National Library of Energy BETA

Sample records for determination enhanced geothermal

  1. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  2. track 4: enhanced geothermal systems (EGS) | geothermal 2015...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: enhanced geothermal systems (EGS) | geothermal 2015 peer review track 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review The Energy Department pursues research ...

  3. Enhanced Geothermal Systems Technologies

    Broader source: Energy.gov [DOE]

    Geothermal Energy an​d the Enhanced Geothermal Systems Concept The Navy 1 geothermal power plant near Coso Hot Springs, California, is applying EGS technology. Heat is naturally present everywhere in the earth. For all intents and purposes, heat from the earth is inexhaustible. Water is not nearly as ubiquitous in the earth as heat. Most aqueous fluids are derived from surface waters that have percolated into the earth along permeable pathways such as faults. Permeability is a measure of the ease of fluid flow through rock. The permeability of rock results from pores, fractures, joints, faults, and other openings which allow fluids to move. High permeability implies that fluids can flow rapidly through the rock. Permeability and, subsequently, the amount of fluids tend to decrease with depth as openings in the rocks compress from the weight of the overburden.

  4. Geothermal Technologies Program: Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

  5. Seismic Fracture Characterization Methods for Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for ...

  6. Enhanced Geothermal Systems Roadmap Workshops | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Workshops Enhanced Geothermal Systems Roadmap Workshops June 21, 2011 - 2:50pm Addthis Enhanced Geothermal Systems (EGS) are engineered or enhanced reservoirs created to...

  7. track 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review track 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review The Energy Department pursues research in transformative science and engineering that the private sector is not financially or technically equipped to undertake. At the 2015 Peer Review, awardees in the Geothermal Technologies Office portfolio presented fifty three technical project presentations on enhanced geothermal systems

  8. Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Below are the project presentations and respective peer review results for Engineered Geothermal Systems, Low Temperature and Exploration Demonstration Projects.

  9. Enhanced Geothermal Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal Systems Enhanced Geothermal Systems EGS-2-pager8-1 1.17.28 PM.jpg Steps to Develop Power Production at an EGS Site Step 1: Identify/Characterize a Site Develop a geologic model of a potential site via surface, geologic, geophysical, and remote sensing exploration. Assess the temperature gradient, permeability, in-situ stress directions of the resource, rock mechanical properties, and whether fluid is present. Determine if the necessary characteristics to create an EGS

  10. Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Jeanloz, R.; Stone, H.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  11. Enhanced Geothermal System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal » Enhanced Geothermal System Basics Enhanced Geothermal System Basics A naturally occurring geothermal system, known as Enhanced Geothermal Systems (EGS), is another form of renewable energy. It is defined by three key elements: heat, fluid, and permeability at depth. Essentially, these are engineered reservoirs that produce energy from geothermal resources in areas that are not usually considered economically viable due to a lack of water and/or the ability of that water to pass

  12. Geothermal Permeability Enhancement - Final Report

    SciTech Connect (OSTI)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  13. Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy

    Energy Savers [EERE]

    Enhanced Geothermal System (EGS) Fact Sheet Enhanced Geothermal System (EGS) Fact Sheet Overview of Enhanced Geothermal Systems. PDF icon egsbasics.pdf More Documents &...

  14. Enhanced Geothermal Systems (EGS)- the Future of Geothermal Energy

    Broader source: Energy.gov [DOE]

    While the amount of conventional hydrothermal power worldwide has reached nearly 12 gigawatts, exponentially more geothermal resources can be accessed through next-generation technologies known as enhanced geothermal systems (EGS).

  15. Enhanced Geothermal Systems Webinar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal Systems Webinar Enhanced Geothermal Systems Webinar The following presentations are from a Webinar conducted on July 15, 2009, that was hosted by the Geothermal Resources Council (GRC) and sponsored by the American Public Power Association, National Rural Electric Cooperative Associate, Western Area Power Administration, and U.S. Department of Energy Geothermal Technologies Office. The Webinar covered topics including federal enhanced geothermal systems (EGS) activities and

  16. Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal System ...

  17. First Commercial Success for Enhanced Geothermal Systems (EGS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy First Commercial Success for Enhanced Geothermal Systems (EGS) Spells ...

  18. First Commercial Success for Enhanced Geothermal Systems (EGS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    First Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy First Commercial Success for Enhanced Geothermal Systems (EGS) Spells ...

  19. Enhanced Geothermal Systems (EGS) | Open Energy Information

    Open Energy Info (EERE)

    (Published: July 2009) "US DOE 2008 Renewable Energy Data Book" "The Future of Geothermal Energy" 3.0 3.1 3.2 "US DOE EERE Geothermal Technologies Program, Enhanced...

  20. An Evaluation of Enhanced Geothermal Systems Technology

    SciTech Connect (OSTI)

    Jelacic, Allan; Fortuna, Raymond; LaSala, Raymond; Nathwani, Jay; Nix, Gerald; Visser, Charles; Green, Bruce; Renner, Joel; Blankenship, Douglas; Kennedy, Mack; Bruton, Carol

    2008-04-01

    This 2008 document presents the results of an eight-month study by the Department of Energy (DOE) and its support staff at the national laboratories concerning the technological requirements to commercialize a new geothermal technology, Enhanced Geothermal Systems (EGS).

  1. Enhanced Geothermal Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Geothermal Technologies Office » Enhanced Geothermal Systems Enhanced Geothermal Systems EGS R&D Projects EGS R&D Projects The AltaRock Energy EGS demonstration project at Newberry Volcano, Oregon, leverages DOE funds to demonstrate engineered geothermal systems in a green field setting. Image Source: Elisabet Metcalfe Read more EGS Program Highlight EGS Program Highlight Armed with a wealth of data and new data analysis and integration techniques, images of the subsurface

  2. Demonstration of an Enhanced Geothermal System at the Northwest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California; 2010 Geothermal Technology Program Peer Review Report Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California; 2010...

  3. track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review

    Broader source: Energy.gov [DOE]

    The Energy Department pursues research in transformative science and engineering that the private sector is not financially or technically equipped to undertake. At the 2015 Peer Review, awardees in the Geothermal Technologies Office portfolio presented fifty three technical project presentations on enhanced geothermal systems technologies.

  4. Enhanced Geothermal Systems (EGS) | Open Energy Information

    Open Energy Info (EERE)

    DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg Dictionary.png Enhanced Geothermal...

  5. What is an Enhanced Geothermal System (EGS)? Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-09-14

    This Geothermal Technologies Office fact sheet explains how engineered geothermal reservoirs called Enhanced Geothermal Systems are used to produce energy from geothermal resources that are otherwise not economical due to a lack of fluid and/or permeability.

  6. Enhanced Geothermal Systems Demonstration Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    About the Geothermal Technologies Office » Enhanced Geothermal Systems » Enhanced Geothermal Systems Demonstration Projects Enhanced Geothermal Systems Demonstration Projects A significant long-term opportunity for widespread power production from new geothermal sources lies in Enhanced Geothermal Systems (EGS), where innovative technology development and deployment could facilitate access to 100+ GW of energy, exponentially more than today's current geothermal capacity. With EGS, we can tap

  7. Fracture Characterization in Enhanced Geothermal Systems by Wellbore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in Enhanced ...

  8. Enhanced Geothermal in Nevada: Extracting Heat From the Earth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable ...

  9. A Technology Roadmap for Strategic Development of Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems DOE Project Partner ...

  10. Enhanced Geothermal Systems (EGS) comparing water with CO2 as...

    Office of Scientific and Technical Information (OSTI)

    Enhanced Geothermal Systems (EGS) comparing water with CO2 as heattransmission fluids Citation Details In-Document Search Title: Enhanced Geothermal Systems (EGS) comparing water ...

  11. How an Enhanced Geothermal System Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Enhanced Geothermal System Works How an Enhanced Geothermal System Works The Potential Enhanced Geothermal Systems (EGS), also sometimes called engineered geothermal systems, offer great potential for dramatically expanding the use of geothermal energy. Present geothermal power generation comes from hydrothermal reservoirs, and is somewhat limited in geographic application to specific ideal places in the western U.S. This represents the 'low-hanging fruit' of geothermal energy potential. EGS

  12. High-Temperature-High-Volume Lifting for Enhanced Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy ...

  13. Development of a plan to implement enhanced geothermal system...

    Open Energy Info (EERE)

    Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end,...

  14. DOE and Partners Test Enhanced Geothermal Systems Technologies

    Broader source: Energy.gov [DOE]

    DOE has embarked on a project with a number of partners to test Enhanced Geothermal Systems (EGS) technologies at a commercial geothermal power facility near Reno, Nevada.

  15. Enhanced Geothermal System (EGS) Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Enhanced Geothermal System (EGS) is a man-made reservoir, created where there is hot rock but insufficient or little natural permeability or fluid saturation. In an EGS, fluid ...

  16. A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Ziagos, John; Phillips, Benjamin R.; Boyd, Lauren; Jelacic, Allan; Stillman, Greg; Hass, Eric

    2013-02-13

    Realization of EGS development would make geothermal a significant contender in the renewable energy portfolio, on the order of 100+ GWe in the United States alone. While up to 90% of the geothermal power resource in the United States is thought to reside in Enhanced Geothermal Systems (EGS), hurdles to commercial development still remain. The Geothermal Technologies Office, U.S. Department of Energy (DOE), began in 2011 to outline opportunities for advancing EGS technologies on five- to 20-year timescales, with community input on the underlying technology needs that will guide research and ultimately determine commercial success for EGS. This report traces DOE's research investments, past and present, and ties them to these technology needs, forming the basis for an EGS Technology Roadmap to help guide future DOE research. This roadmap is currently open for public comment. Send your comments to geothermal@ee.doe.gov.

  17. Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems; 2010 Geothermal Technology Program Peer Review Report | Department of Energy Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review PDF icon reservoir_033_rose.pdf More Documents & Publications Tracer Methods

  18. Demonstration of an Enhanced Geothermal System at the Northwest Geysers

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Resources | Department of Energy Project objectives: Demonstrate a 1 megawatt Variable Phase Turbine and Variable Phase Cycle with low temperature brine. PDF icon low_hays_variable_phase_turbine.pdf More Documents & Publications track 1: Low Temp | geothermal 2015 peer review track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system Geothermal Field, California |

  19. Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal System (EGS) Fact Sheet Enhanced Geothermal Systems (EGS) are engineered reservoirs created to produce energy from geothermal resources that are otherwise not economical due to lack of water and/or permeability. EGS technology has the potential for accessing the earth's vast resources of heat located at depth to help meet the energy needs of the United States. Learn more about EGS from the Enhanced Geothermal Systems Fact Sheet below. PDF icon Enhanced Geothermal Systems Fact

  20. Enhanced Geothermal Systems Subprogram Overview | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Enhanced Geothermal System (EGS) Fact Sheet Enhanced Geothermal Systems (EGS) are engineered reservoirs created to produce energy from geothermal resources that are otherwise not economical due to lack of water and/or permeability. EGS technology has the potential for accessing the earth's vast resources of heat located at depth to help meet the energy needs of the United States. Learn more about EGS from the Enhanced Geothermal Systems Fact Sheet below. PDF icon Enhanced Geothermal Systems Fact

  1. First Commercial Success for Enhanced Geothermal Systems (EGS) Spells

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exponential Growth for Geothermal Energy | Department of Energy Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy First Commercial Success for Enhanced Geothermal Systems (EGS) Spells Exponential Growth for Geothermal Energy April 15, 2013 - 1:50pm Addthis Nevada-based industry partner Ormat Technologies leveraged DOE funds to deploy the nation's first commercial EGS at Desert Peak, Nevada. photo courtesy of Ormat Nevada-based industry

  2. Induced seismicity associated with enhanced geothermal system

    SciTech Connect (OSTI)

    Majer, Ernest; Majer, Ernest L.; Baria, Roy; Stark, Mitch; Oates, Stephen; Bommer, Julian; Smith, Bill; Asanuma, Hiroshi

    2006-09-26

    Enhanced Geothermal Systems (EGS) offer the potential to significantly add to the world energy inventory. As with any development of new technology, some aspects of the technology has been accepted by the general public, but some have not yet been accepted and await further clarification before such acceptance is possible. One of the issues associated with EGS is the role of microseismicity during the creation of the underground reservoir and the subsequent extraction of the energy. The primary objectives of this white paper are to present an up-to-date review of the state of knowledge about induced seismicity during the creation and operation of enhanced geothermal systems, and to point out the gaps in knowledge that if addressed will allow an improved understanding of the mechanisms generating the events as well as serve as a basis to develop successful protocols for monitoring and addressing community issues associated with such induced seismicity. The information was collected though literature searches as well as convening three workshops to gather information from a wide audience. Although microseismicity has been associated with the development of production and injection operations in a variety of geothermal regions, there have been no or few adverse physical effects on the operations or on surrounding communities. Still, there is public concern over the possible amount and magnitude of the seismicity associated with current and future EGS operations. It is pointed out that microseismicity has been successfully dealt with in a variety of non-geothermal as well as geothermal environments. Several case histories are also presented to illustrate a variety of technical and public acceptance issues. It is concluded that EGS Induced seismicity need not pose any threat to the development of geothermal resources if community issues are properly handled. In fact, induced seismicity provides benefits because it can be used as a monitoring tool to understand the effectiveness of the EGS operations and shed light on the mechanics of the reservoir.

  3. Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Enhanced Geothermal Systems. PDF icon egs_calpine_peer2013.pdf More Documents & Publications Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, California EA-1733: Final Environmental Assessment Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir

  4. Enhanced Geothermal System (EGS) Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Massachusetts Institute of Technology (MIT). 2006. The future of geothermal energy. Cambridge, Massachusetts. Available: http:geothermal.inel.govpublications...

  5. A Technology Roadmap for Strategic Development of Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems DOE Project Partner AltaRock Energy drills for geothermal energy at the Newberry Volcano EGS Demonstration site, near Bend, Oregon. DOE Project Partner AltaRock Energy drills for geothermal energy at the Newberry Volcano EGS Demonstration site, near Bend, Oregon. This technical paper outlines opportunities

  6. Enhanced Geothermal System (EGS) Infographic | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhanced Geothermal System (EGS) Infographic Enhanced Geothermal System (EGS) Infographic Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California The EGS infographic provides an overview of this burgeoning technology that could access an enormous, domestic, clean energy resource predicted at more than 100 GW in the United States alone, according to an MIT study. To take advantage of this vast

  7. Energy Department Announces Project Selections for Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems (EGS) Subsurface Laboratory | Department of Energy Energy Department Announces Project Selections for Enhanced Geothermal Systems (EGS) Subsurface Laboratory Energy Department Announces Project Selections for Enhanced Geothermal Systems (EGS) Subsurface Laboratory April 28, 2015 - 9:43am Addthis Energy Department Announces Project Selections for Enhanced Geothermal Systems (EGS) Subsurface Laboratory WASHINGTON, DC - As part of the Obama Administration's all-of-the-above energy

  8. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objective: Advance the technology for well fluids lifting systems to meet the foreseeable pressure; temperature; and longevity needs of the Enhanced Geothermal Systems (EGS) industry.

  9. High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    High-Temperature-High-Volume Lifting for Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  10. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado

  11. Seismic Methods For Resource Exploration In Enhanced Geothermal...

    Open Energy Info (EERE)

    Methods For Resource Exploration In Enhanced Geothermal Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Book: Seismic Methods For Resource Exploration In...

  12. Enhanced Geothermal Systems (EGS) comparing water with CO2 as...

    Office of Scientific and Technical Information (OSTI)

    (EGS) comparing water with CO2 as heattransmission fluids Citation Details In-Document Search Title: Enhanced Geothermal Systems (EGS) comparing water with CO2 as ...

  13. Estimating Well Costs for Enhanced Geothermal System Applications

    SciTech Connect (OSTI)

    K. K. Bloomfield; P. T. Laney

    2005-08-01

    The objective of the work reported was to investigate the costs of drilling and completing wells and to relate those costs to the economic viability of enhanced geothermal systems (EGS). This is part of a larger parametric study of major cost components in an EGS. The possibility of improving the economics of EGS can be determined by analyzing the major cost components of the system, which include well drilling and completion. Determining what costs in developing an EGS are most sensitive will determine the areas of research to reduce those costs. The results of the well cost analysis will help determine the cost of a well for EGS development.

  14. BOREHOLE PRECONDITIONING OF GEOTHERMAL WELLS FOR ENHANCED GEOTHERMAL...

    Open Energy Info (EERE)

    is assumed positive and tension negative. Authors Diek, A.; White, L.; Roegiers, J.-C.; Moore, J.; McLennan and J. D. Published PROCEEDINGS, Thirty-Seventh Workshop on Geothermal...

  15. An evaluation of enhanced geothermal systems technology

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    A review of the assumptions and conclusions of the DOE-sponsored 2006 MIT study on "The Future of Geothermal Energy" and an evaluation of relevant technology from the commercial geothermal industry.

