and Field Test Wind Energy Bat Impact Minimization Technologies October 6, 2014 - 1:33pm Addthis On October 6, EERE's Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Wind Energy Bat Impact Minimization Technologies and Field Testing Opportunities." This funding would help address

  16. Design and Installation of a Disposal Cell Cover Field Test

    SciTech Connect (OSTI)

    Benson, C.H.; Waugh, W.J.; Albright, W.H.; Smith, G.M.; Bush, R.P.

    2011-02-27

    The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed at the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.

  17. Field Testing of Compartmentalization Methods for Multifamily Construction

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J.

    2015-03-01

    The 2012 IECC has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure for both single-family and multifamily construction in Climate Zones 3-8. Other programs (LEED, ASHRAE 189, ASHRAE 62.2) have similar or tighter compartmentalization requirements, driving the need for easier and more effective methods of compartmentalization in multifamily buildings. Builders and practitioners have found that fire-resistance rated wall assemblies are a major source of difficulty in air sealing/compartmentalization, particularly in townhouse construction. This problem is exacerbated when garages are “tucked in” to the units and living space is located over the garages. In this project, Building Science Corporation examined the taping of exterior sheathing details to improve air sealing results in townhouse and multifamily construction, when coupled with a better understanding of air leakage pathways. Current approaches are cumbersome, expensive, time consuming, and ineffective; these details were proposed as a more effective and efficient method. The effectiveness of these air sealing methods was tested with blower door testing, including “nulled” or “guarded” testing (adjacent units run at equal test pressure to null out inter-unit air leakage, or “pressure neutralization”). Pressure diagnostics were used to evaluate unit-to-unit connections and series leakage pathways (i.e., air leakage from exterior, into the fire-resistance rated wall assembly, and to the interior).

  18. Field Testing of a Wet FGD Additive for Enhanced Mercury Control

    SciTech Connect (OSTI)

    Gary Blythe; MariJon Owens

    2007-12-31

    This document is the final report for DOE-NETL Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project has been to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project was intended to demonstrate whether such additives can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project involved pilot- and full-scale tests of the additives in wet FGD absorbers. The tests were intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power provided the Texas lignite/PRB co-fired test site for pilot FGD tests and project cost sharing. Southern Company provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested, and project cost sharing. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation provided the TMT-15 additive, and the Nalco Company provided the Nalco 8034 additive. Both companies also supplied technical support to the test program as in-kind cost sharing. The project was conducted in six tasks. Of the six tasks, Task 1 involved project planning and Task 6 involved

  19. Rooftop unit embedded diagnostics: Automated fault detection and diagnostics (AFDD) development, field testing and validation

    SciTech Connect (OSTI)

    Katipamula, Srinivas; Kim, Woohyun; Lutes, Robert G.; Underhill, Ronald M.

    2015-09-30

    This report documents the development, testing and field validation of the integrated AFDD and advanced rooftop unit (RTU) controls using a single controller in buildings.

  20. Field Test of a DHW Distribution System: Temperature and Flow Analyses (Presentation)

    SciTech Connect (OSTI)

    Barley, C. D.; Hendron, B.; Magnusson, L.

    2010-05-13

    This presentation discusses a field test of a DHW distribution system in an occupied townhome. It includes measured fixture flows and temperatures, a tested recirculation system, evaluated disaggregation of flow by measured temperatures, Aquacraft Trace Wizard analysis, and comparison.

  1. A Test Of The Transiel Method On The Travale Geothermal Field...

    Open Energy Info (EERE)

    Test Of The Transiel Method On The Travale Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Test Of The Transiel Method On The...

  2. CX-100 and TX-100 blade field tests.

    SciTech Connect (OSTI)

    Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

    2005-12-01

    In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

  3. Field Test of High Temperature Corrosion Sensors in a Waste to Energy Plant

    SciTech Connect (OSTI)

    Matthes, S.A.; Covino, B.S., Jr.; Bullard, S.J.; Williamson, K.M.

    2008-03-16

    A field trial of electrochemical corrosion rate sensors was conducted over a five month period to monitor fireside corrosion in a waste to energy (WTE) plant. The unique 3-electrode air-cooled corrosion sensors, each including a thermocouple to monitor sensor temperature, were installed in four different ports at approximately the same level of the WTE boiler. A total of twelve sensors were tested, six with electrodes using the carbon steel boiler tube material, and six using the nickel-chromium weld overlay alloy for the electrodes. Corrosion rates and temperatures of the sensors were monitored continuously through the trial. Measurements of sensor thickness loss were used to calibrate the electrochemical corrosion rates. Air cooling of the sensors was found to be necessary in order to bring the sensors to the temperature of the boiler tubes, to better match the corrosion rate of the tubes, and to increase survivability of the sensors and thermocouples. Varying the temperature of the sensors simulated corrosion rates of boiler tubes with steam temperatures above and below that in the actual WTE plant. Temperatures of two of the sensors were successfully held at various controlled temperatures close to the steam temperature for a three hour test period. Corrosion rates of the two materials tested were similar although of different magnitude. An expression relating the corrosion rate of the boiler tube material to the corrosion rate of weld overlay was determined for a 7 day period in the middle of the field trial. Results from the field trial suggest that corrosion rate sensors controlled to the outer waterwall temperature can successfully monitor fireside corrosion in WTE plants and be used as a process control variable by plant operators.

  4. Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station

    SciTech Connect (OSTI)

    John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

    2009-01-07

    The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the

  5. Field Testing of Compartmentalization Methods for Multifamily Construction

    SciTech Connect (OSTI)

    Ueno, K.; Lstiburek, J. W.

    2015-03-01

    The 2012 International Energy Conservation Code (IECC) has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure (3 ACH50) for single-family and multifamily construction (in climate zones 3–8). The Leadership in Energy & Environmental Design certification program and ASHRAE Standard 189 have comparable compartmentalization requirements. ASHRAE Standard 62.2 will soon be responsible for all multifamily ventilation requirements (low rise and high rise); it has an exceptionally stringent compartmentalization requirement. These code and program requirements are driving the need for easier and more effective methods of compartmentalization in multifamily buildings.

  6. INTERAGENCY FIELD TEST & EVALUATION OF WIND TURBINE – RADAR INTERFERENCE MITIGATION TECHNOLOGIES

    Broader source: Energy.gov [DOE]

    These documents include a final report on the Interagency Field Test & Evaluation (IFT&E) program and summaries of three field tests designed to measure the impact of wind turbines on current air surveillance radars and the effectiveness of private sector technologies in mitigating that interference.

  7. Field Testing of Thermoplastic Encapsulants in High-Temperature Installations

    SciTech Connect (OSTI)

    Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; Kurtz, Sarah R.; Moseley, John M.; Shah, Qurat A.; Tamizhmani, Govindasamy; Sakurai, Keiichiro; Inoue, Masanao; Doi, Takuya; Masuda, Atsushi; Samuels, Sam L.; Vanderpan, Crystal E.

    2015-11-01

    Recently there has been increased interest in using thermoplastic encapsulant materials in photovoltaic modules, but concerns have been raised about whether these would be mechanically stable at high temperatures in the field. This has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. We constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass thin-film mock modules using different encapsulant materials, of which only two were formulated to chemically crosslink. One module set was exposed outdoors with thermal insulation on the back side in Mesa, Arizona, in the summer (hot-dry), and an identical module set was exposed in environmental chambers. High-precision creep measurements (±20 μm) and electrical performance measurements indicate that despite many of these polymeric materials operating in the melt or rubbery state during outdoor deployment, no significant creep was seen because of their high viscosity, lower operating temperature at the edges, and/or the formation of chemical crosslinks in many of the encapsulants with age despite the absence of a crosslinking agent. Only an ethylene-vinyl acetate (EVA) encapsulant formulated without a peroxide crosslinking agent crept significantly. When the crystalline-silicon modules, the physical restraint of the backsheet reduced creep further and was not detectable even for the EVA without peroxide. Because of the propensity of some polymeric materials to crosslink as they age, typical thermoplastic encapsulants would be unlikely to result in creep in the vast majority of installations.

  8. Field Testing of Thermoplastic Encapsulants in High-Temperature Installations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kempe, Michael D.; Miller, David C.; Wohlgemuth, John H.; Kurtz, Sarah R.; Moseley, John M.; Shah, Qurat A.; Tamizhmani, Govindasamy; Sakurai, Keiichiro; Inoue, Masanao; Doi, Takuya; et al

    2015-11-01

    Recently there has been increased interest in using thermoplastic encapsulant materials in photovoltaic modules, but concerns have been raised about whether these would be mechanically stable at high temperatures in the field. This has become a significant topic of discussion in the development of IEC 61730 and IEC 61215. We constructed eight pairs of crystalline-silicon modules and eight pairs of glass/encapsulation/glass thin-film mock modules using different encapsulant materials, of which only two were formulated to chemically crosslink. One module set was exposed outdoors with thermal insulation on the back side in Mesa, Arizona, in the summer (hot-dry), and an identicalmore » module set was exposed in environmental chambers. High-precision creep measurements (±20 μm) and electrical performance measurements indicate that despite many of these polymeric materials operating in the melt or rubbery state during outdoor deployment, no significant creep was seen because of their high viscosity, lower operating temperature at the edges, and/or the formation of chemical crosslinks in many of the encapsulants with age despite the absence of a crosslinking agent. Only an ethylene-vinyl acetate (EVA) encapsulant formulated without a peroxide crosslinking agent crept significantly. When the crystalline-silicon modules, the physical restraint of the backsheet reduced creep further and was not detectable even for the EVA without peroxide. Because of the propensity of some polymeric materials to crosslink as they age, typical thermoplastic encapsulants would be unlikely to result in creep in the vast majority of installations.« less

  9. Testing a Stakeholder Participation Framework for Fielding Bioremediation Technologies

    SciTech Connect (OSTI)

    Anex, Robert P.; Focht, Will

    2004-03-17

    This research is investigating stakeholder attitudes about the use of bioremediation technologies with the objective of reducing conflict among stakeholders. The research protocol includes four closely related components. First, we are testing a framework for stakeholder participation that prescribes appropriate stakeholder involvement strategies based on stakeholders trust of the other parties involved in technology deployment decision-making. Second, we are assessing conflict among stakeholders regarding the acceptability of in situ bioremediation as a means to reduce risks posed by radionuclides and metals in the environment. Third, we are assessing the role that awareness of risk exposure plays in the willingness of stakeholders to engage in problem-solving and making risk tradeoffs. Fourth, we are assessing the potential of using the results of these first three components to forge consensus among stakeholders regarding the use and oversight of bioremediation technologies and stakeholder involvement in the decision process. This poster presents preliminary results of a Q methodological survey of stakeholders who are familiar with radionuclide and heavy metal contamination and DOE efforts to remediate that contamination at Los Alamos, Oak Ridge and Hanford reservations. The Q study allows the research team to diagnose conflict among stakeholders and discover opportunities for consensus.

  10. Combined cosmological tests of a bivalent tachyonic dark energy scalar field model

    SciTech Connect (OSTI)

    Keresztes, Zoltán; Gergely, László Á. E-mail: gergely@physx.u-szeged.hu

    2014-11-01

    A recently investigated tachyonic scalar field dark energy dominated universe exhibits a bivalent future: depending on initial parameters can run either into a de Sitter exponential expansion or into a traversable future soft singularity followed by a contraction phase. We also include in the model (i) a tiny amount of radiation, (ii) baryonic matter (Ω{sub b}h{sup 2} = 0.022161, where the Hubble constant is fixed as h = 0.706) and (iii) cold dark matter (CDM). Out of a variety of six types of evolutions arising in a more subtle classification, we identify two in which in the past the scalar field effectively degenerates into a dust (its pressure drops to an insignificantly low negative value). These are the evolutions of type IIb converging to de Sitter and type III hitting the future soft singularity. We confront these background evolutions with various cosmological tests, including the supernova type Ia Union 2.1 data, baryon acoustic oscillation distance ratios, Hubble parameter-redshift relation and the cosmic microwave background (CMB) acoustic scale. We determine a subset of the evolutions of both types which at 1σ confidence level are consistent with all of these cosmological tests. At perturbative level we derive the CMB temperature power spectrum to find the best agreement with the Planck data for Ω{sub CDM} = 0.22. The fit is as good as for the ΛCDM model at high multipoles, but the power remains slightly overestimated at low multipoles, for both types of evolutions. The rest of the CDM is effectively generated by the tachyonic field, which in this sense acts as a combined dark energy and dark matter model.

  11. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect (OSTI)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  12. Field lysimeter investigations - test results. Low-level waste data base development program: Test results for fiscal years 1986, 1987, 1988, and 1989

    SciTech Connect (OSTI)

    McConnell, J.W. Jr.; Rogers, R.D.; Findlay, M.W.; Davis, E.C.; Jastrow, J.D.; Neilson, R.M. Jr.; Hilton, L.D.

    1995-05-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program, funded by the U.S. Nuclear Regulatory Commission (NRC), is (a) studying the degradation effects in EPICOR-II organic ion-exchange resins caused by radiation, (b) examining the adequacy of test procedures recommended in the Branch Technical Position on Waste Form to meet the requirements of 10 CFR 61 using solidified EPICOR-II resins, (c) obtaining performance information on solidified EPICOR-II ion-exchange resins in a disposal environment, and (d) determining the condition of EPICOR-II liners. Results of the first 4 years of data acquisition from the field testing are presented and discussed. During the continuing field testing, both Portland type I-II cement and Dow vinyl ester-styrene waste forms are being tested in lysimeter arrays located at Argonne National Laboratory-East in Illinois and at Oak Ridge National Laboratory. The experimental equipment is described and results of waste form characterization using tests recommended by the NRC`s {open_quotes}Technical Position on Waste Form{close_quotes} are presented. The study is designed to provide continuous data on nuclide release and movement, as well as environmental conditions, over a 20-year period.

  13. Field Lysimeter Investigations - test results: Low-Level Waste Data Base Development Program: Test results for fiscal years 1994-1995

    SciTech Connect (OSTI)

    McConnell, J.W. Jr.; Rodgers, R.D.; Hilton, L.D.; Neilson, R.M. Jr.

    1996-06-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program, funded by the U.S. Nuclear Regulatory Commission (NRC), is (1) studying the degradation effects in EPICOR-II organic ion-exchange resins caused by radiation, (2) examining the adequacy of test procedures recommended in the Branch Technical Position on Waste Form to meet the requirements of 10 CFR 61 using solidified EPICOR-II resins, (3) obtaining performance information on solidified EPICOR-II ion-exchange resins in a disposal environment, and (4) determining the condition of EPICOR-II liners. Results of the final 2 (10 total) years of data acquisition from operation of the field testing are presented and discussed. During the continuing field testing, both portland type I-II cement and Dow vinyl ester-styrene waste forms are being tested in lysimeter arrays located at Argonne National Laboratory-East in Illinois and at Oak Ridge National Laboratory. The experimental equipment is described and results of waste form characterization using tests recommended by the NRC`s {open_quotes}Technical Position on Waste Form{close_quotes} are presented. The study is designed to provide continuous data on nuclide release and movement, as well as environmental conditions, over a 20-year period. At the end of the tenth year, the experiment was closed down. Examination of soil and waste forms is planned to be conducted next and will be reported later.

  14. Field Lysimeter Investigations -- Test results. Low-Level Waste Data Base Development Program: Test results for fiscal years 1990, 1991, 1992, and 1993; Volume 2

    SciTech Connect (OSTI)

    McConnell, J.W. Jr.; Rogers, R.D.; Brey, R.R.; Neilson, R.M. Jr.; Hilton, L.D.; Jastrow, J.D.; Wickliff Hicks, D.S.; Sanford, W.E.; Sullivan, T.M.

    1995-12-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program, funded by the US Nuclear Regulatory Commission (NRC), is (a) studying the degradation effects in EPICOR-II organic ion-exchange resins caused by radiation, (b) examining the adequacy of test procedures recommended in the Branch Technical Position on Waste Form to meet the requirements of 10 CFR 61 using solidified EPICOR-II resins, (c) obtaining performance information on solidified EPICOR-II ion-exchange resins in a disposal environment, and (d) determining the condition of EPICOR-II liners. Results of the second 4 years of data acquisition from the field testing are presented and discussed. During the continuing field testing, both portland type 1--2 cement and Dow vinyl ester-styrene waste forms are being tested in lysimeter arrays located at Argonne National Laboratory-East in Illinois and at Oak Ridge National Laboratory. The experimental equipment is described and results of waste form characterization using tests recommended by the NRC`s ``Technical Position on Waste Form`` are presented. The study is designed to provide continuous data on nuclide release and movement, as well as environmental conditions, over a 20-year period.

  15. Comparison of dynamic characteristics of Fukushima Nuclear Power Plant containment building determined from tests and earthquakes

    SciTech Connect (OSTI)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1985-10-01

    Modal parameters determined from response measured in dynamic tests and from analytical models for simulating the tests and two subsequent earthquakes experienced by the containment building of Unit 1 of the Fukushima Power Station complex in Japan are compared for the purpose of evaluating the effectiveness of the dynamic tests in earthquake response prediction. The tests are found to have led to the correct identification of a fundamental frequency. The lack of agreement between test- and earthquake-determined modeshapes and damping is attributable more to the shortcomings of the simulation models than to differences in actual behavior.

  16. Field Scale Test and Verification of CHP System at the Ritz Carlton, San Francisco, August 2007

    Broader source: Energy.gov [DOE]

    ITP Industrial Distributed Energy: National Account Energy Alliance Final Report for the Field Scale Test and Verification of a PureComfort® 240M Combined Heat and Power System at the Ritz Carlton, San Francisco

  17. DOE-Sponsored Field Test Finds Potential for Permanent Storage of CO2 in Lignite Seams

    Broader source: Energy.gov [DOE]

    A field test sponsored by the U.S. Department of Energy has demonstrated that opportunities to permanently store carbon in unmineable seams of lignite may be more widespread than previously documented.

  18. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    SciTech Connect (OSTI)

    Blough, J.L.

    1996-08-01

    In Phase 1 of this project, a variety of developmental and commercial tubing alloys and claddings was exposed to laboratory fireside corrosion testing simulating a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, 253MA, Fe{sub 3}Al + 5Cr, 310 modified, NF 709, 690 clad, and 671 clad for over 10,000 hours to the actual operating conditions of a 250-MW coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy are being exposed for 4,000, 12,000, and 16,000 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after approximately 4,400 hours of exposure.

  19. Using Whole-House Field Tests to Empirically Derive Moisture Buffering Model Inputs

    SciTech Connect (OSTI)

    Woods, J.; Winkler, J.; Christensen, D.; Hancock, E.

    2014-08-01

    Building energy simulations can be used to predict a building's interior conditions, along with the energy use associated with keeping these conditions comfortable. These models simulate the loads on the building (e.g., internal gains, envelope heat transfer), determine the operation of the space conditioning equipment, and then calculate the building's temperature and humidity throughout the year. The indoor temperature and humidity are affected not only by the loads and the space conditioning equipment, but also by the capacitance of the building materials, which buffer changes in temperature and humidity. This research developed an empirical method to extract whole-house model inputs for use with a more accurate moisture capacitance model (the effective moisture penetration depth model). The experimental approach was to subject the materials in the house to a square-wave relative humidity profile, measure all of the moisture transfer terms (e.g., infiltration, air conditioner condensate) and calculate the only unmeasured term: the moisture absorption into the materials. After validating the method with laboratory measurements, we performed the tests in a field house. A least-squares fit of an analytical solution to the measured moisture absorption curves was used to determine the three independent model parameters representing the moisture buffering potential of this house and its furnishings. Follow on tests with realistic latent and sensible loads showed good agreement with the derived parameters, especially compared to the commonly-used effective capacitance approach. These results show that the EMPD model, once the inputs are known, is an accurate moisture buffering model.

  20. Engineering test plan for field radionuclide migration experiments in climax granite

    SciTech Connect (OSTI)

    Isherwood, D.; Raber, E.; Stone, R.; Lord, D.; Rector, N.; Failor, R.

    1982-05-01

    This Engineering Test Plan (ETP) describes field studies of radionuclide migration in fractured rock designed for the Climax grainite at the Nevada Test Site. The purpose of the ETP is to provide a detailed written document of the method of accomplishing these studies. The ETP contains the experimental test plans, an instrumentation plan, system schematics, a description of the test facility, and a brief outline of the laboratory support studies needed to understand the chemistry of the rock/water/radionuclide interactions. Results of our initial hydrologic investigations are presented along with pretest predictions based on the hydrologic test results.

  1. Field Testing of Low-Cost Bio-Based Phase Change Material

    SciTech Connect (OSTI)

    Biswas, Kaushik; Childs, Phillip W; Atchley, Jerald Allen

    2013-03-01

    A test wall built with phase change material (PCM)-enhanced loose-fill cavity insulation was monitored for a period of about a year in the warm-humid climate of Charleston, South Carolina. The test wall was divided into various sections, one of which contained only loose-fill insulation and served as a control for comparing and evaluating the wall sections with the PCM-enhanced insulation. This report summarizes the findings of the field test.

  2. Method and apparatus for determining vertical heat flux of geothermal field

    DOE Patents [OSTI]

    Poppendiek, Heinz F.

    1982-01-01

    A method and apparatus for determining vertical heat flux of a geothermal field, and mapping the entire field, is based upon an elongated heat-flux transducer (10) comprised of a length of tubing (12) of relatively low thermal conductivity with a thermopile (20) inside for measuring the thermal gradient between the ends of the transducer after it has been positioned in a borehole for a period sufficient for the tube to reach thermal equilibrium. The transducer is thermally coupled to the surrounding earth by a fluid annulus, preferably water or mud. A second transducer comprised of a length of tubing of relatively high thermal conductivity is used for a second thermal gradient measurement. The ratio of the first measurement to the second is then used to determine the earth's thermal conductivity, k.sub..infin., from a precalculated graph, and using the value of thermal conductivity thus determined, then determining the vertical earth temperature gradient, b, from predetermined steady state heat balance equations which relate the undisturbed vertical earth temperature distributions at some distance from the borehole and earth thermal conductivity to the temperature gradients in the transducers and their thermal conductivity. The product of the earth's thermal conductivity, k.sub..infin., and the earth's undisturbed vertical temperature gradient, b, then determines the earth's vertical heat flux. The process can be repeated many times for boreholes of a geothermal field to map vertical heat flux.

  3. Hanford 100-D Area Biostimulation Soluble Substrate Field Test: Interim Data Summary for the Substrate Injection and Process Monitoring Phases of the Field Test

    SciTech Connect (OSTI)

    Truex, Michael J.; Vermeul, Vincent R.; Mackley, Rob D.; Fritz, Brad G.; Mendoza, Donaldo P.; Johnson, Christian D.; Elmore, Rebecca P.; Brockman, Fred J.; Bilskis, Christina L.

    2008-06-01

    Pacific Northwest National Laboratory is conducting a treatability test designed to demonstrate that in situ biostimulation can be applied to help meet cleanup goals in the Hanford Site 100-D Area. The in situ biostimulation technology is intended to provide supplemental treatment upgradient of the In Situ Redox Manipulation (ISRM) barrier by reducing the concentration of the primary oxidizing species in groundwater (i.e., nitrate and dissolved oxygen) and chromate, and thereby increasing the longevity of the ISRM barrier. This report summarizes the initial results from field testing of an in situ biological treatment zone implemented through injection of a soluble substrate. The field test is divided into operational phases that include substrate injection, process monitoring, and performance monitoring. The results summarized herein are for the substrate injection and process monitoring phase encompassing the first approximately three months of field testing. Performance monitoring is ongoing at the time this report was prepared and is planned to extend over approximately 18 months. As such, this report is an interim data summary report for the field test. The treatability testing has multiple objectives focused on evaluating the performance of biostimulation as a reducing barrier for nitrate, oxygen, and chromate. The following conclusions related to these objectives are supported by the data provided in this report. Substrate was successfully distributed to a radius of about 15 m (50 ft) from the injection well. Monitoring data indicate that microbial growth initiated rapidly, and this rapid growth would limit the ability to inject substrate to significantly larger zones from a single injection well. As would be expected, the uniformity of substrate distribution was impacted by subsurface heterogeneity. However, subsequent microbial activity and ability to reduce the targeted species was observed throughout the monitored zone during the process monitoring

  4. Fireside corrosion testing of candidate superheater tube alloys, coatings, and claddings -- Phase 2 field testing

    SciTech Connect (OSTI)

    Blough, J.L.; Seitz, W.W.; Girshik, A.

    1998-06-01

    In Phase 1 of this project, laboratory experiments were performed on a variety of developmental and commercial tubing alloys and claddings by exposing them to fireside corrosion tests which simulated a superheater or reheater in a coal-fired boiler. Phase 2 (in situ testing) has exposed samples of 347, RA85H, HR3C, RA253MA, Fe{sub 3}Al + 5Cr, Ta-modified 310, NF 709, 690 clad, 671 clad, and 800HT for up to approximately 16,000 hours to the actual operating conditions of a 250-MW, coal-fired boiler. The samples were installed on air-cooled, retractable corrosion probes, installed in the reheater cavity, and controlled to the operating metal temperatures of an existing and advanced-cycle, coal-fired boiler. Samples of each alloy were exposed for 4,483, 11,348, and 15,883 hours of operation. The present results are for the metallurgical examination of the corrosion probe samples after the full 15,883 hours of exposure. A previous topical report has been issued for the 4,483 hours of exposure.

  5. Electromagnetic model for near-field microwave microscope with atomic resolution: Determination of tunnel junction impedance

    SciTech Connect (OSTI)

    Reznik, Alexander N.

    2014-08-25

    An electrodynamic model is proposed for the tunneling microwave microscope with subnanometer space resolution as developed by Lee et al. [Appl. Phys. Lett. 97, 183111 (2010)]. Tip-sample impedance Z{sub a} was introduced and studied in the tunneling and non-tunneling regimes. At tunneling breakdown, the microwave current between probe and sample flows along two parallel channels characterized by impedances Z{sub p} and Z{sub t} that add up to form overall impedance Z{sub a}. Quantity Z{sub p} is the capacitive impedance determined by the near field of the probe and Z{sub t} is the impedance of the tunnel junction. By taking into account the distance dependences of effective tip radius r{sub 0}(z) and tunnel resistance R{sub t}(z)?=?Re[Z{sub t}(z)], we were able to explain the experimentally observed dependences of resonance frequency f{sub r}(z) and quality factor Q{sub L}(z) of the microscope. The obtained microwave resistance R{sub t}(z) and direct current tunnel resistance R{sub t}{sup dc}(z) exhibit qualitatively similar behavior, although being largely different in both magnitude and the characteristic scale of height dependence. Interpretation of the microwave images of the atomic structure of test samples proved possible by taking into account the inductive component of tunnel impedance ImZ{sub t}?=??L{sub t}. Relation ?L{sub t}/R{sub t}???0.235 was obtained.

  6. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2004-10-01

    PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its

  7. Determining the U-value of a wall from field measurements of heat flux and surface temperatures

    SciTech Connect (OSTI)

    Modera, M.P.; Sherman, M.H.; Sonderegger, R.C.

    1986-05-01

    Thermal conductances (U-values) and thermal resistances (R-values) are discussed throughout the literature as the appropriate parameters for characterizing heat transfer through walls. Because the quoted numbers are usually determined from the handbook values of material properties, they have several drawbacks: (1) they do not take into account degradation effects, (2) they ignore construction irregularities, and (3) they do not take into account multi-dimensional heat flow. This paper examines the use of field measurements of heat flow and surface temperatures to determine the U-values of walls. The effects of thermal mass on measurements of wall U-values are described in detail, using two data interpretation techniques to estimate the U-values of insulated and uninsulated cavity walls, with and without brick facing. The errors in U-value estimation are determined by comparison with an analytical model of wall thermal performance. For each wall, the error in the U-value determination is plotted as a function of test length for several typical weather conditions. For walls with low thermal mass, such as an fiberglass-insulated cavity wall, it appears that, under favorable test conditions, a 6-hour measurement is adequate to measure the U-value within about 10% uncertainty. For masonary walls, the measurement time required is considerably longer than 6 hours. It is shown that for masonry walls, and in general, the optimal measurement time is a multiple of 24 hours due to the effects of diurnal weather fluctuations.

  8. A new test statistic for climate models that includes field and spatial dependencies using Gaussian Markov random fields

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nosedal-Sanchez, Alvaro; Jackson, Charles S.; Huerta, Gabriel

    2016-07-20

    A new test statistic for climate model evaluation has been developed that potentially mitigates some of the limitations that exist for observing and representing field and space dependencies of climate phenomena. Traditionally such dependencies have been ignored when climate models have been evaluated against observational data, which makes it difficult to assess whether any given model is simulating observed climate for the right reasons. The new statistic uses Gaussian Markov random fields for estimating field and space dependencies within a first-order grid point neighborhood structure. We illustrate the ability of Gaussian Markov random fields to represent empirical estimates of fieldmore » and space covariances using "witch hat" graphs. We further use the new statistic to evaluate the tropical response of a climate model (CAM3.1) to changes in two parameters important to its representation of cloud and precipitation physics. Overall, the inclusion of dependency information did not alter significantly the recognition of those regions of parameter space that best approximated observations. However, there were some qualitative differences in the shape of the response surface that suggest how such a measure could affect estimates of model uncertainty.« less

  9. Direct-field acoustic testing of a flight system : logistics, challenges, and results.

    SciTech Connect (OSTI)

    Stasiunas, Eric Carl; Gurule, David Joseph; Babuska, Vit; Skousen, Troy J.

    2010-10-01

    Before a spacecraft can be considered for launch, it must first survive environmental testing that simulates the launch environment. Typically, these simulations include vibration testing performed using an electro-dynamic shaker. For some spacecraft however, acoustic excitation may provide a more severe loading environment than base shaker excitation. Because this was the case for a Sandia Flight System, it was necessary to perform an acoustic test prior to launch in order to verify survival due to an acoustic environment. Typically, acoustic tests are performed in acoustic chambers, but because of scheduling, transportation, and cleanliness concerns, this was not possible. Instead, the test was performed as a direct field acoustic test (DFAT). This type of test consists of surrounding a test article with a wall of speakers and controlling the acoustic input using control microphones placed around the test item, with a closed-loop control system. Obtaining the desired acoustic input environment - proto-flight random noise input with an overall sound pressure level (OASPL) of 146.7 dB-with this technique presented a challenge due to several factors. An acoustic profile with this high OASPL had not knowingly been obtained using the DFAT technique prior to this test. In addition, the test was performed in a high-bay, where floor space and existing equipment constrained the speaker circle diameter. And finally, the Flight System had to be tested without contamination of the unit, which required a contamination bag enclosure of the test unit. This paper describes in detail the logistics, challenges, and results encountered while performing a high-OASPL, direct-field acoustic test on a contamination-sensitive Flight System in a high-bay environment.

  10. Field Laboratory in the Osage Reservation -- Determination of the Status of Oil and Gas Operations: Task 1. Development of Survey Procedures and Protocols

    SciTech Connect (OSTI)

    Carroll, Herbert B.; Johnson, William I.

    1999-04-27

    Procedures and protocols were developed for the determination of the status of oil, gas, and other mineral operations on the Osage Mineral Reservation Estate. The strategy for surveying Osage County, Oklahoma, was developed and then tested in the field. Two Osage Tribal Council members and two Native American college students (who are members of the Osage Tribe) were trained in the field as a test of the procedures and protocols developed in Task 1. Active and inactive surface mining operations, industrial sites, and hydrocarbon-producing fields were located on maps of the county, which was divided into four more or less equal areas for future investigation. Field testing of the procedures, protocols, and training was successful. No significant damage was found at petroleum production operations in a relatively new production operation and in a mature waterflood operation.

  11. Comparison of Laboratory and Field Methods for Determining the Quasi-Saturated Hydraulic Conductivity of Soils

    SciTech Connect (OSTI)

    Faybishenko, Boris

    1997-08-01

    Laboratory and field ponded infiltration tests in quasi-saturated soils (containing entrapped air) exhibit the same three-stage temporal variability for the flow rate and hydraulic conductivity. However, the values for the hydraulic conductivity may differ by as much as two orders of magnitude due to differences in the geometry and physics of flow when different laboratory and field methods are applied. The purpose of this paper is to investigate this variability using a comparison of results of ponded infiltration tests conducted under laboratory conditions using confined cores, with results of field tests conducted using partially isolated cores and double-ring infiltrometers. Under laboratory conditions in confined cores, during the firs stage, the water flux decreases over time because entrapped air plugs the largest pores in the soils; during the second stage, the quasi-saturated hydraulic conductivity increases by one to two orders of magnitude, essentially reaching the saturated hydraulic conductivity, when entrapped air is discharged from the soils; during the third stage, the hydraulic conductivity decreases to minimum values due to sealing of the soil surface and the effect of biofilms sealing the pores within the wetted zone. Under field conditions, the second stage is only partially developed, and when the surface sealing process begins, the hydraulic pressure drops below the air entry value, thereby causing atmospheric air to enter the soils. As a result, the soils become unsaturated with a low hydraulic conductivity, and the infiltration rate consequently decreases. Contrary to the laboratory experiments in confined cores, the saturated hydraulic conductivity cannot be reached under field conditions. In computations of infiltration one has to take into account the variations in the quasi-saturated and unsaturated hydraulic conductivities, moisture and entrapped air content, and the hydraulic gradient in the quasi-saturated or unsaturated soils.

  12. Waste Tank Size Determination for the Hanford River Protection Project Cold Test, Training, and Mockup Facility

    SciTech Connect (OSTI)

    Onishi, Yasuo; Wells, Beric E.; Kuhn, William L.

    2001-03-30

    The objective of the study was to determine the minimum tank size for the Cold Test Facility process testing of Hanford tank waste. This facility would support retrieval of waste in 75-ft-diameter DSTs with mixer pumps and SSTs with fluidic mixers. The cold test model will use full-scale mixer pumps, transfer pumps, and equipment with simulated waste. The study evaluated the acceptability of data for a range of tank diameters and depths and included identifying how the test data would be extrapolated to predict results for a full-size tank.

  13. Field kit and method for testing for the presence of gunshot residue

    DOE Patents [OSTI]

    Rodacy, Philip J.; Walker, Pamela K.

    2003-09-02

    A field test kit for gunshot residue comprises a container having at least compartments separated by a barrier. A surface is tested by wiping it with a swab and placing the swab in a first compartment. The barrier is then breached, permitting reagent in the second compartment to flow onto the swab. The first compartment is transparent, and a color change will be observed if the reagent reacts with gunshot residue.

  14. Review of Test Procedure for Determining HSPFs of Residential Variable-Speed Heat Pumps

    SciTech Connect (OSTI)

    Rice, C. Keith; Munk, Jeffrey D.; Shrestha, Som S.

    2015-08-01

    This report reviews the suitability of the existing Heating Seasonal Performance Factor (HSPF) ratings and testing requirements for the current generation of variable-speed (VS) air-source heat pumps. Recent field test results indicate larger discrepancies between rated HSPF and field-observed HSPF for VS models than for single-speed models in the same houses. These findings suggest that the heating season test and ratings procedure should be revisited for VS heat pumps. The ratings and testing procedures are described in ANSI/AHRI 210/240 (2008) for single-speed, two-capacity, and variable-speed units. Analysis of manufacturer and independent test performance data on VS units reveals why the current VS testing/ratings procedure results in overly optimistic HSPF ratings for some VS units relative to other types of heat pumps. This is due to a combination of extrapolation of low speed test data beyond the originally anticipated ambient temperature operating range and the constraints of unit controls, which prevent low speed operation over the range of ambient temperatures assumed in the procedure for low speed. As a result, the HSPFs of such units are being overpredicted relative to those for single- and two-capacity designs. This overprediction has been found to be significantly reduced by use in the HSPF ratings procedure of an alternative higher-load heating load line, described in a companion report (Rice et al., 2015).

