Powered by Deep Web Technologies
Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Delaware River Basin Commission (Multiple States)  

Broader source: Energy.gov [DOE]

The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

2

Recovery Act State Memos Delaware  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L dDepartment ofList?Department09 Section 9990|UpdatedColoradoDelaware

3

Categorical Exclusion Determinations: Delaware | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovember 26, 20149 CategoricalColorado CategoricalDelaware

4

Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Delaware  

SciTech Connect (OSTI)

Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Delaware.

Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

2013-11-01T23:59:59.000Z

5

Delaware Land Protection Act (Delaware)  

Broader source: Energy.gov [DOE]

The Land Protection Act requires the Department of Natural Resources and Environmental Control to work with the Delaware Open Space Council to develop standards and criteria for determining the...

6

Forestry Policies (Delaware)  

Broader source: Energy.gov [DOE]

Delaware's forests are managed by the State Forest Service (DFS), within the State Department of Agriculture. In 2010, the Forest Service issued its Resource Assessment and Strategy documents:

7

Delaware Recovery Act State Memo | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOEDealing With the Issues of NuclearHigh ImpactDelaware Recovery Act

8

The Impact of Creating Civil Unions for Same-Sex Couples on Delaware’s Budget  

E-Print Network [OSTI]

Marriage on California's Budget, 16 S TAN . L. & P OL . RSex Couples on Delaware’s Budget Jody Herman Craig Konnothnet expenditures in the state budget by a small average of $

Herman, Jody L.; Konnoth, Craig J.; Badgett, M.V. Lee

2011-01-01T23:59:59.000Z

9

Delaware Solid Waste Authority (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

10

Brownfield Assistance Program (Delaware)  

Broader source: Energy.gov [DOE]

The Brownfield Assistance Program, administrated by the Delaware Economic Development Office (DEDO) and funded from Delaware Strategic Fund, provides matching grants to owners and developers to...

11

Environmental Permit Application Background Statement (Delaware)  

Broader source: Energy.gov [DOE]

The purpose of Chapter 79 of Delaware Title 7 is to ensure that the State has adequate information about the background of applicants or regulated parties for the purposes of processing permits and...

12

Natural Gas Regulation- Delaware Public Service Commission (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Public Service Commission regulates only the distribution of natural gas to Delaware consumers. The delivery and administrative costs associated with natural gas distribution are...

13

Delaware Transportation Infrastructure Forum Problem Identification Statements  

E-Print Network [OSTI]

2013 Delaware Transportation Infrastructure Forum Problem Identification Statements Sponsored by The Delaware Center for Transportation and the Delaware Department of Transportation Delaware Center for Transportation Your main resource for transportation education and research Identifying Important Issues Related

Firestone, Jeremy

14

Hazardous Waste Management (Delaware)  

Broader source: Energy.gov [DOE]

The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

15

University of Delaware UNDERGRADUATE  

E-Print Network [OSTI]

Medical Institute c = National Science Foundation d = National Institute of Health e = Delaware Water: Causation for the severity difference between adult-onset and congenital Myotonic Dystrophy?. (47) Elizabeth

Firestone, Jeremy

16

Dam Safety (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Dam Safety Law was adopted in 2004 and provides the framework for proper design, construction, operation, maintenance, and inspection of dams in the interest of public health, safety,...

17

Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Greenhouse Gas Reduction Projects Grant Program is funded by the Greenhouse Gas Reduction Projects Fund, established by the Act to Amend Title 7 of the Delaware Code Relating to a...

18

Delaware Identity in the Cherokee Nation  

E-Print Network [OSTI]

This article examines how the Delawares responded to the challenges that living among the Cherokees posed to their identity. It also focuses on the question of how this forced co-residence developed and what the United States role in the matter was...

Haake, Claudia

2002-03-01T23:59:59.000Z

19

UNDERLYING MOTIVATIONS FOR DELAWARE PUBLIC PARTICIPATION IN SUPPORT OF OFFSHORE WIND  

E-Print Network [OSTI]

UNDERLYING MOTIVATIONS FOR DELAWARE PUBLIC PARTICIPATION IN SUPPORT OF OFFSHORE WIND: IMPLICATIONS PARTICIPATION IN SUPPORT OF OFFSHORE WIND: IMPLICATIONS FOR STATE ENERGY POLICY by Jacqueline D Piero Approved ................................................................................................. 3 Offshore wind: a new option in the United States.............................................. 4

Firestone, Jeremy

20

Delaware Electric Cooperative- Green Energy Fund  

Broader source: Energy.gov [DOE]

'''''Note: The Green Energy Fund regulations are currently under revision to improve program function and meet the requirements of the Delaware Energy Act. The Delaware Division of Energy and...

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

University of Delaware | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States:Delaware Jump to: navigation,

22

University of Delaware 2014 Campus Security and Fire Safety Report  

E-Print Network [OSTI]

of Criminal Actions or Emergencies 5 Access to Campus Facilities 6 Maintenance and Security of Campus://www.udel.edu//police/policies/missing-student.html The University of Delaware is a state-assisted, privately controlled institution of higher education. The main

Firestone, Jeremy

23

Delaware's Energy Efficiency Potential and Program Scenarios to Meet Its Energy Efficiency Resource Standard  

E-Print Network [OSTI]

, state, federal and international agencies and nonprofit organizations. The Center is composed and development, environmental justice, conservation and renewable energy options, integrated resource planningDelaware's Energy Efficiency Potential and Program Scenarios to Meet Its Energy Efficiency Resource

Delaware, University of

24

Chrome Deposit Corporation and the University of Delaware IAC...  

Broader source: Energy.gov (indexed) [DOE]

of Delaware students Joseph Camp and Nicole Suto; Keith Goossen, director of the Industrial Assessment Center; and Cesar Duarte, University of Delaware grad student. | Image...

25

Tax-Exempt Bond Financing (Delaware)  

Broader source: Energy.gov [DOE]

The Delaware Economic Development Authority provides tax-exempt bond financing for financial assistance to new or expanding businesses, governmental units and certain organizations that are exempt...

26

University of Delaware Energy Institute  

SciTech Connect (OSTI)

The main goal of this project funded through this DOE grant is to help in the establishment of the University of Delaware Energy Institute (UDEI) which is designed to be a long-term, on-going project. The broad mission of UDEI is to develop collaborative programs encouraging research activities in the new and emerging energy technologies and to partner with industry and government in meeting the challenges posed by the nation�s pressing energy needs.

Klein, Michael T

2012-09-30T23:59:59.000Z

27

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2001-09-28T23:59:59.000Z

28

Energy Conservation Standards for State Facilities  

Broader source: Energy.gov [DOE]

In August 2004, Delaware’s governor signed House Bill 435, requiring state agencies to purchase ENERGY STAR qualified products if they are available competitively and within a reasonable time frame...

29

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2003-09-30T23:59:59.000Z

30

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2000-09-28T23:59:59.000Z

31

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2002-09-21T23:59:59.000Z

32

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2005-09-30T23:59:59.000Z

33

Delaware Basin Monitoring Annual Report  

SciTech Connect (OSTI)

The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

2004-09-30T23:59:59.000Z

34

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Photovoltaic Systems  

E-Print Network [OSTI]

1 ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Photovoltaic Systems · Central issues in photovoltaic systems · Characteristics of energy systems & performance, these parameters determine the minimum effective system size. · Thermal-based systems are · PV systems are both

Honsberg, Christiana

35

CX-005651: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

State Energy Program - Renewable Energy Incentives - Ennis Residence Open Loop Heat Pump System CX(s) Applied: B5.1 Date: 04282011 Location(s): Greenwood, Delaware...

36

Delaware State Historic Preservation Programmatic Agreement  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix

37

Alternative Fuels Data Center: Delaware Information  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onAlternativeConnecticut Information to someoneDelaware

38

Community Energy Systems and the Law of Public Utilities. Volume Ten. Delaware  

SciTech Connect (OSTI)

A detailed description is given of the laws and programs of the State of Delaware governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

Feurer, D A; Weaver, C L

1981-01-01T23:59:59.000Z

39

Program Thursday, March 10, 2011 UNIVERSITY of DELAWARE  

E-Print Network [OSTI]

Program Thursday, March 10, 2011 UNIVERSITY of DELAWARE Energy Institute Annual Symposium www.energy, Institute of Energy Conversion 11:15 a.m. Solar Hydrogen Robert Opila - Professor, Materials Science.udel.edu March 10, 2011 8:00 a.m. ­ 6:00 p.m. John M. Clayton Hall Newark, DE UNIVERSITY of DELAWARE Energy

Firestone, Jeremy

40

PEPCO Energy Services (Delaware) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocusOski Energy LLC Place: Reno, NevadaOtterDelaware) Jump to:

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Delaware, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park, Ohio:Mar,Delaware

42

Delaware/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park, Ohio:Mar,DelawareResources <

43

Brookside, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBoston Areais a village in CookEnergy Information WarmDelaware:

44

Delaware Number of Natural Gas Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42YearDelaware Natural Gas7,541

45

Delaware Supplemental Supplies of Natural Gas  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42YearDelaware Natural2 0.2 0.22 2

46

Energy Incentive Programs, Delaware | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQBusinessin Jamaica, N.Y.EnergyDepartmentCaliforniaDelaware Energy

47

Smyrna, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,PvtSouth Dakota)Slovenia:SmilingSmithtownDelaware:

48

Claymont, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota: EnergyClaymont, Delaware:

49

University of Delaware Department of Electrical and Computer Engineering  

E-Print Network [OSTI]

University of Delaware Department of Electrical and Computer Engineering Computer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 Curve fit to calculate Var[ffi] in plot ffi 2 vs Norm . . . . . . . . . . . . . . 9 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 8 Error Curve analysis: tan (`) vs P i . . . . . . . . . . . . . . . . . . . . . 11 9 Dupont

Gao, Guang R.

50

University of Delaware Department of Electrical and Computer Engineering  

E-Print Network [OSTI]

University of Delaware Department of Electrical and Computer Engineering Computer Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 6 Curve t to calculate Var ] in plot 2 vs Norm . . . . . . . . . . . . . . 9 7 Distribution Error Curve analysis: tan ( ) vs Pi . . . . . . . . . . . . . . . . . . . . . 11 9 Dupont's Data: Square

Gao, Guang R.