  16. Tracers for Characterizing Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Karen Wright; George Redden; Carl D. Palmer; Harry Rollins; Mark Stone; Mason Harrup; Laurence C. Hull

    2010-02-01

    Information about the times of thermal breakthrough and subsequent rates of thermal drawdown in enhanced geothermal systems (EGS) is necessary for reservoir management, designing fracture stimulation and well drilling programs, and forecasting economic return. Thermal breakthrough in heterogeneous porous media can be estimated using conservative tracers and assumptions about heat transfer rates; however, tracers that undergo temperature-dependent changes can provide more detailed information about the thermal profile along the flow path through the reservoir. To be effectively applied, the thermal reaction rates of such temperature sensitive traces must be well characterized for the range of conditions that exist in geothermal systems. Reactive tracers proposed in the literature include benzoic and carboxylic acids (Adams) and organic esters and amides (Robinson et al.); however, the practical temperature range over which these tracers can be applied (100-275C) is somewhat limited. Further, for organic esters and amides, little is known about their sorption to the reservoir matrix and how such reactions impact data interpretation. Another approach involves tracers where the reference condition is internal to the tracer itself. Two examples are: 1) racemization of polymeric amino acids, and 2) mineral thermoluminescence. In these cases internal ratios of states are measured rather than extents of degradation and mass loss. Racemization of poly-L-lactic acid (for example) is temperature sensitive and therefore can be used as a temperature-recording tracer depending on the rates of racemization and stability of the amino acids. Heat-induced quenching of thermoluminescence of pre-irradiated LiF can also be used. To protect the tracers from alterations (extraneous reactions, dissolution) in geothermal environments we are encapsulating the tracers in core-shell colloidal structures that will subsequently be tested for their ability to be transported and to protect the tracers from incidental reactions. We review the criteria for practical reactive tracers, which serves as the basis for experimental testing and characterization and can be used to identify other potential candidate tracers. We will also discuss the information obtainable from individual tracers, which has implications for using multiple tracers to obtain information about the thermal history of a reservoir. We will provide an update on our progress for conducting proof-of-principle tests for reactive tracers in the Raft River geothermal system.

  17. A Technology Roadmap for Strategic Development of Enhanced Geothermal Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 11-13, 2013 SGP-TR-198 A TECHNOLOGY ROADMAP FOR STRATEGIC DEVELOPMENT OF ENHANCED GEOTHERMAL SYSTEMS John Ziagos 1 , Benjamin R. Phillips 2,3 , Lauren Boyd 3 , Allan Jelacic 2 , Greg Stillman 3 , and Eric Hass 4 1 Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 2 SRA International, Inc. 3 Geothermal Technologies Office, U.S. DOE, 1000

  18. Full Reviews: Enhanced Geothermal Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Enhanced Geothermal Systems. Bradys EGS Project Zvi Krieger, Ormat Nevada Inc. Project Presentation | Peer Reviewer Comments Concept Testing and Development at the Raft River Geothermal Field, Idaho Joseph Moore, University of Utah Project Presentation | Peer Reviewer Comments Desert Peak EGS Project Ezra Zemach, Ormat Nevada Inc. Project Presentation | Peer Reviewer Comments Creation of an Engineered Geothermal System through Hydraulic and Thermal Stimulation Peter Rose, University of Utah

  19. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project Objective: To improve the utilization of available energy in geothermal resources and increase the energy conversion efficiency of systems employed by a) tailoring the subcritical and/or supercritical glide of enhanced working fluids to best match thermal resources, and b) identifying appropriate thermal system and component designs for the down-selected working fluids.

  20. Enhanced Geothermal Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The AltaRock Energy EGS demonstration project at Newberry Volcano, Oregon, leverages DOE funds to demonstrate engineered geothermal systems in a green field setting. Source:...

  1. Enhanced Geothermal System (EGS) Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    While advanced EGS technologies are young and still under development, EGS has been ... of Technology (MIT). 2006. The future of geothermal energy. Cambridge, Massachusetts. ...

  2. Enhanced Geothermal Systems (EGS) well construction technology evaluation report.

    SciTech Connect (OSTI)

    Capuano, Louis, Jr.; Huh, Michael; Swanson, Robert; Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

    2008-12-01

    Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and cost. A task and cost based analysis of the exercise is subsequently conducted to develop a deeper understanding of the key technical and economic drivers of the well construction process. Finally, future research & development recommendations are provided and ranked based on their economic and technical significance.

  3. Enhanced Geothermal Systems (EGS) R&D Program: US Geothermal Resources Review and Needs Assessment

    SciTech Connect (OSTI)

    Entingh, Dan; McLarty, Lynn

    2000-11-30

    The purpose of this report is to lay the groundwork for an emerging process to assess U.S. geothermal resources that might be suitable for development as Enhanced Geothermal Systems (EGS). Interviews of leading geothermists indicate that doing that will be intertwined with updating assessments of U.S. higher-quality hydrothermal resources and reviewing methods for discovering ''hidden'' hydrothermal and EGS resources. The report reviews the history and status of assessment of high-temperature geothermal resources in the United States. Hydrothermal, Enhanced, and Hot Dry Rock resources are addressed. Geopressured geothermal resources are not. There are three main uses of geothermal resource assessments: (1) They inform industry and other interest parties of reasonable estimates of the amounts and likely locations of known and prospective geothermal resources. This provides a basis for private-sector decisions whether or not to enter the geothermal energy business at all, and for where to look for useful resources. (2) They inform government agencies (Federal, State, local) of the same kinds of information. This can inform strategic decisions, such as whether to continue to invest in creating and stimulating a geothermal industry--e.g., through research or financial incentives. And it informs certain agencies, e.g., Department of Interior, about what kinds of tactical operations might be required to support such activities as exploration and leasing. (3) They help the experts who are performing the assessment(s) to clarify their procedures and data, and in turn, provide the other two kinds of users with a more accurate interpretation of what the resulting estimates mean. The process of conducting this assessment brings a spotlight to bear on what has been accomplished in the domain of detecting and understanding reservoirs, in the period since the last major assessment was conducted.

  4. Temporary Cementitious Sealers in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Butcher, T.; Brothers, L.; Bour, D.

    2011-12-31

    Unlike conventional hydrothennal geothermal technology that utilizes hot water as the energy conversion resources tapped from natural hydrothermal reservoir located at {approx}10 km below the ground surface, Enhanced Geothermal System (EGS) must create a hydrothermal reservoir in a hot rock stratum at temperatures {ge}200 C, present in {approx}5 km deep underground by employing hydraulic fracturing. This is the process of initiating and propagating a fracture as well as opening pre-existing fractures in a rock layer. In this operation, a considerable attention is paid to the pre-existing fractures and pressure-generated ones made in the underground foundation during drilling and logging. These fractures in terms of lost circulation zones often cause the wastage of a substantial amount of the circulated water-based drilling fluid or mud. Thus, such lost circulation zones must be plugged by sealing materials, so that the drilling operation can resume and continue. Next, one important consideration is the fact that the sealers must be disintegrated by highly pressured water to reopen the plugged fractures and to promote the propagation of reopened fractures. In response to this need, the objective of this phase I project in FYs 2009-2011 was to develop temporary cementitious fracture sealing materials possessing self-degradable properties generating when {ge} 200 C-heated scalers came in contact with water. At BNL, we formulated two types of non-Portland cementitious systems using inexpensive industrial by-products with pozzolanic properties, such as granulated blast-furnace slag from the steel industries, and fly ashes from coal-combustion power plants. These byproducts were activated by sodium silicate to initiate their pozzolanic reactions, and to create a cemetitious structure. One developed system was sodium silicate alkali-activated slag/Class C fly ash (AASC); the other was sodium silicate alkali-activated slag/Class F fly ash (AASF) as the binder of temper-try sealers. Two specific additives without sodium silicate as alkaline additive were developed in this project: One additive was the sodium carboxymethyl cellulose (CMC) as self-degradation promoting additive; the other was the hard-burned magnesium oxide (MgO) made from calcinating at 1,000-1,500 C as an expansive additive. The AASC and AASF cementitious sealers made by incorporating an appropriate amount of these additives met the following six criteria: 1) One dry mix component product; 2) plastic viscosity, 20 to 70 cp at 300 rpm; 3) maintenance of pumpability for at least 1 hour at 85 C; 4) compressive strength >2000 psi; 5) self-degradable by injection with water at a certain pressure; and 6) expandable and swelling properties; {ge}0.5% of total volume of the sealer.

  5. Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sustainable Power | Department of Energy Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power April 12, 2013 - 11:17am Addthis Learn the basics of enhanced geothermal systems technology. I Infographic by <a href="http://energy.gov/contributors/sarah-gerrity">Sarah Gerrity</a>. Learn the basics of enhanced geothermal systems technology. I

  6. Multiparameter fiber optic sensing system for monitoring enhanced geothermal systems

    SciTech Connect (OSTI)

    William A. Challener

    2014-12-04

    The goal of this project was to design, fabricate and test an optical fiber cable which supports multiple sensing modalities for measurements in the harsh environment of enhanced geothermal systems. To accomplish this task, optical fiber was tested at both high temperatures and strains for mechanical integrity, and in the presence of hydrogen for resistance to darkening. Both single mode (SM) and multimode (MM) commercially available optical fiber were identified and selected for the cable based on the results of these tests. The cable was designed and fabricated using a tube-within-tube construction containing two MM fibers and one SM fiber, and without supporting gel that is not suitable for high temperature environments. Commercial fiber optic sensing instruments using Raman DTS (distributed temperature sensing), Brillouin DTSS (distributed temperature and strain sensing), and Raleigh COTDR (coherent optical time domain reflectometry) were selected for field testing. A microelectromechanical systems (MEMS) pressure sensor was designed, fabricated, packaged, and calibrated for high pressure measurements at high temperatures and spliced to the cable. A fiber Bragg grating (FBG) temperature sensor was also spliced to the cable. A geothermal well was selected and its temperature and pressure were logged. The cable was then deployed in the well in two separate field tests and measurements were made on these different sensing modalities. Raman DTS measurements were found to be accurate to ±5°C, even with some residual hydrogen darkening. Brillouin DTSS measurements were in good agreement with the Raman results. The Rayleigh COTDR instrument was able to detect some acoustic signatures, but was generally disappointing. The FBG sensor was used to determine the effects of hydrogen darkening, but drift over time made it unreliable as a temperature or pressure sensor. The MEMS sensor was found to be highly stable and accurate to better than its 0.1% calibration.

  7. Towards the Understanding of Induced Seismicity in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Gritto, Roland; Dreger, Douglas; Heidbach, Oliver

    2014-08-29

    This DOE funded project was a collaborative effort between Array Information Technology (AIT), the University of California at Berkeley (UCB), the Helmholtz Centre Potsdam - German Research Center for Geosciences (GFZ) and the Lawrence Berkeley National Laboratory (LBNL). It was also part of the European research project “GEISER”, an international collaboration with 11 European partners from six countries including universities, research centers and industry, with the goal to address and mitigate the problems associated with induced seismicity in Enhanced Geothermal Systems (EGS). The goal of the current project was to develop a combination of techniques, which evaluate the relationship between enhanced geothermal operations and the induced stress changes and associated earthquakes throughout the reservoir and the surrounding country rock. The project addressed the following questions: how enhanced geothermal activity changes the local and regional stress field; whether these activities can induce medium sized seismicity M > 3; (if so) how these events are correlated to geothermal activity in space and time; what is the largest possible event and strongest ground motion, and hence the potential hazard associated with these activities. The development of appropriate technology to thoroughly investigate and address these questions required a number of datasets to provide the different physical measurements distributed in space and time. Because such a dataset did not yet exist for an EGS system in the United State, we used current and past data from The Geysers geothermal field in northern California, which has been in operation since the 1960s. The research addressed the need to understand the causal mechanisms of induced seismicity, and demonstrated the advantage of imaging the physical properties and temporal changes of the reservoir. The work helped to model the relationship between injection and production and medium sized magnitude events that have jeopardized, and in some cases suspended, the generation of energy from EGS systems worldwide.

  8. Magma energy and geothermal permeability enhancement programs

    SciTech Connect (OSTI)

    Dunn, J.C.

    1985-01-01

    Accomplishments during FY85 and project plans for FY86 are described for the Magma Energy Extraction and Permeability Enhancement programs. (ACR)

  9. Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System | Department of Energy Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System Nevada Deploys First U.S. Commercial, Grid-Connected Enhanced Geothermal System April 12, 2013 - 12:00pm Addthis WASHINGTON -- As part of the Obama Administration's all-of-the-above energy strategy, the Energy Department today recognized the nation's first commercial enhanced geothermal system (EGS) project to supply electricity to the grid. Based in Churchill County, Nevada, Ormat

  10. Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission Fluid

    Broader source: Energy.gov [DOE]

    The overall objective of the research is to explore the feasibility of operating enhanced geothermal systems (EGS) with CO2as heat transmission fluid.

  11. Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Reservoir-Stimulation Optimization with Operational Monitoring for Creation of Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  12. A man-made enhanced geothermal system (EGS) can extract the abundant...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Office + + An abundant, previously-stranded, heat source Permeable pathways enhanced by injected fluids Fluid injected from the surface Using 1 Gallon of ...

  13. Evaluation of a superheater enhanced geothermal steam power plant in the Geysers area. Final report

    SciTech Connect (OSTI)

    Janes, J.

    1984-06-01

    This study was conducted to determine the attainable generation increase and to evaluate the economic merits of superheating the steam that could be used in future geothermal steam power plants in the Geyser-Calistoga Known Geothermal Resource Area (KGRA). It was determined that using a direct gas-fired superheater offers no economic advantages over the existing geothermal power plants. If the geothermal steam is heated to 900/sup 0/F by using the exhaust energy from a gas turbine of currently available performance, the net reference plant output would increase from 65 MW to 159 MW (net). Such hybrid plants are cost effective under certain conditions identified in this document. The power output from the residual Geyser area steam resource, now equivalent to 1437 MW, would be more than doubled by employing in the future gas turbine enhancement. The fossil fuel consumed in these plants would be used more efficiently than in any other fossil-fueled power plant in California. Due to an increase in evaporative losses in the cooling towers, the viability of the superheating concept is contingent on development of some of the water resources in the Geysers-Calistoga area to provide the necessary makeup water.

  14. Enhanced Geothermal System (EGS) Fact Sheet | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California Calpine Staff Run Tests at The Geysers Geothermal Power Plant in California The EGS fact sheet provides...

  15. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search × Advanced Search All Fields: Title: Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Search Authors Subject: Identifier Numbers: Research Org: Sponsoring Org: Publication Date: to Update Date: to Sort: Relevance (highest to lowest) Publication Date (newest first) Publication Date (oldest first) Legacy/Non-Legacy: All Legacy Non-Legacy Close Clear All Find

  16. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search × Advanced Search All Fields: Title: Full Text: Bibliographic Data: Creator / Author: Name Name ORCID Search Authors Subject: Identifier Numbers: Research Org: Sponsoring Org: Publication Date: to Update Date: to Sort: Relevance (highest to lowest) Publication Date (newest first) Publication Date (oldest first) Legacy/Non-Legacy: All Legacy Non-Legacy Close Clear All Find

  17. Enhanced Geothermal Systems (EGS) R&D Program

    SciTech Connect (OSTI)

    Entingh, Daniel J.

    1999-08-18

    The purpose of this workshop was to develop technical background facts necessary for planning continued research and development of Enhanced Geothermal Systems (EGS). EGS are geothermal reservoirs that require improvement of their permeability or fluid contents in order to achieve economic energy production. The initial focus of this R&D program is devising and testing means to extract additional economic energy from marginal volumes of hydrothermal reservoirs that are already producing commercial energy. By mid-1999, the evolution of the EGS R&D Program, begun in FY 1988 by the U.S. Department of Energy (DOE), reached the stage where considerable expertise had to be brought to bear on what technical goals should be pursued. The main purpose of this Workshop was to do that. The Workshop was sponsored by the Office of Geothermal Technologies of the Department of Energy. Its purpose and timing were endorsed by the EGS National Coordinating Committee, through which the EGS R&D Program receives guidance from members of the U.S. geothermal industry. Section 1.0 of this report documents the EGS R&D Program Review Session. There, managers and researchers described the goals and activities of the program. Recent experience with injection at The Geysers and analysis of downhole conditions at Dixie Valley highlighted this session. Section 2.0 contains a number of technical presentations that were invited or volunteered to illuminate important technical and economic facts and opportunities for research. The emphasis here was on fi.acture creation, detection, and analysis. Section 3.0 documents the initial general discussions of the participants. Important topics that emerged were: Specificity of defined projects, Optimizing cost effectiveness, Main technical areas to work on, Overlaps between EGS and Reservoir Technology R&D areas, Relationship of microseismic events to hydraulic fractures, and Defining criteria for prioritizing research thrusts. Sections 4.0 and 5.0 report the meat of the Workshop. Section 4.0 describes the nomination and clarification of technical thrusts, and Section 5.0 reports the results of prioritizing those thrusts via voting by the participants. Section 6.0 contains two discussions conducted after the work on research thrusts. The topics were ''Simulation'' and ''Stimulation''. A number of technical points that emerged here provide important guidance for both practical field work on EGS systems and for research.

