National Library of Energy BETA

Sample records for determination distributed thermoelectric

  1. Determination of Thermoelectric Module Efficiency A Survey

    SciTech Connect (OSTI)

    Wang, Hsin [ORNL; McCarty, Robin [Marlow Industries, Inc; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Yamamoto, Atsushi [AIST, Japan; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany

    2014-01-01

    The development of thermoelectrics (TE) for energy conversion is in the transition phase from laboratory research to device development. There is an increasing demand to accurately determine the module efficiency, especially for the power generation mode. For many thermoelectrics, the figure of merit, ZT, of the material sometimes cannot be fully realized at the device level. Reliable efficiency testing of thermoelectric modules is important to assess the device ZT and provide the end-users with realistic values on how much power can be generated under specific conditions. We conducted a general survey of efficiency testing devices and their performance. The results indicated the lack of industry standards and test procedures. This study included a commercial test system and several laboratory systems. Most systems are based on the heat flow meter method and some are based on the Harman method. They are usually reproducible in evaluating thermoelectric modules. However, cross-checking among different systems often showed large errors that are likely caused by unaccounted heat loss and thermal resistance. Efficiency testing is an important area for the thermoelectric community to focus on. A follow-up international standardization effort is planned.

  2. Thermoelectrics Partnership: High Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric...

  3. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive...

  4. Thermoelectrics Partnership: Automotive Thermoelectric Modules...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace067goodson2011o.pdf More Documents & Publications Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel...

  5. Thermoelectric powered wireless sensors for spent fuel monitoring

    SciTech Connect (OSTI)

    Carstens, T.; Corradini, M.; Blanchard, J. [Dept. of Engineering Physics, Univ. of Wisconsin-Madison, Madison, WI 53706 (United States); Ma, Z. [Dept. of Electrical and Computer Engineering, Univ. of Wisconsin-Madison, Madison, WI 53706 (United States)

    2011-07-01

    This paper describes using thermoelectric generators to power wireless sensors to monitor spent nuclear fuel during dry-cask storage. OrigenArp was used to determine the decay heat of the spent fuel at different times during the service life of the dry-cask. The Engineering Equation Solver computer program modeled the temperatures inside the spent fuel storage facility during its service life. The temperature distribution in a thermoelectric generator and heat sink was calculated using the computer program Finite Element Heat Transfer. From these temperature distributions the power produced by the thermoelectric generator was determined as a function of the service life of the dry-cask. In addition, an estimation of the path loss experienced by the wireless signal can be made based on materials and thickness of the structure. Once the path loss is known, the transmission power and thermoelectric generator power requirements can be determined. This analysis estimates that a thermoelectric generator can produce enough power for a sensor to function and transmit data from inside the dry-cask throughout its service life. (authors)

  6. Thermoelectric module

    DOE Patents [OSTI]

    Kortier, William E. (Columbus, OH); Mueller, John J. (Columbus, OH); Eggers, Philip E. (Columbus, OH)

    1980-07-08

    A thermoelectric module containing lead telluride as the thermoelectric mrial is encapsulated as tightly as possible in a stainless steel canister to provide minimum void volume in the canister. The lead telluride thermoelectric elements are pressure-contacted to a tungsten hot strap and metallurgically bonded at the cold junction to iron shoes with a barrier layer of tin telluride between the iron shoe and the p-type lead telluride element.

  7. Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO{sub 3??} ceramics originating from nonuniform distribution of Pr dopants

    SciTech Connect (OSTI)

    Dehkordi, Arash Mehdizadeh; Bhattacharya, Sriparna; He, Jian; Alshareef, Husam N.; Tritt, Terry M.

    2014-05-12

    Recently, we have reported a significant enhancement (>70% at 500?°C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO{sub 3} ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO{sub 3}. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr{sub 1?x}Pr{sub x}TiO{sub 3} ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500?°C.

  8. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery Development for commercialization of...

  9. Thermoelectric system

    DOE Patents [OSTI]

    Reiners, Eric A. (Washington, IL); Taher, Mahmoud A. (Peoria, IL); Fei, Dong (Peoria, IL); McGilvray, Andrew N. (East Peoria, IL)

    2007-10-30

    In one particular embodiment, an internal combustion engine is provided. The engine comprises a block, a head, a piston, a combustion chamber defined by the block, the piston, and the head, and at least one thermoelectric device positioned between the combustion chamber and the head. In this particular embodiment, the thermoelectric device is in direct contact with the combustion chamber. In another particular embodiment, a cylinder head configured to sit atop a cylinder bank of an internal combustion engine is provided. The cylinder head comprises a cooling channel configured to receive cooling fluid, valve seats configured for receiving intake and exhaust valves, and thermoelectric devices positioned around the valve seats.

  10. High temperature thermoelectrics

    DOE Patents [OSTI]

    Moczygemba, Joshua E.; Biershcenk, James L.; Sharp, Jeffrey W.

    2014-09-23

    In accordance with one embodiment of the present disclosure, a thermoelectric device includes a plurality of thermoelectric elements that each include a diffusion barrier. The diffusion barrier includes a refractory metal. The thermoelectric device also includes a plurality of conductors coupled to the plurality of thermoelectric elements. The plurality of conductors include aluminum. In addition, the thermoelectric device includes at least one plate coupled to the plurality of thermoelectric elements using a braze. The braze includes aluminum.

  11. NSF/DOE Thermoelectric Partnership: High-Performance Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery NSFDOE Thermoelectric Partnership: High-Performance Thermoelectric...

  12. Energy Efficient HVAC System for Distributed Cooling/Heating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices 2012 DOE...

  13. Scalable Routes to Efficient Thermoelectric Materials

    E-Print Network [OSTI]

    Feser, Joseph Patrick

    2010-01-01

    thermoelectric materials consisting of epitaxially-grownefficient thermoelectric materials," Nature, vol. 451, pp.superlattice thermoelectric materials and devices," Science,

  14. Vehicular Applications of Thermoelectrics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicular Applications of Thermoelectrics Overivew of DOE projects developing thermoelectric generators for engine waste heat utilization and vehiclular thermoelectric...

  15. Waste Heat Recovery Opportunities for Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

  16. Concentrated Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by MIT, is working to demonstrate concentrating solar thermoelectric generators with >10% solar-to-electrical energy conversion efficiency while limiting optical concentration to less than a factor of 10 and potentially less than 4. When combined with thermal storage, CSTEGs have the potential to provide electricity day and night using no moving parts at both the utility and distributed scale.

  17. Nanocomposites as thermoelectric materials

    E-Print Network [OSTI]

    Hao, Qing

    2010-01-01

    Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

  18. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling Thermoelectric (TE) HVAC Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE)...

  19. Improving Energy Efficiency by Developing Components for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric (TE) HVAC Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC...

  20. Thermoelectric Temperature Control

    E-Print Network [OSTI]

    Saffman, Mark

    NOTE 201TM TECHNICAL Optimizing Thermoelectric Temperature Control Systems #12;2 May 1995 92-040000A © 1995 Wavelength Electronics, Inc. Thermoelectric coolers (TECs) are used in a variety understanding of thermal management techniques and carefully select the thermoelectric module, temperature

  1. Distributed Approaches for Determination of Reconfiguration Algorithm Termination

    E-Print Network [OSTI]

    Lai, Hong-jian

    Distributed Approaches for Determination of Reconfiguration Algorithm Termination Pinak Tulpule architecture was used as globally shared memory structure for detection of algorithm termination. This paper of algorithm termination. Keywords--autonomous agent-based reconfiguration, dis- tributed algorithms, shipboard

  2. Method of determining interwell oil field fluid saturation distribution

    DOE Patents [OSTI]

    Donaldson, Erle C. (Bartlesville, OK); Sutterfield, F. Dexter (Bartlesville, OK)

    1981-01-01

    A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

  3. Neural network determination of parton distributions: the nonsinglet case

    E-Print Network [OSTI]

    The NNPDF Collaboration; Luigi Del Debbio; Stefano Forte; Jose I. Latorre; Andrea Piccione; Joan Rojo

    2007-01-16

    We provide a determination of the isotriplet quark distribution from available deep--inelastic data using neural networks. We give a general introduction to the neural network approach to parton distributions, which provides a solution to the problem of constructing a faithful and unbiased probability distribution of parton densities based on available experimental information. We discuss in detail the techniques which are necessary in order to construct a Monte Carlo representation of the data, to construct and evolve neural parton distributions, and to train them in such a way that the correct statistical features of the data are reproduced. We present the results of the application of this method to the determination of the nonsinglet quark distribution up to next--to--next--to--leading order, and compare them with those obtained using other approaches.

  4. Spin-dependent thermoelectric transport coefficients in near perfect quantum wires A. Ramsak,1,2

    E-Print Network [OSTI]

    Ramsak, Anton

    Spin-dependent thermoelectric transport coefficients in near perfect quantum wires T. Rejec,1 A 2002 Thermoelectric transport coefficients are determined for semiconductor quantum wires with weak in thermoelectric coefficients are also found in standard strongly correlated systems: the Anderson model,6

  5. Thermoelectric materials having porosity

    DOE Patents [OSTI]

    Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

    2014-08-05

    A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

  6. Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling[Thermoelectric (TE) HVAC

    Broader source: Energy.gov [DOE]

    Discusses results from TE HVAC project to add detail to a human thermal comfort model and further allow load reduction in the climate control energy through a distributed TE network

  7. Method of operating a thermoelectric generator

    DOE Patents [OSTI]

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  8. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  9. Solar Thermoelectric Energy Conversion

    Broader source: Energy.gov [DOE]

    Efficiencies of different types of solar thermoelectric generators were predicted using theoretical modeling and validated with measurements using constructed prototypes under different solar intensities

  10. Scalable Routes to Efficient Thermoelectric Materials

    E-Print Network [OSTI]

    Feser, Joseph Patrick

    2010-01-01

    P. D. Yang, "Enhanced thermoelectric performance of roughHigh efficiency thermoelectric materials consisting ofG. Chen, and Z. F. Ren, "High-thermoelectric performance of

  11. Vehicular Thermoelectric Applications Session DEER 2009 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Applications Session DEER 2009 Vehicular Thermoelectric Applications Session DEER 2009 This presentation is an overview of the DOE thermoelectric program....

  12. Characterizing the thermal efficiency of thermoelectric modules

    E-Print Network [OSTI]

    Phillips, Samuel S

    2009-01-01

    An experimental setup was designed and utilized to measure the thermoelectric properties as functions of temperature of a commercially available, bismuth telluride thermoelectric module. Thermoelectric modules are solid ...

  13. Holey Silicon as an Efficient Thermoelectric Material

    E-Print Network [OSTI]

    Tang, Jinyao

    2011-01-01

    Silicon as Efficient Thermoelectric Material Jinyao Tang 1,This work investigated the thermoelectric properties of thinat room temperature, the thermoelectric performance of HS is

  14. Determining Vision Graphs for Distributed Camera Networks Using Feature Digests

    E-Print Network [OSTI]

    Radke, Rich

    1 Determining Vision Graphs for Distributed Camera Networks Using Feature Digests Zhaolin Cheng and the length of each feature descriptor are substantially reduced to form a fixed-length "feature digest" that is broadcast to the rest of the network. Each receiver camera decompresses the feature digest to recover

  15. High Temperature Integrated Thermoelectric Ststem and Materials

    SciTech Connect (OSTI)

    Mike S. H. Chu

    2011-06-06

    The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

  16. Complex oxides useful for thermoelectric energy conversion

    DOE Patents [OSTI]

    Majumdar, Arunava (Orinda, CA); Ramesh, Ramamoorthy (Moraga, CA); Yu, Choongho (College Station, TX); Scullin, Matthew L. (Berkeley, CA); Huijben, Mark (Enschede, NL)

    2012-07-17

    The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

  17. Determination and optimization of spatial samples for distributed measurements.

    SciTech Connect (OSTI)

    Huo, Xiaoming (Georgia Institute of Technology, Atlanta, GA); Tran, Hy D.; Shilling, Katherine Meghan; Kim, Heeyong (Georgia Institute of Technology, Atlanta, GA)

    2010-10-01

    There are no accepted standards for determining how many measurements to take during part inspection or where to take them, or for assessing confidence in the evaluation of acceptance based on these measurements. The goal of this work was to develop a standard method for determining the number of measurements, together with the spatial distribution of measurements and the associated risks for false acceptance and false rejection. Two paths have been taken to create a standard method for selecting sampling points. A wavelet-based model has been developed to select measurement points and to determine confidence in the measurement after the points are taken. An adaptive sampling strategy has been studied to determine implementation feasibility on commercial measurement equipment. Results using both real and simulated data are presented for each of the paths.

  18. First JAM results on the determination of polarized parton distributions

    SciTech Connect (OSTI)

    Jimenez-Delgado, Pedro

    2013-04-01

    The Jefferson Lab Angular Momentum (JAM) collaboration is a new initiative aimed to the study of the angular-momentum-dependent structure of the nucleon. First results on the determination of spin-dependent parton distribution functions from world data on polarized deep-inelastic scattering will be presented and compared with previous determinations from other groups. Different aspects of global QCD analysis will be discussed, including effects due to nuclear structure, higher twist, and target-mass corrections, as well as the impact of different data selections.

  19. Engineering and Materials for Automotive Thermoelectric Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Materials for Automotive Thermoelectric Applications Engineering and Materials for Automotive Thermoelectric Applications Design and optimization of TE exhaust generator,...

  20. Skutterudite Thermoelectric Generator For Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

  1. Novel Nanostructured Interface Solution for Automotive Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanostructured Interface Solution for Automotive Thermoelectric Modules Application Novel Nanostructured Interface Solution for Automotive Thermoelectric Modules Application...

  2. Encapsulation of High Temperature Thermoelectric Modules | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Encapsulation of High Temperature Thermoelectric Modules Encapsulation of High Temperature Thermoelectric Modules Presents concept for hermetic encapsulation of TE modules...

  3. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  4. Proactive Strategies for Designing Thermoelectric Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric...

  5. Proactive Strategies for Designing Thermoelectric Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Thermoelectric Couple Demonstration of (In,...

  6. Recent Theoretical Results for Advanced Thermoelectric Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Theoretical Results for Advanced Thermoelectric Materials Recent Theoretical Results for Advanced Thermoelectric Materials Transport theory and first principles calculations...

  7. Ferecrystals: Thermoelectric Materials Poised Between the Crystalline...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ferecrystals: Thermoelectric Materials Poised Between the Crystalline and Amorphous States Ferecrystals: Thermoelectric Materials Poised Between the Crystalline and Amorphous...

  8. Commercialization of Bulk Thermoelectric Materials for Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercialization of Bulk Thermoelectric Materials for Power Generation Commercialization of Bulk Thermoelectric Materials for Power Generation Critical aspects of technology...

  9. Overview of Thermoelectric Power Generation Technologies in Japan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Power Generation Technologies in Japan Overview of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as...

  10. Electronic, Vibrational and Thermoelectric Properties of Two-Dimensional Materials

    E-Print Network [OSTI]

    Wickramaratne, Darshana

    2015-01-01

    Landauer Thermoelectric3 Electronic and Thermoelectric Properties of Few-Layer5 Electronic and thermoelectric properties of van der Waals

  11. Thermoelectric Contact Resistances Professor HoSung Lee

    E-Print Network [OSTI]

    Lee, Ho Sung

    Thermoelectric Contact Resistances Professor HoSung Lee Contents Thermoelectrics....................................................................................................................1 Ideal Formulas for Thermoelectric generators.................................................................1 Realistic Formulas for Thermoelectric generators

  12. First JAM results on the determination of polarized parton distributions

    SciTech Connect (OSTI)

    Accardi, Alberto; Jimenez-Delgado, Pedro; Melnitchouk, Wally

    2014-01-01

    The Jefferson Lab Angular Momentum (JAM) Collaboration is a new initiative to study the angular momentum dependent structure of the nucleon. First results on the determination of spin-dependent parton distribution functions at intermediate and large x from world data on polarized deep-inelastic scattering are presented. Different aspects of global QCD analysis are discussed, including the effects of nuclear structure of deuterium and {sup 3}He targets, target mass corrections and higher twist contributions to the g{sub 1} and g{sub 2} structure functions.

  13. Bipolar thermoelectric devices

    E-Print Network [OSTI]

    Pipe, Kevin P. (Kevin Patrick), 1976-

    2004-01-01

    The work presented here is a theoretical and experimental study of heat production and transport in bipolar electrical devices, with detailed treatment of thermoelectric effects. Both homojunction and heterojunction devices ...

  14. Thermoelectric Materials, Devices and Systems:

    Office of Environmental Management (EM)

    of thermoelectric assembly. A commonly discussed cost target in the 243 thermoelectric field is 1 W for an installed system. This, along with a system life of only 5 years, a...

  15. Tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Teruya, Alan T. (Livermore, CA); Elmer, John W. (Pleasanton, CA)

    1996-01-01

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process.

  16. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1994-01-01

    Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

  17. Synthetic thermoelectric materials comprising phononic crystals

    DOE Patents [OSTI]

    El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

    2013-08-13

    Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

  18. Concentrated Solar Thermoelectric Power

    SciTech Connect (OSTI)

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  19. Thermoelectrically cooled water trap

    DOE Patents [OSTI]

    Micheels, Ronald H. (Concord, MA)

    2006-02-21

    A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

  20. Project Profile: Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    The Rohsenow-Kendall Heat Transfer Lab at Massachusetts Institute of Technology(MIT), under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is developing concentrated solar thermoelectric generators (CSTEGs) for CSP systems. This innovative distributed solution contains no moving parts and converts heat directly into electricity. Thermal storage can be integrated into the system, creating a reliable and flexible source of electricity.

  1. Measurements and Standards for Thermoelectric Materials

    E-Print Network [OSTI]

    Measurements and Standards for Thermoelectric Materials CERAMICS Our goal is to develop standard, electrical conductivity, thermal conductivity) for thin film and bulk thermoelectric materials to enable approach will facilitate comparison of thermoelectric data between leading laboratories, and accelerate

  2. Green thermoelectrics: Observation and analysis of plant thermoelectric response

    E-Print Network [OSTI]

    Goupil, C; Khamsing, A; Apertet, Y; Bouteau, F; Mancuso, S; Patino, R; Lecoeur, Ph

    2015-01-01

    Plants are sensitive to thermal and electrical effects; yet the coupling of both, known as thermoelectricity, and its quantitative measurement in vegetal systems never were reported. We recorded the thermoelectric response of bean sprouts under various thermal conditions and stress. The obtained experimental data unambiguously demonstrate that a temperature difference between the roots and the leaves of a bean sprout induces a thermoelectric voltage between these two points. Basing our analysis of the data on the force-flux formalism of linear response theory, we found that the strength of the vegetal equivalent to the thermoelectric coupling is one order of magnitude larger than that in the best thermoelectric materials. Experimental data also show the importance of the thermal stress variation rate in the plant's electrophysiological response. Therefore, thermoelectric effects are sufficiently important to partake in the complex and intertwined processes of energy and matter transport within plants.

  3. Recent Device Developments with Advanced Bulk Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with Advanced Bulk Thermoelectric Materials at RTI Reviews work in engineered thin-film nanoscale thermoelectric materials and nano-bulk materials with high ZT undertaken by...

  4. Vehicular Thermoelectrics: A New Green Technology | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    with the NSF deer11fairbanks.pdf More Documents & Publications Thermoelectrics: The New Green Automotive Technology Automotive Thermoelectric Generators and HVAC Solid-State...

  5. Advanced Thermoelectric Materials and Generator Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM...

  6. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop...

  7. Automotive Thermoelectric Generators and HVAC | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generators and HVAC Automotive Thermoelectric Generators and HVAC Provides overview of DOE-supported projects in automotive thermoelectric generators and heatersair conditioners...

  8. Investigations of Interfacial Structure in Thermoelectric Tellurides...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interfacial Structure in Thermoelectric Tellurides Investigations of Interfacial Structure in Thermoelectric Tellurides Discusses examples of work on the investigation of atomic...

  9. Correlation Between Structure and Thermoelectric Properties of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Correlation Between Structure and Thermoelectric Properties of Bulk High Performance Materials for Energy Conversion Correlation Between Structure and Thermoelectric Properties of...

  10. Potential Thermoelectric Applications in Diesel Vehicles | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Applications in Diesel Vehicles Potential Thermoelectric Applications in Diesel Vehicles 2003 DEER Conference Presentation: BSST, LLC 2003deercrane.pdf More...

  11. Vehicle Fuel Economy Improvement through Thermoelectric Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions...

  12. Enhancing Heat Recovery for Thermoelectric Devices | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Recovery for Thermoelectric Devices Enhancing Heat Recovery for Thermoelectric Devices Presentation given at the 16th Directions in Engine-Efficiency and Emissions Research...

  13. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at...

  14. Development of a 100-Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a 100-Watt High Temperature Thermoelectric Generator Development of a 100-Watt High Temperature Thermoelectric Generator Test results for low and high temperature thermoelectric...

  15. Development of a Thermoelectric Device for an Automotive Zonal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Device for an Automotive Zonal HVAC System Development of a Thermoelectric Device for an Automotive Zonal HVAC System Presents development of a thermoelectric device...

  16. NSF/DOE Thermoelectrics Partnership: Purdue ? GM Partnership...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purdue GM Partnership on Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectrics Partnership: Purdue GM Partnership on Thermoelectrics for Automotive Waste...

  17. Thermoelectric effect in very thin film Pt/Au thermocouples

    E-Print Network [OSTI]

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown, I.G.

    2006-01-01

    TABLE I. Measured thermoelectric power S for samples ofThermoelectric effect in very thin film Pt/Au thermocouplesthickness dependence of the thermoelectric power of Pt films

  18. Materials Growth and Characterization of Thermoelectric and Resistive Switching Devices

    E-Print Network [OSTI]

    Norris, Kate Jeanne

    2015-01-01

    and M. S. Dresselhaus, “Thermoelectric figure of merit of aand I. Knezevic, “Thermoelectric properties of ultrathinand K. Koumoto, “Giant thermoelectric Seebeck coefficient of

  19. Thermoelectric transport in the coupled valence-band model

    E-Print Network [OSTI]

    Ramu, Ashok; Cassels, Laura; Hackman, Nathan; Lu, Hong; Zide, Joshua; Bowers, John E.

    2011-01-01

    109, 033704 ?2011? Thermoelectric transport in the coupledapplied to the problem of thermoelectric transport in p-typeef?ciency p-type thermoelectric material, are calculated and

  20. NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

  1. Effect of Nanoparticles on Electron and Thermoelectric Transport

    E-Print Network [OSTI]

    2009-01-01

    on Electron and Thermoelectric Transport MONA ZEBARJADI, 1,5can enhance the thermoelectric performance by reducing thepredictions for the thermoelectric properties such as the

  2. High Heat Flux Thermoelectric Module Using Standard Bulk Material...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

  3. Design of bulk thermoelectric modules for integrated circuit thermal management

    E-Print Network [OSTI]

    Fukutani, K; Shakouri, A

    2006-01-01

    cooling enhancement with thermoelectric coolers,” Trans.M. S. Dresselhaus, “Thermoelectric ?gure of merit of a one-A. Shakouri, “Improved thermoelectric power factor in metal-

  4. Total thermoelectric-power withdrawals Freshwater thermoelectric-power withdrawals Saline-water thermoelectric-power withdrawals

    E-Print Network [OSTI]

    Total thermoelectric-power withdrawals Freshwater thermoelectric-power withdrawals Saline-water thermoelectric-power withdrawals Louisiana New Hampshire Florida Idaho Washington Oregon Nevada California New,000 9,000 to 13,000 Thermoelectric-power withdrawals by water quality and State, 2005. Estimated Use

  5. Experimental determination of the distribution of tail states of hydrogenated amorphous silicon: A transient photocurrent analysis

    SciTech Connect (OSTI)

    Webb, D.P.; Chan, F.Y.M.; Zou, X.C.; Chan, Y.C.; Lam, Y.W.; Lin, S.H.; O'Leary, S.K.; Lim, P.K.

    1997-07-01

    Recent experimental developments have cast doubt on the validity of the common assumption that the distribution of tail states of hydrogenated amorphous silicon exhibits a single exponential functional form. The authors employ transient photocurrent decay measurements to determine this distribution of tail states. In their approach, however, they determine the distribution of tail states directly from the experimental data, without assuming, a priori, a specific functional form. It is found that these experimental results are consistent with other more recent experimental determinations of the distribution of tail states, suggesting the possibility of deviations from a single exponential distribution of tail states in hydrogenated amorphous silicon.

  6. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1996-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  7. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, J.D.; El-Genk, M.S.

    1998-05-05

    An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

  8. Superconducting thermoelectric generator

    DOE Patents [OSTI]

    Metzger, John D. (Eaton's Neck, NY); El-Genk, Mohamed S. (Albuquerque, NM)

    1998-01-01

    An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

  9. High performance thermoelectric nanocomposite device

    DOE Patents [OSTI]

    Yang, Jihui (Lakeshore, CA); Snyder, Dexter D. (Birmingham, MI)

    2011-10-25

    A thermoelectric device includes a nanocomposite material with nanowires of at least one thermoelectric material having a predetermined figure of merit, the nanowires being formed in a porous substrate having a low thermal conductivity and having an average pore diameter ranging from about 4 nm to about 300 nm.

  10. Thermoelectric system for an engine

    DOE Patents [OSTI]

    Mcgilvray, Andrew N.; Vachon, John T.; Moser, William E.

    2010-06-22

    An internal combustion engine that includes a block, a cylinder head having an intake valve port and exhaust valve port formed therein, a piston, and a combustion chamber defined by the block, the piston, and the head. At least one thermoelectric device is positioned within either or both the intake valve port and the exhaust valve port. Each of the valves is configured to move within a respective intake and exhaust valve port thereby causing said valves to engage the thermoelectric devices resulting in heat transfer from the valves to the thermoelectric devices. The intake valve port and exhaust valve port are configured to fluidly direct intake air and exhaust gas, respectively, into the combustion chamber and the thermoelectric device is positioned within the intake valve port, and exhaust valve port, such that the thermoelectric device is in contact with the intake air and exhaust gas.

  11. THERMOELECTRIC PROPERTIES OF ULTRASCALED SILICON NANOWIRES Edwin Bosco Ramayya

    E-Print Network [OSTI]

    Knezevic, Irena

    THERMOELECTRIC PROPERTIES OF ULTRASCALED SILICON NANOWIRES by Edwin Bosco Ramayya A dissertation.1 Thermoelectric Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Figure Of Merit For Thermoelectric Cooling . . . . . . . . . . . . . . . . . . . . . 4 1.3 Semiconductors in Thermoelectric

  12. Manufacture of thermoelectric generator structures by fiber drawing

    DOE Patents [OSTI]

    McIntyre, Timothy J; Simpson, John T; West, David L

    2014-11-18

    Methods of manufacturing a thermoelectric generator via fiber drawing and corresponding or associated thermoelectric generator devices are provided.

  13. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct...

  14. NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE...

  15. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

  16. Thermal Strategies for High Efficiency Thermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system configurations...

  17. Thermoelectric probe for Rashba spin-orbit interaction strength in a two dimensional electron gas

    E-Print Network [OSTI]

    S. K. Firoz Islam; Tarun Kanti Ghosh

    2012-07-18

    Thermoelectric coefficients of a two dimensional electron gas with the Rashba spin-orbit interaction are presented here. In absence of magnetic field, thermoelectric coefficients are enhanced due to the Rashba spin-orbit interaction. In presence of magnetic field, the thermoelectric coefficients of spin-up and spin-down electrons oscillate with different frequency and produces beating patterns in the components of the total thermoelectric power and the total thermal conductivity. We also provide analytical expressions of the thermoelectric coefficients to explain the beating pattern formation. We obtain a simple relation which determines the Rashba SOI strength if the magnetic fields corresponding to any two successive beat nodes are known from the experiment.