51

Passive solar homes in Delaware Valley  

SciTech Connect (OSTI)

This paper examines ten single family residences in the Delaware Valley area which include passive solar design features. The study identifies successful and failed solar features of the houses, evaluates solar performance of a few houses, and examines occupants satisfaction with their houses. The study described in this paper includes the following: description of the overall passive solar design and listing of solar features used in each house, survey of each house in its present condition documenting changes to the original design (if any), summary of occupant questionnaire and interviews of house owners regarding their evaluation of house performance. Owners in this study retained positive attitude to their homes in spite of the problems with some solar features. Modifications to the solar features have been significant, but in no case was the solar aspect abandoned.

Kendig, J. [New Jersey Inst. of Tech., Princeton, NJ (United States)

1997-12-31T23:59:59.000Z

52

Methods for determining the physiological state of a plant  

DOE Patents [OSTI]

The present invention provides methods for measuring a photosynthetic parameter. The methods of the invention include the steps of: (a) illuminating a plant leaf until steady-state photosynthesis is achieved; (b) subjecting the illuminated plant leaf to a period of darkness; (c) using a kinetic spectrophotometer or kinetic spectrophotometer/fluorimeter to collect spectral data from the plant leaf treated in accordance with steps (a) and (b); and (d) determining a photosynthetic parameter from the spectral data. In another aspect, the invention provides methods for determining the physiological state of a plant.

Kramer, David M.; Sacksteder, Colette

2003-09-23T23:59:59.000Z

53

2013/2014 University of Delaware Library www.udel.edu/library WELCOME TO THE LIBRARY  

E-Print Network [OSTI]

2013/2014 University of Delaware Library www.udel.edu/library WELCOME TO THE LIBRARY Greetings, Welcome to the University of Delaware Library, which includes the Morris Library and three branch libraries. This is an exciting time for the University of Delaware Library, as more and more students

Firestone, Jeremy

54

2011/2012 University of Delaware Library www.udel.edu/library WELCOME TO THE LIBRARY  

E-Print Network [OSTI]

2011/2012 University of Delaware Library www.udel.edu/library WELCOME TO THE LIBRARY New Library Home Page University of Delaware Library OFFICE OF THE VICE PROVOST & MAY MORRIS DIRECTOR OF LIBRARIES-831-2231 Fax: 302-831-1046 Greetings, Welcome to the University of Delaware Library which includes the Morris

Gao, Guang R.

55

CX-006152: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

State Energy Program - Renewable Energy Incentives - Osler Residence Open Loop Heat Pump System CX(s) Applied: B5.1 Date: 07132011 Location(s): Lewes, Delaware Office(s):...

56

CX-006151: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

State Energy Program - Renewable Energy Incentives - Ivins Residence Open Loop Heat Pump System CX(s) Applied: B5.1 Date: 07132011 Location(s): Lewes, Delaware Office(s):...

57

CX-006150: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

State Energy Program - Renewable Energy Incentives - Martin Residence Closed Loop Heat Pump System CX(s) Applied: B5.1 Date: 07132011 Location(s): Lewes, Delaware Office(s):...

58

CX-006153: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

State Energy Program - Renewable Energy Incentives - Schwartz Residence Closed Loop Heat Pump System CX(s) Applied: B5.1 Date: 07132011 Location(s): Lewes, Delaware Office(s):...

59

CX-005136: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-005136: Categorical Exclusion Determination Wind Turbine Infrastructure for Green Energy and Research on Wind Power in Delaware CX(s) Applied: A9, B3.1 Date: 0208...

60

Community Police Academy Hosted By: University of Delaware Police  

E-Print Network [OSTI]

Community Police Academy Hosted By: University of Delaware Police When: Wednesdays, 6:00 p.m. - 9:00 p.m. (March 4th through April 29th , 2015) Where: 413 Academy Street Newark DE 19716 - University should I expect to learn: The Community Police Academy (CPA) is an informative learning process

Firestone, Jeremy

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project  

Broader source: Energy.gov [DOE]

The University of Delaware has constructed a wind turbine adjacent to its College of Earth, Ocean, and Environment campus in Lewes, Delaware. DOE proposed to provide the University a $1.43 million grant for this Wind Energy Project from funding provided in the Omnibus Appropriations Act of 2009 (Public Law 111-8) and an additional $1 million provided in the Energy and Water Development Appropriations Act of Fiscal Year 2010. This EA analyzed the potential environmental impacts of the University of Delaware’s Wind Energy Project at its Lewes campus and, for purposes of comparison, an alternative that assumes the wind turbine had not been constructed.

62

Chrome Deposit Corporation and the University of Delaware IAC: Another Energy Efficiency Success Story  

Broader source: Energy.gov [DOE]

Following an Energy Savings Assessment conducted by the University of Delaware's Industrial Assessment Center, Chrome Deposit Corporation's Newark, DE plant is seeing significant energy savings.

63

Delaware Company Breathes New Life into Old Post Office Building |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ Title Standards forDepartment of Energy Delaware

64

Hess Retail Natural Gas and Elec. Acctg. (Delaware) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: EnergyPower FinanceInformation Delaware References: EIA

65

Valuing Public Preferences for Offshore Wind Power Andrew D. Krueger, University of Delaware, College of Marine and Earth Studies  

E-Print Network [OSTI]

Valuing Public Preferences for Offshore Wind Power Andrew D. Krueger, University of Delaware there are no offshore projects operating in the U.S. to date, proposals for such developments are pending in Massachusetts, New York, Delaware, and Texas. For Delaware, offshore wind power is currently the only cost

Firestone, Jeremy

66

BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF DELAWARE  

E-Print Network [OSTI]

and an "Additional Coal Retirements" case. 2. Impact of recent NYMEX natural gas prices on Conectiv's proposal. 3 these assumptions. With additional coal retirements assumed in the region, the impact on market prices and SOS costs-term power sale from its proposed coal-fired integrated gasification combined cycle (IGCC) project. 4. PJM

Firestone, Jeremy

67

BEFORE THE PUBLIC SERVICE COMMISSION OF THE STATE OF DELAWARE  

E-Print Network [OSTI]

.................................................................................................................................. 12 IV. GENERATION AND/OR TRANSMISSION CAPACITY SHORTFALL-INDUCED PRICE AND RELIABILITY RISKS. § 1007(c) & (d): REVIEW AND APPROVAL OF THE REQUEST FOR PROPOSALS FOR THE CONSTRUCTION OF NEW GENERATION............................................................................................... 16 A. GENERATION SUPPLY AND DEMAND IMBALANCE RISKS

Firestone, Jeremy

68

Delaware State Historic Preservation Programmatic Agreement | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. DepartmenttoJune

69

Clean Cities: State of Delaware Clean Cities coalition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New SubstationClean Communities of Western NewSouth Shore CleanSt. Louis Clean

70

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Cell Operation  

E-Print Network [OSTI]

is lost as heat. energy Eg 2 31 Absorption process #12;ELEG620: Solar Electric Systems UniversityELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Cell and shunt resistance). #12;ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C

Honsberg, Christiana

71

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Introduction  

E-Print Network [OSTI]

of Delaware, ECE Spring 2008 C. Honsberg Sources of energy Geothermal: Location of resource Wind: Site issues · Importance of energy issue · Impact of photovoltaic power · Electricity generation overview · Why use solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Importance of the energy problem

Honsberg, Christiana

72

Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project Site  

E-Print Network [OSTI]

Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project wind power project site, we conducted an analysis of the suitability of habitat within the project of potential risk to the species. #12;Corn Snake ­ Fairly common in Delaware, but is not likely to be present

Firestone, Jeremy

73

Consolidated Edison Sol Inc (Delaware) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) | Open EnergyConductiveInternational JumpDelaware

74

Delaware - Compare - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2.Reformulated, AverageCoos Bay Field Gulf Coast CoalData6)2Delaware

75

Delaware County Elec Coop Inc | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park, Ohio:Mar,Delaware County Elec Coop

76

Delaware County, Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park, Ohio:Mar,Delaware County Elec

77

Delaware County, Iowa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park, Ohio:Mar,Delaware County

78

Delaware County, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park, Ohio:Mar,Delaware CountyCounty is a

79

Delaware County, Oklahoma: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park, Ohio:Mar,Delaware CountyCounty is

80

Delaware County, Pennsylvania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park, Ohio:Mar,Delaware CountyCounty

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42YearDelaware Natural Gas Vehicle

82

Delaware Price of Natural Gas Delivered to Residential Consumers (Dollars  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42YearDelaware Natural Gas7,541per

83

Town of Smyrna, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop, IncTipmont RuralMiddletown Place:InformationSmyrna, Delaware

84

Delaware - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperativeA2. World liquids consumption by9 U.S.Colorado -Delaware - Seds - U.S.

85

City of Newark, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy Nebraska (UtilityGeorgia (Utility Company)InformationDelaware

86

Delaware Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National Science Bowl® (NSB)DecemberDelaware

87

University of Delaware Wind | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States:

88

DETERMINING THE ORIGINS OF ELECTRONIC STATES IN SEMICONDUCTOR NANOSTRUCTURES  

SciTech Connect (OSTI)

With support from this program, we have generated key results in quantum dot (QD) formation, strain/electronic coupling, measurement and modeling of confined states, and examination of the influence of QDs on thermoelectric and photovoltaic properties of nanocomposite structures. This final report contains a description of our key findings followed by a list of personnel supported and publications generated.

Goldman, Rachel

2014-12-16T23:59:59.000Z

89

Quantum discord determines the interferometric power of quantum states  

E-Print Network [OSTI]

Quantum metrology exploits quantum mechanical laws to improve the precision in estimating technologically relevant parameters such as phase, frequency, or magnetic fields. Probe states are usually tailored on the particular dynamics whose parameters are being estimated. Here we consider a novel framework where quantum estimation is performed in an interferometric configuration, using bipartite probe states prepared when only the spectrum of the generating Hamiltonian is known. We introduce a figure of merit for the scheme, given by the worst case precision over all suitable Hamiltonians, and prove that it amounts exactly to a computable measure of discord-type quantum correlations for the input probe. We complement our theoretical results with a metrology experiment, realized in a highly controllable room-temperature nuclear magnetic resonance setup, which provides a proof-of-concept demonstration for the usefulness of discord in sensing applications. Discordant probes are shown to guarantee a nonzero precision in the estimation procedure for different generating Hamiltonians, while classically correlated probes are unable to accomplish the estimation in a worst case setting. This work establishes a rigorous and direct operational interpretation for general quantum correlations, shedding light on their potential for quantum technology.