  18. Geochemical Enhancement Of Enhanced Geothermal System Reservoirs: An Integrated Field And Geochemical Approach

    SciTech Connect (OSTI)

    Joseph N. Moore

    2007-12-31

    The geochemical effects of injecting fluids into geothermal reservoirs are poorly understood and may be significantly underestimated. Decreased performance of injection wells has been observed in several geothermal fields after only a few years of service, but the reasons for these declines has not been established. This study had three primary objectives: 1) determine the cause(s) of the loss of injectivity; 2) utilize these observations to constrain numerical models of water-rock interactions; and 3) develop injection strategies for mitigating and reversing the potential effects of these interactions. In this study rock samples from original and redrilled injection wells at Coso and the Salton Sea geothermal fields, CA, were used to characterize the mineral and geochemical changes that occurred as a result of injection. The study documented the presence of mineral scales and at both fields in the reservoir rocks adjacent to the injection wells. At the Salton Sea, the scales consist of alternating layers of fluorite and barite, accompanied by minor anhydrite, amorphous silica and copper arsenic sulfides. Amorphous silica and traces of calcite were deposited at Coso. The formation of silica scale at Coso provides an example of the effects of untreated (unacidified) injectate on the reservoir rocks. Scanning electron microscopy and X-ray diffractometry were used to characterize the scale deposits. The silica scale in the reservoir rocks at Coso was initially deposited as spheres of opal-A 1-2 micrometers in diameter. As the deposits matured, the spheres coalesced to form larger spheres up to 10 micrometer in diameter. Further maturation and infilling of the spaces between spheres resulted in the formation of plates and sheets that substantially reduce the original porosity and permeability of the fractures. Peripheral to the silica deposits, fluid inclusions with high water/gas ratios provide a subtle record of interactions between the injectate and reservoir rocks. In contrast, fluid inclusions trapped prior to injection are relatively gas rich. These results suggest that the rocks undergo extensive microfracturing during injection and that the composition of the fluid inclusions will be biased toward the youngest event. Interactions between the reservoir rocks and injectate were modeled using the non-isothermal reactive geochemical transport code TOUGHREACT. Changes in fluid pH, fracture porosity, fracture permeability, fluid temperature, and mineral abundances were monitored. The simulations predict that amorphous silica will precipitate primarily within a few meters of the injection well and that mineral deposition will lead to rapid declines in fracture porosity and permeability, consistent with field observations. In support of Enhanced Geothermal System development, petrologic studies of Coso well 46A-19RD were conducted to determine the regions that are most likely to fail when stimulated. These studies indicate that the most intensely brecciated and altered rocks in the zone targeted for stimulation (below 10,000 ft (3048 m)) occur between 11,200 and 11,350 ft (3414 and 3459 m). This zone is interpreted as a shear zone that initially juxtaposed quartz diorite against granodiorite. Strong pervasive alteration and veining within the brecciated quartz diorite and granodiorite suggest this shear zone was permeable in the past. This zone of weakness was subsequently exploited by a granophyre dike whose top occurs at 11,350 ft (3459 m). The dike is unaltered. We anticipate, based on analysis of the well samples that failure during stimulation will most likely occur on this shear zone.

  19. Optimization of hybrid-water/air-cooled condenser in an enhanced turbine geothermal ORC system

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: To improve the efficiency and output variability of geothermal-based ORC power production systems with minimal water consumption by deploying: 1) a hybrid-water/air cooled condenser with low water consumption and 2) an enhanced turbine with high efficiency.

  20. Temporary Bridging Agents for use in Drilling and Completion of Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Watters, Larry; Watters, Jeff; Sutton, Joy; Combs, Kyle; Bour, Daniel; Petty, Susan; Rose, Peter; Mella, Michael

    2011-12-21

    CSI Technologies, in conjunction with Alta Rock Energy and the University of Utah have undergone a study investigating materials and mechanisms with potential for use in Enhanced Geothermal Systems wells as temporary diverters or lost circulation materials. Studies were also conducted with regards to particle size distribution and sealing effectiveness using a lab-scale slot testing apparatus to simulate fractures. From the slot testing a numerical correlation was developed to determine the optimal PSD for a given fracture size. Field trials conducted using materials from this study were also successful.

  1. Final Report: Enhanced Geothermal Systems Technology Phase II...

    Open Energy Info (EERE)

    Systems Technology Phase II: Animas Valley, New Mexico Authors R.A. Cunniff and R.L. Bowers Published Lightning Dock Geothermal, Inc. Technical Report, 2003 DOI Not...

  2. Fluid Imaging of Enhanced Geothermal Systems through Joint 3D...

    Open Energy Info (EERE)

    reservoirs that have been created to extract economical amounts of heat from low permeability andor porosity geothermal resources. Critical to the success of EGS is the...

  3. Enhanced Geothermal Systems (EGS) with CO2 as Heat Transmission...

    Open Energy Info (EERE)

    Fluid Project Type Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type Topic 2 Supercritical...

  4. Metal Organic Heat Carriers for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. This project addresses Energy Conversion Barrier N -Inability to lower the temperature conditions under which EGS power generation is commercially viable.

  5. Enhanced Geothermal Systems (EGS) R&D Program: Monitoring EGS-Related Research

    SciTech Connect (OSTI)

    McLarty, Lynn; Entingh, Daniel; Carwile, Clifton

    2000-09-29

    This report reviews technologies that could be applicable to Enhanced Geothermal Systems development. EGS covers the spectrum of geothermal resources from hydrothermal to hot dry rock. We monitored recent and ongoing research, as reported in the technical literature, that would be useful in expanding current and future geothermal fields. The literature review was supplemented by input obtained through contacts with researchers throughout the United States. Technologies are emerging that have exceptional promise for finding fractures in nonhomogeneous rock, especially during and after episodes of stimulation to enhance natural permeability.

  6. DOE Funds 21 Research, Development and Demonstration Projects for up to $78 Million to Promote Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Today at the National Geothermal Conference in Reno, Nev., Deputy Assistant Secretary for Renewable Energy Steve Chalk announced the U.S. Department of Energy's (DOE) awards under a Funding Opportunity Announcement (FOA) for research, development and demonstration of Enhanced Geothermal Systems (EGS) for next-generation geothermal energy technologies.

  7. Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    This Protocol is a living guidance document for geothermal developers, public officials, regulators and the general public that provides a set of general guidelines detailing useful steps to evaluate and manage the effects of induced seismicity related to EGS projects.

  8. Enhanced Geothermal Systems Documents for Public Comment- Now Closed

    Broader source: Energy.gov [DOE]

    The DOE Geothermal Technologies Program invited the public's input on the technology improvement areas identified at the EGS Technology Roadmapping Information Exchange meeting held in San Francisco, California on August 3-4, 2011.

  9. Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Majer, Ernie; Nelson, James; Robertson-Tait, Ann; Savy, Jean; Wong, Ivan

    2012-01-01

    This Protocol is a living guidance document for geothermal developers, public officials, regulators and the general public that provides a set of general guidelines detailing useful steps to evaluate and manage the effects of induced seismicity related to EGS projects.

  10. Geothermal Energy News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    University under the direction of Dr. Roland Horne is advancing the application of nanotechnology in determining fluid flow through enhanced geothermal system reservoirs at depth....

  11. ADVANCING REACTIVE TRACER METHODS FOR MONITORING THERMAL DRAWDOWN IN GEOTHERMAL ENHANCED GEOTHERMAL RESERVOIRS

    SciTech Connect (OSTI)

    Mitchell A. Plummer; Carl D. Palmer; Earl D. Mattson; George D. Redden; Laurence C. Hull

    2010-10-01

    Reactive tracers have long been considered a possible means of measuring thermal drawdown in a geothermal system, before significant cooling occurs at the extraction well. Here, we examine the sensitivity of the proposed method to evaluate reservoir cooling and demonstrate that while the sensitivity of the method as generally proposed is low, it may be practical under certain conditions.

  12. Enhanced Geothermal Systems (EGS) Well Construction Technology Evaluation Report

    SciTech Connect (OSTI)

    Polsky, Yarom; Capuano, Louis; Finger, John; Huh, Michael; Knudsen, Steve; Chip, A.J. Mansure; Raymond, David; Swanson, Robert

    2008-12-01

    This report provides an assessment of well construction technology for EGS with two primary objectives: 1. Determining the ability of existing technologies to develop EGS wells. 2. Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics.

  13. A man-made enhanced geothermal system (EGS) can extract the abundant heat resour

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    man-made enhanced geothermal system (EGS) can extract the abundant heat resource tens of thousands of feet below the surface and put it to good use. This would require: With an enhanced geothermal reservoir, you can generate power anywhere with hot rocks at depth! What makes EGS? + + Small pathways to conduct fluid through the hot rocks Fluid to carry heat from the rocks Abundant heat found in rocks at depth Abundant heat found in rocks at depth Limited pathways to conduct fluid Insufficient

  14. Geological parameters used to determine the low enthalpy geothermal potential of sedimentary formations in France

    SciTech Connect (OSTI)

    Maget, Ph.; Housse, B.A.

    1985-01-01

    The determination of low enthalpy geothermal potential in sedimentary formations and its exploitation require the solution of two different problems, depending on whether the formations under consideration are calcareous or detrital.

  15. Energy Department Announces $10 Million to Speed Enhanced Geothermal Systems into the Market

    Broader source: Energy.gov [DOE]

    In support President Obama’s all-of-the-above energy strategy, the Energy Department today announced $10 million to improve subsurface characterization for enhanced geothermal systems (EGS) by developing state-of-the-art methods that quantify critical underground reservoir properties as they change over time.

  16. Modeling of heat extraction from variably fractured porous media in Enhanced Geothermal Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hadgu, Teklu; Kalinina, Elena Arkadievna; Lowry, Thomas Stephen

    2016-01-30

    Modeling of heat extraction in Enhanced Geothermal Systems is presented. The study builds on recent studies on the use of directional wells to improve heat transfer between doublet injection and production wells. The current study focuses on the influence of fracture orientation on production temperature in deep low permeability geothermal systems, and the effects of directional drilling and separation distance between boreholes on heat extraction. The modeling results indicate that fracture orientation with respect to the well-pair plane has significant influence on reservoir thermal drawdown. As a result, the vertical well doublet is impacted significantly more than the horizontal wellmore » doublet« less

  17. Enhanced Geothermal Systems Research and Development: Models of Subsurface Chemical Processes Affecting Fluid Flow

    SciTech Connect (OSTI)

    Moller, Nancy; Weare J. H.

    2008-05-29

    Successful exploitation of the vast amount of heat stored beneath the earth’s surface in hydrothermal and fluid-limited, low permeability geothermal resources would greatly expand the Nation’s domestic energy inventory and thereby promote a more secure energy supply, a stronger economy and a cleaner environment. However, a major factor limiting the expanded development of current hydrothermal resources as well as the production of enhanced geothermal systems (EGS) is insufficient knowledge about the chemical processes controlling subsurface fluid flow. With funding from past grants from the DOE geothermal program and other agencies, we successfully developed advanced equation of state (EOS) and simulation technologies that accurately describe the chemistry of geothermal reservoirs and energy production processes via their free energies for wide XTP ranges. Using the specific interaction equations of Pitzer, we showed that our TEQUIL chemical models can correctly simulate behavior (e.g., mineral scaling and saturation ratios, gas break out, brine mixing effects, down hole temperatures and fluid chemical composition, spent brine incompatibilities) within the compositional range (Na-K-Ca-Cl-SO4-CO3-H2O-SiO2-CO2(g)) and temperature range (T < 350°C) associated with many current geothermal energy production sites that produce brines with temperatures below the critical point of water. The goal of research carried out under DOE grant DE-FG36-04GO14300 (10/1/2004-12/31/2007) was to expand the compositional range of our Pitzer-based TEQUIL fluid/rock interaction models to include the important aluminum and silica interactions (T < 350°C). Aluminum is the third most abundant element in the earth’s crust; and, as a constituent of aluminosilicate minerals, it is found in two thirds of the minerals in the earth’s crust. The ability to accurately characterize effects of temperature, fluid mixing and interactions between major rock-forming minerals and hydrothermal and/or injected fluids is critical to predict important chemical behaviors affecting fluid flow, such as mineral precipitation/dissolution reactions. We successfully achieved the project goal and objectives by demonstrating the ability of our modeling technology to correctly predict the complex pH dependent solution chemistry of the Al3+ cation and its hydrolysis species: Al(OH)2+, Al(OH)2+, Al(OH)30, and Al(OH)4- as well as the solubility of common aluminum hydroxide and aluminosilicate minerals in aqueous brines containing components (Na, K, Cl) commonly dominating hydrothermal fluids. In the sodium chloride system, where experimental data for model parameterization are most plentiful, the model extends to 300°C. Determining the stability fields of aluminum species that control the solubility of aluminum-containing minerals as a function of temperature and composition has been a major objective of research in hydrothermal chemistry.

  18. Development of Models to Simulate Tracer Behavior in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Williams, Mark D.; Vermeul, Vincent R.; Reimus, P. W.; Newell, D.; Watson, Tom B.

    2010-06-01

    A recent report found that power and heat produced from engineered (or enhanced) geothermal systems (EGSs) could have a major impact on the United States while incurring minimal environmental impacts. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distributions, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for commercial development of geothermal energy. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. Modeling capabilities are being developed as part of this project to support laboratory and field testing to characterize engineered geothermal systems in single- and multi-well tests using tracers. The objective of this report is to describe the simulation plan and the status of model development for simulating tracer tests for characterizing EGS.

  19. Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Novel use of 4D Monitoring Techniques to Improve Reservoir Longevity and Productivity in Enhanced Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  20. Development of Models to Simulate Tracer Tests for Characterization of Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Williams, Mark D.; Reimus, Paul; Vermeul, Vincent R.; Rose, Peter; Dean, Cynthia A.; Watson, Tom B.; Newell, D.; Leecaster, Kevin; Brauser, Eric

    2013-05-01

    A recent report found that power and heat produced from enhanced (or engineered) geothermal systems (EGSs) could have a major impact on the U.S energy production capability while having a minimal impact on the environment. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distribution, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for the design and commercial development of the geothermal energy of a potential EGS site. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. This project was initially focused on tracer development with the application of perfluorinated tracer (PFT) compounds, non-reactive tracers used in numerous applications from atmospheric transport to underground leak detection, to geothermal systems, and evaluation of encapsulated PFTs that would release tracers at targeted reservoir temperatures. After the 2011 midyear review and subsequent discussions with the U.S. Department of Energy Geothermal Technology Program (GTP), emphasis was shifted to interpretive tool development, testing, and validation. Subsurface modeling capabilities are an important component of this project for both the design of suitable tracers and the interpretation of data from in situ tracer tests, be they single- or multi-well tests. The purpose of this report is to describe the results of the tracer and model development for simulating and conducting tracer tests for characterizing EGS parameters.

  1. Simulation of Enhanced Geothermal Systems: A Benchmarking and Code Intercomparison Study

    SciTech Connect (OSTI)

    Scheibe, Timothy D.; White, Mark D.; White, Signe K.; Sivaramakrishnan, Chandrika; Purohit, Sumit; Black, Gary D.; Podgorney, Robert; Boyd, Lauren W.; Phillips, Benjamin R.

    2013-06-30

    Numerical simulation codes have become critical tools for understanding complex geologic processes, as applied to technology assessment, system design, monitoring, and operational guidance. Recently the need for quantitatively evaluating coupled Thermodynamic, Hydrologic, geoMechanical, and geoChemical (THMC) processes has grown, driven by new applications such as geologic sequestration of greenhouse gases and development of unconventional energy sources. Here we focus on Enhanced Geothermal Systems (EGS), which are man-made geothermal reservoirs created where hot rock exists but there is insufficient natural permeability and/or pore fluids to allow efficient energy extraction. In an EGS, carefully controlled subsurface fluid injection is performed to enhance the permeability of pre-existing fractures, which facilitates fluid circulation and heat transport. EGS technologies are relatively new, and pose significant simulation challenges. To become a trusted analytical tool for EGS, numerical simulation codes must be tested to demonstrate that they adequately represent the coupled THMC processes of concern. This presentation describes the approach and status of a benchmarking and code intercomparison effort currently underway, supported by the U. S. Department of Energys Geothermal Technologies Program. This study is being closely coordinated with a parallel international effort sponsored by the International Partnership for Geothermal Technology (IPGT). We have defined an extensive suite of benchmark problems, test cases, and challenge problems, ranging in complexity and difficulty, and a number of modeling teams are applying various simulation tools to these problems. The descriptions of the problems and modeling results are being compiled using the Velo framework, a scientific workflow and data management environment accessible through a simple web-based interface.

  2. NREL: Geothermal Technologies - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities The NREL geothermal team leverages its capabilities in several different areas to enhance the visibility of geothermal technologies. These areas include low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL works to develop and deploy innovative new technologies that will help the geothermal community achieve widespread adoption of under-utilized low-temperature resources

  3. Environmentally Friendly, Rheoreversible, Hydraulic-fracturing Fluids for Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Shao, Hongbo; Kabilan, Senthil; Stephens, Sean A.; Suresh, Niraj; Beck, Anthon NR; Varga, Tamas; Martin, Paul F.; Kuprat, Andrew P.; Jung, Hun Bok; Um, Wooyong; Bonneville, Alain; Heldebrant, David J.; Carroll, KC; Moore, Joseph; Fernandez, Carlos A.