  15. Request for Information for Marine and Hydrokinetic Environmental Monitoring Technologies and Field Testing Opportunities

    Broader source: Energy.gov [DOE]

    The Energy Department’s Water Power Program is seeking feedback from the marine and hydrokinetic (MHK) industry, academia, research laboratories, government agencies, and other stakeholders regarding the program’s activities and priorities in MHK environmental monitoring and field testing opportunities.

  16. Laboratory and Modeling Evaluations in Support of Field Testing for Desiccation at the Hanford Site

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus; Freedman, Vicky L.; Strickland, Christopher E.; Wietsma, Thomas W.; Tartakovsky, Guzel D.; Ward, Anderson L.

    2011-02-23

    The Deep Vadose Zone Treatability Test Plan for the Hanford Central Plateau includes testing of the desiccation technology as a potential technology to be used in conjunction with surface infiltration control to limit the flux of technetium and other contaminants in the vadose zone to the groundwater. Laboratory and modeling efforts were conducted to investigate technical uncertainties related to the desiccation process and its impact on contaminant transport. This information is intended to support planning, operation, and interpretation of a field test for desiccation in the Hanford Central Plateau.

  17. Development and testing of a mixed neutron-photon-beta field thermoluminescent dosimeter for personnel monitoring

    SciTech Connect (OSTI)

    Zummo, J.J.; Liu, J.C.

    1996-06-01

    A new four element Lithium Fluoride (LiF) badge and analysis algorithm have been developed and tested to better characterize personnel exposure in mixed radiation fields. The new badge is based on a commercially available chip card with three {sup 7}LiF elements and one {sup 6}LiF element. The badge holder is also based on a commercially available design, with modified filtration elements. The new algorithm takes advantage of the high temperature peak characteristics of the {sup 6}LiF element to better quantify neutron dose. The prototype badge was tested by using various mixtures of two fields typically used for dosimeter performance testing, as well as mixtures of three fields to better simulate actual operating conditions. The badge gave superior performance, based on the tolerance levels, when using the new algorithm as compared to an algorithm that did not use the high temperature peak methodology. The badge and algorithm are limited in that the approximate energy spectra of the neutron and beta field components must be characterized in advance.

  18. Development and field testing of a rapid and ultra-stable atmospheric carbon dioxide spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiang, B.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Wehr, R. A.; Wofsy, S. C.

    2014-12-15

    We present field test results for a new spectroscopic instrument to measure atmospheric carbon dioxide (CO2) with high precision (0.02 μmol mol-1, or ppm at 1 Hz) and demonstrate high stability (within 0.1 ppm over more than 8 months), without the need for hourly, daily, or even monthly calibration against high-pressure gas cylinders. The technical novelty of this instrument (ABsolute Carbon dioxide, ABC) is the spectral null method using an internal quartz reference cell with known CO2 column density. Compared to a previously described prototype, the field instrument has better stability and benefits from more precise thermal control of themore » optics and more accurate pressure measurements in the sample cell (at the mTorr level). The instrument has been deployed at a long-term ecological research site (the Harvard Forest, USA), where it has measured for 8 months without on-site calibration and with minimal maintenance, showing drift bounds of less than 0.1 ppm. Field measurements agree well with those of a commercially available cavity ring-down CO2 instrument (Picarro G2301) run with a standard calibration protocol. This field test demonstrates that ABC is capable of performing high-accuracy, unattended, continuous field measurements with minimal use of reference gas cylinders.« less

  19. Development and field testing of a rapid and ultra-stable atmospheric carbon dioxide spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiang, B.; Nelson, D. D.; McManus, J. B.; Zahniser, M. S.; Wehr, R.; Wofsy, S. C.

    2014-08-05

    We present field test results for a new spectroscopic instrument to measure atmospheric carbon dioxide (CO2) with high precision (0.02 ppm at 1 Hz) and demonstrate high stability (within 0.1 ppm over more than 8 months), without the need for hourly, daily, or even monthly calibration against high-pressure gas cylinders. The technical novelty of this instrument (ABsolute Carbon dioxide, ABC) is the spectral null method using an internal quartz reference cell with known CO2 column density. Compared to a previously described prototype, the field instrument has better stability and benefits from more precise thermal control of the optics and moremore » accurate pressure measurements in the sample cell (at the mTorr level). The instrument has been deployed at a long-term ecological research site (the Harvard Forest, USA), where it has measured for eight months without on-site calibration and with minimal maintenance, showing drift bounds of less than 0.1 ppm. Field measurements agree well with those of another commercially available cavity ring-down CO2 instrument (Picarro G2301) run with a standard calibration protocol. This field test demonstrates that ABC is capable of performing high-accuracy, unattended, continuous field measurements with minimal use of calibration cylinders.« less

  20. Determining the exchange parameters of spin-1 metal-organic molecular magnets in pulsed magnetic fields

    SciTech Connect (OSTI)

    Mcdonald, Ross D; Singleton, John; Lancaster, Tom; Goddard, Paul; Manson, Jamie

    2011-01-14

    We nave measured the high-field magnetization of a number of Ni-based metal-organic molecular magnets. These materials are self-assembly coordination polymers formed from transition metal ions and organic ligands. The chemistry of the compounds is versatile allowing many structures with different magnetic properties to be formed. These studies follow on from previous measurements of the Cu-based analogues in which we showed it was possible to extract the exchange parameters of low-dimensional magnets using pulsed magnetic fields. In our recent experiments we have investigated the compound (Ni(HF{sub 2})(pyz){sub 2})PF{sub 6}, where pyz = pyrazine, and the Ni-ions are linked in a quasi-two-dimensional (Q2D) square lattice via the pyrazine molecules, with the layers held together by HF{sub 2} ligands. We also investigated Ni(NCS){sub 2}(pyzdo){sub 2}, where pyzdo = pyrazine dioxide. The samples are grown at Eastern Washington University using techniques described elsewhere. Measurements are performed at the pulsed magnetic field laboratory in Los Alamos. The magnetization of powdered samples is determined using a compensated coil magnetometer in a 65 T short pulse magnet. Temperatures as low as 500 mK are achievable using a {sup 3}He cryostat. The main figure shows the magnetization of the spin-1 [Ni(HF{sub 2})(pyz){sub 2}]PF{sub 6} compound at 1.43 K. The magnetization rises slowly at first, achieving a rounded saturation whose midpoint is around 19 T. A small anomaly is also seen in the susceptibility at low fields ({approx}3 T), which might be attributed to a spin-flop transition. In contrast, the spin-1/2 [Cu(HF{sub 2})(pyz){sub 2}]PF{sub 6} measured previously has a saturation magnetization of 35.5 T and a strongly concave form of M(B) below this field. This latter compound was shown to be a good example of a Q2D Heisenberg antiferromagnet with the strong exchange coupling (J{sub 2D} = 12.4 K, J{sub {perpendicular}}/J{sub 2D} {approx} 10{sup -2}) directed along

  1. Field Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing Wells

    SciTech Connect (OSTI)

    Cunningham, Alfred

    2015-12-21

    This research project addresses one of the goals of the U.S. Department of Energy (DOE) Carbon Storage Program (CSP) aimed at developing Advanced Wellbore Integrity Technologies to Ensure Permanent Geologic Carbon Storage. The technology field-tested in this research project is referred to as microbially induced calcite precipitation (MICP), which utilizes a biologically-based process to precipitate calcium carbonate. If properly controlled MICP can successfully seal fractures, high permeability zones, and compromised wellbore cement in the vicinity of wellbores and in nearby caprock, thereby improving the storage security of geologically-stored carbon dioxide. This report describes an MICP sealing field test performed on a 24.4 cm (9.625 inch) diameter well located on the Gorgas Steam Generation facility near Jasper, Alabama. The research was aimed at (1) developing methods for delivering MICP promoting fluids downhole using conventional oil field technologies and (2) assessing the ability of MICP to seal cement and formation fractures in the near wellbore region in a sandstone formation. Both objectives were accomplished successfully during a field test performed during the period April 1-11, 2014. The test resulted in complete biomineralization sealing of a horizontal fracture located 340.7 m (1118 feet) below ground surface. A total of 24 calcium injections and six microbial inoculation injections were required over a three day period in order to achieve complete sealing. The fractured region was considered completely sealed when it was no longer possible to inject fluids into the formation without exceeding the initial formation fracture pressure. The test was accomplished using conventional oil field technology including an 11.4 L (3.0 gallon) wireline dump bailer for injecting the biomineralization materials downhole. Metrics indicating successful MICP sealing included reduced injectivity during seal formation, reduction in pressure falloff, and

  2. U(VI) bioreduction with emulsified vegetable oil as the electron donor-Model application to a field test

    SciTech Connect (OSTI)

    Tang, Guoping; Watson, David B; Wu, Wei-min; Schadt, Christopher Warren; Parker, Jack C; Brooks, Scott C

    2013-01-01

    A one-time 2-hour emulsified vegetable oil (EVO) injection in a fast flowing aquifer decreased U discharge to a stream for over a year. Using a comprehensive biogeochemical model developed in the companion article based on microcosm tests, we approximately matched the observed acetate, nitrate, Fe, U, and sulfate concentrations, and described the major evolution trends of multiple microbial functional groups in the field test. While the lab-determined parameters were generally applicable in the field-scale simulation, the EVO hydrolysis rate constant was estimated to be an order of magnitude greater in the field than in the microcosms. The model predicted substantial biomass (sulfate reducers) and U(IV) accumulation near the injection wells and along the side boundaries of the treatment zone where electron donors (long-chain fatty acids) from the injection wells met electron acceptors (sulfate) from the surrounding environment. While EVO retention and hydrolysis characteristics were expected to control treatment longevity, modeling results indicated that electron acceptors such as sulfate may not only compete for electrons but also play a conducive role in degrading complex substrates and enhancing U(VI) reduction and immobilization. As a result, the spacing of the injection wells could be optimized for effective sustainable bioremediation.

  3. Field Test Design Simulations of Pore-Water Extraction for the SX Tank Farm

    SciTech Connect (OSTI)

    Truex, Michael J.; Oostrom, Martinus

    2013-09-01

    A proof of principle test of pore water extraction is being performed by Washington River Protection Solutions for the U.S. Department of Energy, Office of River Protection. This test is being conducted to meet the requirements of Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989) Milestone M 045-20, and is described in RPP-PLAN-53808, 200 West Area Tank Farms Interim Measures Investigation Work Plan. To support design of this test, numerical simulations were conducted to help define equipment and operational parameters. The modeling effort builds from information collected in laboratory studies and from field characterization information collected at the test site near the Hanford Site 241-SX Tank Farm. Numerical simulations were used to evaluate pore-water extraction performance as a function of the test site properties and for the type of extraction well configuration that can be constructed using the direct-push installation technique. Output of simulations included rates of water and soil-gas production as a function of operational conditions for use in supporting field equipment design. The simulations also investigated the impact of subsurface heterogeneities in sediment properties and moisture distribution on pore-water extraction performance. Phenomena near the extraction well were also investigated because of their importance for pore-water extraction performance.

  4. Field Testing and Demonstration of the Smart Monitoring and Diagnostic System (SMDS) for Packaged Air-Conditioners and Heat Pumps

    SciTech Connect (OSTI)

    Taasevigen, Danny J.; Brambley, Michael R.; Huang, Yunzhi; Lutes, Robert G.; Gilbride, Spencer P.

    2015-05-29

    This documents results of a project focused on testing and demonstrating both the hardware and software versions of the smart monitoring and diagnostic system (SMDS) under field conditions.

  5. Concept Testing and Development at the Raft River Geothermal Field, Idaho

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 Peer Review Concept Testing and Development at the Raft River Geothermal Field, Idaho Principal Investigators: J. Moore and J. McLennan Organization: University of Utah Track Name: EGS Demonstration Projects Project Officer: W. Vandermeer Total Project Funding: $10,214,987 April 22, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research 1. Develop and demonstrate

  6. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Geothermal Technologies Program 2010 Peer Review Concept Testing and Development at the Raft River Geothermal Field, Idaho, for the Engineered Geothermal Systems Demonstration Projects and Low Temperature Exploration and Demonstrations Project Track. Objective to Develop and demonstrate the techniques required to form and sustain EGS reservoirs including combined thermal and hydraulic stimulation and numerical modeling and Improve the performance and output of the Raft

  7. Field pilot tests for tertiary recovery using butane and propane injection

    SciTech Connect (OSTI)

    Pacheco, E.F.; Garcia, A.I.

    1981-01-01

    This work describes a pilot project for tertiary recovery of liquid hydrocarbons through LPG injection in water-out sections of the Bolivar reservoir in La Pena Field, Santa Cruz, Boliva. The promising results obtained in the initial field miscibility tests, as well as the results from a mathematical model built to stimulate and evaluate the tertiary recovery project, directed subsequent work into a cyclic scheme for enhanced recovery. This scheme is explained and injection production data is presented. Field facilities built to handle both the injected LPG and the produced oil-LPG mixture are described. The oil/LPG ratio and the LPG recovered/injected fraction are the main factors measured in this to make further considerations for a full scale project.

  8. Test Results of the AC Field Measurements of Fermilab Booster Corrector Magnets

    SciTech Connect (OSTI)

    DiMarco, E.Joseph; Harding, D.J.; Kashikhin, V.S.; Kotelnikov, S.K.; Lamm, M.J.; Makulski, A.; Nehring, R.; Orris, D.F.; Schlabach, P.; Sylvester, C.; Tartaglia, Michael Albert; /Fermilab

    2008-06-25

    Multi-element corrector magnets are being produced at Fermilab that enable correction of orbits and tunes through the entire cycle of the Booster, not just at injection. The corrector package includes six different corrector elements--normal and skew orientations of dipole, quadrupole, and sextupole--each independently powered. The magnets have been tested during typical AC ramping cycles at 15Hz using a fixed coil system to measure the dynamic field strength and field quality. The fixed coil is comprised of an array of inductive pick-up coils around the perimeter of a cylinder which are sampled simultaneously at 100 kHz with 24-bit ADC's. The performance of the measurement system and a summary of the field results are presented and discussed.

  9. Cosmological constraints from the redshift dependence of the Alcock-Paczynski test: galaxy density gradient field

    SciTech Connect (OSTI)

    Li, Xiao-Dong; Park, Changbom; Forero-Romero, J. E.; Kim, Juhan E-mail: cbp@kias.re.kr E-mail: kjhan@kias.re.kr

    2014-12-01

    We propose a method based on the redshift dependence of the Alcock-Paczynski (AP) test to measure the expansion history of the universe. It uses the isotropy of the galaxy density gradient field to constrain cosmological parameters. If the density parameter ? {sub m} or the dark energy equation of state w are incorrectly chosen, the gradient field appears to be anisotropic with the degree of anisotropy varying with redshift. We use this effect to constrain the cosmological parameters governing the expansion history of the universe. Although redshift-space distortions (RSD) induced by galaxy peculiar velocities also produce anisotropies in the gradient field, these effects are close to uniform in magnitude over a large range of redshift. This makes the redshift variation of the gradient field anisotropy relatively insensitive to the RSD. By testing the method on mock surveys drawn from the Horizon Run 3 cosmological N-body simulations, we demonstrate that the cosmological parameters can be estimated without bias. Our method is complementary to the baryon acoustic oscillation or topology methods as it depends on D{sub AH} , the product of the angular diameter distance and the Hubble parameter.

  10. Phase II: Field Detector Development For Undeclared/Declared Nuclear Testing For Treaty Verfiation Monitoring

    SciTech Connect (OSTI)

    Kriz, M.; Hunter, D.; Riley, T.

    2015-10-02

    Radioactive xenon isotopes are a critical part of the Comprehensive Nuclear Test Ban Treaty (CTBT) for the detection or confirmation of nuclear weapons tests as well as on-site treaty verification monitoring. On-site monitoring is not currently conducted because there are no commercially available small/robust field detector devices to measure the radioactive xenon isotopes. Xenon is an ideal signature to detect clandestine nuclear events since they are difficult to contain and can diffuse and migrate through soils due to their inert nature. There are four key radioxenon isotopes used in monitoring: 135Xe (9 hour half-life), 133mXe (2 day half-life), 133Xe (5 day half-life) and 131mXe (12 day half-life) that decay through beta emission and gamma emission. Savannah River National Laboratory (SRNL) is a leader in the field of gas collections and has developed highly selective molecular sieves that allow for the collection of xenon gas directly from air. Phase I assessed the development of a small, robust beta-gamma coincidence counting system, that combines collection and in situ detection methodologies. Phase II of the project began development of the custom electronics enabling 2D beta-gamma coincidence analysis in a field portable system. This will be a significant advancement for field detection/quantification of short-lived xenon isotopes that would not survive transport time for laboratory analysis.

  11. 9977 TYPE B PACKAGING INTERNAL DATA COLLECTION FEASIBILITY TESTING - MAGNETIC FIELD COMMUNICATIONS

    SciTech Connect (OSTI)

    Shull, D.

    2012-06-18

    The objective of this report is to document the findings from proof-of-concept testing performed by the Savannah River National Laboratory (SRNL) R&D Engineering and Visible Assets, Inc. for the DOE Packaging Certification Program (PCP) to determine if RuBee (IEEE 1902.1) tags and readers could be used to provide a communication link from within a drum-style DOE certified Type B radioactive materials packaging. A Model 9977 Type B Packaging was used to test the read/write capability and range performance of a RuBee tag and reader. Testing was performed with the RuBee tags placed in various locations inside the packaging including inside the drum on the outside of the lid of the containment vessel and also inside of the containment vessel. This report documents the test methods and results. A path forward will also be recommended.

  12. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  13. field

    National Nuclear Security Administration (NNSA)

    09%2A en Ten-Year Site Plans (TYSP) http:www.nnsa.energy.govaboutusouroperationsinfopsinfopstysp

    field field-type-text field-field-page-name">
  14. Recent Test Results of the High Field Nb3Sn Dipole Magnet HD2

    SciTech Connect (OSTI)

    Ferracin, P.; Bingham, B.; Caspi, S.; Cheng, D. W.; Dietderich, D. R.; Felice, H.; Hafalia, A. R.; Hannaford, C. R.; Joseph, J.; Lietzke, A. F.; Lizarazo, J.; Sabbi, G.; Wang, X.

    2009-10-19

    The 1 m long Nb{sub 3}Sn dipole magnet HD2, fabricated and tested at Lawrence Berkeley National Laboratory, represents a step towards the development of block-type accelerator quality magnets operating in the range of 13-15 T. The magnet design features two coil modules composed of two layers wound around a titanium-alloy pole. The layer 1 pole includes a round cutout to provide room for a bore tube with a clear aperture of 36 mm. After a first series of tests where HD2 reached a maximum bore field of 13.8 T, corresponding to an estimated peak field on the conductor of 14.5 T, the magnet was disassembled and reloaded without the bore tube and with a clear aperture increased to 43 mm. We describe in this paper the magnet training observed in two consecutive tests after the removal of the bore tube, with a comparison of the quench performance with respect to the previous tests. An analysis of the voltage signals recorded before and after training quenches is then presented and discussed, and the results of coil visual inspections reported.

  15. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    SciTech Connect (OSTI)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  16. Determining effective soil formation thermal properties from field data using a parameter estimation technique

    SciTech Connect (OSTI)

    Shonder, J.A.; Beck, J.V.

    1998-11-01

    A one-dimensional thermal model is derived to describe the temperature field around a vertical borehole heat exchanger (BHEx) for a geothermal heat pump. The inlet and outlet pipe flows are modeled as one, and an effective heat capacity is added to model the heat storage in the fluid and pipes. Parameter estimation techniques are then used to estimate various parameters associated with the model, including the thermal conductivity of the soil and of the grout which fills the borehole and surrounds the u-tube. The model is validated using test data from an experimental rig containing sand with known thermal conductivity. The estimates of the sand thermal conductivity derived from the model are found to be in good agreement with independent measurements.

  17. Determining Effective Soil Formation Thermal Properties From Field Data Using A Parameter Estimation Technique

    SciTech Connect (OSTI)

    Shonder, John A; Beck, Dr. James V.

    1999-01-01

    A one-dimensional thermal model is derived to describe the temperature field around a vertical borehole heat exchanger (BHEX) for a geothermal heat pump. The inlet and outlet pipe flows are modeled as one, and an effective heat capacity is added to model the heat storage in the fluid and pipes. Parameter estimation techniques are then used to estimate various parameters associated with the model, including the thermal conductivity of the soil and the grout that fills the borehole and surrounds the U-tube. The model is validated using test data from an experimental rig containing sand with known thermal conductivity. The estimates of the sand's thermal conductivity derived from the model are found to be in good agreement with independent measurements.

  18. Field Testing of Energy-Efficient Flood-Damage-Resistant Residential Envelope Systems Summary Report

    SciTech Connect (OSTI)

    Aglan, H.

    2005-08-04

    The primary purpose of the project was to identify materials and methods that will make the envelope of a house flood damage resistant. Flood damage resistant materials and systems are intended to be used to repair houses subsequent to flooding. This project was also intended to develop methods of restoring the envelopes of houses that have been flooded but are repairable and may be subject to future flooding. Then if the house floods again, damage will not be as extensive as in previous flood events and restoration costs and efforts will be minimized. The purpose of the first pair of field tests was to establish a baseline for typical current residential construction practice. The first test modules used materials and systems that were commonly found in residential envelopes throughout the U.S. The purpose of the second pair of field tests was to begin evaluating potential residential envelope materials and systems that were projected to be more flood-damage resistant and restorable than the conventional materials and systems tested in the first pair of tests. The purpose of testing the third slab-on-grade module was to attempt to dry flood proof the module (no floodwater within the structure). If the module could be sealed well enough to prevent water from entering, then this would be an effective method of making the interior materials and systems flood damage resistant. The third crawl space module was tested in the same manner as the previous modules and provided an opportunity to do flood tests of additional residential materials and systems. Another purpose of the project was to develop the methodology to collect representative, measured, reproducible (i.e. scientific) data on how various residential materials and systems respond to flooding conditions so that future recommendations for repairing flood damaged houses could be based on scientific data. An additional benefit of collecting this data is that it will be used in the development of a standard test

  19. Crushable structure performance determined from reconstructed dynamic forces during impact tests

    SciTech Connect (OSTI)

    Bateman, V.I.

    1995-01-01

    A force reconstruction technique has been used to assess the dynamic performance of a crushable structure (a bomb nose) in both the axial (90{degrees}) and slapdown (30{degrees}) impact conditions. The dynamic force characteristics for the nose design, determined from these test results, have been used to write a dynamic force specification for a new nose design that will replace the old nose. The dynamic forces are reconstructed from measured acceleration responses with the Sum of Weighted Accelerations Technique (SWAT) developed at Sandia National Laboratories. Axial characterizations for the old nose are presented from tests at two SNL facilities: a rocket rail launcher facility and an 18-Inch horizontal actuator facility. The characterizations for the old nose are compared to the characterizations for two new nose designs. Slapdown characterizations for the old nose are presented. Incorporation of the test results into a dynamic force specification is discussed.

  20. Design and field test of collaborative tools in the service of an innovative organization

    SciTech Connect (OSTI)

    De Beler, N.; Parfouru, S.

    2012-07-01

    This paper presents the design process of collaborative tools, based on ICT, aiming at supporting the tasks of the team that manages an outage of an energy production plant for maintenance activities. The design process follows an iterative and multidisciplinary approach, based on a collective tasks modeling of the outage management team in the light of Socio Organizational and Human (SOH) field studies, and on the state of the art of ICT. Field test of the collaborative tools designed plays a great place in this approach, allowing taking into account the operational world but involves also some risks which must be managed. To implement tools on all the production plants, we build an 'operational concept' with a level of description which authorizes the evolution of tools and allows some local adaptations. The field tests provide lessons on the ICT topics. For examples: the status of the remote access tools, the potential of use of a given information input by an actor for several individual and collective purposes, the actors perception of the tools meaning, and the requirements for supporting the implementation of change. (authors)

  1. In situ destruction of contaminants via hydrous pyrolysis/oxidation. Visalia Field Test

    SciTech Connect (OSTI)

    Newmark, Robin L.; Aines, Roger D.; Knauss, Kevin; Leif, Roald; Chiarappa, Marina; Hudson, Bryant; Carrigan, Charles; Tompson, Andy; Richards, Jim; Eaker, Craig; Weidner, Randall; Sciarotta, Terry

    1998-12-01

    A field test of hydrous pyrolysis/oxidation (HPO) was conducted during the summer of 1997, during a commercial application of thermal remediation (Dynamic Underground Stripping (DUS)) at the Visalia Pole Yard (a super-fund site) in southern California. At Visalia, Southern California Edison Co. is applying the DUS thermal remediation method to clean up a large (4.3 acre) site contaminated with pole-treating compounds. This is a full-scale cleanup, during which initial extraction of contaminants is augmented by combined steam/air injection in order to enhance the destruction of residual contaminants by HPO. Laboratory results indicate that the contaminants at Visaha react at similar rates to TCE, which has been the focus of extensive laboratory work (Knauss et al., 1998a-c). Field experimental results from this application yield valuable information (1) confirming the destruction of contaminants in soil and groundwater by HPO, (2) validating the predictive models used to design HP0 steam injection systems, (3) demonstrating that accurate field measurements of the critical fluid parameters can be obtained using existing monitoring wells and (4) obtaining a reasonable prediction of the cost and effectiveness of HPO, working at a commercial scale and with commercial partners. The goal of our additional study and demonstration in conjunction with Edison has been to obtain early proof of hydrous pyrolysis/oxidation in the field, and validate our predictive models and monitoring strategies. This demonstration provides valuable economic and practicability data obtained on a commercial scale, with more detailed field validation than is commonly available on a commercially-conducted cleanup. The results of LLNL' s field experiments constrain the destruction rates throughout the site, and enable site management to make accurate estimates of total in situ destruction based on the recovered carbon. As of October, 1998, over 900,000 lb of contaminant have been removed from the

  2. An integrated approach to monitoring a field test of in situ contaminant destruction

    SciTech Connect (OSTI)

    Aines, R D; Carrigan, C; Chiarappa, M; Eaker, C; Elsholtz, A; Hudson, G B; Leif, R; Newmark, R L

    1998-12-01

    The development of in situ thermal remediation techniques requires parallel development of techniques capable of monitoring the physical and chemical changes for purposes of process control. Recent research indicates that many common contaminants can be destroyed in situ by hydrous pyrolysis/oxidation (HPO), eliminating the need for costly surface treatment and disposal. Steam injection, combined with supplemental air, can create the conditions in which HP0 occurs. Field testing of this process, conducted in the summer of 1997, indicates rapid destruction of polycyclic aromatic hydrocarbons (PAHs). Previous work established a suite of underground geophysical imaging techniques capable of providing sufficient knowledge of the physical changes in the subsurface during thermal treatment at sufficient frequencies to be used to monitor and guide the heating and extraction processes. In this field test, electrical resistance tomography (ERT) and temperature measurements provided the primary information regarding the temporal and spatial distribution of the heated zones. Verifying the in situ chemical destruction posed new challenges. We developed field methods for sampling and analyzing hot water for contaminants, oxygen, intermediates and products of reaction. Since the addition of air or oxygen to the contaminated region is a critical aspect of HPO, noble gas tracers were used to identify fluids from different sources. The combination of physical monitoring with noble gas identification of the native and injected fluids and accurate fluid sampling resulted in an excellent temporal and spatial evaluation of the subsurface processes, from which the amount of in situ destruction occurring in the treated region could be quantified. The experimental field results constrain the destruction rates throughout the site, and enable site management to make accurate estimates of total in situ destruction based on the recovered carbon. As of October, 1998, over 400,000 kg (900

  3. Apparatus for the field determination of concentration of radioactive constituents in a medium

    DOE Patents [OSTI]

    Perkins, Richard W.; Schilk, Alan J.; Warner, Ray A.; Wogman, Ned A.

    1995-01-01

    The instant invention is an apparatus for determining the concentration of radioactive constituents in a test sample; such as surface soils, via rapid real-time analyses, and direct readout on location utilizing a probe made up of multiple layers of detection material used in combination with an analyzer and real-time readout unit. This is accomplished by comparing the signal received from the probe, which can discriminate between types of radiation and energies with stored patterns that are based upon experimental results. This comparison can be used in the calibration of a readout display that reads out in real-time the concentrations of constituents per given volume. For example, the concentration of constituents such as Cs-137, Sr-90, U-238 in the soil, and noble gas radionuclides such as Kr-85 in the atmosphere, can be measured in real-time, on location, without the need for laboratory analysis of samples.

  4. Apparatus for the field determination of concentration of radioactive constituents in a medium

    DOE Patents [OSTI]

    Perkins, R.W.; Schilk, A.J.; Warner, R.A.; Wogman, N.A.

    1995-08-15

    The instant invention is an apparatus for determining the concentration of radioactive constituents in a test sample; such as surface soils, via rapid real-time analyses, and direct readout on location utilizing a probe made up of multiple layers of detection material used in combination with an analyzer and real-time readout unit. This is accomplished by comparing the signal received from the probe, which can discriminate between types of radiation and energies with stored patterns that are based upon experimental results. This comparison can be used in the calibration of a readout display that reads out in real-time the concentrations of constituents per given volume. For example, the concentration of constituents such as Cs-137, Sr-90, U-238 in the soil, and noble gas radionuclides such as Kr-85 in the atmosphere, can be measured in real-time, on location, without the need for laboratory analysis of samples. 14 figs.

  5. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect (OSTI)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work

  6. Field Operations Program Chevrolet S-10 (Lead-Acid) Accelerated Reliability Testing - Final Report

    SciTech Connect (OSTI)

    J. Francfort; J. Argueta; M. Wehrey; D. Karner; L. Tyree

    1999-07-01

    This report summarizes the Accelerated Reliability testing of five lead-acid battery-equipped Chevrolet S-10 electric vehicles by the US Department of Energy's Field Operations Program and the Program's testing partners, Electric Transportation Applications (ETA) and Southern California Edison (SCE). ETA and SCE operated the S-10s with the goal of placing 25,000 miles on each vehicle within 1 year, providing an accelerated life-cycle analysis. The testing was performed according to established and published test procedures. The S-10s' average ranges were highest during summer months; changes in ambient temperature from night to day and from season-to-season impacted range by as much as 10 miles. Drivers also noted that excessive use of power during acceleration also had a dramatic effect on vehicle range. The spirited performance of the S-10s created a great temptation to inexperienced electric vehicle drivers to ''have a good time'' and to fully utilize the S-10's acceleration capability. The price of injudicious use of power is greatly reduced range and a long-term reduction in battery life. The range using full-power accelerations followed by rapid deceleration in city driving has been 20 miles or less.

  7. The North Carolina Field Test: Field performance of the preliminary version of an advanced weatherization audit for the Department of Energy`s Weatherization Assistance Program

    SciTech Connect (OSTI)

    Sharp, T.R.

    1994-06-01

    The field performance of weatherizations based on a newly-developed advanced technique for selecting residential energy conservation measures was tested alongside current Retro-Tech-based weatherizations in North Carolina. The new technique is computer-based and determines measures based on the needs of an individual house. In addition, it recommends only those measures that it determines will have a benefit-to-cost ratio greater than 1 for the house being evaluated. The new technique also considers the interaction of measures in computing the benefit-to-cost ratio of each measure. The two weatherization approaches were compared based on implementation ease, measures installed, labor and cost requirements, and both heating and cooling energy savings achieved. One-hundred and twenty houses with the following characteristics participated: the occupants were low-income, eligible for North Carolina`s current weatherization program, and responsible for their own fuel and electric bills. Houses were detached single-family dwellings, not mobile homes; were heated by kerosene, fuel oil, natural gas, or propane; and had one or two operating window air conditioners. Houses were divided equally into one control group and two weatherization groups. Weekly space heating and cooling energy use, and hourly indoor and outdoor temperatures were monitored between November 1989 and September 1990 (pre-period) and between December 1990 and August 1991 (post-period). House consumption models were used to normalize for annual weather differences and a 68{degrees}F indoor temperature. Control group savings were used to adjust the savings determined for the weatherization groups. The two weatherization approaches involved installing attic and floor insulations in near equivalent quantities, and installing storm windows and wall insulation in drastically different quantities. Substantial differences also were found in average air leakage reductions for the two weatherization groups.

  8. Field testing of linear individual pitch control on the two-bladed controls advanced research turbine

    SciTech Connect (OSTI)

    van Solingen, Edwin; Fleming, Paul A.; Scholbrock, Andrew; van Wingerden, Jan-Willem

    2015-04-17

    This paper presents the results of field tests using linear individual pitch control (LIPC) on the two-bladed Controls Advanced Research Turbine 2 (CART2) at the National Renewable Energy Laboratory (NREL). LIPC has recently been introduced as an alternative to the conventional individual pitch control (IPC) strategy for two-bladed wind turbines. The main advantage of LIPC over conventional IPC is that it requires, at most, only two feedback loops to potentially reduce the periodic blade loads. In previous work, LIPC was designed to implement blade pitch angles at a fixed frequency (e.g., the once-per-revolution (1P) frequency), which made it only applicable in above-rated wind turbine operating conditions. In this study, LIPC is extended to below-rated operating conditions by gain scheduling the controller on the rotor speed. With this extension, LIPC and conventional IPC are successfully applied to the NREL CART2 wind turbine. Lastly, the field-test results obtained during the measurement campaign indicate that LIPC significantly reduces the wind turbine loads for both below-rated and above-rated operation.

  9. Field testing of linear individual pitch control on the two-bladed controls advanced research turbine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van Solingen, Edwin; Fleming, Paul A.; Scholbrock, Andrew; van Wingerden, Jan-Willem

    2015-04-17

    This paper presents the results of field tests using linear individual pitch control (LIPC) on the two-bladed Controls Advanced Research Turbine 2 (CART2) at the National Renewable Energy Laboratory (NREL). LIPC has recently been introduced as an alternative to the conventional individual pitch control (IPC) strategy for two-bladed wind turbines. The main advantage of LIPC over conventional IPC is that it requires, at most, only two feedback loops to potentially reduce the periodic blade loads. In previous work, LIPC was designed to implement blade pitch angles at a fixed frequency (e.g., the once-per-revolution (1P) frequency), which made it only applicablemore » in above-rated wind turbine operating conditions. In this study, LIPC is extended to below-rated operating conditions by gain scheduling the controller on the rotor speed. With this extension, LIPC and conventional IPC are successfully applied to the NREL CART2 wind turbine. Lastly, the field-test results obtained during the measurement campaign indicate that LIPC significantly reduces the wind turbine loads for both below-rated and above-rated operation.« less

  10. Field studies of the potential for wind transport of plutonium- contaminated soils at sites in Areas 6 and 11, Nevada Test Site

    SciTech Connect (OSTI)

    Lancaster, N.; Bamford, R.; Metzger, S.

    1995-07-01

    This report describes and documents a series of field experiments carried out in Areas 6 and 11 of the Nevada Test Site in June and July 1994 to determine parameters of boundary layer winds, surface characteristics, and vegetation cover that can be used to predict dust emissions from the affected sites. Aerodynamic roughness of natural sites is determined largely by the lateral cover of the larger and more permanent roughness elements (shrubs). These provide a complete protection of the surface from wind erosion. Studies using a field-portable wind tunnel demonstrated that natural surfaces in the investigated areas of the Nevada Test Site are stable except at very high wind speeds (probably higher than normally occur, except perhaps in dust devils). However, disturbance of silty-clay surfaces by excavation devices and vehicles reduces the entrainment threshold by approximately 50% and makes these areas potentially very susceptible to wind erosion and transport of sediments.