Davide Girolami; Alexandre M. Souza; Vittorio Giovannetti; Tommaso Tufarelli; Jefferson G. Filgueiras; Roberto S. Sarthour; Diogo O. Soares-Pinto; Ivan S. Oliveira; Gerardo Adesso

2014-05-28T23:59:59.000Z

90

Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States  

E-Print Network [OSTI]

and Michigan, thus it remains to be seen whether the solarsolar capacity. Three other states (Washington, Texas, and Michigan)Michigan, Texas, Washington, Colorado 14 ); similarly, Delaware offers a time-limited multiplier for in-state solar (and

Wiser, Ryan

2010-01-01T23:59:59.000Z

91

Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries  

E-Print Network [OSTI]

Electrolyte Stability Determines Scaling Limits for Solid-State 3D Li Ion Batteries Dmitry Ruzmetov, all-solid-state Li ion batteries (LIBs) with high specific capacity and small footprint are highly to their high-energy density, Li ion batteries (LIBs) are attractive for these applications, and all-solid-state

Rubloff, Gary W.

92

Weatherization Builds on Delaware's Innovative Past: Weatherization Assistance Close-Up Fact Sheet  

SciTech Connect (OSTI)

Delaware demonstrates its commitment to technology and efficiency through the Weatherization Program. Weatherization uses advanced technologies and techniques to reduce energy costs for low-income families by increasing the energy efficiency of their homes.

D& R International

2001-10-10T23:59:59.000Z

93

Surface Currents and Winds at the Delaware Bay Mouth  

SciTech Connect (OSTI)

Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds and currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.

Muscarella, P A; Barton, N P; Lipphardt, B L; Veron, D E; Wong, K C; Kirwan, A D

2011-04-06T23:59:59.000Z

94

Methods of determining the optimum state of maturity for picking greenwrap tomatoes  

E-Print Network [OSTI]

L IB R AR Y A&M COLLEGE OF TEXAS METHODS OF DETERMINING THE OPTIMUM STATE OF MATURITY FOR PICKING GREENWRAP TOMATOES A Dissertation By HAROLD BENJAMIN SORENSEN Submitted to the Graduate School of the Agricultural and Mechanical College... of Texas in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 1955 Major Subject: Horticulture ii METHODS OF DETERMINING THE OPTIMUM STATE OF MATURITT FOR PICKING GRSENWRAP TOMATOES A Dissertation By HAROLD BENJAMIN...

Sorensen, H. B.

1955-01-01T23:59:59.000Z

95

ELEG620: Solar Electric Systems University of Delaware Spring 2008 1 University of Delaware  

E-Print Network [OSTI]

Department of Electrical and Computer Engineering ELEG620: Solar Electric Systems Photovoltaic System Design-alone photovoltaic system. Working in groups, you will: · Decide on a load and design goal for your system; · Write system is to determine the type and size of the system. You are given substantial latitude in choosing

Honsberg, Christiana

96

Technosocial Modeling for Determining the Status and Nature of a State’s Nuclear Activities  

SciTech Connect (OSTI)

The International Atomic Energy Agency State Evaluation Process: The Role of Information Analysis in Reaching Safeguards Conclusions (Mathews et al. 2008), several examples of nonproliferation models using analytical software were developed that may assist the IAEA with collecting, visualizing, analyzing, and reporting information in support of the State Evaluation Process. This paper focuses on one of the examples a set of models developed in the Proactive Scenario Production, Evidence Collection, and Testing (ProSPECT) software that evaluates the status and nature of a state’s nuclear activities. The models use three distinct subject areas to perform this assessment: the presence of nuclear activities, the consistency of those nuclear activities with national nuclear energy goals, and the geopolitical context in which those nuclear activities are taking place. As a proof-of-concept for the models, a crude case study was performed. The study, which attempted to evaluate the nuclear activities taking place in Syria prior to September 2007, yielded illustrative, yet inconclusive, results. Due to the inconclusive nature of the case study results, changes that may improve the model’s efficiency and accuracy are proposed.

Gastelum, Zoe N.; Harvey, Julia B.

2009-09-25T23:59:59.000Z

97

Distribution and generation of the overpressure system, Eastern Delaware Basin, Western Texas and Southern New Mexico: Discussion  

SciTech Connect (OSTI)

Interest in the paper by Luo et al. (1994) on Delaware basin overpressure was probably as great among drilling and completion engineers as the geologic community because of the obvious implications on drilling mud and well tubular programs. However, there are some inaccuracies in the paper`s comments relating to drill-stem test (DST) interpretation, which Luo et al. used to predict formation pressures in the study area. Referring to figure 3 in the paper, the authors identify points a and e as initial and final hydrostatic pressures (IHP and FP, respectively). Luo et al. state, `...the IHP and FHP represent the true fluid pressure of the formation at the depth of the testing tool.` The IHP and FP values actually represent the pressure exerted by the column of mud of a given weight in the well bore at the depth of the gauge, rather than the true fluid pressure of the formation.

Cox, D.L. [Mobil Exploration and Producing, Midland, TX (United States)

1995-12-01T23:59:59.000Z

98

Subscriber access provided by University of Delaware | Library Environmental Science & Technology is published by the American Chemical Society.  

E-Print Network [OSTI]

Subscriber access provided by University of Delaware | Library Environmental Science & Technology + 300Ã?7 = 704923 Page 1 of 28 ACS Paragon Plus Environment Environmental Science & Technology 1 2 3 4 5. Sparks1 6 7 1 Environmental Soil Chemistry Group, Delaware Environmental Institute and Department

Sparks, Donald L.

99

Implementation of the El Mar (Delaware) Unit CO2 flood  

SciTech Connect (OSTI)

Union Royalty, Inc., Amoco Production Company, and Enron Liquids Pipeline Company recently announced that they have commenced operations of an innovative enhanced oil recovery project at the El Mar (Delaware) Unit in Loving County, Texas, about 100 miles west of Midland, Texas. The project will convert the unit`s existing oil recovery system from a secondary (waterflood) system to a tertiary (CO2 flood) system designed to use carbon dioxide and water to increase crude oil production from the unit. What makes this EOR project unique is the creative deal structured by the partners involved. Amoco, Union Royalty, and Enron have worked out an unprecedented arrangement whereby Amoco essentially trades CO2 for an interest in Union Royalty`s future oil production from the unit. By pioneering this innovative deal new production life has been restored to a field that otherwise might dry up. Enron is participating in the project by transporting CO2 to the unit via a 40-mile expansion of its Central Basin Pipeline system from the Dollarhide oil field in Andrews county, Texas. The project will be implemented in four phases. The first phase in operation today comprises seven CO2 injection wells which have begun to process the reservoir with CO2. Plans now call for more CO2 injectors to be installed during the next three to five years until a total of 65 CO2 injectors and an on-site CO2 compression facility serve the unit`s 70 production wells.

McKnight, T.N. Jr. [Union Royalty, Inc., Midland, TX (United States); Merchant, D.L.

1995-12-31T23:59:59.000Z

100

Determination of Peptide Amide Configuration in a Model Amyloid Fibril by Solid-State NMR  

E-Print Network [OSTI]

-42, with sequence LMVGGVVIA) forms a structured aggregate which is classified as an amyloid fibril based primarilyDetermination of Peptide Amide Configuration in a Model Amyloid Fibril by Solid-State NMR P. R these aggregates form. The primary constituent of the amyloid plaques characteristic of AD are a family of 39

Griffin, Robert G.

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

State-determinate foraging decisions and web architecture in the spider Dictyna volucripes  

E-Print Network [OSTI]

State-determinate foraging decisions and web architecture in the spider Dictyna volucripes (Araneae informa- tion about the environment. We examined the relationship of web architecture and foraging decisions in the tangle web-building spider Dictyna volucripes Key- serling, a common spider in North

Blackledge, Todd

102

Charge states rather than propensity for -structure determine enhanced fibrillogenesis in wild-type  

E-Print Network [OSTI]

Charge states rather than propensity for -structure determine enhanced fibrillogenesis in wild -peptide relative to that of the wild-type peptide has been observed. The increased activity has been; Watson et al. 1999; Esler et al. 2000a). Two particular natu- rally occurring mutant forms of the wild

Straub, John E.

103

Fuzzy Logic-Based State-of-Health Determination of PEM Craig Fennie and David Reisner  

E-Print Network [OSTI]

and increasing their development efforts to reduce the cost of fuel cell stacks, preparing for introductionFuzzy Logic-Based State-of-Health Determination of PEM Fuel Cells Craig Fennie and David Reisner US University Villanova, PA 19085 Abstract Proton exchange membrane (PEM) fuel cells are being rapidly developed

Singh, Pritpal

104

Low-Lying Exciton States Determine the Photophysics of Semiconducting Single Wall Carbon Nanotubes  

E-Print Network [OSTI]

, Garry Rumbles, and Michael J. Heben a National Renewable Energy Laboratory, MS 3216, 1617 Cole Boule excited states are strongly bound excitons, with transition energies determined by the SWNT diameter.12 fluorescence quantum yield of the material20 (f * Corresponding author. National Renewable Energy Laboratory

Tretiak, Sergei

105

Determining Transition State Geometries in Liquids Using 2D-IR  

SciTech Connect (OSTI)

Many properties of chemical reactions are determined by the transition state connecting reactant and product, yet it is difficult to directly obtain any information about these short-lived structures in liquids. We show that two-dimensional infrared (2D-IR) spectroscopy can provide direct information about transition states by tracking the transformation of vibrational modes as a molecule crossed a transition state. We successfully monitored a simple chemical reaction, the fluxional rearrangement of Fe(CO)5, in which the exchange of axial and equatorial CO ligands causes an exchange of vibrational energy between the normal modes of the molecule. This energy transfer provides direct evidence regarding the time scale, transition state, and mechanism of the reaction.

Harris, Charles; Cahoon, James F.; Sawyer, Karma R.; Schlegel, Jacob P.; Harris, Charles B.