  18. Thermoelectric generator for motor vehicle

    DOE Patents [OSTI]

    Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

    1997-04-29

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  19. Exhaust gas bypass valve control for thermoelectric generator

    DOE Patents [OSTI]

    Reynolds, Michael G; Yang, Jihui; Meisner, Greogry P.; Stabler, Francis R.; De Bock, Hendrik Pieter (Peter) Jacobus; Anderson, Todd Alan

    2012-09-04

    A method of controlling engine exhaust flow through at least one of an exhaust bypass and a thermoelectric device via a bypass valve is provided. The method includes: determining a mass flow of exhaust exiting an engine; determining a desired exhaust pressure based on the mass flow of exhaust; comparing the desired exhaust pressure to a determined exhaust pressure; and determining a bypass valve control value based on the comparing, wherein the bypass valve control value is used to control the bypass valve.

  20. Modeling the thermoelectric properties of bulk and nanocomposite thermoelectric materials

    E-Print Network [OSTI]

    Minnich, Austin (Austin Jerome)

    2008-01-01

    Thermoelectric materials are materials which are capable of converting heat directly into electricity. They have long been used in specialized fields where high reliability is needed, such as space power generation. Recently, ...

  1. Thermoelectric device characterization and solar thermoelectric system modeling

    E-Print Network [OSTI]

    Muto, Andrew (Andrew Jerome)

    2011-01-01

    Recent years have witnessed a trend of rising electricity costs and an emphasis on energy efficiency. Thermoelectric (TE) devices can be used either as heat pumps for localized environmental control or heat engines to ...

  2. Thermoelectric properties of nanoporous Ge

    E-Print Network [OSTI]

    Lee, Joo-Hyoung

    We computed thermoelectric properties of nanoporous Ge (np-Ge) with aligned pores along the [001] direction through a combined classical molecular dynamics and first-principles electronic structure approach. A significant ...

  3. A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites

    E-Print Network [OSTI]

    Liu, Liping

    A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites Science, 2012. Contents 1 Introduction 2 2 A continuum model for thermoelectric bodies 4 2.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 A constitutive model for thermoelectric materials . . . . . . . . . . . . . . . . . . . . 6 2

  4. Determination of pore-size distribution in low-dielectric thin films D. W. Gidleya)

    E-Print Network [OSTI]

    Gidley, David

    -size distribution on pore shape/dimensionality and sample temperature is predicted using a simple quantum mechanicalDetermination of pore-size distribution in low-dielectric thin films D. W. Gidleya) and W. E. Frieze Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 T. L. Dull, J. Sun, and A

  5. Environmental determinants of unscheduled residential outages in the electrical power distribution of Phoenix, Arizona

    E-Print Network [OSTI]

    Environmental determinants of unscheduled residential outages in the electrical power distribution: Distribution Electricity Interruption Outage Reliability a b s t r a c t The sustainability of power requires knowledge of unscheduled outage sources, including environ- mental and social factors. Despite

  6. The Astrophysical Journal, in press A Determination of the Coronal Emission Measure Distribution in the Young

    E-Print Network [OSTI]

    Guedel, Manuel

    to this temperature regime. We argue that the DEM distribution seen in EK Dra is induced by the propertiesThe Astrophysical Journal, in press A Determination of the Coronal Emission Measure Distribution of a coronal differential emission measure (DEM) analysis of the nearby analog of the young Sun, EK Draconis

  7. Mesoscale distribution of zooplankton biomass in the northeast Atlantic Ocean determined with an Optical Plankton Counter

    E-Print Network [OSTI]

    Mesoscale distribution of zooplankton biomass in the northeast Atlantic Ocean determined Available online 2 June 2009 Keywords: Zooplankton Biomass Size distribution Mesoscale eddies Optical plankton counter Pelagic environment Northeast Atlantic Ocean a b s t r a c t We examined the mesoscale

  8. Determination of cloud liquid water distribution using 3D cloud tomography

    E-Print Network [OSTI]

    Determination of cloud liquid water distribution using 3D cloud tomography Dong Huang,1 Yangang Liu; published 2 July 2008. [1] The cloud microwave tomography method for remotely retrieving 3D distributions of cloud Liquid Water Content (LWC) was originally proposed by Warner et al. in the 1980s but has lain

  9. Thermoelectric Applications to Truck Essential Power

    SciTech Connect (OSTI)

    John C. Bass; Norbert B. Elsner

    2001-12-12

    The subjects covered in this report are: thermoelectrics, 1-kW generator for diesel engine; self-powered heater; power for wireless data transmission; and quantum-well thermoelectrics.

  10. Thermoelectric energy conversion using nanostructured materials

    E-Print Network [OSTI]

    Chen, Gang

    High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics ...

  11. Reliability of Transport Properties for Bulk Thermoelectrics

    Broader source: Energy.gov [DOE]

    Presents international round-robin study to ensure quality of transport data and figure of merit of thermoelectric materials

  12. Challenges and Opportunities in Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Conversion Challenges and Opportunities in Thermoelectric Energy Conversion 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Lawrence Berkeley...

  13. AbstractAbstract Improving efficiency of thermoelectric

    E-Print Network [OSTI]

    Walker, D. Greg

    AbstractAbstract · Improving efficiency of thermoelectric energy conversion devices is a major-classical transport models used to predict ZT can effectively predict thermoelectric performance of bulk materials method proposed to couple quantum and scattering effects to predict thermoelectric performance. · NEGF

  14. A one dimensional hard-point gas as a thermoelectric engine

    E-Print Network [OSTI]

    Jiao Wang; Giulio Casati; Tomaz Prosen; C. -H. Lai

    2009-05-25

    We demonstrate the possibility to build a thermoelectric engine using a one dimensional gas of molecules with unequal masses and hard-point interaction. Most importantly, we show that the efficiency of this engine is determined by a new parameter YT which is different from the well known figure of merit ZT. Even though the efficiency of this particular model is low, our results shed new light on the problem and open the possibility to build efficient thermoelectric engines.

  15. Fabrication and testing of thermoelectric thin film devices

    SciTech Connect (OSTI)

    Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.

    1996-03-01

    Two thin-film thermoelectric devices are experimentally demonstrated. The relevant thermal loads on the cold junction of these devices are determined. The analytical form of the equation that describes the thermal loading of the device enables one to model the performance based on the independently measured electronic properties of the films forming the devices. This model elucidates which parameters determine device performance, and how they can be used to maximize performance.

  16. Thermoelectric refrigerator having improved temperature stabilization means

    DOE Patents [OSTI]

    Falco, Charles M. (Woodridge, IL)

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  17. Power-like corrections and the determination of the gluon distribution

    E-Print Network [OSTI]

    F. Hautmann

    2006-10-06

    Power-suppressed corrections to parton evolution may affect the theoretical accuracy of current determinations of parton distributions. We study the role of multigluon-exchange terms in the extraction of the gluon distribution for the Large Hadron Collider (LHC). Working in the high-energy approximation, we analyze multi-gluon contributions in powers of 1/Q^2. We find a moderate, negative correction to the structure function's derivative d F_2 / d \\ln Q^2, characterized by a slow fall-off in the region of low to medium Q^2 relevant for determinations of the gluon at small momentum fractions.

  18. Improvements to solar thermoelectric generators through device design

    E-Print Network [OSTI]

    Weinstein, Lee A. (Lee Adragon)

    2013-01-01

    A solar thermoelectric generator (STEG) is a device which converts sunlight into electricity through the thermoelectric effect. A STEG is nominally formed when a thermoelectric generator (TEG), a type of solid state heat ...

  19. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01

    developments in bulk thermoelectric materials", M. Mater.and M. D. Drsselhaus, "Thermoelectric figure of merit of aO'Quinn, " Thin-film thermoelectric devices with high room-

  20. Thermoelectric Transport in a ZrN/ScN Superlattice

    E-Print Network [OSTI]

    2009-01-01

    at Springerlink.com Thermoelectric Transport in a ZrN/ScNthe potential for a high thermoelectric ?gure of merit. Theexperimental studies of the thermoelectric transport in ZrN/

  1. Distributed Array of GPS Receivers for 3D Wind Profile Determination in Wind Farms

    E-Print Network [OSTI]

    Gao, Grace Xingxin

    Distributed Array of GPS Receivers for 3D Wind Profile Determination in Wind Farms Derek Chen, and inexpensively is critical for both optimizing the installation of wind turbines on a wind farm, and predicting. Finally, the system is tested on a local wind farm. It has been shown that GPS provides a viable method

  2. High Performance Bulk Thermoelectric Materials

    SciTech Connect (OSTI)

    Ren, Zhifeng

    2013-03-31

    Over 13 plus years, we have carried out research on electron pairing symmetry of superconductors, growth and their field emission property studies on carbon nanotubes and semiconducting nanowires, high performance thermoelectric materials and other interesting materials. As a result of the research, we have published 104 papers, have educated six undergraduate students, twenty graduate students, nine postdocs, nine visitors, and one technician.

  3. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01

    in bulk thermoelectric materials", M. Mater. Res. Soc.Thermoelectricity", Materials Reserach Society Symposium,Johnson, D. C. , Eds. Materials Research Society: Boston,

  4. Materials Growth and Characterization of Thermoelectric and Resistive Switching Devices

    E-Print Network [OSTI]

    Norris, Kate Jeanne

    2015-01-01

    SPIE 8467, Nanoepitaxy: Materials and Devices IV (2012)non-toxic thermoelectric material for waste heat recovery,”dot superlattice thermoelectric materials and devices. ,”

  5. Thermoelectrical Energy Recovery From the Exhaust of a Light...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectrical Energy Recovery From the Exhaust of a Light Truck Thermoelectrical Energy Recovery From the Exhaust of a Light Truck 2003 DEER Conference Presentation: Clarkson...

  6. Enhancement of automotive exhaust heat recovery by thermoelectric...

    Office of Scientific and Technical Information (OSTI)

    thermoelectric power output were examined. The results indicate that thermoelectric power production is increased at higher gas inlet temperature or flow rate. However,...

  7. Development of Cost-Competitive Advanced Thermoelectric Generators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development of Cost-Competitive Advanced Thermoelectric Generators for Direct...

  8. Development of a 500 Watt High Temperature Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a 500 Watt High Temperature Thermoelectric Generator Development of a 500 Watt High Temperature Thermoelectric Generator A low temperature TEG has been built and tested providing...

  9. Development of a Scalable 10% Efficient Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Scalable 10% Efficient Thermoelectric Generator Development of a Scalable 10% Efficient Thermoelectric Generator Presentation given at the 2007 Diesel Engine-Efficiency &...

  10. Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...

    Office of Environmental Management (EM)

    Documents & Publications TEG On-Vehicle Performance & Model Validation Thermoelectric Generator Performance for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for...

  11. Thermoelectric Generator Development at Renault Trucks-Volvo...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Renault Trucks-Volvo Group Thermoelectric Generator Development at Renault Trucks-Volvo Group Reviews project to study the potential of thermoelectricity for diesel engines of...

  12. Status of Segmented Element Thermoelectric Generator for Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Discusses progress...

  13. ANSYS Thermoelectric Generator (TEG) Preparing the ANSYS Workbench

    E-Print Network [OSTI]

    Lee, Ho Sung

    ANSYS Thermoelectric Generator (TEG) Tutorial Preparing the ANSYS Workbench 1) Go Start Menu All) Save the project as Thermoelectric-Generator-Workbench. Specifying the Materials and Properties 1

  14. Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Cost High Energy Exhaust Heat Thermoelectric Generator with Closed-Loop Exhaust By-Pass System Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with...

  15. PACCAR/Hi-Z Thermoelectric Generator Project | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PACCARHi-Z Thermoelectric Generator Project PACCARHi-Z Thermoelectric Generator Project 2002 DEER Conference Presentation: Hi-Z Technology, Inc. 2002deerbergstrand.pdf More...

  16. System level modeling of thermoelectric generators for automotive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    level modeling of thermoelectric generators for automotive applications System level modeling of thermoelectric generators for automotive applications Uses a model to predict and...

  17. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace45yang.pdf More Documents & Publications Develop Thermoelectric Technology for Automotive Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric...

  18. Progress toward Development of a High-Efficiency Zonal Thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC...

  19. Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

  20. A Thermoelectric Generator with an Intermediate Heat Exchanger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Thermoelectric Generator with an Intermediate Heat Exchanger for Automotive Waste Heat Recovery System A Thermoelectric Generator with an Intermediate Heat Exchanger for...

  1. Development of a High-Efficiency Zonal Thermoelectric HVAC System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications...

  2. Role of Thermoelectrics in Vehicle Efficiency Increase | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Role of Thermoelectrics in Vehicle Efficiency Increase Role of Thermoelectrics in Vehicle Efficiency Increase 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations...

  3. Large-dimension, high-ZT Thermoelectric Nanocomposites for High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation Large-dimension, high-ZT Thermoelectric...

  4. High-Performance Thermoelectric Devices Based on Abundant Silicide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric...

  5. Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications Multilayer Thin-Film Thermoelectric Materials for Vehicle Applications 2004 Diesel Engine Emissions Reduction...

  6. Multi-physics modeling of thermoelectric generators for waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    physics modeling of thermoelectric generators for waste heat recovery applications Multi-physics modeling of thermoelectric generators for waste heat recovery applications Model...

  7. Status of the Application of Thermoelectric Technology in Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Application of Thermoelectric Technology in Vehicles Status of the Application of Thermoelectric Technology in Vehicles 2004 Diesel Engine Emissions Reduction (DEER) Conference...

  8. Overview of Research on Thermoelectric Materials and Devices...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research on Thermoelectric Materials and Devices in China Overview of Research on Thermoelectric Materials and Devices in China An overview presentation of R&D projects on...

  9. Overview of Fords Thermoelectric Programs: Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control Overview of progress...

  10. Innovative Nano-structuring Routes for Novel ThermoelectricMaterials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking & DOS Engineering Innovative Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking &...

  11. Glass-like thermal conductivity in high efficiency thermoelectric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...

  12. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in an Over the Road Diesel Powered Engine System by the Application of Advanced Thermoelectric Systems Implemented in a Hybrid Configuration Thermoelectric Conversion of Waste...

  13. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using thermoelectrics on a OTR truck schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  14. Overview of Progress in Thermoelectric Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in government- and...

  15. Low and high Temperature Dual Thermoelectric Generation Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery...

  16. Feasibility of OnBoard Thermoelectric Generation for Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Feasibility of OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Poster presentation at the...

  17. A Solution Route to Thermoelectric Oxide Nanoparticles - A Sol...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Solution Route to Thermoelectric Oxide Nanoparticles - A Sol-Gel Process Employing Heterometallic Alkoxides A Solution Route to Thermoelectric Oxide Nanoparticles - A Sol-Gel...

  18. An Overview of Thermoelectric Waste Heat Recovery Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

  19. CX-008320: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Distributed Thermoelectric Heating, Ventilation, and Air Conditioning for Vehicle Applications CX(s) Applied: B3.6 Date: 04/18/2012 Location(s): New York Offices(s): National Energy Technology Laboratory

  20. CX-008322: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Distributed Thermoelectric Heating, Ventilation, and Air Conditioning for Vehicle Applications CX(s) Applied: B3.6 Date: 04/18/2012 Location(s): California Offices(s): National Energy Technology Laboratory

  1. CX-008321: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Distributed Thermoelectric Heating, Ventilation, and Air Conditioning for Vehicle Applications CX(s) Applied: B3.6, B5.1 Date: 04/18/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory

  2. CX-008323: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Distributed Thermoelectric Heating, Ventilation, and Air Conditioning for Vehicle Applications CX(s) Applied: A9 Date: 04/18/2012 Location(s): Nevada Offices(s): National Energy Technology Laboratory

  3. Trends in Thermoelectric Properties with Nanostructure: Ferecrystals...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    control to interleave on the nanoscale two or more compounds with different crystal structures johnson.pdf More Documents & Publications Ferecrystals: Thermoelectric Materials...

  4. Powering Curiosity: Multi-Mission Radioisotope Thermoelectric...

    Office of Environmental Management (EM)

    of power is the radioisotope thermoelectric generator (RTG) - essentially a nuclear battery that reliably converts heat into electricity. The Department of Energy and NASA...

  5. Electrical and Thermoelectrical Transport Properties of Graphene

    E-Print Network [OSTI]

    Wang, Deqi

    2011-01-01

    OF CALIFORNIA RIVERSIDE Electrical and ThermoelectricalIn addition to the electrical conductivity, thermoelectricthe energy-dependent electrical conductivity under certain

  6. Thermoelectric Generator (TEG) Fuel Displacement Potential using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Displacement Potential using Engine-in-the-Loop and Simulation Thermoelectric Generator (TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation Assessment...

  7. Thermoelectric Materials by Design: Computational Theory and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design: Computational Theory and Structure Thermoelectric Materials by Design: Computational Theory and Structure Presentation from the U.S. DOE Office of Vehicle Technologies...

  8. Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for Automotive Waste Heat Recovery Thermoelectric Technology for Automotive Waste Heat Recovery Presentation given at the 2007 Diesel Engine-Efficiency & Emissions...

  9. Integrated Design and Manufacturing of Thermoelectric Generator...

    Broader source: Energy.gov (indexed) [DOE]

    spraying of thermoelectric materials and other functional layers directly onto automotive exhaust pipes with enhanced performance, durability, and heat transfer zuo.pdf More...

  10. Challenges and Opportunities in Thermoelectric Materials Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Research for Automotive Applications Challenges and Opportunities in Thermoelectric Materials Research for Automotive Applications Presentation given at the 2007 Diesel...

  11. High-Temperature Thermoelectric Materials Characterization for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  12. Thermoelectric Generator Development for Automotive Waste Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery Presentation given at the 16th Directions in Engine-Efficiency and...

  13. High Temperature Thermoelectric Materials Characterization for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

  14. Thermoelectric Activities of European Community within Framework...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community within Framework Programme 7 and additional activities in Germany Thermoelectric Activities of European Community within Framework Programme 7 and additional...

  15. Microstructure and Thermoelectric Properties of Mechanically...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites Home Author: J. R. Sootsman, J. He, V. P. Dravid, S. Ballikaya, D. Vermeulen, C....

  16. Thermoelectric Bulk Materials from the Explosive Consolidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bulk Materials from the Explosive Consolidation of Nanopowders Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively...

  17. Nanostructured Thermoelectric Materials and High Efficiency Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanostructured Thermoelectric Materials and High Efficiency Power Generation Modules Home Author: T. Hogan, A. Downey, J. Short, S. D. Mahanti, H. Schock, E. Case Year: 2007...

  18. Thermoelectric Power Generation System with Loop Thermosyphon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid...

  19. Proactive Strategies for Designing Thermoelectric Materials for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New p-type and n-type multiple-rattler skutterudite thermoelectric materials design, synthesis, fabrication, and characterization for power generation using vehicle exhaust waste...

  20. Thermoelectric Materials by Design, Computational Theory and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by Design, Computational Theory and Structure Thermoelectric Materials by Design, Computational Theory and Structure 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  1. The thermoelectric properties of inhomogeneous holographic lattices

    E-Print Network [OSTI]

    Aristomenis Donos; Jerome P. Gauntlett

    2015-01-22

    We consider inhomogeneous, periodic, holographic lattices of D=4 Einstein-Maxwell theory. We show that the DC thermoelectric conductivity matrix can be expressed analytically in terms of the horizon data of the corresponding black hole solution. We numerically construct such black hole solutions for lattices consisting of one, two and ten wave-numbers. We numerically determine the AC electric conductivity which reveals Drude physics as well as resonances associated with sound modes. No evidence for an intermediate frequency scaling regime is found. All of the monochromatic lattice black holes that we have constructed exhibit scaling behaviour at low temperatures which is consistent with the appearance of $AdS_2\\times\\mathbb{R}^2$ in the far IR at T=0.

  2. Synthesis and Characterization of Iridium- and Cobalt-based Skutterudites for Thermoelectric Power Generation

    E-Print Network [OSTI]

    King, Daniel Jay

    2014-01-01

    for thermoelectric power generation,” 235th ACS Nationalfor Thermoelectric Power Generation A dissertation submittedfor Thermoelectric Power Generation by Daniel Jay King, Jr.

  3. Thermoelectric and electrical characterization of Si nanowires and GaNAs

    E-Print Network [OSTI]

    Pichanusakorn, Paothep

    2012-01-01

    1 Introduction to Thermoelectric phenomena and theory . . .1.1 Thermoelectric139 5.1.1 Thermoelectric application for highly-mismatch

  4. High-Temperature Thermoelectric Characterization of III–V Semiconductor Thin Films by Oxide Bonding

    E-Print Network [OSTI]

    2010-01-01

    High-Temperature Thermoelectric Characterization of III–Vfor high-temperature thermoelectric charac- terization ofdiffusion barrier. A thermoelectric material, thin-?lm ErAs:

  5. Increasing the thermoelectric figure of merit of tetrahedrites by Co-doping with nickel and zinc

    E-Print Network [OSTI]

    Lu, X; Morelli, DT; Xia, Y; Ozolins, V

    2015-01-01

    Increasing  the  Thermoelectric  Figure  of  Merit  of  increase   in   the   thermoelectric   figure   of   merit  coefficient  and  thermoelectric  power  factor;  and  2)  

  6. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOrigin ofAllenDepartment of EnergyThermoelectricsHeat

  7. Determination of transit time distribution and Rabi frequency by applying regularized inverse on Ramsey spectra

    SciTech Connect (OSTI)

    Park, Young-Ho; Lee, Soo Heyong; Park, Sang Eon; Lee, Ho Seong; Kwon, Taeg Yong [Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of)

    2007-04-23

    The authors report on a method to determine the Rabi frequency and transit time distribution of atoms that are essential for proper operation of atomic beam frequency standards. Their method, which employs alternative regularized inverse on two Ramsey spectra measured at different microwave powers, can be used for the frequency standards with short Ramsey cavity as well as long ones. The authors demonstrate that uncertainty in Rabi frequency obtained from their method is 0.02%.

  8. Evaluating the potential for high thermoelectric efficiency of silver selenide

    E-Print Network [OSTI]

    Martin, Alain

    to solid-state operation, and reduced size. Additionally, thermoelectrics do not use green- house gas

  9. Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Develop thermoelectric technology for waste heat recovery with a 10% fuel economy improvement without increasing emissions.

  10. Nanostructures having high performance thermoelectric properties

    DOE Patents [OSTI]

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I.; Chen, Renkun; Delgado, Raul Diaz

    2015-12-22

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  11. Nanostructures having high performance thermoelectric properties

    DOE Patents [OSTI]

    Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

    2014-05-20

    The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

  12. Determination of High-Frequency Current Distribution Using EMTP-Based Transmission Line Models with Resulting Radiated Electromagnetic Fields

    SciTech Connect (OSTI)

    Mork, B; Nelson, R; Kirkendall, B; Stenvig, N

    2009-11-30

    Application of BPL technologies to existing overhead high-voltage power lines would benefit greatly from improved simulation tools capable of predicting performance - such as the electromagnetic fields radiated from such lines. Existing EMTP-based frequency-dependent line models are attractive since their parameters are derived from physical design dimensions which are easily obtained. However, to calculate the radiated electromagnetic fields, detailed current distributions need to be determined. This paper presents a method of using EMTP line models to determine the current distribution on the lines, as well as a technique for using these current distributions to determine the radiated electromagnetic fields.

  13. Dynamical Energy Analysis - determining wave energy distributions in complex vibro-acoustical structures

    E-Print Network [OSTI]

    Gregor Tanner

    2008-03-12

    We propose a new approach towards determining the distribution of mechanical and acoustic wave energy in complex built-up structures. The technique interpolates between standard Statistical Energy Analysis (SEA) and full ray tracing containing both these methods as limiting case. By writing the flow of ray trajectories in terms of linear phase space operators, it is suggested here to reformulate ray-tracing algorithms in terms of boundary operators containing only short ray segments. SEA can now be identified as a low resolution ray tracing algorithm and typical SEA assumptions can be quantified in terms of the properties of the ray dynamics. The new technique presented here enhances the range of applicability of standard SEA considerably by systematically incorporating dynamical correlations wherever necessary. Some of the inefficiencies inherent in typical ray tracing methods can be avoided using only a limited amount of the geometrical ray information. The new dynamical theory - Dynamical Energy Analysis (DEA) - thus provides a universal approach towards determining wave energy distributions in complex structures.

  14. Thermoelectric generator cooling system and method of control

    DOE Patents [OSTI]

    Prior, Gregory P; Meisner, Gregory P; Glassford, Daniel B

    2012-10-16

    An apparatus is provided that includes a thermoelectric generator and an exhaust gas system operatively connected to the thermoelectric generator to heat a portion of the thermoelectric generator with exhaust gas flow through the thermoelectric generator. A coolant system is operatively connected to the thermoelectric generator to cool another portion of the thermoelectric generator with coolant flow through the thermoelectric generator. At least one valve is controllable to cause the coolant flow through the thermoelectric generator in a direction that opposes a direction of the exhaust gas flow under a first set of operating conditions and to cause the coolant flow through the thermoelectric generator in the direction of exhaust gas flow under a second set of operating conditions.

  15. Bulk dimensional nanocomposites for thermoelectric applications

    DOE Patents [OSTI]

    Nolas, George S

    2014-06-24

    Thermoelectric elements may be used for heat sensors, heat pumps, and thermoelectric generators. A quantum-dot or nano-scale grain size polycrystalline material the effects of size-quantization are present inside the nanocrystals. A thermoelectric element composed of densified Groups IV-VI material, such as calcogenide-based materials are doped with metal or chalcogenide to form interference barriers form along grains. The dopant used is either silver or sodium. These chalcogenide materials form nanoparticles of highly crystal grains, and may specifically be between 1- and 100 nm. The compound is densified by spark plasma sintering.

  16. Increasing thermoelectric efficiency towards the Carnot limit

    E-Print Network [OSTI]

    Giulio Casati; Carlos Mejia-Monasterio; Tomaz Prosen

    2008-02-27

    We study the problem of thermoelectricity and propose a simple microscopic mechanism for the increase of thermoelectric efficiency. We consider the cross transport of particles and energy in open classical ergodic billiards. We show that, in the linear response regime, where we find exact expressions for all transport coefficients, the thermoelectric efficiency of ideal ergodic gases can approach Carnot efficiency for sufficiently complex charge carrier molecules. Our results are clearly demonstrated with a simple numerical simulation of a Lorentz gas of particles with internal rotational degrees of freedom.

  17. DETERMINATION OF NON-THERMAL VELOCITY DISTRIBUTIONS FROM SERTS LINEWIDTH OBSERVATIONS

    SciTech Connect (OSTI)

    Coyner, Aaron J. [Department of Physics, Catholic University of America, 620 Michigan Avenue, Washington, DC 20064 (United States); Davila, Joseph M., E-mail: aaron.j.coyner@nasa.gov [Code 671, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2011-12-01

    Non-thermal velocities obtained from the measurement of coronal Extreme Ultraviolet (EUV) linewidths have been consistently observed in solar EUV spectral observations and have been theorized to result from many plausible scenarios including wave motions, turbulence, or magnetic reconnection. Constraining these velocities can provide a physical limit for the available energy resulting from unresolved motions in the corona. We statistically determine a series of non-thermal velocity distributions from linewidth measurements of 390 emission lines from a wide array of elements and ionization states observed during the Solar Extreme Ultraviolet Research Telescope and Spectrograph 1991-1997 flights covering the spectral range 174-418 A and a temperature range from 80,000 K to 12.6 MK. This sample includes 248 lines from active regions, 101 lines from quiet-Sun regions, and 41 lines were observed from plasma off the solar limb. We find a strongly peaked distribution corresponding to a non-thermal velocity of 19-22 km s{sup -1} in all three of the quiet-Sun, active region, and off-limb distributions. For the possibility of Alfven wave resonance heating, we find that velocities in the core of these distributions do not provide sufficient energy, given typical densities and magnetic field strengths for the coronal plasma, to overcome the estimated coronal energy losses required to maintain the corona at the typical temperatures working as the sole mechanism. We find that at perfect efficiency 50%-60% of the needed energy flux can be produced from the non-thermal velocities measured.