  11. Steam atmosphere dryer project: System development and field test. Final report

    SciTech Connect (OSTI)

    NONE

    1999-02-01

    The objective of this project was to develop and demonstrate the use of a superheated steam atmosphere dryer as a highly improved alternative to conventional hot air-drying systems, the present industrial standard method for drying various wet feedstocks. The development program plan consisted of three major activities. The first was engineering analysis and testing of a small-scale laboratory superheated steam dryer. This dryer provided the basic engineering heat transfer data necessary to design a large-scale system. The second major activity consisted of the design, fabrication, and laboratory checkout testing of the field-site prototype superheated steam dryer system. The third major activity consisted of the installation and testing of the complete 250-lb/hr evaporation rate dryer and a 30-kW cogeneration system in conjunction with an anaerobic digester facility at the Village of Bergen, NY. Feedstock for the digester facility at the Village of Bergen, NY. Feedstock for the digester was waste residue from a nearby commercial food processing plant. The superheated steam dryer system was placed into operation in August 1996 and operated successfully through March 1997. During this period, the dryer processed all the material from the digester to a powdered consistency usable as a high-nitrogen-based fertilizer.

  12. Use of instrumented Charpy tests to determine onset of upper-shelf energy

    SciTech Connect (OSTI)

    Canonico, D.A.; Stelzman, W.J., Berggren, R.G.; Nanstad, R.K.

    1981-05-01

    Identifying the onset of C/sub v/ upper-shelf toughness is of paramount importance to the continued integrity of a pressure vessel. Most in-service surveillance programs require that the C/sub v/ upper-shelf toughness be determined. This is particularly true for the surveillance programs for nuclear pressure vessels. In the nuclear systems the change in C/sub v/ upper-shelf energy due to irradiation must frequently be determined with a limited number of surveillance specimens. Currently, fracture appearance is the criterion used to assure that the tests are being conducted in the C/sub v/ upper-shelf temperature range. This procedure is satisfactory when a number of specimens are available and accessible for interpretation. This is not always the case; irradiated specimens must be remotely tested and interpreted. Examining a specimen remotely may result in an erroneous interpretation of the fracture surface. To avoid this possibility we have developed a procedure, using an instrumented Charpy impact tester, that by linear extrapolation can identify the onset of the C/sub v/ upper-shelf toughness regime with as few as two specimens. This paper discusses the development of the procedure and its application.

  13. 10 CFR 830 Major Modification Determination for Advanced Test Reactor LEU Fuel Conversion

    SciTech Connect (OSTI)

    Boyd D. Christensen; Michael A. Lehto; Noel R. Duckwitz

    2012-05-01

    The Advanced Test Reactor (ATR), located in the ATR Complex of the Idaho National Laboratory (INL), was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. The ATR is fueled with high-enriched uranium (HEU) matrix (UAlx) in an aluminum sandwich plate cladding. The National Nuclear Security Administration Global Threat Reduction Initiative (GTRI) strategic mission includes efforts to reduce and protect vulnerable nuclear and radiological material at civilian sites around the world. Converting research reactors from using HEU to low-enriched uranium (LEU) was originally started in 1978 as the Reduced Enrichment for Research and Test Reactors (RERTR) Program under the U.S. Department of Energy (DOE) Office of Science. Within this strategic mission, GTRI has three goals that provide a comprehensive approach to achieving this mission: The first goal, the driver for the modification that is the subject of this determination, is to convert research reactors from using HEU to LEU. Thus the mission of the ATR LEU Fuel Conversion Project is to convert the ATR and Advanced Test Reactor Critical facility (ATRC) (two of the six U.S. High-Performance Research Reactors [HPRR]) to LEU fuel by 2017. The major modification criteria evaluation of the project pre-conceptual design identified several issues that lead to the conclusion that the project is a major modification.

  14. DTE Energy Technologies With Detroit Edison Co. and Kinectrics Inc.: Distributed Resources Aggregation Modeling and Field Configuration Testing

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes the work of DTE Energy Technologies, Detroit Edison, and Kinectrics, under contract to DOE's Distribution and Interconnection R&D, to develop distributed resources aggregation modeling and field configuration testing.

  15. Field testing of a high-temperature aquifer thermal energy storage system

    SciTech Connect (OSTI)

    Sterling, R.L.; Hoyer, M.C.

    1989-03-01

    The University of Minnesota Aquifer Thermal Energy Storage (ATES) System has been operated as a field test facility for the past six years. Four short-term and two long-term cycles have been completed to data providing a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. A third long-term cycle is currently being planned to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact on the aquifer from heated waste storage cycles. The most critical activities in the preparation for the next cycle have proved to be the applications for the various permits and variances necessary to conduct the third cycle and the matching of the characteristics of the ATES system during heat recovery with a suitable adjacent building thermal load.

  16. Field Testing LIDAR Based Feed-Forward Controls on the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Scholbrock, A. K.; Fleming, P. A.; Fingersh, L. J.; Wright, A. D.; Schlipf, D.; Haizmann, F.; Belen, F.

    2013-01-01

    Wind turbines are complex, nonlinear, dynamic systems driven by aerodynamic, gravitational, centrifugal, and gyroscopic forces. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a chaotic three-dimensional (3-D) turbulent wind inflow field with imbedded coherent vortices that drive fatigue loads and reduce lifetime. In order to reduce cost of energy, future large multimegawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, maximize energy capture, and add active damping to maintain stability for these dynamically active structures operating in a complex environment. Researchers at the National Renewable Energy Laboratory (NREL) and University of Stuttgart are designing, implementing, and testing advanced feed-back and feed-forward controls in order to reduce the cost of energy for wind turbines.

  17. Developing an Innovative Field Expedient Fracture Toughness Testing Protocol for Concrete Materials

    SciTech Connect (OSTI)

    Wang, Jy-An John; Liu, Ken C; Naus, Dan J

    2008-09-01

    The Spiral Notch Torsion Fracture Toughness Test (SNTT) was developed recently to determine the intrinsic fracture toughness (KIC) of structural materials. The SNTT system operates by applying pure torsion to uniform cylindrical specimens with a notch line that spirals around the specimen at a 45? pitch. KIC values are obtained with the aid of a three-dimensional finite-element computer code, TOR3D-KIC. The SNTT method is uniquely suitable for testing a wide variety of materials used extensively in pressure vessel and piping structural components and weldments. Application of the method to metallic, ceramic, and graphite materials has been demonstrated. One important characteristic of SNTT is that neither a fatigue precrack or a deep notch are required for the evaluation of brittle materials, which significantly reduces the sample size requirement. In this paper we report results for a Portland cement-based mortar to demonstrate applicability of the SNTT method to cementitious materials. The estimated KIC of the tested mortar samples with compressive strength of 34.45 MPa was found to be 0.19 MPa m.

  18. Implementation and Evaluation of the Virtual Fields Method: Determining Constitutive Model Parameters From Full-Field Deformation Data.

    SciTech Connect (OSTI)

    Kramer, Sharlotte Lorraine Bolyard; Scherzinger, William M.

    2014-09-01

    The Virtual Fields Method (VFM) is an inverse method for constitutive model parameter identication that relies on full-eld experimental measurements of displacements. VFM is an alternative to standard approaches that require several experiments of simple geometries to calibrate a constitutive model. VFM is one of several techniques that use full-eld exper- imental data, including Finite Element Method Updating (FEMU) techniques, but VFM is computationally fast, not requiring iterative FEM analyses. This report describes the im- plementation and evaluation of VFM primarily for nite-deformation plasticity constitutive models. VFM was successfully implemented in MATLAB and evaluated using simulated FEM data that included representative experimental noise found in the Digital Image Cor- relation (DIC) optical technique that provides full-eld displacement measurements. VFM was able to identify constitutive model parameters for the BCJ plasticity model even in the presence of simulated DIC noise, demonstrating VFM as a viable alternative inverse method. Further research is required before VFM can be adopted as a standard method for constitu- tive model parameter identication, but this study is a foundation for ongoing research at Sandia for improving constitutive model calibration.

  19. THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests

    SciTech Connect (OSTI)

    Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

    2010-08-31

    This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

  20. Spectroscopic Determination of the Magnetic Fields in Exploding Wire and X-pinch Plasmas

    SciTech Connect (OSTI)

    Hammer, David A.

    2013-12-19

    In this report, we summarize the progress that was made toward developing a new magnetic field diagnostic known as Zeeman Broadening for current carrying high energy density plasmas.

  1. An overview of the Yucca Mountain Site Characterization Project field test program for evaluating seal performance

    SciTech Connect (OSTI)

    Fernandez, J.A.; Case, J.B.

    1993-12-31

    Sandia National Laboratories (SNL), a participant in the Yucca Mountain Site Characterization Project, is responsible for implementing the repository sealing program. One aspect of this program is the definition and fielding of tests related to sealing components which comprise the sealing subsystem. The sealing components are identified in the Site Characterization Plan (U.S. DOE, 1988) and Fernandez et al. (1987). These include an anchor-to-bedrock plug, single dams (or single bulkheads with not settlement), general shaft fill, drift backfill, station and shaft plugs, double bulkheads, backfilled sumps, and channels in a backfilled room. The materials used to create these components are cementitious and earthen. Earthen materials will be used for as many applications as possible to minimize potential degradation of physical properties and potential adverse effects on ground-water chemistry in the repository environment. In places where low strength is acceptable, earthen materials may be used. The most likely application for cementitious materials is where high strength and low deformability may be required. (Hinkebein and Fernandez, 1989). The basis for performing seal component testing is divided into two parts: regulatory requirements and technical requirements. The regulatory requirements are derived primarily from Title 10 Code of Federal Regulations, Part 60 (10 CFR 60) (U.S. Nuclear Regulatory Commission, 1986). The technical requirements are defined by the uncertainties associated with seal performance and seal emplacement. Both categories of requirements are discussed below.

  2. Field test of a generic method for halogenated hydrocarbons: Semivost test at a chemical manufacturing facility. Final project report, August 1992-August 1993

    SciTech Connect (OSTI)

    McGaughey, J.F.; Bursey, J.T.; Merrill, R.G.

    1996-11-01

    The candidate methods for semivolatile organic compounds are SW-846 Sampling Method 0010 and Analytical Method 8270, which are applicable to stationary sources. Two field tests were conducted using quadruple sampling trains with dynamic spiking were performed according to the guidelines of EPA Method 301. The first field test was performed at a site with low levels of moisture. The second test reported here was conducted at a chemical manufacturing facility where chemical wastes were burned in a coal-fired boiler. Poor recoveries obtained for the spiked analytes at the second test were attributed to wet sorbent from the sampling train, use of methanol to effect complete transfer of wet sorbent from the sampling module, and use of extraction techniques which did not effect a complete separation of methylene chloride from methanol. A procedure to address problems with preparation of samples from Method 0010 is included in the report.

  3. Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system

    DOE Patents [OSTI]

    Schmitt, Randal L.; Henson, Tammy D.; Krumel, Leslie J.; Hargis, Jr., Philip J.

    2006-06-20

    A method to determine the alignment of the transmitter and receiver fields of view of a light detection and ranging (LIDAR) system. This method can be employed to determine the far-field intensity distribution of the transmitter beam, as well as the variations in transmitted laser beam pointing as a function of time, temperature, or other environmental variables that may affect the co-alignment of the LIDAR system components. In order to achieve proper alignment of the transmitter and receiver optical systems when a LIDAR system is being used in the field, this method employs a laser-beam-position-sensing detector as an integral part of the receiver optics of the LIDAR system.

  4. Beam Homogeneity Dependence on the Magnetic Filter Field at the IPP Test Facility MANITU

    SciTech Connect (OSTI)

    Franzen, P.; Fantz, U.

    2011-09-26

    The homogeneity of the extracted current density from the large RF driven negative hydrogen ion sources of the ITER neutral beam system is a critical issue for the transmission of the negative ion beam through the accelerator and the beamline components. As a first test, the beam homogeneity at the IPP long pulse test facility MANITU is measured by means of the divergence and the stripping profiles obtained with a spatially resolved Doppler-shift spectroscopy system. Since MANITU is typically operating below the optimum perveance, an increase in the divergence corresponds to a lower local extracted negative ion current density if the extraction voltage is constant. The beam H{sub {alpha}} Doppler-shift spectroscopy is a rather simple tool, as no absolute calibration - both for the wavelength and the emission - is necessary. Even no relative calibration of the different used lines of sight is necessary for divergence and stripping profiles as these quantities can be obtained by the line broadening of the Doppler-shifted peak and the ratio of the integral of the stripping peak to the integral of the Doppler-shifted peak, respectively. The paper describes the H{sub {alpha}} MANITU Doppler-shift spectroscopy system which is now operating routinely and the evaluation methods of the divergence and the stripping profiles. Beam homogeneity measurements are presented for different extraction areas and magnetic filter field configurations both for Hydrogen and Deuterium operation; the results are compared with homogeneity measurements of the source plasma. The stripping loss measurements are compared with model calculations.

  5. COMPARISON OF SHEAR STRENGTH OF CERAMIC JOINTS DETERMINED BY VARIOUS TEST METHODS WITH SMALL SPECIMENS

    SciTech Connect (OSTI)

    Katoh, Yutai; Kiggans Jr, James O; Khalifa, Hesham; Back, Christina A.; Hinoki, Tatsuya; Ferraris, Monica

    2015-01-01

    Four different shear test methods i.e. doubled notched shear test, asymmetrical four point bend test, Iosipescu test, and torsion test, were investigated for their ability to evaluate one standard SiC to SiC ceramic brittle joint while using small size specimens. Double notched shear test showed higher stress concentration at the notch base and a lower nominal shear strength. Both asymmetrical four point bend test and Iosipescu test utilized epoxy jointed metal extensors, which failed during test and caused misalignment and tensile type of failure. Torsion test can deliver true shear loading. However, base material failure was observed for the torsion joint samples in this study. None of the tests can successfully induce true shear failure of the joint because the joint is stronger and tougher than the SiC substrate. Torsion test appears to be promising because of the pure shear loading, less stress concentration, and easy alignment.

  6. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determinants of Household Use of Selected Energy Star Appliances May 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Determinants of Household Use of Selected Energy Star Appliances i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of

  7. The North Carolina Field Test: Field Performance of the Preliminary Version of an Advanced Weatherization Audit for the Department of Energy's Weatherization Assistance Program

    SciTech Connect (OSTI)

    Sharp, T.R.

    1994-01-01

    The field performance of weatherizations based on a newly-developed advanced technique for selecting residential energy conservation measures was tested alongside current Retro-Tech-based weatherizations in North Carolina. The new technique is computer-based and determines measures based on the needs of an individual house. In addition, it recommends only those measures that it determines will have a benefit-to-cost ratio greater than 1 for the house being evaluated. The new technique also considers the interaction of measures in computing the benefit-to-cost ratio of each measure. The two weatherization approaches were compared based on implementation ease, measures installed, labor and cost requirements, and both heating and cooling energy savings achieved. One-hundred and twenty houses with the following characteristics participated: the occupants were low-income, eligible for North Carolina's current weatherization program, and responsible for their own fuel and electric bills. Houses were detached single-family dwellings, not mobile homes; were heated by kerosene, fuel oil, natural gas, or propane; and had one or two operating window air conditioners. Houses were divided equally into one control group and two weatherization groups. Weekly space heating and cooling energy use, and hourly indoor and outdoor temperatures were monitored between November 1989 and September 1990 (pre-period) and between December 1990 and August 1991 (post-period). House consumption models were used to normalize for annual weather differences and a 68 F indoor temperature. Control group savings were used to adjust the savings determined for the weatherization groups. The two weatherization approaches involved installing attic and floor insulations in near equivalent quantities, and installing storm windows and wall insulation in drastically different quantities. Substantial differences also were found in average air leakage reductions for the two weatherization groups. Average

  8. Determination of Interfacial Mechanical Properties of Ceramic Composites by the Compression of Micro-pillar Test Specimens

    SciTech Connect (OSTI)

    Shih, Chunghao; Katoh, Yutai; Leonard, Keith J; Bei, Hongbin; Lara-Curzio, Edgar

    2013-01-01

    A novel method to determine the fiber-matrix interfacial properties of ceramic matrix composites is proposed and evaluated; where micro- pillar samples containing inclined fiber/matrix interfaces were prepared from a SiC fiber reinforced SiC matrix composites then compression-tested using the nano-indentation technique. This new test method employs a simple geometry and mitigates the uncertainties associated with complex stress state in the conventional single filament push-out method for the determination of interfacial properties. Based on the test results using samples with different interface orientations , the interfacial debond shear strength and the internal friction coefficient are explicitly determined and compared with values obtained by other test methods.

  9. Development and testing of a photometric method to identify non-operating solar hot water systems in field settings.

    SciTech Connect (OSTI)

    He, Hongbo; Vorobieff, Peter V.; Menicucci, David; Mammoli, Andrea A.; Carlson, Jeffrey J.

    2012-06-01

    This report presents the results of experimental tests of a concept for using infrared (IR) photos to identify non-operational systems based on their glazing temperatures; operating systems have lower glazing temperatures than those in stagnation. In recent years thousands of new solar hot water (SHW) systems have been installed in some utility districts. As these numbers increase, concern is growing about the systems dependability because installation rebates are often based on the assumption that all of the SHW systems will perform flawlessly for a 20-year period. If SHW systems routinely fail prematurely, then the utilities will have overpaid for grid-energy reduction performance that is unrealized. Moreover, utilities are responsible for replacing energy for loads that failed SHW system were supplying. Thus, utilities are seeking data to quantify the reliability of SHW systems. The work described herein is intended to help meet this need. The details of the experiment are presented, including a description of the SHW collectors that were examined, the testbed that was used to control the system and record data, the IR camera that was employed, and the conditions in which testing was completed. The details of the associated analysis are presented, including direct examination of the video records of operational and stagnant collectors, as well as the development of a model to predict glazing temperatures and an analysis of temporal intermittency of the images, both of which are critical to properly adjusting the IR camera for optimal performance. Many IR images and a video are presented to show the contrast between operating and stagnant collectors. The major conclusion is that the technique has potential to be applied by using an aircraft fitted with an IR camera that can fly over an area with installed SHW systems, thus recording the images. Subsequent analysis of the images can determine the operational condition of the fielded collectors. Specific

  10. Building America Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles, Orlando, Florida

    SciTech Connect (OSTI)

    2015-11-01

    This research is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, FL; Zone 2A), insulated with air permeable insulation (netted and blown fiberglass). Given the localized moisture accumulation and failures seen in previous unvented roof field work, it was theorized that a 'diffusion vent' (water vapor open, but air barrier 'closed') at the highest points in the roof assembly might allow for the wintertime release of moisture, to safe levels. The 'diffusion vent' is an open slot at the ridge and hips, covered with a water-resistant but vapor open (500+ perm) air barrier membrane. As a control comparison, one portion of the roof was constructed as a typical unvented roof (self-adhered membrane at ridge). The data collected to date indicate that the diffusion vent roof shows greater moisture safety than the conventional, unvented roof design. The unvented roof had extended winter periods of 95-100% RH, and wafer (wood surrogate RH sensor) measurements indicating possible condensation; high moisture levels were concentrated at the roof ridge. In contrast, the diffusion vent roofs had drier conditions, with most peak MCs (sheathing) below 20%. In the spring, as outdoor temperatures warmed, all roofs dried well into the safe range (10% MC or less). Some roof-wall interfaces showed moderately high MCs; this might be due to moisture accumulation at the highest point in the lower attic, and/or shading of the roof by the adjacent second story. Monitoring will be continued at least through spring 2016 (another winter and spring).

  11. Validation testing a contaminant transport and natural attenuation simulation model using field data. Master`s thesis

    SciTech Connect (OSTI)

    Flier, S.J.

    1995-12-01

    This research extends the work begun by Enyeart (1994) which evaluated the process of intrinsic bioremediation, and which developed a model for predicting the velocity of an aerobic degradation front, as it traverses the length of a JP-4 contaminant plume. In the present work, Enyeart`s model was validity tested by comparing its output prediction with field measured values. A methodology was developed to compare the model output with field measured data. The results were analyzed, and the results of this first stage of validity testing show a reasonable basis for accepting the model.

  12. Modeling and Field Test Planning Activities in Support of Disposal of Heat-Generating Waste in Salt

    SciTech Connect (OSTI)

    Rutqvist, Jonny; Blanco Martin, Laura; Mukhopadhyay, Sumit; Houseworth, Jim; Birkholzer, Jens

    2014-09-26

    The modeling efforts in support of the field test planning conducted at LBNL leverage on recent developments of tools for modeling coupled thermal-hydrological-mechanical-chemical (THMC) processes in salt and their effect on brine migration at high temperatures. This work includes development related to, and implementation of, essential capabilities, as well as testing the model against relevant information and published experimental data related to the fate and transport of water. These are modeling capabilities that will be suitable for assisting in the design of field experiment, especially related to multiphase flow processes coupled with mechanical deformations, at high temperature. In this report, we first examine previous generic repository modeling results, focusing on the first 20 years to investigate the expected evolution of the different processes that could be monitored in a full-scale heater experiment, and then present new results from ongoing modeling of the Thermal Simulation for Drift Emplacement (TSDE) experiment, a heater experiment on the in-drift emplacement concept at the Asse Mine, Germany, and provide an update on the ongoing model developments for modeling brine migration. LBNL also supported field test planning activities via contributions to and technical review of framework documents and test plans, as well as participation in workshops associated with field test planning.

  13. Determination of the Average Aromatic Cluster Size of Fossil Fuels by Solid-State NMR at High Magnetic Field

    SciTech Connect (OSTI)

    Mao, Kanmi; Kennedy, Gordon J.; Althaus, Stacey M.; Pruski, Marek

    2013-01-07

    We show that the average aromatic cluster size in complex carbonaceous materials can be accurately determined using fast magic-angle spinning (MAS) NMR at a high magnetic field. To accurately quantify the nonprotonated aromatic carbon, we edited the 13C spectra using the recently reported MAS-synchronized spinecho, which alleviated the problem of rotational recoupling of 1H-13C dipolar interactions associated with traditional dipolar dephasing experiments. The dependability of this approach was demonstrated on selected Argonne Premium coal standards, for which full sets of basic structural parameters were determined with high accuracy.

  14. Development of a Simple Field Test for Vehicle Exhaust to Detect Illicit Use of Dyed Diesel Fuel

    SciTech Connect (OSTI)

    Harvey, Scott D.; Wright, Bob W.

    2011-10-30

    The use of tax-free dyed fuel on public highways in the United States provides a convenient way of evading taxes. Current enforcement involves visual inspection for the red azo dye added to the fuel to designate its tax-free status. This approach has shortcomings such as the invasive nature of the tests and/or various deceptive tactics applied by tax evaders. A test designed to detect dyed fuel use by analyzing the exhaust would circumvent these shortcomings. This paper describes the development of a simple color spot test designed to detect the use of tax-free (dyed) diesel fuel by analyzing the engine exhaust. Development first investigated the combustion products of C.I. Solvent Red 164 (the azo dye formulation used in the United States to tag tax-free fuel). A variety of aryl amines were identified as characteristic molecular remnants that appear to survive combustion. A number of microanalytical color tests specific for aryl amines were then investigated. One test based on the use of 4-(dimethylamino)benzaldehyde seemed particularly applicable and was used in a proof-of-principle experiment. The 4-(dimethylamino)benzaldehyde color spot test was able to clearly distinguish between engines burning regular and dyed diesel fuel. Further development will refine this color spot test to provide an easy-to-use field test for Internal Revenue Service Field Compliance specialists.

  15. Field Test and Evaluation Report Five Photovoltaic Power Systems for the City of Tucson

    Broader source: Energy.gov [DOE]

    Members of the DOE solar energy Tiger Team tested five municipally owned, grid connected photovoltaic (PV) power systems for the City of Tucson on March 26 and 27, 2008. The five PV systems tested were Southeast Service Center, Clements Fitness Center, and Thonydale water treatment plant systems 1, 2, and 3. During all tests, skies were virtually cloudless with only occasional, high cirrus present, and none during array testing.

  16. Energy Smart Schools--Applied Research, Field Testing, and Technology Integration

    SciTech Connect (OSTI)

    Nebiat Solomon; Robin Vieira; William L. Manz; Abby Vogen; Claudia Orlando; Kimberlie A. Schryer

    2004-12-01

    The National Association of State Energy Officials (NASEO) in conjunction with the California Energy Commission, the Energy Center of Wisconsin, the Florida Solar Energy Center, the New York State Energy Research and Development Authority, and the Ohio Department of Development's Office of Energy Efficiency conducted a four-year, cost-share project with the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy to focus on energy efficiency and high-performance technologies in our nation's schools. NASEO was the program lead for the MOU-State Schools Working group, established in conjunction with the USDOE Memorandum of Understanding process for collaboration among state and federal energy research and demonstration offices and organizations. The MOU-State Schools Working Group included State Energy Offices and other state energy research organizations from all regions of the country. Through surveys and analyses, the Working Group determined the school-related energy priorities of the states and established a set of tasks to be accomplished, including the installation and evaluation of microturbines, advanced daylighting research, testing of schools and classrooms, and integrated school building technologies. The Energy Smart Schools project resulted in the adoption of advanced energy efficiency technologies in both the renovation of existing schools and building of new ones; the education of school administrators, architects, engineers, and manufacturers nationwide about the energy-saving, economic, and environmental benefits of energy efficiency technologies; and improved the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in classrooms. It also provided an opportunity for states to share and replicate successful projects to increase their energy efficiency while at the same time driving down their energy costs.

  17. Testing quantum superpositions of the gravitational field with Bose-Einstein condensates

    SciTech Connect (OSTI)

    Lindner, Netanel H.; Peres, Asher

    2005-02-01

    We consider the gravity field of a Bose-Einstein condensate in a quantum superposition. The gravity field then is also in a quantum superposition, which is in principle observable. Hence we have 'quantum gravity' far away from the so-called Planck scale.

  18. Field test of two high-pressure direct-contact downhole steam generators. Volume II. Oxygen/diesel system

    SciTech Connect (OSTI)

    Moreno, J.B.

    1983-07-01

    A field test of an oxygen/diesel fuel, direct contact steam generator has been completed. The field test, which was a part of Project DEEP STEAM and was sponsored by the US Department of Energy, involved the thermal stimulation of a well pattern in the Tar Zone of the Wilmington Oil Field. The activity was carried out in cooperation with the City of Long Beach and the Long Beach Oil Development Company. The steam generator was operated at ground level, with the steam and combustion products delivered to the reservoir through 2022 feet of calcium-silicate insulated tubing. The objectives of the test included demonstrations of safety, operational ease, reliability and lifetime; investigations of reservoir response, environmental impact, and economics; and comparison of those points with a second generator that used air rather than oxygen. The test was extensively instrumented to provide the required data. Excluding interruptions not attributable to the oxygen/diesel system, steam was injected 78% of the time. System lifetime was limited by the combustor, which required some parts replacement every 2 to 3 weeks. For the conditions of this particular test, the use of trucked-in LOX resulted in liess expense than did the production of the equivalent amount of high pressure air using on site compressors. No statistically significant production change in the eight-acre oxygen system well pattern occurred during the test, nor were any adverse effects on the reservoir character detected. Gas analyses during the field test showed very low levels of SOX (less than or equal to 1 ppM) in the generator gaseous effluent. The SOX and NOX data did not permit any conclusion to be drawn regarding reservoir scrubbing. Appreciable levels of CO (less than or equal to 5%) were measured at the generator, and in this case produced-gas analyses showed evidence of significant gas scrubbing. 64 figures, 10 tables.

  19. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards

    SciTech Connect (OSTI)

    Brooks, William; Basso, Thomas; Coddington, Michael

    2015-10-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  20. Symmetric structure of field algebra of G-spin models determined by a normal subgroup

    SciTech Connect (OSTI)

    Xin, Qiaoling Jiang, Lining

    2014-09-15

    Let G be a finite group and H a normal subgroup. D(H; G) is the crossed product of C(H) and CG which is only a subalgebra of D(G), the double algebra of G. One can construct a C*-subalgebra F{sub H} of the field algebra F of G-spin models, so that F{sub H} is a D(H; G)-module algebra, whereas F is not. Then the observable algebra A{sub (H,G)} is obtained as the D(H; G)-invariant subalgebra of F{sub H}, and there exists a unique C*-representation of D(H; G) such that D(H; G) and A{sub (H,G)} are commutants with each other.

  1. Distributed and Electric Power System Aggregation Model and Field Configuration Equivalency Validation Testing

    SciTech Connect (OSTI)

    Davis, M.; Costyk, D.; Narang, A.

    2003-07-01

    This study determines the magnitude of distributed resources that can be added to a distribution circuit without causing undesirable conditions or equipment damage.

  2. NGSI FY15 Final Report. Innovative Sample Preparation for in-Field Uranium Isotopic Determinations

    SciTech Connect (OSTI)

    Yoshida, Thomas M.; Meyers, Lisa

    2015-11-10

    Our FY14 Final Report included an introduction to the project, background, literature search of uranium dissolution methods, assessment of commercial off the shelf (COTS) automated sample preparation systems, as well as data and results for dissolution of bulk quantities of uranium oxides, and dissolution of uranium oxides from swipe filter materials using ammonium bifluoride (ABF). Also, discussed were reaction studies of solid ABF with uranium oxide that provided a basis for determining the ABF/uranium oxide dissolution mechanism. This report details the final experiments for optimizing dissolution of U3O8 and UO2 using ABF and steps leading to development of a Standard Operating Procedure (SOP) for dissolution of uranium oxides on swipe filters.

  3. Energy Department selects Battelle team for a deep borehole field test in North Dakota

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy has selected a Battelle Memorial Institute-led team to drill a test borehole of over 16,000 feet into a crystalline basement rock formation near Rugby, North Dakota.

  4. Deep in Data. Empirical Data Based Software Accuracy Testing Using the Building America Field Data Repository

    SciTech Connect (OSTI)

    Neymark, J.; Roberts, D.

    2013-06-01

    This paper describes progress toward developing a usable, standardized, empirical data-based software accuracy test suite using home energy consumption and building description data. Empirical data collected from around the United States have been translated into a uniform Home Performance Extensible Markup Language format that may enable software developers to create translators to their input schemes for efficient access to the data. This could allow for modeling many homes expediently, and thus implementing software accuracy test cases by applying the translated data.

  5. Results from field tests of the one-dimensional Time-Encoded Imaging System.

    SciTech Connect (OSTI)

    Marleau, Peter; Brennan, James S.; Brubaker, Erik

    2014-09-01

    A series of field experiments were undertaken to evaluate the performance of the one dimensional time encoded imaging system. The significant detection of a Cf252 fission radiation source was demonstrated at a stand-off of 100 meters. Extrapolations to different quantities of plutonium equivalent at different distances are made. Hardware modifications to the system for follow on work are suggested.

  6. Test methods for determining short and long term VOC emissions from latex paint

    SciTech Connect (OSTI)

    Krebs, K.; Lao, H.C.; Fortmann, R.; Tichenor, B.

    1998-09-01

    The paper discusses an evaluation of latex paint (interior, water based) as a source of indoor pollution. A major objective of the research is the development of methods for predicting emissions of volatile organic compounds (VOCs) over time. Test specimens of painted gypsumboard are placed in dynamic flow-through test chambers. Samples of the outlet air are collected on Tenax sorbents and thermally desorbed for analysis by gas chromatography/flame ionization detection. These tests produce short- and long-term data for latex paint emissions of Texanol, 2-2(-butoxyethoxy)-ethanol, and glycols. Evaluation of the data shows that most of the Texanol emissions occur within the first few days, and emissions of the glycols occur over several months. This behavior may be described by an evaporative mass transfer process that dominates the short-term emissions, while long-term emissions are limited by diffusion processes within the dry paint-gypsumboard.

  7. ISO test method to determine sustained-load-cracking resistance of aluminium cylinders

    SciTech Connect (OSTI)

    Bhuyan, G.S.; Rana, M.D.

    1999-08-01

    Leak as well as rupture types of failures related to sustained-load-cracking (SLC) have been observed in high-pressure gas cylinders fabricated from certain aluminium alloy. The stable crack growth mechanism observed primarily in the cylinder neck and shoulder area have been identified as the SLC mechanism occurring at room temperature without any environmental effect. The International Organization for standardization (ISO) Sub-Committee 3, Working Group 16 has developed a test method to measure the SLC resistance using fracture mechanics specimens along with an acceptance criterion for aluminium cylinders. The technical rationale for the proposed test method and the physical significance of the acceptance criterion to the cylinder performance in terms of critical stress-crack size relationship is presented. Application of the developed test method for characterizing new aluminium alloy for manufacturing cylinders is demonstrated. SLC characteristics of several aluminium cylinders as well as on-board cylinders for natural gas vehicles assessed by the authors are discussed.

  8. Black-start and restoration of a part of the Italian HV network: Modelling and simulation of a field test

    SciTech Connect (OSTI)

    Delfino, B.; Denegri, G.B.; Invernizzi, M.; Morini, A.; Bonini, E.C.; Marconato, R.; Scarpellini, P.

    1996-08-01

    ENEL (Italian Electricity Board) planned a set of operator guidelines for the restoration of parts of the national grid starting from selected hydro power plants and progressively reaching thermal units. In order to improve system restoration reliability, ENEL periodically executes field tests taking advantage of the maintenance outages of the thermal groups. The paper concerns with modelling and simulation of an experimental test performed on the Italian HV network near the French border. The study makes use of a stability code provided with user defined model facilities, enabling an accurate description of loads and regulation equipment during the restoration process.

  9. Determination of total chlorine and bromine in solid wastes by sintering and inductively coupled plasma-sector field mass spectrometry

    SciTech Connect (OSTI)

    Osterlund, Helene Rodushkin, Ilia; Ylinenjaervi, Karin; Baxter, Douglas C.

    2009-04-15

    A sample preparation method based on sintering, followed by analysis by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) for the simultaneous determination of chloride and bromide in diverse and mixed solid wastes, has been evaluated. Samples and reference materials of known composition were mixed with a sintering agent containing Na{sub 2}CO{sub 3} and ZnO and placed in an oven at 560 deg. C for 1 h. After cooling, the residues were leached with water prior to a cation-exchange assisted clean-up. Alternatively, a simple microwave-assisted digestion using only nitric acid was applied for comparison. Thereafter the samples were prepared for quantitative analysis by ICP-SFMS. The sintering method was evaluated by analysis of certified reference materials (CRMs) and by comparison with US EPA Method 5050 and ion chromatography with good agreement. Median RSDs for the sintering method were determined to 10% for both chlorine and bromine, and median recovery to 96% and 97%, respectively. Limits of detection (LODs) were 200 mg/kg for chlorine and 20 mg/kg for bromine. It was concluded that the sintering method is suitable for chlorine and bromine determination in several matrices like sewage sludge, plastics, and edible waste, as well as for waste mixtures. The sintering method was also applied for determination of other elements present in anionic forms, such as sulfur, arsenic, selenium and iodine.

  10. Field test and evaluation of the IAEA coincidence collar for the measurement of unirradiated BWR fuel assemblies

    SciTech Connect (OSTI)

    Menlove, H.O.; Keddar, A.

    1982-12-01

    The neutron coincidence counter has been field tested and evaluated for the measurement of boiling-water-reactor (BWR) fuel assemblies at the ASEA-ATOM Fuel Fabrication Facility. The system measures the /sup 235/U content per unit length of full fuel assemblies using neutron interrogation and coincidence counting. The /sup 238/U content is measured in the passive mode without the AmLi neutron interrogatioin source. The field tests included both standard production movable fuel rods to investigate enrichment and absorber variations. Results gave a response standard deviation of 0.9% for the active case and 2.1% for the passive case in 1000-s measurement times. 10 figures, 2 tables.

  11. Field Test Results of Using a Nacelle-Mounted Lidar for Improving Wind Energy Capture by Reducing Yaw Misalignment (Presentation)

    SciTech Connect (OSTI)

    Fleming, P.; Scholbrock, A.; Wright, A.

    2014-11-01

    Presented at the Nordic Wind Power Conference on November 5, 2014. This presentation describes field-test campaigns performed at the National Wind Technology Center in which lidar technology was used to improve the yaw alignment of the Controls Advanced Research Turbine (CART) 2 and CART3 wind turbines. The campaigns demonstrated that whether by learning a correction function to the nacelle vane, or by controlling yaw directly with the lidar signal, a significant improvement in power capture was demonstrated.