    2015-07-01

    Cost-effective creation of high-permeability reservoirs inside deep crystalline bedrock is the primary challenge for the feasibility of enhanced geothermal systems (EGS). Current reservoir stimulation entails adverse environmental impacts and substantial economic costs due to the utilization of large volumes of water “doped” with chemicals including rheology modifiers, scale and corrosion inhibitors, biocides, friction reducers among others where, typically, little or no information of composition and toxicity is disclosed. An environmentally benign, CO2-activated, rheoreversible fracturing fluid has recently been developed that significantly enhances rock permeability at effective stress significantly lower than current technology. We evaluate the potential of this novel fracturing fluid for application on geothermal sites under different chemical and geomechanical conditions, by performing laboratory-scale fracturing experiments with different rock sources under different confining pressures, temperatures, and pH environments. The results demonstrate that CO2-reactive aqueous solutions of environmentally amenable Polyallylamine (PAA) represent a highly versatile fracturing fluid technology. This fracturing fluid creates/propagates fracture networks through highly impermeable crystalline rock at significantly lower effective stress as compared to control experiments where no PAA was present, and permeability enhancement was significantly increased for PAA compared to conventional hydraulic fracturing controls. This was evident in all experiments, including variable rock source/type, operation pressure and temperature (over the entire range for EGS applications), as well as over a wide range of formation-water pH values. This versatile novel fracturing fluid technology represents a great alternative to industrially available fracturing fluids for cost-effective and competitive geothermal energy production.

  4. Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid

    SciTech Connect (OSTI)

    Eastman, Alan D.

    2014-07-24

    This report describes work toward a supercritical CO2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.

  5. Geothermal Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ... to produce and disseminate both the exploration gap analysis and Enhanced Geothermal ... 1 megawatt) power generation geothermal projects; sources of useful information including ...

  6. Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Ahmad Ghassemi

    2009-10-01

    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.

  7. Category:Geothermal Technologies | Open Energy Information

    Open Energy Info (EERE)

    out of 7 total. C Co-Produced Geothermal Systems E Enhanced Geothermal Systems (EGS) G Geothermal Direct Use G cont. GeothermalExploration Ground Source Heat Pumps H...

  8. NREL: Geothermal Technologies - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects The NREL geothermal team is involved in various projects to help accelerate the development and deployment of clean, renewable geothermal technologies, including low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL supports the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) through various collaborations that evaluate the levelized cost of electricity

  9. Geothermal Technologies Office April

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Report Geothermal Technologies Office April 2016 1 2015 Annual Report | Geothermal Technologies Office Director's Message Geothermal Technologies Office FY 2016 Budget at a Glance Enhanced Geothermal Systems Hydrothermal Program Low-Temperature and Coproduced Resources Systems Analysis Events and Highlights People Acronyms Resources Table of Contents 2 2 3 7 13 17 19 23 26 28 2015 Achievements Geothermal Technologies Office Steam, West Flank of Coso, NV The 2015 Annual Report of the

  10. Michrohole Arrays Drilled with Advanced Abrasive Slurry Jet Technology to Efficiently Exploit Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Oglesby, Kenneth; Finsterle, Stefan; Zhang, Yingqi; Pan, Lehua; Dobson, Parick; Mohan, Ram; Shoham, Ovadia; Felber, Betty; Rychel, Dwight

    2014-03-12

    This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency and project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.

  11. Method and apparatus for determining vertical heat flux of geothermal field

    DOE Patents [OSTI]

    Poppendiek, Heinz F.

    1982-01-01

    A method and apparatus for determining vertical heat flux of a geothermal field, and mapping the entire field, is based upon an elongated heat-flux transducer (10) comprised of a length of tubing (12) of relatively low thermal conductivity with a thermopile (20) inside for measuring the thermal gradient between the ends of the transducer after it has been positioned in a borehole for a period sufficient for the tube to reach thermal equilibrium. The transducer is thermally coupled to the surrounding earth by a fluid annulus, preferably water or mud. A second transducer comprised of a length of tubing of relatively high thermal conductivity is used for a second thermal gradient measurement. The ratio of the first measurement to the second is then used to determine the earth's thermal conductivity, k.sub..infin., from a precalculated graph, and using the value of thermal conductivity thus determined, then determining the vertical earth temperature gradient, b, from predetermined steady state heat balance equations which relate the undisturbed vertical earth temperature distributions at some distance from the borehole and earth thermal conductivity to the temperature gradients in the transducers and their thermal conductivity. The product of the earth's thermal conductivity, k.sub..infin., and the earth's undisturbed vertical temperature gradient, b, then determines the earth's vertical heat flux. The process can be repeated many times for boreholes of a geothermal field to map vertical heat flux.

  12. Stimuli Responsive/Rheoreversible Hydraulic Fracturing Fluids for Enhanced Geothermal Energy Production (Part II)

    SciTech Connect (OSTI)

    Bonneville, Alain; Jung, Hun Bok; Shao, Hongbo; Kabilan, Senthil; Um, Wooyong; Carroll, Kenneth C.; Varga, Tamas; Suresh, Niraj; Stephens, Sean A.; Fernandez, Carlos A.

    2014-12-14

    We have used an environmentally friendly and recyclable hydraulic fracturing fluid - diluted aqueous solutions of polyallylamine or PAA for reservoir stimulation in Enhanced Geothermal System (EGS). This fluid undergoes a controlled and large volume expansion with a simultaneous increase in viscosity triggered by CO2 at EGS temperatures. We are presenting here the results of laboratory-scale hydraulic fracturing experiment using the fluid on small cylindrical rock cores (1.59 cm in diameter and 5.08 cm in length) from the Coso geothermal field in California. Rock samples consisted of Mesozoic diorite metamorphosed to greenschist facies. The experiments were conducted on 5 samples for realistic ranges of pressures (up to 275 bar) and temperatures (up to 210 C) for both the rock samples and the injected fluid. After fracturing, cores were subjected to a CO2 leakage test, injection of KI solution, and X-ray microtomography (XMT) scanning to examine the formation and distribution of fractures. The design and conduct of these experiments will be presented and discussed in details. Based on the obtained XMT images, Computational Fluid Dynamics (CFD) simulations were then performed to visualize hydraulic fractures and compute the bulk permeability. OpenFOAM (OpenCFD Ltd., Reading, UK), was used to solve the steady state simulation. The flow predictions, based upon the laminar, 3-D, incompressible Navier-Stokes equations for fluid mass and momentum, show the remarkable stimulation of the permeability in the core samples and demonstrate the efficiency of such a CO2 triggered fluid in EGS.

  13. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation ...

  14. Recovery Act. Development and Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Gutierrez, Marte

    2013-12-31

    This research project aims to develop and validate an advanced computer model that can be used in the planning and design of stimulation techniques to create engineered reservoirs for Enhanced Geothermal Systems. The specific objectives of the proposal are to; Develop a true three-dimensional hydro-thermal fracturing simulator that is particularly suited for EGS reservoir creation; Perform laboratory scale model tests of hydraulic fracturing and proppant flow/transport using a polyaxial loading device, and use the laboratory results to test and validate the 3D simulator; Perform discrete element/particulate modeling of proppant transport in hydraulic fractures, and use the results to improve understand of proppant flow and transport; Test and validate the 3D hydro-thermal fracturing simulator against case histories of EGS energy production; and Develop a plan to commercialize the 3D fracturing and proppant flow/transport simulator. The project is expected to yield several specific results and benefits. Major technical products from the proposal include; A true-3D hydro-thermal fracturing computer code that is particularly suited to EGS; Documented results of scale model tests on hydro-thermal fracturing and fracture propping in an analogue crystalline rock; Documented procedures and results of discrete element/particulate modeling of flow and transport of proppants for EGS applications; and Database of monitoring data, with focus of Acoustic Emissions (AE) from lab scale modeling and field case histories of EGS reservoir creation.

  15. International Partnership for Geothermal Technology - 2012 Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Validation of an Advanced Stimulation Prediction Model for Enhanced Geothermal Systems (EGS) Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

  16. Energy geothermal; San Emidio Geothermal Area; 3D Model geothermal...

    Office of Scientific and Technical Information (OSTI)

    description: Trainor-Guitton, Hoversten,Nordquist, Intani, Value of information analysis using geothermal field data: accounting for multiple interpretations & determining...

  17. Detection and Characterization of Natural and Induced Fractures for the Development of Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Combine geophysical methods for reservoir and fracture characterization with rock physics measurements made under in-situ conditions (up to 350⁰C) for development of geothermal systems.

  18. Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal...

    Open Energy Info (EERE)

    altered. This fault zone is a prime target for stimulation. Authors Kovac, K.M.; Moore, J.N.; Rose, P.E.; McCulloch and J. Published Geothermal Resource Council Transactions...

  19. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford ...

  20. Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis

    SciTech Connect (OSTI)

    Horne, Roland N.; Li, Kewen; Alaskar, Mohammed; Ames, Morgan; Co, Carla; Juliusson, Egill; Magnusdottir, Lilja

    2012-06-30

    This report highlights the work that was done to characterize fractured geothermal reservoirs using production data. That includes methods that were developed to infer characteristic functions from production data and models that were designed to optimize reinjection scheduling into geothermal reservoirs, based on these characteristic functions. The characterization method provides a robust way of interpreting tracer and flow rate data from fractured reservoirs. The flow-rate data are used to infer the interwell connectivity, which describes how injected fluids are divided between producers in the reservoir. The tracer data are used to find the tracer kernel for each injector-producer connection. The tracer kernel describes the volume and dispersive properties of the interwell flow path. A combination of parametric and nonparametric regression methods were developed to estimate the tracer kernels for situations where data is collected at variable flow-rate or variable injected concentration conditions. The characteristic functions can be used to calibrate thermal transport models, which can in turn be used to predict the productivity of geothermal systems. This predictive model can be used to optimize injection scheduling in a geothermal reservoir, as is illustrated in this report.

  1. Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a general framework for effective flow of water, steam and heat in in porous and fractured geothermal formations. Develop a computational module for handling coupled effects of pressure, temperature, and induced rock deformations. Develop a reliable model of heat transfer and fluid flow in fractured rocks.

  2. 300°C Capable Electronics Platform and Temperature Sensor System For Enhanced Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objectives: Enable geothermal wellbore monitoring through the development of SiC based electronics and ceramic packaging capable of sustained operation at temperatures up to 300˚C and 10 km depth. Demonstrate the technology with a temperature sensor system.

  3. Geothermal Properties Measurement Tool | Open Energy Information

    Open Energy Info (EERE)

    Measurement tool was developed at Oak Ridge National Laboratory for geothermal heat pump (GHP) designers and installers to better determine the geothermal properties of a...

  4. Iceland Geothermal Conference 2013 - Geothermal Policies and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal ...

  5. Development of an Advanced Stimulation / Production Predictive Simulator for Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Pritchett, John W.

    2015-04-15

    There are several well-known obstacles to the successful deployment of EGS projects on a commercial scale, of course. EGS projects are expected to be deeper, on the average, than conventional “natural” geothermal reservoirs, and drilling costs are already a formidable barrier to conventional geothermal projects. Unlike conventional resources (which frequently announce their presence with natural manifestations such as geysers, hot springs and fumaroles), EGS prospects are likely to appear fairly undistinguished from the earth surface. And, of course, the probable necessity of fabricating a subterranean fluid circulation network to mine the heat from the rock (instead of simply relying on natural, pre-existing permeable fractures) adds a significant degree of uncertainty to the prospects for success. Accordingly, the basic motivation for the work presented herein was to try to develop a new set of tools that would be more suitable for this purpose. Several years ago, the Department of Energy’s Geothermal Technologies Office recognized this need and funded a cost-shared grant to our company (then SAIC, now Leidos) to partner with Geowatt AG of Zurich, Switzerland and undertake the development of a new reservoir simulator that would be more suitable for EGS forecasting than the existing tools. That project has now been completed and a new numerical geothermal reservoir simulator has been developed. It is named “HeatEx” (for “Heat Extraction”) and is almost completely new, although its methodology owes a great deal to other previous geothermal software development efforts, including Geowatt’s “HEX-S” code, the STAR and SPFRAC simulators developed here at SAIC/Leidos, the MINC approach originally developed at LBNL, and tracer analysis software originally formulated at INEL. Furthermore, the development effort was led by engineers with many years of experience in using reservoir simulation software to make meaningful forecasts for real geothermal projects, not just software designers. It is hoped that, as a result, HeatEx will prove useful during the early stages of the development of EGS technology. The basic objective was to design a tool that could use field data that are likely to become available during the early phases of an EGS project (that is, during initial reconnaissance and fracture stimulation operations) to guide forecasts of the longer-term behavior of the system during production and heat-mining.

  6. Baseline System Costs for 50.0 MW Enhanced Geothermal System--A Function of: Working Fluid, Technology, and Location, Location, Location

    Broader source: Energy.gov [DOE]

    Project objectives: Develop a baseline cost model of a 50.0 MW Enhanced Geothermal System, including all aspects of the project, from finding the resource through to operation, for a particularly challenging scenario: the deep, radioactively decaying granitic rock of the Pioneer Valley in Western Massachusetts.

  7. Accelerating Geothermal Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  8. Modeling shear failure and permeability enhancement due to coupled...

    Office of Scientific and Technical Information (OSTI)

    processes in Enhanced Geothermal Reservoirs Citation Details In-Document ... processes in Enhanced Geothermal Reservoirs The connectivity and ...

  9. Geographic Information Systems- Tools For Geotherm Exploration...

    Open Energy Info (EERE)

    Information Systems- Tools For Geotherm Exploration, Tracers Data Analysis, And Enhanced Data Distribution, Visualization, And Management Abstract Geographic information...

  10. Enhancing Condensers for Geothermal Systems: the Effect of High Contact Angles on Dropwise Condensation Heat Transfer

    SciTech Connect (OSTI)

    Kennedy, John M.; Kim, Sunwoo; Kim, Kwang J.

    2009-10-06

    Phase change heat transfer is notorious for increasing the irreversibility of, and therefore decreasing the efficiency of, geothermal power plants. Its significant contribution to the overall irreversibility of the plant makes it the most important source of inefficiency in the process. Recent studies here have shown the promotion of drop wise condensation in the lab by means of increasing the surface energy density of a tube with nanotechnology. The use of nanotechnology has allowed the creation of surface treatments which discourage water from wetting a tube surface during a static test. These surface treatments are unique in that they create high- contact angles on the condensing tube surfaces to promote drop wise condensation.

  11. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    SciTech Connect (OSTI)

    Rose, Peter Eugene

    2013-04-15

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team contributed to the Desert Peak project, focusing largely on a geomechanical investigation of the Desert Peak reservoir, tracer testing between injectors 21-2 and 22-22 and the field’s main producers, and the chemical stimulation of target well 27-15.

  12. Creation of an Enhanced Geothermal System through Hydraulic and Thermal Stimulation

    SciTech Connect (OSTI)

    Rose, Peter Eugene

    2013-04-15

    This report describes a 10-year DOE-funded project to design, characterize and create an Engineered Geothermal System (EGS) through a combination of hydraulic, thermal and chemical stimulation techniques. Volume 1 describes a four-year Phase 1 campaign, which focused on the east compartment of the Coso geothermal field. It includes a description of the geomechanical, geophysical, hydraulic, and geochemical studies that were conducted to characterize the reservoir in anticipation of the hydraulic stimulation experiment. Phase 1 ended prematurely when the drill bit intersected a very permeable fault zone during the redrilling of target stimulation well 34-9RD2. A hydraulic stimulation was inadvertently achieved, however, since the flow of drill mud from the well into the formation created an earthquake swarm near the wellbore that was recorded, located, analyzed and interpreted by project seismologists. Upon completion of Phase 1, the project shifted focus to a new target well, which was located within the southwest compartment of the Coso geothermal field. Volume 2 describes the Phase 2 studies on the geomechanical, geophysical, hydraulic, and geochemical aspects of the reservoir in and around target-stimulation well 46A-19RD, which is the deepest and hottest well ever drilled at Coso. Its total measured depth exceeding 12,000 ft. It spite of its great depth, this well is largely impermeable below a depth of about 9,000 ft, thus providing an excellent target for stimulation. In order to prepare 46A-19RD for stimulation, however, it was necessary to pull the slotted liner. This proved to be unachievable under the budget allocated by the Coso Operating Company partners, and this aspect of the project was abandoned, ending the program at Coso. The program then shifted to the EGS project at Desert Peak, which had a goal similar to the one at Coso of creating an EGS on the periphery of an existing geothermal reservoir. Volume 3 describes the activities that the Coso team contributed to the Desert Peak project, focusing largely on a geomechanical investigation of the Desert Peak reservoir, tracer testing between injectors 21-2 and 22-22 and the field’s main producers, and the chemical stimulation of target well 27-15.

  13. Mineral Recovery from Geothermal Fluids | Open Energy Information

    Open Energy Info (EERE)

    Metals and Compounds from Geothermal Fluids California Simbol Mining Corp. Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Albuquerque, NM,...