  18. Automated Data Collection for Determining Statistical Distributions of Module Power Undergoing Potential-Induced Degradation: Preprint

    SciTech Connect (OSTI)

    Hacke, P.; Spataru, S.

    2014-08-01

    We propose a method for increasing the frequency of data collection and reducing the time and cost of accelerated lifetime testing of photovoltaic modules undergoing potential-induced degradation (PID). This consists of in-situ measurements of dark current-voltage curves of the modules at elevated stress temperature, their use to determine the maximum power at 25 degrees C standard test conditions (STC), and distribution statistics for determining degradation rates as a function of stress level. The semi-continuous data obtained by this method clearly show degradation curves of the maximum power, including an incubation phase, rates and extent of degradation, precise time to failure, and partial recovery. Stress tests were performed on crystalline silicon modules at 85% relative humidity and 60 degrees C, 72 degrees C, and 85 degrees C. Activation energy for the mean time to failure (1% relative) of 0.85 eV was determined and a mean time to failure of 8,000 h at 25 degrees C and 85% relative humidity is predicted. No clear trend in maximum degradation as a function of stress temperature was observed.

  19. In-line thermoelectric module

    DOE Patents [OSTI]

    Pento, Robert (Algonquin, IL); Marks, James E. (Glenville, NY); Staffanson, Clifford D. (S. Glens Falls, NY)

    2000-01-01

    A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions may be perpendicular to the direction of current flow through the module.

  20. Thermoelectrics : material advancements and market applications

    E-Print Network [OSTI]

    Monreal, Jorge

    2007-01-01

    Thermoelectric properties have been known since the initial discovery in 1821 by Thomas Seebeck, who found that a current flowed at the junction of two dissimilar metals when placed under a temperature differential. This ...

  1. Solar thermoelectrics for small scale power generation

    E-Print Network [OSTI]

    Amatya, Reja

    2012-01-01

    In the past two decades, there has been a surge in the research of new thermoelectric (TE) materials, driven party by the need for clean and sustainable power generation technology. Utilizing the Seebeck effect, the ...

  2. Generalized drift-diffusion for microscopic thermoelectricity

    E-Print Network [OSTI]

    Santhanam, Parthiban

    2009-01-01

    Although thermoelectric elements increasingly incorporate nano-scale features in similar material systems as other micro-electronic devices, the former are described in the language of irreversible thermodynamics while ...

  3. Device testing and characterization of thermoelectric nanocomposites

    E-Print Network [OSTI]

    Muto, Andrew (Andrew Jerome)

    2008-01-01

    It has become evident in recent years that developing clean, sustainable energy technologies will be one of the world's greatest challenges in the 21st century. Thermoelectric materials can potentially make a contribution ...

  4. Photoacoustic measurement of bandgaps of thermoelectric materials

    E-Print Network [OSTI]

    Ni, George (George Wei)

    2014-01-01

    Thermoelectric materials are a promising class of direct energy conversion materials, usually consisting of highly doped semiconductors. The key to maximizing their thermal to electrical energy conversion lies in optimizing ...

  5. Modeling water use at thermoelectric power plants

    E-Print Network [OSTI]

    Rutberg, Michael J. (Michael Jacob)

    2012-01-01

    The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

  6. Modeling of concentrating solar thermoelectric generators

    E-Print Network [OSTI]

    Ren, Zhifeng

    The conversion of solar power into electricity is dominated by non-concentrating photovoltaics and concentrating solar thermal systems. Recently, it has been shown that solar thermoelectric generators (STEGs) are a viable ...

  7. Heat Transfer in Thermoelectric Materials and Devices

    E-Print Network [OSTI]

    Tian, Zhiting

    Solid-state thermoelectric devices are currently used in applications ranging from thermocouple sensors to power generators in space missions, to portable air-conditioners and refrigerators. With the ever-rising demand ...

  8. Heat Management in Thermoelectric Power Generators

    E-Print Network [OSTI]

    Zebarjadi, Mona

    2015-01-01

    Thermoelectric power generators are used to convert heat into electricity. Like any other heat engine, the performance of a thermoelectric generator increases as the temperature difference on the sides increases. It is generally assumed that as more heat is forced through the thermoelectric legs, their performance increases. Therefore, insulations are typically used to minimize the heat losses and to confine the heat transport through the thermoelectric legs. In this paper we show that to some extend it is beneficial to purposely open heat loss channels in order to establish a larger temperature gradient and therefore to increase the overall efficiency and achieve larger electric power output. We define a modified Biot number (Bi) as an indicator of requirements for sidewall insulation. We show that if Bi1, it lowers the conversion efficiency.

  9. Probing thermoelectric transport with cold atoms

    E-Print Network [OSTI]

    Charles Grenier; Corinna Kollath; Antoine Georges

    2013-11-10

    We propose experimental protocols to reveal thermoelectric and thermal effects in the transport properties of ultracold fermionic atoms, using the two-terminal setup recently realized at ETH. We show in particular that, for two reservoirs having equal particle numbers but different temperatures initially, the observation of a transient particle number imbalance during equilibration is a direct evidence of thermoelectric (off-diagonal) transport coefficients. This is a time-dependent analogue of the Seebeck effect, and a corresponding analogue of the Peltier effect can be proposed. We reveal that in addition to the thermoelectric coupling of the constriction a thermoelectric coupling also arises due to the finite dilatation coefficient of the reservoirs. We present a theoretical analysis of the protocols, and assess their feasibility by estimating the corresponding temperature and particle number imbalances in realistic current experimental conditions.

  10. Segregated Network Polymer-Carbon Nanotubes Composites For Thermoelectrics 

    E-Print Network [OSTI]

    Kim, Dasaroyong

    2010-10-12

    Polymers are intrinsically poor thermal conductors, which are ideal for thermoelectrics, but low electrical conductivity and thermopower have excluded them as feasible candidates as thermoelectric materials in the past. However, recent progress...

  11. Modeling of solar thermal selective surfaces and thermoelectric generators

    E-Print Network [OSTI]

    McEnaney, Kenneth

    2010-01-01

    A thermoelectric generator is a solid-state device that converts a heat flux into electrical power via the Seebeck effect. When a thermoelectric generator is inserted between a solar-absorbing surface and a heat sink, a ...

  12. Engineering Enhanced Thermoelectric Properties in Zigzag Graphene Nanoribbons

    E-Print Network [OSTI]

    Engineering Enhanced Thermoelectric Properties in Zigzag Graphene Nanoribbons Hossein Karamitaheri1 graphene nanoribbons in the presence of extended line defects, substrate impurities and edge roughness of highly efficient nanostructured graphene nanoribbon based thermoelectric devices. PACS numbers: 72.80.Vp

  13. Synthesis and physical characterization of thermoelectric single crystals

    E-Print Network [OSTI]

    Porras Pérez Guerrero, Juan Pablo

    2012-01-01

    There is much current interest in thermoelectric devices for sustainable energy. This thesis describes a research project on the synthesis and physical characterization of thermoelectric single crystals. 1In?Se?-[delta] ...

  14. Materials Physics for Thermoelectric and Related Energetic Applications

    E-Print Network [OSTI]

    Tang, Shuang, Ph. D. Massachusetts Institute of Technology

    2015-01-01

    Thermoelectrics study the direct inter-conversion between heat flow and electrical power, which has a wide range of applications including power generation and refrigeration. The performance of thermoelectricity generation ...

  15. Three-dimensional multimodal imaging and analysis of biphasic microstructure in a Ti-Ni-Sn thermoelectric material

    E-Print Network [OSTI]

    Douglas, Jason E; Echlin, McLean P; Lenthe, William C; Seshadri, Ram; Pollock, Tresa M

    2015-01-01

    microstructure in a Ti–Ni–Sn thermoelectric material Jasonsolid-state option. Thermoelectric materials, which convertin biphasic hH- based thermoelectric materials. This work

  16. Overview of Thermoelectric Power Generation Technologies in Japan

    Broader source: Energy.gov [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

  17. Enhancing the Thermoelectric Power Factor with Highly Mismatched Isoelectronic Doping

    E-Print Network [OSTI]

    Grossman, Jeffrey C.

    We investigate the effect of O impurities on the thermoelectric properties of ZnSe from a combination

  18. Solar Thermoelectric Generators (STEG) Dr. HoSung Lee

    E-Print Network [OSTI]

    Lee, Ho Sung

    Solar Thermoelectric Generators (STEG) Dr. HoSung Lee Western Michigan University Mechanical;#12;· Kraemer et al. (2011) · 1 sun · t = 0.94, a = 0.95, e = 0.05 · q" = 1000 W/m^2, Cth = 299 · Thermoelectric;Baranowski, Snyder, Tober (2012) #12;Baranowski, Snyder, Tober (2012) Reduced current density Thermoelectric

  19. Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1

    E-Print Network [OSTI]

    Chen, Gang

    Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1 conductivity led to a large increase in the thermoelectric figure of merit in several superlattice systems. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices

  20. Thermoelectric performance of silicon nanowires Gang Zhang,1,a

    E-Print Network [OSTI]

    Li, Baowen

    Thermoelectric performance of silicon nanowires Gang Zhang,1,a Qingxin Zhang,1 Cong-Tinh Bui,2 Guo, the thermoelectric performance of silicon nanowires SiNWs is studied. Large cooling temperature is observed which.6 103 W/cm2 is achieved which is about 600 times larger than that of commercial thermoelectric modules

  1. Subsurface Ambient Thermoelectric Power for Moles and Penetrators1

    E-Print Network [OSTI]

    Lorenz, Ralph D.

    1 Subsurface Ambient Thermoelectric Power for Moles and Penetrators1 Ralph D. Lorenz, Lunar for electrical power generation for planetary exploration applications using thermoelectric conversion of the vehicle. Proof-of-concept experiments are described using off-the-shelf thermoelectric CPU cooling plates

  2. Optimizing Thermoelectric Power Factor by Means of a Potential Barrier

    E-Print Network [OSTI]

    1 Optimizing Thermoelectric Power Factor by Means of a Potential Barrier Neophytos Neophytou}@iue.tuwien.ac.at Abstract Large efforts in improving thermoelectric energy conversion are devoted to energy filtering design, ~40% improvement in the thermoelectric power factor can be achieved if the following conditions

  3. Photo-Thermoelectric Effect at a Graphene Interface Junction

    E-Print Network [OSTI]

    McEuen, Paul L.

    Photo-Thermoelectric Effect at a Graphene Interface Junction Xiaodong Xu, Nathaniel M. Gabor increase at the cryogenic temperature as compared to room temperature. Assuming the thermoelectric power predictions. KEYWORDS Graphene, photocurrent, photo-thermoelectric effect D evices that convert photons

  4. Thermoelectric Power Generation Allison Duh and Joel Dungan

    E-Print Network [OSTI]

    Lavaei, Javad

    Thermoelectric Power Generation Allison Duh and Joel Dungan May 15, 2013 #12;Introduction A thermoelectric generator (TEG) is a device that converts heat energy directly into electrical energy. Thermoelectric systems capitalize on semiconductor charge carriers excited by a temperature difference to convert

  5. Project: Driver and controller for a thermoelectric cooler

    E-Print Network [OSTI]

    Project: Driver and controller for a thermoelectric cooler Supervisor: Prof. Sam Ben-Yaakov Year solutions. Based on one of the three thermoelectric phenomena ­ the Peltier effect ­ bi-directional control is achieved. The TEC (which is a Thermoelectric Cooler) uses this effect. The direction of the current through

  6. Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons

    E-Print Network [OSTI]

    Li, Baowen

    Disorder enhances thermoelectric figure of merit in armchair graphane nanoribbons Xiaoxi Ni,1 2009; accepted 20 October 2009; published online 13 November 2009 We study the thermoelectric property-based materials a viable choice for thermoelectric applications. © 2009 American Institute of Physics. doi:10

  7. Thermoelectric Properties of Superlattice Materials with Variably Spaced Layers

    E-Print Network [OSTI]

    Walker, D. Greg

    Thermoelectric Properties of Superlattice Materials with Variably Spaced Layers T.D. Musho of electronic level alignment. We have investigated the thermoelectric proper- ties of VSSL structures using leads to enhancement of thermoelectric properties. This presumption is based on electrical studies

  8. Coupled QuantumCoupled Quantum--ScatteringScattering Modeling of the ThermoelectricModeling of the Thermoelectric

    E-Print Network [OSTI]

    Walker, D. Greg

    Coupled QuantumCoupled Quantum--ScatteringScattering Modeling of the ThermoelectricModeling of the Thermoelectric Properties of Si/Ge/SiProperties of Si/Ge/Si Quantum Well SuperlatticesQuantum Well Superlattices Phonons Si SiGe 2 S T ZT = · Quantum well superlattices proposed to improve thermoelectric figure

  9. Enhanced modified faraday cup for determination of power density distribution of electron beams

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Teruya, Alan T. (Livermore, CA)

    2001-01-01

    An improved tomographic technique for determining the power distribution of an electron or ion beam using electron beam profile data acquired by an enhanced modified Faraday cup to create an image of the current density in high and low power ion or electron beams. A refractory metal disk with a number of radially extending slits, one slit being about twice the width of the other slits, is placed above a Faraday cup. The electron or ion beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. The enlarged slit enables orientation of the beam profile with respect to the coordinates of the welding chamber. A second disk having slits therein is positioned below the first slit disk and inside of the Faraday cup and provides a shield to eliminate the majority of secondary electrons and ions from leaving the Faraday cup. Also, a ring is located below the second slit disk to help minimize the amount of secondary electrons and ions from being produced. In addition, a beam trap is located in the Faraday cup to provide even more containment of the electron or ion beam when full beam current is being examined through the center hole of the modified Faraday cup.

  10. MoS2 Nanoribbons Thermoelectric Generators

    E-Print Network [OSTI]

    Arab, Abbas

    2015-01-01

    In this work, we have designed and simulated new thermoelectric generator based on monolayer and few-layer MoS2 nanoribbons. The proposed thermoelectric generator is composed of thermocouples made of both n-type and p-type MoS2 nanoribbon legs. Density Functional Tight-Binding Non-Equilibrium Green's Function (DFTB-NEGF) method has been used to calculate the transmission spectrum of MoS2 armchair and zigzag nanoribbons. Phonon transmission spectrum are calculated based on parameterization of Stillinger-Weber potential. Thermoelectric figure of merit, ZT, is calculated using these electronic and phonon transmission spectrum. Monolayer and bilayer MoS2 armchair nanoribbons are found to have the highest ZT value for p-type and n-type legs, repectively. Moreover, we have compared the thermoelectric current of doped monolayer MoS2 armchair nanoribbons and SZi thin films. Results indicate that thermoelectric current of MoS2 monolayer nanoribbons is several orders of magnitude higher than that of Si thin films.

  11. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  12. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bel,; Lon E. (Altadena, CA); Crane, Douglas Todd (Pasadena, CA)

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  13. Alkaline earth filled nickel skutterudite antimonide thermoelectrics

    DOE Patents [OSTI]

    Singh, David Joseph

    2013-07-16

    A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

  14. NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Development for commercialization of automotive thermoelectric generators from high-ZT TE materials with using low-cost, widely available materials, system design and modeling to maximize temperature differential across TE modules and maximize power output

  15. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation

    E-Print Network [OSTI]

    Xu, Xianfan

    Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

  16. Diameter dependent thermoelectric properties of individual SnTe nanowires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, E. Z.; Li, Z.; Martinez, J. A.; Sinitsyn, N.; Htoon, H.; Li, Nan; Swartzentruber, B.; Hollingsworth, J. A.; Wang, Jian; Zhang, S. X.

    2015-01-15

    The lead-free compound tin telluride (SnTe) has recently been suggested to be a potentially promising thermoelectric material because of its similar electronic band structure as the well-known lead telluride. Here we report on the first thermoelectric study of individual single crystalline SnTe nanowires (NWs) with different diameters ranging from ~200 to ~1000 nm. Measurements of thermopower S, electrical conductivity ?, and thermal conductivity ? were carried out on the same nanowires over a temperature range of 25 - 300 K. While ? does not show a strong diameter dependence, the thermopower increases by a factor of 2 when the nanowiremore »diameter is decreased from 1000 nm to 200 nm. The thermal conductivities of the measured NWs are only about half of that of the bulk SnTe, which may arise from the enhanced phonon-grain boundary and phonon-defect scatterings. Temperature dependent figure-of-merit ZT was determined and the maximum value at room temperature is ~3 times higher than what was obtained in bulk samples of comparable carrier density.« less

  17. Distributions of sperm whales along the continental slope in the northwestern and central Gulf of Mexico as determined from an acoustic survey 

    E-Print Network [OSTI]

    Sparks, Troy Daniel

    1997-01-01

    up to 80% of their time on deep dives, and vocalize in a predictable manner while diving, their distributions can be estimated qualitatively using acoustic sampling techniques. Acoustic sperm whale distributions were determined via a passive towed...

  18. The uncertainties due to quark energy loss on determining nuclear sea quark distribution from nuclear Drell-Yan data

    E-Print Network [OSTI]

    C. G. Duan; N. Liu; G. L. Li

    2008-11-05

    By means of two different parametrizations of quark energy loss and the nuclear parton distributions determined only with lepton-nuclear deep inelastic scattering experimental data, a leading order phenomenological analysis is performed on the nuclear Drell-Yan differential cross section ratios as a function of the quark momentum fraction in the beam proton and target nuclei for E772 experimental data. It is shown that there is the quark energy loss effect in nuclear Drell-Yan process apart from the nuclear effects on the parton distribution as in deep inelastic scattering. The uncertainties due to quark energy loss effect is quantified on determining nuclear sea quark distribution by using nuclear Drell-Yan data. It is found that the quark energy loss effect on nuclear Drell-Yan cross section ratios make greater with the increase of quark momentum fraction in the target nuclei. The uncertainties from quark energy loss become bigger as the nucleus A come to be heavier. The Drell-Yan data on proton incident middle and heavy nuclei versus deuterium would result in an overestimate for nuclear modifications on sea quark distribution functions with neglecting the quark energy loss. Our results are hoped to provide good directional information on the magnitude and form of nuclear modifications on sea quark distribution functions by means of the nuclear Drell-Yan experimental data.

  19. Application of the Grillage Methodology to Determine Load Distribution Factors for Spread Slab Beam Bridges 

    E-Print Network [OSTI]

    Petersen-Gauthier, Joel

    2013-08-09

    Transverse load distribution behavior amongst bridge girders is influenced by many parameters including girder material properties, spacing, skew, deck design, and stiffening element interactions. In order to simply and ...

  20. Titanium nitride electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Novak, Robert F. (Farmington Hills, MI); Schmatz, Duane J. (Dearborn Heights, MI); Hunt, Thomas K. (Ann Arbor, MI)

    1987-12-22

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film of titanium nitride as an electrode deposited onto solid electrolyte. The invention is also directed to the method of making same.

  1. Molybdenum oxide electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Schmatz, Duane J. (Dearborn Heights, MI)

    1989-01-01

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film comprising molybdenum oxide as an electrode deposited by physical deposition techniques onto solid electrolyte. The invention is also directed to the method of making same.

  2. Thermoelectric devices and applications for the same

    DOE Patents [OSTI]

    DeSteese, John G [Kennewick, WA; Olsen, Larry C [Richland, WA; Martin, Peter M [Kennewick, WA

    2010-12-14

    High performance thin film thermoelectric couples and methods of making the same are disclosed. Such couples allow fabrication of at least microwatt to watt-level power supply devices operating at voltages greater than one volt even when activated by only small temperature differences.

  3. The Theory of Thermal, Thermoelectric and Electrical Transport Properties of Graphene

    E-Print Network [OSTI]

    Ugarte, Vincent Ike

    2010-01-01

    In Boltzmann theory of transport the electrical conductivityThe Theory of Thermal, Thermoelectric and ElectricalThe Theory of Thermal, Thermoelectric and Electrical

  4. High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation 2005 Diesel Engine...

  5. The Effects of an Exhaust Thermoelectric Generator of a GM Sierra...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck 2004 Diesel Engine Emissions...

  6. The Effects of Irradiance in Determining the Vertical Distribution of Elk Kelp Pelagophycus porra

    E-Print Network [OSTI]

    Fejtek, Stacie Michelle

    2008-01-01

    microscopic stages to higher irradiances appears to be theH. (1996). “Effect of high irradiance on recruitment of theTHESIS The Effects of Irradiance in Determining the Vertical

  7. New nano structure approaches for bulk thermoelectric materials

    E-Print Network [OSTI]

    Kim, Jeonghoon

    2010-01-01

    Thermoelectrics: Direct Solar Thermal Energy Conversion”,are working on solar thermal energy to generate electriccooling for CPUs, solar thermal energy harvesting, solid-

  8. Review of Interests and Activities in Thermoelectric Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Laboratory Army interests in thermoelectrics include integrated TE-hand-held burners for battery-replacement, waste-heat recovery on vehicles, heat-powered mobile units,...

  9. Modeling and Optimization of Hybrid Solar Thermoelectric Systems...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Modeling and Optimization of Hybrid Solar Thermoelectric Systems with Thermosyphons Citation Details In-Document Search Title: Modeling and Optimization of Hybrid...

  10. Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration

    E-Print Network [OSTI]

    Jackson, Philip Robert

    2012-01-01

    and thermoelectric power generation. Energy Conversion &assembled for optimal power generation and system efficiencySeebeck Voltage. The power generation efficiency will reach

  11. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    deer09yang2.pdf More Documents & Publications Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High...

  12. Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Couple Demonstration of (In, Ce)-based Skutterudite Materials for Automotive Energy Recovery Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite Materials for...

  13. Develop Thermoelectric Technology for Automotive Waste Heat Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery in the Automotive Industry On Thermoelectric Properties of p-Type Skutterudites Development of...

  14. Automotive Thermoelectric Moduleswith Scalable Thermo- andElectro...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Automotive Thermoelectric Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces Interface materials based on...

  15. Development of Thermoelectric Technology for Automotive Waste Heat Recovery

    Broader source: Energy.gov [DOE]

    Overview and status of project to develop thermoelectric generator for automotive waste heat recovery and achieve at least 10% fuel economy improvement.

  16. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    unit in an over-the-road truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle...

  17. Sandia Energy - Sandia Researchers Are First to Measure Thermoelectric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Are First to Measure Thermoelectric Behavior of a Nanoporous Metal-Organic Framework Home Energy Transportation Energy CRF Office of Science Facilities Capabilities News Energy...

  18. Characterization of thermoelectric elements and devices by impedance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of thermoelectric elements and devices by impedance spectroscopy Home Author: A. D. Downey, T. P. Hogan, B. Cook Year: 2007 Abstract: This article describes a new...

  19. Nano-structures Thermoelectric Materals - Part 1 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Nano-structures Thermoelectric Materals - Part 1 2002 DEER Conference Presentation: RTI International 2002deervenkatasubramanian1.pdf More Documents & Publications...

  20. Thermoelectrics: From Space Power Systems to Terrestrial Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Applications Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy...

  1. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  2. DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research and Sharing Knowledge DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative Research and Sharing Knowledge 2012 DOE...

  3. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Thermal Comfort Enablers for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications 2012 DOE Hydrogen and Fuel...

  4. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review and Peer Evaluation ace049schock2011o.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  5. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  6. DOE/NSF Thermoelectric Partnership Project SEEBECK Saving Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    research and sharing Knowledge DOENSF Thermoelectric Partnership Project SEEBECK Saving Energy Effectively By Engaging in Collaborative research and sharing Knowledge 2011 DOE...

  7. High Reliability, High TemperatureThermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Technologies Key technologies and system approaches to excellent record of thermoelectric power sources in deep space missions and development of higher performance TE...

  8. Thermoelectric DC conductivities and Stokes flows on black hole horizons

    E-Print Network [OSTI]

    Elliot Banks; Aristomenis Donos; Jerome P. Gauntlett

    2015-07-15

    We consider a general class of electrically charged black holes of Einstein-Maxwell-scalar theory that are holographically dual to conformal field theories at finite charge density which break translation invariance explicitly. We examine the linearised perturbations about the solutions that are associated with the thermoelectric DC conductivity. We show that there is a decoupled sector at the black hole horizon which must solve generalised Stokes equations for a charged fluid. By solving these equations we can obtain the DC conductivity of the dual field theory. For one-dimensional lattices we solve the fluid equations to obtain closed form expressions for the DC conductivity in terms of the solution at the black hole horizon. We also determine the leading order DC conductivity for lattices that can be expanded as a perturbative series about translationally invariant solutions.

  9. Thermoelectric effect in very thin film Pt/Au thermocouples

    SciTech Connect (OSTI)

    Salvadori, M.C.; Vaz, A.R.; Teixeira, F.S.; Cattani, M.; Brown,I.G.

    2006-01-10

    The thickness dependence of the thermoelectric power of Pt films of variable thickness on a reference Au film has been determined for the case when the Pt film thickness, t, is not large compared to the charge carrier mean free path, {ell}, that is, t/{ell}. Pt film thicknesses down to 2.2 nm were investigated. We find that {Delta}S{sub F} = S{sub B}-S{sub F} (where S{sub B} and S{sub F} are the thermopowers of the Pt bulk and film, respectively) does not vary linearly as 1/t as is the case for thin film thermocouples when the film thickness is large compared to the charge carrier mean free path.

  10. Thermoelectric DC conductivities and Stokes flows on black hole horizons

    E-Print Network [OSTI]

    Banks, Elliot; Gauntlett, Jerome P

    2015-01-01

    We consider a general class of electrically charged black holes of Einstein-Maxwell-scalar theory that are holographically dual to conformal field theories at finite charge density which break translation invariance explicitly. We examine the linearised perturbations about the solutions that are associated with the thermoelectric DC conductivity. We show that there is a decoupled sector at the black hole horizon which must solve generalised Stokes equations for a charged fluid. By solving these equations we can obtain the DC conductivity of the dual field theory. For one-dimensional lattices we solve the fluid equations to obtain closed form expressions for the DC conductivity in terms of the solution at the black hole horizon. We also determine the leading order DC conductivity for lattices that can be expanded as a perturbative series about translationally invariant solutions.

  11. Thermoelectric DC conductivities and Stokes flows on black hole horizons

    E-Print Network [OSTI]

    Elliot Banks; Aristomenis Donos; Jerome P. Gauntlett

    2015-10-11

    We consider a general class of electrically charged black holes of Einstein-Maxwell-scalar theory that are holographically dual to conformal field theories at finite charge density which break translation invariance explicitly. We examine the linearised perturbations about the solutions that are associated with the thermoelectric DC conductivity. We show that there is a decoupled sector at the black hole horizon which must solve generalised Stokes equations for a charged fluid. By solving these equations we can obtain the DC conductivity of the dual field theory. For Q-lattices and one-dimensional lattices we solve the fluid equations to obtain closed form expressions for the DC conductivity in terms of the solution at the black hole horizon. We also determine the leading order DC conductivity for lattices that can be expanded as a perturbative series about translationally invariant solutions.