  12. Distributed and Electric Power System Aggregation Model and Field Configuration Equivalency Validation Testing: Supplemental Report on Penetration Software Algorithms

    SciTech Connect (OSTI)

    Davis, M.; Costyk, D.; Narang, A.

    2005-03-01

    This report supplements the July 2003 report ''Distributed and Electric Power System Aggregation Model and Field Configuration Equivalency Validation Testing'' (NREL/SR-560-33909). The original report presented methods for calculating penetration limits for distributed energy resources interconnected with distribution circuits of utility-owned electric power systems. This report describes the algorithms required to develop application software to calculate penetration limits. The original report can be found at http://www.nrel.gov/docs/fy03osti/33909.pdf.

  13. ARM - Field Campaign - Warm-Season Data Assimilation and ISS Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsWarm-Season Data Assimilation and ISS Test ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Warm-Season Data Assimilation and ISS Test 1993.06.01 - 1993.06.30 Lead Scientist : Dave Parsons Data Availability Complete output from a 10-day simulation using a high resolution mesoscale model is available at 1-hr intervals. Verification of June 1993 IOP Assimilation Dataset and its use in Driving a

  14. Characteristics of enriched cultures for bio-huff-`n`-puff tests at Jilin oil field

    SciTech Connect (OSTI)

    Xiu-Yuan Wang; Gang Dai; Yan-Fen Xue; Shu-Hua Xie

    1995-12-31

    Three enriched cultures (48, 15a, and 26a), selected from more than 80 soil and water samples, could grow anaerobically in the presence of crude oil at 30{degrees}C and could ferment molasses to gases and organic acids. Oil recovery by culture 48 in the laboratory model experiment was enhanced by 25.2% over the original reserves and by 53.7% over the residual reserves. Enriched culture 48 was composed of at least 4 species belonging to the genera Eubacterium, Fusobacterium, and Bacteroides. This enriched culture was used as inoculum for MEOR field trials at Jilin oil field with satisfactory results. The importance of the role of these isolates in EOR was confirmed by their presence and behavior in the fluids produced from the microbiologically treated reservoir.

  15. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy DOE 2010 Geothermal Technologies Program Peer Review egs_007_moore.pdf (181.39 KB) More Documents & Publications Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California; 2010 Geothermal Technology Program Peer Review Report Feasibility of EGS Development at Bradys Hot Springs, Nevada Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation; 2010 Geothermal Technology Program Peer Review Repo

  16. Field Test Report: Preliminary Aquifer Test Characterization Results for Well 299-W15-225: Supporting Phase I of the 200-ZP-1 Groundwater Operable Unit Remedial Design

    SciTech Connect (OSTI)

    Spane, Frank A.; Newcomer, Darrell R.

    2009-09-23

    This report examines the hydrologic test results for both local vertical profile characterization and large-scale hydrologic tests associated with a new extraction well (well 299-W15-225) that was constructed during FY2009 for inclusion within the future 200-West Area Groundwater Treatment System that is scheduled to go on-line at the end of FY2011. To facilitate the analysis of the large-scale hydrologic test performed at newly constructed extraction well 299-W15-225 (C7017; also referred to as EW-1 in some planning documents), the existing 200-ZP-1 interim pump-and-treat system was completely shut-down ~1 month before the performance of the large-scale hydrologic test. Specifically, this report 1) applies recently developed methods for removing barometric pressure fluctuations from well water-level measurements to enhance the detection of hydrologic test and pump-and-treat system effects at selected monitor wells, 2) analyzes the barometric-corrected well water-level responses for a preliminary determination of large-scale hydraulic properties, and 3) provides an assessment of the vertical distribution of hydraulic conductivity in the vicinity of newly constructed extraction well 299-W15-225. The hydrologic characterization approach presented in this report is expected to have universal application for meeting the characterization needs at other remedial action sites located within unconfined and confined aquifer systems.

  17. The effect of E{sub r} on MSE measurements of q, a new technique for measuring E{sub r}, and a test of the neoclassical electric field

    SciTech Connect (OSTI)

    Zarnstorff, M.C.; Synakowski, E.J.; Levinton, F.M.; Batha, S.H.

    1996-10-01

    Previous analysis of motional-Stark Effect (MSE) data to measure the q-profile ignored contributions from the plasma electric field. The MSE measurements are shown to be sensitive to the electric field and require significant corrections for plasmas with large rotation velocities or pressure gradients. MSE measurements from rotating plasmas on the Tokamak Fusion Test Reactor (TFTR) confirm the significance of these corrections and verify their magnitude. Several attractive configurations are considered for future MSE-based diagnostics for measuring the plasma radial electric field. MSE data from TFTR is analyzed to determine the change in the radial electric field between two plasmas. The measured electric field quantitatively agrees with the predictions of neoclassical theory. These results confirm the utility of a MSE electric field measurement.

  18. Building America Case Study: Field Testing of Compartmentalization Methods for Multifamily Construction (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    The 2012 IECC has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure for both single family and multifamily construction in Climate Zones 3-8. Other programs (LEED, ASHRAE 189, ASHRAE 62.2) have similar or tighter compartmentalization requirements, thus driving the need for easier and more effective methods of compartmentalization in multifamily buildings.

  19. DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test

    Broader source: Energy.gov [DOE]

    A U.S. Department of Energy team of regional partners has begun injecting 8,000 tons of carbon dioxide (CO2) to evaluate the carbon storage potential and test the enhanced oil recovery (EOR) potential of the Mississippian-aged Clore Formation in Posey County, Ind.

  20. Development of Performance Acceptance Test Guidelines for Large Commercial Parabolic Trough Solar Fields: Preprint

    SciTech Connect (OSTI)

    Kearney, D.; Mehos, M.

    2010-12-01

    Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the EPC contractor or owners. In lieu of the present absence of engineering code developed for this purpose, NREL has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The fundamental differences between acceptance of a solar power plant and a conventional fossil-fired plant are the transient nature of the energy source and the necessity to utilize an analytical performance model in the acceptance process. These factors bring into play the need to establish methods to measure steady state performance, potential impacts of transient processes, comparison to performance model results, and the possible requirement to test, or model, multi-day performance within the scope of the acceptance test procedure. The power block and BOP are not within the boundaries of this guideline. The current guideline is restricted to the solar thermal performance of parabolic trough systems and has been critiqued by a broad range of stakeholders in CSP development and technology.

  1. Technology Solutions Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles

    SciTech Connect (OSTI)

    2015-11-01

    This case study by the U.S. Department of Energy’s Building America research team Building Science Corporation is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, Florida; zone 2A), insulated with air-permeable insulation (netted and blown fiberglass).

  2. Technology Solutions Case Study: Field Testing of Compartmentalization Methods for Multifamily Construction

    SciTech Connect (OSTI)

    2015-01-01

    Fire-resistance rated (or area separation) wall assemblies present a great difficulty in air sealing/compartmentalization, particularly in townhouse construction. To address this challenge, Building Science Corporation partnered with builder K. Hovnanian Homes to determine whether taping exterior sheathing details improves air sealing in townhouse and multifamily construction, and to better understand air leakage pathways.

  3. Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1

    SciTech Connect (OSTI)

    Marc A. Cremer; Bradley R. Adams

    2006-06-30

    A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

  4. Mechanical behavior of AISI 304SS determined by miniature test methods after neutron irradiation to 28 dpa

    SciTech Connect (OSTI)

    Ellen M. Rabenberg; Brian J. Jaques; Bulent H. Sencer; Frank A. Garner; Paula D. Freyer; Taira Okita; Darryl P. Butt

    2014-05-01

    The mechanical properties of AISI 304 stainless steel irradiated for over a decade in the Experimental Breeder Reactor (EBR-II) were measured using miniature mechanical testing methods. The shear punch method was used to evaluate the shear strengths of the neutron-irradiated steel and a correlation factor was empirically determined to predict its tensile strength. The strength of the stainless steel slightly decreased with increasing irradiation temperature, and significantly increased with increasing dose until it saturated above approximately 5 dpa. Ferromagnetic measurements were used to observe and deduce the effects of the stress-induced austenite to martensite transformation as a result of shear punch testing.

  5. Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report

    SciTech Connect (OSTI)

    Greenberg, S.; Cooley, C.

    2005-01-01

    This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

  6. Chaos and simple determinism in reversed field pinch plasmas: Nonlinear analysis of numerical simulation and experimental data

    SciTech Connect (OSTI)

    Watts, C.A.

    1993-09-01

    In this dissertation the possibility that chaos and simple determinism are governing the dynamics of reversed field pinch (RFP) plasmas is investigated. To properly assess this possibility, data from both numerical simulations and experiment are analyzed. A large repertoire of nonlinear analysis techniques is used to identify low dimensional chaos in the data. These tools include phase portraits and Poincare sections, correlation dimension, the spectrum of Lyapunov exponents and short term predictability. In addition, nonlinear noise reduction techniques are applied to the experimental data in an attempt to extract any underlying deterministic dynamics. Two model systems are used to simulate the plasma dynamics. These are the DEBS code, which models global RFP dynamics, and the dissipative trapped electron mode (DTEM) model, which models drift wave turbulence. Data from both simulations show strong indications of low dimensional chaos and simple determinism. Experimental date were obtained from the Madison Symmetric Torus RFP and consist of a wide array of both global and local diagnostic signals. None of the signals shows any indication of low dimensional chaos or low simple determinism. Moreover, most of the analysis tools indicate the experimental system is very high dimensional with properties similar to noise. Nonlinear noise reduction is unsuccessful at extracting an underlying deterministic system.

  7. Technology Solutions Case Study: Field Testing an Unvented Roof with Asphalt Shingles in a Cold Climate

    SciTech Connect (OSTI)

    K. Ueno and J. Lstiburek

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a "control" vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise.

  8. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    SciTech Connect (OSTI)

    Ueno, Kohta; Lstiburek, Joseph W.

    2015-09-01

    Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  9. Advanced Control Design and Field Testing for Wind Turbines at the National Renewable Energy Laboratory: Preprint

    SciTech Connect (OSTI)

    Hand, M. M.; Johnson, K. E.; Fingersh, L. J.; Wright, A. D.

    2004-05-01

    Utility-scale wind turbines require active control systems to operate at variable rotational speeds. As turbines become larger and more flexible, advanced control algorithms become necessary to meet multiple objectives such as speed regulation, blade load mitigation, and mode stabilization. At the same time, they must maximize energy capture. The National Renewable Energy Laboratory has developed control design and testing capabilities to meet these growing challenges.

  10. Measurements of 222Rn, 220Rn, and CO Emissions in Natural CO2 Fields in Wyoming: MVA Techniques for Determining Gas Transport and Caprock Integrity

    SciTech Connect (OSTI)

    Kaszuba, John; Sims, Kenneth

    2014-09-30

    geologic consulting company. Measurement of radon in springs has improved significantly since the field program first began; however, in situ measurement of 222Rn and particularly 220Rn in springs is problematic. Future refinements include simultaneous salinity measurements and systematic corrections, or adjustments to the partition coefficient as needed for more accurate radon concentration determination. A graduate student earned a Master of Science degree for this part of the field program; he is currently employed with a geologic consulting company. Both graduate students are poised to begin work in a CCS technology area. Laboratory experiments evaluated important process-level fundamentals that effect measurements of radon and CO2. Laboratory tests established that fine-grained source minerals yield higher radon emissivity compared to coarser-sized source minerals; subtleties in the dataset suggest that grain size alone is not fully representative of all the processes controlling the ability of radon to escape its mineral host. Emissivity for both 222Rn and 220Rn increases linearly with temperature due to reaction of rocks with water, consistent with faster diffusion and enhanced mineral dissolution at higher temperatures. The presence of CO2 changes the relative importance of the factors that control release of radon. Emissivity for both 222Rn and 220Rn in CO2-bearing experiments is greater at all temperatures compared to the experiments without CO2, but emissivity does not increase as a simple function of temperature. Governing processes may include a balance between enhanced dissolution versus carbonate mineral formation in CO2-rich waters.

  11. Use of instrumented Charpy tests to determine onset of upper-shelf energy. [None

    SciTech Connect (OSTI)

    Canonico, D.A.; Stelzman, W.J.; Berggren, R.G.; Nanstad, R.K.

    1981-05-01

    For many large ferritic steel pressure vessels, assurance of continued safe operation depends on the fracture toughness properties of the base metals and weld metals which are used in the vessel fabrication. The testing procedure discussed in this paper was developed for nuclear pressure vessel steels and their weldments. Consequently these materials served as the basis for the development of the procedure. The procedure is applicable to any steel and hence 2/one quarter/ Cr-1 Mo (A 387 grade D) and C-Mn-Si (A 212 grade B) steels were included in this study. 11 refs.

  12. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    SciTech Connect (OSTI)

    Michael D. Durham

    2003-05-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and has an electrostatic

  13. A FEASIBILITY AND OPTIMIZATION STUDY TO DETERMINE COOLING TIME AND BURNUP OF ADVANCED TEST REACTOR FUELS USING A NONDESTRUCTIVE TECHNIQUE

    SciTech Connect (OSTI)

    Jorge Navarro

    2013-12-01

    The goal of this study presented is to determine the best available non-destructive technique necessary to collect validation data as well as to determine burn-up and cooling time of the fuel elements onsite at the Advanced Test Reactor (ATR) canal. This study makes a recommendation of the viability of implementing a permanent fuel scanning system at the ATR canal and leads3 to the full design of a permanent fuel scan system. The study consisted at first in determining if it was possible and which equipment was necessary to collect useful spectra from ATR fuel elements at the canal adjacent to the reactor. Once it was establish that useful spectra can be obtained at the ATR canal the next step was to determine which detector and which configuration was better suited to predict burnup and cooling time of fuel elements non-destructively. Three different detectors of High Purity Germanium (HPGe), Lanthanum Bromide (LaBr3), and High Pressure Xenon (HPXe) in two system configurations of above and below the water pool were used during the study. The data collected and analyzed was used to create burnup and cooling time calibration prediction curves for ATR fuel. The next stage of the study was to determine which of the three detectors tested was better suited for the permanent system. From spectra taken and the calibration curves obtained, it was determined that although the HPGe detector yielded better results, a detector that could better withstand the harsh environment of the ATR canal was needed. The in-situ nature of the measurements required a rugged fuel scanning system, low in maintenance and easy to control system. Based on the ATR canal feasibility measurements and calibration results it was determined that the LaBr3 detector was the best alternative for canal in-situ measurements; however in order to enhance the quality of the spectra collected using this scintillator a deconvolution method was developed. Following the development of the deconvolution method

  14. Copper and organisms in the Fly River: Linking laboratory testing and field responses to copper

    SciTech Connect (OSTI)

    Smith, R.E.W.; Ahsanullah, M.

    1995-12-31

    The Ok Tedi copper mine has operated in the headwaters of the Fly River system in Papua New Guinea since 1984, and has discharged both tailings and waste rock into the river system. ANCOVA modelling of total catches of fish by standardized effort indicated that the suspended particulate copper concentration was negatively correlated with fish catches, but that the concentrations of suspended solids and dissolved copper were not significantly related to fish catches. Multivariate analyses of fish catch compositions have indicated that the effects caused by dissolved and particulate copper have differed, and that the observed changes in fish catch composition have trended in a direction similar to the particulate copper vectors. The types of catch composition changes do not match the natural assemblages found to be associated with high uncontaminated suspended solids concentrations. Laboratory toxicity testing of native fish, prawns, cladocerans, mayflies, algae and higher plants has demonstrated that the dissolved copper concentrations in the Fly River system ({approximately}up to 20 pg/L) have low bioavailability and would not be expected to cause acute toxicity. Provided the dissolved copper concentration is in this range, particulate copper, as derived from mine wastes, has low acute and chronic toxicity at concentrations up to 8.5 times observed levels. Hypotheses put forward to explain the apparent paradox include: total particulate copper is a better measure of the toxic fraction of dissolved copper than is the concentration of copper passing a 0.45 {micro}m filter; or that fish are able to avoid particulate copper when the associated dissolved copper concentrations are less than the detectable threshold. Behavioral toxicity testing is being used to test these hypotheses.

  15. Method to determine the position-dependant metal correction factor for dose-rate equivalent laser testing of semiconductor devices

    DOE Patents [OSTI]

    Horn, Kevin M.

    2013-07-09

    A method reconstructs the charge collection from regions beneath opaque metallization of a semiconductor device, as determined from focused laser charge collection response images, and thereby derives a dose-rate dependent correction factor for subsequent broad-area, dose-rate equivalent, laser measurements. The position- and dose-rate dependencies of the charge-collection magnitude of the device are determined empirically and can be combined with a digital reconstruction methodology to derive an accurate metal-correction factor that permits subsequent absolute dose-rate response measurements to be derived from laser measurements alone. Broad-area laser dose-rate testing can thereby be used to accurately determine the peak transient current, dose-rate response of semiconductor devices to penetrating electron, gamma- and x-ray irradiation.

  16. A controlled in situ field evaluation of a new dynamic vacuum slug test method in unconfined aquifers

    SciTech Connect (OSTI)

    Lauctes, B.A.; Schleyer, C.A.

    1995-09-01

    Most ground water site characterizations require initial estimates of the ground water flow velocity and potential downgradient extent of ground water contamination. The fundamental aquifer property, hydraulic conductivity, must be determined to make these essential estimates. Highly contaminated ground water often precludes conducting multi-well aquifer tests to evaluate hydraulic conductivity due to potential human health risks and ground water storage/treatment/disposal costs and logistics. Consequently, single-well slug tests are often sued, but the widely used pressure slug test method is not suitable for water table monitoring wells. As a result, a new slug test method was developed by GCL for unconfined aquifers. The new method was benchmarked against the widely used solid slug test method in a series of rising-head and falling-head slug tests. A statistical evaluation indicated no statistical difference (alpha = 0.05) between hydraulic conductivity values calculated from each method. The new dynamic vacuum method, designed specifically for use in water table monitoring wells, uses a continuous vacuum to draw air through the well screen exposed above the water table. The vacuum induces upwelling as air pressure inside the well casing drops below atmospheric pressure. Once upwelling equilibrates with the applied vacuum, the vacuum is released allowing the water to recover and the air pressure inside the casing to return to atmospheric pressure.

  17. NREL Launches Collaborative Resource for Field Test Best Practices (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic portal documents and shares state-of-the-art residential field test tools and techniques. Field testing is a science and an art-a tricky process that develops through a lot of trial and error. Researchers in the Advanced Residential Buildings group at the National Renewable Energy Labora- tory (NREL) regularly conduct field experiments and long-term monitoring in occupied and unoc- cupied houses throughout the United States. The goal is to capture real-world performance of energy-

  18. Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates

    SciTech Connect (OSTI)

    Ueno, Kohta; Lstiburek, Joseph W.

    2015-09-01

    Insulating roofs with dense-pack cellulose (instead of spray foam) has moisture risks, but is a lower cost approach. If moisture risks could be addressed, buildings could benefit from retrofit options, and the ability to bring HVAC systems within the conditioned space. Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only had slight issues, such as rusted fasteners and sheathing grain raise. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. Some ridge sections were built as a conventional unvented roof, as a control. In the control unvented roofs, roof peak RHs reached high levels in the first winter; as exterior conditions warmed, RHs quickly fell. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but during the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).

  19. 10 CFR 830 Major Modification Determination for the Advanced Test Reactor Remote Monitoring and Management Capability

    SciTech Connect (OSTI)

    Bohachek, Randolph Charles

    2015-09-01

    The Advanced Test Reactor (ATR; TRA-670), which is located in the ATR Complex at Idaho National Laboratory, was constructed in the 1960s for the purpose of irradiating reactor fuels and materials. Other irradiation services, such as radioisotope production, are also performed at ATR. While ATR is safely fulfilling current mission requirements, assessments are continuing. These assessments intend to identify areas to provide defense–in-depth and improve safety for ATR. One of the assessments performed by an independent group of nuclear industry experts recommended that a remote accident management capability be provided. The report stated that: “contemporary practice in commercial power reactors is to provide a remote shutdown station or stations to allow shutdown of the reactor and management of long-term cooling of the reactor (i.e., management of reactivity, inventory, and cooling) should the main control room be disabled (e.g., due to a fire in the control room or affecting the control room).” This project will install remote reactor monitoring and management capabilities for ATR. Remote capabilities will allow for post scram reactor management and monitoring in the event the main Reactor Control Room (RCR) must be evacuated.

  20. Laboratory and Field Studies Related to Radionuclide Migration at the Nevada Test Site in Support of the Underground Test Area and Hydrologic Resources Management Projects

    SciTech Connect (OSTI)

    D.L.Finnegan; J.L.Thompson

    2002-06-01

    This report details the work of Chemistry Division personnel from Los Alamos National Laboratory in FY 2001 for the U. S. Department of Energy National Nuclear Security Administration Nevada Operations Office (NNSA/NV) under its Defense Programs and Environmental Restoration divisions. Los Alamos is one of a number of agencies collaborating in an effort to describe the present and future movement of radionuclides in the underground environment of the Nevada Test Site. This fiscal year we collected and analyzed water samples from a number of expended test locations at the Nevada Test Site. We give the results of these analyses and summarize the information gained over the quarter century that we have been studying several of these sites. We find that by far most of the radioactive residues from a nuclear test are contained in the melt glass in the cavity. Those radionuclides that are mobile in water can be transported if the groundwater is moving due to hydraulic or thermal gradients. The extent to which they move is a function of their chemical speciation, with neutral or anionic materials traveling freely relative to cationic materials that tend to sorb on rock surfaces. However, radionuclides sorbed on colloids may be transported if the colloids are moving. Local conditions strongly influence the distribution and movement of radionuclides, and we continue to study sites such as Almendro, which is thermally quite hot, and Nash and Bourbon, where radionuclides had not been measured for 8 years. We collected samples from three characterization wells in Frenchman Flat to obtain baseline radiochemistry data for each well, and we analyzed eight wells containing radioactivity for {sup 237}Np, using our highly sensitive ICP/MS. We have again used our field probe that allows us to measure important groundwater properties in situ. We conclude our report by noting document reviews and publications produced in support of this program.

  1. Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits

    SciTech Connect (OSTI)

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-09-01

    The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

  2. 10 CFR 830 Major Modification Determination for Advanced Test Reactor RDAS and LPCIS Replacement

    SciTech Connect (OSTI)

    David E. Korns

    2012-05-01

    The replacement of the ATR Control Complex's obsolete computer based Reactor Data Acquisition System (RDAS) and its safety-related Lobe Power Calculation and Indication System (LPCIS) software application is vitally important to ensure the ATR remains available to support this national mission. The RDAS supports safe operation of the reactor by providing 'real-time' plant status information (indications and alarms) for use by the reactor operators via the Console Display System (CDS). The RDAS is a computer support system that acquires analog and digital information from various reactor and reactor support systems. The RDAS information is used to display quadrant and lobe powers via a display interface more user friendly than that provided by the recorders and the Control Room upright panels. RDAS provides input to the Nuclear Engineering ATR Surveillance Data System (ASUDAS) for fuel burn-up analysis and the production of cycle data for experiment sponsors and the generation of the Core Safety Assurance Package (CSAP). RDAS also archives and provides for retrieval of historical plant data which may be used for event reconstruction, data analysis, training and safety analysis. The RDAS, LPCIS and ASUDAS need to be replaced with state-of-the-art technology in order to eliminate problems of aged computer systems, and difficulty in obtaining software upgrades, spare parts, and technical support. The major modification criteria evaluation of the project design did not lead to the conclusion that the project is a major modification. The negative major modification determination is driven by the fact that the project requires a one-for-one equivalent replacement of existing systems that protects and maintains functional and operational requirements as credited in the safety basis.

  3. Pilot test of Pickliq{reg_sign} process to determine energy and environmental benefits & economic feasibility

    SciTech Connect (OSTI)

    Olsen, D.R.

    1997-07-13

    Green Technology Group (GTG) was awarded Grant No. DE-FG01-96EE 15657 in the amount of $99,904 for a project to advance GTG`s Pickliq{reg_sign} Process in the Copper and Steel Industries. The use of the Pickliq{reg_sign} Process can significantly reduce the production of waste acids containing metal salts. The Pickliq{reg_sign} Process can save energy and eliminate hazardous waste in a typical copper rod or wire mill or a typical steel wire mill. The objective of this pilot project was to determine the magnitude of the economic, energy and environmental benefits of the Pickliq{reg_sign} Process in two applications within the metal processing industry. The effectiveness of the process has already been demonstrated at facilities cleaning iron and steel with sulfuric acid. 9207 companies are reported to use sulfuric and hydrochloric acid in the USA. The USEPA TRI statistics of acid not recycled in the US is 2.4 x 10{sup 9} lbs (net) for Hydrochloric Acid and 2.0 x 10{sup 9} lbs (net) for Sulfuric Acid. The energy cost of not reclaiming acid is 10.7 x 10{sup 6} BTU/ton for Hydrochloric Acid and 21.6 x 10{sup 6} BTU/Ton for Sulfuric Acid. This means that there is a very large market for the application of the Pickliq{reg_sign} Process and the widespread use of the process will bring significant world wide savings of energy to the environment.

  4. Pre-test geological and geochemical evaluation of the Caprock, St. Peter Sandstone and formation fluids, Yakley Field, Pike County, Illinois

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    The goal of these studies is to ensure long-term stable containment of air in the underground reservoirs used in conjunction with compressed air energy storage (CAES) plants. The specific objective is to develop stability criteria and engineering guidelines for designing CAES reservoirs in each of the three major reservoir types, including aquifers, salt cavities, and mined hard rock caverns. This document characterizes the geologic nature of porous media constituents native to the aquifer field test site near Pittsfield, Illinois. The geologic samples were subjected to geochemical evaluations to determine anticipated responses to cyclic air injection, heating and moisture - conditions typical of an operating CAES reservoir. This report documents the procedures used and results obtained from these analyses.

  5. The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles

    SciTech Connect (OSTI)

    Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. )

    1991-06-01

    Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

  6. Field Test Results from Lidar Measured Yaw Control for Improved Yaw Alignment with the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Scholbrock, A.; Fleming, P.; Wright, A.; Slinger, C.; Medley, J.; Harris, M.

    2014-12-01

    This paper describes field tests of a light detection and ranging (lidar) device placed forward looking on the nacelle of a wind turbine and used as a wind direction measurement to directly control the yaw position of a wind turbine. Conventionally, a wind turbine controls its yaw direction using a nacelle-mounted wind vane. If there is a bias in the measurement from the nacelle-mounted wind vane, a reduction in power production will be observed. This bias could be caused by a number of issues such as: poor calibration, electromagnetic interference, rotor wake, or other effects. With a lidar mounted on the nacelle, a measurement of the wind could be made upstream of the wind turbine where the wind is not being influenced by the rotor's wake or induction zone. Field tests were conducted with the lidar measured yaw system and the nacelle wind vane measured yaw system. Results show that a lidar can be used to effectively measure the yaw error of the wind turbine, and for this experiment, they also showed an improvement in power capture because of reduced yaw misalignment when compared to the nacelle wind vane measured yaw system.

  7. Evaluation of existing EPRI and INEL test data to determine the worm to worm gear coefficient of friction in Limitorque actuators

    SciTech Connect (OSTI)

    Garza, I.A.

    1996-12-01

    About the last sizing parameter for motor operated valves which has not been determined by utility or NRC sponsored testing is actuator efficiency. A by-product of EPRI testing for valve factors is the measurement of the actuator efficiencies. Motor sizing in this testing provides efficiency testing for motors running near synchronous speed. INEL testing, sponsored by the NRC, for stem factors and rate of loading provides complimentary data for motors loaded down to zero speed. This paper analyzes the data from these two test programs to determine the coefficient of friction for the worm to worm gear interface. This allowed the development of an algorithm for determining the efficiency of actuators which have not been tested. This paper compares the results of this algorithm to the test data to provide a measure of the accuracy of this method for calculating actuator efficiency.

  8. Predicting the natural state of fractured carbonate reservoirs: An Andector Field, West Texas test of a 3-D RTM simulator

    SciTech Connect (OSTI)

    Tuncay, K.; Romer, S.; Ortoleva, P.; Hoak, T.; Sundberg, K.

    1998-12-31

    The power of the reaction, transport, mechanical (RTM) modeling approach is that it directly uses the laws of geochemistry and geophysics to extrapolate fracture and other characteristics from the borehole or surface to the reservoir interior. The objectives of this facet of the project were to refine and test the viability of the basin/reservoir forward modeling approach to address fractured reservoir in E and P problems. The study attempts to resolve the following issues: role of fracturing and timing on present day location and characteristics; clarifying the roles and interplay of flexure dynamics, changing rock rheological properties, fluid pressuring and tectonic/thermal histories on present day reservoir location and characteristics; and test the integrated RTM modeling/geological data approach on a carbonate reservoir. Sedimentary, thermal and tectonic data from Andector Field, West Texas, were used as input to the RTM basin/reservoir simulator to predict its preproduction state. The results were compared with data from producing reservoirs to test the RTM modeling approach. The effects of production on the state of the field are discussed in a companion report. The authors draw the following conclusions: RTM modeling is an important new tool in fractured reservoir E and P analysis; the strong coupling of RTM processes and the geometric and tensorial complexity of fluid flow and stresses require the type of fully coupled, 3-D RTM model for fracture analysis as pioneered in this project; flexure analysis cannot predict key aspects of fractured reservoir location and characteristics; fracture history over the lifetime of a basin is required to understand the timing of petroleum expulsion and migration and the retention properties of putative reservoirs.

  9. Unmanned airborne vehicle (UAV): Flight testing and evaluation of two-channel E-field very low frequency (VLF) instrument

    SciTech Connect (OSTI)

    1998-12-01

    Using VLF frequencies, transmitted by the Navy`s network, for airborne remote sensing of the earth`s electrical, magnetic characteristics was first considered by the United States Geological Survey (USGS) around the mid 1970s. The first VLF system was designed and developed by the USGS for installation and operation on a single engine, fixed wing aircraft used by the Branch of Geophysics for geophysical surveying. The system consisted of five channels. Two E-field channels with sensors consisting of a fixed vertical loaded dipole antenna with pre-amp mounted on top of the fuselage and a gyro stabilized horizontal loaded dipole antenna with pre-amp mounted on a tail boom. The three channel magnetic sensor consisted of three orthogonal coils mounted on the same gyro stabilized platform as the horizontal E-field antenna. The main features of the VLF receiver were: narrow band-width frequency selection using crystal filters, phase shifters for zeroing out system phase variances, phase-lock loops for generating real and quadrature gates, and synchronous detectors for generating real and quadrature outputs. In the mid 1990s the Branch of Geophysics designed and developed a two-channel E-field ground portable VLF system. The system was built using state-of-the-art circuit components and new concepts in circuit architecture. Small size, light weight, low power, durability, and reliability were key considerations in the design of the instrument. The primary purpose of the instrument was for collecting VLF data during ground surveys over small grid areas. Later the system was modified for installation on a Unmanned Airborne Vehicle (UAV). A series of three field trips were made to Easton, Maryland for testing and evaluating the system performance.

  10. Field testing of feedforward collective pitch control on the CART2 using a nacelle-based Lidar scanner

    SciTech Connect (OSTI)

    Schlipf, David; Fleming, Paul; Haizmann, Florian; Scholbrock, Andrew; Hofsass, Martin; Wright, Alan; Cheng, Po Wen

    2014-01-01

    This work presents the results from a field test of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a mid-scale research turbine. A nonlinear feedforward controller is extended by an adaptive filter to remove all uncorrelated frequencies of the wind speed measurement to avoid unnecessary control action. Positive effects on the rotor speed regulation as well as on tower, blade and shaft loads have been observed in the case that the previous measured correlation and timing between the wind preview and the turbine reaction are accomplish. The feedforward controller had negative impact, when the LIDAR measurement was disturbed by obstacles in front of the turbine. This work proves, that LIDAR is valuable tool for wind turbine control not only in simulations but also under real conditions. Moreover, the paper shows that further understanding of the relationship between the wind measurement and the turbine reaction is crucial to improve LIDAR assisted control of wind turbines.

  11. Design and preliminary test results of the 40 MW power supply at the National High Magnetic Field Laboratory

    SciTech Connect (OSTI)

    Boenig, H.J.; Bogdan, F.; Morris, G.C.; Ferner, J.A.; Schneider-Muntau, H.J.; Rumrill, R.H.; Rumrill, R.S.

    1993-11-01

    Four highly stabilized, steady-state, 10 MW power supplies have been installed at the National High Magnetic Field Laboratory in Tallahassee, FL. Each supply consists of a 12.5 kV vacuum circuit breaker, two three-winding, step-down transformers, a 24-pulse rectifier with interphase reactors and freewheeling diodes, and a passive and an active filter. Two different transformer tap settings allow dc supply output voltages of 400 and 500 V. The rated current of a supply is 17 kA and each supply has a one hour overload capability of 20 kA. The power supply output bus system, including a reversing switch at the input and 2 {times} 16 disconnect switches at the output, connects each supply to 16 different magnet cells. The design of the power supply is described and preliminary test results with a supply feeding a 10 MW resistive load are presented.

  12. Synergy between fast-ion transport by core MHD and test blanket module fields in DIII-D experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Heidbrink, W. W.; Austin, M. E.; Collins, C. S.; Gray, T.; Grierson, B. A.; Kramer, G. J.; Lanctot, M.; Pace, D. C.; Van Zeeland, M. A.; Mclean, A. G.

    2015-07-21

    We measured fast-ion transport caused by the combination of MHD and a mock-up test-blanket module (TBM) coil in the DIII-D tokamak. The primary diagnostic is an infrared camera that measures the heat flux on the tiles surrounding the coil. The combined effects of the TBM and four other potential sources of transport are studied: neoclassical tearing modes, Alfvén eigenmodes, sawteeth, and applied resonant magnetic perturbation fields for the control of edge localized modes. A definitive synergistic effect is observed at sawtooth crashes where, in the presence of the TBM, the localized heat flux at a burst increases from 0.36±0.27 tomore » 2.6±0.5 MW/m-2.« less

  13. Field project to obtain pressure core, wireline log, and production test data for evaluation of CO/sub 2/ flooding potential, Conoco MCA unit well No. 358, Maljamar Field, Lea County, New Mexico

    SciTech Connect (OSTI)

    Swift, T.E.; Marlow, R.E.; Wilhelm, M.H.; Goodrich, J.H.; Kumar, R.M.

    1981-11-01

    This report describes part of the work done to fulfill a contract awarded to Gruy Federal, Inc., by the Department of Energy (DOE) on Feburary 12, 1979. The work includes pressure-coring and associated logging and testing programs to provide data on in-situ oil saturation, porosity and permeability distribution, and other data needed for resource characterization of fields and reservoirs in which CO/sub 2/ injection might have a high probability of success. This report details the second such project. Core porosities agreed well with computed log porosities. Core water saturation and computed log porosities agree fairly well from 3692 to 3712 feet, poorly from 3712 to 3820 feet and in a general way from 4035 to 4107 feet. Computer log analysis techniques incorporating the a, m, and n values obtained from Core Laboratories analysis did not improve the agreement of log versus core derived water saturations. However, both core and log analysis indicated the ninth zone had the highest residual hydrocarbon saturations and production data confirmed the validity of oil saturation determinations. Residual oil saturation, for the perforated and tested intervals were 259 STB/acre-ft for the interval from 4035 to 4055 feet, and 150 STB/acre-ft for the interval from 3692 to 3718 feet. Nine BOPD was produced from the interval 4035 to 4055 feet and no oil was produced from interval 3692 to 3718 feet, qualitatively confirming the relative oil saturations as calculated. The low oil production in the zone from 4022 to 4055 and the lack of production from 3692 to 3718 feet indicated the zone to be at or near residual waterflood conditions as determined by log analysis. This project demonstrates the usefulness of integrating pressure core, log, and production data to realistically evaluate a reservoir for carbon dioxide flood.