  14. U.S. and Australian Advanced Geothermal Projects Face Setbacks

    Broader source: Energy.gov [DOE]

    Efforts to develop and commercialize a new type of geothermal energy, called Enhanced Geothermal Systems (EGS), are facing technical setbacks in both the United States and Australia.

  15. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation. ...

  16. Concept Testing and Development at the Raft River Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE 2010 Geothermal Technologies Program Peer Review PDF icon egs007moore.pdf More Documents & Publications Demonstration of an Enhanced Geothermal System at the Northwest ...

  17. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon hybridthermcyclepeer2013.pdf More Documents & Publications Working Fluids and Their Effect on Geothermal Turbines Tailored Working Fluids for Enhanced Binary Geothermal ...

  18. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetricmore » heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.« less

  19. Geothermal Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy ...

  20. NREL: Dynamic Maps, GIS Data, and Analysis Tools - Geothermal Prospector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Prospector Start exploring U.S. geothermal resources with an easy-to-use map by selecting data layers that are NGDS compatible. Bookmark and Share Geothermal Prospector The Geothermal Prospector mapping tool provides an excellent data resource for visual exploration of geothermal resources using the tools and datasets required to produce and disseminate both exploration gap analysis and Enhanced Geothermal System (EGS) planning and analysis. In 2010, NREL developed Geothermal

  1. NREL: Renewable Resource Data Center - Geothermal Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Data The following geothermal resource data collections can be found in the Renewable Resource Data Center (RReDC). Geothermal Resource Data The datasets on this page offer a qualitative assessment of geothermal potential for the U.S. using Enhanced Geothermal Systems (EGS) and based on the levelized cost of electricity, and the Texas Geopressured Geothermal Resource Estimate. Geothermal data sites Data related to geothermal technology and energy

  2. DOE-Backed Project Will Demonstrate Innovative Geothermal Technology

    Broader source: Energy.gov [DOE]

    As part of DOE's Geothermal Technologies Program, two geothermal companies, AltaRock Energy and Davenport Newberry, announced plans on June 8 to conduct a demonstration of Enhanced Geothermal Systems (EGS) technology at a site located near Bend, Oregon.

  3. Enhanced Geothermal System Potential for Sites on the Eastern Snake River Plain, Idaho

    SciTech Connect (OSTI)

    Robert K Podgorney; Thomas R. Wood; Travis L McLing; Gregory Mines; Mitchell A Plummer; Michael McCurry; Ahmad Ghassemi; John Welhan; Joseph Moore; Jerry Fairley; Rachel Wood

    2013-09-01

    The Snake River volcanic province overlies a thermal anomaly that extends deep into the mantle and represents one of the highest heat flow provinces in North America (Blackwell and Richards, 2004). This makes the Snake River Plain (SRP) one of the most under-developed and potentially highest producing geothermal districts in the United States. Elevated heat flow is typically highest along the margins of the topographic SRP and lowest along the axis of the plain, where thermal gradients are suppressed by the Snake River aquifer. Beneath this aquifer, however, thermal gradients rise again and may tap even higher heat flows associated with the intrusion of mafic magmas into the mid-crustal sill complex (e.g., Blackwell, 1989).

  4. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005)...

  5. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, New Zealand (Ranalli & Rybach, 2005)...

  6. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration...

  7. Geothermal Energy Association Recognizes the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  8. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-12-16

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  9. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  10. Energy 101: Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Energy 101: Geothermal Energy

  11. Geothermal Resources | Open Energy Information

    Open Energy Info (EERE)

    the information needed to allow users to determine locations that are favorable to geothermal energy development. This was in response to the recommendation by the...

  12. Geothermal Tomorrow

    Broader source: Energy.gov [DOE]

    This magazine-format report discusses recent strategies and activities of the DOE Geothermal Technologies Program, as well as an update of technologies and economics of the U.S. geothermal industry.

  13. Purchase and Installation of a Geothermal Power Plant to Generate Electricity Using Geothermal Water Resources

    Broader source: Energy.gov [DOE]

    Project objectives: Demonstrate technical and financial feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation.

  14. Geothermal guidebook

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    The guidebook contains an overview, a description of the geothermal resource, statutes and regulations, and legislative policy concerns. (MHR)

  15. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect (OSTI)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  16. development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    field Leyte, Philippines. Report on exploration and development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL FIELD; GEOTHERMAL EXPLORATION; GEOTHERMAL POWER...

  17. The Future of Geothermal Energy

    SciTech Connect (OSTI)

    Kubik, Michelle

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  18. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy (Redirected from Geothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data...

  19. Appendix F - GPRA06 geothermal technologies program documentation

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The primary goal of the Geothermal Technologies Program is to reduce the cost of geothermal generation technologies, including both conventional and enhanced geothermal systems (EGS). EGS are defined as geothermal systems where the reservoir requires substantial engineering manipulation to make using the reservoir economically feasible.

  20. Development of an Improved Cement for Geothermal Wells | Department of

    Broader source: Energy.gov (indexed) [DOE]

    Energy Development of an Improved Cement for Geothermal Wells presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon cement_wells_trabits_peer2013.pdf More Documents & Publications Development of an Improved Cement for Geothermal Wells Geopolymer Sealing Materials track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review

  1. Geothermal Energy at the U.S. Department of Energy | Department...

    Energy Savers [EERE]

    be able to develop, test, and accelerate breakthroughs in enhanced geothermal system (EGS) technologies and techniques. Read more Geothermal Data Repository hits important...

  2. Geothermal Reservoir Dynamics - TOUGHREACT

    SciTech Connect (OSTI)

    Pruess, Karsten; Xu, Tianfu; Shan, Chao; Zhang, Yingqi; Wu,Yu-Shu; Sonnenthal, Eric; Spycher, Nicolas; Rutqvist, Jonny; Zhang,Guoxiang; Kennedy, Mack

    2005-03-15

    This project has been active for several years and has focused on developing, enhancing and applying mathematical modeling capabilities for fractured geothermal systems. The emphasis of our work has recently shifted towards enhanced geothermal systems (EGS) and hot dry rock (HDR), and FY05 is the first year that the DOE-AOP actually lists this project under Enhanced Geothermal Systems. Our overall purpose is to develop new engineering tools and a better understanding of the coupling between fluid flow, heat transfer, chemical reactions, and rock-mechanical deformation, to demonstrate new EGS technology through field applications, and to make technical information and computer programs available for field applications. The objectives of this project are to: (1) Improve fundamental understanding and engineering methods for geothermal systems, primarily focusing on EGS and HDR systems and on critical issues in geothermal systems that are difficult to produce. (2) Improve techniques for characterizing reservoir conditions and processes through new modeling and monitoring techniques based on ''active'' tracers and coupled processes. (3) Improve techniques for targeting injection towards specific engineering objectives, including maintaining and controlling injectivity, controlling non-condensable and corrosive gases, avoiding scale formation, and optimizing energy recovery. Seek opportunities for field testing and applying new technologies, and work with industrial partners and other research organizations.

  3. Stanford Geothermal Workshop- Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    Presentation by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013.

  4. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy (Redirected from Geothermal Power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Energy RSF GeothermalPowerStation.jpg Geothermal energy...

  5. Geothermal Basics

    Broader source: Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  6. Geothermal hydrothermal

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The geothermal hydrothermal section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  7. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  8. NREL: Renewable Resource Data Center - Geothermal Resource Models and Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models and Tools The Renewable Resource Data Center (RReDC) features the following geothermal models and tools. Geothermal Prospector The Geothermal Prospector tool provides the information needed to allow users to determine locations that are favorable to geothermal energy development. List of software and models from other National Laboratories and Centers

  9. SMU Geothermal Conference 2011 - Geothermal Technologies Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation at the SMU Geothermal Conference in June 2011. PDF icon gtp_smu_conference_reinhardt_2011.pdf More Documents & Publications Low Temperature/Coproduced/Geopressured Subprogram Overview AAPG Low-Temperature Webinar Geothermal Technologies Program Peer Review Program June 6 - 10, 2011

  10. Site Map | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Basic Search Advanced Search Geothermal FAQ About Geothermal Site Map Geothermal Feedback Website PoliciesImportant Links

  11. Frequently Asked Questions | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Frequently Asked Questions Frequently Asked Questions What is the Geothermal Legacy Collection? The Geothermal collection is available to the geothermal community and interested ...

  12. Geothermal Energy News

    Broader source: Energy.gov (indexed) [DOE]

    geothermal900546 Geothermal Energy News en EERE Announces Up to 4 Million for Critical Materials Recovery from Geothermal Fluids http:energy.goveerearticles...

  13. Final Technical Report - 300???°C Capable Electronics Platform and Temperature Sensor System For Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Cheng-Po Chen; David Shaddock; Peter Sandvik; Rich Saia; Amita Patil, Alexey Vert; Tan Zhang

    2012-11-30

    A silicon carbide (SiC) based electronic temperature sensor prototype has been demonstrated to operate at 300???°C. We showed continuous operation of 1,000 hours with SiC operational amplifier and surface mounted discreet resistors and capacitors on a ceramic circuit board. This feasibility demonstration is a major milestone in the development of high temperature electronics in general and high temperature geothermal exploration and well management tools in particular. SiC technology offers technical advantages that are not found in competing technologies such as silicon-on-insulator (SOI) at high temperatures of 200???°C to 300???°C and beyond. The SiC integrated circuits and packaging methods can be used in new product introduction by GE Oil and Gas for high temperature down-hole tools. The existing SiC fabrication facility at GE is sufficient to support the quantities currently demanded by the marketplace, and there are other entities in the United States and other countries capable of ramping up SiC technology manufacturing. The ceramic circuit boards are different from traditional organic-based electronics circuit boards, but the fabrication process is compatible with existing ceramic substrate manufacturing. This project has brought high temperature electronics forward, and brings us closer to commercializing tools that will enable and reduce the cost of enhanced geothermal technology to benefit the public in terms of providing clean renewable energy at lower costs.

  14. DOE 2009 Geothermal Risk Analysis: Methodology and Results (Presentation)

    SciTech Connect (OSTI)

    Young, K. R.; Augustine, C.; Anderson, A.

    2010-02-01

    This presentation summarizes the methodology and results for a probabilistic risk analysis of research, development, and demonstration work-primarily for enhanced geothermal systems (EGS)-sponsored by the U.S. Department of Energy Geothermal Technologies Program.

  15. Chemical Energy Carriers (CEC) for the Utilization of Geothermal Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: Develop chemical energy carrier (CEC) systems to recover thermal energy from enhanced geothermal systems (EGS) in the form of chemical energy, in addition to sensible and latent energy.

  16. Enhanced Oil Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainable Power | Department of Energy Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power April 12, 2013 - 11:17am Addthis Learn the basics of enhanced geothermal systems technology. I Infographic by <a href="http://energy.gov/contributors/sarah-gerrity">Sarah Gerrity</a>. Learn the basics of enhanced geothermal systems technology. I

  17. Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop reactive tracer method for monitoring thermal drawdown in enhanced geothermal systems.

  18. Protocol for Addressing Induced Seismicity Associated with Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems (EGS) Protocol for Addressing Induced Seismicity Associated with Enhanced Geothermal Systems...

  19. Tracer Methods for Characterizing Fracture Stimulation in Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Stimulation in Enhanced...

  20. Geothermal Energy: A Glance Back and a Leap Forward | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy: A Glance Back and a Leap Forward Geothermal Energy: A Glance Back and a Leap Forward October 23, 2013 - 1:31pm Addthis This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department This diagram shows how electricity is produced using enhanced geothermal systems. | Energy Department Lauren Boyd Lauren Boyd Program Manager, Enhanced Geothermal Systems (EGS) HOW EGS WORKS Imagine taking an elevator down 900 stories-over two and a half miles

  1. Heat Transfer and Fluid Transport of Supercritical CO2 in Enhanced Geothermal System with Local Thermal Non-equilibrium Model

    SciTech Connect (OSTI)

    Zhang, Le; Luo, Feng; Xu, Ruina; Jiang, Peixue; Liu, Huihai

    2014-12-31

    The heat transfer and fluid transport of supercritical CO2 in enhanced geothermal system (EGS) is studied numerically with local thermal non-equilibrium model, which accounts for the temperature difference between solid matrix and fluid components in porous media and uses two energy equations to describe heat transfer in the solid matrix and in the fluid, respectively. As compared with the previous results of our research group, the effect of local thermal non-equilibrium mainly depends on the volumetric heat transfer coefficient ah, which has a significant effect on the production temperature at reservoir outlet and thermal breakthrough time. The uniformity of volumetric heat transfer coefficient ah has little influence on the thermal breakthrough time, but the temperature difference become more obvious with time after thermal breakthrough with this simulation model. The thermal breakthrough time reduces and the effect of local thermal non-equilibrium becomes significant with decreasing ah.

  2. NREL: Geothermal Technologies - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal News Below are news stories involving geothermal research. March 10, 2016 NREL's Geothermal Experts Present at the 41st Annual Stanford Geothermal Workshop NREL geothermal experts attend the 41st Annual Stanford Geothermal Workshop--one of the world's longest-running technical meetings on the topic of geothermal energy. March 2, 2016 U.S. Bureau of Land Management Looks to NREL for Geothermal Technical Support The National Renewable Energy Laboratory (NREL) has entered into an

  3. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association hosts its annual National Geothermal Summit in Reno, Nevada, June 3-4, 2015.

  4. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984)...

  5. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Witcher, 2008) Exploration Activity...

  6. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Spiegel, 1957) Exploration Activity...

  7. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity...

  8. Geothermal Literature Review At Coso Geothermal Area (1985) ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Coso Geothermal Area (1985) Exploration Activity Details Location Coso...

  9. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Farhar, 2002) Exploration Activity Details...

  10. Geothermal Literature Review At Geysers Geothermal Area (1984...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Geothermal Area (1984) Exploration Activity Details Location...

  11. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Fleischman, 2006) Exploration Activity...

  12. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Exploration Activity Details...

  13. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Summers, 1976) Exploration Activity...

  14. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Clemons, Et Al., 1988) Exploration...

  15. Geothermal Literature Review At Salton Trough Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salton Trough Geothermal Area (1984) Exploration Activity Details Location...

  16. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Exploration Activity Details...

  17. Geothermal Literature Review At Medicine Lake Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location...

  18. Geothermal Literature Review At Coso Geothermal Area (1984) ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Coso Geothermal Area (1984) Exploration Activity Details Location Coso...

  19. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Schochet, Et Al., 2001) Exploration...

  20. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Exploration...

  1. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Callender, 1981) Exploration Activity...

  2. Feedback | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Public Access Feedback Feedback If you have a question or comment about Geothermal, check to see if it is on our list of frequently asked questions. If your question isn't answered ...

  3. Geothermal Data Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  4. Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: to characterize the geothermal reservoir using novel technologies and integrating this information into a 3D geologic and reservoir model numerical model to determine the efficacy of future geothermal production.

  5. Energy Returned On Investment of Engineered Geothermal Systems

    Broader source: Energy.gov [DOE]

    Project objective: Determine the Energy Returned on Investment (EROI) for electric power production of Engineered Geothermal Systems (EGS).

  6. National Geothermal Data System (NGDS) Initiative | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Determine geothermal potential * Guide exploration and development * Make data-driven ... In addition, all DOE-funded projects are required to register their data in the NGDS, ...

  7. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting &...

  8. SMU Geothermal Conference 2011 - Geothermal Technologies Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Quality Geothermal Data Sets * Technology Assessment of Logging Techniques Systems ... Heat Recovery FOA Energy Efficiency & Renewable Energy eere.energy.gov Geothermal ...

  9. Geothermal Program Review XI: proceedings. Geothermal Energy...

    Office of Scientific and Technical Information (OSTI)

    Conference: Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties Citation Details In-Document Search ...

  10. Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Show Map Loading map... "minzoom":false,"mappingservice"...

  11. NREL: Energy Analysis - Geothermal Technology Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Technology Analysis The Department of Energy's (DOE) Geothermal Energy Program focuses in three areas: energy systems research and testing (working to enhance conversion of geothermal energy into heat and electricity) led by NREL; drilling technologies research (for both hardware and diagnostic tools) led by Sandia National Laboratories; and geoscience and supporting technologies research (exploration and resource management) led by the Idaho National Engineering and Environmental

  12. CE Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Jump to: navigation, search Name: CE Geothermal Place: California Sector: Geothermal energy Product: CE Geothermal previously owned the assets of Western States...

  13. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy (Redirected from Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data...

  14. Geothermal Technologies | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Technologies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating...