  12. System for tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Elmer, John W. (Pleasanton, CA); Teruya, Alan T. (Livermore, CA); O'Brien, Dennis W. (Livermore, CA)

    1995-01-01

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0.degree. to 360.degree. and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment.

  13. System for tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Elmer, J.W.; Teruya, A.T.; O`Brien, D.W.

    1995-11-21

    A tomographic technique for measuring the current density distribution in electron beams using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. The modified Faraday cup includes a narrow slit and is rotated by a stepper motor and can be moved in the x, y and z directions. The beam is swept across the slit perpendicular thereto and controlled by deflection coils, and the slit rotated such that waveforms are taken every few degrees form 0{degree} to 360{degree} and the waveforms are recorded by a digitizing storage oscilloscope. Two-dimensional and three-dimensional images of the current density distribution in the beam can be reconstructed by computer tomography from this information, providing quantitative information about the beam focus and alignment. 12 figs.

  14. Calculated thermoelectric properties of InxGa1-xN, InxAl1-xN, and AlxGa1-xN

    E-Print Network [OSTI]

    Sztein, Alexander; Haberstroh, John; Bowers, John E; DenBaars, Steven P; Nakamura, Shuji

    2013-01-01

    183707 (2013) Calculated thermoelectric properties of In xonline 10 May 2013) The thermoelectric properties of III-In order to predict thermoelectric performances and identify

  15. H + D2 reaction dynamics. Determination of the product state distributions at a collision energy of 1.3 eV

    E-Print Network [OSTI]

    H + D2 reaction dynamics. Determination of the product state distributions at a collision energy-photon resonance, three-photon ionization has been used to determine the HD product internal state distribution by a 266 nm laser pulse to dissociate the former, giving a center- of-mass collision energy of about 1

  16. Spectroscopic study of the Moses Lake dune field, Washington: Determination of compositional distributions and source lithologies

    E-Print Network [OSTI]

    Bandfield, Joshua L.

    Spectroscopic study of the Moses Lake dune field, Washington: Determination of compositional Coulee, dune samples, and clast deposits. Factor analysis, target transformation, and end-member recovery techniques were applied to the set of dune samples as well as a set of grain size fractions. The dune sample

  17. Funnel-Like Organization in Sequence Space Determines the Distributions of Protein Stability and Folding Rate

    E-Print Network [OSTI]

    Levitt, Michael

    determinants of protein folding, we map out the complete organization of thermody- namic and kinetic properties simplified models of protein folding. We obtain a stability map and a folding rate map in sequence space. Proteins 2004;55:107­114. © 2004 Wiley-Liss, Inc. Key words: protein folding; protein sequence struc- ture

  18. Synthesis and evaluation of thermoelectric multilayer films

    SciTech Connect (OSTI)

    Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C.

    1996-03-21

    The deposition of compositionally modulated (Bi{sub 1-x}Sb{sub x}){sub 2}(Te{sub 1-y}Se{sub y}){sub 3} thermoelectric multilayer films by magnetron sputtering has been demonstrated. Structures with a period of 140{Angstrom} are shown to be stable to interdiffusion at the high deposition temperatures necessary for growth of single layer crystalline films with ZT {gt} 0.5. These multilayers are of the correct dimension to exhibit the electronic properties of quantum well structures. Furthermore it is shown that the Seebeck coefficient of the films is not degraded by the presence of this multilayer structure. It may be possible to synthesize a multilayer thermoelectric material with enhanced ZT by maximizing the barrier height through optimization of the composition of the barrier.

  19. The Effect of Processing Parameters on the Thermoelectric Properties of Magnesium Silicide

    E-Print Network [OSTI]

    Fong, Anthony

    2012-01-01

    Motivation Thermoelectric materials are currently a major interest for their potential applications towards renewable energy

  20. Intersociety Energy Conversion Engineering Conference Proc., Vancouver, BC, Canada, 992569 (1999) Miniaturized Thermoelectric Power Sources

    E-Print Network [OSTI]

    1999-01-01

    is the discovery and infusion of novel thermoelectric materials more efficient above room temperature than

  1. Multi-physics modeling of thermoelectric generators for waste heat recovery applications

    Broader source: Energy.gov [DOE]

    Model developed provides effective guidelines to designing thermoelectric generation systems for automotive waste heat recovery applications

  2. Optimal Design of Thermoelectric Devices with Dimensional Analysis Mechanical and Aeronautical Engineering, Western Michigan University,

    E-Print Network [OSTI]

    Lee, Ho Sung

    1 Optimal Design of Thermoelectric Devices with Dimensional Analysis HoSung Lee Mechanical of thermoelectric devices (thermoelectric generator and cooler) in connection with heat sinks was developed using of the thermoelectric devices. Particularly, use of the convection conductance of a fluid in the denominators

  3. IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 55, NO. 1, JANUARY 2008 423 Quantum Modeling of Thermoelectric

    E-Print Network [OSTI]

    Walker, D. Greg

    of Thermoelectric Properties of Si/Ge/Si Superlattices Anuradha Bulusu and D. Greg Walker Abstract, thermoelectric. I. INTRODUCTION THE EFFICIENCY of thermoelectric materials is usually characterized by the dimensionless thermoelectric figure of merit ZT = (S2 T)/, where S is the Seebeck coefficient

  4. General Relativistic Thermoelectric Effects in Superconductors

    E-Print Network [OSTI]

    B. J. Ahmedov

    2007-01-13

    We discuss the general-relativistic contributions to occur in the electromagnetic properties of a superconductor with a heat flow. The appearance of general-relativistic contribution to the magnetic flux through a superconducting thermoelectric bimetallic circuit is shown. A response of the Josephson junctions to a heat flow is investigated in the general-relativistic framework. Some gravitothermoelectric effects which are observable in the superconducting state in the Earth's gravitational field are considered.

  5. Design and development of thermoelectric generator

    SciTech Connect (OSTI)

    Prem Kumar, D. S. Mahajan, Ishan Vardhan Anbalagan, R. Mallik, Ramesh Chandra

    2014-04-24

    In this paper we discuss the fabrication, working and characteristics of a thermoelectric generator made up of p and n type semiconductor materials. The device consists of Fe{sub 0.2}Co{sub 3.8}Sb{sub 11.5}Te{sub 0.5} (zT = 1.04 at 818 K) as the n-type and Zn4Sb3 (zT=0.8 at 550 K) as the p-type material synthesized by vacuum hot press method. Carbon paste has been used to join the semiconductor legs to metal (Molybdenum) electrodes to reduce the contact resistance. The multi-couple (4 legs) generator results a maximum output power of 1.083 mW at a temperature difference of 240 K between the hot and cold sides. In this investigation, an I-V characteristic, maximum output power of the thermoelectric module is presented. The efficiency of thermoelectric module is obtained as ? = 0.273 %.

  6. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric function of noble metal nanoparticles

    SciTech Connect (OSTI)

    Mendoza Herrera, Luis J.; Arboleda, David Muñetón; Schinca, Daniel C.; Scaffardi, Lucía B.

    2014-12-21

    This paper develops a novel method for simultaneously determining the plasma frequency ?{sub P}?? and the damping constant ?{sub free} in the bulk damped oscillator Drude model, based on experimentally measured real and imaginary parts of the metal refractive index in the IR wavelength range, lifting the usual approximation that restricts frequency values to the UV-deep UV region. Our method was applied to gold, silver, and copper, improving the relative uncertainties in the final values for ?{sub p} (0.5%–1.6%) and for ?{sub free} (3%–8%), which are smaller than those reported in the literature. These small uncertainties in ?{sub p} and ?{sub free} determination yield a much better fit of the experimental complex dielectric function. For the case of nanoparticles (Nps), a series expansion of the Drude expression (which includes ?{sub p} and ?{sub free} determined using our method) enables size-dependent dielectric function to be written as the sum of three terms: the experimental bulk dielectric function plus two size corrective terms, one for free electron, and the other for bound-electron contributions. Finally, size distribution of nanometric and subnanometric gold Nps in colloidal suspension was determined through fitting its experimental optical extinction spectrum using Mie theory based on the previously determined dielectric function. Results are compared with size histogram obtained from Transmission Electron Microscopy (TEM)

  7. Policy Building Blocks: Helping Policymakers Determine Policy Staging for the Development of Distributed PV Markets: Preprint

    SciTech Connect (OSTI)

    Doris, E.

    2012-04-01

    There is a growing body of qualitative and a limited body of quantitative literature supporting the common assertion that policy drives development of clean energy resources. Recent work in this area indicates that the impact of policy depends on policy type, length of time in place, and economic and social contexts of implementation. This work aims to inform policymakers about the impact of different policy types and to assist in the staging of those policies to maximize individual policy effectiveness and development of the market. To do so, this paper provides a framework for policy development to support the market for distributed photovoltaic systems. Next steps include mathematical validation of the framework and development of specific policy pathways given state economic and resource contexts.

  8. A feasibility study for experimentally determining dynamic force distribution in a lap joint.

    SciTech Connect (OSTI)

    Mayes, Randall Lee

    2013-11-01

    Developing constitutive models of the physics in mechanical joints is currently stymied by inability to measure forces and displacements within the joint. The current state of the art estimates whole joint stiffness and energy loss per cycle from external measured force input and one or two acceleration responses. To validate constitutive models beyond this state requires a measurement of the distributed forces and displacements at the joint interface. Unfortunately, introducing measurement devices at the interface completely disrupts the desired physics. A feasibility study is presented for a non-intrusive method of solving for the interface dynamic forces from an inverse problem using full field measured responses. The responses come from the viewable surface of a beam. The noise levels associated with digital image correlation and continuous scanning laser Doppler velocimetry are evaluated from typical beam experiments. Two inverse problems are simulated. One utilizes the extended Sum of Weighted Accelerations Technique (SWAT). The second is a new approach dubbed the method of truncated orthogonal forces. These methods are much more robust if the contact patch geometry is well identified. Various approaches to identifying the contact patch are investigated, including ion marker tracking, Prussian blue and ultrasonic measurements. A typical experiment is conceived for a beam which has a lap joint at one end with a single bolt connecting it to another identical beam. In a virtual test using the beam finite element analysis, it appears that the SWAT inverse method requires evaluation of too many coefficients to adequately identify the force distribution to be viable. However, the method of truncated orthogonal forces appears viable with current digital image correlation (and probably other) imaging techniques.

  9. New Composite Thermoelectric Materials for Macro-size Applications

    ScienceCinema (OSTI)

    Dresselhaus, Mildred [MIT, Cambridge, Massachusetts, United States

    2010-01-08

    A review will be given of several important recent advances in both thermoelectrics research and industrial thermoelectric applications, which have attracted much attention, increasing incentives for developing advanced materials appropriate for large-scale applications of thermoelectric devices. One promising strategy is the development of materials with a dense packing of random nanostructures as a route for the sacle-up of thermoelectrics applications. The concepts involved in designing composite materials containing nanostructures for thermoelectric applications will be discussed in general terms. Specific application is made to the Bi{sub 2}Te{sub 3} nanocomposite system for use in power generation. Also emphasized are the scientific advantages of the nanocomposite approach for the simultaneous increase in the power factor and decrease of the thermal conductivity, along with the practical advantages of having bulk samples for property measurements and device applications. A straightforward path is identified for the scale-up of thermoelectric materials synthesis containing nanostructured constituents for use in thermoelectric applications. We end with some vision of where the field of thermoelectrics is now heading.

  10. Transport in charged colloids driven by thermoelectricity Alois Wrger

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Transport in charged colloids driven by thermoelectricity Alois Würger CPMOH, Université Bordeaux 1 to a strong increase with temperature. The di¤erence of the heat of transport of co-ions and counterions gives rise to a thermoelectric ...eld that drives the colloid to the cold or to the warm, depending

  11. Method and apparatus for determining the content and distribution of a thermal neutron absorbing material in an object

    DOE Patents [OSTI]

    Crane, T.W.

    1983-12-21

    The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.

  12. Method and apparatus for determining the content and distribution of a thermal neutron absorbing material in an object

    DOE Patents [OSTI]

    Crane, Thomas W. (Los Alamos, NM)

    1986-01-01

    The disclosure is directed to an apparatus and method for determining the content and distribution of a thermal neutron absorbing material within an object. Neutrons having an energy higher than thermal neutrons are generated and thermalized. The thermal neutrons are detected and counted. The object is placed between the neutron generator and the neutron detector. The reduction in the neutron flux corresponds to the amount of thermal neutron absorbing material in the object. The object is advanced past the neutron generator and neutron detector to obtain neutron flux data for each segment of the object. The object may comprise a space reactor heat pipe and the thermal neutron absorbing material may comprise lithium.

  13. The development of MRI for the determination of porosity distribution in reservoir core samples 

    E-Print Network [OSTI]

    Shivers, Jon Blake

    1991-01-01

    , was calculated in each of these directions to determine the distance between correlated and uncorrelated porosity values. The results show that the German Sandstone is correlated for about 5 mm in all three directions considered. In the Austin Chalk, porosity..., Y-I WRITE(7, *) A(H), C(H), G(H) 60 CO~ STOP 72 APPENDIX D CORE SAMPLE GEOLOGY The Austin Chalk is best characterized as a very fine- grained carbonate mud containing coarser skeletal tests and fragments. The grain size of the chalk...

  14. Trigger probe for determining the orientation of the power distribution of an electron beam

    DOE Patents [OSTI]

    Elmer, John W. (Danville, CA); Palmer, Todd A. (Livermore, CA); Teruya, Alan T. (Livermore, CA)

    2007-07-17

    The present invention relates to a probe for determining the orientation of electron beams being profiled. To accurately time the location of an electron beam, the probe is designed to accept electrons from only a narrowly defined area. The signal produced from the probe is then used as a timing or triggering fiducial for an operably coupled data acquisition system. Such an arrangement eliminates changes in slit geometry, an additional signal feedthrough in the wall of a welding chamber and a second timing or triggering channel on a data acquisition system. As a result, the present invention improves the accuracy of the resulting data by minimizing the adverse effects of current slit triggering methods so as to accurately reconstruct electron or ion beams.

  15. Determining Space from Place for Natural History Collections: In a Distributed Digital Library Environment Search | Back Issues | Author Index | Title Index | Contents

    E-Print Network [OSTI]

    Hardy, Christopher R.

    Determining Space from Place for Natural History Collections: In a Distributed Digital Library Digital Library Environment Reed Beaman Peabody Museum, Yale University John management systems that represent a solid foundation for comprehensive digital libraries in the museum

  16. Single-step preparation and consolidation of reduced early-transition-metal oxide/metal n-type thermoelectric composites

    E-Print Network [OSTI]

    Gaultois, Michael W; Douglas, Jason E; Sparks, Taylor D; Seshadri, Ram

    2015-01-01

    oxide/metal n-type thermoelectric composites Michael W.here as interesting thermoelectric materials. Numerous2.5 W m ?1 K ?1 . Thermoelectric properties of these n-type

  17. Multilayer thermoelectric films: A strategy for the enhancement of ZT

    SciTech Connect (OSTI)

    Wadgner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C.

    1995-03-01

    The relative efficiency of a thermoelectric material is measured in terms of a dimensionless figure of merit, ZT. Although all known thermoelectric materials are believed to have ZT {le} 1, recent theoretical results predict that thermoelectric devices fabricated as two-dimensional quantum wells (2D QWs) could have ZT {ge} 3. Multilayers with the dimensions of 2D QWs have been synthesized by alternately sputtering Bi{sub 0.9}Sb{sub 0.1} and PbTe{sub 0.8}Se{sub 0.2} onto a moving substrate from a pair of magnetron sources. These materials have been synthesized to test the thermoelectric quantum-well concept and gain insight into relevant transport mechanisms. This work focuses primarily on the scientific issues involved in producing the materials necessary to examine the possibility of enhancing ZT using quantum confinement. The techniques needed to measure the relevant electrical parameters of thermoelectric thin films are developed in this paper. Ultimately, if a quantum well enhancement of thermoelectrics is experimentally observed, devices based on this technology could be used to greatly expand the role of thermoelectrics in power generation and refrigeration.

  18. Energy harvesting using a thermoelectric material

    DOE Patents [OSTI]

    Nersessian, Nersesse (Van Nuys, CA); Carman, Gregory P. (Los Angeles, CA); Radousky, Harry B. (San Leandro, CA)

    2008-07-08

    A novel energy harvesting system and method utilizing a thermoelectric having a material exhibiting a large thermally induced strain (TIS) due to a phase transformation and a material exhibiting a stress induced electric field is introduced. A material that exhibits such a phase transformation exhibits a large increase in the coefficient of thermal expansion over an incremental temperature range (typically several degrees Kelvin). When such a material is arranged in a geometric configuration, such as, for a example, a laminate with a material that exhibits a stress induced electric field (e.g. a piezoelectric material) the thermally induced strain is converted to an electric field.

  19. Solid state transport-based thermoelectric converter

    DOE Patents [OSTI]

    Hu, Zhiyu

    2010-04-13

    A solid state thermoelectric converter includes a thermally insulating separator layer, a semiconducting collector and an electron emitter. The electron emitter comprises a metal nanoparticle layer or plurality of metal nanocatalyst particles disposed on one side of said separator layer. A first electrically conductive lead is electrically coupled to the electron emitter. The collector layer is disposed on the other side of the separator layer, wherein the thickness of the separator layer is less than 1 .mu.m. A second conductive lead is electrically coupled to the collector layer.

  20. Experimental Study of Thermodiffusion and Thermoelectricity in Charged Colloids

    E-Print Network [OSTI]

    B. T. Huang; M. Roger; M. Bonetti; T. J. Salez; C. Wiertel-Gasquet; E. Dubois; R. Cabreira Gomes; G. Demouchy; G. Mériguet; V. Peyre; M. Kouyaté; C. L. Filomeno; J. Depeyrot; F. A. Tourinho; R. Perzynski; S. Nakamae

    2015-03-30

    The Seebeck and Soret coefficients of ionically stabilized suspension of maghemite nanoparticles in dimethyl sulfoxide are experimentally studied as a function of nanoparticle volume fraction. In the presence of a temperature gradient, the charged colloidal nanoparticles experience both thermal drift due to their interactions with the solvent molecules and electric forces proportional to the internal thermoelectric field. The resulting thermodiffusion of nanoparticles is observed through Forced Rayleigh scattering, while the thermoelectric field is accessed through voltage measurements in a thermocell. Both techniques provide independent estimates of nanoparticle's entropy of transfer as high as 75 meV/K. Such a property may be used to improve the thermoelectric coefficients in liquid thermocells.

  1. Method of controlling temperature of a thermoelectric generator in an exhaust system

    DOE Patents [OSTI]

    Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

    2013-05-21

    A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

  2. Multilayer thin film thermoelectrics produced by sputtering

    SciTech Connect (OSTI)

    Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C.

    1995-06-19

    In this work we explore the possibility of achieving bulk electrical properties in single layer sputter deposited films grown epitaxially on (111) oriented BaF{sub 2} substrates. There are a number of sputter deposition parameters that can be varied in order to optimize the film quality. It is important to understand the effect of varying the deposition temperature, Ar sputtering gas pressure, and the substrate bias. We will consider only Bi and Bi{sub 0.86}Sb{sub 0.14} films in this paper. These materials were chosen since they have the same simple structure, two different band gaps and do not change significantly either in physical or electrical properties with small amounts of cross contamination. We will also present our work on multilayer thermoelectrics made of Bi and Bi{sub 0.86}Sb{sub 0.14} layers. There has been considerable interest in this multilayer structure in the literature. Theoretical calculations of the band structure and interface states of these multilayer structures have been made by Mustafaev and Agassi et al. respectively [6,7]. Experimentally Yoshida et al. have examined similar multilayer structures grown by MBE as well as Bi/Sb multilayer samples in which report an anomalous thermoelectric power [8].

  3. Microscreen radiation shield for thermoelectric generator

    DOE Patents [OSTI]

    Hunt, Thomas K. (Ann Arbor, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

    1990-01-01

    The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

  4. High-Temperature High-Efficiency Solar Thermoelectric Generators

    SciTech Connect (OSTI)

    Baranowski, LL; Warren, EL; Toberer, ES

    2014-03-01

    Inspired by recent high-efficiency thermoelectric modules, we consider thermoelectrics for terrestrial applications in concentrated solar thermoelectric generators (STEGs). The STEG is modeled as two subsystems: a TEG, and a solar absorber that efficiently captures the concentrated sunlight and limits radiative losses from the system. The TEG subsystem is modeled using thermoelectric compatibility theory; this model does not constrain the material properties to be constant with temperature. Considering a three-stage TEG based on current record modules, this model suggests that 18% efficiency could be experimentally expected with a temperature gradient of 1000A degrees C to 100A degrees C. Achieving 15% overall STEG efficiency thus requires an absorber efficiency above 85%, and we consider two methods to achieve this: solar-selective absorbers and thermally insulating cavities. When the TEG and absorber subsystem models are combined, we expect that the STEG modeled here could achieve 15% efficiency with optical concentration between 250 and 300 suns.

  5. CEC-500-2010-FS-018 Automotive Thermoelectric

    E-Print Network [OSTI]

    demand for petroleum and increased reliance on foreign oil. In addition, the typical vapor compression thermoelectric cooling would significantly reduce the demand for petroleum and provide a clean alternative

  6. Electronic, phononic, and thermoelectric properties of graphyne sheets

    SciTech Connect (OSTI)

    Sevinçli, Hâldun; Sevik, Cem

    2014-12-01

    Electron, phonon, and thermoelectric transport properties of ?-, ?-, ?-, and 6,6,12-graphyne sheets are compared and contrasted with those of graphene. ?-, ?-, and 6,6,12-graphynes, with direction dependent Dirac dispersions, have higher electronic transmittance than graphene. ?-graphyne also attains better electrical conduction than graphene except at its band gap. Vibrationally, graphene conducts heat much more efficiently than graphynes, a behavior beyond an atomic density differences explanation. Seebeck coefficients of the considered Dirac materials are similar but thermoelectric power factors decrease with increasing effective speeds of light. ?-graphyne yields the highest thermoelectric efficiency with a thermoelectric figure of merit as high as ZT?=?0.45, almost an order of magnitude higher than that of graphene.

  7. Controlling microstructure of nanocrystalline thermoelectrics through powder processing

    E-Print Network [OSTI]

    Humphry-Baker, Samuel A

    2014-01-01

    Bismuth Telluride and its solid solutions are currently front running thermoelectric materials because of their high figure of merit. When processed via mechanical alloying to obtain nanocrystalline structures, their ...

  8. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1993-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  9. A miniaturized mW thermoelectric generator for nw objectives...

    Office of Scientific and Technical Information (OSTI)

    thermoelectric power source that can provide in excess of 450 microW of power in a system size of 4.3cc, for a power density of 107 microWcc, which is denser than any system...

  10. Profiling the Thermoelectric Power of Semiconductor Junctions with

    E-Print Network [OSTI]

    components or hazardous working fluids. Developing new thermoelectric mate- rials with high figures of merit S is governed by local carrier statistics, SThEM allows us to profile precise elec- tronic junction locations

  11. Recent Progress in the Development of High Efficiency Thermoelectrics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up of SiSi0.8GE0.2 and B4CB9C Superlattices for Harvesting of Waste Heat in Diesel Engines...

  12. Oxide based thermoelectric materials for large scale power generation

    E-Print Network [OSTI]

    Song, Yang, M. Eng. Massachusetts Institute of Technology

    2008-01-01

    The thermoelectric (TE) devices are based on the Seebeck and Peltier effects, which describe the conversion between temperature gradient and electricity. The effectiveness of the material performance can be described by ...

  13. Thermo-electrically pumped semiconductor light emitting diodes

    E-Print Network [OSTI]

    Santhanam, Parthiban

    2014-01-01

    Thermo-electric heat exchange in semiconductor light emitting diodes (LEDs) allows these devices to emit optical power in excess of the electrical power used to drive them, with the remaining power drawn from ambient heat. ...

  14. Automotive Thermoelectric Moduleswith Scalable Thermo- and Electro-Mechanical Interfaces

    Broader source: Energy.gov [DOE]

    Interface materials based on carbon nanotubes and metallic alloys, scalable p- and n-type thermoelectrics, materials compatibility for improved reliability, and performance targets for automotive applications are discussed

  15. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, M.M.

    1995-04-18

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

  16. Fiber optic signal amplifier using thermoelectric power generation

    DOE Patents [OSTI]

    Hart, Mark M. (Aiken, SC)

    1995-01-01

    A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

  17. Development of a 100-Watt High Temperature Thermoelectric Generator

    Broader source: Energy.gov [DOE]

    Test results for low and high temperature thermoelectric generators (TEG) those for a 530-watt BiTe TEG; design and construction of a 100-watt high temperature TEG currently in fabrication.

  18. Diameter dependence of thermoelectric power of semiconducting carbon nanotubes

    E-Print Network [OSTI]

    Hung, Nguyen T.

    We calculate the thermoelectric power (or thermopower) of many semiconducting single wall carbon nanotubes (s-SWNTs) within a diameter range 0.5–1.5 nm by using the Boltzmann transport formalism combined with an extended ...

  19. Modeling of thin-film solar thermoelectric generators

    E-Print Network [OSTI]

    Weinstein, Lee Adragon

    Recent advances in solar thermoelectric generator (STEG) performance have raised their prospect as a potential technology to convert solar energy into electricity. This paper presents an analysis of thin-film STEGs. ...

  20. Enhanced thermoelectric properties in hybrid graphene-boron nitride nanoribbons

    E-Print Network [OSTI]

    Kaike Yang; Yuanping Chen; Roberto D'Agosta; Yuee Xie; Jianxin Zhong; Angel Rubio

    2012-04-06

    The thermoelectric properties of hybrid graphene-boron nitride nanoribbons (BCNNRs) are investigated using the non-equilibrium Green's function (NEGF) approach. We find that the thermoelectric figure of merit (ZT) can be remarkably enhanced by periodically embedding hexagonal BN (h-BN) into graphene nanoribbons (GNRs). Compared to pristine GNRs, the ZT for armchair-edged BCNNRs with width index 3p+2 is enhanced up to 10~20 times while the ZT of nanoribbons with other widths is enhanced just by 1.5~3 times. As for zigzag-edge nanoribbons, the ZT is enhanced up to 2~3 times. This improvement comes from the combined increase in the Seebeck coefficient and the reduction in the thermal conductivity outweighing the decrease in the electrical conductance. In addition, the effect of component ratio of h-BN on the thermoelectric transport properties is discussed. These results qualify BCNNRs as a promising candidate for building outstanding thermoelectric devices.

  1. Thermoelectric Conversion of Wate Heat to Electricity in an IC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Presentation given at the 16th...

  2. Thermoelectric Conversion of Waste Heat to Electricity in an...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    T estimated to be 500 oC deer09schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

  3. High-density thermoelectric power generation and nanoscale thermal metrology

    E-Print Network [OSTI]

    Mayer, Peter (Peter Matthew), 1978-

    2007-01-01

    Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

  4. Thermoelectric skutterudite compositions and methods for producing the same

    DOE Patents [OSTI]

    Ren, Zhifeng; Yang, Jian; Yan, Xiao; He, Qinyu; Chen, Gang; Hao, Qing

    2014-11-11

    Compositions related to skutterudite-based thermoelectric materials are disclosed. Such compositions can result in materials that have enhanced ZT values relative to one or more bulk materials from which the compositions are derived. Thermoelectric materials such as n-type and p-type skutterudites with high thermoelectric figures-of-merit can include materials with filler atoms and/or materials formed by compacting particles (e.g., nanoparticles) into a material with a plurality of grains each having a portion having a skutterudite-based structure. Methods of forming thermoelectric skutterudites, which can include the use of hot press processes to consolidate particles, are also disclosed. The particles to be consolidated can be derived from (e.g., grinded from), skutterudite-based bulk materials, elemental materials, other non-Skutterudite-based materials, or combinations of such materials.