  14. Permeation Dispersal of Treatment Agents for In Situ Remediation in Low Permeability Media: 1. Field Studies in Unconfined Test Cells

    SciTech Connect (OSTI)

    Siegrist, R.L.; Smuin, D.R.; Korte, N.E.; Greene, D.W.; Pickering, D.A.; Lowe, K.S.; Strong-Gunderson, J.

    2000-08-01

    Chlorocarbons like trichloroethylene (TCE) are common contaminants of concern at US Department of Energy (DOE) facilities and industrial sites across the US and abroad. These contaminants of concern are present in source areas and in soil and ground water plumes as dissolved or sorbed phase constituents as well as dense nonaqueous-phase liquids (DNAPLs). These DNAPL compounds can be released to the environment through a variety of means including leaks in storage tanks and transfer lines, spills during transportation, and land treatment of wastes. When DNAPL compounds are present in low permeability media (LPM) like silt and clay layers or deposits, there are major challenges with assessment of their behavior and implementation of effective in situ remediation technologies. This report describes a field demonstration that was conducted at the Portsmouth Gaseous Diffusion Plant (PORTS) Clean Test Site (CTS) to evaluate the feasibility of permeation and dispersal of reagents into LPM. Various reagents and tracers were injected at seven test cells primarily to evaluate the feasibility of delivery, but also to evaluate the effects of the injected reagents on LPM. The various reagents and tracers were injected at the PORTS CTS using a multi-port injection system (MPIS) developed and provided by Hayward Baker Environmental, Inc.

  15. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect (OSTI)

    C. Jean Bustard; Charles Lindsey; Paul Brignac

    2006-05-01

    This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and increase carbon injection

  16. In Situ Reduction of Aquifer Sediments to Create a Permeable Reactive Barrier to Remediate Chromate (CrO4 2-): BenchScale Tests to Determine Barrier Longevity

    SciTech Connect (OSTI)

    Szecsody, Jim E.; Fruchter, Jonathan S.; Vermeul, Vince R.; Williams, Mark D.; Devary, Brooks J.

    2005-01-02

    Laboratory tests were conducted to determine sediment geochemical properties needed to develop a design for implementation of the in-situ oxidation–reduction (redox) manipulation (ISRM) technology for chromate (CrO42–) remediation at a Superfund site and three other sites. A generalized hydrogeologic description of the Superfund site consist of a silty clay upper confining layer to a depth of ~6.71 m, the A1 unit from ~6.71 m to ~8.23 m, the A2 unit from ~8.23 m to ~10.67 m, and the A3 unit from ~10.67 m to ~12.19 m below ground surface. The A/B aquitard was encountered at a depth of ~12.19 m. The A1, A2, and A3 hydrostratigraphic units are all sandy gravels, but with considerable difference in fines content and subsequently, hydraulic conductivity. Hydraulic tests conducted in pilot test site monitoring wells indicate that the A1 unit has a 10 times lower hydraulic conductivity than the A2 unit, while the A3 unit hydraulic conductivity is significantly higher than that observed in the A2 unit (i.e., a trend of increasing permeability with depth). Calculated hydraulic conductivities, based on sieve analysis, show this same spatial trend. Results from a tracer injection test and electromagnetic borehole flow meter tests conducted at the site indicate a relatively high degree of formation heterogeneity. Laboratory experiments showed that chemical reduction yielded a redox capacity (0.26% iron(II)) that falls within the range of values observed in sediments analyzed from sites where field-scale deployment of the ISRM technology is currently in progress or being considered (0.1% Hanford 100D area, 0.24% Ft Lewis, 0.4% Moffett Federal Airfield). There was relatively little spatial variability in reducible iron (Fe) content between the three aquifer units. This mass of reducible Fe represents a sufficient quantity for a treatment zone emplaced to remain anoxic for 430 pore volumes, which would be expected to last tens of years, depending on aquifer flow rates and the

  17. Field Testing of LIDAR-Assisted Feedforward Control Algorithms for Improved Speed Control and Fatigue Load Reduction on a 600-kW Wind Turbine: Preprint

    SciTech Connect (OSTI)

    Kumar, Avishek A.; Bossanyi, Ervin A.; Scholbrock, Andrew K.; Fleming, Paul; Boquet, Mathieu; Krishnamurthy, Raghu

    2015-12-14

    A severe challenge in controlling wind turbines is ensuring controller performance in the presence of a stochastic and unknown wind field, relying on the response of the turbine to generate control actions. Recent technologies such as LIDAR, allow sensing of the wind field before it reaches the rotor. In this work a field-testing campaign to test LIDAR Assisted Control (LAC) has been undertaken on a 600-kW turbine using a fixed, five-beam LIDAR system. The campaign compared the performance of a baseline controller to four LACs with progressively lower levels of feedback using 35 hours of collected data.

  18. Cyclic CO{sub 2} injection for light oil recovery: Performance of a cost shared field test in Louisiana. Final report, November 21, 1988--November 30, 1992

    SciTech Connect (OSTI)

    Bassiouni, Z.A.

    1992-12-31

    The ultimate objectives of the research were to provide a base of knowledge on the cyclic CO{sub 2} stimulation (or CO{sub 2} huff-n-puff) process for the enhanced recovery of Louisiana crude oil, and to demonstrate the utility of the process to the small independent producer. The project was divided into four subtasks: laboratory coreflood experiments, computer simulation, field testing, and technology transfer. Laboratory corefloods were performed to investigate important process parameters. Computer simulation was used to confirm and expand laboratory coreflood results. A field-test data base was constructed and analyzed to facilitate target reservoir screening and to identify successful operational practices. The laboratory coreflood results and data base evaluations were used in the design and implementation of a field test that was conducted in conjunction with the private sector. The results of laboratory and field studies were disseminated to the industry through presentations at technical conferences and publications in technical journals.

  19. Crack growth rates and metallographic examinations of Alloy 600 and Alloy 82/182 from field components and laboratory materials tested in PWR environments.

    SciTech Connect (OSTI)

    Alexandreanu, B.; Chopra, O. K.; Shack, W. J.

    2008-05-05

    In light water reactors, components made of nickel-base alloys are susceptible to environmentally assisted cracking. This report summarizes the crack growth rate results and related metallography for field and laboratory-procured Alloy 600 and its weld alloys tested in pressurized water reactor (PWR) environments. The report also presents crack growth rate (CGR) results for a shielded-metal-arc weld of Alloy 182 in a simulated PWR environment as a function of temperature between 290 C and 350 C. These data were used to determine the activation energy for crack growth in Alloy 182 welds. The tests were performed by measuring the changes in the stress corrosion CGR as the temperatures were varied during the test. The difference in electrochemical potential between the specimen and the Ni/NiO line was maintained constant at each temperature by adjusting the hydrogen overpressure on the water supply tank. The CGR data as a function of temperature yielded activation energies of 252 kJ/mol for a double-J weld and 189 kJ/mol for a deep-groove weld. These values are in good agreement with the data reported in the literature. The data reported here and those in the literature suggest that the average activation energy for Alloy 182 welds is on the order of 220-230 kJ/mol, higher than the 130 kJ/mol commonly used for Alloy 600. The consequences of using a larger value of activation energy for SCC CGR data analysis are discussed.

  20. Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system

    SciTech Connect (OSTI)

    Marshall, B.W.

    1983-05-01

    As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

  1. Field project to obtain pressure core, wireline log, and production test data for evaluation of CO/sub 2/ flooding potential. Conoco MCA unit well No. 358, Maljamar Field, Lea County, New Mexico. Final report

    SciTech Connect (OSTI)

    Swift, T.E.; Kumar, R.M.; Marlow, R.E.; Wilhelm, M.H.

    1982-08-01

    Field operations, which were conducted as a cooperative effort between Conoco and Gruy Federal, began on January 16, 1980 when the well was spudded. The well was drilled to 3692 feet, and 18 cores recovered in 18 core-barrel runs (144 feet). Upon completion of the coring phase, the hole was drilled to a total depth of 4150 feet and a complete suite of geophysical logs was run. Logging was then followed by completion and testing by Concoco. Core porosities agreed well with computed log porosities. Core water saturation and computed log porosities agree fairly well from 3692 to 3712 feet, poorly from 3712 to 3820 feet and in a general way from 4035 to 4107 feet. Computer log analysis techniques did not improve the agreement of log versus core derived water saturations. However, both core and log analysis indicated the ninth zone had the highest residual hydrocarbon saturations. Residual oil saturation were 259 STB/acre-ft for the 4035 - 4055 feet interval, and 150 STB/acre-ft for the 3692 - 3718 feet interval. Nine BOPD was produced from the 4035 - 4055 feet interval and no oil was produced from 3692 to 3718 feet interval, qualitatively confirming the relative oil saturations. The low oil production in the zone from 4022 to 4055 and the lack of production from 3692 to 3718 feet indicated the zone to be at or near residual waterflood conditions as determined by log analysis. 68 figures, 11 tables.

  2. Field testing of feedforward collective pitch control on the CART2 using a nacelle-based Lidar scanner

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schlipf, David; Fleming, Paul; Haizmann, Florian; Scholbrock, Andrew; Hofsass, Martin; Wright, Alan; Cheng, Po Wen

    2014-01-01

    This work presents the results from a field test of LIDAR assisted collective pitch control using a scanning LIDAR device installed on the nacelle of a mid-scale research turbine. A nonlinear feedforward controller is extended by an adaptive filter to remove all uncorrelated frequencies of the wind speed measurement to avoid unnecessary control action. Positive effects on the rotor speed regulation as well as on tower, blade and shaft loads have been observed in the case that the previous measured correlation and timing between the wind preview and the turbine reaction are accomplish. The feedforward controller had negative impact, whenmore » the LIDAR measurement was disturbed by obstacles in front of the turbine. This work proves, that LIDAR is valuable tool for wind turbine control not only in simulations but also under real conditions. Moreover, the paper shows that further understanding of the relationship between the wind measurement and the turbine reaction is crucial to improve LIDAR assisted control of wind turbines.« less

  3. Operation Greenhouse. Scientific Director's report of atomic weapon tests at Eniwetok, 1951. Annex 6. 8. cloud radiation field

    SciTech Connect (OSTI)

    Koch, G.E.

    1985-04-01

    The object of this study was to measure the relationship between the spatial distribution of the radioactive fission products and the resultant radioactive field in an atomic-bomb cloud. Data obtained by the high-intensity rate meters and the jet impactors lead to the following conclusions: (1) There is a definite correlation between the particulate fission-particle density and the gamma-radiation intensity measured within the cloud; (2) The effective energy of the gamma radiation within the atomic bomb cloud is quite low, being of the order of 200 keV; (3) The structure of the atomic bomb cloud resembles a chimney with puffs of radioactive matter in the flue of the chimney; (4) The average roentgen dose accumulated by a plane passing through a cloud of the type tested in the Dog and Easy Shots 210 sec after bomb detonation is approximately 125 r. The average contamination on a plane after passing through a cloud is between 10 and 20 r/hr; no contamination could be detected within the plane; (5) The gamma-radiation effects extend beyond the limits of the particulate radioactive fission products; and, (6) The visible cloud adn the fission-product particulate cloud from the bomb do not coincide exactly; the visible cloud extended beyond the fission-product-cloud in those instances where data were obtained.

  4. Determination of Hydrogen Bond Structure in Water versus Aprotic Environments To Test the Relationship Between Length and Stability

    SciTech Connect (OSTI)

    Sigala, Paul A.; Ruben, Eliza A.; Liu, Corey W.; Piccoli, Paula M. B.; Hohenstein, Edward G.; Martinez, Todd J.; Schultz, Arthur J.; Herschiag, Daniel

    2015-05-06

    Hydrogen bonds profoundly influence the architecture and activity of biological macromolecules. Deep appreciation of hydrogen bond contributions to biomolecular function thus requires a detailed understanding of hydrogen bond structure and energetics and the relationship between these properties. Hydrogen bond formation energies (Delta G(f)) are enormously more favorable in aprotic solvents than in water, and two classes of contributing factors have been proposed to explain this energetic difference, focusing respectively on the isolated and hydrogen-bonded species: (I) water stabilizes the dissociated donor and acceptor groups much better than aprotic solvents, thereby reducing the driving force for hydrogen bond formation; and (II) water lengthens hydrogen bonds compared to aprotic environments, thereby decreasing the potential energy within the hydrogen bond. Each model has been proposed to provide a dominant contribution to Delta G(f), but incisive tests that distinguish the importance of these contributions are lacking. Here we directly test the structural basis of model II. Neutron crystallography, NMR spectroscopy, and quantum mechanical calculations demonstrate that O-H center dot center dot center dot O hydrogen bonds in crystals, chloroform, acetone, and water have nearly identical lengths and very similar potential energy surfaces despite Delta G(f) differences >8 kcal/mol across these solvents. These results rule out a substantial contribution from solvent-dependent differences in hydrogen bond structure and potential energy after association (model II) and thus support the conclusion that differences in hydrogen bond Delta G(f) are predominantly determined by solvent interactions with the dissociated groups (model I). These findings advance our understanding of universal hydrogen-bonding interactions and have important implications for biology and engineering.

  5. Evaluation of field-portable X-ray fluorescence spectrometry for the determination of lead contamination on small-arms firing ranges

    SciTech Connect (OSTI)

    Schneider, J.F.; Taylor, J.D.; Bass, D.A.; Zellmer, D.; Rieck, M.

    1995-02-01

    Field analytical methods for the characterization of lead contamination in soil are being developed. In this study, the usefulness of a commercially available, field-portable energy-dispersive X-ray fluorescence spectrometer (XRF) is evaluated for determining the extent of lead contamination in soils on small-arms firing ranges at a military installation. This field screening technique provides significant time and cost savings for the study of sites with lead-contaminated soil. Data obtained with the XRF unit in the field are compared with data obtained from soil samples analyzed in an analytical laboratory by inductively coupled plasma atomic emission spectroscopy. Results indicate that the field-portable XRF unit evaluated in this study provides data that are useful in determining the extent and relative magnitude of lead contamination. For the commercial unit used in this study, improvements in the spectral resolution and in the limit of detection would be required to make the unit more than just a screening tool.

  6. Well test report and CO/sub 2/ injection plan for the Little Knife Field CO/sub 2/ minitest Billings County, North Dakota. First annual report, September 1979-August 1980

    SciTech Connect (OSTI)

    Upton, J.E.

    1981-11-01

    Gulf Oil Exploration and Production Company in conjunction with the Department of Energy is conducting a field test of the CO/sub 2/ miscible displacement process. The project is being conducted in the Mission Canyon Formation (lower Mississippian), a dolomitized carbonate reservoir which is currently in the middle stage of primary depletion. Location of the field is in west-central North Dakota at the approximate center of the Williston Basin. Four wells were drilled in an inverted four-spot configuration within the five-acre minitest. The central well is the injection well surrounded by three non-producing observation wells. Oriented cores were obtained from each well for detailed reservoir characterization and laboratory testing. In addition, pulse and injectivity tests were obtained. Results from these tests were used to upgrade two reservoir simulation models. Various parameters within the models were modified to determine the most efficient injection plan. A WAG-type injection sequence involving alternate slugs of water and CO/sub 2/ will be employed. The test is designed to establish the incremental recovery, over waterflooding, by a miscible CO/sub 2/ flood in an oil reservoir.

  7. Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities

    SciTech Connect (OSTI)

    Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

    2014-07-01

    then identified commercial off the shelf (COTS) chemical detectors that may detect the chemicals of interest. Three chemical detectors were selected and tested both in laboratory settings and in field operations settings at Idaho National Laboratory. The instruments selected are: Thermo Scientific TruDefender FT (FTIR), Thermo Scientific FirstDefender RM (Raman), and Bruker Tracer III SD (XRF). Functional specifications, operability, and chemical detectability, selectivity, and limits of detection were determined. Results from the laboratory and field tests will be presented. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.

  8. SciFri AM: Mountain 01: Validation of a new formulism and the related correction factors on output factor determination for small photon fields

    SciTech Connect (OSTI)

    Wang, Yizhen; Younge, Kelly; Nielsen, Michelle; Mutanga, Theodore; Cui, Congwu; Das, Indra J.

    2014-08-15

    Small field dosimetry measurements including output factors are difficult due to lack of charged-particle equilibrium, occlusion of the radiation source, the finite size of detectors, and non-water equivalence of detector components. With available detectors significant variations could be measured that will lead to incorrect delivered dose to patients. IAEA/AAPM have provided a framework and formulation to correct the detector response in small photon fields. Monte Carlo derived correction factors for some commonly used small field detectors are now available, however validation has not been performed prior to this study. An Exradin A16 chamber, EDGE detector and SFD detector were used to perform the output factor measurement for a series of conical fields (530mm) on a Varian iX linear accelerator. Discrepancies up to 20%, 10% and 6% were observed for 5, 7.5 and 10 mm cones between the initial output factors measured by the EDGE detector and the A16 ion chamber, while the discrepancies for the conical fields larger than 10 mm were less than 4%. After the application of the correction, the output factors agree well with each other to within 1%. Caution is needed when determining the output factors for small photon fields, especially for fields 10 mm in diameter or smaller. More than one type of detector should be used, each with proper corrections applied to the measurement results. It is concluded that with the application of correction factors to appropriately chosen detectors, output can be measured accurately for small fields.

  9. Field Guide for Testing Existing Photovoltaic Systems for Ground Faults and Installing Equipment to Mitigate Fire Hazards: November 2012 - October 2013

    SciTech Connect (OSTI)

    Brooks, William

    2015-02-01

    Ground faults and arc faults are the two most common reasons for fires in photovoltaic (PV) arrays and methods exist that can mitigate the hazards. This report provides field procedures for testing PV arrays for ground faults, and for implementing high resolution ground fault and arc fault detectors in existing and new PV system designs.

  10. Testing of Performance of Optical Fibers Under Irradiation in Intense Radiation Fields, When Subjected to Very High Temperatures

    SciTech Connect (OSTI)

    Blue, Thomas; Windl, Wolfgang; Dickerson, Bryan

    2013-01-03

    The primary objective of this project is to measure and model the performance of optical fibers in intense radiation fields when subjected to very high temperatures. This research will pave the way for fiber optic and optically based sensors under conditions expected in future high-temperature gas-cooled reactors. Sensor life and signal-to-noise ratios are susceptible to attenuation of the light signal due to scattering and absorbance in the fibers. This project will provide an experimental and theoretical study of the darkening of optical fibers in high-radiation and high-temperature environments. Although optical fibers have been studied for moderate radiation fluence and flux levels, the results of irradiation at very high temperatures have not been published for extended in-core exposures. Several previous multi-scale modeling efforts have studied irradiation effects on the mechanical properties of materials. However, model-based prediction of irradiation-induced changes in silicaâ??s optical transport properties has only recently started to receive attention due to possible applications as optical transmission components in fusion reactors. Nearly all damage-modeling studies have been performed in the molecular-dynamics domain, limited to very short times and small systems. Extended-time modeling, however, is crucial to predicting the long-term effects of irradiation at high temperatures, since the experimental testing may not encompass the displacement rate that the fibers will encounter if they are deployed in the VHTR. The project team will pursue such extended-time modeling, including the effects of the ambient and recrystallization. The process will be based on kinetic MC modeling using the concept of amorphous material consisting of building blocks of defect-pairs or clusters, which has been successfully applied to kinetic modeling in amorphized and recrystallized silicon. Using this procedure, the team will model compensation for rate effects, and

  11. Field project to obtain pressure core, wireline log, and production test data for evaluation of CO/sub 2/ flooding potential. Texas Pacific Bennett Ranch Unit well No. 310, Wasson (San Andres) Field, Yoakum County, Texas

    SciTech Connect (OSTI)

    Swift, T.E.; Goodrich, J.H.; Kumar, R.M.; McCoy, R.L.; Wilhelm, M.H.; Glascock, M.R.

    1982-01-01

    The coring, logging and testing of Bennett Ranch Unit well No. 310 was a cooperative effort between Texas Pacific, owner of the well, and Gruy Federal, Inc. The requirements of the contract, which are summarized in Enclosure 1, Appendix A, include drilling and coring activities. The pressure-coring and associated logging and testing programs in selected wells are intended to provide data on in-situ oil saturation, porosity and permeability distribution, and other data needed for resource characterization of fields and reservoirs in which CO/sub 2/ injection might have a high probability of success. This report presents detailed information on the first such project. This project demonstrates the usefulness of integrating pressure core, log and production data to realistically evaluate a reservoir for carbon dioxide flood. The engineering of tests and analysis of such experimental data requires original thinking, but the reliability of the results is higher than data derived from conventional tests.

  12. 2014-02-07 Issuance: Alternative Efficiency Determination Methods and Test Procedures for Walk-In Coolers and Walk-In Freezers; Supplemental Notice of Proposed Rulemaking

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document is a pre-publication Federal Register supplemental notice of proposed rulemaking regarding alternative efficiency determination methods and test procedures for walk-in coolers and walk-in freezers, as issued by the Deputy Assistant Secretary for Energy Efficiency on February 7, 2014.

  13. Development of manufacturing capability for the fabrication of the Nb/sub 3/Sn superconductor for the High Field Test Facility. Final report

    SciTech Connect (OSTI)

    Spencer, C R

    1981-01-01

    Construction of High Field Test Facility (HFTF) at Lawrence Livermore Laboratory (LLNL) requires an extended surface Nb/sub 3/Sn superconductor cable of carrying currents in excess of 7500 amperes in a 12 Tesla magnetic field. This conductor consists of a 5.4 mm x 11.0 mm superconducting core onto whose broad surfaces are soldered embossed oxygen free copper strips. Two different core designs have been developed and the feasibility of each design evaluated. Equipment necessary to produce the conductor were developed and techniques of production were explored.

  14. Deep in Data: Empirical Data Based Software Accuracy Testing Using the Building America Field Data Repository: Preprint

    SciTech Connect (OSTI)

    Neymark, J.; Roberts, D.

    2013-06-01

    An opportunity is available for using home energy consumption and building description data to develop a standardized accuracy test for residential energy analysis tools. That is, to test the ability of uncalibrated simulations to match real utility bills. Empirical data collected from around the United States have been translated into a uniform Home Performance Extensible Markup Language format that may enable software developers to create translators to their input schemes for efficient access to the data. This may facilitate the possibility of modeling many homes expediently, and thus implementing software accuracy test cases by applying the translated data. This paper describes progress toward, and issues related to, developing a usable, standardized, empirical data-based software accuracy test suite.

  15. Vertical ground heat exchanger borehole grouting: Field application studies and in-situ thermal performance testing. Final report

    SciTech Connect (OSTI)

    Smith, M.

    1998-05-01

    This report summarizes one of a series of EPRI- and National Rural Electric Cooperative Association (NRECA)-sponsored research efforts on vertical ground heat exchanger grout and grouting techniques as applied to geothermal heat pumps. In particular, this effort studied actual in-field installation issues for various grout mixtures and types of grouting equipment in different parts of the country.

  16. Sandia Wake Imaging System Field Test Report: 2015 Deployment at the Scaled Wind Farm Technology (SWiFT) Facility.

    SciTech Connect (OSTI)

    Naughton, Brian Thomas; Herges, Thomas

    2015-10-01

    This report presents the objectives, configuration, procedures, reporting , roles , and responsibilities and subsequent results for the field demonstration of the Sandia Wake Imaging System (SWIS) at the Sandia Scaled Wind Farm Technology (SWiFT) facility near Lubbock, Texas in June and July 2015.

  17. Tests of a Prototype for Assessing the Field Homogeneity of the Iseult/Inumac 11.7T Whole Body MRI Magnet

    SciTech Connect (OSTI)

    Quettier, Lionel

    2010-06-01

    A neuroscience research center with very high field MRI equipments has been opened in November 2006 by the CEA life science division. One of the imaging systems will require a 11.75 T magnet with a 900 mm warm bore, the so-call Iseult/Inumac magnet. Regarding the large aperture and field strength, this magnet is a challenge as compared to the largest MRI systems ever built, and is then developed within an ambitious R&D program. With the objective of demonstrating the possibility of achieving field homogeneity better than 1 ppm using double pancake windings, a 24 double pancakes model coil, working at 1.5 T has been designed. This model magnet has been manufactured by Alstom MSA and tested at CEA. It has been measured with a very high precision, in order to fully characterize the field homogeneity, and then to investigate and discriminate the parameters that influence the field map. This magnet has reached the bare magnet field homogeneity specification expected for Iseult and thus successfully demonstrated the feasibility of building a homogenous magnet with the double pancake winding technique.

  18. CO2 Storage and Enhanced Oil Recovery: Bald Unit Test Site, Mumford Hills Oil Field, Posey County, Indiana

    SciTech Connect (OSTI)

    Frailey, Scott M.; Krapac, Ivan G.; Damico, James R.; Okwen, Roland T.; McKaskle, Ray W.

    2012-03-30

    The Midwest Geological Sequestration Consortium (MGSC) carried out a small-scale carbon dioxide (CO2) injection test in a sandstone within the Clore Formation (Mississippian System, Chesterian Series) in order to gauge the large-scale CO2 storage that might be realized from enhanced oil recovery (EOR) of mature Illinois Basin oil fields via miscible liquid CO2 flooding.

  19. Performance Evaluation of Advanced Retrofit Roof Technologies Using Field-Test Data Phase Three Final Report, Volume 1

    SciTech Connect (OSTI)

    Biswas, Kaushik; Childs, Phillip W; Atchley, Jerald Allen

    2014-05-01

    This article presents various metal roof configurations that were tested at Oak Ridge National Laboratory in Tennessee, U.S.A. between 2009 and 2013, and describes their potential for reducing the attic-generated space conditioning loads. These roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. These roofs were designed to be installed on existing roofs decks, or on top of asphalt shingles for retrofit construction. All the tested roofs showed the potential for substantial energy savings compared to an asphalt shingle roof, which was used as a control for comparison. The roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. The attics were built on top of a conditioned room. All attics were vented at the soffit and ridge. The test roofs and attics were instrumented with an array of thermocouples. Heat flux transducers were installed in the roof deck and attic floor (ceiling) to measure the heat flows through the roof and between the attic and conditioned space below. Temperature and heat flux data were collected during the heating, cooling and swing seasons over a 3 year period. Data from previous years of testing have been published. Here, data from the latest roof configurations being tested in year 3 of the project are presented. All test roofs were highly effective in reducing the heat flows through the roof and ceiling, and in reducing the diurnal attic temperature fluctuations.

  20. Comparing State-Space Multivariable Controls to Multi-SISO Controls for Load Reduction of Drivetrain-Coupled Modes on Wind Turbines through Field-Testing: Preprint

    SciTech Connect (OSTI)

    Fleming, P. A.; van Wingerden, J. W.; Wright, A. D.

    2011-12-01

    This paper presents the structure of an ongoing controller comparison experiment at NREL's National Wind Technology Center; the design process for the two controllers compared in this phase of the experiment, and initial comparison results obtained in field-testing. The intention of the study is to demonstrate the advantage of using modern multivariable methods for designing control systems for wind turbines versus conventional approaches. We will demonstrate the advantages through field-test results from experimental turbines located at the NWTC. At least two controllers are being developed side-by-side to meet an incrementally increasing number of turbine load-reduction objectives. The first, a multiple single-input, single-output (m-SISO) approach, uses separately developed decoupled and classicially tuned controllers, which is, to the best of our knowledge, common practice in the wind industry. The remaining controllers are developed using state-space multiple-input and multiple-output (MIMO) techniques to explicity account for coupling between loops and to optimize given known frequency structures of the turbine and disturbance. In this first publication from the study, we present the structure of the ongoing controller comparison experiment, the design process for the two controllers compared in this phase, and initial comparison results obtained in field-testing.

  1. The National Fuel End-Use Efficiency Field Test: Energy Savings and Performance of an Improved Energy Conservation Measure Selection Technique

    SciTech Connect (OSTI)

    Ternes, M.P.

    1991-01-01

    The performance of an advanced residential energy conservation measure (ECM) selection technique was tested in Buffalo, New York, to verify the energy savings and program improvements achieved from use of the technique in conservation programs and provide input into determining whether utility investments in residential gas end-use conservation are cost effective. The technique analyzes a house to identify all ECMs that are cost effective in the building envelope, space-heating system, and water-heating system. The benefit-to-cost ratio (BCR) for each ECM is determined and cost-effective ECMs (BCR > 1.0) are selected once interactions between ECMs are taken into account. Eighty-nine houses with the following characteristics were monitored for the duration of the field test: occupants were low-income, houses were single-family detached houses but not mobile homes, and primary space- and water-heating systems were gas-fired. Forty-five houses received a mix of ECMs as selected by the measure selection technique (audit houses) and 44 served as a control group. Pre-weatherization data were collected from January to April 1988 and post-weatherization data were collected from December 1988 to April 1989. Space- and waterheating gas consumption and indoor temperature were monitored weekly during the two winters. A house energy consumption model and regression analysis were employed to normalize the space-heating energy savings to average outdoor temperature conditions and a 68 F indoor temperature. Space and water-heating energy savings for the audit houses were adjusted by the savings for the control houses. The average savings of 257 therms/year for the audit houses was 17% of the average pre-weatherization house gas consumption and 78% of that predicted. Average space-heating energy savings was 252 therms/year (25% of pre-weatherization space-heating energy consumption and 85% of the predicted value) and average water-heating savings was 5 therms/year (2% of pre

  2. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2003-2004 Annual Report.

    SciTech Connect (OSTI)

    Simmons, M.; McKinstry, C.; Cook, C.

    2004-01-01

    Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish were entrained annually at Grand Coulee Dam. Analysis of the entrainment data found that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the third year of the strobe light study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The objective of the study is to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions. The prototype system consists of six strobe lights affixed to an aluminum frame suspended 15 m vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, illuminate a region directly upstream of the barge. The 2003 study period extended from June 16 through August 1. Three light treatments were used: all six lights on for 24 hours, all lights off for 24 hours, and three of six lights cycled on and off every hour for 24 hours. These three treatment conditions were assigned randomly within a

  3. Field test of plutonium and thorium contaminated clay soils from the Mound Site using the ACT*DE*CON Process

    SciTech Connect (OSTI)

    Johnson, J.O.; Swift, N.A.; Church, R.H.; Neff, R.A.

    1998-12-31

    A treatability test was run during the summer and fall of 1997 to demonstrate the effectiveness of ACT*DE*CON for removing plutonium and thorium from the clay soils around Mound. ACT*DE*CON is a proprietary solution patented by Selentec. The process utilized a highly selective dissolution of the contaminants by the use of a chemical wash. The pilot scale process involved pretreatment of the soil in an attrition scrubber with ACT*DE*CON solution. This blended solution was then passed through a counter-current extraction chamber where additional contact with ACT*DE*CON solution occurred, followed by a rinse cycle. During this process sand was added to aid contact of the solution with the soil particles. The sand is removed during the rinse step and reused. The chelating agent is separated from the contaminant and recycled back into the process, along with the reverse osmosis permeate. The resulting solution can be further treated to concentrate the contaminant. Three different types of environmental soils were tested -- plutonium and thorium contaminated soils with the natural clay content, and plutonium contaminated soils with a high percentage of fine clay particles. The goal of these tests was to reduce the plutonium levels from several hundreds of pCi/g to between 25 and 75 pCi/g and the thorium from a couple hundred pCi/g to less than 5 pCi/g. The results of these four tests are presented along with a discussion of the operating parameters and the lessons learned relating to full scale implementation at Mound as well as other potential applications of this process.

  4. Performance Evaluation of Advanced Retrofit Roof Technologies Using Field-Test Data Phase Three Final Report, Volume 2

    SciTech Connect (OSTI)

    Biswas, Kaushik; Childs, Phillip W.; Atchley, Jerald Allen

    2015-01-01

    This article presents some miscellaneous data from two low-slope and two steep-slope experimental roofs. The low-slope roofs were designed to compare the performance of various roof coatings exposed to natural weatherization. The steep-slope roofs contained different combinations of phase change material, rigid insulation, low emittance surface and above-sheathing ventilation, with standing-seam metal panels on top. The steep-slope roofs were constructed on a series of adjacent attics separated at the gables using thick foam insulation. This article describes phase three (3) of a study that began in 2009 to evaluate the energy benefits of a sustainable re-roofing technology utilizing standing-seam metal roofing panels combined with energy efficient features like above-sheathing-ventilation (ASV), phase change material (PCM) and rigid insulation board. The data from phases 1 and 2 have been previously published and reported [Kosny et al., 2011; Biswas et al., 2011; Biswas and Childs, 2012; Kosny et al., 2012]. Based on previous data analyses and discussions within the research group, additional test roofs were installed in May 2012, to test new configurations and further investigate different components of the dynamic insulation systems. Some experimental data from phase 3 testing from May 2012 to December 2013 and some EnergyPlus modeling results have been reported in volumes 1 and 3, respectively, of the final report [Biswas et al., 2014; Biswas and Bhandari, 2014].

  5. SOLERAS - Solar Controlled Environment Agriculture Project. Final report, Volume 7. Science Applications, Incorporated field test facility preliminary design

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    This report contains the preliminary design of an SCEAS Engineering Test Facility (ETF). The ETF is a 3600 m/sup 2/ fluid roof greenhouse with an inflated plastic film roof to maintain a clean environment for the fluid roof and to protect the inner glazing from hail and other small missiles. The objective of the design was the faithful scaling of the commercial facility to ensure that the ETF results could be extrapolated to a commercial facility of any size. Therefore, all major features, including the photovoltaic power system, an integral water desalination system and even the basic structural module have been retained. The design is described in substantial detail in the body of this report, with appendices giving the drawings and specifications.

  6. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant: Preliminary summary

    SciTech Connect (OSTI)

    Fishbone, L.G. |; Moussalli, G.; Naegele, G.; Ikonomou, P.; Hosoya, M.; Scott, P.; Fager, J.; Sanders, C.; Colwell, D.; Joyner, C.J.

    1994-04-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. This report details a six-month field test of the feasibility of such SNRIs which took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division. Westinghouse personnel made daily declarations about both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ``mailbox``. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. Items from both strata were verified during the SNRIs by means of nondestructive assay equipment. The field test demonstrated the feasibility and practicality of key elements of the SNRI approach for a large LEU fuel fabrication plant.

  7. 2014-05-05 Issuance: Alternative Efficiency Determination Methods and Test Procedures for Walk-In Coolers and Walk-In Freezers; Final Rule

    Office of Energy Efficiency and Renewable Energy (EERE)

    This document is a pre-publication Federal Register final rule regarding alternative efficiency determination methods and test procedures for walk-in coolers and walk-in freezers, as issued by the Deputy Assistant Secretary for Energy Efficiency on May 5, 2014. Though it is not intended or expected, should any discrepancy occur between the document posted here and the document published in the Federal Register, the Federal Register publication controls. This document is being made available through the Internet solely as a means to facilitate the public's access to this document.