2007-12-11T23:59:59.000Z

106

Differential Supply of Autochthonous Organic Carbon and Nitrogen to the Microbial Loop in the Delaware Estuary  

E-Print Network [OSTI]

Differential Supply of Autochthonous Organic Carbon and Nitrogen to the Microbial Loop to heterotrophic bacteria (bacteria) has been re-evaluated in the Delaware Estuary, considering carbon (C sources of organic matter to the estuarine microbial loop. Introduction The fate of organic matter

107

Geothermal energy: tomorrow's alternative today. A handbook for geothermal-energy development in Delaware  

SciTech Connect (OSTI)

This is a general procedure guide to various technical, economic, and institutional aspects of geothermal development in Delaware. The following are covered: geothermal as an alternative, resource characteristics, geology, well mechanics and pumping systems, fluid disposal, direct heat utilization-feasibility, environmental and legal issues, permits and regulations, finance and taxation, and steps necessary for geothermal development. (MHR)

Mancus, J.; Perrone, E.

1982-08-01T23:59:59.000Z

108

University of Delaware Technical Analysis for On-Site Wind Generation  

E-Print Network [OSTI]

. The information and analyses presented herein is based on wind development best practices, commercially available Generation At the University of Delaware iii DISCLAIMER This report is presented in response to the contract-1 12 Month Electricity Usage Data 21 Figure 3-2 Average Demand by Month 21 Figure 3-3 PPCA Charge

Firestone, Jeremy

109

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Radiation  

E-Print Network [OSTI]

ELEG620: Solar Electric Systems University of Delaware, ECE Spring 2008 C. Honsberg Solar Radiation Solar Radiation: Effects of atmosphere, angular dependence of radiation, variation of solar radiation ­ Calculation of Solar Radiation: · Estimate of intensity of solar radiation · Angular Dependence ­ Solar Noon

Honsberg, Christiana

110

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Standard Chlorine of Delaware Superfund Site in Delaware City, Delaware. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

SciTech Connect (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Standard Chlorine of Delaware site in Delaware City, Delaware, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

2013-06-01T23:59:59.000Z

111

Subscriber access provided by University of Delaware | Library Environmental Science & Technology is published by the American Chemical Society.  

E-Print Network [OSTI]

Subscriber access provided by University of Delaware | Library Environmental Science & Technology is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Article Arsenic

Sparks, Donald L.

112

Authigenic clay minerals in sandstones of the Delaware Mountain Group: Bell Canyon and Cherry Canyon Formations, Waha Field, West Texas  

E-Print Network [OSTI]

AUTHIGENIC CLAY MINERALS IN SANDSTONES OF THE DELAWARE MOUNTAIN GROUP: BELL CANYON AND CHERRY CANYON FORMATIONS, WAHA FIELD, WEST TEXAS A Thesis by SUZETTE DENISE WALLING Submitted to the Office of Graduate Studies of Texas A&M University... in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1992 Major Subject: Geology AUTHIGENIC CLAY MINERALS IN SANDSTONES OF THE DELAWARE MOUNTAIN GROUP: BELL CANYON AND CHERRY CANYON FORMATIONS, WAHA FIELD, WEST TEXAS...

Walling, Suzette Denise

1992-01-01T23:59:59.000Z

113

Recent progress on the accurate determination of the equation of state of neutron and nuclear matter  

E-Print Network [OSTI]

The problem of accurately determining the equation of state of nuclear and neutron matter at density near and beyond saturation is still an open challenge. In this paper we will review the most recent progress made by means of Quantum Monte Carlo calculations, which are at present the only ab-inito method capable to treat a sufficiently large number of particles to give meaningful estimates depending only on the choice of the nucleon-nucleon interaction. In particular, we will discuss the introduction of density-dependent interactions, the study of the temperature dependence of the equation of state, and the possibility of accurately studying the effect of the onset of hyperons by developing an accurate hyperon-nucleon and hyperon-nucleon-nucleon interaction.

Paolo Armani; Alexey Yu. Illarionov; Diego Lonardoni; Francesco Pederiva; Stefano Gandolfi; Kevin E. Schmidt; Stefano Fantoni

2011-10-05T23:59:59.000Z

114

Determination of the polarization state of x rays with the help of anomalous transmission  

SciTech Connect (OSTI)

Besides intensity and direction, the polarization of an electromagnetic wave provides characteristic information on the crossed medium. Here, we present two methods for the determination of the polarization state of x rays by polarizers based on anomalous transmission (Borrmann effect). Using a polarizer-analyzer setup, we have measured a polarization purity of less than 1.5?×?10{sup ?5}, three orders of magnitude better than obtained in earlier work. Using the analyzer crystal in multiple-beam case with slightly detuned azimuth, we show how the first three Stokes parameters can be determined with a single angular scan. Thus, polarization analyzers based on anomalous transmission make it possible to detect changes of the polarization in a range from degrees down to arcseconds.

Schulze, K. S., E-mail: kai.sven.schulze@uni-jena.de; Uschmann, I.; Förster, E. [Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena (Germany); Marx, B.; Paulus, G. G. [Institut für Optik und Quantenelektronik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Stöhlker, T. [Helmholtz-Institut Jena, Fröbelstieg 3, D-07743 Jena (Germany)

2014-04-14T23:59:59.000Z

115

Solid state nuclear magnetic resonance methodology and applications to structure determination of peptides, proteins and amyloid fibrils  

E-Print Network [OSTI]

Several methodological developments and applications of multidimensional solid-state nuclear magnetic resonance to biomolecular structure determination are presented. Studies are performed in uniformly 3C, 15N isotope ...

Jaroniec, Christopher P

2003-01-01T23:59:59.000Z

116

An Extended Dead-End Elimination Algorithm to Determine Gap-Free Lists of Low Energy States  

E-Print Network [OSTI]

modelling; global energy minimum; bacteriorhodopsin; protonation state; pH titration; X-DEE; dead of lowest free energy is the most prob- able and thus of primary interest in structural research. ProteinsAn Extended Dead-End Elimination Algorithm to Determine Gap-Free Lists of Low Energy States EDDA

Ullmann, G. Matthias

117

GABA{sub A} receptor open-state conformation determines non-competitive antagonist binding  

SciTech Connect (OSTI)

The {gamma}-aminobutyric acid (GABA) type A receptor (GABA{sub A}R) is one of the most important targets for insecticide action. The human recombinant {beta}3 homomer is the best available model for this binding site and 4-n-[{sup 3}H]propyl-4'-ethynylbicycloorthobenzoate ([{sup 3}H]EBOB) is the preferred non-competitive antagonist (NCA) radioligand. The uniquely high sensitivity of the {beta}3 homomer relative to the much-less-active but structurally very-similar {beta}1 homomer provides an ideal comparison to elucidate structural and functional features important for NCA binding. The {beta}1 and {beta}3 subunits were compared using chimeragenesis and mutagenesis and various combinations with the {alpha}1 subunit and modulators. Chimera {beta}3/{beta}1 with the {beta}3 subunit extracellular domain and the {beta}1 subunit transmembrane helices retained the high [{sup 3}H]EBOB binding level of the {beta}3 homomer while chimera {beta}1/{beta}3 with the {beta}1 subunit extracellular domain and the {beta}3 subunit transmembrane helices had low binding activity similar to the {beta}1 homomer. GABA at 3 {mu}M stimulated heteromers {alpha}1{beta}1 and {alpha}1{beta}3 binding levels more than 2-fold by increasing the open probability of the channel. Addition of the {alpha}1 subunit rescued the inactive {beta}1/{beta}3 chimera close to wildtype {alpha}1{beta}1 activity. EBOB binding was significantly altered by mutations {beta}1S15'N and {beta}3N15'S compared with wildtype {beta}1 and {beta}3, respectively. However, the binding activity of {alpha}1{beta}1S15'N was insensitive to GABA and {alpha}1{beta}3N15'S was stimulated much less than wildtype {alpha}1{beta}3 by GABA. The inhibitory effect of etomidate on NCA binding was reduced more than 5-fold by the mutation {beta}3N15'S. Therefore, the NCA binding site is tightly regulated by the open-state conformation that largely determines GABA{sub A} receptor sensitivity. - Graphical Abstract: Display Omitted Research Highlights: > The {beta}1 and {beta}3 subunits were compared by chimeragenesis, mutagenesis and modulators. > Low {beta}1 NCA binding was rescued by replacing its transmembrane helices with those of {beta}3. > GABA at 3 {mu}M stimulated heteromers {alpha}1{beta}1 and {alpha}1{beta}3 binding levels more than 2-fold. > Mutation at 15' position in TM2 reduced GABA stimulation of NCA binding. > The open-state conformation largely determines GABAA receptor sensitivity to NCAs.

Chen Ligong [Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720 (United States); Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158 (United States); Xue Ling [Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720 (United States); Giacomini, Kathleen M. [Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA 94158 (United States); Casida, John E., E-mail: ectl@berkeley.edu [Environmental Chemistry and Toxicology Laboratory, Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720 (United States)

2011-02-01T23:59:59.000Z

118

Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC  

SciTech Connect (OSTI)

The 2012 International Energy Conservation Code (IECC) yields positive benefits for Delaware homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Delaware homeowners will save $10,409 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $616 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-04-01T23:59:59.000Z

119

Determining the whole pure symmetric N-qubit state from its parts  

E-Print Network [OSTI]

The Majorana representation of symmetric N-qubit states is employed here to investigate how correlation information of the whole pure symmetric state gets imprinted in its parts. It is shown that reduced states of (N - 1) qubits uniquely specify the entire class of pure N qubit states containing two distinct spinors.

A R Usha Devi; Sudha; A. K. Rajagopal

2010-03-12T23:59:59.000Z

120

Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42YearDelaware Natural Gas

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Delaware Price of Natural Gas Sold to Commercial Consumers (Dollars per  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42YearDelaware Natural

122

Delaware Share of Total U.S. Natural Gas Delivered to Consumers  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42YearDelaware Natural2 0.2 0.2

123

CX-011758: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

University of Delaware - Synthetic Methylotrophy to Liquid Fuel CX(s) Applied: B3.6 Date: 12/19/2013 Location(s): Delaware, New York Offices(s): Advanced Research Projects Agency-Energy

124

University of Delaware Institute of Energy Conversion | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTagusparkCalculator JumpUnited States: EnergyInstitutionalNewJump

125

Gas energy meter for inferential determination of thermophysical properties of a gas mixture at multiple states of the gas  

DOE Patents [OSTI]

A gas energy meter that acquires the data and performs the processing for an inferential determination of one or more gas properties, such as heating value, molecular weight, or density. The meter has a sensor module that acquires temperature, pressure, CO2, and speed of sound data. Data is acquired at two different states of the gas, which eliminates the need to determine the concentration of nitrogen in the gas. A processing module receives this data and uses it to perform a "two-state" inferential algorithm.