  5. Thermoelectric generator and method for the fabrication thereof

    DOE Patents [OSTI]

    Benson, D.K.; Tracy, C.E.

    1984-08-01

    A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use as thermoelectric generators.

  6. Thermoelectric generator and method for the fabrication thereof

    DOE Patents [OSTI]

    Benson, David K. (Golden, CO); Tracy, C. Edwin (Golden, CO)

    1987-01-01

    A thermoelectric generator using semiconductor elements for responding to a temperature gradient to produce electrical energy with all of the semiconductor elements being of the same type is disclosed. A continuous process for forming substrates on which the semiconductor elements and superstrates are deposited and a process for forming the semiconductor elements on the substrates are also disclosed. The substrates with the semiconductor elements thereon are combined with superstrates to form modules for use thermoelectric generators.

  7. Determination of oil/water and octanol/water distribution coefficients from aqueous solutions from four fossil fuels. [MS thesis; in oil-water and octanol-water

    SciTech Connect (OSTI)

    Thomas, B.L.

    1984-07-01

    Liquid fossil fuels, both petroleum and synthetically derived oils, are exceedingly complex mixtures of thousands of components. The effect of many of these energy-related components on the environment is largely unknown. Octanol/water distribution coefficients relate both to toxicity and to the bioaccumulation potential of chemical components. Use of these partition data in conjunction with component concentrations in the oils in environmental models provides important information on the fate of fossil fuel components when released to the environment. Octanol/water distribution data are not available for many energy-related organic compounds, and those data that are available have been determined for individual components in simple, one-component octanol/water equilibrium mixtures. In this study, methods for determining many octanol/water distribution coefficients from aqueous extracts of oil products were developed. Sample aqueous mixtures were made by equilibrating liquid fossil fuels with distilled water. This approach has the advantage of detecting interactions between components of interest and other sample components. Compound types studied included phenols, nitrogen bases, hydrocarbons, sulfur heterocyclic compounds, and carboxylic acids. Octanol/water distribution coefficients that were determined in this study ranged from 9.12 for aniline to 67,600 for 1,2-dimethylnaphthalene. Within a compound type, distribution coefficients increased logarithmically with increasing alkyl substitution and molecular weight. Additionally, oil/water distribution data were determined for oil components. These data are useful in predicting maximum environmental concentrations in water columns. 96 references, 26 figures, and 40 tables.

  8. Rate of deformation in the Pasco Basin during the Miocene as determined by distribution of Columbia River basalt flows

    SciTech Connect (OSTI)

    Reidel, S.P.; Ledgerwood, R.K.; Myers, C.W.; Jones, M.G.; Landon, R.D.

    1980-03-01

    Detailed mapping of over 8000 square kilometers and logs from 20 core holes were used to determine the distribution and thickness of basalt flows and interbeds in the Pasco Basin. The data indicate the high-MgO Grande Ronde Basalt and Wanapum Basalt thicken from the northeast to the southwest. Deformation began in late Frenchman Springs time in the Saddle Mountains along a northwest-southeast trend and in Roza time along an east-west trend. By late Wanapum time, basalt flows were more restricted on the east side. Saddle Mountains Basalt flows spread out in the basin from narrow channels to the east. The Umatilla Member entered from the southeast and is confined to the south-central basin, while the Wilbur Creek, Asotin, Esquatzel, Pomona, and Elephant Mountain Members entered from the east and northeast. The distribution of these members is controlled by flow volume, boundaries of other flows, and developing ridges. The Wilbur Creek, Asotin, and Esquatzel flows exited from the basin in a channel along the northern margin of the Umatilla flow, while the Pomona and Elephant Mountain flows exited between Umtanum Ridge and Wallula Gap. The thickness of sedimentary interbeds and basalt flows indicated subsidence and/or uplift began in post-Grande Ronde time (14.5 million years before present) and continued through Saddle Mountains time (10.5 million years before present). Maximum subsidence occurred 40 kilometers (24 miles) north of Richland, Washington with an approximate rate of 25 meters (81 feet) per million years during the eruption of the basalt. Maximum uplift along the developing ridges was 70 meters (230 feet) per million years.

  9. Review of Interests and Activities in Thermoelectric Materials and Devices at the Army Research Laboratory

    Broader source: Energy.gov [DOE]

    Army interests in thermoelectrics include integrated TE-hand-held burners for battery-replacement, waste-heat recovery on vehicles, heat-powered mobile units, and for thermoelectric cooling of high-performance infrared systems for surveillance

  10. Synthesis and Characterization of Magnesium-Silicon and Magnesium-Tin Solid Solutions for Thermoelectric Applications 

    E-Print Network [OSTI]

    Hu, Fang

    2012-07-16

    The environmentally friendly n-type Mg2(Si, Sn) thermoelectric solid solutions have a strong potential of commercial utilization in thermoelectric (TE) energy conversion due to their availability, low density (~3.02 g/cm3), ...

  11. High-Performance Thermoelectric Devices Based on Abundant Silicide Materials for Vehicle Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE)

    Development of high-performance thermoelectric devices for vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology

  12. Development of an Underamor 1-kW Thermoelectric Generator Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for Military Vehicles Development of an Underamor 1-kW Thermoelectric Generator Waste Heat Recovery System for...

  13. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling

    E-Print Network [OSTI]

    Xu, Xianfan

    Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling (TEG) designed for automotive waste heat recovery systems. This model is capable of computing telluride TEMs. Key words: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites

  14. International Round-Robin Testing of Bulk Thermoelectrics

    SciTech Connect (OSTI)

    Wang, Hsin [ORNL; Porter, Wallace D [ORNL; Bottner, Harold [Fraunhofer-Institute, Freiburg, Germany; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Chen, Lidong [Chinese Academy of Sciences; Bai, Shengqiang [Chinese Academy of Sciences; Tritt, Terry M. [Clemson University; Mayolett, Alex [Corning, Inc; Smith, Charlene [Corning, Inc; Harris, Fred [ZT-Plus; Sharp, Jeff [Marlow Industries, Inc; Lo, Jason [CANMET - Materials Technology Laboratory, Natural Resources of Canada; Keinke, Holger [University of Waterloo, Canada; Kiss, Laszlo I. [University of Quebec at Chicoutimi

    2011-11-01

    Two international round-robin studies were conducted on transport properties measurements of bulk thermoelectric materials. The study discovered current measurement problems. In order to get ZT of a material four separate transport measurements must be taken. The round-robin study showed that among the four properties Seebeck coefficient is the one can be measured consistently. Electrical resistivity has +4-9% scatter. Thermal diffusivity has similar +5-10% scatter. The reliability of the above three properties can be improved by standardizing test procedures and enforcing system calibrations. The worst problem was found in specific heat measurements using DSC. The probability of making measurement error is great due to the fact three separate runs must be taken to determine Cp and the baseline shift is always an issue for commercial DSC. It is suggest the Dulong Petit limit be always used as a guide line for Cp. Procedures have been developed to eliminate operator and system errors. The IEA-AMT annex is developing standard procedures for transport properties testing.

  15. High-Temperature Thermoelectric Properties of p-Type Yb-filled...

    Office of Scientific and Technical Information (OSTI)

    Energy Sciences (SC-22) Country of Publication: United States Language: English Subject: solar (thermal), phonons, thermal conductivity, thermoelectric, mechanical behavior,...

  16. Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

  17. Coherent Thermoelectric Effects in Mesoscopic Andreev Interferometers

    E-Print Network [OSTI]

    Ph. Jacquod; R. S. Whitney

    2009-10-15

    We investigate thermoelectric transport through Andreev interferometers. We show that the ratio of the thermal and the charge conductance exhibits large oscillations with the phase difference $\\phi$ between the two superconducting contacts, and that the Wiedemann-Franz law holds only when $\\phi=\\pi$. A large average thermopower furthermore emerges whenever there is an asymmetry in the dwell times to reach the superconducting contacts. When this is the case, the thermopower is odd in $\\phi$. In contrast, when the average times to reach either superconducting contact are the same, the average thermopower is zero, however mesoscopic effects (analogous to universal conductance fluctuations) lead to a sample-dependent thermopower which is systematically even in $\\phi$.

  18. Determination of power distribution in the VVER-440 core on the basis of data from in-core monitors by means of a metric analysis

    SciTech Connect (OSTI)

    Kryanev, A. V.; Udumyan, D. K. [National Research Nuclear University “MEPHI,” (Russian Federation); Kurchenkov, A. Yu., E-mail: s327@vver.kiae.ru; Gagarinskiy, A. A. [National Research Center Kurchatov Institute (Russian Federation)

    2014-12-15

    Problems associated with determining the power distribution in the VVER-440 core on the basis of a neutron-physics calculation and data from in-core monitors are considered. A new mathematical scheme is proposed for this on the basis of a metric analysis. In relation to the existing mathematical schemes, the scheme in question improves the accuracy and reliability of the resulting power distribution.

  19. Assessing the Thermoelectric Properties of Sintered Compounds via High-Throughput Ab-Initio Calculations

    E-Print Network [OSTI]

    Curtarolo, Stefano

    Assessing the Thermoelectric Properties of Sintered Compounds via High-Throughput Ab Database have been considered as nanograined, sintered-powder thermoelectrics with the high-throughput ab the electronic band gap and the carrier effective mass, and that the probability of having large thermoelectric

  20. Two dimensional thermoelectric platforms for thermocapillary droplet Man-Chi Liu,ac

    E-Print Network [OSTI]

    Lin, Pei-Chun

    Two dimensional thermoelectric platforms for thermocapillary droplet actuation Man-Chi Liu,ac Jin the cooling function relies on the natural conduction and/or convection. A thermoelectric (TE) chip a novel approach utilizing a 5 6 5 array of thermoelectric (TE) chips. The advantage of using TE chips

  1. Chin. Phys. B Vol. 20, No. 10 (2011) 107301 Measuring thermoelectric property

    E-Print Network [OSTI]

    Gao, Hongjun

    2011-01-01

    Chin. Phys. B Vol. 20, No. 10 (2011) 107301 Measuring thermoelectric property of nano May 2011) A method of measuring the thermoelectric power of nano-heterostructures based on four of a tungsten­indium tip, the precise control of the tip-sample contact and the identification of thermoelectric

  2. Enhanced Thermoelectric Properties of Solution Grown Bi2Te3-xSex Nanoplatelet Composites

    E-Print Network [OSTI]

    Xiong, Qihua

    Enhanced Thermoelectric Properties of Solution Grown Bi2Te3-xSex Nanoplatelet Composites Ajay Soni on the enhanced thermoelectric properties of selenium (Se) doped bismuth telluride (Bi2Te3-xSex) nanoplatelet (NP transport measure- ments, we show that both the thermoelectric power S (-259 V/K) and the figure of merit ZT

  3. Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices

    E-Print Network [OSTI]

    Mechanism for thermoelectric figure-of-merit enhancement in regimented quantum dot superlattices propose a mechanism for enhancement of the thermoelectric figure-of-merit in regimented quantum dot, as a result, to the thermoelectric figure-of-merit enhancement. To maximize the improvement, one has to tune

  4. Analysis of Thermoelectric Properties of Scaled Silicon Nanowires Using an Atomistic Tight-Binding Model

    E-Print Network [OSTI]

    1 Analysis of Thermoelectric Properties of Scaled Silicon Nanowires Using an Atomistic Tight Abstract Low dimensional materials provide the possibility of improved thermoelectric performance due. As a result of suppressed phonon conduction, large improvements on the thermoelectric figure of merit, ZT

  5. Review of State of the Art Technologies used to Improve Performance of Thermoelectric Devices

    E-Print Network [OSTI]

    Walker, D. Greg

    Review of State of the Art Technologies used to Improve Performance of Thermoelectric Devices 19 th University Nashville, TN 37221 greg.walker@vanderbilt.edu Thermoelectric devices have gained importance focused towards developing both thermoelectric structures and materials that have high efficiency

  6. Thermoelectric figure of merit as a function of carrier propagation angle in semiconducting superlattices

    E-Print Network [OSTI]

    Carlson, Erica

    Thermoelectric figure of merit as a function of carrier propagation angle in semiconducting;Thermoelectric figure of merit as a function of carrier propagation angle in semiconducting superlattices Shuo a fruitful approach for enhancing the figure of merit, ZT, of thermoelectric materials. Generally

  7. Thermoelectric Rotating Torus for Fusion A. B. Hassam and Yi-Min Huang

    E-Print Network [OSTI]

    Hassam, Adil

    Thermoelectric Rotating Torus for Fusion A. B. Hassam and Yi-Min Huang Institute for Plasma power maintains the rotation and also heats the plasma. The thermoelectric effect from the resultingRevLett.91.195002 PACS numbers: 52.58.­c, 52.30.­q, 52.55.­s In magnetized plasma, thermoelectric currents

  8. Large thermoelectric figure of merit in Si1-xGex nanowires Lihong Shi,1

    E-Print Network [OSTI]

    Li, Baowen

    Large thermoelectric figure of merit in Si1-xGex nanowires Lihong Shi,1 Donglai Yao,1 Gang Zhang,2 transport equation, we investigate composition effects on the thermoelectric properties of silicon thermoelectric figure of merit ZT Refs. 1­4 due to both enhancement in the power factor through increasing

  9. Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2

    E-Print Network [OSTI]

    Wu, Junqiao

    Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2 Microbeams J. Cao,,, W. Fan-performance thermoelectric materials are currently one of the focuses in materials research for energy conversion technologies.1-4 A good thermoelectric material should have a relatively high thermopower (Seebeck coefficient

  10. Thermoelectric Properties Modeling of Bi2Te3 Seungwon Lee and Paul von Allmen

    E-Print Network [OSTI]

    Goddard III, William A.

    Thermoelectric Properties Modeling of Bi2Te3 Seungwon Lee and Paul von Allmen Jet propulsion/23/2005 Overview · Introduce EZTB a modeling tool for thermoelectric properties using a tight-binding model-binding parameters for Bi2Te3. · Present the accuracy of the modeling tool with the thermoelectric properties of Bi2

  11. On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg

    E-Print Network [OSTI]

    On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg Fax: 4420 7594 5604 Word count: 3750 Diags. equivalent: 1600 5350 #12;On thermoelectric power the absolute maximum efficiency of energy conversion by thermoelectric devices that operate as part of the heat

  12. Power-Aware Deployment and Control of Forced-Convection and Thermoelectric Coolers

    E-Print Network [OSTI]

    Pedram, Massoud

    Power-Aware Deployment and Control of Forced-Convection and Thermoelectric Coolers Mohammad Javad Angeles, CA, USA {dousti, pedram}@usc.edu ABSTRACT Advances in the thermoelectric cooling technology have made it one of the promising solutions for spot cooling in VLSI circuits. Thermoelectric coolers (TECs

  13. Hierarchically structured TiO2 for Ba-filled skutterudite with enhanced thermoelectric

    E-Print Network [OSTI]

    Cao, Guozhong

    Hierarchically structured TiO2 for Ba-filled skutterudite with enhanced thermoelectric performance be considered. Thermoelectric (TE) materials are a very good candidate to achieve a more efficient usage performance of a thermoelectric material is governed by its power factor P ¼ S2 s. The challenge to develop

  14. Energy-Harvesting Thermoelectric Sensing for Unobtrusive Water and Appliance Metering

    E-Print Network [OSTI]

    Cafarella, Michael J.

    Energy-Harvesting Thermoelectric Sensing for Unobtrusive Water and Appliance Metering Bradford that meters using the same thermoelectric generator with which it powers itself. In short, the rate at which be harvested with a thermoelectric generator (TEG) to power a sensor node. TEGs utilize the Seebeck effect

  15. Trend for Thermoelectric Materials and Their Earth Abundance R. AMATYA1,2

    E-Print Network [OSTI]

    Ram, Rajeev J.

    Trend for Thermoelectric Materials and Their Earth Abundance R. AMATYA1,2 and R.J. RAM1 1 to their price volatility as applications (competing with thermoelectrics) con- tinue to grow, for example with crustal abundance of 30 ppm ($4 9 1018 metric tons) has ZT greater than 0.8. Key words: Thermoelectric

  16. Thin Thermoelectric Generator System for Body Energy KRISHNA T. SETTALURI,1

    E-Print Network [OSTI]

    Ram, Rajeev J.

    Thin Thermoelectric Generator System for Body Energy Harvesting KRISHNA T. SETTALURI,1 HSINYI LO,1, MA 02139, USA. 2.--e-mail: katey@mit.edu Wearable thermoelectric generators (TEGs) harvest thermal transfer system as part of the overall thermoelectric (TE) system. In particular, the small heat transfer

  17. www.ceramics.org | American Ceramic Society Bulletin, Vol. 91, No. 334 thermoelectric

    E-Print Network [OSTI]

    McGaughey, Alan

    www.ceramics.org | American Ceramic Society Bulletin, Vol. 91, No. 334 Modeling thermoelectric. Thermoelectric devices have the advantage of containing no moving parts, making them quiet, durable and reliable that thermoelectric devic- es can compete with traditional refrigeration and power generation technologies.1

  18. Thermoelectric figure of merit calculations for semiconducting nanowires Jane E. Cornett1

    E-Print Network [OSTI]

    Anlage, Steven

    Thermoelectric figure of merit calculations for semiconducting nanowires Jane E. Cornett1 and Oded 2011 A model for the thermoelectric properties of nanowires was used to demonstrate the contrasting influences of quantization and degeneracy on the thermoelectric power factor. The prevailing notion

  19. Pilot Phase of a Field Study to Determine Waste of Water and Energy in Residential Hot-Water Distribution Systems

    E-Print Network [OSTI]

    Lutz, Jim

    2012-01-01

    to Determine Waste of Water and Energy in Residential Hot-to Determine Waste of Water and Energy in Residential Hotto Determine Waste of Water and Energy in Residential Hot

  20. Interpretation of Self-Potential Anomalies Using Constitutive Relationships for Electrochemical and Thermoelectric Coupling Coefficients

    SciTech Connect (OSTI)

    Knapp, R. B.; Kasameyer, P. W.

    1988-01-01

    Constitutive relationships for electrochemical and thermoelectric cross-coupling coefficients are derived using ionic mobilities, applying a general derivative of chemical potential and employing the zero net current condition. The general derivative of chemical potential permits thermal variations which give rise to the thermoelectric effect. It also accounts for nonideal solution behavior. An equation describing electric field strength is similarly derived with the additional assumption of electrical neutrality in the fluid Planck approximation. The Planck approximation implies that self-potential (SP) is caused only by local sources and also that the electric field strength has only first order spatial variations. The derived relationships are applied to the NaCl-KCl concentration cell with predicted and measured voltages agreeing within 0.4 mV. The relationships are also applied to the Long Valley and Yellowstone geothermal systems. There is a high degree of correlation between predicted and measured SP response for both systems, giving supporting evidence for the validity of the approach. Predicted SP amplitude exceeds measured in both cases; this is a possible consequence of the Planck approximation. Electrochemical sources account for more than 90% of the predicted response in both cases while thermoelectric mechanisms account for the remaining 10%; electrokinetic effects are not considered. Predicted electrochemical and thermoelectric voltage coupling coefficients are comparable to values measured in the laboratory. The derived relationships are also applied to arbitrary distributions of temperature and fluid composition to investigate the geometric diversity of observed SP anomalies. Amplitudes predicted for hypothetical saline spring and hot spring environments are less than 40 mV. In contrast, hypothetical near surface steam zones generate very large amplitudes, over 2 V in one case. These results should be viewed with some caution due to the uncertain validity of the Planck approximation for these conditions. All amplitudes are controlled by electrochemical mechanisms. Polarities are controlled by the curvature of the concentration or thermal profile. Concave upward thermal profiles produce positive anomalies, for constant fluid concentrations, whereas concave upward concentration profiles produce negative anomalies. Concave downward concentration profiles are characterized by small negative closures bounding a larger, positive SP anomaly.

  1. Using GIS and species distribution modelling techniques to determine new locations for botanical collecting surveys in Nepal 

    E-Print Network [OSTI]

    Johnston, Christine

    2010-11-24

    Understanding botanical distributions and plant biodiversity is of importance to conservationists, and also to others such as land managers, biogeographers and horticulturalists. In Nepal, a globally important biodiversity ...

  2. Thermoelectricity without absorbing energy from the heat sources

    E-Print Network [OSTI]

    Robert. S. Whitney; Rafael Sánchez; Federica Haupt; Janine Splettstoesser

    2015-09-28

    We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs - one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an "exotic" power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.

  3. Thermoelectricity without absorbing energy from the heat sources

    E-Print Network [OSTI]

    Robert. S. Whitney; Rafael Sánchez; Federica Haupt; Janine Splettstoesser

    2015-08-18

    We analyze the power output of a quantum dot machine coupled to two electronic reservoirs via thermoelectric contacts, and to two thermal reservoirs - one hot and one cold. This machine is a nanoscale analogue of a conventional thermocouple heat-engine, in which the active region being heated is unavoidably also exchanging heat with its cold environment. Heat exchange between the dot and the thermal reservoirs is treated as a capacitive coupling to electronic fluctuations in localized levels, modeled as two additional quantum dots. The resulting multiple-dot setup is described using a master equation approach. We observe an "exotic" power generation, which remains finite even when the heat absorbed from the thermal reservoirs is zero (in other words the heat coming from the hot reservoir all escapes into the cold environment). This effect can be understood in terms of a non-local effect in which the heat flow from heat source to the cold environment generates power via a mechanism which we refer to as Coulomb heat drag. It relies on the fact that there is no relaxation in the quantum dot system, so electrons within it have a non-thermal energy distribution. More poetically, one can say that we find a spatial separation of the first-law of thermodynamics (heat to work conversion) from the second-law of thermodynamics (generation of entropy). We present circumstances in which this non-thermal system can generate more power than any conventional macroscopic thermocouple (with local thermalization), even when the latter works with Carnot efficiency.

  4. High Resolution Quantitative Auto-Radiography to determine microscopic distributions of B-10 in neutron capture therapy

    E-Print Network [OSTI]

    Harris, Thomas C. (Thomas Cameron)

    2006-01-01

    The success of Boron Neutron Capture Therapy (BNCT) is heavily dependent on the microscopic distribution of B-10 in tissue. High Resolution Quantitative Auto-Radiography (HRQAR) is a potentially valuable analytical tool ...

  5. Miniature thermo-electric cooled cryogenic pump

    DOE Patents [OSTI]

    Keville, Robert F. (Valley Springs, CA)

    1997-01-01

    A miniature thermo-electric cooled cryogenic pump for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a .DELTA.T=100.degree. C. characteristic. The pump operates under vacuum pressures of 5.times.10.sup.-4 Torr to ultra high vacuum (UHV) conditions in the range of 1.times.10.sup.-7 to 3.times.10.sup.-9 Torr and will typically remove partial pressure, 2.times.10.sup.-7 Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5.degree., and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof.

  6. Miniature thermo-electric cooled cryogenic pump

    DOE Patents [OSTI]

    Keville, R.F.

    1997-11-18

    A miniature thermo-electric cooled cryogenic pump is described for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a {Delta}T=100 C characteristic. The pump operates under vacuum pressures of 5{times}10{sup {minus}4} Torr to ultra high vacuum (UHV) conditions in the range of 1{times}10{sup {minus}7} to 3{times}10{sup {minus}9} Torr and will typically remove partial pressure, 2{times}10{sup {minus}7} Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5{degree}, and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof. 2 figs.

  7. Thermoelectric transport through strongly correlated quantum dots

    E-Print Network [OSTI]

    T. A. Costi; V. Zlatic

    2010-07-08

    The thermoelectric properties of strongly correlated quantum dots, described by a single level Anderson model coupled to conduction electron leads, is investigated using Wilson's numerical renormalization group method. We calculate the electronic contribution, $K_{\\rm e}$, to the thermal conductance, the thermopower, $S$, and the electrical conductance, $G$, of a quantum dot as a function of both temperature, $T$, and gate voltage, ${\\rm v}_g$, for strong, intermediate and weak Coulomb correlations, $U$, on the dot. For strong correlations and in the Kondo regime, we find that the thermopower exhibits two sign changes, at temperatures $T_{1}({\\rm v}_g)$ and $T_{2}({\\rm v}_g)$ with $T_{1}< T_{2}$. Such sign changes in $S(T)$ are particularly sensitive signatures of strong correlations and Kondo physics. The relevance of this to recent thermopower measurements of Kondo correlated quantum dots is discussed. We discuss the figure of merit, power factor and the degree of violation of the Wiedemann-Franz law in quantum dots. The extent of temperature scaling in the thermopower and thermal conductance of quantum dots in the Kondo regime is also assessed.

  8. Thermoelectric power generator for variable thermal power source

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2015-04-14

    Traditional power generation systems using thermoelectric power generators are designed to operate most efficiently for a single operating condition. The present invention provides a power generation system in which the characteristics of the thermoelectrics, the flow of the thermal power, and the operational characteristics of the power generator are monitored and controlled such that higher operation efficiencies and/or higher output powers can be maintained with variably thermal power input. Such a system is particularly beneficial in variable thermal power source systems, such as recovering power from the waste heat generated in the exhaust of combustion engines.

  9. Synthesis, Structure, Thermoelectric Properties, and Band Gaps of Alkali Metal Containing Type I Clathrates: A8Ga8Si38 (A = K, Rb, Cs)

    E-Print Network [OSTI]

    Osterloh, Frank

    Synthesis, Structure, Thermoelectric Properties, and Band Gaps of Alkali Metal Containing Type I were consolidated by Spark Plasma Sintering (SPS) for thermoelectric property characterization. INTRODUCTION Thermoelectric materials have been intensively studied over the past decades as they can recycle

  10. The Fundamentals of Thermoelectrics A bachelor's laboratory practical

    E-Print Network [OSTI]

    Ludwig-Maximilians-Universität, München

    to thermoelectrics 1 2 The thermocouple 4 3 The Peltier device 5 3.1 n- and p-type Peltier elements . . . . . . . . . . . . . . . . . . 5 3.2 Commercial Peltier devices . . . . . . . . . . . . . . . . . . . . 5 3.3 Electrical power.2 Measurements with the Peltier device . . . . . . . . . . . . . . 11 4.2.1 Warm-up procedure

  11. Perspectives on thermoelectrics: from fundamentals to device applications

    E-Print Network [OSTI]

    Zebarjadi, M.

    2012-01-01

    This review is an update of a previous review (A. J. Minnich, et al., Energy Environ. Sci., 2009, 2, 466) published two years ago by some of the co-authors, focusing on progress made in thermoelectrics over the past two ...

  12. Universal formulae for thermoelectric transport with magnetic field and disorder

    E-Print Network [OSTI]

    Amoretti, Andrea

    2015-01-01

    We obtain explicit expressions for the thermoelectric transport coefficients of a strongly coupled, planar medium in the presence of an orthogonal magnetic field and disorder. The computations are performed within the gauge/gravity framework, however we propose and argue for a possible universal relevance of the results relying on comparisons and extensions of previous hydrodynamical analyses and experimental data.