  8. PERFORMANCE EVALUATION OF A SUSTAINABLE AND ENERGY EFFICIENT RE-ROOFING TECHNOLOGY USING FIELD-TEST DATA

    SciTech Connect (OSTI)

    Biswas, Kaushik; Miller, William A; Childs, Phillip W; Kosny, Jan; Kriner, Scott

    2011-01-01

    Three test attics were constructed to evaluate a new sustainable method of re-roofing utilizing photo-voltaic (PV) laminates, metal roofing panels, and PCM heat sink in the Envelope Systems Research Apparatus (ESRA) facility in the ORNL campus. Figure 1 is a picture of the three attic roofs located adjacent to each other. The leftmost roof is the conventional shingle roof, followed by the metal panel roof incorporating the cool-roof coating, and third from left is the roof with the PCM. On the PCM roof, the PV panels are seen as well; they're labelled from left-to-right as panels 5, 6 and 7. The metal panel roof consists of three metal panels with the cool-roof coating; in further discussion this is referred to as the infrared reflective (IRR) metal roof. The IRR metal panels reflect the incoming solar radiation and then quickly re-emit the remaining absorbed portion, thereby reducing the solar heat gain of the attic. Surface reflectance of the panels were measured using a Solar Spectrum Reflectometer. In the 0.35-2.0 {mu}m wavelength interval, which accounts for more than 94% of the solar energy, the IRR panels have an average reflectance of 0.303. In the infrared portion of the spectrum, the IRR panel reflectance is 0.633. The PCM roof consists of a layer of macro-encapsulated bio-based PCM at the bottom, followed by a 2-cm thick layer of dense fiberglass insulation with a reflective surface on top, and metal panels with pre-installed PV laminates on top. The PCM has a melting point of 29 C (84.2 F) and total enthalpy between 180 and 190 J/g. The PCM was macro-packaged in between two layers of heavy-duty plastic foil forming arrays of PCM cells. Two air cavities, between PCM cells and above the fiberglass insulation, helped the over-the-deck natural air ventilation. It is anticipated that during summer, this extra ventilation will help in reducing the attic-generated cooling loads. The extra ventilation, in conjunction with the PCM heat sink, are used to minimize

  9. Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions

    SciTech Connect (OSTI)

    McFarquhar, Greg

    2015-12-28

    We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.

  10. Open-field host specificity test of Gratiana boliviana (Coleoptera: Chrysomelidae), a biological control agent of tropical soda apple (Solanaceae) in the United States

    SciTech Connect (OSTI)

    Gandolfo, D.; McKay, F.; Medal, J.C.; Cuda, J.P.

    2007-03-15

    An open-field experiment was conducted to assess the suitability of the South American leaf feeding beetle Gratiana boliviana Spaeth for biological control of Solanum viarum Dunal in the USA. An open-field test with eggplant, Solanum melongena L., was conducted on the campus of the University of Buenos Aires, Argentina, and a S. viarum control plot was established 40 km from the campus. One hundred adult beetles were released in each plot at the beginning of the experiment during the vegetative stage of the plants, and forty additional beetles were released in the S. melongena plot at the flowering stage. All the plants in each plot were checked twice a week and the number of adults, immatures, and eggs recorded. Results showed almost a complete rejection of eggplant by G. boliviana. No noticeable feeding damage was ever recorded on eggplant. The experiment was ended when the eggplants started to senesce or were severely damaged by whiteflies and spider mites. The results of this open-field experiment corroborate previous quarantine/laboratory host-specificity tests indicating that a host range expansion of G. boliviana to include eggplant is highly unlikely. Gratiana boliviana was approved for field release in May 2003 in the USA. To date, no non-target effects have been observed either on eggplant or native species of Solanum. (author) [Spanish] Una prueba de campo fue conducida para evaluar la especificidad del escarabajo suramericano defoliador Gratiana boliviana Spaeth para control biologico de Solanum viarum Dunal en los Estados Unidos. La prueba con berenjena se realizo en el campo experimental de la Universidad de Buenos Aires, Argentina, y una parcela control con S. viarum fue establecida a 40 km. Cien escarabajos adultos fueron liberados en cada parcela al inicio del experimento durante la fase vegetativa, y cuarenta escarabajos adicionales fueron liberados en la parcela de berenjena durante la floracion. Todas las plantas en cada parcela fueron

  11. Structural properties and band offset determination of p-channel mixed As/Sb type-II staggered gap tunnel field-effect transistor structure

    SciTech Connect (OSTI)

    Zhu, Y.; Jain, N.; Hudait, M. K.; Mohata, D. K.; Datta, S.; Lubyshev, D.; Fastenau, J. M.; Liu, A. K.

    2012-09-10

    The structural properties and band offset determination of p-channel staggered gap In{sub 0.7}Ga{sub 0.3}As/GaAs{sub 0.35}Sb{sub 0.65} heterostructure tunnel field-effect transistor (TFET) grown by molecular beam epitaxy (MBE) were investigated. High resolution x-ray diffraction revealed that the active layers are strained with respect to 'virtual substrate.' Dynamic secondary ion mass spectrometry confirmed an abrupt junction profile at the In{sub 0.7}Ga{sub 0.3}As/GaAs{sub 0.35}Sb{sub 0.65} heterointerface and minimal level of intermixing between As and Sb atoms. The valence band offset of 0.37 {+-} 0.05 eV was extracted from x-ray photoelectron spectroscopy. A staggered band lineup was confirmed at the heterointerface with an effective tunneling barrier height of 0.13 eV. Thus, MBE-grown staggered gap In{sub 0.7}Ga{sub 0.3}As/GaAs{sub 0.35}Sb{sub 0.65} TFET structures are a promising p-channel option to provide critical guidance for the future design of mixed As/Sb type-II based complementary logic and low power devices.

  12. Unique compressor passes field test

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Revolutionary pipeline compression concept has proved successful at a Transcontinental Gas Pipe Line facility in Alabama. In April 1992, the MOPICO electric drive compressor completed 5,000 hours of successful operation at Transcontinental Gas Pipeline's Station 100 at Billingsley, Ala. The revolutionary gas pipeline compression concept eliminates many of the traditional complexities of a pipeline compressor station and has benefits not possible with conventional compressor systems. This paper reports that this is accomplished through the integration of technologies developed over the past 10 years into a design concept unique in the industry. Ross Hill Controls Inc., Houston, provides the adjustable-speed variable frequency drive unit that allows the electric motor to operate at speeds from 6,2000 rpm to 10,000 rpm. Transco Energy Ventures, a division of Transco Energy, participated in the development and assisted in placing the prototype unit on the Transcontinental Gas Pipeline system.

  13. The in-situ decontamination of sand and gravel aquifers by chemically enhanced solubilization of multiple-compound DNAPLs with surfactant solutions: Phase 1 -- Laboratory and pilot field-scale testing and Phase 2 -- Solubilization test and partitioning and interwell tracer tests. Final report

    SciTech Connect (OSTI)

    1997-10-24

    Laboratory, numerical simulation, and field studies have been conducted to assess the potential use of micellar-surfactant solutions to solubilize chlorinated solvents contaminating sand and gravel aquifers. Ninety-nine surfactants were screened for their ability to solubilize trichloroethene (TCE), perchloroethylene (PCE), and carbon tetrachloride (CTET). The field test was conducted in the alluvial aquifer which is located 20 to 30 meters beneath a vapor degreasing operation at Paducah Gaseous Diffusion Plant. This aquifer has become contaminated with TCE due to leakage of perhaps 40,000 liters of TCE, which has generated a plume of dissolved TCE extending throughout an area of approximately 3 km{sup 2} in the aquifer. Most of the TCE is believed to be present in the overlying lacustrine deposits and in the aquifer itself as a dense, non-aqueous phase liquid, or DNAPL. The objective of the field test was to assess the efficacy of the surfactant for in situ TCE solubilization. Although the test demonstrated that sorbitan monooleate was unsuitable as a solubilizer in this aquifer, the single-well test was demonstrated to be a viable method for the in situ testing of surfactants or cosolvents prior to proceeding to full-scale remediation.

  14. Design and experimental testing of air slab caps which convert commercial electron diodes into dual purpose, correction-free diodes for small field dosimetry

    SciTech Connect (OSTI)

    Charles, P. H.; Cranmer-Sargison, G.; Thwaites, D. I.; Kairn, T.; Crowe, S. B.; Langton, C. M.; Trapp, J. V.; Pedrazzini, G.; Aland, T.; Kenny, J.

    2014-10-15

    }}}}}}}}} values from the SFD to unknown diodes was tested by comparing the experimentally transferred k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} values for unmodified PTWe and EDGEe diodes to Monte Carlo simulated values. Results: 1.0 mm of air was required to make the PTWe diode correction-free. This modified diode (PTWe{sub air}) produced output factors equivalent to those in water at all field sizes (5–50 mm). The optimal air thickness required for the EDGEe diode was found to be 0.6 mm. The modified diode (EDGEe{sub air}) produced output factors equivalent to those in water, except at field sizes of 8 and 10 mm where it measured approximately 2% greater than the relative dose to water. The experimentally calculated k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} for both the PTWe and the EDGEe diodes (without air) matched Monte Carlo simulated results, thus proving that it is feasible to transfer k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} from one commercially available detector to another using experimental methods and the recommended experimental setup. Conclusions: It is possible to create a diode which does not require corrections for small field output factor measurements. This has been performed and verified experimentally. The ability of a detector to be “correction-free” depends strongly on its design and composition. A nonwater-equivalent detector can only be “correction-free” if competing perturbations of the beam cancel out at all field sizes. This should not be confused with true water equivalency of a detector.

  15. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    SciTech Connect (OSTI)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy WJ; Hopkins, Derek F.; Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A.

    2013-06-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of ?14 micrometers (?m). In 2012 the PulseEcho instrument was further evaluated under WRPS System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP.

  16. System Performance Testing of the Pulse-Echo Ultrasonic Instrument for Critical Velocity Determination during Hanford Tank Waste Transfer Operations - 13584

    SciTech Connect (OSTI)

    Denslow, Kayte M.; Bontha, Jagannadha R.; Adkins, Harold E.; Jenks, Jeromy W.J.; Hopkins, Derek F.; Thien, Michael G.; Kelly, Steven E.; Wooley, Theodore A.

    2013-07-01

    The delivery of Hanford double-shell tank waste to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is governed by specific Waste Acceptance Criteria that are identified in ICD 19 - Interface Control Document for Waste Feed. Waste must be certified as acceptable before it can be delivered to the WTP. The fluid transfer velocity at which solid particulate deposition occurs in waste slurry transport piping (critical velocity) is a key waste acceptance parameter that must be accurately characterized to determine if the waste is acceptable for transfer to the WTP. Washington River Protection Solutions and the Pacific Northwest National Laboratory have been evaluating the ultrasonic PulseEcho instrument since 2010 for its ability to detect particle settling and determine critical velocity in a horizontal slurry transport pipeline for slurries containing particles with a mean particle diameter of =14 micrometers (?m). In 2012 the PulseEcho instrument was further evaluated under WRPS' System Performance test campaign to identify critical velocities for slurries that are expected to be encountered during Hanford tank waste retrieval operations or bounding for tank waste feed. This three-year evaluation has demonstrated the ability of the ultrasonic PulseEcho instrument to detect the onset of critical velocity for a broad range of physical and rheological slurry properties that are likely encountered during the waste feed transfer operations between the Hanford tank farms and the WTP. (authors)

  17. CX-100660 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 Categorical Exclusion Determination CX-100660 Categorical Exclusion Determination Correlation of Qualification Testing with Field Degradation Award Number: DE-EE0007138 CX(s) Applied: A9, B3.6 Solar Energy Technologies Office Date: 7/12/2016 Location(s): AZ Office(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide federal funding to Arizona State University (ASU) to improve existing degradation prediction protocols so that photovoltaic (PV) module field

  18. The Oklahoma Field Test: Air-Conditioning Electricity Savings from Standard Energy Conservation Measures, Radiant Barriers, and High-Efficiency Window Air Conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.

    1992-01-01

    A field test involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMs) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The average measured pre-weatherization air-conditioning electricity consumption was 1664 kWh/year ($119/year). Ten percent of the houses used less than 250 kWh/year, while another 10% used more than 3000 kWh/year. An average reduction in air-conditioning electricity consumption of 535 kWh/year ($38/year and 28% of pre-weatherization consumption) was obtained from replacement of one low-efficiency window air conditioner (EER less than 7.0) per house with a high-efficiency unit (EER greater than 9.0). For approximately the same cost, savings tripled to 1503 kWh/year ($107/year and 41% of pre-weatherization consumption) in those houses with initial air-conditioning electricity consumption greater than 2750 kWh/year. For these houses, replacement of a low-efficiency air conditioner with a high-efficiency unit was cost effective using the incremental cost of installing a new unit now rather than later; the average installation cost for these houses under a weatherization program was estimated to be $786. The

  19. The Oklahoma Field Test: Air-conditioning electricity savings from standard energy conservation measures, radiant barriers, and high-efficiency window air conditioners

    SciTech Connect (OSTI)

    Ternes, M.P.; Levins, W.P.

    1992-08-01

    A field test Involving 104 houses was performed in Tulsa, Oklahoma, to measure the air-conditioning electricity consumption of low-income houses equipped with window air conditioners, the reduction in this electricity consumption attributed to the installation of energy conservation measures (ECMS) as typically installed under the Oklahoma Weatherization Assistance Program (WAP), and the reduction achieved by the replacement of low-efficiency window air conditioners with high-efficiency units and the installation of attic radiant barriers. Air-conditioning electricity consumption and indoor temperature were monitored weekly during the pre-weatherization period (June to September 1988) and post-weatherization period (May to September 1989). House energy consumption models and regression analyses were used to normalize the air-conditioning electricity savings to average outdoor temperature conditions and the pre-weatherization indoor temperature of each house. The following conclusions were drawn from the study: (1) programs directed at reducing air-conditioning electricity consumption should be targeted at clients with high consumption to improve cost effectiveness; (2) replacing low-efficiency air conditioners with high-efficiency units should be considered an option in a weatherization program directed at reducing air-conditioning electricity consumption; (3) ECMs currently being installed under the Oklahoma WAP (chosen based on effectiveness at reducing space-heating energy consumption) should continue to be justified based on their space-heating energy savings potential only; and (4) attic radiant barriers should not be included in the Oklahoma WAP if alternatives with verified savings are available or until further testing demonstrates energy savings or other benefits in this typo of housing.

  20. test and evaluation

    National Nuclear Security Administration (NNSA)

    5%2A en Office of Test and Evaluation http:nnsa.energy.govaboutusourprogramsdefenseprogramsstockpilestewardshiptestcapabilitiesand-eval

    field field-type-text...

  1. Field test of short-notice random inspections for inventory-change verification at a low-enriched-uranium fuel-fabrication plant

    SciTech Connect (OSTI)

    Fishbone, L.G. |; Moussalli, G.; Naegele, G.

    1995-05-01

    An approach of short-notice random inspections (SNRIs) for inventory-change verification can enhance the effectiveness and efficiency of international safeguards at natural or low-enriched uranium (LEU) fuel fabrication plants. According to this approach, the plant operator declares the contents of nuclear material items before knowing if an inspection will occur to verify them. Additionally, items about which declarations are newly made should remain available for verification for an agreed time. Then a statistical inference can be made from verification results for items verified during SNRIs to the entire populations, i.e. the entire strata, even if inspectors were not present when many items were received or produced. A six-month field test of the feasibility of such SNRIs took place at the Westinghouse Electric Corporation Commercial Nuclear Fuel Division during 1993. Westinghouse personnel made daily declarations about both feed and product items, uranium hexafluoride cylinders and finished fuel assemblies, using a custom-designed computer ``mailbox``. Safeguards inspectors from the IAEA conducted eight SNRIs to verify these declarations. They arrived unannounced at the plant, in most cases immediately after travel from Canada, where the IAEA maintains a regional office. Items from both strata were verified during the SNRIs by meant of nondestructive assay equipment.

  2. Sorption testing and generalized composite surface complexation models for determining uranium sorption parameters at a proposed in-situ recovery site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Raymond H.; Truax, Ryan A.; Lankford, David A.; Stone, James J.

    2016-02-03

    Solid-phase iron concentrations and generalized composite surface complexation models were used to evaluate procedures in determining uranium sorption on oxidized aquifer material at a proposed U in situ recovery (ISR) site. At the proposed Dewey Burdock ISR site in South Dakota, USA, oxidized aquifer material occurs downgradient of the U ore zones. Solid-phase Fe concentrations did not explain our batch sorption test results,though total extracted Fe appeared to be positively correlated with overall measured U sorption. Batch sorption test results were used to develop generalized composite surface complexation models that incorporated the full genericsorption potential of each sample, without detailedmore » mineralogiccharacterization. The resultant models provide U sorption parameters (site densities and equilibrium constants) for reactive transport modeling. The generalized composite surface complexation sorption models were calibrated to batch sorption data from three oxidized core samples using inverse modeling, and gave larger sorption parameters than just U sorption on the measured solidphase Fe. These larger sorption parameters can significantly influence reactive transport modeling, potentially increasing U attenuation. Because of the limited number of calibration points, inverse modeling required the reduction of estimated parameters by fixing two parameters. The best-fit models used fixed values for equilibrium constants, with the sorption site densities being estimated by the inversion process. While these inverse routines did provide best-fit sorption parameters, local minima and correlated parameters might require further evaluation. Despite our limited number of proxy samples, the procedures presented provide a valuable methodology to consider for sites where metal sorption parameters are required. Furthermore, these sorption parameters can be used in reactive transport modeling to assess downgradient metal attenuation, especially when no other

  3. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2004-2005 Annual Report.

    SciTech Connect (OSTI)

    Johnson, R.; McKinstry, C.; Cook, C.

    2005-02-01

    Fisheries. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions.

  4. The detection and characterization of natural fractures using P-wave reflection data, multicomponent VSP, borehole image logs and the in-situ stress field determination

    SciTech Connect (OSTI)

    Hoekstra, P.

    1995-04-01

    The objectives of this project are to detect and characterize fractures in a naturally fractured tight gas reservoir, using surface seismic methods, borehole imaging logs, and in-situ stress field data. Further, the project aims to evaluate the various seismic methods as to their effectiveness in characterizing the fractures, and to formulate the optimum employment of the seismic methods as regards fracture characterization.

  5. Characterization of radiation beams used to determinate the correction factor for a CyberKnife unit reference field using ionization chambers

    SciTech Connect (OSTI)

    Aragn-Martnez, Nestor Massillon-JL, Guerda; Gmez-Muoz, Arnulfo

    2014-11-07

    This paper aimed to characterize a 6 MV x-ray beam from a Varian iX linear accelerator in order to obtain the correction factors needed by the IAEA/AAPM new formalism{sup 1}. The experiments were performed in a liquid water phantom under different irradiation conditions: a) Calibration of the reference field of 10 cm 10 cm at 90 cm SSD and 10 cm depth was carried out according to the TRS-398 protocol using three ionization chambers (IC) calibrated in different reference laboratory and b) Measurement of the absorbed dose rate at 70 cm SSD and 10 cm depth in a 10 cm 10 cm and 5.4 cm 5.4 cm fields was obtained in order to simulate the CyberKnife conditions where maximum distance between the source and the detector is equal to 80 cm and the maximum field size is 6 cm diameter. Depending where the IC was calibrated, differences between 0.16% and 2.24% in the absorbed dose rate measured in the 10 cm 10 cm field at 90 cm SSD were observed, while for the measurements at 70 cm SSD, differences between 1.27% and 3.88% were obtained. For the 5.4 cm 5.4 cm field, the absorbed dose measured with the three ICs varies between 1.37% and 3.52%. The increase in the difference on the absorbed dose when decreasing the SSD could possibly be associated to scattering radiation generated from the collimators and/or the energy dependence of the ionization chambers to low-energy radiation. The results presented in this work suggest the importance of simulating the CyberKnife conditions using other linear accelerator for obtaining the correction factors as proposed by the IAEA/AAPM new formalism in order to measure the absorbed dose with acceptable accuracy.

  6. Net Test

    Energy Science and Technology Software Center (OSTI)

    2001-09-01

    Nettest is a secure, real-time network utility. The nettest framework is designed to incorporate existing and new network tests, and be run as a daemon or an interactive process. Requests for network tests are received via a SSL connection or the user interface and are authorized using a ACL list (in the future authorization using Akenti will also be supported). For tests that require coordination between the two ends of the test, Nettest establishes anmore » SSL connection to accomplish this coordination. A test between two remote computers can be requested via the user interlace if the Nettest daemon is running on both remote machines and the user is authorized. Authorization for the test is through a chain of trust estabtished by the nettest daemons. Nettest is responsible for determining if the test request is authorized, but it does nothing further to secure the test once the test is running. Currently the Nettest framework incorporates lperf-vl.2, a simple ping type test, and a tuned TCP test that uses a given required throughput and ping results to determine the round trip time to set a buffer size (based on the delay bandwidth product) and then performs an iperf TCP throughput test. Additional network test tools can be integrated into the Nettest framework in the future.« less

  7. Chief Joseph Kokanee Enhancement Project : Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grond Coulee Dam Third Powerplant Forebay.

    SciTech Connect (OSTI)

    Simmons, M.A.; McKinstry, C.A.; Simmons, C.S.

    2002-01-01

    Since 1995, the Colville Confederated Tribes have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC's Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the first year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory (PNNL). The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. Analysis of the effect of strobe lights on the distribution (numbers) and behavior of kokanee and rainbow trout was based on 51, 683 fish targets detected during the study period (June 30 through August 1, 2001). Study findings include the following: (1) Analysis of the count data indicated that significantly more fish were present when the lights were on compared to off. This was true for both the 24-hr tests as well as the 1-hr tests. Powerplant discharge, distance from lights, and date were significant factors in the analysis. (2) Behavioral results indicated that fish within 14 m of the lights were trying to avoid the lights by swimming across the lighted region or

  8. Long-Term Carbon Injection Field Test for 90% Mercury Removal for a PRB Unit a Spray Dryer and Fabric Filter

    SciTech Connect (OSTI)

    Sjostrom, Sharon; Amrhein, Jerry

    2009-04-30

    The power industry in the U.S. is faced with meeting regulations to reduce the emissions of mercury compounds from coal-fired plants. Injecting a sorbent such as powdered activated carbon (PAC) into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The purpose of this test program was to evaluate the long-term mercury removal capability, long-term mercury emissions variability, and operating and maintenance (O&M) costs associated with sorbent injection on a configuration being considered for many new plants. Testing was conducted by ADA Environmental Solutions (ADA) at Rocky Mountain Powers (RMP) Hardin Station through funding provided by DOE/NETL, RMP, and other industry partners. The Hardin Station is a new plant rated at 121 MW gross that was first brought online in April of 2006. Hardin fires a Powder River Basin (PRB) coal and is configured with selective catalytic reduction (SCR) for NOx control, a spray dryer absorber (SDA) for SO2 control, and a fabric filter (FF) for particulate control. Based upon previous testing at PRB sites with SCRs, very little additional mercury oxidation from the SCR was expected at Hardin. In addition, based upon results from DOE/NETL Phase II Round I testing at Holcomb Station and results from similarly configured sites, low native mercury removal was expected across the SDA and FF. The main goal of this project was metsorbent injection was used to economically and effectively achieve 90% mercury control as measured from the air heater (AH) outlet to the stack for a period of ten months. This goal was achieved with DARCO Hg-LH, Calgon FLUEPAC-MC PLUS and ADA Power PAC PREMIUM brominated activated carbons at nominal loadings of 1.52.5 lb/MMacf. An economic analysis determined the twenty-year levelized cost to be 0.87 mills/kW-hr, or $15,000/lb Hg removed. No detrimental effects on other equipment or plant operations were observed. The results of

  9. Electric field determination in the plasma-antenna boundary of a lower-hybrid wave launcher in Tore Supra through dynamic Stark-effect spectroscopy

    SciTech Connect (OSTI)

    Martin, Elijah H.; Goniche, M.; Klepper, C. Christopher; Hillairet, J.; Isler, Ralph C.; Bottereau, C.; Colas, L.; Ekedahl, A.; Panayotis, S.; Pegourie, B.; Lotte, Ph.; Colledani, G.; Caughman, J. B. O.; Harris, Jeffrey H.; Hillis, Donald Lee; Shannon, S.C.; Clairet, F.; Litaudon, X.

    2015-04-22

    Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be important, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies ($E_{LH}$) was announced (Phys. Rev. Lett., 110:215005, 2013). The measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the processing of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique is investigated. We find through an analysis of numerous Tore Supra pulses that good quantitative agreement exists between the measured and full-wave modeled $E_{LH}$ when the launched power exceeds 0.5MW. For low power the measurement becomes formidable utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.

  10. Electric field determination in the plasma-antenna boundary of a lower-hybrid wave launcher in Tore Supra through dynamic Stark-effect spectroscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martin, Elijah H.; Goniche, M.; Klepper, C. Christopher; Hillairet, J.; Isler, Ralph C.; Bottereau, C.; Colas, L.; Ekedahl, A.; Panayotis, S.; Pegourie, B.; et al

    2015-04-22

    Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be important, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies (more » $$E_{LH}$$) was announced (Phys. Rev. Lett., 110:215005, 2013). The measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the processing of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique is investigated. We find through an analysis of numerous Tore Supra pulses that good quantitative agreement exists between the measured and full-wave modeled $$E_{LH}$$ when the launched power exceeds 0.5MW. For low power the measurement becomes formidable utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.« less

  11. Electric field determination in the plasma-antenna boundary of a lower-hybrid wave launcher in Tore Supra through dynamic Stark-effect spectroscopy

    SciTech Connect (OSTI)

    Martin, Elijah H; Goniche, M.; Klepper, C Christopher; Hillairet, J.; Isler, Ralph C; Caughman, J. B. O.; Colas, L.; Ekedahl, A.; Colledani, G.; Lotte, Ph.; Litaudon, X; Hillis, Donald Lee; Harris, Jeffrey H

    2015-01-01

    Interaction of radio-frequency (RF) waves with the plasma in the near-field of a high-power wave launcher is now seen to be important, both in understanding the channeling of these waves through the plasma boundary and in avoiding power losses in the edge. In a recent Letter a direct non-intrusive measurement of a near antenna RF electric field in the range of lower hybrid (LH) frequencies ($E_{LH}$) was announced (Phys. Rev. Lett., 110:215005, 2013). The measurement was achieved through the fitting of Balmer series deuterium spectral lines utilizing a time dependent (dynamic) Stark effect model. In this article, the processing of the spectral data is discussed in detail and applied to a larger range of measurements and the accuracy and limitations of the experimental technique is investigated. It was found through an analysis of numerous Tore Supra pulses that good quantitative agreement exists between the measured and full-wave modeled $E_{LH}$ when the launched power exceeds 0.5MW. For low power the measurement becomes formidable utilizing the implemented passive spectroscopic technique because the spectral noise overwhelms the effect of the RF electric field on the line profile. Additionally, effects of the ponderomotive force are suspected at sufficiently high power.

  12. Small fields output factors measurements and correction factors determination for several detectors for a CyberKnife{sup Registered-Sign} and linear accelerators equipped with microMLC and circular cones

    SciTech Connect (OSTI)

    Bassinet, C.; Huet, C.; Derreumaux, S.; Baumann, M.; Trompier, F.; Roch, P.; Clairand, I.; Brunet, G.; Gaudaire-Josset, S.; Chea, M.; Boisserie, G.

    2013-07-15

    Purpose: The use of small photon fields is now an established practice in stereotactic radiosurgery and radiotherapy. However, due to a lack of lateral electron equilibrium and high dose gradients, it is difficult to accurately measure the dosimetric quantities required for the commissioning of such systems. Moreover, there is still no metrological dosimetric reference for this kind of beam today. In this context, the first objective of this work was to determine and to compare small fields output factors (OF) measured with different types of active detectors and passive dosimeters for three types of facilities: a CyberKnife{sup Registered-Sign} system, a dedicated medical linear accelerator (Novalis) equipped with m3 microMLC and circular cones, and an adaptive medical linear accelerator (Clinac 2100) equipped with an additional m3 microMLC. The second one was to determine the k{sub Q{sub c{sub l{sub i{sub n,Q{sub m{sub s{sub r}{sup f{sub c}{sub l}{sub i}{sub n},f{sub m}{sub s}{sub r}}}}}}}}} correction factors introduced in a recently proposed small field dosimetry formalism for different active detectors.Methods: Small field sizes were defined either by microMLC down to 6 Multiplication-Sign 6 mm{sup 2} or by circular cones down to 4 mm in diameter. OF measurements were performed with several commercially available active detectors dedicated to measurements in small fields (high resolution diodes: IBA SFD, Sun Nuclear EDGE, PTW 60016, PTW 60017; ionizing chambers: PTW 31014 PinPoint chamber, PTW 31018 microLion liquid chamber, and PTW 60003 natural diamond). Two types of passive dosimeters were used: LiF microcubes and EBT2 radiochromic films.Results: Significant differences between the results obtained by several dosimetric systems were observed, particularly for the smallest field size for which the difference in the measured OF reaches more than 20%. For passive dosimeters, an excellent agreement was observed (better than 2%) between EBT2 and LiF microcubes

  13. Cranfield Thermosiphon test DTS data

    SciTech Connect (OSTI)

    Barry Freifeld

    2015-01-19

    Thermal profile data acquired using Silixa Ultima Distributed Temperature Sensor (DTS) at Cranfield, MS field test

  14. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at the Grand Coulee Dam Third Powerplant Forebay, 2002-2003 Annual Report.

    SciTech Connect (OSTI)

    Johnson, R.; McKinstry, C.; Simmons, C.

    2003-01-01

    Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the second year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The 2002 study period extended from May 18 through July 30. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. The prototype system consisted of six strobe lights affixed to an aluminum frame suspended vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, were aimed to illuminate a specific region directly upstream of the barge. Three light level treatments were used: 6 of 6 lights on, 3 of 6 lights on, and all lights off. These three treatment conditions were applied for an entire 24-hr day and were randomly assigned within a 3-day block throughout the study period. A seven-transducer splitbeam

  15. The integration of geochemical, geological and engineering data to determine reservoir continuity in the Iagifu-Hedinia field, Papua New Guinea

    SciTech Connect (OSTI)

    Kaufman, R.L.; Eisenberg, L.I.; Fitzmorris, R.E.

    1995-08-01

    A series of oil and gas fields, including Iagifu-Hedinia, occur along the leading edge of the Papuan fold and thrust belt. Formed during Pliocene to Recent compression, they are structurally complex, and typically broken into multiple reservoir compartments. The presence of the karstic Darai Limestone at the surface over most of the fold belt prevents acquisition of useful seismic data. Reservoir mapping, and establishment of reservoir continuity, is therefore based soley on (1) surface geologic data, (2) drilling data; initially dipmeter and RFT pressure data, and subsequently well production histories, and (3) geochemical correlation of reservoir fluids. During appraisal of the Iagifu-Hedinia discovery, these complimentary data sets demonstrated that (1) a single hydrocarbon column existed above a flowing aquifer in the main block of Iagifu-Hedinia field, (2) a separate acuumulation existed in the Usano area. Geochemical data have suggested the presence of reservoir compartments where other data were missing or inconclusive. Subsequently-acquired production history data have confirmed the geochemically-based interpretations. Geochemical data suggest that oils at Iagifu-Hedinia have a common source. The slight differences in oil composition between reservoirs are likely due to multiple phases of expulsion from the same source rock and/or migration-fractionation.

  16. CX-100659 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Categorical Exclusion Determination CX-100659 Categorical Exclusion Determination An Intelligent Adaptable Monitoring Package for Marine Renewable Energy Projects Award Number: DE-EE0006788 CX(s) Applied: A9, B3.6 Water Power Program Date: 7/12/2016 Location(s): WA Office(s): Golden Field Office DOE is proposing to authorize the expenditure of federal funding by the University of Washington (UW) to develop and field test an integrated instrumentation package to be used for environmental

  17. CX-004249: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    249: Categorical Exclusion Determination CX-004249: Categorical Exclusion Determination Low Cost High Concentration Photovoltaic Power Systems for Utility Power Generation CX(s) Applied: B5.1 Date: 10/14/2010 Location(s): Aurora, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Amonix, Inc. proposes to use federal funding to install, and ultimately remove 7 to 9 power modules (Amonix 7700 High Concentration Photovoltaic systems) for field testing at SolarTac

  18. Band offset determination of mixed As/Sb type-II staggered gap heterostructure for n-channel tunnel field effect transistor application

    SciTech Connect (OSTI)

    Zhu, Y.; Jain, N.; Hudait, M. K.; Mohata, D. K.; Datta, S.; Lubyshev, D.; Fastenau, J. M.; Liu, A. K.

    2013-01-14

    The experimental study of the valence band offset ({Delta}E{sub v}) of a mixed As/Sb type-II staggered gap GaAs{sub 0.35}Sb{sub 0.65}/In{sub 0.7}Ga{sub 0.3}As heterostructure used as source/channel junction of n-channel tunnel field effect transistor (TFET) grown by molecular beam epitaxy was investigated by x-ray photoelectron spectroscopy (XPS). Cross-sectional transmission electron micrograph shows high crystalline quality at the source/channel heterointerface. XPS results demonstrate a {Delta}E{sub v} of 0.39 {+-} 0.05 eV at the GaAs{sub 0.35}Sb{sub 0.65}/In{sub 0.7}Ga{sub 0.3}As heterointerface. The conduction band offset was calculated to be {approx}0.49 eV using the band gap values of source and channel materials and the measured valence band offset. An effective tunneling barrier height of 0.21 eV was extracted, suggesting a great promise for designing a metamorphic mixed As/Sb type-II staggered gap TFET device structure for low-power logic applications.

  19. CX-100259 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Categorical Exclusion Determination CX-100259 Categorical Exclusion Determination Final Rule for Clarification for Energy Conservation Standards and Test Procedures for Fluorescent Lamp Ballasts RIN: 1904-AB99 CX(s) Applied: A5, B5.1 EERE- Buildings Technology Program Date: 06/01/2015 Location(s): Nationwide Office(s): Golden Field Office On January 6, 2015, DOE published a Notice of Proposed Rulemaking (NOPR) proposing clarifications to the test procedures for fluorescent lamp ballasts. THE

  20. Crane Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crane Safety Test Instructions: All Training and Testing Material is for LSU CAMD Users ONLY! Please enter your personal information in the spaces below. A minimum passing score is 80% (8 out of 10) This test can only be taken once in a thirty day period. All fields are required to be filled in. Login: Login First Name: Last Name: Phone Number: Contact: 1. The first thing you should do when using the crane is to: a. verify the battery power on the remote control. b. drag the load to the desired

  1. DOE - NNSA/NFO -- Atomic Testing Museum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Atomic Testing Museum NNSANFO Language Options U.S. DOENNSA - Nevada Field Office NATIONAL ATOMIC TESTING MUSEUM Photograph of Atomic Testing Museum The Nevada Test Site ...

  2. Fuel Assembly Shaker Test for Determining Loads on a PWR Assembly under Surrogate Normal Conditions of Truck Transport R0.1

    Office of Energy Efficiency and Renewable Energy (EERE)

    Results of testing employing surrogate instrumented rods (non-high-burnup, 17 x 17 PWR fuel assembly) to capture the response to the loadings experienced during normal conditions of transport indicate that strain- or stress-based failure of fuel rods seems unlikely; performance of high-burnup fuels continues to be assessed.

  3. A test of the 'one-point method' for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martin G. De Kauwe; Serbin, Shawn P.; Lin, Yan -Shih; Wright, Ian J.; Medlyn, Belinda E.; Crous, Kristine Y.; Ellsworth, David S.; Maire, Vincent; Prentice, I. Colin; Atkin, Owen K.; et al

    2015-12-31

    Here, simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate (Vcmax). Estimating this parameter using A–Ci curves (net photosynthesis, A, vs intercellular CO2 concentration, Ci) is laborious, which limits availability of Vcmax data. However, many multispecies field datasets include net photosynthetic rate at saturating irradiance and at ambient atmospheric CO2 concentration (Asat) measurements, from which Vcmax can be extracted using a ‘one-point method’.

  4. Building America Technology Solutions for New and Existing Homes Case Study: Field Testing an Unvented Roof with Fibrous Insulation and Tiles

    Broader source: Energy.gov [DOE]

    This case study by the U.S. Department of Energy’s Building America research team Building Science Corporation is a test implementation of an unvented tile roof assembly in a hot-humid climate (Orlando, Florida; zone 2A), insulated with air-permeable insulation (netted and blown fiberglass).