  15. User's guide of TOUGH2-EGS-MP: A Massively Parallel Simulator with Coupled Geomechanics for Fluid and Heat Flow in Enhanced Geothermal Systems VERSION 1.0

    SciTech Connect (OSTI)

    Xiong, Yi; Fakcharoenphol, Perapon; Wang, Shihao; Winterfeld, Philip H.; Zhang, Keni; Wu, Yu-Shu

    2013-12-01

    TOUGH2-EGS-MP is a parallel numerical simulation program coupling geomechanics with fluid and heat flow in fractured and porous media, and is applicable for simulation of enhanced geothermal systems (EGS). TOUGH2-EGS-MP is based on the TOUGH2-MP code, the massively parallel version of TOUGH2. In TOUGH2-EGS-MP, the fully-coupled flow-geomechanics model is developed from linear elastic theory for thermo-poro-elastic systems and is formulated in terms of mean normal stress as well as pore pressure and temperature. Reservoir rock properties such as porosity and permeability depend on rock deformation, and the relationships between these two, obtained from poro-elasticity theories and empirical correlations, are incorporated into the simulation. This report provides the user with detailed information on the TOUGH2-EGS-MP mathematical model and instructions for using it for Thermal-Hydrological-Mechanical (THM) simulations. The mathematical model includes the fluid and heat flow equations, geomechanical equation, and discretization of those equations. In addition, the parallel aspects of the code, such as domain partitioning and communication between processors, are also included. Although TOUGH2-EGS-MP has the capability for simulating fluid and heat flows coupled with geomechanical effects, it is up to the user to select the specific coupling process, such as THM or only TH, in a simulation. There are several example problems illustrating applications of this program. These example problems are described in detail and their input data are presented. Their results demonstrate that this program can be used for field-scale geothermal reservoir simulation in porous and fractured media with fluid and heat flow coupled with geomechanical effects.

  16. User's Guide of TOUGH2-EGS. A Coupled Geomechanical and Reactive Geochemical Simulator for Fluid and Heat Flow in Enhanced Geothermal Systems Version 1.0

    SciTech Connect (OSTI)

    Fakcharoenphol, Perapon; Xiong, Yi; Hu, Litang; Winterfeld, Philip H.; Xu, Tianfu; Wu, Yu-Shu

    2013-05-01

    TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transport calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.

  17. THE FUTURE OF GEOTHERMAL ENERGY

    SciTech Connect (OSTI)

    J. L. Renner

    2006-11-01

    Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for reevaluating all alternatives, particularly those that are large and welldistributed nationally. This analysis will help determine how we can enlarge and diversify the portfolio of options we should be vigorously pursuing. One such option that is often ignored is geothermal energy, produced from both conventional hydrothermal and Enhanced (or engineered) Geothermal Systems (EGS). An 18-member assessment panel was assembled in September 2005 to evaluate the technical and economic feasibility of EGS becoming a major supplier of primary energy for U.S. base-load generation capacity by 2050. This report documents the work of the panel at three separate levels of detail. The first is a Synopsis, which provides a brief overview of the scope, motivation, approach, major findings, and recommendations of the panel. At the second level, an Executive Summary reviews each component of the study, providing major results and findings. The third level provides full documentation in eight chapters, with each detailing the scope, approach, and results of the analysis and modeling conducted in each area.

  18. Appendix F: GPRA05 Geothermal Technologies Program documentation

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The primary goal of the Geothermal Technologies Program is to reduce the cost of geothermal generation technologies, including both conventional and enhanced geothermal systems (EGS). Estimating the GPRA benefits involves projecting the market share for these technologies based on their economic and environmental characteristics.

  19. Session: Geopressured-Geothermal

    SciTech Connect (OSTI)

    Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

  20. Okeanskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Okeanskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Okeanskaya Geothermal Power Plant General Information Name Okeanskaya Geothermal...

  1. Geothermal Technologies Program Overview Presentation at Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal ...

  2. EERE Success Story-California: Next-Generation Geothermal Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Launched | Department of Energy Next-Generation Geothermal Demonstration Launched EERE Success Story-California: Next-Generation Geothermal Demonstration Launched August 21, 2013 - 12:00am Addthis At the outer edges of the largest operating geothermal field in the world, the Energy Department and project partner Calpine Corporation achieved the nation's first sustained enhanced geothermal system (EGS) demonstration success in 2012. The Geysers EGS Demonstration project successfully created a

  3. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal

    Broader source: Energy.gov (indexed) [DOE]

    Wells | Department of Energy High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells PDF icon fabian_ctd_ zonal_isolation_peer2013.pdf More Documents & Publications High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells track 3: enhanced geothermal systems (EGS) | geothermal 2015 peer review Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells

  4. Laboratory and Field Experimental Studies of CO2 as Heat Transmission Fluid in Enhanced Geothermal Systems (EGS)

    Broader source: Energy.gov [DOE]

    Project objectives: obtain basic information on the performance of CO2-based EGS; and enhance and calibrate modeling capabilities for such systems.

  5. Experience with the Development of Advanced Materials for Geothermal Systems

    SciTech Connect (OSTI)

    Sugama, T.; Butcher, T.; Ecker, L.

    2011-01-01

    This chapter contains the following sections: Introduction, Advanced Cements, Materials Research and Development in Enhanced Geothermal Systems (EGS), Advanced Coatings, and Conclusions.

  6. Micro-Earthquake At New York Canyon Geothermal Area (2011) |...

    Open Energy Info (EERE)

    Rock, D.; Peterson, J.; Jarpe, S. (1 January 2011) DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Additional References Retrieved from "http:...

  7. Micro-Earthquake At Desert Peak Geothermal Area (2011) | Open...

    Open Energy Info (EERE)

    Rock, D.; Peterson, J.; Jarpe, S. (1 January 2011) DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Additional References Retrieved from "http:...

  8. Micro-Earthquake At Newberry Caldera Geothermal Area (2011) ...

    Open Energy Info (EERE)

    Rock, D.; Peterson, J.; Jarpe, S. (1 January 2011) DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Additional References Retrieved from "http:...

  9. Micro-Earthquake At Geysers Geothermal Area (2011) | Open Energy...

    Open Energy Info (EERE)

    Rock, D.; Peterson, J.; Jarpe, S. (1 January 2011) DOE REAL-TIME SEISMIC MONITORING AT ENHANCED GEOTHERMAL SYSTEM SITES Additional References Retrieved from "http:...

  10. Creation of an Engineered Geothermal System through Hydraulic...

    Broader source: Energy.gov (indexed) [DOE]

    Project objectives: To create an Enhanced Geothermal System on the margin of the Cosofield through the hydraulic, thermal, andor chemical stimulation of one or more tight ...

  11. Federal Geothermal Research Program Update - Fiscal Year 2004

    SciTech Connect (OSTI)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

  12. Federal Geothermal Research Program Update Fiscal Year 2004

    SciTech Connect (OSTI)

    Not Available

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

  13. Sierra Geothermal's Key Find in Southern Nevada

    Broader source: Energy.gov [DOE]

    In May 2010, Sierra Geothermal determined temperature at the bottom of a well drilled at the company's Alum project near Silver Peak, Nev., was hot enough for commercial-sized geothermal energy production - measured as 147 degrees Celsius (297 degrees Fahrenheit). A promising discovery by a geothermal energy company that could boost use of the renewable source in southwest Nevada, power thousands of homes and create jobs.

  14. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association (GEA) will be holding it’s fifth annual National Geothermal Summit on June 3-4 at the Grand Sierra Resort and Casino in Reno, NV. The National Geothermal Summit is...

  15. Geothermal tomorrow 2008

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  16. Geothermal FAQs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Geothermal Basics » Geothermal FAQs Geothermal FAQs Read our frequently asked questions and their answers to learn more about the use of geothermal energy. What are the benefits of using geothermal energy? Why is geothermal energy a renewable resource? Where is geothermal energy available? What are the environmental impacts of using geothermal energy? What is the visual impact of geothermal technologies? Is it possible to deplete geothermal reservoirs? How much does

  17. Steamboat Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Facility Steamboat Hills Geothermal Facility Steamboat I Geothermal Facility Steamboat IA Geothermal Facility Steamboat II Geothermal Facility Steamboat III Geothermal Facility...

  18. Nagqu Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Name Nagqu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Geothermal Region Plant Information...

  19. About / FAQ | Geothermal

    Office of Scientific and Technical Information (OSTI)

    About About Geothermal The Geothermal Technologies Legacy Collection is available to the geothermal community and interested members of the public who may use this site and its search and knowledge tools to stay better informed of developments in geothermal technology and to gain insights learned from studies in the field since the 1970s. By searching the Geothermal Technologies Legacy Collection, users can expect to find a wealth of geothermal citations and reports from various resources

  20. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  1. Geothermal Technologies Office: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Technologies Office Details Bookmark & Share View Related Welcome to the Energy Department's Geothermal Technologies Office Publication and Product Library. Here...

  2. Geothermal | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National...

  3. Geothermal Data Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About DOE's Geothermal Data Repository The GDR is the submission point for all data collected from researchers funded by the U.S. Department of Energy's Geothermal Technologies...

  4. Stanford Geothermal Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Timothy Reinhardt Acting Program Manager Systems Analysis and Low Temperature (SALT) Geothermal Technologies Office Geothermal Vision Study May 11th, 2015 Courtesy GRC Courtesy E ...

  5. Geothermal Regulatory Roadmap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Regulatory Roadmap Katherine Young National Renewable Energy Laboratory Track: ... restricted information. 2 | US DOE Geothermal Office eere.energy.gov RelevanceImpact ...

  6. Geothermal Energy Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    15, 2007 Briefing Outline * The Geothermal Resource * Applications * Market Barriers * Outlook Earth is Hot 99% greater than 1000C Geothermal Resources Hot granite ...

  7. Director, Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  8. Tracer Methods for Characterizing Fracture Creation in Enhanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tracer Methods for Characterizing Fracture Creation in Enhanced Geothermal Systems; 2010 ... Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer ...

  9. Nuova Sasso Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Sasso Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  10. Concept Testing and Development at the Raft River Geothermal Field, Idaho |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho Concept Testing and Development at the Raft River Geothermal Field, Idaho presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon raft_river_peer2013.pdf More Documents & Publications Concept Testing and Development at the Raft River Geothermal Field, Idaho track 4: enhanced geothermal

  11. EERE Success Story-Oregon: DOE Advances Game-Changing EGS Geothermal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology at the Newberry Volcano | Department of Energy Oregon: DOE Advances Game-Changing EGS Geothermal Technology at the Newberry Volcano EERE Success Story-Oregon: DOE Advances Game-Changing EGS Geothermal Technology at the Newberry Volcano April 9, 2013 - 12:00am Addthis The AltaRock Enhanced Geothermal Systems (EGS) demonstration project, at Newberry Volcano near Bend, Oregon, represents a key step in geothermal energy development, demonstrating that an engineered geothermal

  12. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  13. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Elston, Et Al., 1983) Exploration Activity...

  14. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Dahal, Et Al., 2012) Exploration Activity...

  15. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Stone, Et Al., 1977) Exploration Activity...

  16. Geothermal Literature Review At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fenton Hill HDR Geothermal Area (Goff & Decker, 1983) Exploration Activity...

  17. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  18. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Lightning Dock Geothermal Area (Witcher, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning...

  19. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Witcher, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Witcher, 2002)...

  20. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Parker & Icerman, 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Parker &...

  1. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Sammel, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Sammel, 1978)...

  2. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Rafferty, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997)...

  3. Geothermal Literature Review At Coso Geothermal Area (1987) ...

    Open Energy Info (EERE)

    7) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Coso Geothermal Area (1987) Exploration Activity Details...

  4. National Geothermal Data System (NGDS) Geothermal Data Domain...

    Open Energy Info (EERE)

    Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  5. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Smith, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978)...

  6. Renewable Energy Technologies - Geothermal Energy

    Energy Savers [EERE]

    Technologies Geothermal Energy Geothermal Energy Bruce Green, 303-275-3621, bruce_green@nrel.gov Geothermal Energy is Heat Geothermal Energy is Heat from the Earth. from the Earth. How Geothermal Energy is Used: *Electricity Generation *Direct Thermal Use *Geothermal Heat Pumps, also called Geoexchange Units or Ground-Coupled Heat Pumps. Courtesy of Geothermal Education Association Tectonic Plate Boundaries Tectonic Plate Boundaries Hottest Known Geothermal Hottest Known Geothermal Regions

  7. Geothermal Technologies Program - Washington

    SciTech Connect (OSTI)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Washington State.

  8. Geothermal Prospects in Colorado

    Broader source: Energy.gov [DOE]

    Geothermal Prospects in Colorado presentation at the April 2013 peer review meeting held in Denver, Colorado.

  9. Geothermal Tomorrow 2008

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

  10. Geothermal Research Department Presentation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges * Drilling * Reservoir Creation * Reservoir Management Resource ... Research Drilling, Monitoring, and Analysis Geothermal well construction * "Most" ...

  11. Geothermal Technologies Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)— a tax-exempt, non-profit, geothermal educational association — publishes quarterly as an insert in its GRC Bulletin.

  12. OHm Geothermal | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: OHm Geothermal Place: Fernley, Nevada Zip: 89408 Sector: Geothermal energy Product: A Nevada-based geothermal energy development company....

  13. Geothermal Generation | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions...

  14. Geothermal Technologies | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way....

  15. Geothermal energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal energy Jump to: navigation, search Dictionary.png Geothermal energy: Geothermal energy is heat extracted from the Earth ( Geo (Earth) + thermal (heat) ) Other...

  16. Video Resources on Geothermal Technologies

    Broader source: Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  17. Materials selection guidelines for geothermal energy utilization systems

    SciTech Connect (OSTI)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  18. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  19. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  20. High-Temperature Circuit Boards for use in Geothermal Well Monitoring...

    Open Energy Info (EERE)

    these deep wells to create geothermal reservoirs is referred to as Enhanced Geothermal System (EGS). An important near-term need for the EGS community is data-logging tools that...

  1. High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Design, demonstrate, and qualify high-temperature high pressure zonal isolation devices compatible with the high temperature downhole Enhanced Geothermal Systems (EGS) environment.

  2. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems

    Broader source: Energy.gov [DOE]

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

  3. Geothermal Progress Monitor report No. 11

    SciTech Connect (OSTI)

    Not Available

    1989-12-01

    This issue of the Geothermal Progress Monitor (GPM) is the 11th since the inception of the publication in 1980. It continues to synthesize information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this energy technology. In addition, the GPM is a mechanism for transferring current information on geothermal technology development to the private sector, and, over time, provides a historical record for those interested in the development pathway of the resource. In sum, the Department of Energy makes the GPM available to the many diverse interests that make up the geothermal community for the multiple uses it may serve. This issue of the GPM points up very clearly how closely knit many of those diverse interests have become. It might well be called an international issue'' since many of its pages are devoted to news of geothermal development abroad, to the efforts of the US industry to participate in overseas development, to the support given those efforts by federal and state agencies, and to the formation of the International Geothermal Association (IGA). All of these events indicate that the geothermal community has become truly international in character, an occurrence that can only enhance the future of geothermal energy as a major source of energy supply worldwide. 15 figs.

  4. Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Geothermal Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National Renewable Energy Laboratory. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small

  5. Geothermal Power and Interconnection: The Economics of Getting to Market

    SciTech Connect (OSTI)

    Hurlbut, D.

    2012-04-01

    This report provides a baseline description of the transmission issues affecting geothermal technologies. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this 'big picture' three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology's market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

  6. NREL: Geothermal Technologies - NREL's Geothermal Experts Present at the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    41st Annual Stanford Geothermal Workshop NREL's Geothermal Experts Present at the 41st Annual Stanford Geothermal Workshop March 10, 2016 Six members of our geothermal community, accompanied by Bud Johnston, NREL's new geothermal laboratory program manager, attended the 41st Annual Stanford Geothermal Workshop--one of the world's longest-running technical meetings on the topic of geothermal energy. The Stanford Geothermal Workshop brings together engineers, scientists, and managers involved

  7. Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and Fracture/Heat Transfer Surface Area in Geothermal Reservoirs

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Project Summary. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate quantitative characterization of temperature distributions and surface area available for heat transfer in EGS.

  8. Design of a Geothermal Downhole Magnetic Flowmeter

    SciTech Connect (OSTI)

    Glowka, Dave A.; Normann, Randy A.

    2015-06-15

    This paper covers the development of a 300°C geothermal solid-state magnetic flowmeter (or magmeter) to support in situ monitoring of future EGS (enhanced geothermal system) production wells. Existing flowmeters are simple mechanical spinner sensors. These mechanical sensors fail within as little as 10 hrs, while a solid-state magmeter has the potential for months/years of operation. The design and testing of a magnetic flow sensor for use with existing high-temperature electronics is presented.

  9. Guidebook to Geothermal Finance

    SciTech Connect (OSTI)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  10. Thermal Gradient Holes At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Exploration Basis Thermal gradient holes were drilled in an effort to determine the feasibility of commercial geothermal energy generation at Blue Mountain Notes Ten temperature...

  11. Isotopic Analysis At Chena Geothermal Area (Holdmann, Et Al....

    Open Energy Info (EERE)

    study to determine the natural recharge rate References Gwen Holdmann, Dick Benoit, David Blackwell (2006) Integrated Geoscience Investigation and Geothermal Exploration at...

  12. Field Mapping At Coso Geothermal Area (2006) | Open Energy Information

    Open Energy Info (EERE)

    Basis Determine impact of brittle faulting and seismogenic deformation on permeability in geothermal reservoir Notes New mapping documents a series of late Quaternary...

  13. Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    purpose of this research activity was to determine the fluid and heat source, Identify flow paths, and evaluate the possibility of a more extensive deep geothermal reservoir...