  13. Molybdenum-platinum-oxide electrodes for thermoelectric generators

    DOE Patents [OSTI]

    Schmatz, Duane J. (Dearborn Heights, MI)

    1990-01-01

    The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a solid electrolyte carrying a thin film comprising molybdenum-platinum-oxide as an electrode deposited by physical deposition techniques. The invention is also directed to the method of making same.

  14. Determination of alpha_S using hadronic event shape distributions of data taken with the OPAL detector

    E-Print Network [OSTI]

    Schieck, J

    2011-01-01

    The measurement of the strong coupling alpha_S using hadronic event shape distributions measured with the OPAL detector at center-of-mass energies between 91 and 209 GeV is summarized. For this measurement hadronic event shape distributions are compared to theoretical predictions based on next-to-next-to-leading-calculations (NNLO) and NNLO combined with resummed next-to-leading-logarithm calculations (NLLA). The combined result using NNLO calculations is alpha_S(MZ)=0.1201+-0.0008(stat.)+-0.0013(exp.)+-0.0010(had.)+-0.0024(theo.) and the result using NLLO and NLLA calculations is alpha_S(MZ)=0.1189+-0.0008(stat.)+-0.0016(exp.)=-0.0010(had.)+-0.0036(theo.), with both measurements being in agreement with the world average.

  15. Interpretation of thermoelectric properties of Cu substituted LaCoO{sub 3} ceramics

    SciTech Connect (OSTI)

    Choudhary, K. K.; Kaurav, N.; Sharma, U.; Ghosh, S. K.

    2014-04-24

    The thermoelectric properties of LaCo{sub 1?x}Cu{sub x}O{sub 3??} is theoretically analyzed, it is observed that thermoelectric figure of merit ZT (=S{sup 2}?T/?) is maximized by Cu substitution in LaCoO{sub 3} Ceramics at x=0.15. The lattice thermal conductivity and thermoelectric power were estimated by the scattering of phonons with defects, grain boundaries, electrons and phonons to evaluate the thermoelectric properties. We found that Cu substitution increase the phonon scattering with grain boundaries and defects which significantly increase the thermoelectric power and decrease the thermal conductivity. The present numerical analysis will help in designing more efficient thermoelectric materials.

  16. Determination of the respective density distributions of low-and high-density lipoprotein particles in bovine plasma

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    .006-1.210 g/ml were separated by density gradient ultracentrifugation into 25 fractions. Their respective apo-I and apo B. Gradient distributions of apo A-I (d 1.046-1.180 g/ml; max at d 1.080 g/ml) and apo B (d 1: Intestinal Lipid and Lipoprotein Metabolism (Windler E, Greten H, eds), W Zuckschwerdt Verlag, Munchen, 50

  17. Thermoelectric energy converter for generation of electricity from low-grade heat

    DOE Patents [OSTI]

    Jayadev, T.S.; Benson, D.K.

    1980-05-27

    A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

  18. An In Situ Method for Determination of Current Distribution in PEM Fuel Cells Applied to a Direct Methanol Fuel

    E-Print Network [OSTI]

    Mench, Matthew M.

    can contribute to knowledge and understanding of key phenomena including water management and species of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 flooding can, to a great extent, determine overall cell performance.21,22 Water management in the DMFC

  19. Role of Soil Disturbances in Determining Post-Harvest Plant1 Biodiversity and Invasive Weed Distributions2

    E-Print Network [OSTI]

    ) disturbance frequency, and (4) the severity9 of the disturbance. Both frequency and severity are important1 Role of Soil Disturbances in Determining Post-Harvest Plant1 Biodiversity and Invasive Weed Telephone: +01-928-556-2176, FAX +01-928-556-21308 9 SHORT TITLE: Soil Disturbances, Biodiversity

  20. Increasing the thermoelectric figure of merit of tetrahedrites by Co-doping with nickel and zinc

    E-Print Network [OSTI]

    Lu, X; Morelli, DT; Morelli, DT; Xia, Y; Ozolins, V

    2015-01-01

    Fermi  energy  level  and  mini-­? mum   lattice   thermal  energy  to  optimize  the  Seebeck  coefficient  and  thermoelectric  power  factor;  and  2)  a  reduction  in  thermal  

  1. The Effect of Processing Parameters on the Thermoelectric Properties of Magnesium Silicide

    E-Print Network [OSTI]

    Fong, Anthony

    2012-01-01

    W. Engelmann. J. C. A. Peltier, “Nouvelles expériences surmaterials: the Seebeck, Peltier, and Thomson effects. Theof thermoelectrics is called the Peltier effect named after

  2. Advanced Thin Film Thermoelectric Systems forEfficient Air-Conditioner...

    Broader source: Energy.gov (indexed) [DOE]

    recent advances in thermoelectric device fabrication and the design of novel coolingheating engines exploiting thermal storage for efficient air-conditioners in automobiles...

  3. Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    This project discusses preliminary experimental results to find how thermoelectrics can be applied ot future hybrid vehicles and the optimum design of such equipment using heat pipes

  4. Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications

    Broader source: Energy.gov [DOE]

    Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy intensive industrial processes and transportation vehicles exhaust are discussed

  5. Review of solar thermoelectric energy conversion and analysis of a two cover flat-plate solar collector

    E-Print Network [OSTI]

    Hasan, Atiya

    2007-01-01

    The process of solar thermoelectric energy conversion was explored through a review of thermoelectric energy generation and solar collectors. Existing forms of flat plate collectors and solar concentrators were surveyed. ...

  6. A Determination of the Gamma-ray Flux and Photon Spectral Index Distributions of Blazars from the Fermi-LAT 3LAC

    E-Print Network [OSTI]

    Singal, J

    2015-01-01

    We present a determination of the distributions of gamma-ray photon flux -- the so called LogN-LogS relation -- and photon spectral index for blazars, based on the third extragalactic source catalog of the Fermi Gamma-ray Space Telescope's Large Area Telescope, and considering the photon energy range from 100 MeV to 100 GeV. The dataset consists of the 774 blazars in the so-called "Clean" sample detected with a greater than approximately seven sigma detection threshold and located above $\\pm$20 deg Galactic latitude. We use non-parametric methods verified in previous works to reconstruct the intrinsic distributions from the observed ones which account for the data truncations introduced by observational bias and includes the effects of the possible correlation between the flux and photon index. The intrinsic flux distribution can be represented by a broken power law with a high flux power-law index of -2.43$\\pm$0.08 and a low flux power-law index of -1.87$\\pm$0.10. The intrinsic photon index distribution can ...

  7. Quantum modeling of thermoelectric performance of strained Si/Ge/Si superlattices using the nonequilibrium Green's function method

    E-Print Network [OSTI]

    Walker, D. Greg

    Quantum modeling of thermoelectric performance of strained Si/Ge/Si superlattices using 2007 The cross-plane thermoelectric performance of strained Si/Ge/Si superlattices is studied from such that thermoelectric performance is independent of layer thickness between 2 and 4 nm germanium barrier layers

  8. Modeling of the Thermoelectric Properties of Quasi-One-Dimensional Organic Semiconductors , A.A. Balandin2

    E-Print Network [OSTI]

    Modeling of the Thermoelectric Properties of Quasi-One-Dimensional Organic Semiconductors A. Casian Electrical conductivity , Seebeck coefficient S, electronic thermal conductivity e and the thermoelectric the general principles of solid state physics there is no upper limit for the thermoelectric figure of merit

  9. Enhancing the Thermoelectric Power Factor with Highly Mismatched Isoelectronic Doping Joo-Hyoung Lee,1,4

    E-Print Network [OSTI]

    Wu, Junqiao

    Enhancing the Thermoelectric Power Factor with Highly Mismatched Isoelectronic Doping Joo; published 8 January 2010) We investigate the effect of O impurities on the thermoelectric properties of Zn performance thermoelectric applications. DOI: 10.1103/PhysRevLett.104.016602 PACS numbers: 72.20.Pa, 71.15.Àm

  10. Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor deposition

    E-Print Network [OSTI]

    Gilchrist, James F.

    Thermoelectric properties of lattice-matched AlInN alloy grown by metal organic chemical vapor Seebeck coefficient and resistance measurement system for thermoelectric materials in the thin disk geometry Rev. Sci. Instrum. 83, 025101 (2012) High-temperature thermoelectric properties of Cu1­xInTe2

  11. A versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute accuracy

    E-Print Network [OSTI]

    Libbrecht, Kenneth G.

    A versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute December 2009 We describe a general-purpose thermoelectric temperature controller with 1 mK stability, 10 m elements and thermoelectric modules to heat or cool in the 40 to 40 °C range. A schematic of our controller

  12. Thermoelectric Response Driven by Spin-State Transition in La1-xCexCoO3

    E-Print Network [OSTI]

    Cao, Wenwu

    Thermoelectric Response Driven by Spin-State Transition in La1-xCexCoO3 Perovskites Yang Wang,, Yu 130012, People's Republic of China ABSTRACT An unusual thermoelectric response was observed in n that the thermoelectric response is driven by the spin-state transition of Co3+ . This transition destroys the spin

  13. Thermoelectric Properties of Scaled Silicon Nanowires Using the s*-SO Atomistic Tight-Binding Model and Boltzmann

    E-Print Network [OSTI]

    1 Thermoelectric Properties of Scaled Silicon Nanowires Using the sp3 d5 s*-SO Atomistic Tight|kosina}@iue.tuwien.ac.at Abstract As a result of suppressed phonon conduction, large improvements of the thermoelectric figure, the Seebeck coefficient, and the thermoelectric power factor. We examine n-type nanowires of diameters of 3nm

  14. ON THE ROLE OF THERMOELECTRIC HEAT TRANSFER IN THE DESIGN OF SMA ACTUATORS: THEORETICAL MODELING AND EXPERIMENT

    E-Print Network [OSTI]

    ON THE ROLE OF THERMOELECTRIC HEAT TRANSFER IN THE DESIGN OF SMA ACTUATORS: THEORETICAL MODELING theoretical/experimentalstudy of the heat transferin thermoelectricShape Memory Alloy (SMA) actuators is undertaken in this paper. A one-dimensional model of a thermoelectric unit cell with a SMA junction

  15. Thermoelectric effects in wurtzite GaN and AlxGa1-xN alloys and Alexander A. Balandin

    E-Print Network [OSTI]

    Thermoelectric effects in wurtzite GaN and AlxGa1-xN alloys Weili Liua and Alexander A. Balandin have investigated theoretically the thermoelectric effects in wurtzite GaN crystals and AlxGa1-xN-based alloys may have some potential as thermoelectric materials at high temperature. It was found

  16. Thermoelectric Conductivities at Finite Magnetic Field and the Nernst Effect

    E-Print Network [OSTI]

    Keun-Young Kim; Kyung Kiu Kim; Yunseok Seo; Sang-Jin Sin

    2015-08-24

    We study the thermoelectric conductivities of a strongly correlated system in the presence of a magnetic field by the gauge/gravity duality. We consider a class of Einstein-Maxwell-Dilaton theories with axion fields imposing momentum relaxation. General analytic formulas for the direct current(DC) conductivities and the Nernst signal are derived in terms of the black hole horizon data. For an explicit model study, we analyse in detail the dyonic black hole modified by momentum relaxation. In this model, for small momentum relaxation, the Nernst signal shows a bell-shaped dependence on the magnetic field, which is a feature of the normal phase of cuprates. We compute all alternating current(AC) electric, thermoelectric, and thermal conductivities by numerical analysis and confirm that their zero frequency limits precisely reproduce our analytic DC formulas, which is a non-trivial consistency check of our methods. We discuss the momentum relaxation effects on the conductivities including cyclotron resonance poles.

  17. A linear nonequilibrium thermodynamics approach to optimization of thermoelectric devices

    E-Print Network [OSTI]

    Ouerdane, H; Apertet, Y; Michot, A; Abbout, A

    2013-01-01

    Improvement of thermoelectric systems in terms of performance and range of applications relies on progress in materials science and optimization of device operation. In this chapter, we focuse on optimization by taking into account the interaction of the system with its environment. For this purpose, we consider the illustrative case of a thermoelectric generator coupled to two temperature baths via heat exchangers characterized by a thermal resistance, and we analyze its working conditions. Our main message is that both electrical and thermal impedance matching conditions must be met for optimal device performance. Our analysis is fundamentally based on linear nonequilibrium thermodynamics using the force-flux formalism. An outlook on mesoscopic systems is also given.

  18. Efficiency Improvement in an Over the Road Diesel Powered Engine System by the Application of Advanced Thermoelectric Systems Implemented in a Hybrid Configuration

    Broader source: Energy.gov [DOE]

    Hybridization of heavy-duty truck propulsion with thermoelectric generator and potential efficiency enhancement

  19. Misfit layer compounds and ferecrystals: Model systems for thermoelectric nanocomposites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Merrill, Devin R. [Univ. of Oregon, Eugene, OR (United States); Moore, Daniel B. [Univ. of Oregon, Eugene, OR (United States); Bauers, Sage R. [Univ. of Oregon, Eugene, OR (United States); Falmbigl, Matthias [Univ. of Oregon, Eugene, OR (United States); Johnson, David C. [Univ. of Oregon, Eugene, OR (United States)

    2015-04-01

    A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class of metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe)1+?]m(TiSe?)n family (m, n ? 3) are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor.

  20. Misfit layer compounds and ferecrystals: Model systems for thermoelectric nanocomposites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Merrill, Devin R.; Moore, Daniel B.; Bauers, Sage R.; Falmbigl, Matthias; Johnson, David C.

    2015-04-22

    A basic summary of thermoelectric principles is presented in a historical context, following the evolution of the field from initial discovery to modern day high-zT materials. A specific focus is placed on nanocomposite materials as a means to solve the challenges presented by the contradictory material requirements necessary for efficient thermal energy harvest. Misfit layer compounds are highlighted as an example of a highly ordered anisotropic nanocomposite system. Their layered structure provides the opportunity to use multiple constituents for improved thermoelectric performance, through both enhanced phonon scattering at interfaces and through electronic interactions between the constituents. Recently, a class ofmore »metastable, turbostratically-disordered misfit layer compounds has been synthesized using a kinetically controlled approach with low reaction temperatures. The kinetically stabilized structures can be prepared with a variety of constituent ratios and layering schemes, providing an avenue to systematically understand structure-function relationships not possible in the thermodynamic compounds. We summarize the work that has been done to date on these materials. The observed turbostratic disorder has been shown to result in extremely low cross plane thermal conductivity and in plane thermal conductivities that are also very small, suggesting the structural motif could be attractive as thermoelectric materials if the power factor could be improved. The first 10 compounds in the [(PbSe)1+?]m(TiSe?)n family (m, n ? 3) are reported as a case study. As n increases, the magnitude of the Seebeck coefficient is significantly increased without a simultaneous decrease in the in-plane electrical conductivity, resulting in an improved thermoelectric power factor.« less

  1. Thermoelectric Behavior of Flexible Organic Nanocomposites with Carbon Nanotubes 

    E-Print Network [OSTI]

    Choi, Kyung Who

    2013-12-03

    .3 Results and discussion …………………………………………….27 vi Page 3.4 Conclusions………………………………………………………..34 CHAPTER IV HIGHLY DOPED CARBON NANOTUBES WITH GOLD NANOPARTICLES AND THEIR INFLUENCE ON ELECTRICAL CONDUCTIVITY AND THERMOPOWER ………..36 4... with carbon nanotubes ………...76 7.3 Highly doped carbon nanotubes with gold nanoparticles and their influence on electric conductivity and thermopower……………………………………………………...77 7.4 N-type thermoelectric performance of functionalized carbon nanotube...

  2. NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOrigin ofAllenDepartment of EnergyThermoelectrics |

  3. NSF/DOE Thermoelectrics Partnership: Purdue … GM Partnership on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURING OFFICESpecialAPPENDIX FOrigin ofAllenDepartment of EnergyThermoelectrics

  4. Nanocrystalline silicon: Lattice dynamics and enhanced thermoelectric properties

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Claudio, Tania; Stein, Niklas; Stroppa, Daniel G.; Klobes, Benedikt; Koza, Michael Marek; Kudejova, Petra; Petermann, Nils; Wiggers, Hartmut; Schierning, Gabi; Hermann, Raphaël P.

    2014-12-21

    In this study, silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K-1 m-1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured,more »which all reveal a significant, ?25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ?25 W K-1 m-1, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT ? 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.« less

  5. Nanocrystalline silicon: lattice dynamics and enhanced thermoelectric properties

    SciTech Connect (OSTI)

    Claudio, Tania; Stein, Niklas; Stroppa, Daniel G.; Klobes, Benedikt; Koza, Michael Marek; Kudejova, Petra; Petermann, Nils; Wiggers, Hartmut; Schierning, Gabi; Hermann, Raphaël P.

    2014-12-21

    Silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K-1 m-1 at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured, which all reveal a significant, ?25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ?25 W K-1 m-1, which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT ? 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.

  6. Electrochemically deposited BiTe-based nanowires for thermoelectric applications

    SciTech Connect (OSTI)

    Ng, Inn-Khuan; Kok, Kuan-Ying; Rahman, Che Zuraini Che Ab; Saidin, Nur Ubaidah; Ilias, Suhaila Hani; Choo, Thye-Foo [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor Darul Ehsan (Malaysia)

    2014-02-12

    Nanostructured materials systems such as thin-films and nanowires (NWs) are promising for thermoelectric power generation and refrigeration compared to traditional counterparts in bulk, due to their enhanced thermoelectric figures-of-merit. BiTe and its derivative compounds, in particular, are well-known for their near-room temperature thermoelectric performance. In this work, both the binary and ternary BiTe-based nanowires namely, BiTe and BiSbTe, were synthesized using template-assisted electrodeposition. Diameters of the nanowires were controlled by the pore sizes of the anodised alumina (AAO) templates used. Systematic study on the compositional change as a function of applied potential was carried out via Linear Sweep Voltanmetry (LSV). Chemical compositions of the nanowires were studied using Energy Dispersive X-ray Spectrometry (EDXS) and their microstructures evaluated using diffraction and imaging techniques. Results from chemical analysis on the nanowires indicated that while the Sb content in BiSbTe nanowires increased with more negative deposition potentials, the formation of Te{sup 0} and Bi{sub 2}Te{sub 3} were favorable at more positive potentials.

  7. Gated Si nanowires for large thermoelectric power factors

    SciTech Connect (OSTI)

    Neophytou, Neophytos, E-mail: N.Neophytou@warwick.ac.uk [School of Engineering, University of Warwick, Coventry CV4 7AL (United Kingdom); Kosina, Hans [Institute for Microelectronics, Vienna University of Technology, Gusshausstrasse 27-29/E360, Vienna A-1040 (Austria)

    2014-08-18

    We investigate the effect of electrostatic gating on the thermoelectric power factor of p-type Si nanowires (NWs) of up to 20?nm in diameter in the [100], [110], and [111] crystallographic transport orientations. We use atomistic tight-binding simulations for the calculation of the NW electronic structure, coupled to linearized Boltzmann transport equation for the calculation of the thermoelectric coefficients. We show that gated NW structures can provide ?5× larger thermoelectric power factor compared to doped channels, attributed to their high hole phonon-limited mobility, as well as gating induced bandstructure modifications which further improve mobility. Despite the fact that gating shifts the charge carriers near the NW surface, surface roughness scattering is not strong enough to degrade the transport properties of the accumulated hole layer. The highest power factor is achieved for the [111] NW, followed by the [110], and finally by the [100] NW. As the NW diameter increases, the advantage of the gated channel is reduced. We show, however, that even at 20?nm diameters (the largest ones that we were able to simulate), a ?3× higher power factor for gated channels is observed. Our simulations suggest that the advantage of gating could still be present in NWs with diameters of up to ?40?nm.

  8. Thermoelectric materials ternary penta telluride and selenide compounds

    DOE Patents [OSTI]

    Sharp, Jeffrey W. (Richardson, TX)

    2001-01-01

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  9. Thermoelectric materials: ternary penta telluride and selenide compounds

    DOE Patents [OSTI]

    Sharp, Jeffrey W. (Richardson, TX)

    2002-06-04

    Ternary tellurium compounds and ternary selenium compounds may be used in fabricating thermoelectric devices with a thermoelectric figure of merit (ZT) of 1.5 or greater. Examples of such compounds include Tl.sub.2 SnTe.sub.5, Tl.sub.2 GeTe.sub.5, K.sub.2 SnTe.sub.5 and Rb.sub.2 SnTe.sub.5. These compounds have similar types of crystal lattice structures which include a first substructure with a (Sn, Ge) Te.sub.5 composition and a second substructure with chains of selected cation atoms. The second substructure includes selected cation atoms which interact with selected anion atoms to maintain a desired separation between the chains of the first substructure. The cation atoms which maintain the desired separation between the chains occupy relatively large electropositive sites in the resulting crystal lattice structure which results in a relatively low value for the lattice component of thermal conductivity (.kappa..sub.g). The first substructure of anion chains indicates significant anisotropy in the thermoelectric characteristics of the resulting semiconductor materials.

  10. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOE Patents [OSTI]

    Benke, Roland R. (Helotes, TX); Kearfott, Kimberlee J. (Ann Arbor, MI); McGregor, Douglas S. (Ann Arbor, MI)

    2003-03-04

    A method, system and a radiation detector system for use therein are provided for determining the depth distribution of radiation-emitting material distributed in a source medium, such as a contaminated field, without the need to take samples, such as extensive soil samples, to determine the depth distribution. The system includes a portable detector assembly with an x-ray or gamma-ray detector having a detector axis for detecting the emitted radiation. The radiation may be naturally-emitted by the material, such as gamma-ray-emitting radionuclides, or emitted when the material is struck by other radiation. The assembly also includes a hollow collimator in which the detector is positioned. The collimator causes the emitted radiation to bend toward the detector as rays parallel to the detector axis of the detector. The collimator may be a hollow cylinder positioned so that its central axis is perpendicular to the upper surface of the large area source when positioned thereon. The collimator allows the detector to angularly sample the emitted radiation over many ranges of polar angles. This is done by forming the collimator as a single adjustable collimator or a set of collimator pieces having various possible configurations when connected together. In any one configuration, the collimator allows the detector to detect only the radiation emitted from a selected range of polar angles measured from the detector axis. Adjustment of the collimator or the detector therein enables the detector to detect radiation emitted from a different range of polar angles. The system further includes a signal processor for processing the signals from the detector wherein signals obtained from different ranges of polar angles are processed together to obtain a reconstruction of the radiation-emitting material as a function of depth, assuming, but not limited to, a spatially-uniform depth distribution of the material within each layer. The detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  11. Communication Origin of the thermoelectric behavior of steel fiber cement paste

    E-Print Network [OSTI]

    Chung, Deborah D.L.

    Communication Origin of the thermoelectric behavior of steel fiber cement paste Sihai Wen, D fiber cement. The scattering sites include the fiber­matrix interface, which is like a pn junction, since the fiber and cement paste have opposite signs of the absolute thermoelectric power

  12. Field emission cooling of thermoelectric semiconductor PbTe M. S. Chung,1,a

    E-Print Network [OSTI]

    Mayer, Alexandre

    Field emission cooling of thermoelectric semiconductor PbTe M. S. Chung,1,a A. Mayer,2 B. L. Weiss due to field emission from n-type PbTe, a typical thermoelectric material. We show that, by calculating the average energies of field and replacement electrons, the energy exchange in field emission

  13. Powering a Cat Warmer Using Thin-Film Thermoelectric Conversion of Microprocessor

    E-Print Network [OSTI]

    towards one end, creating a difference in potential. The efficiency of thermo- electric generators (TEG of Thermoelectric Generation 1A phonon is a fundamental quantum mechanical vibration mode of a material that is used efficiencies when converting heat to electricity using the thermoelectric ef- fect. Applied to microprocessors

  14. A Simple and Intuitive Graphical Approach to the Design of Thermoelectric Cooling Systems

    E-Print Network [OSTI]

    A Simple and Intuitive Graphical Approach to the Design of Thermoelectric Cooling Systems Simon, thermoelectric active cooling systems can help maintain electronic devices at a desired temperature condition for calculating the steady-state operational point of a TEC based active cooling system, including the heatsink

  15. Solar Thermoelectric Generator for Micropower Applications R. AMATYA1,2

    E-Print Network [OSTI]

    Ram, Rajeev J.

    Solar Thermoelectric Generator for Micropower Applications R. AMATYA1,2 and R.J. RAM1 1.--Research 02139, USA. 2.--e-mail: ramatya@mit.edu Solar thermoelectric generators (STG) using cheap parabolic concentrators with high-ZT modules can be a cost-effective alternative to solar photovoltaics for micropower

  16. Aalborg Universitet Individual Module Maximum Power Point Tracking for a Thermoelectric Generator

    E-Print Network [OSTI]

    Schaltz, Erik

    Aalborg Universitet Individual Module Maximum Power Point Tracking for a Thermoelectric Generator Tracking for a Thermoelectric Generator Systems. Poster session presented at The 31st International & 10th Generator Systems Casper Vadstrup (cvdst08@student.aau.dk), Min Chen (mch@et.aau.dk), Erik Schaltz (esc

  17. Atomic-Scale Mapping of Thermoelectric Power on Graphene: Role of Defects and Boundaries

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Atomic-Scale Mapping of Thermoelectric Power on Graphene: Role of Defects and Boundaries Jewook University, Pittsburgh, PA 15213, USA Abstract The spatially resolved thermoelectric power is studied on epitaxial graphene on SiC with direct correspondence to graphene atomic structures by a scanning tunneling

  18. Aalborg Universitet HT-PEM Fuel Cell System with Integrated Thermoelectric Exhaust Heat Recovery

    E-Print Network [OSTI]

    Berning, Torsten

    Aalborg Universitet HT-PEM Fuel Cell System with Integrated Thermoelectric Exhaust Heat Recovery-PEM Fuel Cell System with Integrated Thermoelectric Exhaust Heat Recovery. Department of Energy Technology Heat Recovery Xin Gao Dissertation submitted to the Faculty of Engineering and Science at Aalborg

  19. System and method to improve the power output and longetivity of a radioisotope thermoelectric generator

    DOE Patents [OSTI]

    Mowery, Jr., Alfred L. (Potomac, MD)

    1993-01-01

    By using the helium generated by the alpha emissions of a thermoelectric generator during space travel for cooling, the thermal degradation of the thermoelectric generator can be slowed. Slowing degradation allows missions to be longer with little additional expense or payload.

  20. Photo-controllable thermoelectric properties with reversibility and photo-thermoelectric effects of tungsten trioxide accompanied by its photochromic phenomenon

    SciTech Connect (OSTI)

    Azuma, Chiori; Kawano, Takuto; Kakemoto, Hirofumi; Irie, Hiroshi

    2014-11-07

    The addition of photo-controllable properties to tungsten trioxide (WO{sub 3}) is of interest for developing practical applications of WO{sub 3} as well as for interpreting such phenomena from scientific viewpoints. Here, a sputtered crystalline WO{sub 3} thin film generated thermoelectric power due to ultraviolet (UV) light-induced band-gap excitation and was accompanied by a photochromic reaction resulting from generating W{sup 5+} ions. The thermoelectric properties (electrical conductivity (?) and Seebeck coefficient (S)) and coloration of WO{sub 3} could be reversibly switched by alternating the external stimulus between UV light irradiation and dark storage. After irradiating the film with UV light, ? increased, whereas the absolute value of S decreased, and the photochromic (coloration) reaction was detected. Notably, the opposite behavior was exhibited by WO{sub 3} after dark storage, and this reversible cycle could be repeated at least three times. Moreover, photo-thermoelectric effects (photo-conductive effect (photo-conductivity, ?{sub photo}) and photo-Seebeck effect (photo-Seebeck coefficient, S{sub photo})) were also detected in response to visible-light irradiation of the colored WO{sub 3} thin films. Under visible-light irradiation, ?{sub photo} and the absolute value of S{sub photo} increased and decreased, respectively. These effects are likely attributable to the excitation of electrons from the mid-gap visible light absorption band (W{sup 5+} state) to the conduction band of WO{sub 3}. Our findings demonstrate that the simultaneous, reversible switching of multiple properties of WO{sub 3} thin film is achieved by the application of an external stimulus and that this material exhibits photo-thermoelectric effects when irradiated with visible-light.