  5. SU-E-T-242: Monte Carlo Simulations Used to Test the Perturbation of a Reference Ion Chamber Prototype Used for Small Fields

    SciTech Connect (OSTI)

    Vazquez Quino, L; Calvo, O; Huerta, C; DeWeese, M

    2014-06-01

    Purpose: To study the perturbation due to the use of a novel Reference Ion Chamber designed to measure small field dosimetry (KermaX Plus C by IBA). Methods: Using the Phase-space files for TrueBeam photon beams available by Varian in IAEA-compliant format for 6 and 15 MV. Monte Carlo simulations were performed using BEAMnrc and DOSXYZnrc to investigate the perturbation introduced by a reference chamber into the PDDs and profiles measured in water tank. Field sizes ranging from 1×1, 2×2,3×3, 5×5 cm2 were simulated for both energies with and without a 0.5 mm foil of Aluminum which is equivalent to the attenuation equivalent of the reference chamber specifications in a water phantom of 30×30×30 cm3 and a pixel resolution of 2 mm. The PDDs, profiles, and gamma analysis of the simulations were performed as well as a energy spectrum analysis of the phase-space files generated during the simulation. Results: Examination of the energy spectrum analysis performed shown a very small increment of the energy spectrum at the build-up region but no difference is appreciated after dmax. The PDD, profiles and gamma analysis had shown a very good agreement among the simulations with and without the Al foil, with a gamma analysis with a criterion of 2% and 2mm resulting in 99.9% of the points passing this criterion. Conclusion: This work indicates the potential benefits of using the KermaX Plus C as reference chamber in the measurement of PDD and Profiles for small fields since the perturbation due to in the presence of the chamber the perturbation is minimal and the chamber can be considered transparent to the photon beam.

  6. Semivolatile organic (GC-MS) and inorganic analyses of groundwater samples during the hydrous pyrolysis/oxidation (HPO) field test in Visalia, CA, 1997

    SciTech Connect (OSTI)

    Chiarappa, M; Knauss, K G; Kumamoto, G; Leif, R N; Newmark, R L

    1998-02-05

    Hydrous pyrolysis/oxidation (HPO) is a novel, in situ, thermal-remediation technology that uses hot, oxygenated groundwater to completely oxidize a wide range of organic pollutants. A field demonstration of HPO was performed during the summer of 1997 at the Southern California Edison Pole Yard in Visalia, California, a site contaminated with creosote. The goal of the field experiment was to confirm the success of HPO under field remediation conditions. The groundwater was heated by steam injections, and oxygen was added by co-injection of compressed air. The progress of the HPO remediation process was evaluated by monitoring groundwater from multiple wells for dissolved oxygen, dissolved inorganic carbon, and dissolved organic contaminant levels. Analyses of groundwater chemistry allowed us to measure the concentrations of creosote components and to identify oxygenated intermediates produced by the HPO treatment. Dissolved organic carbon levels increased in response to steam injections because of the enhanced dissolution and mobilization of the creosote into the heated groundwater. Elevated concentrations of phenols and benzoic acid were measured in wells affected by the steam injections. Concentrations of other oxygenated compounds (i.e., fluorenone, anthrone, and 9,10-anthracenedione) increased in response to the steam injections. The production of these partially oxidized compounds is consistent with the aqueous-phase HPO reactions of creosote. Additional changes in the groundwater in response to steam injection were also consistent with the groundwater HPO chemistry. A drop in dissolved oxygen was observed in the aquifer targeted for the steam injections, and isotope shifts in the dissolved inorganic pool reflected the input of oxidized carbon derived from the creosote carbon.

  7. A test of the 'one-point method' for estimating maximum carboxylation capacity from field-measured, light-saturated photosynthesis

    SciTech Connect (OSTI)

    Martin G. De Kauwe; Serbin, Shawn P.; Lin, Yan -Shih; Wright, Ian J.; Medlyn, Belinda E.; Crous, Kristine Y.; Ellsworth, David S.; Maire, Vincent; Prentice, I. Colin; Atkin, Owen K.; Rogers, Alistair; Niinemets, Ulo; Meir, Patrick; Uddling, Johan; Togashi, Henrique F.; Tarvainen, Lasse; Weerasinghe, Lasantha K.; Evans, Bradley J.; Ishida, F. Yoko; Domingues, Tomas F.

    2015-12-31

    Here, simulations of photosynthesis by terrestrial biosphere models typically need a specification of the maximum carboxylation rate (Vcmax). Estimating this parameter using A–Ci curves (net photosynthesis, A, vs intercellular CO2 concentration, Ci) is laborious, which limits availability of Vcmax data. However, many multispecies field datasets include net photosynthetic rate at saturating irradiance and at ambient atmospheric CO2 concentration (Asat) measurements, from which Vcmax can be extracted using a ‘one-point method’.

  8. High field Nb/sub 3/Sn Axicell insert coils for the Mirror Fusion Test Facility-B (MFTF-B) axicell configuration. Final report

    SciTech Connect (OSTI)

    Baldi, R.W.; Tatro, R.E.; Scanlan, R.M.; Agarwal, K.L.; Bailey, R.E.; Burgeson, J.E.; Kim, I.K.; Magnuson, G.D.; Mallett, B.D.; Pickering, J.L.

    1984-03-01

    Two 12-tesla superconducting insert coils are being designed by General Dynamics Convair Division for the axicell regions of MFTF-B for Lawrence Livermore National Laboratory. A major challenge of this project is to ensure that combined fabrication and operational strains induced in the conductor are within stringent limitations of the relatively brittle Nb/sub 3/Sn superconductor filaments. These coils are located in the axicell region of MFTF-B. They have a clear-bore diameter of 36.195cm (14.25 inches) and consist of 27 double pancakes (i.e., 54 pancakes per coil) would on an electrically insulated 304LN stainless steel/bobbin helium vessel. Each pancake has 57 turns separated by G-10CR insulation. The complete winding bundle has 4.6 million ampere-turns and uniform current density of 2007 A/cm/sup 2/. In conjunction with the other magnets in the system, they produce a 12-tesla central field and a 12.52-tesla peak field. A multifilamentary Nb/sub 3/Sn conductor was selected to meet these requirements. The conductor consists of a monolithic insert soldered into a copper stabilizer. Sufficient cross-sectional area and work-hardening of the copper stabilizer has been provided for the conductor to self-react the electromagnetic Lorentz force induced hoop stresses with normal operational tensile strains less than 0.07 percent.

  9. Field calculations, single-particle tracking, and beam dynamics with space charge in the electron lens for the Fermilab Integrable Optics Test Accelerator

    SciTech Connect (OSTI)

    Noll, Daniel; Stancari, Giulio

    2015-11-17

    An electron lens is planned for the Fermilab Integrable Optics Test Accelerator as a nonlinear element for integrable dynamics, as an electron cooler, and as an electron trap to study space-charge compensation in rings. We present the main design principles and constraints for nonlinear integrable optics. A magnetic configuration of the solenoids and of the toroidal section is laid out. Singleparticle tracking is used to optimize the electron path. Electron beam dynamics at high intensity is calculated with a particle-in-cell code to estimate current limits, profile distortions, and the effects on the circulating beam. In the conclusions, we summarize the main findings and list directions for further work.

  10. Deep Downhole Seismic Testing for Earthquake Engineering Studies

    SciTech Connect (OSTI)

    Stokoe, Kenneth H.; Li, Song Cheng; Cox, Brady R.; Menq, Farn-Yuh; Rohay, Alan C.

    2008-10-17

    Downhole seismic testing is one field test that is commonly used to determine compression-wave (P) and shear-wave (S) velocity profiles in geotechnical earthquake engineering investigations. These profiles are required input in evaluations of the responses to earthquake shaking of geotechnical sites and structures at these sites. In the past, traditional downhole testing has generally involved profiling in the 30- to 150-m depth range. As the number of field seismic investigations at locations with critical facilities has increased, profiling depths have also increased. An improved downhole test that can be used for wave velocity profiling to depths of 300 to 600 m or more is presented.

  11. DETERMINATION OF THE QUANTITY OF I-135 RELEASED FROM THE AGR-1 TEST FUELS AT THE END OF ATR OPERATING CYCLE 138B

    SciTech Connect (OSTI)

    J. K. Hartwell; D. M. Scates; J. B. Walter; M. W. Drigert

    2007-05-01

    The AGR-1 experiment is a multiple fueled-capsule irradiation experiment being conducted in the Advanced Test Reactor (ATR) in support of the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and ended with shutdown of the reactor for a brief outage on February 10, 2007 at 0900. The AGR-1 experiment will continue cyclical irradiation for about 2.5 years. In order to allow estimation of the amount of radioiodine released during the first cycle, purge gas flow to all capsules continued for about 4 days after reactor shutdown. The FPMS data acquired during part of that shutdown flow period has been analyzed to elucidate the level of 135I released during the operating cycle.

  12. Duct Leakage Repeatability Testing

    SciTech Connect (OSTI)

    Walker, Iain; Sherman, Max

    2014-01-01

    Duct leakage often needs to be measured to demonstrate compliance with requirements or to determine energy or Indoor Air Quality (IAQ) impacts. Testing is often done using standards such as ASTM E1554 (ASTM 2013) or California Title 24 (California Energy Commission 2013 & 2013b), but there are several choices of methods available within the accepted standards. Determining which method to use or not use requires an evaluation of those methods in the context of the particular needs. Three factors that are important considerations are the cost of the measurement, the accuracy of the measurement and the repeatability of the measurement. The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards.

  13. Categorical Exclusion Determinations: Program and Field Offices...

    Energy Savers [EERE]

    Office Oak Ridge National Laboratory Site Office Office of Legacy Management, Grand Junction Office of River Protection Pacific Northwest Site Office Portsmouth Paducah ...

  14. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of High-Efficiency, Low-Cost Building-Integrated Photovoltaic Shingles Using Monocrystalline Silicon Thin Film Solar Cells Award Number: DE-EE0005436 CX(s) Applied: A9, B3.6...

  15. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site; NREL Tracking No. 15-011 Award Number: DE-AC36-08GO28308 CX(s) Applied: DOEEA-1968 National Renewable Energy Laboratory (NREL) Date: 042915 Location(s): CO Office(s):...

  16. Categorical Exclusion Determinations: Golden Field Office | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDIL Cleanroom; NREL Tracking No. 15-006 Award Number: DE-AC36-08GO28308 DOEEA-1968 National Renewable Energy Laboratory (NREL) Date: 02122015 Location(s): CO Office(s):...

  17. Effectiveness of 700{degrees}C thermal treatment on primary water stress corrosion sensitivity of Alloy 600 steam generator tubes: Laboratory tests and in field experience

    SciTech Connect (OSTI)

    Cattant, F.; Keroulas, F. de; Garriga-Majo, D.; Todeschini, P.; Van Duysen, J.C.

    1992-12-31

    In France, the steam generators of some 900 MWe reactors, and of all the 1 300 MWe reactors in service are equipped with heat treated Alloy 600 tubes. The purpose of the heat treatment, performed at 700{degrees}C, is to relieve the residual stresses. Generally, it also increases the SCC resistance of the alloy. A laboratory study has been carried out in order to gain a better understanding of the metallurgical factors influencing the PWSCC resistance of Alloy 600 after heat treatment. It has been shown that there are two kinds of tubes for which the heat treatment does not produce a microstructure having a potentially high resistance to SCC: tubes with a high carbon content (over 0.032%) or tubes mill-annealed at high temperatures and heavily cold-worked by the straightening. The analysis of the behaviour of french steam generators reveals that the heat treatment generally had the expected beneficial effect. However, the early cracking in service of some treated tubes led EDF (national power company) to proceed with removals. The majority of the cracked pulled-out tubes exhibit microstructures having a potentially high PWSCC sensibility in laboratory tests. It has been shown that these microstructures can be correlated to a high carbon content.

  18. Phase Field Fracture Mechanics.

    SciTech Connect (OSTI)

    Robertson, Brett Anthony

    2015-11-01

    For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.

  19. Duct Leakage Repeatability Testing

    SciTech Connect (OSTI)

    Walker, Iain; Sherman, Max

    2014-08-01

    The purpose of this report is to evaluate the repeatability of the three most significant measurement techniques for duct leakage using data from the literature and recently obtained field data. We will also briefly discuss the first two factors. The main question to be answered by this study is to determine if differences in the repeatability of these tests methods is sufficient to indicate that any of these methods is so poor that it should be excluded from consideration as an allowed procedure in codes and standards. The three duct leak measurement methods assessed in this report are the two duct pressurization methods that are commonly used by many practitioners and the DeltaQ technique. These are methods B, C and A, respectively of the ASTM E1554 standard. Although it would be useful to evaluate other duct leak test methods, this study focused on those test methods that are commonly used and are required in various test standards, such as BPI (2010), RESNET (2014), ASHRAE 62.2 (2013), California Title 24 (CEC 2012), DOE Weatherization and many other energy efficiency programs.

  20. Development of an integrated in-situ remediation technology. Topical report for task No. 12 and 13 entitled: Large scale field test of the Lasagna{trademark} process, September 26, 1994--May 25, 1996

    SciTech Connect (OSTI)

    Athmer, C.J.; Ho, Sa V.; Hughes, B.M.

    1997-04-01

    Contamination in low permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. This technology is an integrated in-situ treatment in which established geotechnical methods are used to instant degradation zones directly in the contaminated soil and electroosmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. This topical report summarizes the results of the field experiment conducted at the Paducah Gaseous Diffusion Plant in Paducah, KY. The test site covered 15 feet wide by 10 feet across and 15 feet deep with steel panels as electrodes and wickdrains containing granular activated carbon as treatment zone& The electrodes and treatment zones were installed utilizing innovative adaptation of existing emplacement technologies. The unit was operated for four months, flushing TCE by electroosmosis from the soil into the treatment zones where it was trapped by the activated carbon. The scale up from laboratory units to this field scale was very successful with respect to electrical parameters as weft as electroosmotic flow. Soil samples taken throughout the site before and after the test showed over 98% TCE removal, with most samples showing greater than 99% removal.

  1. Chief Joseph Kokanee Enhancement Project; Strobe Light Deterrent Efficacy Test and Fish Behavior Determination at Grand Coulee Dam Third Powerplant Forebay, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    Simmons, M.; Johnson, Robert; McKinstry, C.

    2006-03-01

    The construction of Grand Coulee and Chief Joseph dams on the Columbia River resulted in the complete extirpation of the anadromous fishery upstream of these structures. Today, this area is totally dependent upon resident fish resources to support local fisheries. The resident fishing is enhanced by an extensive stocking program for target species in the existing fishery, including kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss). The kokanee fishery in Lake Roosevelt has not been meeting the return goals set by fisheries managers despite the stocking program. Investigations of physical and biological factors that could affect the kokanee population found predation and entrainment had a significant impact on the fish population. In 1999 and 2000, walleye (Sander vitreum) consumed between 15% and 9%, respectively, of the hatchery kokanee within 41 days of their release, while results from a study in the late 1990s estimated that entrainment at Grand Coulee Dam could account for up to 30% of the total mortality of the stocked fish. To address the entrainment loss, the Bonneville Power Administration commissioned a study to determine if fish would avoid areas illuminated by strobe lights in the forebay of the third powerplant. This work was conducted by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). From 2002 through 2004, six strobe lights were suspended in the center of the opening to the third powerplant forebay during summer months. Results from those studies indicated that fish appeared to be attracted to the illuminated area but only at night and when flow conditions within the third powerplant forebay were minimal. However, small but consistent results from these studies indicated that under high flow conditions, fish might be avoiding the lights. The 2005 study was designed to examine whether, under high flow conditions near the penstock

  2. CX-007541: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Enhanced Geothermal Systems- Concept Testing and Development at the Raft River Geothermal Field, Idaho CX(s) Applied: A9, B3.1 Date: 01/10/2012 Location(s): Idaho Offices(s): Golden Field Office

  3. Electric and magnetic field reduction by alternative transmission line options

    SciTech Connect (OSTI)

    Stewart, J.R. ); Dale, S.J. ); Klein, K.W. )

    1991-01-01

    Ground level electric, and more recently magnetic, fields from overhead power transmission lines are increasingly important considerations in right of way specification, with states setting or planning to set edge of right of way limits. Research has been conducted in high phase order power transmission wherein six of twelve phases are used to transmit power in less physical space and with reduced electrical environmental effects than conventional designs. The first magnetic field testing, as reported in this paper, has verified predictive methods for determination of magnetic fields from high phase order lines. Based on these analytical methods, field profiles have been determined for lines of different phase order of comparable power capacity. Potential advantages of high phase order as a means of field mitigation are discussed. 10 refs., 12 figs., 3 tabs.

  4. CX-100651 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Categorical Exclusion Determination CX-100651 Categorical Exclusion Determination Dielectric Metasurface Concentrators Award Number: DE-EE0007341 CX(s) Applied: A9, B3.6 Solar Energy Technology Office Date: 6/13/2016 Location(s): CO Office(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide federal funding to the University of California San Diego (UCSD) for the design, optimization, fabrication and testing of the metasurface solar concentrators. Proposed

  5. CX-100662 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Categorical Exclusion Determination CX-100662 Categorical Exclusion Determination Thermally Conductive Backsheets (TCB) for Reduced Operating Temperatures Award Number: DE-EE0007548 CX(s) Applied: A9, B3.6 Solar Energy Technologies Office Date: 7/12/2016 Location(s): AZ Office(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide federal funding to Arizona State University (ASU) to fabricate, test, evaluate, and characterize lab-scale solar photovoltaic (PV)

  6. CX-008657: Categorical Exclusion Determination | Department of Energy

    Office of Environmental Management (EM)

    544: Categorical Exclusion Determination CX-008544: Categorical Exclusion Determination Hydrogen Generation and Fueling Station on the South Table Mountain Campus CX(s) Applied: B1.15 Date: 06/08/2012 Location(s): Colorado Offices(s): Golden Field Office This proposed project would be for the purchase, installation, and operation a hydrogen generation and fueling system (HGFS) at the Vehicle Testing and Integration Facility (VTIF) located at the National Renewable Energy Laboratory's (NREL's)

  7. CX-001102: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    02: Categorical Exclusion Determination CX-001102: Categorical Exclusion Determination Recovery Act: Clemson University Wind Turbine Testing Facility CX(s) Applied: A9 Date: 03/02/2010 Location(s): North Charleston, South Carolina Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Department of Energy is proposing to provide federal funding to the recipient to design, construct, commission and operate a state-of-the-art sustainable facility that permits full-scale highly

  8. CX-007816: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    816: Categorical Exclusion Determination CX-007816: Categorical Exclusion Determination Strategic Petroleum Reserve Bi-Annual Electrical Preventative Maintenance CX(s) Applied: B1.3 Date: 02/23/2012 Location(s): Texas, Louisiana Offices(s): Strategic Petroleum Reserve Field Office Subcontractor shall provide all transportation, test/repair equipment, labor and technical supervision required to perform bi-annual preventative maintenance of all electrical equipment at all Strategic Petroleum

  9. CX-008544: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    44: Categorical Exclusion Determination CX-008544: Categorical Exclusion Determination Hydrogen Generation and Fueling Station on the South Table Mountain Campus CX(s) Applied: B1.15 Date: 06/08/2012 Location(s): Colorado Offices(s): Golden Field Office This proposed project would be for the purchase, installation, and operation a hydrogen generation and fueling system (HGFS) at the Vehicle Testing and Integration Facility (VTIF) located at the National Renewable Energy Laboratory's (NREL's)

  10. CX-011570: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    570: Categorical Exclusion Determination CX-011570: Categorical Exclusion Determination Advances in the Recovery of Uranium from Seawater: Studies under Real Ocean Conditions CX(s) Applied: B3.16 Date: 11/14/2013 Location(s): Massachusetts Offices(s): Idaho Operations Office Woods Hole Oceanographic Institution proposes to study the effectiveness of uranium adsorbents using different field testing designs. CX-011570.pdf (15.77 KB) More Documents & Publications CX-012699: Categorical

  11. CX-100113 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    13 Categorical Exclusion Determination CX-100113 Categorical Exclusion Determination Lake Erie Energy Development Corporation Award Number: DE-EE0006714 CX(s) Applied: A9, B3.6 Wind Program Date: 11/14/2014 Location(s): OH Office(s): Golden Field Office The U.S. Department of Energy (DOE) proposing to provide federal funding to Lake Erie Development Corporation (LEEDCo) assess, through research, engineering and laboratory testing, the technical and cost effectiveness of the icebreaker

  12. CX-007388: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    388: Categorical Exclusion Determination CX-007388: Categorical Exclusion Determination Regional Test Center Project: Solar Technology Acceleration Center (SolarTAC) CX(s) Applied: B1.15, B1.31, B5.15 Date: 12/20/2011 Location(s): Colorado Offices(s): Golden Field Office The National Renewable Energy Laboratory (NREL) Concentrating Photovoltaics (CPV) and Concentrating Solar Power (CSP) programs are collaborating with MRI to expand the Solar Technology Acceleration Center (SolarTac) Site Use

  13. CX-011407: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hawaii National Marine Renewable Energy Center Wave Energy Test Site Environmental Testing at 30-meter Site CX(s) Applied: B5.25 Date: 11/26/2013 Location(s): Hawaii Offices(s): Golden Field Office

  14. CX-014396: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Deep Borehole Field Test Characterization Borehole Drilling and Testing, Pierce County North Dakota - Battelle Memorial Institute CX(s) Applied: B1.31Date: 12/07/2015 Location(s): IdahoOffices(s): Nuclear Energy

  15. Development of an integrated in-situ remediation technology. Draft topical report for Task {number_sign}7.2 entitled ``Field scale test`` (January 10, 1996--December 31, 1997)

    SciTech Connect (OSTI)

    Athmer, C.; Ho, S.V.; Hughes, B.M.

    1997-11-01

    Contamination in low-permeability soils poses a significant technical challenge to in-situ remediation efforts. Poor accessibility to the contaminants and difficulty in delivery of treatment reagents have rendered existing in-situ treatments such as bioremediation, vapor extraction, and pump and treat rather ineffective when applied to low permeability soils present at many contaminated sites. The technology is an integrated in-situ treatment in which established geotechnical methods are used to install degradation zones directly in the contaminated soil and electro-osmosis is utilized to move the contaminants back and forth through those zones until the treatment is completed. The present Topical Report for Task {number_sign}7.2 summarizes the Field Scale Test conducted by Monsanto Company, DuPont, and General Electric.

  16. Tank Manufacturing, Testing, Deployment and Field Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These slides were presented at the International Hydrogen Fuel and Pressure Vessel Forum on September 27 - 29, 2010, in Beijing, China. ihfpvnewhouse.pdf (5.48 MB) More Documents ...

  17. Demonstration and Field Test of airjacket technology

    SciTech Connect (OSTI)

    Faulkner, D.; Fisk, W.J.; Gadgil, A.J.; Sullivan, D.P.

    1998-06-01

    There are approximately 600,000 paint spray workers in the United States applying paints and coatings with some type of sprayer. Approximately 5% of these spray workers are in the South Coast Air Quality Management District (SCAQMD). These spray workers apply paints or other coatings to products such as bridges, houses, automobiles, wood and metal furniture, and other consumer and industrial products. The materials being sprayed include exterior and interior paints, lacquers, primers, shellacs, stains and varnishes. Our experimental findings indicate that the Airjacket does not significantly reduce the exposure of spray workers to paint fumes during HVLP spraying. The difference between ideal and actual spray paint procedures influence the mechanisms driving spray workers exposures to paint fumes and influence the viability of the Airjacket technology. In the ideal procedure, for which the Airjacket was conceived, the spray worker's exposure to paint fumes is due largely to the formation of a recirculating eddy between the spray worker and the object painted. The Airjacket ejects air to diminish and ventilate this eddy. In actual practice, exposures may result largely from directing paint upstream and from the bounce-back of the air/paint jet of the object being painted. The Airjacket, would not be expected to dramatically reduce exposures to paint fumes when the paint is not directed downstream or when the bounce-back of paint on the object creates a cloud of paint aerosols around the spray worker.

  18. Vehicle to Grid Communications Field Testing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. N HIGH-EXPLOSIVE FIELD TESTS

    National Nuclear Security Administration (NNSA)

    ... Nuclear Agency, 26 September 1979. 28. Green, W.E., Airborne Sampling and Analysis of ... Slade, D.H., Ed, Meteorology and Atomic Energy 1968, U.S. Atomic Energy Commission, Air ...

  20. PREPRINT I Field Air Injection Tests

    Office of Scientific and Technical Information (OSTI)

    ... b) 21.tL In(re rb) k (4) wherePb istile borehole injection pressure, rbthe borehole radius, andre the effective radius, orradius atwhichthe pressure returns totheambient value Pe. ...

  1. Package DX Units: Performance Optimization & Field Tests

    Office of Environmental Management (EM)

    Estimated 1.6 million legacy units operating at low efficiency levels 100,000 units at DoD facilities 20,000 buildings 100,000 units at USPS facilities 30,000 buildings ...

  2. E3T Emerging Technology Field Tests

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial Sector Outreach 1. Energy Efficiency (EE) project planning and marketing support 2. Site assessmentsenergy audits to evaluate customer opportunities for energy...

  3. CX-100603 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    03 Categorical Exclusion Determination CX-100603 Categorical Exclusion Determination NWTC Joint Industry Megawatt Scale Gearbox Field Tests; NREL Tracking No. 16-007 Award Number: DE-AC36-08GO28308 CX(s) Applied: DOE/EA-1914 National Renewable Energy Laboratory (NREL) Date: 05/04/2016 Location(s): CO Office(s): Golden Field Office BroadWind Energy and National Renewable Energy laboratory (NREL) researchers at the National Wind Technology Center (NWTC) are proposing a collaboration to investigate

  4. Clothes Washer Test Cloth Correction Factor Information

    Broader source: Energy.gov [DOE]

    This page contains the information used to determine the test cloth correction factors for each test cloth lot.

  5. METHOD OF TESTING THERMAL NEUTRON FISSIONABLE MATERIAL FOR PURITY

    DOE Patents [OSTI]

    Fermi, E.; Anderson, H.L.

    1961-01-24

    A process is given for determining the neutronic purity of fissionable material by the so-called shotgun test. The effect of a standard neutron absorber of known characteristics and amounts on a neutronic field also of known characteristics is measured and compared with the effect which the impurities derived from a known quantity of fissionable material has on the same neutronic field. The two readings are then made the basis of calculation from which the amount of impurities can be computed.

  6. Blade Testing Trends (Presentation)

    SciTech Connect (OSTI)

    Desmond, M.

    2014-08-01

    As an invited guest speaker, Michael Desmond presented on NREL's NWTC structural testing methods and capabilities at the 2014 Sandia Blade Workshop held on August 26-28, 2014 in Albuquerque, NM. Although dynamometer and field testing capabilities were mentioned, the presentation focused primarily on wind turbine blade testing, including descriptions and capabilities for accredited certification testing, historical methodology and technology deployment, and current research and development activities.

  7. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cieslewski, Grzegorz

    2014-09-28

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  8. High Temperature Evaluation of Tantalum Capacitors - Test 1

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Cieslewski, Grzegorz

    Tantalum capacitors can provide much higher capacitance at high-temperatures than the ceramic capacitors. This study evaluates selected tantalum capacitors at high temperatures to determine their suitability for you in geothermal field. This data set contains results of the first test where three different types of capacitors were evaluated at 260C.

  9. CX-003902: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    02: Categorical Exclusion Determination CX-003902: Categorical Exclusion Determination Small Wind Turbine Regional Test Center Windward Engineering, LLC in Utah - NREL Tracking Number 10-027 CX(s) Applied: A9, A11, B1.15, B3.1, B5.1 Date: 09/02/2010 Location(s): Spanish Fork, Utah Office(s): Energy Efficiency and Renewable Energy, Golden Field Office This proposed project is for National Renewable Energy Lab/Department of Energy (NREL/DOE) funding and expertise to establish a Regional Test

  10. CX-005986: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    986: Categorical Exclusion Determination CX-005986: Categorical Exclusion Determination Reedsport PowerBuoy 150 Deployment and Ocean Test Project CX(s) Applied: A9, B3.1, B5.1 Date: 05/26/2011 Location(s): Reedsport, Oregon Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Ocean Power Technologies is proposing to use Department of Energy funding to deploy and test their full scale 150 kilowatt PowerBuoy, a wave energy conversion technology in the Oregon Territorial Sea.

  11. Drum drop test report

    SciTech Connect (OSTI)

    McBeath, R.S.

    1995-02-28

    Testing was performed to determine actual damage to drums when dropped from higher than currently stacked elevations. The drum configurations were the same as they are placed in storage; single drums and four drums banded to a pallet. Maximum drop weights were selected based on successful preliminary tests. Material was lost from each of the single drum tests while only a small amount of material was lost from one of the pelletized drums. The test results are presented in this report. This report also provides recommendations for further testing to determine the appropriate drum weight which can be stored on a fourth tier.

  12. CHEMICAL SENSOR AND FIELD SCREENING TECHNOLOGY DEVELOPMENT: FUELS IN SOILS FIELD SCREENING METHOD VALIDATION

    SciTech Connect (OSTI)

    Susan S. Sorini; John F. Schabron

    1997-04-01

    A new screening method for fuel contamination in soils was recently developed as American Society for Testing and Materials (ASTM) Method D-583 1-95, Standard Test Method for Screening Fuels in Soils. This method uses low-toxicity chemicals and can be used to screen organic-rich soils. In addition, it is fast, easy, and inexpensive to perform. The screening method calls for extracting a sample of soil with isopropyl alcohol following treatment with calcium oxide. The resulting extract is filtered, and the ultraviolet absorbance of the extract is measured at 254 nm. Depending on the available information concerning the contaminant fuel type and availability of the contaminant fuel for calibration, the method can be used to determine the approximate concentration of fuel contamination, an estimated value of fuel contamination, or an indication of the presence or absence of fuel contamination. Fuels containing aromatic compounds, such as diesel fuel and gasoline, as well as other aromatic-containing hydrocarbon materials, such as motor oil, crude oil, and coal oil, can be determined. The screening method for fuels in soils was evaluated by conducting a collaborative study on the method and by using the method to screen soil samples at an actual field site. In the collaborative study, a sand and an organic soil spiked with various concentrations of diesel fuel were tested. Data from the collaborative study were used to determine the reproducibility (between participants) and repeatability (within participant) precision of the method for screening the test materials. The collaborative study data also provide information on the performance of portable field equipment versus laboratory equipment for performing the screening method and a comparison of diesel concentration values determined using the screening method versus a laboratory method. Data generated using the method to screen soil samples in the field provide information on the performance of the method in

  13. CX-006233: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Categorical Exclusion Determination CX-006233: Categorical Exclusion Determination El Paso County Geothermal Project at Fort Bliss CX(s) Applied: A9, B3.1 Date: 06/30/2011 Location(s): El Paso County, Texas Office(s): Energy Efficiency and Renewable Energy, Golden Field Office El Paso County would evaluate the commercial viability of low temperature geothermal resources in the McGregor test area (or other less known sites) on the Fort Bliss Military Reservation to determine if these resources

  14. Contractor for geopressured-geothermal sites: Final contract report, Volume 1, fiscal years 1986--1990 (5 years), testing of wells through October 1990

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    Field tests and studies were conducted to determine the production behavior of geopressured-geothermal reservoirs and their potential as future energy sources. Results are presented for Gladys McCall Site, Pleasant Bayou Site, and Hulin Site.

  15. Field evaluation of hazardous waste site bioassessment protocols

    SciTech Connect (OSTI)

    Thomas, J.M.; Cline, J.F.; Cushing, C.E.; McShane, M.C.; Rogers, J.E.; Rogers, L.E.; Simpson, J.C.; Skalski, J.R.

    1983-04-01

    The goals were: (1) determine the variability (both within and between laboratories) for the various bioassay procedures using contaminated soil samples from the Rocky Mountain Arsenal (RMA); (2) assess variability within and between plots for several assessment techniques (for sampling small mammals, plants, insects including honeybees and microarthropods) so that field studies could be designed to detect a defined biotic change; (3) establish three field plant transects which are apparently (a) contaminated, (b) appear contaminated and (c) could serve as a control; (4) assess the feasibility (in the laboratory) of using Basin F water to contaminate RMA soil artificially, and to supply information for the design of a field plot study in 1983; (5) attempt to obtain preliminary data on any promising field or laboratory bioassessment techniques not currently mentioned in the statement of work; and (6) obtain field data to assess the ecological status of RMA lakes and compare these observations to results from bioassessment testing.

  16. NREL: Wind Research - Regional Test Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To increase the availability of small wind turbine testing and share field expertise, the ... capable of providing certification testing services to the small wind turbine industry. ...

  17. Rapid prototype and test

    SciTech Connect (OSTI)

    Gregory, D.L.; Hansche, B.D.

    1996-06-01

    In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

  18. Experimental and semiempirical method to determine the Pauli-limiting field in quasi-two-dimensional superconductors as applied to κ-(BEDT-TTF)2Cu(NCS)2: strong evidence of a FFLO state

    SciTech Connect (OSTI)

    Agosta, C. C.; Jin, J.; Coniglio, W. A.; Smith, B. E.; Cho, K.; Mihut, I.; Martin, C.; Tozer, S. W.; Murphy, T. P.; Palm, E. C.; Schlueter, J. A.; Kurmoo, M.

    2012-01-01

    We present upper critical field data for {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} with the magnetic field close to parallel and parallel to the conducting layers. We show that we can eliminate the effect of vortex dynamics in these layered materials if the layers are oriented within 0.3-inch of parallel to the applied magnetic field. Eliminating vortex effects leaves one remaining feature in the data that corresponds to the Pauli paramagnetic limit (H{sub p}). We propose a semiempirical method to calculate the H{sub p} in quasi-2D superconductors. This method takes into account the energy gap of each of the quasi-2D superconductors, which is calculated from specific-heat data, and the influence of many-body effects. The calculated Pauli paramagnetic limits are then compared to critical field data for the title compound and other organic conductors. Many of the examined quasi-2D superconductors, including the above organic superconductors and CeCoIn{sub 5}, exhibit upper critical fields that exceed their calculated H{sub p} suggesting unconventional superconductivity. We show that the high-field low-temperature state in {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} is consistent with the Fulde-Ferrell-Larkin-Ovchinnikov state.

  19. Sensitivity Test Analysis

    Energy Science and Technology Software Center (OSTI)

    1992-02-20

    SENSIT,MUSIG,COMSEN is a set of three related programs for sensitivity test analysis. SENSIT conducts sensitivity tests. These tests are also known as threshold tests, LD50 tests, gap tests, drop weight tests, etc. SENSIT interactively instructs the experimenter on the proper level at which to stress the next specimen, based on the results of previous responses. MUSIG analyzes the results of a sensitivity test to determine the mean and standard deviation of the underlying population bymore » computing maximum likelihood estimates of these parameters. MUSIG also computes likelihood ratio joint confidence regions and individual confidence intervals. COMSEN compares the results of two sensitivity tests to see if the underlying populations are significantly different. COMSEN provides an unbiased method of distinguishing between statistical variation of the estimates of the parameters of the population and true population difference.« less

  20. Categorical Exclusion Determinations: A6 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 2, 2016 CX-100560 Categorical Exclusion Determination Test Procedures for Measuring ... Determination Test Procedures for Measuring Energy Efficiency of Consumer Products ...

  1. Report on field experiment program lithium bromide absorption chiller: Field gas conditioning project, Grayson County, Texas. Topical report, May 1991-December 1994

    SciTech Connect (OSTI)

    Lane, M.J.; Kilbourn, R.A.; Huey, M.A.

    1995-12-01

    The primary objective of the project was to determine the applicability of using commercial absorption air conditioning technology in an oil and gas field environment to condition natural gas to meet contractual limitations. Operational and maintenance requirements were documented throughout the test period of 1992 through 1994.

  2. Test report for core drilling ignitability testing

    SciTech Connect (OSTI)

    Witwer, K.S.