  14. Tracer Testing At Coso Geothermal Area (1993) | Open Energy Informatio...

    Open Energy Info (EERE)

    Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis To determine...

  15. Panther Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Panther Canyon Geothermal Project Project Location Information...

  16. Kelsey North Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    North Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kelsey North Geothermal Project Project Location Information...

  17. Devil's Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Devil's Canyon Geothermal Project Project Location Information...

  18. Dead Horse Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Horse Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Dead Horse Geothermal Project Project Location Information...

  19. Delcer Butte Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Butte Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Delcer Butte Geothermal Project Project Location Information...

  20. Drum Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information...

  1. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  2. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Venture) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  3. Reese River Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    River Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Reese River Geothermal Project Project Location Information...

  4. Orita 3 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    3 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Orita 3 Geothermal Project Project Location Information Coordinates...

  5. Pauzhetskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Pauzhetskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pauzhetskaya Geothermal Power Plant General Information Name Pauzhetskaya...

  6. Ulumbu Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Information Name Ulumbu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Address Kupang Location Indonesia Coordinates...

  7. Rancia Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Rancia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  8. Sesta Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Sesta Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  9. Farinello Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Farinello Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  10. Pianacce Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Pianacce Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  11. Baltazor Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Baltazor Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Baltazor Springs Geothermal Project Project Location...

  12. Silver State Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    State Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Silver State Geothermal Project Project Location Information Coordinates...

  13. Southwest Alaska Regional Geothermal Energy Project | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southwest Alaska Regional Geothermal Energy Project Southwest Alaska Regional Geothermal Energy Project Engineered Geothermal Systems Demonstration Projects. Project objectives: ...

  14. Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain,

    Office of Scientific and Technical Information (OSTI)

    Idaho using Multicomponent Geothermometry (Conference) | SciTech Connect Conference: Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry Citation Details In-Document Search Title: Deep Geothermal Reservoir Temperatures in the Eastern Snake River Plain, Idaho using Multicomponent Geothermometry The U.S. Geological survey has estimated that there are up to 4,900 MWe of undiscovered geothermal resources and 92,000 MWe of enhanced

  15. Experiment-Based Model for the Chemical Interactions between Geothermal

    Broader source: Energy.gov (indexed) [DOE]

    Rocks, Supercritical Carbon Dioxide and Water | Department of Energy Experiment-Based Model for the Chemical Interactions between Geothermal Rocks, Supercritical Carbon Dioxide and Water presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon palto_alto_research_center_peer2013.pdf More Documents & Publications Enhanced Geothermal Systems (EGS) with CO2as Heat Transmission Fluid Chemical Impact of Elevated CO2on Geothermal Energy Production R & D

  16. Enhanced Light Extraction from Organic Light Emitting Diodes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems » Enhanced Geothermal Systems Demonstration Projects Enhanced Geothermal Systems Demonstration Projects A significant long-term opportunity for widespread power production from new geothermal sources lies in Enhanced Geothermal Systems (EGS), where innovative technology development and deployment could facilitate access to 100+ GW of energy, exponentially more than today's current geothermal capacity. With EGS, we can tap otherwise inaccessible resources in areas that lack traditional

  17. Geothermal Energy Association Recognizes the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More detailed information on the awardees is available on-line at http:www.geo-energy.org. Addthis Related Articles Geothermal Energy Association ...

  18. Heber II Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Heber II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber II Geothermal Facility General Information Name Heber II Geothermal Facility...

  19. Takigami Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Hide Map Geothermal Resource Area Oita Geothermal Area Geothermal Region Ryuku Arc Plant Information Facility Type Single Flash Owner Idemitsu Oita Geothermal CoKyushu...

  20. Eburru Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Eburru Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eburru Geothermal Power Plant General Information Name Eburru Geothermal Power Plant...

  1. Ndunga Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Ndunga Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ndunga Geothermal Power Plant General Information Name Ndunga Geothermal Power Plant...

  2. Irem Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Irem Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Irem Geothermal Power Plant General Information Name Irem Geothermal Power Plant Facility...

  3. Tuzla Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Tuzla Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Tuzla Geothermal Power Plant General Information Name Tuzla Geothermal Power Plant...

  4. Sibayak Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Sibayak Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sibayak Geothermal Power Plant General Information Name Sibayak Geothermal Power Plant...

  5. Geothermal Technologies Office - Webmaster | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Office - Webmaster Geothermal Technologies Office - Webmaster

  6. Steamboat IA Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    IA Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat IA Geothermal Facility General Information Name Steamboat IA Geothermal Facility...

  7. Alaska Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Springs Geothermal Area Sitka Hot Spring Geothermal Area South Geothermal Area Tolovana Geothermal Area ... further results Energy Generation Facilities within the Alaska...

  8. Italy Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Region Larderello Geothermal Area Mount Amiata Geothermal Area Travale-Radicondoli Geothermal Area Energy Generation Facilities within the Italy Geothermal Region Bagnore 3...

  9. Hawaii Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Area Mokapu Penninsula Geothermal Area Molokai Geothermal Area Olowalu-Ukumehame Canyon Geothermal Area Energy Generation Facilities within the Hawaii Geothermal Region Puna...

  10. Transition Zone Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Unknown Planned Capacity 1 Geothermal Areas within the Transition Zone Geothermal Region Energy Generation Facilities within the Transition Zone Geothermal Region Geothermal Power...

  11. Category:Geothermal Regions | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Regions Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geothermal Regions page? For detailed information on Geothermal...

  12. Blind Geothermal System | Open Energy Information

    Open Energy Info (EERE)

    Blind Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Blind Geothermal System Dictionary.png Blind Geothermal System: An area with a...

  13. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cove Fort Geothermal Area (Redirected from Cove Fort Geothermal Area - Vapor) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cove Fort Geothermal Area Contents 1 Area...

  14. Property:GeothermalArea | Open Energy Information

    Open Energy Info (EERE)

    Area + Babadere Geothermal Project + Tuzla Geothermal Area + Bacman 1 GEPP + Bac-Man Laguna Geothermal Area + Bacman 2 GEPP + Bac-Man Laguna Geothermal Area + Bacman...

  15. Lightning Dock Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Review At Lightning Dock Geothermal Area (Rafferty, 1997) Geothermal Literature Review Fossil Fuel-fired Peak Heating for Geothermal Greenhouses Geothermal Literature Review At...

  16. Imperial Valley Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Imperial Valley Geothermal Area Imperial Valley Geothermal Area The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource ...

  17. Honey Lake Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Honey Lake Geothermal Area Honey Lake Geothermal Area The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal ...

  18. Lahendong Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  19. Mindanao Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  20. Mount Amiata Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  1. Amatitlan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  2. Mori Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  3. Fukushima Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  4. Rotokawa Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  5. Pauzhetskaya Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  6. Miyagi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  7. Kagoshima Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  8. San Jacinto Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Benjamin Matek. Geo-energy Internet. Geothermal...

  9. Tiwi / Albay Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  10. Ogiri Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  11. North Negros Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Benjamin Matek. Geo-energy Internet. Geothermal...

  12. Ngawha Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  13. Bouillante Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  14. Leyte Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  15. Svartsengi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  16. South Negros Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  17. Optimization of hybrid-water/air-cooled condenser in an enhanced...

    Open Energy Info (EERE)

    Optimization of hybrid-waterair-cooled condenser in an enhanced turbine geothermal ORC system Geothermal Project Jump to: navigation, search Last modified on July 22, 2011....

  18. Neutron imaging for geothermal energy systems

    SciTech Connect (OSTI)

    Bingham, Philip R; Anovitz, Lawrence {Larry} M; Polsky, Yarom

    2013-01-01

    Geothermal systems extract heat energy from the interior of the earth using a working fluid, typically water. Three components are required for a commercially viable geothermal system: heat, fluid, and permeability. Current commercial electricity production using geothermal energy occurs where the three main components exist naturally. These are called hydrothermal systems. In the US, there is an estimated 30 GW of base load electrical power potential for hydrothermal sites. Next generation geothermal systems, named Enhanced Geothermal Systems (EGS), have an estimated potential of 4500 GW. EGSs lack in-situ fluid, permeability or both. As such, the heat exchange system must be developed or engineered within the rock. The envisioned method for producing permeability in the EGS reservoir is hydraulic fracturing, which is rarely practiced in the geothermal industry, and not well understood for the rocks typically present in geothermal reservoirs. High costs associated with trial and error learning in the field have led to an effort to characterize fluid flow and fracturing mechanisms in the laboratory to better understand how to design and manage EGS reservoirs. Neutron radiography has been investigated for potential use in this characterization. An environmental chamber has been developed that is suitable for reproduction of EGS pressures and temperatures and has been tested for both flow and precipitations studies with success for air/liquid interface imaging and 3D reconstruction of precipitation within the core.

  19. Updated U.S. Geothermal Supply Curve

    SciTech Connect (OSTI)

    Augustine, C.; Young, K. R.; Anderson, A.

    2010-02-01

    This paper documents the approach used to update the U.S. geothermal supply curve. The analysis undertaken in this study estimates the supply of electricity generation potential from geothermal resources in the United States and the levelized cost of electricity (LCOE), capital costs, and operating and maintenance costs associated with developing these geothermal resources. Supply curves were developed for four categories of geothermal resources: identified hydrothermal (6.4 GWe), undiscovered hydrothermal (30.0 GWe), near-hydrothermal field enhanced geothermal systems (EGS) (7.0 GWe) and deep EGS (15,900 GWe). Two cases were considered: a base case and a target case. Supply curves were generated for each of the four geothermal resource categories for both cases. For both cases, hydrothermal resources dominate the lower cost range of the combined geothermal supply curve. The supply curves indicate that the reservoir performance improvements assumed in the target case could significantly lower EGS costs and greatly increase EGS deployment over the base case.

  20. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  1. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  2. Geothermal Data Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy the GDR logo, a blue wave opposed over an orange flame Geothermal Data Repository The Geothermal Data Repository (GDR) is the submission point for all...

  3. Stanford Geothermal Workshop

    Broader source: Energy.gov [DOE]

    Now in its 40th year, the Stanford Geothermal Workshop is one of the world's longest running technical meetings on geothermal energy. The conference brings together engineers, scientists and...

  4. Geothermal Technologies Newsletter Archives

    Broader source: Energy.gov [DOE]

    Here you'll find past issues of the U.S. Department of Energy's (DOE) Geothermal Technologies program newsletter, which features information about its geothermal research and development efforts....

  5. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  6. Geothermal well stimulation program

    SciTech Connect (OSTI)

    Hanold, R.J.

    1982-01-01

    The stimulation of geothermal production wells presents some new and challenging problems. Formation temperatures in the 275 to 550/sup 0/F range can be expected and the behavior of fracturing fluids and fracture proppants at these temperatures in a hostile brine environment must be carefully evaluated in laboratory tests. To avoid possible damage to the producing horizon of the formation, the high-temperature chemical compatibility between the in situ materials and the fracturing fluids, fluid loss additives, and proppants must be verified. In geothermal wells, the necessary stimulation techniques are required to be capable of initiating and maintaining the flow of very large amounts of fluid. This necessity for high flow rates represents a significant departure from conventional oil field stimulation. The objective of well stimulation is to initiate and maintain additional fluid production from existing wells at a lower cost than either drilling new replacement wells or multiply redrilling existing wells. The economics of well stimulation will be vastly enhanced when proven stimulation techniques can be implemented as part of the well completion (while the drilling rig is still over the hole) on all new wells exhibiting some form of flow impairment. Results from 7 stimulation tests are presented and planned tests are described.

  7. NREL: Geothermal Technologies - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Office website or search the NREL Publications Database. Learn more about how research at NREL is accelerating

  8. Geothermal Government Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Here you'll find links to federal, state, and local government programs promoting geothermal energy development.

  9. South Dakota geothermal handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  10. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  11. Geothermal Photo Gallery

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Office invests in 150 projects nationwide, leveraging more than $500 million in combined investments.

  12. CX-007541: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Enhanced Geothermal Systems- Concept Testing and Development at the Raft River Geothermal Field, Idaho CX(s) Applied: A9, B3.1 Date: 01/10/2012 Location(s): Idaho Offices(s): Golden Field Office

  13. Geothermal Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Geothermal Basics Geothermal Basics Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal energy-geo (earth) + thermal (heat)-is heat energy from the earth. What is a geothermal resource? Geothermal resources are reservoirs of hot water

  14. DOE Announces Investment of up to $84 Million in Geothermal Energy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Investment of up to $84 Million in Geothermal Energy DOE Announces Investment of up to $84 Million in Geothermal Energy March 4, 2009 - 12:00am Addthis WASHINGTON - U.S. Department of Energy Secretary Steven Chu today announced the release of two Funding Opportunity Announcements (FOAs) for up to $84 million to support the development of Enhanced Geothermal Systems (EGS). Geothermal energy technologies use energy from the earth to heat buildings and generate electricity.

  15. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Systems | Department of Energy Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. PDF icon

  16. Geothermal Testing Facilities in an Oil Field

    Broader source: Energy.gov [DOE]

    Engineered Geothermal Systems, Low Temp, Exploration Demonstration. The proposed project is to develop a long term testing facility and test geothermal power units for the evaluation of electrical power generation from low-temperature and co-produced fluids. The facility will provide the ability to conduct both long and short term testing of different power generation configurations to determine reliability, efficiency and to provide economic evaluation data.

  17. Structural Data for the Columbus Salt Marsh Geothermal Area - GIS Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    - Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.

  18. High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production

    Broader source: Energy.gov [DOE]

    Project objective: Develop and demonstrate high-temperature ESP motor windings for use in Enhanced Geothermal Systems and operation at 300˚C.

  19. Structural Data for the Columbus Salt Marsh Geothermal Area - GIS Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2011-12-31

    - Columbus Marsh therefore corresponds to an area of enhanced extension and contains a nexus of fault intersections, both conducive for geothermal activity.

  20. Nevada Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada Geothermal Area Nevada Geothermal Area The extensive Steamboat Springs geothermal area contains three geothermal power-generating plants. The plants provide approximately 30% of the total Nevada geothermal power output. Photo of Nevada power plant

  1. Reference book on geothermal direct use

    SciTech Connect (OSTI)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  2. Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  3. Guide to Geothermal Heat Pumps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Heat Pumps Work Using a heat exchanger, a geothermal heat pump can move heat from one space to another. In summer, the geothermal heat pump extracts heat from a building ...

  4. GEA International Geothermal Energy Showcase

    Broader source: Energy.gov [DOE]

    What are the building blocks for successful geothermal projects? Find out March 17, 2016 at the Geothermal Energy Association's 2016 U.S. and International Geothermal Energy Showcase at the Ronald...

  5. National Geothermal Data System - DOE Geothermal Data Repository...

    Broader source: Energy.gov (indexed) [DOE]

    National Geothermal Data System (NGDS) and DOE's node on the NGDS. ngdsgdrgeneralpresentation.pdf More Documents & Publications How to Utilize the National Geothermal Data...

  6. Small geothermal electric systems for remote powering

    SciTech Connect (OSTI)

    Entingh, Daniel J.; Easwaran, Eyob.; McLarty, Lynn

    1994-08-08

    This report describes conditions and costs at which quite small (100 to 1,000 kilowatt) geothermal systems could be used for off-grid powering at remote locations. This is a first step in a larger process of determining locations and conditions at which markets for such systems could be developed. The results suggest that small geothermal systems offer substantial economic and environmental advantages for powering off-grid towns and villages. Geothermal power is most likely to be economic if the system size is 300 kW or greater, down to reservoir temperatures of 100{degree}C. For system sizes smaller than 300 kW, the economics can be favorable if the reservoir temperature is about 120{degree}C or above. Important markets include sites remote from grids in many developing and developed countries. Estimates of geothermal resources in many developing countries are shown.

  7. Iceland Geothermal Conference 2013 - Geothermal Policies and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... ORNI 15 LLC NV 34,608,728 5112012 Puna Geothermal Venture HI 13,821,143 4142012 AMOR IX, LLC NV 2,112,178 2292012 Beowawe Binary, LLC NV 1,679,932 1052011 NGP Blue ...

  8. Bouillante 1 Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant General Information Name Bouillante 1 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  9. Northern Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Geothermal Area Raft River Geothermal Area Railroad Valley Geothermal Area Red River Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Sharkey Hot...

  10. Valle Secolo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Valle Secolo Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  11. Bouillante 2 Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant General Information Name Bouillante 2 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  12. Hybrid Cooling Systems for Low-Temperature Geothermal Power Production

    SciTech Connect (OSTI)

    Ashwood, A.; Bharathan, D.

    2011-03-01

    This paper describes the identification and evaluation of methods by which the net power output of an air-cooled geothermal power plant can be enhanced during hot ambient conditions with a minimal amount of water use.

  13. Chapter 4: Advancing Clean Electric Power Technologies | Geothermal...

    Energy Savers [EERE]

    ... The need to stabilize the grid and provide more energy during peak usage and less during low ... 307-316. http:pubs.geothermal-library.orglibgrc1030245.pdf 11 "Enhanced ...