  1. Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries

    SciTech Connect (OSTI)

    Adam Polcyn; Moe Khaleel

    2009-01-06

    The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

  2. Moments of the Hilbert-Schmidt probability distributions over determinants of real two-qubit density matrices and of their partial transposes

    E-Print Network [OSTI]

    Slater, Paul B

    2010-01-01

    The nonnegativity of the determinant of the partial transpose of a two-qubit (4 x 4) density matrix is both a necessary and sufficient condition for its separability. While the determinant is restricted to the interval [0,1/256], the determinant of the partial transpose can range over [-1/16,1/256], with negative values corresponding to entangled states. We report here the exact values of the first nine moments of the probability distribution of the partial transpose over this interval, with respect to the Hilbert-Schmidt (metric volume element) measure on the nine-dimensional convex set of real two-qubit density matrices. Rational functions C_{2 j}(m), yielding the coefficients of the 2j-th power of even polynomials occurring at intermediate steps in our derivation of the m-th moment, emerge. These functions possess poles at finite series of consecutive half-integers (m=-3/2,-1/2,...,(2j-1)/2), and certain (trivial) roots at finite series of consecutive natural numbers (m=0, 1,...). Additionally, the (nontri...

  3. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    DOE Patents [OSTI]

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  4. Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle

    SciTech Connect (OSTI)

    2012-01-31

    The thermoelectric generator shorting system provides the capability to monitor and short-out individual thermoelectric couples in the event of failure. This makes the series configured thermoelectric generator robust to individual thermoelectric couple failure. Open circuit detection of the thermoelectric couples and the associated short control is a key technique to ensure normal functionality of the TE generator under failure of individual TE couples. This report describes a five-year effort whose goal was the understanding the issues related to the development of a thermoelectric energy recovery device for a Class-8 truck. Likely materials and important issues related to the utility of this generator were identified. Several prototype generators were constructed and demonstrated. The generators developed demonstrated several new concepts including advanced insulation, couple bypass technology and the first implementation of skutterudite thermoelectric material in a generator design. Additional work will be required to bring this system to fruition. However, such generators offer the possibility of converting energy that is otherwise wasted to useful electric power. Uur studies indicate that this can be accomplished in a cost-effective manner for this application.

  5. Thermoelectric performance of various benzo-difuran wires

    SciTech Connect (OSTI)

    Péterfalvi, Csaba G.; Grace, Iain; Manrique, Dávid Zs.; Lambert, Colin J., E-mail: c.lambert@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom)

    2014-05-07

    Using a first principles approach to electron transport, we calculate the electrical and thermoelectrical transport properties of a series of molecular wires containing benzo-difuran subunits. We demonstrate that the side groups introduce Fano resonances, the energy of which is changing with the electronegativity of selected atoms in it. We also study the relative effect of single, double, or triple bonds along the molecular backbone and find that single bonds yield the highest thermopower, approximately 22 ?V/K at room temperature, which is comparable with the highest measured values for single-molecule thermopower reported to date.

  6. Methods for synthesis of semiconductor nanocrystals and thermoelectric compositions

    DOE Patents [OSTI]

    Ren, Zhifeng (Newton, MA); Chen, Gang (Carlisle, MA); Poudel, Bed (Watertown, MA); Kumar, Shankar (Watertown, MA); Wang, Wenzhong (Newton, MA); Dresselhaus, Mildred (Arlington, MA)

    2007-08-14

    The present invention provides methods for synthesis of IV VI nanostructures, and thermoelectric compositions formed of such structures. In one aspect, the method includes forming a solution of a Group IV reagent, a Group VI reagent and a surfactant. A reducing agent can be added to the solution, and the resultant solution can be maintained at an elevated temperature, e.g., in a range of about 20.degree. C. to about 360.degree. C., for a duration sufficient for generating nanoparticles as binary alloys of the IV VI elements.

  7. 3rd Thermoelectrics Applications Workshop 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3 Racetracks25 AMO PeerServices6 ways to3rd Thermoelectrics

  8. A Novel VLSI Technology to Manufacture High-Density Thermoelectric Cooling Devices

    E-Print Network [OSTI]

    H. Chen; L. Hsu; X. Wei

    2008-01-07

    This paper describes a novel integrated circuit technology to manufacture high-density thermoelectric devices on a semiconductor wafer. With no moving parts, a thermoelectric cooler operates quietly, allows cooling below ambient temperature, and may be used for temperature control or heating if the direction of current flow is reversed. By using a monolithic process to increase the number of thermoelectric couples, the proposed solid-state cooling technology can be combined with traditional air cooling, liquid cooling, and phase-change cooling to yield greater heat flux and provide better cooling capability.

  9. Effects of Ge replacement in GeTe by [Ag+Sb] on thermoelectric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in GeTe by Ag+Sb on thermoelectric properties and NMR spectra Requirements for student: general physics and chemistry courses, and desire to work in experimental laboratory. This...

  10. Nanostructured thin film thermoelectric composite materials using conductive polymer PEDOT:PSS

    E-Print Network [OSTI]

    Kuryak, Chris A. (Chris Adam)

    2013-01-01

    Thermoelectric materials have the ability to convert heat directly into electricity. This clean energy technology has advantages over other renewable technologies in that it requires no sunlight, has no moving parts, and ...

  11. Transient cooling and heating via a bismuth-telluride thermoelectric device 

    E-Print Network [OSTI]

    Clancy, Terry L

    1998-01-01

    Thermoelectric cooling or heating can be used to drive materials to specified temperatures. By way of the Peltier effect, heat is liberated or absorbed when a current flows across a 'unction of two dissimilar conductors. A time history...

  12. Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams

    E-Print Network [OSTI]

    Latcham, Jacob G. (Jacob Greco)

    2009-01-01

    An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

  13. Thermoelectric properties of Bi?â??x̳Sbx̳ nanowires and lead salt superlattice nanowires

    E-Print Network [OSTI]

    Lin, Yu-Ming, 1974-

    2003-01-01

    This thesis involves an extensive experimental and theoretical study of the thermoelectric-related transport properties of BilxSbx nanowires, and presents a theoretical framework for predicting the electrical properties ...

  14. Structure-fluctuation-induced abnormal thermoelectric properties in semiconductor copper selenide

    SciTech Connect (OSTI)

    Liu, Huili [Chinese Academy of Sciences; Shi, Xun [Chinese Academy of Sciences; Kirkham, Melanie J [ORNL; Wang, Hsin [ORNL; Li, Qiang [Brookhaven National Laboratory (BNL); Uher, Ctirad [University of Michigan; Zhang, Wenqing [Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS); Chen, Lidong [Chinese Academy of Sciences

    2013-01-01

    Thermoelectric effects and related technologies have attracted a great interest due to the world-wide energy harvesting. Thermoelectricity has usually been considered in the context of stable material phases. Here we report that the fluctuation of structures during the second-order phase transition in Cu2Se semiconductor breaks the conventional trends of thermoelectric transports in normal phases, leading to a critically phase-transition-enhanced thermoelectric figure of merit zT above unity at 400K, a three times larger value than for the normal phases. Dynamic structural transformations introduce intensive fluctuations and extreme complexity, which enhance the carrier entropy and thus the thermopower, and strongly scatter carriers and phonons as well to make their transports behave critically.

  15. Modeling and characterization of thermoelectric properties of SiGe nanocomposites

    E-Print Network [OSTI]

    Lee, Hohyun, 1978-

    2009-01-01

    Direct energy conversion between thermal and electrical energy based on thermoelectric effects is attractive for potential applications in waste heat recovery and environmentally-friendly refrigeration. The energy conversion ...

  16. Exploring electron and phonon transport at the nanoscale for thermoelectric energy conversion

    E-Print Network [OSTI]

    Minnich, Austin Jerome

    2011-01-01

    Thermoelectric materials are capable of solid-state direct heat to electricity energy conversion and are ideal for waste heat recovery applications due to their simplicity, reliability, and lack of environmentally harmful ...

  17. Geek-Up[6.10.2011]: Thermoelectrics' Great Power, Key Ingredient in Bone's Nanostructure

    Broader source: Energy.gov [DOE]

    Advanced thermoelectric materials could be used to develop vehicle exhaust systems that convert exhaust heat into electricity, concentrate solar energy for power generation and recover waste heat from industrial processes.

  18. CsBi4Te6: A High-Performance Thermoelectric Material for Low...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CsBi4Te6: A High-Performance Thermoelectric Material for Low-Temperature Applications Home Author: D.Y. Chung, T. Hogan, P. Brazis, M. Rocci-Lane, C. Kannawurf, M. Bastea, C. Uher,...

  19. Novel thermoelectric materials development, existing and potential applications, and commercialization routes

    E-Print Network [OSTI]

    Bertreau, Philippe

    2006-01-01

    Thermoelectrics (TE) are devices which can convert heat in the form of a temperature gradient into electricity, or alternatively generate and absorb heat when an electrical current is run through them. It was established ...

  20. Understanding and designing carbon-based thermoelectric materials with atomic-scale simulations

    E-Print Network [OSTI]

    Kim, Jeong Yun

    2015-01-01

    Thermoelectric (TE) materials, which can convert unused waste heat into useful electricity or vice versa, could play an important role in solving the current global energy challenge of providing sustainable and clean energy. ...

  1. A batteryless thermoelectric energy-harvesting interface circuit with 35mV startup voltage

    E-Print Network [OSTI]

    Ramadass, Yogesh Kumar

    A batteryless thermoelectric energy-harvesting interface circuit to extract electrical energy from human body heat is implemented in a 0.35 ?m [mu m] CMOS process. A mechanically assisted startup circuit enables operation ...

  2. Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by GenTherm at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermoelectric waste heat recovery...

  3. N-Type Thermoelectric Performance of Functionalized Carbon Nanotube-Filled Polymer Composites 

    E-Print Network [OSTI]

    Freeman, Dallas

    2012-07-16

    -TYPE THERMOELECTRIC PERFORMANCE OF FUNCTIONALIZED CARBON NANOTUBE-FILLED POLYMER COMPOSITES A Thesis by DALLAS D. FREEMAN II Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 2012 Major Subject: Mechanical Engineering N-Type Thermoelectric Performance of Functionalized Carbon Nanotube-Filled Polymer Composites Copyright 2012 Dallas D. Freeman II...

  4. Phonon self-energy and origin of anomalous neutron scattering spectra in SnTe and PbTe thermoelectrics

    SciTech Connect (OSTI)

    Li, Chen [ORNL] [ORNL; Ma, Jie [ORNL] [ORNL; May, Andrew F [ORNL] [ORNL; Cao, Huibo [ORNL] [ORNL; Christianson, Andrew D [ORNL] [ORNL; Ehlers, Georg [ORNL] [ORNL; Singh, David J [ORNL] [ORNL; Sales, Brian C [ORNL] [ORNL; Delaire, Olivier A [ORNL] [ORNL

    2014-01-01

    The anharmonic lattice dynamics of rock-salt thermoelectric compounds SnTe and PbTe are investigated with inelastic neutron scattering (INS) and first-principles calculations. The experiments show that, surprisingly, although SnTe is closer to the ferroelectric instability, phonon spectra in PbTe exhibit a more anharmonic character. This behavior is reproduced in first-principles calculations of the temperature-dependent phonon self-energy. Our simulations reveal how the nesting of phonon dispersions induces prominent features in the self-energy, which account for the measured INS spectra and their temperature dependence. We establish that the phase-space for three-phonon scattering processes, rather than just the proximity to the lattice instability, is the mechanism determining the complex spectrum of the transverse-optical ferroelectric mode.

  5. Magnesium and Manganese Silicides For Efficient And Low Cost Thermo-Electric Power Generation

    SciTech Connect (OSTI)

    Trivedi, Sudhir B.; Kutcher, Susan W.; Rosemeier, Cory A.; Mayers, David; Singh, Jogender

    2013-12-02

    Thermoelectric Power Generation (TEPG) is the most efficient and commercially deployable power generation technology for harvesting wasted heat from such things as automobile exhausts, industrial furnaces, and incinerators, and converting it into usable electrical power. We investigated the materials magnesium silicide (Mg2Si) and manganese silicide (MnSi) for TEG. MgSi2 and MnSi are environmentally friendly, have constituent elements that are abundant in the earth's crust, non-toxic, lighter and cheaper. In Phase I, we successfully produced Mg2Si and MnSi material with good TE properties. We developed a novel technique to synthesize Mg2Si with good crystalline quality, which is normally very difficult due to high Mg vapor pressure and its corrosive nature. We produced n-type Mg2Si and p-type MnSi nanocomposite pellets using FAST. Measurements of resistivity and voltage under a temperature gradient indicated a Seebeck coefficient of roughly 120 V/K on average per leg, which is quite respectable. Results indicated however, that issues related to bonding resulted in high resistivity contacts. Determining a bonding process and bonding material that can provide ohmic contact from room temperature to the operating temperature is an essential part of successful device fabrication. Work continues in the development of a process for reproducibly obtaining low resistance electrical contacts.

  6. Enhanced thermoelectric power and electronic correlations in RuSe?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Kefeng; Wang, Aifeng; Tomic, A.; Wang, Limin; Abeykoon, A. M. Milinda; Dooryhee, E.; Billinge, S. J.L.; Petrovic, C.

    2015-03-03

    We report the electronic structure, electric and thermal transport properties of Ru??xIrxSe? (x ? 0.2). RuSe? is a semiconductor that crystallizes in a cubic pyrite unit cell. The Seebeck coefficient of RuSe? exceeds -200 µV/K around 730 K. Ir substitution results in the suppression of the resistivity and the Seebeck coefficient, suggesting the removal of the peaks in density of states near the Fermi level. Ru?.?Ir?.?Se? shows a semiconductor-metal crossover at about 30 K. The magnetic field restores the semiconducting behavior. Our results indicate the importance of the electronic correlations in enhanced thermoelectricity of RuSb?.

  7. Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles

    SciTech Connect (OSTI)

    Smith, K.; Thornton, M.

    2009-04-01

    Thermoelectric (TE) generators convert heat directly into electricity when a temperature gradient is applied across junctions of two dissimilar metals. The devices could increase the fuel economy of conventional vehicles by recapturing part of the waste heat from engine exhaust and generating electricity to power accessory loads. A simple vehicle and engine waste heat model showed that a Class 8 truck presents the least challenging requirements for TE system efficiency, mass, and cost; these trucks have a fairly high amount of exhaust waste heat, have low mass sensitivity, and travel many miles per year. These factors help maximize fuel savings and economic benefits. A driving/duty cycle analysis shows strong sensitivity of waste heat, and thus TE system electrical output, to vehicle speed and driving cycle. With a typical alternator, a TE system could allow electrification of 8%-15% of a Class 8 truck's accessories for 2%-3% fuel savings. More research should reduce system cost and improve economics.

  8. Thermoelectric DC conductivities with momentum dissipation from higher derivative gravity

    E-Print Network [OSTI]

    Long Cheng; Xian-Hui Ge; Zu-Yao Sun

    2015-04-28

    We present a mechanism of momentum relaxation in higher derivative gravity by adding linear scalar fields to the Gauss-Bonnet theory. We analytically computed all of the DC thermoelectric conductivities in this theory by adopting the method given by Donos and Gauntlett in [arXiv:1406.4742]. The results show that the DC electric conductivity is not a monotonic function of the effective impurity parameter $\\beta$: in the small $\\beta$ limit, the DC conductivity is dominated by the coherent phase, while for larger $\\beta$, pair creation contribution to the conductivity becomes dominant, signaling an incoherent phase. In addition, the DC heat conductivity is found independent of the Gauss-Bonnet coupling constant.

  9. Thermoelectric Conductivities at Finite Magnetic Field and the Nernst Effect

    E-Print Network [OSTI]

    Kim, Keun-Young; Seo, Yunseok; Sin, Sang-Jin

    2015-01-01

    We study electric, thermoelectric, and thermal conductivities of a strongly correlated system in the presence of magnetic field by gauge/gravity duality. We consider a general class of Einstein-Maxwell-Dilaton theory with axion fields imposing momentum relaxation. Analytic general formulas for DC conductivities and the Nernst signal are derived in terms of the black hole horizon data. For an explicit model study we analyse in detail the Dyonic black hole modified by momentum relaxation effect. In this model, the Nernst signal shows a typical vortex-liquid effect when momentum relaxation effect is comparable to chemical potential. We compute all AC electric, thermal, and thermal conductivities by numerical analysis and confirms that their zero frequency limits precisely reproduce our analytic formulas, which is a non-trivial consistency check of our methods. We discuss the momentum relaxation effect on conductivities including cyclotron frequencies.

  10. Thermoelectric generators as self-oscillating heat engines

    E-Print Network [OSTI]

    Robert Alicki

    2015-05-30

    In the previous paper of Alicki et.al. a model of a solar cell has been proposed in which the non-periodic source of energy - photon flux - drives the collective periodic motion of electrons in a form of plasma oscillations. Subsequently, plasma oscillations are rectified by the p-n junction diode into the direct current (work). This approach makes a solar cell similar to standard macroscopic heat motors or turbines which always contain two heat baths, the working medium and the periodically moving piston or rotor. Here, a very similar model is proposed in order to describe the operation principles of thermoelectric generators based either on bimetallic or semiconductor p-n junctions. Again plasma oscillation corresponds to a piston and sunlight is replaced by a hot bath. The mathematical formalism is based on the Markovian master equations which can be derived in a rigorous way from the underlying Hamiltonian models and are consistent with the laws of thermodynamics.

  11. Thermoelectric power factor enhancement by ionized nanoparticle scattering Je-Hyeong Bahk, Zhixi Bian, Mona Zebarjadi, Parthiban Santhanam, Rajeev Ram, and Ali Shakouri

    E-Print Network [OSTI]

    Ram, Rajeev J.

    Thermoelectric power factor enhancement by ionized nanoparticle scattering Je-Hyeong Bahk, Zhixi 15:21:35 #12;Thermoelectric power factor enhancement by ionized nanoparticle scattering Je 2011) We show theoretically that the thermoelectric power factor can be enhanced in degenerate

  12. The thermoelectric properties of molecular junctions can now be investigated with scanning tunnelling microscopy. Such experiments provide insights into charge transport in single

    E-Print Network [OSTI]

    Walsworth, Ronald L.

    The thermoelectric properties of molecular junctions can now be investigated with scanning . They used a scanning tunnelling microscope (STM) to investigate thermoelectricity -- the voltage generated that thermoelectric measurements by STM provide a solution to this problem MOLECULAR ELECTRONICS Charges feel the heat

  13. Thermoelectric-transport in metal/graphene/metal hetero-structure This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Gao, Hongjun

    Thermoelectric-transport in metal/graphene/metal hetero-structure This article has been downloaded. B Vol. 19, No. 3 (2010) 037202 Thermoelectric-transport in metal/graphene/metal hetero-structure Hu 27 October 2009) We investigate the thermoelectric-transport properties of metal

  14. Thermoelectric properties of electrically gated bismuth telluride nanowires I. Bejenari,1,2,* V. Kantser,2, and A. A. Balandin1,

    E-Print Network [OSTI]

    Thermoelectric properties of electrically gated bismuth telluride nanowires I. Bejenari,1,2,* V can modify thermoelectric properties of intrinsic, n-type and p-type bismuth telluride nanowires, and thermoelectric figure of merit on the nanowire thickness, gate voltage, and excess hole electron concentration

  15. Large Thermoelectric Power Factor in P-type Si (110)/[110] Ultra-Thin-Layers Compared to Differently Oriented Channels

    E-Print Network [OSTI]

    1 Large Thermoelectric Power Factor in P-type Si (110)/[110] Ultra-Thin-Layers Compared the thermoelectric power factor of ultra-thin-body p-type Si layers of thicknesses from W=3nm up to 10nm. We show improvement in 2D thin- layers of zincblende semiconductors. Keywords: low-dimensional thermoelectrics

  16. The thermoelectric properties of Ge/SiGe modulation doped superlattices A. Samarelli, L. Ferre Llin, S. Cecchi, J. Frigerio, T. Etzelstorfer et al.

    E-Print Network [OSTI]

    Hague, Jim

    The thermoelectric properties of Ge/SiGe modulation doped superlattices A. Samarelli, L. Ferre Llin thermoelectric properties of Ge/SiGe modulation doped superlattices A. Samarelli,1 L. Ferre Llin,1 S. Cecchi,2 J June 2013) The thermoelectric and physical properties of superlattices consisting of modulation doped

  17. Development and Demonstration of a Modeling Framework for Assessing the Efficacy of Using Mine Water for Thermoelectric Power Generation

    SciTech Connect (OSTI)

    2010-03-01

    Thermoelectric power plants use large volumes of water for condenser cooling and other plant operations. Traditionally, this water has been withdrawn from the cleanest water available in streams and rivers. However, as demand for electrical power increases it places increasing demands on freshwater resources resulting in conflicts with other off stream water users. In July 2002, NETL and the Governor of Pennsylvania called for the use of water from abandoned mines to replace our reliance on the diminishing and sometimes over allocated surface water resource. In previous studies the National Mine Land Reclamation Center (NMLRC) at West Virginia University has demonstrated that mine water has the potential to reduce the capital cost of acquiring cooling water while at the same time improving the efficiency of the cooling process due to the constant water temperatures associated with deep mine discharges. The objectives of this project were to develop and demonstrate a user-friendly computer based design aid for assessing the costs, technical and regulatory aspects and potential environmental benefits for using mine water for thermoelectric generation. The framework provides a systematic process for evaluating the hydrologic, chemical, engineering and environmental factors to be considered in using mine water as an alternative to traditional freshwater supply. A field investigation and case study was conducted for the proposed 300 MW Beech Hollow Power Plant located in Champion, Pennsylvania. The field study based on previous research conducted by NMLRC identified mine water sources sufficient to reliably supply the 2-3,000gpm water supply requirement of Beech Hollow. A water collection, transportation and treatment system was designed around this facility. Using this case study a computer based design aid applicable to large industrial water users was developed utilizing water collection and handling principals derived in the field investigation and during previous studies of mine water and power plant cooling. Visual basic software was used to create general information/evaluation modules for a range of power plant water needs that were tested/verified against the Beech Hollow project. The program allows for consideration of blending mine water as needed as well as considering potential thermal and environmental benefits that can be derived from using constant temperature mine water. Users input mine water flow, quality, distance to source, elevations to determine collection, transport and treatment system design criteria. The program also evaluates low flow volumes and sustainable yields for various sources. All modules have been integrated into a seamless user friendly computer design aid and user's manual for evaluating the capital and operating costs of mine water use. The framework will facilitate the use of mine water for thermoelectric generation, reduce demand on freshwater resources and result in environmental benefits from reduced emissions and abated mine discharges.

  18. VOLUME 83, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 11 OCTOBER 1999 Steady State Thermoelectric Field-Reversed Configurations

    E-Print Network [OSTI]

    Ji, Hantao

    Thermoelectric Field-Reversed Configurations A. B. Hassam Institute for Plasma Research, University of Maryland

  19. Microscale Thermoelectric Cooling Elements (TECs) are being proposed to cool down an integrated circuit to maintain its performance. The maximum cooling power of microscale TECs is significantly reduced by the interfacial resistance. For our

    E-Print Network [OSTI]

    ICT 2008 1 Abstract Microscale Thermoelectric Cooling Elements (TECs) are being proposed to cool act as a good guideline for two-dimensional analysis and assembly of TECs. Key Words - Thermoelectric by the thermal power at the hotspot regions. Microscale Thermoelectric Cooling Elements (TECs) or Thermoelectric

  20. A Bayesian Mean-Value Approach with a Self-Consistently Determined Prior Distribution for the Ranking of College Football Teams

    E-Print Network [OSTI]

    Ashburn, J R; Ashburn, James R.; Colvert, Paul M.

    2006-01-01

    We introduce a Bayesian mean-value approach for ranking all college football teams using only win-loss data. This approach is unique in that the prior distribution necessary to handle undefeated and winless teams is calculated self-consistently. Furthermore, we will show statistics supporting the validity of the prior distribution. Finally, a brief comparison with other football rankings will be presented.

  1. Calculation of Nonlinear Thermoelectric Coefficients of InAs1xSbx Using Monte Carlo Method

    E-Print Network [OSTI]

    and increase the cooling power density when a lightly doped thermoelectric material is under a large electricalAs. In this work we report simulation results on the nonlinear Peltier power of InAs1ÀxSbx at low doping levels, at room temper- ature and at low temperatures. The thermoelectric power factor in nonlinear operation

  2. The Synthesis of CaZn2Sb2 and its Thermoelectric Properties Dan Stark, G. J. Snyder

    E-Print Network [OSTI]

    tested for material composition, structure, and thermoelectric properties. Results of this experiment's engine, and heat regulators for computer processors. Thermoelectric materials fit these requirements characteristics. This is due to the ability of the heavy antimony ion to scatter phonons much more effectively

  3. Phase Transformation for the Large-Scale Synthesis and Assembly via Welding of Metal Silicide Nanowires for Thermoelectric Applications 

    E-Print Network [OSTI]

    Kang, Yongmin

    2014-11-10

    .3.1 Synthesis of Mg2Si Microcrystals and Nanowire Pellets ....................... 72 6.3.2 Thermoelectric Performance of Mg2Si Device ...................................... 75 6.4 Conclusions... nanowires by approximately two orders of magnitude…………................................................. 65 xi 6.1 A schematic for thermoelectric measurement of Mg2Si pellet on a BN substrate via analog subtraction method...

  4. Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and Fracture/Heat Transfer Surface Area in Geothermal Reservoirs

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Project Summary. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate quantitative characterization of temperature distributions and surface area available for heat transfer in EGS.