Morrow, Thomas B. (San Antonio, TX); Kelner, Eric (San Antonio, TX); Owen, Thomas E. (Helotes, TX)

2008-07-08T23:59:59.000Z

126

Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project  

SciTech Connect (OSTI)

The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

Martin, F.D.; Kendall, R.P.; Whitney, E.M. [Dave Martin and Associates, Inc., Socorro, NM (United States)] [and others

1997-08-01T23:59:59.000Z

127

POST-CONSTRUCTION AVIAN AND BAT IMPACT ASSESSMENT OF THE UNIVERSITY OF DELAWARE WIND TURBINE IN LEWES, DE  

E-Print Network [OSTI]

POST-CONSTRUCTION AVIAN AND BAT IMPACT ASSESSMENT OF THE UNIVERSITY OF DELAWARE WIND TURBINE-831-1306 In May 2010, a Gamesa G90 2.0 megawatt wind turbine was erected in Lewes, DE through a collaborative Developments, Inc. The turbine was commissioned and began generating electricity in June 2010. The turbine has

Firestone, Jeremy

128

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III  

SciTech Connect (OSTI)

The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

Dutton, Shirley P.; Flanders, William A.

2001-11-04T23:59:59.000Z

129

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III  

SciTech Connect (OSTI)

The objective of this Class 3 project was demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstone's of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover oil more economically through geologically based field development. This project was focused on East Ford field, a Delaware Mountain Group field that produced from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 9160, is operated by Oral Petco, Inc., as the East Ford unit. A CO2 flood was being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

Dutton, Shirley P.; Flanders, William A.; Mendez, Daniel L.

2001-05-08T23:59:59.000Z

130

Long-term determination of airborne radon progeny concentrations using LR 115 solid-state nuclear track detectors  

E-Print Network [OSTI]

Long-term determination of airborne radon progeny concentrations using LR 115 solid-state nuclear. Introduction The radon-related absorbed dose in the lung is mainly due to short-lived radon progeny, i.e., 218-term measurements of the concentrations of radon progeny or the equilibrium factor F, among other information

Yu, K.N.

131

Delaware State University | OSTI, US Dept of Energy, Office of Scientific  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data Files 1B&W Y-12studies inBImpact ofand

132

Solar energy system demonstration project at Wilmington Swim School, New Castle, Delaware. Final report  

SciTech Connect (OSTI)

This document is the Final Report of the Solar Energy System located at the Wilmington, Swim School, New Castle, Delaware. This active solar system is composed of 2,700 square feet of Revere liquid flat plate collectors piped to a 2,800 gallon concrete storage tank located below ground near the building. A micro-computer based control system selects the optimal applications of the stored energy among space, domestic water and pool alternatives. The controlled logic is planned for serving the heat loads in the following order: space heat-new addition, domestic water-entire facility, and pool heating-entire facility. A modified trombe wall passive operation the active system will bypass the areas being served passively. The system was designed for a 40 percent heating and a 30 percent hot water solar contribution.

None

1980-07-01T23:59:59.000Z

133

Determination of the finite temperature equation of state of dense matter  

SciTech Connect (OSTI)

The equation of state is calculated for temperatures less than 30 MeV and densities less than four times the saturation density of nuclear matter using a combined analysis of Auxiliarly Fields Diffusion Monte Carlo and Fermi Hypernetted Change methods.

Illarionov, A. Yu., E-mail: illario@science.unitn.it [Dipartimento di Fisica dell'Universita di Trento (Italy); Fantoni, S., E-mail: fantoni@sissa.it [SISSA Trieste, International School for Advanced Studies (Italy); Pederiva, F., E-mail: pederiva@science.unitn.it [Dipartimento di Fisica dell'Universita di Trento (Italy); Gandolfi, S., E-mail: stefano@lanl.gov [Los Alamos National Laboratory, Theoretical Division (United States); Schmidt, K. E., E-mail: kevin.schmidt@asu.edu [Arizona State University, Department of Physics (United States)

2012-07-15T23:59:59.000Z

134

Gamma-ray induced Doppler broadening and the determination of lifetimes of excited nuclear states  

SciTech Connect (OSTI)

Measurements of lifetimes of excited states in nuclei yield crucial information for sensitive tests of nuclear models. Here a novel method will be discussed which involves the GRID (Gamma Ray Induced Doppler broadening) technique, in which Doppler broadening is observed in a transition from a nucleus recoiling from the emission of a previous gamma ray. As the recoil energy is extremely small, ultra-high energy resolving power has to be used. To date all such experiments have been carried out at ILL using the GAMS4 double flat crystal spectrometer which is operated in a NIST-ILL collaboration. The method can be used for all lifetimes below a few picoseconds. The wide range of applicability, together with the very exhaustive set of data often obtained, is an advantage with respect to many other methods. The characteristic features of GRID will be discussed using some selected examples. 21 refs., 8 figs.

Boerner, H.G.; Jolie, J.; Robinson, S.J. (Institut Laue-Langevin, 38 - Grenoble (France)); Kessler, E.G.; Dewey, S.M.; Greene, G.; Deslattes, R. (National Inst. of Standards and Technology, Gaithersburg, MD (USA)); Ulbig, S.; Lieb, K.P. (Goettingen Univ. (Germany, F.R.)); Casten, R.F. (Brookhaven National Lab., Upton, NY (USA)); Krusche, B. (Giessen Univ. (Germany, F.R.)); Cizewski, J.A. (Rutgers--the

1990-01-01T23:59:59.000Z

135

Determination of interfacial states in solid heterostructures using a variable-energy positron beam  

DOE Patents [OSTI]

A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO[sub 2]/Si, MOS or other semiconductor devices.

Asokakumar, P.P.V.; Lynn, K.G.

1993-04-06T23:59:59.000Z

136

Microbial enhanced waterflooding pilot project, Mink Unit, Delaware-Childers (OK) field  

SciTech Connect (OSTI)

The first microbial-enhanced waterflood field project was initiated in October of 1986. The site selected for the project is in the Mink Unit of Delaware-Childers field in Nowata County, Oklahoma. The pilot area consists of four adjacent inverted five-spot patterns drilled on 5-acre spacing. There are 21 injection and 15 production wells on this pilot. Four of the 21 injection wells were treated with microbial formulation. Laboratory screening criteria were developed to evaluate microorganisms for this project. Several different microbial formulations were tested. Injectivity and microbial field survivability tests were conducted during the baseline period on two off-pattern wells, and a chemical tracer, fluorescein, was injected into the four injection wells during the baseline period. Methodologies for field applications of microorganisms in ongoing waterfloods were developed as a result of this project. Results from the field pilot showed that microorganisms could be injected into an ongoing waterflood without causing any problems in injectivity. Microbial treatment did improve oil production rate, and water/oil ratios for producing wells nearest the microbially treated injection wells continue to be more favorable than baseline values. 23 refs., 30 figs., 28 tabs.

Bryant, R.S.; Burchfield, T.E.; Dennis, D.M.; Hitzman, D.O.

1991-08-01T23:59:59.000Z

137

u.s. DEPARTMENT OF ENERG¥ EERE rROJECT MANAGEMENT CENTER NEPA...  

Broader source: Energy.gov (indexed) [DOE]

NEPA DETERMINATION RECIPIENT :University of Delaware STATE: DE PROJECT TITLE: Wind Turbine Infrastructure for Green Energy and Research on Wind Power in DE Funding Opportunity...

138

Coal transfer: can an environmentally safe coal transfer operation be undertaken in the lower Delaware Bay. Delaware Estuary situation report. [Dusts from transport of coal from barges to colliers  

SciTech Connect (OSTI)

Effective August 1983, the U.S. Coast Guard authorized coal transfer between vessels moored in Anchorage Area A, off Big Stone Beach in lower Delaware Bay. Two general methods may be used to transfer coal from shallow-draft barges to deep-draft colliers: auger or conveyor-belt operation and clamshell operation. Although dust emission is inherent in coal transfer, best available data from similar situations indicate dust emission can vary from 0.168 pounds per ton for clamshell to 0.0024 pounds per ton for auger/conveyor transfer. Air quality and bottom water deterioration are the major potential environmental impacts.

Biggs, R.B.; Sharp, J.H.; Manus, A.T.; Wypyszinski, A.W.

1983-01-01T23:59:59.000Z

139

Origin State Destination State STB EIA STB EIA Alabama  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelawareState Destination

140

Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)  

SciTech Connect (OSTI)

Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

Not Available

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Executive summary: legal obstacles and incentives to small-scale hydroelectric development in the six middle atlantic states  

SciTech Connect (OSTI)

The executive summary describes the relationship of Federal law and regulation to state law and regulation of small-scale hydroelectric facilities, highlighting important features of the constitutional, statutory, case law, and regulations of each of the six middle atlantic states (Maryland, Delaware, New York, New Jersey, Pennsylvania, and Virginia). Water law, direct and indirect regulation, and financial considerations for each state are presented. A flow diagram of regulation of small dams in each state is also included.

None,

1980-05-01T23:59:59.000Z

142

Reservoir Character of the Avalon Shale (Bone Spring Formation) of the Delaware Basin, West Texas and Southeast New Mexico: Effect of Carbonate-rich Sediment Gravity Flows  

E-Print Network [OSTI]

play is not considered to extend to the top of the first Bone Spring carbonate because hydraulic fracturing in the upper parts may penetrate overlying water-bearing units within the Delaware Mountains Group. The Avalon has been reported to range from...

Stolz, Dustin

2014-05-31T23:59:59.000Z

143

PJM Interconnection (Multiple States)  

Broader source: Energy.gov [DOE]

PJM (originally Pennsylvania, Jersey, Maryland) Interconnection is a Regional Transmission Organization (RTO) that coordinates the movement of wholesale electricity in all or parts of Delaware,...