    1996-08-08

    Testing was carried out with the cooperation of Westinghouse Hanford Company and the United States Bureau of Mines at the Pittsburgh Research Center in Pennsylvania under the Memorandum of Agreement 14- 09-0050-3666. Several core drilling equipment items, specifically those which can come in contact with flammable gasses while drilling into some waste tanks, were tested under conditions similar to actual field sampling conditions. Rotary drilling against steel and rock as well as drop testing of several different pieces of equipment in a flammable gas environment were the specific items addressed. The test items completed either caused no ignition of the gas mixture, or, after having hardware changes or drilling parameters modified, produced no ignition in repeat testing.

  3. CX-012586: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    CX-012586: Categorical Exclusion Determination FabricationMaintenance Shop and Environmental Test Activities in the SRNL Nonproliferation Technologies Section Engineering ...

  4. CX-010215: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Laufer Wind Group National Wind Technology Center Structure Lighting Tests CX(s) Applied: B1.31, B5.15 Date: 05/30/2013 Location(s): Colorado Offices(s): Golden Field Office

  5. CX-009564: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    University of New Haven Solar Testing and Training Lab CX(s) Applied: B3.6 Date: 12/12/2012 Location(s): Connecticut Offices(s): Golden Field Office

  6. CX-003854: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    University of New Haven Solar Testing and Training Lab (Connecticut)CX(s) Applied: B5.1Date: 09/02/2010Location(s): New Haven, ConnecticutOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  7. CX-008589: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Clearwater Campus District Cooling - Activity 3 Geothermal Test Bores CX(s) Applied: A9, B3.1 Date: 07/23/2012 Location(s): Florida Offices(s): Golden Field Office

  8. CX-008585: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Solar TAC - Thermal Energy Storage Test Facility CX(s) Applied: A9, A11, B1.15, B3.6 Date: 07/12/2012 Location(s): Colorado Offices(s): Golden Field Office

  9. CX-009570: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Hyundai Fuel Cell Electric Vehicle Testing, Data Collection and Validation Fleet CX(s) Applied: A9 Date: 12/19/2012 Location(s): Michigan, California Offices(s): Golden Field Office

  10. CX-008216: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Design and Fabrication of 30 Kilowatt Molten Salt Thermal Storage Test Unit CX(s) Applied: B3.6 Date: 04/24/2012 Location(s): Colorado Offices(s): Golden Field Office

  11. CX-005610: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Soil Amendment Product for Oilfield Brine Contaminated Soil ? Field Testing Part IICX(s) Applied: B3.7Date: 04/12/2011Location(s): Rosalia, KansasOffice(s): Fossil Energy, National Energy Technology Laboratory

  12. CX-004274: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Soil Amendment Product for Oilfield Brine Contaminated Soil ? Field Testing Part IICX(s) Applied: B3.7Date: 10/19/2010Location(s): Blackwell, OklahomaOffice(s): Fossil Energy, National Energy Technology Laboratory

  13. CX-000871: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    West Hackberry Annual Pressure Safety Valve TestingCX(s) Applied: B1.3Date: 02/05/2010Location(s): West Hackberry, LouisianaOffice(s): Fossil Energy, Strategic Petroleum Reserve Field Office

  14. CX-008907: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Field Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing Wells CX(s) Applied: B3.6 Date: 08/29/2012 Location(s): Montana Offices(s): National Energy Technology Laboratory

  15. CX-008908: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Field Test and Evaluation of Engineered Biomineralization Technology for Sealing Existing Wells CX(s) Applied: B3.6, B3.11 Date: 08/29/2012 Location(s): Alabama Offices(s): National Energy Technology Laboratory

  16. CX-007045: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Small-Scale Field Test Demonstrating Carbon Dioxide Sequestration in Arbuckle Saline AquiferCX(s) Applied: A1, A9Date: 09/20/2011Location(s): Lawrence, KansasOffice(s): Fossil Energy, National Energy Technology Laboratory

  17. CX-005226: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Field Testing and Diagnostics of Radial-Jet Well-Stimulation for Enhanced Oil Recovery from Marginal Reserves Date: 02/11/2011Location(s): The Woodlands, TexasOffice(s): Fossil Energy, National Energy Technology Laboratory

  18. CX-012008: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    National Wind Technology Center Acoustic Propagation Testing CX(s) Applied: B1.3 Date: 04/23/2014 Location(s): Colorado Offices(s): Golden Field Office

  19. CX-007857: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development and Endurance Testing of SLH Timing Belt Powertrain in Hydraulic Laboratory Environment CX(s) Applied: A9, B3.6 Date: 01/26/2012 Location(s): Massachusetts Offices(s): Golden Field Office

  20. CX-100134 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Test Procedures for Measuring Energy Efficiency of Consumer Products and Industrial Equipment CX(s) Applied: A5, A6 Date: 12/17/2014 Location(s): Nationwide Office(s): Golden Field Office

  1. CX-012114: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Test Procedures for Measuring Energy Efficiency of Consumer Products and Industrial Equipment CX(s) Applied: A5, A6 Date: 02/19/2014 Location(s): CX: none Offices(s): Golden Field Office

  2. CX-004529: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Abrasion Testing of Critical Components of Hydrokinetic DevicesCX(s) Applied: A9, B3.6Date: 11/29/2010Location(s): Anchorage, AlaskaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  3. CX-013330: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Close Big Hill Anhydrite Pond 9- Pilot Test Temporary Pipe Re-route CX(s) Applied: B3.6Date: 01/13/2015 Location(s): TexasOffices(s): Strategic Petroleum Reserve Field Office

  4. CX-013885: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    BH Anhydrite Pond Sample Collection and Analysis - Pilot Test and Full Pond Chlorides Wash CX(s) Applied: B1.3Date: 07/06/2015 Location(s): None ProvidedOffices(s): Strategic Petroleum Reserve Field Office

  5. CX-013884: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    BH Anhydrite Pond Chlorides Wash - Pilot Test and Full Pond Chlorides Wash CX(s) Applied: B1.3Date: 07/06/2015 Location(s): None ProvidedOffices(s): Strategic Petroleum Reserve Field Office

  6. Categorical Exclusion Determinations: B3.7 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    7 Categorical Exclusion Determinations: B3.7 Existing Regulations B3.7: New terrestrial infill exploratory and experimental wells Siting, construction, and operation of new terrestrial infill exploratory and experimental (test) wells, for either extraction or injection use, in a locally characterized geological formation in a field that contains existing operating wells, properly abandoned wells, or unminable coal seams containing natural gas, provided that the site characterization has verified

  7. CX-012121: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Notice of Preliminary Determination of Energy Savings for ANSI/ASHRAE/IES Standard 90.1-2013 CX(s) Applied: A6 Date: 04/25/2014 Location(s): CX: none Offices(s): Golden Field Office

  8. CX-100604 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Final Determination of Coverage for Miscellaneous Refrigeration Products RIN 1904-AC66 CX(s) Applied: A6 EERE-Buildings Technology Program Date: 05/04/2016 Location(s): Nationwide Office(s): Golden Field Office

  9. CX-100474 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Final Determination of Coverage for Miscellaneous Refrigeration Products RIN 1904-AC66 CX(s) Applied: A6 EERE-Buildings Technology Program Date: 02/18/2016 Location(s): Nationwide Office(s): Golden Field Office

  10. Forklift Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forklift Safety Test Instructions: All Training and Testing Material is for LSU CAMD Users ... A minimum passing score is 80% (8 out of 10) This test can only be taken once in a thirty ...

  11. CX-100106: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Design and Field Testing of Manufactural Advanced Low-Cost Receiver for Parabolic Trough Solar Power Award Number: DE-EE0006813 CX(s) Applied: A9, B3.6 Date: 10/16/2014 Location(s): Vermont Office(s): Golden Field Office

  12. CX-100079: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    STM Field Testing Laboratory Building Exterior Upgrade – NREL Tracking No. 14-022 Award Number: DE-AC36-08GO28308 CX(s) Applied: DOE/EA 1440 National Renewable Energy Laboratory Date: 10/02/2014 Location(s): Colorado Office(s): Golden Field Office

  13. CX-011090: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Heating, Ventilation, and Air Conditioning Upgrades of the Field Test Laboratory Building and the Solar Energy Research Facility at the National Renewable Energy Laboratory South Table Mountain Campus CX(s) Applied: B1.16 Date: 09/13/2013 Location(s): Colorado Offices(s): Golden Field Office

  14. CX-006235: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Enhanced Geothermal Systems - Concept Testing and Development at the Raft River Geothermal Field, IdahoCX(s) Applied: A9, B3.1, B5.12Date: 07/05/2011Location(s): Cassia County, IdahoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  15. CX-005551: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Field Test Laboratory Building 158-03 Install Condensing UnitCX(s) Applied: B1.4, B1.16Date: 04/08/2011Location(s): Golden, ColoradoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  16. CX-002928: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Enhanced Geothermal Systems - Concept Testing and Development at the Raft River Geothermal Field, Idaho (non-American Recovery and Reinvestment Act)CX(s) Applied: B3.1, B5.1Date: 07/02/2010Location(s): Cassia County, IdahoOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  17. Lustre Tests

    Energy Science and Technology Software Center (OSTI)

    2007-08-31

    Lustre-tests is a package of regression tests for the Lustre file system containing I/O workloads representative of problems discovered on production systems.

  18. 500-kW DCHX pilot-plant evaluation testing

    SciTech Connect (OSTI)

    Hlinak, A.; Lee, T.; Loback, J.; Nichols, K.; Olander, R.; Oshmyansky, S.; Roberts, G.; Werner, D.

    1981-10-01

    Field tests with the 500 kW Direct Contact Pilot Plant were conducted utilizing brine from well Mesa 6-2. The tests were intended to develop comprehensive performance data, design criteria, and economic factors for the direct contact power plant. The tests were conducted in two phases. The first test phase was to determine specific component performance of the DCHX, turbine, condensers and pumps, and to evaluate chemical mass balances of non-condensible gases in the IC/sub 4/ loop and IC/sub 4/ in the brine stream. The second test phase was to provide a longer term run at nearly fixed operating conditions in order to evaluate plant performance and identify operating cost data for the pilot plant. During these tests the total accumulated run time on major system components exceeded 1180 hours with 777 hours on the turbine prime mover. Direct contact heat exchanger performance exceeded the design prediction.

  19. Field observations and lessons learned

    SciTech Connect (OSTI)

    Nielsen, Joh B

    2010-01-01

    This presentation outlines observations and lessons learned from the Megaports program. It provides: (1) details of field and technical observations collected during LANL field activities at ports around the world and details of observations collected during radiation detections system testing at Los Alamos National Laboratory; (2) provides suggestions for improvement and efficiency; and (3) discusses possible program execution changes for more effective operations.

  20. CERTS Microgrid Laboratory Test Bed

    SciTech Connect (OSTI)

    Eto, Joe; Lasseter, Robert; Schenkman, Ben; Stevens, John; Klapp, Dave; Volkommer, Harry; Linton, Ed; Hurtado, Hector; Roy, Jean

    2009-06-18

    The objective of the CERTS Microgrid Test Bed project was to enhance the ease of integrating energy sources into a microgrid. The project accomplished this objective by developing and demonstrating three advanced techniques, collectively referred to as the CERTS Microgrid concept, that significantly reduce the level of custom field engineering needed to operate microgrids consisting of generating sources less than 100kW. The techniques comprising the CERTS Microgrid concept are: 1) a method for effecting automatic and seamless transitions between grid-connected and islanded modes of operation, islanding the microgrid's load from a disturbance, thereby maintaining a higher level of service, without impacting the integrity of the utility's electrical power grid; 2) an approach to electrical protection within a limited source microgrid that does not depend on high fault currents; and 3) a method for microgrid control that achieves voltage and frequency stability under islanded conditions without requiring high-speed communications between sources. These techniques were demonstrated at a full-scale test bed built near Columbus, Ohio and operated by American Electric Power. The testing fully confirmed earlier research that had been conducted initially through analytical simulations, then through laboratory emulations,and finally through factory acceptance testing of individual microgrid components. The islanding and resychronization method met all Institute of Electrical and Electronics Engineers Standard 1547 and power quality requirements. The electrical protection system was able to distinguish between normal and faulted operation. The controls were found to be robust under all conditions, including difficult motor starts and high impedance faults. The results from these tests are expected to lead to additional testing of enhancements to the basic techniques at the test bed to improve the business case for microgrid technologies, as well to field demonstrations

  1. CX-011096: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Wave Energy Test - New Zealand Multi-Mode Technology Demonstration at the US Navy's Wave Energy Test Site CX(s) Applied: B3.6 Date: 09/19/2013 Location(s): Oregon Offices(s): Golden Field Office

  2. CX-100722 Categorical Exclusion Determination | Department of Energy

    Office of Environmental Management (EM)

    2 Categorical Exclusion Determination CX-100722 Categorical Exclusion Determination Development of a novel, near real time approach to geothermal seismic exploration and Monitoring Via Ambient Seismic Noise Interferometry Award Number: DE-EE0007699 CX(s) Applied: A9, B3.1 Geothermal Technologies Office Date: 8/29/2016 Location(s): TX Office(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide federal funding to Baylor University to build and test a Raspberry Pi

  3. CX-100732 Categorical Exclusion Determination | Department of Energy

    Office of Environmental Management (EM)

    2 Categorical Exclusion Determination CX-100732 Categorical Exclusion Determination Achieving Ubiquitous Solar Through Market Transformation and Grid Integration Award Number: DE-EE0007589 CX(s) Applied: A9, A11, B3.6 Solar Energy Technologies Office Date: 8/18/2016 Location(s): MA Office(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide federal funding to Genbright LLC to develop and test software for a scalable commercial platform capable of integrating solar

  4. CX-100734 Categorical Exclusion Determination | Department of Energy

    Office of Environmental Management (EM)

    4 Categorical Exclusion Determination CX-100734 Categorical Exclusion Determination Multi-Scale Ordered Cell Structure for Cost Effective Production of Hydrogen by HTWS Award Number: DE-EE0007645 CX(s) Applied: A9, B3.6 Fuel Cell Technologies Office Date: 8/19/2016 Location(s): UT Office(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide federal funding to Ceramatec, Inc. (Ceramatec) to develop and test advanced high temperature water splitting (HTWS) stacks for

  5. CX-004656: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Categorical Exclusion Determination CX-004656: Categorical Exclusion Determination Small Wind Turbine Regional Test Center - Otisco, New York; National Renewable Energy Laboratory Tracking Number 10-028 CX(s) Applied: A9, A11, B1.15, B3.1, B5.1 Date: 12/06/2010 Location(s): Otisco, New York Office(s): Energy Efficiency and Renewable Energy, Golden Field Office This proposed project is for National Renewable Energy Laboratory/Department of Energy funding and expertise to establish a Regional

  6. CX-005428: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    28: Categorical Exclusion Determination CX-005428: Categorical Exclusion Determination Improved Structure and Fabrication of Large High-Power Kinetic Hydropower System Rotors -Year 2 CX(s) Applied: A9, B3.1, B5.1 Date: 03/17/2011 Location(s): New York Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Verdant Power will use the Department of Energy funding to design and test, both in lab and in-water, a next generation advanced waterpower technology - large, high power

  7. CX-011127: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    127: Categorical Exclusion Determination CX-011127: Categorical Exclusion Determination Natural Refrigerant High Performance Heat Pump for Commercial Applications CX(s) Applied: B3.6 Date: 08/28/2013 Location(s): Tennessee Offices(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide federal funding to S-Ram Dynamics to design, fabricate and test an air source heat pump targeted for heating, ventilation, and air conditioning purposes. CX-011127.pdf (410.37 KB) More

  8. CX-100316 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Categorical Exclusion Determination CX-100316 Categorical Exclusion Determination NREL- NWTC Site 3.1 Sonic Outdoor Test Stand: NREL Tracking No. 15-023 Award Number: DE-AC36-08GO28308 CX(s) Applied: DOE/EA-1914 National Renewable Energy Laboratory (NREL) Date: 07/28/15 Location(s): CO Office(s): Golden Field Office The U.S. Department of Energy National Renewable Energy Laboratory (NREL) is proposing to install a short meteorological (met) tower at site 3.1 at the National Wind Technology

  9. CX-100380 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    80 Categorical Exclusion Determination CX-100380 Categorical Exclusion Determination Predictive Models and Novel Accelerated Tests for the Reliability of Front-Contact and Back-Contact Cell Metallization and Solder Joints in Photovoltaic Modules Award Number: DE-EE0007139 CX(s) Applied: A9, B3.6, B5.16 Solar Energy Technologies Office Date: 09/23/2015 Location(s): CA Office(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide federal funding to SunPower Corporation

  10. CX-100631 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    31 Categorical Exclusion Determination CX-100631 Categorical Exclusion Determination Low-Cost Nanostructured Substrates for Efficient Epitaxial Lift-Off of III-V Solar Cells Award Number: DE-EE0007369 CX(s) Applied: A9, B3.6, B3.15 Solar Energy Technologies Office Date: 4/8/2016 Location(s): CA Office(s): Golden Field Office The proposed project activities would include indoor laboratory work to design, fabricate and test a solar cell grown on nanostructured substrate. Project activities would

  11. CX-100639 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Categorical Exclusion Determination CX-100639 Categorical Exclusion Determination Algae Production CO2 Absorber with Immobilized Carbonic Anhydrase Award Number: DE-EE0007092 CX(s) Applied: A9, B3.6, B5.15 Bioenergy Technologies Office Date: 6/2/2016 Location(s): CA Office(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide federal funding to Global Algae Innovations (GAI) to develop a small-scale absorber system that would be designed, built, and tested. It

  12. Assuring the Quality of Test Results in the Field of Nuclear Techniques and Ionizing Radiation. The Practical Implementation of Section 5.9 of the EN ISO/IEC 17025 Standard

    SciTech Connect (OSTI)

    Cucu, Daniela; Woods, Mike

    2008-08-14

    The paper aims to present a practical approach for testing laboratories to ensure the quality of their test results. It is based on the experience gained in assessing a large number of testing laboratories, discussing with management and staff, reviewing results obtained in national and international PTs and ILCs and exchanging information in the EA laboratory committee.According to EN ISO/IEC 17025, an accredited laboratory has to implement a programme to ensure the quality of its test results for each measurand. Pre-analytical, analytical and post-analytical measures shall be applied in a systematic manner. They shall include both quality control and quality assurance measures.When designing the quality assurance programme a laboratory should consider pre-analytical activities (like personnel training, selection and validation of test methods, qualifying equipment), analytical activities ranging from sampling, sample preparation, instrumental analysis and post-analytical activities (like decoding, calculation, use of statistical tests or packages, management of results).Designed on different levels (analyst, quality manager and technical manager), including a variety of measures, the programme shall ensure the validity and accuracy of test results, the adequacy of the management system, prove the laboratory's competence in performing tests under accreditation and last but not least show the comparability of test results.Laboratory management should establish performance targets and review periodically QC/QA results against them, implementing appropriate measures in case of non-compliance.

  13. Specific Heat of Ce{sub 0.8}La{sub 0.2}Al{sub 3} in Magnetic Fields: A Test of the Anisotropic Kondo Picture

    SciTech Connect (OSTI)

    Pietri, R.; Ingersent, K.; Andraka, B.

    2001-02-05

    The specific heat C of Ce{sub 0.8}La {sub 0.2}Al{sub 3} has been measured as a function of temperature T in magnetic fields up to 14T. A large peak in C at 2.3K has recently been ascribed to an anisotropic Kondo effect in this compound. A 14-T field depresses the temperature of the peak by only 0.2K, but strongly reduces its height. The corresponding peak in C/T shifts from 2.1K at zero field to 1.7K at 14T. The extrapolated specific heat coefficient {gamma}=lim/T{yields}0 C/T increases with field over the range studied. We show that these trends are inconsistent with the anisotropic Kondo model.

  14. Golden Field Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Department of Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado 80401-3393 FINDING OF NO SIGNIFICANT IMPACT UNIVERSITY OF MAINE'S DEEPWATER OFFSHORE FLOATING WIND TURBINE TESTING AND DEMONSTRATION PROJECT - CASTINE DOE/EA-1792-S1 AGENCY: U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The U.S. Department of Energy (DOE) has completed a Supplemental Environmental Assessment (Supplemental EA)

  15. CX-010119: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    the Subsurface Applied Field Research Initiative (ABRS AFRI)". SRNL will perform a humate injection test in a monitoring well downgradient of the seepage basins at the FHWMF to...

  16. Solar Energy Education. Home economics: teacher's guide. Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home economics: teacher's guide. Field test edition. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Home economics: teacher's guide. Field ...

  17. Solar Energy Education. Industrial arts: teacher's guide. Field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial arts: teacher's guide. Field test edition. Includes glossary Citation Details In-Document Search Title: Solar Energy Education. Industrial arts: teacher's guide. Field ...

  18. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, S.E.

    1998-03-03

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays. 11 figs.

  19. Pulsed hybrid field emitter

    DOE Patents [OSTI]

    Sampayan, Stephen E.

    1998-01-01

    A hybrid emitter exploits the electric field created by a rapidly depoled ferroelectric material. Combining the emission properties of a planar thin film diamond emitter with a ferroelectric alleviates the present technological problems associated with both types of emitters and provides a robust, extremely long life, high current density cathode of the type required by emerging microwave power generation, accelerator technology and display applications. This new hybrid emitter is easy to fabricate and not susceptible to the same failures which plague microstructure field emitter technology. Local electrode geometries and electric field are determined independently from those for optimum transport and brightness preservation. Due to the large amount of surface charge created on the ferroelectric, the emitted electrons have significant energy, thus eliminating the requirement for specialized phosphors in emissive flat-panel displays.

  20. Field Evaluation of Four Novel Roof Designs for Energy-Efficient Manufactured Homes

    SciTech Connect (OSTI)

    Levy, E.; Dentz, J.; Ansanelli, E.; Barker, G.; Rath, P.; Dadia, D.

    2015-12-01

    A five-bay roof test structure was built, instrumented and monitored in an effort to determine through field testing and analysis the relative contributions of select technologies toward reducing energy use in new manufactured homes. The roof structure in Jamestown, California was designed to examine how differences in roof construction impact space conditioning loads, wood moisture content and attic humidity levels. Conclusions are drawn from the data on the relative energy and moisture performance of various configurations of vented and sealed attics.

  1. Research on Field Emission and Dark Current in ILC Cavities

    SciTech Connect (OSTI)

    Liu, Kexin; Li, Yongming; Palczewski, Ari; Geng, Rongli

    2013-09-01

    Field emission and dark current are issues of concern for SRF cavity performance and SRF linac operation. Complete understanding and reliable control of the issue are still needed, especially in full-scale multi-cell cavities. Our work aims at developing a generic procedure for finding an active field emitter in a multi-cell cavity and benchmarking the procedure through cavity vertical test. Our ultimate goal is to provide feedback to cavity preparation and cavity string assembly in order to reduce or eliminate filed emission in SRF cavities. Systematic analysis of behaviors of field emitted electrons is obtained by ACE3P developed by SLAC. Experimental benchmark of the procedure was carried out in a 9-cell cavity vertical test at JLab. The energy spectrum of Bremsstrahlung X-rays is measured using a NaI(Tl) detector. The end-point energy in the X-ray energy spectrum is taken as the highest kinetic electron energy to predict longitudinal position of the active field emitter. Angular location of the field emitter is determined by an array of silicon diodes around irises of the cavity. High-resolution optical inspection was conducted at the predicted field emitter location.

  2. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  3. CX-010776: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Advanced Test Reactor (ATR) Primary Coolant Leak Rate Determination System Equipment Replacement CX(s) Applied: B2.2 Date: 07/24/2013 Location(s): Idaho Offices(s): Nuclear Energy

  4. IDENTIFICATION OF FREE-FIELD SOIL PROPERTIES USING NUPEC RECORDED GROUND MOTIONS.

    SciTech Connect (OSTI)

    Xu, J.; Costantino, C.; Hofmayer, C.; Murphy, A.; Chokshi, N.; Kitada, Y.

    2001-03-22

    Over the past twenty years, the Nuclear Power Engineering Corporation (NUPEC) of Japan has conducted a series of field model test programs to investigate various aspects of soil-structure interaction (SSI) effects on nuclear power plant structures, including embedment and dynamic structure-soil-structure interaction (SSSI) effects. As part of a collaborative agreement between the US Nuclear Regulatory Commission (NRC) and NUPEC, Brookhaven National Laboratory (BNL) performed a numerical analysis to predict the free field soil profile using industry standard methods and the recorded free field responses to actual earthquake events. This paper describes the BNL free-field analyses, including the methods and the analysis results and their comparison to recorded data in the free field. The free-field soil profiles determined from the BNL analyses are being used for both the embedment and SSSI studies, the results of which will be made available upon their completion.

  5. Low-temperature Mechanical Properties of Fe-0.06C-18Cr-10Ni-0.4Ti Austenitic Steel Determined Using Ring-Pull Tensile Tests and Microhardness Measurements

    SciTech Connect (OSTI)

    Neustroev, V. S.; Boev, E. V.; Garner, Francis A.

    2007-08-01

    Irradiated austenitic stainless steels removed from Russian water-cooled VVERs experience irradiation temperatures and He/dpa conditions that are very similar to steels to be used in ITER. Data are presented on the radiation hardening of the Russian analog of AISI 321 at 0.2 to 15 dpa in the range of 285 to 320??. The Russian variant of the ring-pull tensile test was used to obtain mechanical prop-erty data. Microhardness tests on the ring specimens provide useful information throughout the deformed regions, but at high hardening levels caution must be exercised before application of a widely accepted hardness-yield stress correla-tion to prediction of tensile properties. Low-nickel austenitic steels are very prone to form deformation martensite, a phase that increases strongly with the larger deformation levels characteristic of microhardness tests, especially when compared to the 0.2% deformation used to define yield stress.

  6. Low-Temperature Mechanical Properties Of Fe-0.06c-18cr-10ni-0.4ti Austenitic Steel Determined Using Ring-Pull Tensile Tests And Microhardness Measurements

    SciTech Connect (OSTI)

    Neustroev, V. S.; Boev, E. V.; Garner, Francis A.

    2007-03-01

    Irradiated austenitic stainless steels removed from Russian water-cooled VVERs experience irradia-tion temperatures and He/dpa conditions that are very similar to steels to be used in ITER. Data are presented on the radiation hardening of the Russian analog of AISI 321 at 0.2 to 15 dpa in the range of 285 to 320??. The Russian variant of the ring-pull tensile test was used to obtain mechanical prop-erty data. Microhardness tests on the ring specimens provide useful information throughout the de-formed regions, but at high hardening levels caution must be exercised before application of a widely accepted hardness-yield stress correlation to prediction of tensile properties. Low-nickel austenitic steels are very prone to form deformation martensite, a phase that increases strongly with the larger deformation levels characteristic of microhardness tests, especially when compared to the 0.2% de-formation used to define yield stress.

  7. Energy Department selects Battelle team for a deep borehole field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Battelle team for a deep borehole field test in North Dakota Energy Department selects Battelle team for a deep borehole field test in North Dakota January 5, 2016 - 5:31pm ...

  8. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 2: Determination of Cesium Exchange Capacity and Effective Mass Transfer Coefficient from a 500-cm3 Column Experiement

    SciTech Connect (OSTI)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-04-01

    A semi-scale column test was performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution, which represents liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). The engineered form of CST ion exchanger, known as IONSIVtmIE-911 (UOP, Mt. Laurel,NJ, USA), was tested in a 500-cm3 column to obtain a cesium breakthrough curve. The cesium exchange capacity of this column matched that obtained from previous testing with a 15-mc3 column. A numerical algorithm using implicit finite difference approximations was developed to solve the governing mass transport equations for the CST columns. An effective mass transfer coefficient was derived from solving these equations for previously reported 15 cm3 tests. The effective mass transfer coefficient was then used to predict the cesium breakthrough curve for the 500-cm3 column and compared to the experimental data reported in this paper. The calculated breakthrough curve showed excellent agreement with the data from the 500-cm3 column even though the interstitial velocity was a factor of two greater. Thus, this approach should provide a reasonable method for scale up to larger columns for treating actual tank waste.

  9. A laboratory 8 keV transmission full-field x-ray microscope with a polycapillary as condenser for bright and dark field imaging

    SciTech Connect (OSTI)

    Baumbach, S. Wilhein, T.; Kanngießer, B.; Malzer, W.; Stiel, H.

    2015-08-15

    This article introduces a laboratory setup of a transmission full-field x-ray microscope at 8 keV photon energy. The microscope operates in bright and dark field imaging mode with a maximum field of view of 50 μm. Since the illumination geometry determines whether the sample is illuminated homogeneously and moreover, if different imaging methods can be applied, the condenser optic is one of the most significant parts. With a new type of x-ray condenser, a polycapillary optic, we realized bright field imaging and for the first time dark field imaging at 8 keV photon energy in a laboratory setup. A detector limited spatial resolution of 210 nm is measured on x-ray images of Siemens star test patterns.

  10. Heat exchanger bypass test report

    SciTech Connect (OSTI)

    De Vries, M.L.

    1995-01-26

    This test report documents the results that were obtained while conducting the test procedure which bypassed the heat exchangers in the HC-21C sludge stabilization process. The test was performed on November 15, 1994 using WHC-SD-CP-TC-031, ``Heat Exchanger Bypass Test Procedure.`` The primary objective of the test procedure was to determine if the heat exchangers were contributing to condensation of moisture in the off-gas line. This condensation was observed in the rotameters. Also, a secondary objective was to determine if temperatures at the rotameters would be too high and damage them or make them inaccurate without the heat exchangers in place.

  11. Methane Hydrate Field Program

    SciTech Connect (OSTI)

    2013-12-31

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report. • Historical Methane Hydrate Project Review Report • Methane Hydrate Workshop Report • Topical Report: Marine Methane Hydrate Field Research Plan • Final Scientific/Technical Report

  12. Polarity of annealing and structural analysis of the RNase H resistant alpha-5'-d(TACACA). beta-5'-r(AUGUGU) hybrid determined by high-field sup 1 H, sup 13 C, and sup 31 P NMR analysis

    SciTech Connect (OSTI)

    Gmeiner, W.H.; Rao, K.E.; Rayner, B.; Vasseur, J.J.; Morvan, F.; Imbach, J.L.; Lown, J.W. )

    1990-11-13

    The novel hybrid duplex alpha-5'-d(TACACA)-3'.beta-5'-r(AUGUGU)-3' was analyzed extensively by 1D and 2D NMR methods. Two forms of the duplex exist in about an 80:20 ratio. Analysis of the exchangeable imino protons of the major component revealed that three AU and one AT base pair are present in addition to two GC base pairs, confirming that the duplex anneals in parallel orientation. The presence of the AT base pair, which can only be accounted for by a parallel duplex, was confirmed by a selective INEPT experiment, which correlated the thymidine imino proton to its C5 carbon. The lesser antiparallel form could be detected by exchangeable and nonexchangeable proton resonances in both strands. An exchange peak was observed in the NOESY spectrum for the thymidine methyl group resonance in both the predominant and lesser conformations, indicating the lifetime of the individual structures was on the millisecond time scale. The nonexchangeable protons of the predominant duplex were assigned by standard methods. The sugar pucker of the ribonucleosides was determined to be of the S type by a pseudorotation analysis according to Altona, with the J-couplings measured from the multiplet components of the phase-sensitive COSY experiment. The NOE pattern observed for the alpha-deoxynucleosides also suggested an S-type sugar pucker. The adoption of an S-type sugar pucker for both strands indicates that, in contrast to RNA.DNA duplexes formed exclusively from beta-nucleotides, the alpha-DNA.beta-RNA duplex may form a B-type helix. The 31P resonances of the alpha and beta strands have very different chemical shifts in the hybrid duplex and the difference persists above the helix melting temperature, indicating an intrinsic difference in 31P chemical shift for nucleotides differing only in the configuration about the glycosidic bond.

  13. Comparison of strength and load-based methods for testing wind turbine blades

    SciTech Connect (OSTI)

    Musial, W.D.; Clark, M.E.; Egging, N.

    1996-11-01

    The purpose of this paper is to compare two methods of blade test loading and show how they are applied in an actual blade test. Strength and load-based methods were examined to determine the test load for an Atlantic Orient Corporation (AOC) 15/50 wind turbine blade for fatigue and static testing. Fatigue load-based analysis was performed using measured field test loads extrapolated for extreme rare events and scaled to thirty-year spectra. An accelerated constant amplitude fatigue test that gives equivalent damage at critical locations was developed using Miner`s Rule and the material S-N curves. Test load factors were applied to adjust the test loads for uncertainties, and differences between the test and operating environment. Similar analyses were carried, out for the strength-based fatigue test using the strength of the blade and the material properties to determine the load level and number of constant amplitude cycles to failure. Static tests were also developed using load and strength criteria. The resulting test loads were compared and contrasted. The analysis shows that, for the AOC 15/50 blade, the strength-based test loads are higher than any of the static load-based cases considered but were exceeded in the fatigue analysis for a severe hot/wet environment.

  14. Generic air sampler probe tests

    SciTech Connect (OSTI)

    Glissmeyer, J.A.; Ligotke, M.W.

    1995-11-01

    Tests were conducted to determine the best nozzle and probe designs for new air sampling systems to be installed in the ventilation systems of some of the waste tanks at the Hanford Site in Richland, Washington. Isokinetic nozzle probes and shrouded probes were tested. The test aerosol was sodium-fluorescein-tagged oleic acid. The test parameters involved particle sizes from 1 to 15 {mu}m, air velocities from 3 to 15 m/s. The results of the tests show that shrouded probes can deliver samples with significantly less particle-size bias then the isokinetic nozzle probes tested. Tests were also conducted on two sample flow splitters to determine particle loss as a function of aerodynamic particle size. The particle size range covered in these tests was 5 to 15 {mu}m. The results showed little particle loss, but did show a bias in particle concentration between the two outlets of each splitter for the larger particle sizes.

  15. Electrolux: Compliance Determination (2010-SE-0108)

    Broader source: Energy.gov [DOE]

    After conducting testing of Electrolux's Frigidaire chest freezer model FFN09M5HWC, DOE determined that the model met the applicable energy conservation standard.

  16. Arelik A.?: Compliance Determination (2010-SE-0105)

    Broader source: Energy.gov [DOE]

    DOE issued a Notice of Compliance Determination after test results revealed that Arelik's Blomberg BRFB1450 refrigerator-freezer complies with the applicable energy conservation standards.

  17. CX-100526 Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This NEPA determination applies to the remaining Tasks 2.0-6.0, including outdoor test support, strain improvement, control optimization, preprocessing unit operations and ...

  18. Categorical Exclusion Determinations: Idaho Operations Office | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Idaho Operations Office Categorical Exclusion Determinations: Idaho Operations Office Categorical Exclusion Determinations issued by Idaho Operations Office. DOCUMENTS AVAILABLE FOR DOWNLOAD May 26, 2015 CX-013669: Categorical Exclusion Determination Advanced Test Reactor 2A Loop Chemistry Control CX(s) Applied: B3.6 Date: 05/26/2015 Location(s): Idaho Offices(s): Idaho Operations Office May 20, 2015 CX-013673: Categorical Exclusion Determination Advanced Test Reactor Complex

  19. Categorical Exclusion Determinations: Idaho | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Categorical Exclusion Determinations: Idaho Location Categorical Exclusion Determinations issued for actions in Idaho. DOCUMENTS AVAILABLE FOR DOWNLOAD March 2, 2016 CX-014557: Categorical Exclusion Determination Critical Infrastructure Test Range Complex (CITRC) High Frequency Test Bed Expansion CX(s) Applied: B1.15 Date: 03/02/2016 Location(s): Idaho Offices(s): Nuclear Energy March 2, 2016 CX-014558: Categorical Exclusion Determination B27-601 and B8-601 Emergency Generator Replacement

  20. Inverter Ground Fault Overvoltage Testing

    SciTech Connect (OSTI)

    Hoke, Andy; Nelson, Austin; Chakraborty, Sudipta; Chebahtah, Justin; Wang, Trudie; McCarty, Michael

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.