  5. International Round-Robin Study on Thermoelectric Transport Properties of n-type Half-Heusler from 300 K to 773 K

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Hsin; Bai, Shengqiang; Chen, Lidong; Cuenat, Alexander; Joshi, Giri; Kleinke, Holger; Konig, Jan; Lee, Hee Woong; Martin, Joshua; Oh, Min-Wook; et al

    2015-09-03

    International transport property measurement round-robins have been conducted by the Thermoelectric Annex under the International Energy Agency (IEA) Implementing Agreement on Advanced Materials for Transportation (AMT). The previous round-robins used commercially available bismuth telluride as the testing material, with the goals of understanding measurement issues and developing standard testing procedures. The current round-robin extended the measurement temperature range to 773 K. It was designed to meet the increasing demands for reliable transport data of thermoelectric materials for power generation applications. Eleven laboratories from six IEA-AMT member countries participated in this study. Half-Heusler (n-type) material prepared by GMZ Energy was selectedmore »for the round-robin. The measured transport properties showed narrower distribution on uncertainties compared to previous round-robin efforts. The study intentionally included multiple testing methods and instrument types. Over the full temperature range, the measurement discrepancies on the figure of merit, ZT, in this round-robin were ±1.5 to ±16.4% from the averages.« less

  6. Wetland Water Cooling Partnership: The Use of Constructed Wetlands to Enhance Thermoelectric Power Plant Cooling and Mitigate the Demand of Surface Water Use

    SciTech Connect (OSTI)

    Apfelbaum, Steven; Duvall, Kenneth; Nelson, Theresa; Mensing, Douglas; Bengtson, Harlan; Eppich, John; Penhallegon, Clayton; Thompson, Ry

    2013-09-30

    Through the Phase I study segment of contract #DE-NT0006644 with the U.S. Department of Energy’s National Energy Technology Laboratory, Applied Ecological Services, Inc. and Sterling Energy Services, LLC (the AES/SES Team) explored the use of constructed wetlands to help address stresses on surface water and groundwater resources from thermoelectric power plant cooling and makeup water requirements. The project objectives were crafted to explore and develop implementable water conservation and cooling strategies using constructed wetlands (not existing, naturally occurring wetlands), with the goal of determining if this strategy has the potential to reduce surface water and groundwater withdrawals of thermoelectric power plants throughout the country. Our team’s exploratory work has documented what appears to be a significant and practical potential for augmenting power plant cooling water resources for makeup supply at many, but not all, thermoelectric power plant sites. The intent is to help alleviate stress on existing surface water and groundwater resources through harvesting, storing, polishing and beneficially re-using critical water resources. Through literature review, development of conceptual created wetland plans, and STELLA-based modeling, the AES/SES team has developed heat and water balances for conventional thermoelectric power plants to evaluate wetland size requirements, water use, and comparative cooling technology costs. The ecological literature on organism tolerances to heated waters was used to understand the range of ecological outcomes achievable in created wetlands. This study suggests that wetlands and water harvesting can provide a practical and cost-effective strategy to augment cooling waters for thermoelectric power plants in many geographic settings of the United States, particularly east of the 100th meridian, and in coastal and riverine locations. The study concluded that constructed wetlands can have significant positive ancillary socio-economic, ecosystem, and water treatment/polishing benefits when used to complement water resources at thermoelectric power plants. Through the Phase II pilot study segment of the contract, the project team partnered with Progress Energy Florida (now Duke Energy Florida) to quantify the wetland water cooling benefits at their Hines Energy Complex in Bartow, Florida. The project was designed to test the wetland’s ability to cool and cleanse power plant cooling pond water while providing wildlife habitat and water harvesting benefits. Data collected during the monitoring period was used to calibrate a STELLA model developed for the site. It was also used to inform management recommendations for the demonstration site, and to provide guidance on the use of cooling wetlands for other power plants around the country. As a part of the pilot study, Duke Energy is scaling up the demonstration project to a larger, commercial scale wetland instrumented with monitoring equipment. Construction is expected to be finalized in early 2014.

  7. CX-100144 Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exclusion Determination CX-100144 Categorical Exclusion Determination Solar and Distributed Generation as Key Elements in Meeting Vermont's Comprehensive Energy Plan...

  8. High Temperature Thermoelectric Oxides Engineered At Multiple Length Scales For Energy Harvesting

    SciTech Connect (OSTI)

    Ohuchi, Fumio; Bordia, Rajendra

    2014-12-20

    Thermoelectric aspects of the processing parameters the n-type relaxors, including SrxBa1-xNb2O6 (SBN100x), Sr2Nb2O7 (SN) and SrBi2Nb2O9 (SBiN), were investigated. A solution combustion synthesis (SCS) route was devised to fabricate SBN, SN and SBiN nanoparticles with excellent phase purity. X-ray photoelectron spectroscopy (XPS) was used to deduce the local cation site occupancy, and detailed thermoelectric transport processes were investigated. Based on the identified behavior, effectiveness of pore formers on the thermoelectric performance was investigated with the goal of decreasing ? through enhanced phonon scattering while preserving the electron transport characteristics.

  9. Band structure engineering through orbital interaction for enhanced thermoelectric power factor

    SciTech Connect (OSTI)

    Zhu, Hong; Sun, Wenhao; Ceder, Gerbrand; Armiento, Rickard; Lazic, Predrag

    2014-02-24

    Band structure engineering for specific electronic or optical properties is essential for the further development of many important technologies including thermoelectrics, optoelectronics, and microelectronics. In this work, we report orbital interaction as a powerful tool to finetune the band structure and the transport properties of charge carriers in bulk crystalline semiconductors. The proposed mechanism of orbital interaction on band structure is demonstrated for IV-VI thermoelectric semiconductors. For IV-VI materials, we find that the convergence of multiple carrier pockets not only displays a strong correlation with the s-p and spin-orbit coupling but also coincides with the enhancement of power factor. Our results suggest a useful path to engineer the band structure and an enticing solid-solution design principle to enhance thermoelectric performance.

  10. MoS{sub 2} nanoribbons as promising thermoelectric materials

    SciTech Connect (OSTI)

    Fan, D. D.; Liu, H. J., E-mail: phlhj@whu.edu.cn; Cheng, L.; Jiang, P. H.; Shi, J. [Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Tang, X. F. [State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070 (China)

    2014-09-29

    The thermoelectric properties of MoS{sub 2} armchair nanoribbons with different width are studied by using first-principles calculations and Boltzmann transport theory, where the relaxation time is predicted from deformation potential theory. Due to the dangling bonds at the armchair edge, there is obvious structure reconstruction of the nanoribbons which plays an important role in governing the electronic and transport properties. The investigated armchair nanoribbons are found to be semiconducting with indirect gaps, which exhibit interesting width-dependent oscillation behavior. The smaller gap of nanoribbon with width N?=?4 (Here, N represents the number of dimer lines or zigzag chains across the ribbon width) leads to a much larger electrical conductivity at 300?K, which outweighs the relatively larger electronic thermal conductivity when compared with those of N?=?5, 6. As a result, the ZT values can be optimized to 3.4 (p-type) and 2.5 (n-type) at room temperature, which significantly exceed the performance of most laboratory results reported in the literature.

  11. Thermoelectric energy recovery at ionic-liquid/electrode interface

    E-Print Network [OSTI]

    Marco Bonetti; Sawako Nakamae; Bo Tao Huang; Thomas J. Salez; Cecile Wiertel-Gasquet; Michel Roger

    2015-06-22

    A Thermally Chargeable Capacitor containing a binary solution of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imide (EMIMTFSI) in acetonitrile is electrically charged by applying a tempera- ture gradient to two ideally polarisable electrodes. The corresponding thermoelectric coefficient is -1.7 mV/K for platinum foil electrodes and -0.3 mV/K for nanoporous carbon electrodes. Stored electrical energy is extracted by discharging the capacitor through a resistor. The measured capacitance of the electrode/ionic- liquid interface is 5 micro $\\mu$F for each platinum electrode while it becomes four orders of magnitude larger $\\approx 36$ mF for a single nanoporous carbon electrode. Reproducibility of the effect through repeated charging-discharging cycles under a steady-state temperature gradient demonstrates the robustness of the electrical charging pro- cess at the liquid/electrode interface. The acceleration of the charging by convective flows is also observed. This offers the possibility to convert waste-heat into electric energy without exchanging electrons between ions and electrodes, in contrast to what occurs in most thermogalvanic cells.

  12. Separation of heat and charge currents for boosted thermoelectric conversion

    E-Print Network [OSTI]

    Francesco Mazza; Stefano Valentini; Riccardo Bosisio; Giuliano Benenti; Vittorio Giovannetti; Rosario Fazio; Fabio Taddei

    2015-07-01

    In a multi-terminal device the (electronic) heat and charge currents can follow different paths. In this paper we introduce and analyse a class of multi-terminal devices where this property is pushed to its extreme limits, with charge $and$ heat currents flowing in different reservoirs. After introducing the main characteristics of such $heat-charge$ $current$ $separation$ regime we show how to realise it in a multi-terminal device with normal and superconducting leads. We demonstrate that this regime allows to control independently heat and charge flows and to greatly enhance thermoelectric performances at low temperatures. We analyse in details a three-terminal setup involving a superconducting lead, a normal lead and a voltage probe. For a generic scattering region we show that in the regime of heat-charge current separation both the power factor and the figure of merit $ZT$ are highly increased with respect to a standard two-terminal system. These results are confirmed for the specific case of a system consisting of three coupled quantum dots.

  13. Potential thermoelectric performance from optimization of hole-doped Bi2Se3

    SciTech Connect (OSTI)

    Parker, David S [ORNL; Singh, David J [ORNL

    2011-01-01

    We present an analysis of the potential thermoelectric performance of hole-doped Bi2Se3, which is commonly considered to show inferior room temperature performance when compared to Bi2Te3. We find that if the lattice thermal conductivity can be reduced by nanostructuring techniques (as have been applied to Bi2Te3) the material may show optimized ZT values of unity or more in the 300 - 500 K temperature range and thus be suitable for cooling and moderate temperature waste heat recovery and thermoelectric solar cell applications. Central to this conclusion are the larger band gap and the relatively heavier valence bands of Bi2Se3.

  14. Thermoelectric power source utilizing ambient energy harvesting for remote sensing and transmitting

    DOE Patents [OSTI]

    DeSteese, John G

    2010-11-16

    A method and apparatus for providing electrical energy to an electrical device wherein the electrical energy is originally generated from temperature differences in an environment having a first and a second temperature region. A thermoelectric device having a first side and a second side wherein the first side is in communication with a means for transmitting ambient thermal energy collected or rejected in the first temperature region and the second side is in communication with the second temperature region thereby producing a temperature gradient across the thermoelectric device and in turn generating an electrical current.

  15. New type of thermoelectric conversion of energy by semiconducting liquid anisotropic media

    E-Print Network [OSTI]

    Sergey I. Trashkeev; Alexey N. Kudryavtsev

    2013-08-01

    The paper describes preliminary investigations of a new effect in conducting anisotropic liquids, which leads to thermoelectric conversion of energy. Nematic liquid crystals with semiconducting dopes are used. A thermoelectric figure of merit ZT = 0.2 is obtained in experiments. The effect can be explained by assuming that the thermocurrent in semiconducting nematics, in contrast to the Seebeck effect, is a nonlinear function of the temperature gradient and of the temperature itself. Though the discovered effect has to be further investigated, the data obtained suggest that it can be effectively used in alternative energy engineering.

  16. Method and system for determining depth distribution of radiation-emitting material located in a source medium and radiation detector system for use therein

    DOE Patents [OSTI]

    Benke, Roland R.; Kearfott, Kimberlee J.; McGregor, Douglas S.

    2004-04-27

    A radiation detector system includes detectors having different properties (sensitivity, energy resolution) which are combined so that excellent spectral information may be obtained along with good determinations of the radiation field as a function of position.

  17. Energy Efficient HVAC System for Distributed Cooling/Heating with Thermoelectric Devices

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Thermoelectric measurement equipments This instrument is designed for simultaneous measurement of Seebeck coefficient and

    E-Print Network [OSTI]

    Taya, Minoru

    measurement of Seebeck coefficient and electric conductivity for the evaluation of thermoelectric electromotive force. · Employment of an infrared gold image heating furnace that excels in temperature.1 msec/0.3 msec or less Sensor Thermocouple Thermocouple, IR detector Measurement Thermal diffusivity

  19. Influence of germanium nano-inclusions on the thermoelectric power factor of bulk bismuth telluride alloy

    SciTech Connect (OSTI)

    Satyala, Nikhil; Zamanipour, Zahra; Norouzzadeh, Payam; Krasinski, Jerzy S.; Vashaee, Daryoosh, E-mail: daryoosh.vashaee@okstate.edu [School of Electrical and Computer Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, Oklahoma 74106 (United States); Tahmasbi Rad, Armin [School of Material Science and Engineering, Helmerich Advanced Technology Research Center, Oklahoma State University, Tulsa, Oklahoma 74106 (United States); Tayebi, Lobat, E-mail: daryoosh.vashaee@okstate.edu [School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078 (United States)

    2014-05-28

    Nanocomposite thermoelectric compound of bismuth telluride (Bi{sub 2}Te{sub 3}) with 5 at. % germanium nano-inclusions was prepared via mechanically alloying and sintering techniques. The influence of Ge nano-inclusions and long duration annealing on the thermoelectric properties of nanostructured Bi{sub 2}Te{sub 3} were investigated. It was found that annealing has significant effect on the carrier concentration, Seebeck coefficient, and the power factor of the thermoelectric compound. The systematic heat treatment also reduced the density of donor type defects thereby decreasing the electron concentration. While the as-pressed nanocomposite materials showed n-type properties, it was observed that with the increase of annealing time, the nanocomposite gradually transformed to an abundantly hole-dominated (p-type) sample. The long duration annealing (?500 h) resulted in a significantly enhanced electrical conductivity pertaining to the augmentation in the density and the structural properties of the sample. Therefore, a simultaneous enhancement in both electrical and Seebeck coefficient characteristics resulted in a remarkable increase in the thermoelectric power factor.

  20. Studying Thermoelectric Oxides using High-Resolution Scanning Transmission Electron Figure 4: a) Atomic resolution Z-

    E-Print Network [OSTI]

    Ben-Arie, Jezekiel

    the environmental impact, and deliver energy continuously, such as thermo-electric power generation, have often been as distinct peaks. The environmental impact of global climate change due to the combustion of fossil fuels is focused on either carbon-based fuels or wind and solar energy, approaches that are portable, minimize

  1. Atomistic calculations of the electronic, thermal, and thermoelectric properties of ultra-thin Si layers

    E-Print Network [OSTI]

    -force-field method (MVFF) for the calculation of the thermal conductivity of the thin layers. We calculate the room1 Atomistic calculations of the electronic, thermal, and thermoelectric properties of ultra-thin Si of a drastic reduction in their thermal conductivity, l, and possibilities of enhanced power factors

  2. User-friendly and intuitive graphical approach to the design of thermoelectric cooling systems

    E-Print Network [OSTI]

    User-friendly and intuitive graphical approach to the design of thermoelectric cooling systems)-based active cooling system, including the heatsink role. The method is simple and intuitive and provides com- prehensive information about the cooling system such as its feasibility, required heatsink, the TEC current

  3. Semiconductor nanowire thermoelectric materials and devices, and processes for producing same

    DOE Patents [OSTI]

    Lagally, Max G; Evans, Paul G; Ritz, Clark S

    2013-09-17

    The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic compositional longitudinal modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or "nanomembranes."

  4. ENERGY MATERIALS & THERMOELECTRICS Reduction of nickel oxide particles by hydrogen studied

    E-Print Network [OSTI]

    Dunin-Borkowski, Rafal E.

    ENERGY MATERIALS & THERMOELECTRICS Reduction of nickel oxide particles by hydrogen studied oxide (NiO) particles is per- formed under 1.3 mbar of hydrogen gas (H2) in an envi- ronmental transmission electron microscope (ETEM). Images, diffraction patterns and electron energy-loss spectra (EELS

  5. High thermoelectric performance by resonant dopant indium in nanostructured SnTe

    E-Print Network [OSTI]

    Liao, Bolin

    From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this ...

  6. Development and Testing of an Integrated Sandia Cooler Thermoelectric Device (SCTD).

    SciTech Connect (OSTI)

    Johnson, Terry A.; Staats, Wayne Lawrence,; Leick, Michael Thomas; Zimmerman, Mark D.; Radermacher, Reinhard; Martin, Cara; Nasuta, Dennis; Kalinowski, Paul; Hoffman, William

    2014-12-01

    This report describes a FY14 effort to develop an integrated Sandia Cooler T hermoelectric D evice (SCTD) . The project included a review of feasible thermoelectric (TE) cooling applications, baseline performance testing of an existing TE device, analysis and design development of an integrated SCTD assembly, and performance measurement and validation of the integrated SCTD prototype.

  7. Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide

    E-Print Network [OSTI]

    Zhang, Qinyong

    By adding aluminium (Al) into lead selenide (PbSe), we successfully prepared n-type PbSe thermoelectric materials with a figure-of-merit (ZT) of 1.3 at 850 K. Such a high ZT is achieved by a combination of high Seebeck ...

  8. Navier-Stokes on Black Hole Horizons and DC Thermoelectric Conductivity

    E-Print Network [OSTI]

    Aristomenis Donos; Jerome P. Gauntlett

    2015-11-12

    Within the context of the AdS/CFT correspondence we show that the DC thermoelectric conductivity can be obtained by solving the linearised, time-independent and forced Navier-Stokes equations on the black hole horizon for an incompressible and charged fluid.

  9. Semiconductor nanowire thermoelectric materials and devices, and processes for producing same

    DOE Patents [OSTI]

    Lagally, Max G. (Madison, WI); Evans, Paul G. (Madison, WI); Ritz, Clark S. (Middleton, WI)

    2011-02-15

    The present invention provides nanowires and nanoribbons that are well suited for use in thermoelectric applications. The nanowires and nanoribbons are characterized by a periodic longitudinal modulation, which may be a compositional modulation or a strain-induced modulation. The nanowires are constructed using lithographic techniques from thin semiconductor membranes, or "nanomembranes."

  10. Navier-Stokes on Black Hole Horizons and DC Thermoelectric Conductivity

    E-Print Network [OSTI]

    Donos, Aristomenis

    2015-01-01

    We consider a general class of black hole solutions of Einstein-Maxwell theory which are holographically dual to CFTs with spatially dependent sources. We show that an averaged DC thermoelectric conductivity matrix can be obtained by solving the forced, linearised, time-independent Navier-Stokes equations on the black hole horizon for an incompressible and charged fluid.

  11. Using Sediment Records to Determine Sources, Distribution, Bioavailability, and Potential Toxicity of Dioxins in the Houston Ship Channel: A Multi-proxy Approach 

    E-Print Network [OSTI]

    Seward, Shaya M.

    2012-07-16

    contaminants (HOC). Analytical data on total organic carbon (TOC), BC, PAHs, dioxins and lignin (likely discarded from a pulp and paper mill along the Channel) were determined. This multi-proxy approach revealed that over the last several decades, HOC inputs...

  12. Research on Short-term Load Forecasting of the Thermoelectric Boiler Based on a Dynamic RBF Neural Network 

    E-Print Network [OSTI]

    Dai, W.; Zou, P.; Yan, C.

    2006-01-01

    As thermal inertia is the key factor for the lag of thermoelectric utility regulation, it becomes very important to forecast its short-term load according to running parameters. In this paper, dynamic radial basis function ...

  13. EIS-0302: Transfer of the Heat Source/Radioisotope Thermoelectric Generator Assembly and Test Operations From the Mound Site

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed transfer of the Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) operations at the Mound Site near Miamisburg, Ohio, to an alternative DOE site.

  14. Thermoelectric probe for Fermi surface topology in the three-dimensional Rashba semiconductor BiTeI

    E-Print Network [OSTI]

    Ideue, T.

    We have investigated thermoelectric properties of a three-dimensional Rashba system BiTeI. Magnetic-field dependences of the Seebeck effect and Nernst effect show qualitative changes with the Fermi level passing through ...

  15. Benefits of Carrier Pocket Anisotropy to Thermoelectric Performance: The case of p-type AgBiSe2

    SciTech Connect (OSTI)

    Parker, David S; May, Andrew F; Singh, David J

    2015-01-01

    We study theoretically the effects of anisotropy on the thermoelectric performance of p-type AgBiSe2. We present an apparent realization of the thermoelectric benefits of one-dimensional plate-like carrier pocket anisotropy in the valence band of this material. Based on first principles calculations we find a substantial anisotropy in the electronic structure, likely favorable for thermoelectric performance, in the valence bands of the hexagonal phase of the silver chalcogenide thermoelectric AgBiSe2, while the conduction bands are more isotropic, and in our experiments do not attain high performance. AgBiSe2 has already exhibited a ZT value of 1.5 in a high-temperature disordered fcc phase, but room-temperature performance has not been demonstrated. We develop a theory for the ability of anisotropy to decouple the density-of-states and conductivity effective masses, pointing out the influence of this effect in the high performance thermoelectrics Bi2Te3 and PbTe. From our first principles and Boltzmann transport calculations we find that p-type AgBiSe2 has substantial promise as a room temperature thermoelectric, and estimate its performance.

  16. Determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer quantum dots via spectral analysis of optical signature of the Aharanov-Bohm excitons

    SciTech Connect (OSTI)

    Ji, Haojie; Dhomkar, Siddharth; Roy, Bidisha; Kuskovsky, Igor L.; Shuvayev, Vladimir; Deligiannakis, Vasilios; Tamargo, Maria C.; Ludwig, Jonathan; Smirnov, Dmitry; Wang, Alice

    2014-10-28

    For submonolayer quantum dot (QD) based photonic devices, size and density of QDs are critical parameters, the probing of which requires indirect methods. We report the determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer QDs, based on spectral analysis of the optical signature of Aharanov-Bohm (AB) excitons, complemented by photoluminescence studies, secondary-ion mass spectroscopy, and numerical calculations. Numerical calculations are employed to determine the AB transition magnetic field as a function of the type-II QD radius. The study of four samples grown with different tellurium fluxes shows that the lateral size of QDs increases by just 50%, even though tellurium concentration increases 25-fold. Detailed spectral analysis of the emission of the AB exciton shows that the QD radii take on only certain values due to vertical correlation and the stacked nature of the QDs.

  17. Thermal Energy Harvesting with Thermoelectrics for Self-powered Sensors: With Applications to Implantable Medical Devices, Body Sensor Networks and Aging in Place

    E-Print Network [OSTI]

    Chen, Alic

    2011-01-01

    effective media theories for electrical conductivity andDesign theory of thermoelectric modules for electrical powerfact, many of the theories on the electrical conductivity of

  18. Lumped and Distributed Parameter SPICE Models of TE Devices Considering Temperature Dependent Material Properties

    E-Print Network [OSTI]

    D. Mitrani; J. Salazar; A. Turo; M. J. García; J. A. Chávez

    2008-01-07

    Based on simplified one-dimensional steady-state analysis of thermoelectric phenomena and on analogies between thermal and electrical domains, we propose both lumped and distributed parameter electrical models for thermoelectric devices. For lumped parameter models, constant values for material properties are extracted from polynomial fit curves evaluated at different module temperatures (hot side, cold side, average, and mean module temperature). For the case of distributed parameter models, material properties are calculated according to the mean temperature at each segment of a sectioned device. A couple of important advantages of the presented models are that temperature dependence of material properties is considered and that they can be easily simulated using an electronic simulation tool such as SPICE. Comparisons are made between SPICE simulations for a single-pellet module using the proposed models and with numerical simulations carried out with Mathematica software. Results illustrate accuracy of the distributed parameter models and show how inappropriate is to assume, in some cases, constant material parameters for an entire thermoelectric element.

  19. Freshwater Availability and Constraints on Thermoelectric Power Generation in the Southeast U.S.

    SciTech Connect (OSTI)

    David Feldman; Amanda Slough; Gary Garrett

    2008-06-01

    There is a myriad of uses to which our country's freshwater supply is currently committed. Together with increasing quantities of consumption, there are growing constraints on water availability. In our future there will be two elements of consumption at the forefront of concern: availability and efficiency. Availability of freshwater is the most important of these and is the subject of this report. To use water efficiently, we must first have it. Efficiency is key to ensuring availability for future needs. As population grows and economic and technology demands increase - especially for thermoelectric power - needs for freshwater will also increase. Thus, using our limited supplies of freshwater must be done as efficiently as possible. Thermoelectric generating industry is the largest user of our nation's water resources, including fresh, surface, ground, and saline water. Saline water use accounts for approximately 30% of thermoelectric use, while the remaining 70% is from freshwater sources. The U.S. Geological Survey (USGS) estimates that thermoelectric generation accounts for roughly 136,000 million gallons per day (MGD), or 39% of freshwater withdrawals. This ranks slightly behind agricultural irrigation as the top source of freshwater withdrawals in the U.S. in 2000. For Americans to preserve their standard of living and maintain a thriving economy it is essential that greater attention be paid to freshwater availability in efforts to meet energy demands - particularly for electric power. According to projections by the Energy Information Administration's (EIA) Annual Energy Outlook 2006 (AEO 2006) anticipated growth of thermoelectric generating capacity will be 22% between 2005 and 2030. In the 2007 Report, EIA estimates that capacity to grow from approximately 709 GW in 2005 to 862 GW in 20303. These large increases in generating capacity will result in increased water demands by thermoelectric power plants and greater competition over water between the energy sector and domestic, commercial, agricultural, industrial, and instream use sectors. The implications of these increased demands have not been adequately researched. This report is a preliminary effort to explore these implications. In addition, since this report was completed in draft form in 2007, there have been several updates and important issues brought to bear on water for energy that should be mentioned. Uncertainties include drought and climate change impacts. Policies such as commitments to Coal-to-Liquids (CTL) quotas; Ethanol production requirements; Carbon Capture and Storage (CCS) mandates; increasing nuclear power plant construction; valuing carbon and carbon dioxide emissions all have significant implications on water use and on the need for water in the power sector by 2025.

  20. Gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline type-I Ba{sub 8}Ga{sub x}Si{sub 46-x} (nominal x=14-18) clathrates prepared by combining arc melting and spark plasma sintering methods

    SciTech Connect (OSTI)

    Anno, Hiroaki; JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 ; Yamada, Hiroki; Nakabayashi, Takahiro; Hokazono, Masahiro; Shirataki, Ritsuko; JST, CREST, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075

    2012-09-15

    The gallium composition dependence of crystallographic and thermoelectric properties in polycrystalline n-type Ba{sub 8}Ga{sub x}Si{sub 46-x} (nominal x=14-18) compounds with the type-I clathrate structure is presented. Samples were prepared by combining arc melting and spark plasma sintering methods. Powder x-ray diffraction, Rietveld analysis, scanning electron microscopy, and energy-dispersive x-ray spectroscopy show that the solubility limit of gallium in the type-I clathrate phase is close to x=15, which is slightly higher than that for a single crystal. The carrier concentration at room temperature decreases from 2 Multiplication-Sign 10{sup 21} cm{sup -3} to 4 Multiplication-Sign 10{sup 20} cm{sup -3} as the Ga content x increases. The Seebeck coefficient, the electrical conductivity, and the thermal conductivity vary systematically with the carrier concentration when the Ga content x varies. The effective mass (2.0m{sub 0}), the carrier mobility (10 cm{sup 2} V{sup -1} s{sup -1}), and the lattice thermal conductivity (1.1 W m{sup -1} K{sup -1}) are determined for the Ga content x=14.51. The dimensionless thermoelectric figure of merit ZT is about 0.55 at 900 K for the Ga content x=14.51. The calculation of ZT using the experimentally determined material parameters predicts ZT=0.8 (900 K) at the optimum carrier concentration of about 2 Multiplication-Sign 10{sup 20} cm{sup -3}. - Graphical abstract: The gallium composition dependence of crystallographic and thermoelectric properties is presented on polycrystalline n-type Ba{sub 8}Ga{sub x}Si{sub 46-x} with the type-I clathrate structure prepared by combining arc melting and spark plasma sintering methods. The thermoelectric figure of merit ZT reaches 0.55 at 900 K due to the increase in the Ga content (close to x=15), and a calculation predicts further improvement of ZT at the optimized carrier concentration. Highlights: Black-Right-Pointing-Pointer Crystallographic properties of Ba{sub 8}Ga{sub x}Si{sub 46-x} clathrates are characterized. Black-Right-Pointing-Pointer Arc melting and spark plasma sintering process enables increase of Ga content. Black-Right-Pointing-Pointer We elucidate the Ga composition dependence of thermoelectric properties. Black-Right-Pointing-Pointer Thermoelectric figure of merit ZT is improved due to the increased Ga content. Black-Right-Pointing-Pointer Calculation predicts a potential ZT=0.8 at 900 K at optimized carrier concentration.