144

CX-003356: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Delaware County (Pennsylvania): Hybrid Vehicle(s) for Transportation Efficiency Program for County Employees - American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block GrantCX(s) Applied: B5.1Date: 08/13/2010Location(s): Delaware County, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

145

The Delaware Lahore Delhi Partnership for Peace Invites you to a luncheon featuring  

E-Print Network [OSTI]

.S. foreign policy. He entered the Foreign Service of the United States in 1985 and since then has served: United States business opportunities in India and Pakistan. United States-India and United States and India and Pakistan. The luncheon program will provide ample time for questions from the audience. #12

Cakoni, Fioralba

146

A Classic Model in a Low Fertility Context: The Proximate Determinants of Fertility in South Korea and the United States  

E-Print Network [OSTI]

John Bongaarts' proximate determinants model of fertility has accounted for over 90 percent of variation in the total fertility rate (TFR) of primarily developing nations and historical populations. Recently, dramatically low fertility rates across...

Guarneri, Christine E.

2011-08-08T23:59:59.000Z

147

The determination of neutron flux in the Texas A & M triga reactor during pulse and steady-state operations  

E-Print Network [OSTI]

-state operation. Neutron flux measurement during a pulse presents an additional problem in that the flux levels vary during the rapid rise and fall in reactor power. The power level transient of the reactor was followed, using the current output of a boron-10... as a flux monitor only at low power. levels or neutron fluxes. The antimony flux monitor in the steady-state flux measurement showed the same type of increase in flux magni- tude as that of the pulse measurement. The high flux values at steady...

O'Donnell, John Joseph

2012-06-07T23:59:59.000Z

148

Determination of the off-shell Higgs boson signal strength in the high-mass $ZZ$ and $WW$ final states with the ATLAS detector  

E-Print Network [OSTI]

Measurements of the $ZZ$ and $WW$ final states in the mass range above the $2m_Z$ and $2m_W$ thresholds provide a unique opportunity to measure the off-shell coupling strength of the Higgs boson. This paper presents a determination of the off-shell Higgs boson event yields normalised to the Standard Model prediction (signal strength) in the $ZZ \\rightarrow 4\\ell$, $ZZ\\rightarrow 2\\ell2\

ATLAS Collaboration

2015-03-17T23:59:59.000Z

149

Local environment and composition of magnesium gallium layered double hydroxides determined from solid-state 1H and 71Ga NMR spectroscopy  

SciTech Connect (OSTI)

Ordering of gallium(III) in a series of magnesium gallium layered double hydroxides (LDH’s), [Mg1-xGax(OH)2(NO3)x yH2O], was determined using solid-state 1H and 71Ga NMR spectroscopy. Depletion of Ga in these LDH’s is demonstrated to be the result of soluble [Ga(OH)4]-complexes formed during synthesis.

Petersen, Line B.; Lipton, Andrew S.; Zorin, Vadim; Nielsen, Ulla Gro

2014-11-01T23:59:59.000Z

150

Determination of the off-shell Higgs boson signal strength in the high-mass $ZZ$ and $WW$ final states with the ATLAS detector  

E-Print Network [OSTI]

Measurements of the $ZZ$ and $WW$ final states in the mass range above the $2m_Z$ and $2m_W$ thresholds provide a unique opportunity to measure the off-shell coupling strength of the Higgs boson. This paper presents a determination of the off-shell Higgs boson event yields normalised to the Standard Model prediction (signal strength) in the $ZZ \\rightarrow 4\\ell$, $ZZ\\rightarrow 2\\ell2\

Aad, Georges; ATLAS Collaboration; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; ?lvarez Piqueras, Damián; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis

2015-01-01T23:59:59.000Z

151

Determination of stress state in deep subsea formation by combination of hydraulic fracturing in situ test and core  

E-Print Network [OSTI]

are determined from (i) the cross-sectional shape of a core sample and (ii) Ps obtained by the HF test performed., 2010; Moe et al., 2012]. A new borehole, Hole C0009A, was drilled to 1603.7 mbsf (meters below seafloor stress magnitudes directly. In this test, a section of a borehole is isolated, and the borehole wall

152

CX-001153: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Roll-to-Roll Solution-Processable Small-Molecule Organic Light-Emitting Diodes (Wilmington) Date: 03/11/2010Location(s): Wilmington, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

153

CX-005924: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Light Emitting Diode LightingCX(s) Applied: B2.5, B5.1Date: 05/13/2011Location(s): Dover, DelawareOffice(s): Energy Efficiency and Renewable Energy

154

CX-000852: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

25A4800 - High Energy Permanent Magnets for Hybrid Vehicles and Alternative EnergyCX(s) Applied: B3.6Date: 01/15/2010Location(s): DelawareOffice(s): Advanced Research Projects Agency - Energy

155

CX-008218: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

A System Design Study for Wilmington Canyon Offshore Wind Farm CX(s) Applied: A9 Date: 04/02/2012 Location(s): Delaware Offices(s): Golden Field Office

156

Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.  

SciTech Connect (OSTI)

Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

Bryan, Charles R.; Enos, David George

2014-07-01T23:59:59.000Z

157

Origin State Destination State  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware W $28.495.

158

Origin State Destination State  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware W $28.495.6.

159

Origin State Destination State  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware W $28.495.6.7.

160

Origin State Destination State  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware W $28.495.6.7.8.

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Origin State Destination State  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware W

162

Origin State Destination State  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware W4. Estimated

163

Origin State Destination State  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware W4. Estimated5.

164

Origin State Destination State  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware W4.

165

Origin State Destination State  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware W4.Estimated

166

Origin State Destination State  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware W4.Estimated8.

167

Comparison of the National Green Building Standard (ICC 700-2008) and LEED for Homes to the Residential Provisions of the 2009 IECC for the Delaware Green for Green Program  

SciTech Connect (OSTI)

Adhering to Delaware’s Green for Green program specifications results in homes being built to more energy-efficient levels than the 2009 IECC levels. Specifically: • Certifying at the Silver Performance Level for the ICC 700 standard using either the Prescriptive or Performance Paths will result in a residential building that is more efficient than if the building only complied with the 2009 IECC. • Certifying at the Silver level under LEED for Homes standard, including mandatory compliance with ENERGY STAR 2006 and earning two additional energy points will result in a residential building that is more efficient than if the building only complied with the 2009 IECC.

Britt, Michelle L.; Makela, Eric J.

2011-01-30T23:59:59.000Z

168

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Technical progress report  

SciTech Connect (OSTI)

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. One the reservoir-characterization study of both field is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to: (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area; (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments; and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill well will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and producibility problem characterization.

Dutton, S.P.

1996-04-30T23:59:59.000Z

169

Ambient dissolved oxygen concentrations in Delaware's Inland Bays. Final report, June 6, 1984  

SciTech Connect (OSTI)

Ambient dissolved oxygen concentrations were measured at dawn during August, 1983, in Rehoboth and Indian River Bays. In Indian River Bay, 59% of the D.O. measurements were below the State minimum water quality standard of 5 mg L/sup -1/, while in Rehoboth Bay 17% of the values fail to meet the State standards. Diurnal dissolved oxygen curves measured at 5 stations in the Bays and tributary creeks, provide evidence that, although the Bays are in reasonable balance with respect to apparent net daytime photosynthesis (Pa) and nighttime respiration (Rn), the absolute values of Pa and Rn are very high, compared with other coastal ecosystems, except for central Rehoboth Bay. These conclusions are consistent with the annual nutrient loads to the systems, which are about double for Indian River when contrasted with Rehoboth. 11 references, 1 figure, 7 tables.

Biggs, R.B.

1984-01-01T23:59:59.000Z

170

Toxic Release Inventory (TRI), Delaware, 1991 and 1992 (in Dbase III plus) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to-Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99- 499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

171

The Department of Communication at the University of Delaware offers a strong theory and research-based program coupled with skills training in oral communication, video production, broadcast journalism, and public  

E-Print Network [OSTI]

The Department of Communication at the University of Delaware offers a strong theory and research-based program coupled with skills training in oral communication, video production, broadcast journalism, and public relations. Students also study intercultural communication, principles in advertising, media

Firestone, Jeremy

172

Determination of the half-life of the ground state of {sup 229}Th by using {sup 232}U and {sup 233}U decay series  

SciTech Connect (OSTI)

The half-life of the ground state of {sup 229}Th ({sup 229}Th{sup g}) has become an important factor in nuclear technology, for example, in the geological disposal of nuclear spent fuel. However, the values reported in two previous studies are not in agreement. This study reevaluates the half-life of {sup 229}Th{sup g} by using a simple and reliable method. The {sup 232}U/{sup 233}U activity ratio of a {sup 232,233}U sample was measured by high-resolution {alpha}-particle spectrometry. Next, the {sup 228}Th/{sup 229}Th{sup g} activity ratio of the Th sample, which was grown from the {sup 232,233}U sample, was also measured. The half-life of {sup 229}Th{sup g} was calculated from these activity ratios, the growth time, and the half-lives of {sup 232}U, {sup 233}U, and {sup 228}Th. From the results of these five measurements, the half-life of {sup 229}Th{sup g} is determined to be 7932 {+-} 55 yr at a confidence level of 2{sigma}.

Kikunaga, H. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Nishina Center for Accelerator-Based Science, RIKEN, Wako, Saitama 351-0198 (Japan); Suzuki, T.; Nomura, M. [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550 (Japan); Mitsugashira, T. [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Shinohara, A. [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

2011-07-15T23:59:59.000Z

173

CX-005153: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005153: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - West Virginia University Research Corporation...

174

CX-006226: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006226: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

175

CX-000621: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

1: Categorical Exclusion Determination CX-000621: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Alternative Fuel...

176

CX-003353: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

3: Categorical Exclusion Determination CX-003353: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

177

CX-001996: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-001996: Categorical Exclusion Determination Oklahoma State Energy Program (SEP) American Recovery and Reinvestment Act (ARRA) - Washita...

178

CX-004060: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-004060: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

179

CX-001998: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-001998: Categorical Exclusion Determination Oklahoma State Energy Program (SEP) American Recovery and Reinvestment Act (ARRA) - Shawnee...

180

CX-004730: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-004730: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

CX-001096: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-001096: Categorical Exclusion Determination Oklahoma State Energy Office Energy Efficiency and Conservation Block Grant National...

182

CX-007573: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

3: Categorical Exclusion Determination CX-007573: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

183

CX-003498: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-003498: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Newman Memorial...

184

CX-005432: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-005432: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

185

CX-000619: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-000619: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Metropolitan Tulsa...

186

CX-006227: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006227: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

187

CX-008602: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-008602: Categorical Exclusion Determination Oklahoma State Energy Program- Oklahoma Municipal Power Authority Large Systems Request AO...