  14. Geothermal Power and Interconnection: The Economics of Getting to Market

    SciTech Connect (OSTI)

    Hurlbut, David

    2012-04-23

    This report provides a baseline description of the transmission issues affecting geothermal technologies. It is intended for geothermal experts in either the private or public sector who are less familiar with how the electricity system operates beyond the geothermal plant. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this "big picture" three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology’s market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

  15. Structural investigations of Great Basin geothermal fields: Applications and implications

    SciTech Connect (OSTI)

    Faulds, James E; Hinz, Nicholas H.; Coolbaugh, Mark F

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  16. CREST Geothermal | Open Energy Information

    Open Energy Info (EERE)

    CREST Geothermal Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CREST Geothermal AgencyCompany Organization: Sustainable Energy Advantage Partner: NREL Sector: Energy...

  17. Grace Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Name: Grace Geothermal Address: 514 Water Street Place: Chardon, Ohio Zip: 44024 Sector: Geothermal energy Product: Energy provider: energy transmission and distribution;...

  18. geothermal | OpenEI Community

    Open Energy Info (EERE)

    the US DOE Geothermal Technologies Office (GTO) 2013 Peer Review. The purpose of the peer review is to offer geothermal stakeholders an opportunity to learn about the projects...

  19. Geothermal Technologies Program Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. Department of Energy's (DOE's) Geothermal Technologies Program (GTP) is committed ... and builds partnerships to establish geothermal energy as a significant contributor to ...

  20. Newberry Geothermal | Open Energy Information

    Open Energy Info (EERE)

    named Northwest Geothermal Company) started to develop a 120MW geothermal project on its leases in 2006. As of 62012, Davenport Newberry is still in the exploration phase...

  1. The Geothermal Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Office (GTO) funded and launched the NGDS and the DOE Geothermal Data Repository node to facilitate a seamless delivery of geotherm- al data for a variety of applications. NGDS is an interoperable networked system of distributed data repositories, accessed through federated catalog nodes and built upon an open architecture using open source software practices. The system provides access to geo- thermal data from providers across the U.S., including all 50 state geological

  2. GEOTHERMAL WELL STIMULATION

    Office of Scientific and Technical Information (OSTI)

    GEOTHERMAL WELL STIMULATION crj D. A . Campbell & C. W. Morris A . R.. Sinclair Republic Geothermal, Inc. Maurer Engineering Inc. R. J. Hanold Los Alamos National Laboratory 0 . J. Vetter Vetter Research The stimulation of geothermal wells presents some new and challenging problems. Formation temperatures in the 300-600'F range can be expected. The behavior of stimulation fluids, frac proppants, and equipment at these temperatures in a hostile brine environment must be carefully evaluated

  3. Geothermal Resources Council's 36

    Office of Scientific and Technical Information (OSTI)

    Geothermal Resources Council's 36 th Annual Meeting Reno, Nevada, USA September 30 - October 3, 2012 Advanced Electric Submersible Pump Design Tool for Geothermal Applications Xuele Qi, Norman Turnquist, Farshad Ghasripoor GE Global Research, 1 Research Circle, Niskayuna, NY, 12309 Tel: 518-387-4748, Email: qixuele@ge.com Abstract Electrical Submersible Pumps (ESPs) present higher efficiency, larger production rate, and can be operated in deeper wells than the other geothermal artificial lifting

  4. Geothermal Today - 2001

    SciTech Connect (OSTI)

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  5. Geothermal Today - 1999

    SciTech Connect (OSTI)

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  6. Modeling of geothermal systems

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1985-03-01

    During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

  7. Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options

    SciTech Connect (OSTI)

    Finster, Molly; Clark, Corrie; Schroeder, Jenna; Martino, Louis

    2015-10-01

    Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly depending on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management options for produced fluids that require additional treatment for these constituents are also discussed, including surface disposal, reuse and recycle, agricultural industrial and domestic uses, mineral extraction and recovery, and solid waste handling.

  8. New geothermal heat extraction process to deliver clean power generation

    ScienceCinema (OSTI)

    Pete McGrail

    2012-12-31

    A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

  9. Geothermal Data Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This includes data from GTO-funded projects associated with any portion of the geothermal project life-cycle (exploration, development, operation), as well as data produced by ...

  10. Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Find out if one is right for your home.

  11. Sandia Energy Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wable-energy-official-visits-sandiafeed 0 Sandia's Frontier Observatory for Research In Geothermal Energy (FORGE) Phase 1 Proposals Were Both Successful http:energy.sandia.gov...

  12. Sandia Energy - Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gallery Australian Renewable-Energy Official Visits Sandia Concentrating Solar Power, EC, Energy, Geothermal, News, News & Events, Photovoltaic, Renewable Energy, Solar, Water...

  13. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  14. Stanford Geothermal Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Power Plant Construction Increasing value ... of the current rare earth and near- critical metal ... ten years. 25 Geothermal History 1976-2014 2008: Economic ...

  15. Other Geothermal Energy Publications

    Broader source: Energy.gov [DOE]

    Here you'll find links to other organization's publications — including technical reports, newsletters, brochures, and more — about geothermal energy.

  16. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  17. Geothermal Outreach Publications

    Broader source: Energy.gov [DOE]

    Here you'll find the U.S. Department of Energy's (DOE) most recent outreach publications about geothermal technologies, research, and development.

  18. Overview of geothermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The geothermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  19. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  20. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  1. 2014 Vision Study of the DOE Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    A vision study is underway by the Energy Department's Geothermal Technologies Office. The study coalesces stakeholders in industry, academia, and our national laboratories, to determine the strategic priorities of the Energy Department with regard to its geothermal project portfolio over the next five years.

  2. Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop

    Broader source: Energy.gov [DOE]

    General overview of Geothermal Technologies Program that includes information about subprograms and where each focuses.

  3. Geothermal Heat Pump Benchmarking Report

    SciTech Connect (OSTI)

    1997-01-17

    A benchmarking study was conducted on behalf of the Department of Energy to determine the critical factors in successful utility geothermal heat pump programs. A Successful program is one that has achieved significant market penetration. Successfully marketing geothermal heat pumps has presented some major challenges to the utility industry. However, select utilities have developed programs that generate significant GHP sales. This benchmarking study concludes that there are three factors critical to the success of utility GHP marking programs: (1) Top management marketing commitment; (2) An understanding of the fundamentals of marketing and business development; and (3) An aggressive competitive posture. To generate significant GHP sales, competitive market forces must by used. However, because utilities have functioned only in a regulated arena, these companies and their leaders are unschooled in competitive business practices. Therefore, a lack of experience coupled with an intrinsically non-competitive culture yields an industry environment that impedes the generation of significant GHP sales in many, but not all, utilities.

  4. National Geothermal Student Competition

    Broader source: Energy.gov [DOE]

    The National Geothermal Student Competition will be an intercollegiate competition where student teams compete to advance the understanding of the potential for geothermal energy to supply a major component of the nations energy needs in the coming decades.

  5. Geothermal Financing Workbook

    SciTech Connect (OSTI)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  6. Montana geothermal handbook

    SciTech Connect (OSTI)

    Perlmutter, S.; Birkby, J.

    1980-10-01

    The permits required for various geothermal projects and the approximate time needed to obtain them are listed. A brief discussion of relevant statutes and regulations is included. Some of the state and federal grant and loan programs available to a prospective geothermal developer are described. The names and addresses of relevant state and federal agencies are given. Legal citations are listed. (MHR)

  7. NREL: Geothermal Technologies - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Staff Engineers, analysts, researchers, and others who support NREL's geothermal technologies projects come from disciplines and organizations across the laboratory depending on each project's requirements. Here you'll find contact information for NREL's geothermal technologies team. Management Henry (Bud) Johnston Laboratory Program Manager, Geothermal Technologies Stacee Foster Project Administrator Colorado Collaboration for Subsurface Research in Geothermal Energy (SURGE) Bud

  8. Geothermal energy: a brief assessment

    SciTech Connect (OSTI)

    Lunis, B.C.; Blackett, R.; Foley, D.

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  9. Geothermal Heat Flow and Existing Geothermal Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click on the numbers to see the sites. CLOSE About the Points About the Data What is Heat Flow? Heat Flow (mW/m^2) 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 150 250 View All Maps Addthis

  10. Medicine Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Page Technique Activity Start Date Activity End Date Reference Material Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Geothermal Literature Review 1984...

  11. Sou Hills Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Sou Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Sou Hills Geothermal Project Project Location Information Coordinates...

  12. Template:GeothermalProject | Open Energy Information

    Open Energy Info (EERE)

    navigation, search This is the 'GeothermalProject' template. To define a new Geothermal Development Project, please use the Geothermal Development Project Form. Parameters Place...

  13. Mt. Baker Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mt. Baker Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mt. Baker Geothermal Project Project Location Information Coordinates...

  14. Mexico Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Mexico Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  15. Fireball Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Nixon, NV County Churchill County, NV Geothermal Area Fireball Ridge Geothermal Area Geothermal Region...

  16. Dixie Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    n":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Nevada County Churchill County, NV Geothermal Area Dixie Valley Geothermal Area Geothermal Region Central...

  17. Upsal Hogback Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location County Churchill County, NV Geothermal Area Geothermal Region Geothermal Project Profile Developer...

  18. Desert Queen Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ,"group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fernley, NV County Churchill County, NV Geothermal Area Desert Queen Geothermal Area Geothermal Region Northwest...

  19. Fallon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fallon, NV County Churchill County, NV Geothermal Area Fallon Geothermal Area Geothermal Region Northwest Basin...

  20. Patua Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ,"group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fernley, NV County Churchill and Lyon Counties, NV Geothermal Area Patua Geothermal Area Geothermal Region...

  1. Lee Allen Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fallon, NV County Churchill County, NV Geothermal Area Geothermal Region Geothermal Project Profile Developer...

  2. Tungsten Mtn Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location County Churchill County, UT Geothermal Area Tungsten Mountain Geothermal Area Geothermal Region...

  3. North Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","inlineLabel":"","visitedicon":"" Hide Map Location Nixon, CA County Washoe and Churchill, CA Geothermal Area Geothermal Region Geothermal Project Profile Developer Nevada...

  4. Dixie Meadows Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location County Churchill County, NV Geothermal Area Dixie Meadows Geothermal Area Geothermal Region Central...

  5. Cascades Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Cascades Geothermal Region (Redirected from Cascades) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cascades Geothermal Region Details Areas (2) Power Plants (0)...

  6. Java - Dieng Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Java - Dieng Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Java - Dieng Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  7. Java - Kamojang Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Java - Kamojang Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Java - Kamojang Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  8. Darajat Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    n":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Geothermal Resource Area Java - Darajat Geothermal Area Geothermal Region Sunda Volcanic Arc Plant Information Owner...

  9. Cibuni Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Hide Map Geothermal Resource Area Pengalengan Geothermal Area Geothermal Region West Java Plant Information Owner PLN Commercial Online Date 2014 Power Plant Data Type of Plant...

  10. Java - Darajat Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Java - Darajat Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Java - Darajat Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  11. Navy Geothermal Program | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Program Jump to: navigation, search Logo: Navy Geothermal Program Office Name: Navy Geothermal Program Office Address: 429 East Bowen Road Place: China Lake, CA Zip:...

  12. Orita 2 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Orita 2 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Orita 2 Geothermal Project Project Location Information Coordinates...

  13. Thermo 2 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Thermo 2 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Thermo 2 Geothermal Project Project Location Information Coordinates...

  14. Big Geysers Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Facility General Information Name Big Geysers Geothermal Facility Facility Big Geysers Sector Geothermal energy Location Information Location Clear Lake, California...

  15. White Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Location County Geothermal Area Geothermal Region Geothermal Project Profile Developer Eureka Green Systems Project Type Hydrothermal GEA Development Phase Phase II - Resource...

  16. Grace Geothermal Inc | Open Energy Information

    Open Energy Info (EERE)

    Ohio Zip: 44077 Sector: Geothermal energy Product: Grace Geothermal installs geothermal pumps in Ohio. Coordinates: 41.724205, -81.245244 Show Map Loading map......

  17. Sound Geothermal Corporation | Open Energy Information

    Open Energy Info (EERE)

    energy Product: Sound Geothermal coporation helps provide information into geothermal pumps. References: Sound Geothermal Corporation1 This article is a stub. You can help...

  18. Phoenix Geothermal Services | Open Energy Information

    Open Energy Info (EERE)

    Phoenix Geothermal Services Jump to: navigation, search Name: Phoenix Geothermal Services Place: Auburn, New York Sector: Geothermal energy Product: Designer, developer, and...

  19. Marana Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Marana Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Marana Aquaculture Low Temperature Geothermal Facility Facility Marana Sector Geothermal...

  20. Jackpot Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Jackpot Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Jackpot Aquaculture Low Temperature Geothermal Facility Facility Jackpot Sector Geothermal...

  1. Safford Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Safford Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Safford Aquaculture Low Temperature Geothermal Facility Facility Safford Sector Geothermal...

  2. Wild Rose Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Wild Rose Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Wild Rose Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory...

  3. Geothermal Reconnaissance From Quantitative Analysis Of Thermal...

    Open Energy Info (EERE)

    Geothermal Exploration Activities Activities (1) Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Areas (1) Raft River Geothermal Area Regions (0)...

  4. Raft River Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Raft River Geothermal Facility General Information Name Raft River Geothermal Facility Facility Raft River...

  5. Geothermal Literature Review | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Literature Review (Smith, 1983) Unspecified A History Of Hot Dry Rock Geothermal Energy Systems Geothermal Literature Review (Wisian, Et Al., 2001) Unspecified...

  6. Tuscarora Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Information Name Tuscarora Geothermal Facility Facility Geothermal Power Plant Sector Geothermal energy Location Information Coordinates 38.8871315, -77.0030762 Loading...

  7. Category:Geothermal Projects | Open Energy Information

    Open Energy Info (EERE)

    Each year different agencies report the upcoming geothermal developing projects. The Geothermal Energy Association (GEA) publishes their findings in their annual US Geothermal...

  8. NREL: Learning - Student Resources on Geothermal Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Energy The following resources can provide you with more information on geothermal energy. Geothermal Technologies Program U.S. Department of Energy's Office of Energy...

  9. Salavatli Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Form" above to add content History and Infrastructure Operating Power Plants: 3 Dora-1 Geothermal Energy Power Plant Dora-2 Geothermal Power Plant Dora-3 Geothermal Power Plant...

  10. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1...

  11. Lihir Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Lihir Geothermal Power Plant General Information Name Lihir Geothermal Power Plant Sector Geothermal energy Location Information Location Lihir Island, Papua New Guinea Coordinates...

  12. Ngatamariki Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Name Ngatamariki Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Address Mighty River Power Ngahere House 283...

  13. Blundell 2 Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Name Blundell 2 Geothermal Facility Facility Blundell 2 Geothermal Facility Sector Geothermal energy Location Information Address Roosevelt Hot Springs Road Location...

  14. Patua Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Patua Geothermal Facility Facility Geothermal Power Plant Sector Geothermal energy Location Information Coordinates 39.5128511, -119.8066361 Loading...

  15. SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature...

    Open Energy Info (EERE)

    Geothermal Facility Facility SWTDI Geothermal Aquaculture Facility Sector Geothermal energy Type Greenhouse Location Las Cruces, New Mexico Coordinates 32.3123157,...

  16. SWTDI Geothermal Aquaculture Facility Aquaculture Low Temperature...

    Open Energy Info (EERE)

    Geothermal Facility Facility SWTDI Geothermal Aquaculture Facility Sector Geothermal energy Type Aquaculture Location Las Cruces, New Mexico Coordinates 32.3123157,...

  17. Alum Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Alum Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Alum Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  18. Aurora Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Aurora Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Aurora Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  19. Berln Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Berln Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Berln Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  20. Germany Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Germany Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Germany Geothermal Region Details Areas (1) Power Plants (0) Projects (0) Techniques (0)...

  1. Stillwater Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Stillwater Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Stillwater Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  2. Thailand Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Thailand Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Thailand Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0)...

  3. Krafla Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Krafla Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Krafla Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  4. Salt Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Salt...

  5. Rye Patch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Rye Patch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rye Patch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory...

  6. Amedee Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Amedee Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Amedee Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  7. Geothermal/Leasing | Open Energy Information

    Open Energy Info (EERE)

    GeothermalLeasing < Geothermal(Redirected from Leasing) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant...

  8. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Blue Mountain Geothermal Area Contents 1 Area...

  9. Indonesia Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Indonesia Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Indonesia Geothermal Region Details Areas (5) Power Plants (4) Projects (0) Techniques (0)...

  10. Miravalles Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Miravalles Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Miravalles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  11. Stillwater Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Stillwater Geothermal Area (Redirected from Stillwater Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Stillwater Geothermal Area Contents 1 Area Overview 2...

  12. Chena Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Chena Area...

  13. Oita Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Oita Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Oita Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  14. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    GeothermalGrid Connection < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  15. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cove Fort Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cove Fort Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory...

  16. Geothermal/Environment | Open Energy Information

    Open Energy Info (EERE)

    GeothermalEnvironment < Geothermal(Redirected from Environment) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power...

  17. Salton Sea Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salton Sea Geothermal Area (Redirected from Salton Sea Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salton Sea Geothermal Area Contents 1 Area Overview 2...

  18. Philippines Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Philippines Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Philippines Geothermal Region Details Areas (1) Power Plants (0) Projects (0) Techniques...

  19. Geysers Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geysers Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geysers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  20. Larderello Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Larderello Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Larderello Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...