188

CX-007412: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-007412: Categorical Exclusion Determination OKLAHOMA State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

189

CX-009009: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-009009: Categorical Exclusion Determination "Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal...

190

CX-000669: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

69: Categorical Exclusion Determination CX-000669: Categorical Exclusion Determination Illinois Energy Conservation Plan for State Facilities - Capital Development Board Projects...

191

CX-000670: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

70: Categorical Exclusion Determination CX-000670: Categorical Exclusion Determination Energy Efficiency and Conservation Block Grant State of Illinois Categorical Exclusion...

192

CX-003523: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-003523: Categorical Exclusion Determination Small Wind Turbine Regional Test Center Kansas State University; National Renewable Energy Laboratory...

193

CX-003975: Categorical Exclusion Determination | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Categorical Exclusion Determination CX-003975: Categorical Exclusion Determination State Energy Program - American Recovery and Reinvestment Act Green Jobs Training Program -...

194

CX-004643: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-004643: Categorical Exclusion Determination Colorado State Energy Program American Recovery and Reinvestment Act - Renewable Ready Grant -...

195

CX-004707: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-004707: Categorical Exclusion Determination Colorado State Energy Program American Recovery and Reinvestment Act - Commercial Buildings -...

196

CX-006872: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006872: Categorical Exclusion Determination Colorado State Energy Program American Recovery and Reinvestment Act - Renewable Energy...

197

Delaware Natural Gas Prices  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year (Million CubicThousand6.92

198

Delaware Natural Gas Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phasesData Files Data Files 1B&W Y-12studies inBImpact of

199

University of Delaware UNDERGRADUATE  

E-Print Network [OSTI]

& Environmental Engineering: Bryan a , C. Davis, Loughery, Russo, Shank. Electrical & Computer Engineering: Abdou Program Presenters listed in alphabetical order. Presenter Department Faculty Sponsor Meena Abdou

Firestone, Jeremy

200

CX-011447: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Bench-Scale Development and Testing of a Novel Adsorption Process for Post Combustion Carbon Dioxide (CO2) Capture CX(s) Applied: B3.6 Date: 11/13/2013 Location(s): Delaware Offices(s): National Energy Technology Laboratory

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

CX-004018: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

High Performance Hollow Fiber Membranes for Lubricating Fluid Dehydration and Stabilization SystemsCX(s) Applied: B3.6, B5.1Date: 09/28/2010Location(s): Newport, DelawareOffice(s): Energy Efficiency and Renewable Energy

202

CX-000089: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Milford's Replacement of?Existing Street Lighting with LED (Light-Emitting Diode) LightsCX(s) Applied: B5.1, B1.3Date: 11/19/2009Location(s): Milford, DelawareOffice(s): Energy Efficiency and Renewable Energy

203

CX-000777: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Low-Cost, Highly Lambertian Reflector Composite for Improved LED (Light-Emitting Diode) Efficiency and LifetimeCX(s) Applied: B3.6Date: 02/10/2010Location(s): Newark, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

204

CX-011107: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

High Efficiency Thin Film Fe2SiS4 and Fe2GeS4-based Cells Prepared from Low-Cost Solution CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Delaware Offices(s): Golden Field Office

205

Determining the effective viscosity of a Shear Induced State Structure (SIS) surfactant, C16TMASal, during injection into a porous medium  

E-Print Network [OSTI]

The purpose of this experimental study was to determine both the effective viscosity and the suitability of C16TASal for use in enhanced oil recovery. The work eventually involved the injection of a single phase fluid with various concentrations...

Platt, Frank Martin

1994-01-01T23:59:59.000Z

206

Direct determination of exact charge states of surface point defects using scanning tunneling microscopy: As vacancies on GaAs ,,110...  

E-Print Network [OSTI]

microscopy: As vacancies on GaAs ,,110... Kuo-Jen Chao, Arthur R. Smith, and Chih-Kang Shih* Department of the charge state of surface As vacancies on p-type GaAs 110 using scanning tunneling microscopy. This method utilizes the compensation between the local band bending result- ing from the As vacancy and the p

207

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1999, clays were produced in most States except Alaska, Delaware, Hawaii,  

E-Print Network [OSTI]

, and 32% other uses; bentonite--26% foundry sand bond, 23% pet waste absorbent, 20% drilling mud, 16% iron,710 Total3 43,000 43,100 41,800 41,600 42,200 Imports for consumption 35 45 64 86 97 Exports 4,680 4,830 5,080 5,230 4,700 Consumption, apparent 38,500 38,300 36,800 36,500 37,600 Price, average, dollars per ton

208

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1998, clays were produced in most States except Alaska, Delaware, Hawaii, Idaho,  

E-Print Network [OSTI]

% foundry sand bond, 23% drilling mud, 17% pet waste absorbent, 15% iron ore pelletizing, and 9% other uses,100 43,100 42,000 43,0003 Imports for consumption 36 35 45 64 75 Exports 4,620 4,680 4,830 5,080 5,100 Consumption, apparent 37,600 38,500 38,300 37,000 38,000 Price, average, dollars per ton: Ball clay 43 46 44

209

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 1997, clays were produced in most States except Alaska, Delaware, Hawaii, Rhode  

E-Print Network [OSTI]

% pet waste absorbent, and 17% drilling mud; common clay--50% brick, 27% cement, and 15% lightweight,100 43,9003 Imports for consumption 39 36 35 45 53 Exports 4,150 4,620 4,680 4,830 4,970 Consumption,900 4,900e Mill 9,000 9,000 9,000 9,000 9,000 Net import reliance as a percent of5 apparent consumption

210

(Data in thousand metric tons, unless otherwise noted) Domestic Production and Use: In 2000, clays were produced in all States except Alaska, Delaware, Hawaii, Idaho,  

E-Print Network [OSTI]

% sanitaryware, 10% pottery, and 37% other uses; bentonite--24% foundry sand bond, 22% pet waste absorbent, 18,530 Kaolin 9,180 9,280 9,450 9,160 8,870 Total3 43,100 41,800 41,600 42,200 40,700 Imports for consumption 45 64 86 90 97 Exports 4,830 5,080 5,230 4,800 5,060 Consumption, apparent 38,300 36,800 36,500 37

211

Determination of the binding energies of the np Rydberg states of H{sub 2}, HD, and D{sub 2} from high-resolution spectroscopic data by multichannel quantum-defect theory  

SciTech Connect (OSTI)

Multichannel quantum-defect theory (MQDT) is used to calculate the electron binding energies of np Rydberg states of H{sub 2}, HD, and D{sub 2} around n = 60 at an accuracy of better than 0.5?MHz. The theory includes the effects of rovibronic channel interactions and the hyperfine structure, and has been extended to the calculation of the asymmetric hyperfine structure of Rydberg states of a heteronuclear diatomic molecule (HD). Starting values for the eigenquantum-defect parameters of MQDT were extracted from ab initio potential-energy functions for the low-lying p Rydberg states of molecular hydrogen and subsequently refined in a global weighted fit to available experimental data on the singlet and triplet Rydberg states of H{sub 2} and D{sub 2}. The electron binding energies of high-np Rydberg states derived in this work represent important quantities for future determinations of the adiabatic ionization energies of H{sub 2}, HD, and D{sub 2} at sub-MHz accuracy.

Sprecher, Daniel; Merkt, Frédéric, E-mail: frederic.merkt@phys.chem.ethz.ch [Laboratorium für Physikalische Chemie, ETH-Zürich, 8093 Zürich (Switzerland)] [Laboratorium für Physikalische Chemie, ETH-Zürich, 8093 Zürich (Switzerland); Jungen, Christian [Laboratoire Aimé Cotton du CNRS, Université de Paris-Sud, 91405 Orsay (France)] [Laboratoire Aimé Cotton du CNRS, Université de Paris-Sud, 91405 Orsay (France)

2014-03-14T23:59:59.000Z

212

Improved Description of One- and Two-Hole States after Electron Capture in 163 Holmium and the Determination of the Neutrino Mass  

E-Print Network [OSTI]

The atomic pair 163 Holmium and 163 Dysprosium$ seems due to the small Q value of about 2.3 to 2.8 keV the best case to determine the neutrino mass by electron capture. The bolometer spectrum measures the full deexcitation energy of Dysprosium by X rays, by Auger electrons and by the recoil of Holmium. The spectrum has an upper energy limit given by the Q value minus the neutrino mass. Till now this spectrum has been calculated allowing in Dysprosium excitations with 3s1/2, 3p1/2, 4s1/2, 4p1/2, 5s1/2, 5p1/2 holes only. Robertson calculated recently also the spectrum with two electron hole excitations in Dy. He took the probability for the excitation for the second electron hole from work of Carlson and Nestor for Z=54 Xenon. He claims, that the bolometer spectrum with two holes is "not well enough understood to permit a sensitive determination of the neutrino mass in this way." The purpose of the present work is to determine the theoretical bolometer spectrum with two hole excitations more reliably. In additi...

Faessler, Amand

2015-01-01T23:59:59.000Z

213

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, July 1 - September 30, 1996  

SciTech Connect (OSTI)

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sup 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Accomplishments for this past quarter are discussed.

Dutton, S.P.

1996-10-01T23:59:59.000Z

214

Flow rate through the small intestine of the equine determined with soluble and insoluble indicators given in a pulse and steady-state dose  

E-Print Network [OSTI]

three indicators and two combinations of indicators dosed with the diet: (1) CnOi, (2) CrEDTA (3) CoEDTA (4) CnOs with CrEDTA and (5) CnOs with CoEDTA. There were two experiments. In the pulse dose experiment the ponies were dosed orally... treatments for the soluble and insoluble indicators, with the exception of the MRT for the Crz03/ CrEDTA treatment was significantly (P&. 05) different from all other treatments. In the steady-state experiment, estimates of ileal output were...

Nyberg, Michelle Ann

1993-01-01T23:59:59.000Z

215

CX-009133: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-009133: Categorical Exclusion Determination New York Program Year 2012 Formula Grants - State Energy Program CX(s) Applied: A9, A11 Date:...

216

CX-002167: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-002167: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

217

CX-002168: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-002168: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

218

CX-006748: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-006748: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

219

CX-007020: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-007020: Categorical Exclusion Determination New York State Alternative Fuel Vehicle and Infrastructure Deployment CX(s) Applied: B5.1 Date:...

220

CX-005159: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005159: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Indiana Geological Survey CX(s) Applied: A9,...

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

CX-005156: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005156: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Lawrence Livermore National Laboratory CX(s)...

222

CX-005154: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005154: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Kentucky CX(s) Applied: A9, A11,...

223

CX-005151: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-005151: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - University of Wyoming CX(s) Applied: A9, A11...

224

CX-006215: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

5: Categorical Exclusion Determination CX-006215: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Department of...

225

CX-005754: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005754: Categorical Exclusion Determination State Energy Program- Oklahoma Municipal Power Authority Large System Application Request O CX(s) Applied: B5.1...

226

CX-004828: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination CX-004828: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act-Oklahoma Municipal Power...

227

CX-000622: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

2: Categorical Exclusion Determination CX-000622: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Electric Vehicle Solar...

228

CX-004768: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-004768: Categorical Exclusion Determination State Energy Program - Grants to Promote Mid-Size Renewables at Private and Government Buildings CX(s) Applied:...

229

CX-005730: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-005730: Categorical Exclusion Determination State Energy Program Sinton Independent School District Wind Energy Project- Phase II CX(s) Applied: B5.1 Date:...

230

CX-008595: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

95: Categorical Exclusion Determination CX-008595: Categorical Exclusion Determination Illinois Program Year 2012 State Energy Program Formula Award Application CX(s) Applied: A9,...

231

CX-001979: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

1979: Categorical Exclusion Determination CX-001979: Categorical Exclusion Determination Illinois State Energy Program (SEP) RetrofitCategorical Exclusion (CX) Projects CX(s)...

232

CX-005392: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

392: Categorical Exclusion Determination CX-005392: Categorical Exclusion Determination Illinois State Energy Program Additional Solar Project for Cornerstone Church CX(s) Applied:...

233

CX-010739: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-010739: Categorical Exclusion Determination Golden State Solar Impact CX(s) Applied: A9, A11 Date: 08152013 Location(s): California Offices(s):...

234

Magnetocrystalline interactions and oxidation state determination of Mn{sub (2?x)}V{sub (1+x)}O{sub 4} (x=0, 1/3 and 1) magnetorresistive spinel family  

SciTech Connect (OSTI)

Oxidation states of transition metal cations in spinels-type oxides are sometimes extremely difficult to determine by conventional spectroscopic methods. One of the most complex cases occurs when there are different cations, each one with several possible oxidation states, as in the case of the magnetoresistant Mn{sub (2?x)}V{sub (1+x)}O{sub 4} (x=0, 1/3 and 1) spinel-type family. In this contribution we describe the determination of the oxidation state of manganese and vanadium in Mn{sub (2?x)}V{sub (1+x)}O{sub 4} (x=0, 1/3,1) spinel-type compounds by analyzing XANES and high-resolution K? X-ray fluorescence spectra. The ionic models found are Mn{sup 2+}{sub 2}V{sup 4+}O{sub 4}, Mn{sup 2+}{sub 5/3}V{sup 3.5+}{sub 4/3}O{sub 4} and Mn{sup 2+}V{sup 3+}{sub 2}O{sub 4}. Combination of the present results with previous data provided a reliable cation distribution model. For these spinels, single magnetic electron paramagnetic resonance (EPR) lines are observed at 480 K showing the interaction among the different magnetic ions. The analysis of the EPR parameters show that g-values and relative intensities are highly influenced by the concentration and the high-spin state of Mn{sup 2+}. EPR broadening linewidth is explained in terms of the bottleneck effect, which is due to the presence of the fast relaxing V{sup 3+} ion instead of the weak Mn{sup 2+} (S state) coupled to the lattice. The EPR results, at high temperature, are well explained assuming the oxidation states of the magnetic ions obtained by the other spectroscopic techniques. - Graphical abstract: View of the crystallographic structure of a spinel. It shows as an example one of the models of ion distribution determined for the spinels Mn{sub (2?x)}V{sub (1+x)}O{sub 4} (x=0, 1/3,1). Display Omitted - Highlights: • Determination of oxidation state of the metallic ions in Mn{sub (2?x)}V{sub (1+x)}O{sub 4} (x=0,1/3,1) by XAS and XES techniques. • The ionic models found are Mn{sup 2+}{sub 2}V{sup 4+}O{sub 4}, Mn{sup 2+}{sub 5/3}V{sup 3.5+}{sub 4/3}O{sub 4} and Mn{sup 2+}V{sup 3+}O{sub 4}. • EPR spectra correspond almost exclusively to a resonance of Mn{sup 2+}.

Pomiro, F. [INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); Ceppi, S. [IFEG-CONICET and Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); De Paoli, J.M. [INFIQC-CONICET, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); Sánchez, R.D. [Centro Atómico Bariloche, Comisión Nacional de Energía Atómica e Instituto Balseiro, Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche (RN) (Argentina); Mesquita, A. [Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, 13506-900 Rio Claro, São Pablo (Brazil); Tirao, G., E-mail: gtirao@famaf.unc.edu.ar [IFEG-CONICET and Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba (Argentina); and others

2013-09-15T23:59:59.000Z

235

Factors that Determine Academic Versus Private Practice Career Interest in Radiation Oncology Residents in the United States: Results of a Nationwide Survey  

SciTech Connect (OSTI)

Purpose: To determine what factors US radiation oncology residents consider when choosing academic or nonacademic careers. Methods and Materials: A 20-question online survey was developed and sent to all US radiation oncology residents to assess factors that influence their career interest. Residents were asked to rate their interest in academics (A) versus private practice (PP) on a 0 (strong interest in A) to 100 (strong interest in PP) scale. Responses were classified as A (0-30), undecided (40-60), and PP (70-100). Residents were also asked to rank 10 factors that most strongly influenced their career interest. Results: Three hundred thirty-one responses were collected, of which 264 were complete and form the basis for this analysis. Factors that correlated with interest in A included having a PhD (P=.018), postgraduate year level (P=.0006), research elective time (P=.0003), obtaining grant funding during residency (P=.012), and number of publications before residency (P=.0001), but not number of abstracts accepted in the past year (P=.65) or publications during residency (P=.67). The 3 most influential factors for residents interested in A were: (1) baseline interest before residency; (2) academic role models; and (3) research opportunities during residency. The 3 most influential factors for residents interested in PP were: (1) baseline interest before residency; (2) academic role models; and (3) academic pressure and obligations. Conclusions: Interest in A correlated with postgraduate year level, degree, and research time during residency. Publications before but not during residency correlated with academic interest, and baseline interest was the most influential factor. These data can be used by residency program directors to better understand what influences residents' career interest.

Chang, Daniel T., E-mail: dtchang@stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Shaffer, Jenny L. [Department of Radiation Oncology, Stanford University, Stanford, California (United States); Haffty, Bruce G. [Department of Radiation Oncology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, New Brunswick, New Jersey (United States); Wilson, Lynn D. [Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut (United States)

2013-11-01T23:59:59.000Z

236

Origin State Destination State  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

7. Estimated truck transportation rates for coal, state to state, EIA data Origin State Destination State 2008 2009 2010 2008-2010 2009-2010 Alabama Alabama W W W W W Alabama...

237

Toxic Release Inventory (TRI), Delaware, 1991 and 1992 (in Lotus 1-2-3) (for microcomputers). Data file  

SciTech Connect (OSTI)

The Toxic Chemical Release Inventory (TRI) data gives annual estimated releases of toxic chemicals to the environment for the area indicated. Section 313 of the Emergency Planning and Community Right-to- Know Act (also known as Title III) of the Superfund Amendments and Reauthorization Act (SARA) of 1986 (Public Law 99-499) requires EPA to establish an inventory of toxic chemical emissions from certain facilities. Section 313 informs the public of the presence of chemicals in their communities and releases of these chemicals into the community. With this information, States and communities, working with industrial facilities required to comply with this law, will be better able to protect public health and the environment. The TRI data on diskette includes (1) the names, addresses, counties, and public contacts of facilities manufacturing, processing or using the reported chemicals; (2) the SIC code for the plants; (3) the chemical involved; and (4) the estimated quantity emitted into the air (point and non-point emissions), discharged into bodies of water, injected underground, released to land, or released to publicly owned treatment works. Beginning with the 1991 reports, facilities also are required to provide information about pollution prevention and source reduction activities. New data elements include quantities of the listed chemical recycled and used for energy recovery on-site; quanties transferred off- site for recycling and energy recovery. Source reduction activities, and methods used to indentify those activities. All releases are in pounds per year. Also provided is the FIPS code corresponding to the facility state and county; the unique ID number assigned by Dun and Bradstreet to the parent company of the reporting facility as well as the name of the corporation or other business entity that owns or controls the reporting facility.

Not Available

1992-01-01T23:59:59.000Z

238

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity

239

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware

240

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

XPS Determination of Uranium Oxidations States. | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun1ofRadiative Heating in

242

Delaware City, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1 No38e4011f618bDeer Park, Ohio:Mar,

243

University of Delaware | About CCEI  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProduction

244

University of Delaware | CCEI Equipment  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI Advisory Board Our advisory

245

University of Delaware | CCEI Events  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI Advisory Board Our advisoryCCEI's

246

University of Delaware | CCEI Leadership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI Advisory Board OurCCEI

247

University of Delaware | CCEI News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI Advisory Board OurCCEINews

248

University of Delaware | CCEI Outreach  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI Advisory Board

249

University of Delaware | CCEI Outreach  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI Advisory BoardK-12 Education For

250

University of Delaware | CCEI Partners  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI Advisory BoardK-12 Education Forand

251

University of Delaware | CCEI Patents  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI Advisory BoardK-12 Education

252

University of Delaware | CCEI Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI Advisory BoardK-12ResearchCCEI

253

University of Delaware | Contact CCEI  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEIResearch Thrust PyrolysisContact

255

CX-000310: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-000310: Categorical Exclusion Determination New Jersey Revision 1 - Energy Efficiency Upgrades for State Buildings CX(s) Applied: A9, A11, B1.3,...

256

CX-000302: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination CX-000302: Categorical Exclusion Determination Maryland Revision 1 - State Agency Loans Programs CX(s) Applied: A1, A7, A9, A11, B1.3, B1.4, B1.5,...

257

CX-002948: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination CX-002948: Categorical Exclusion Determination Wind Energy and Sustainable Energy Solutions - Kansas State University CX(s) Applied: B3.11, A9, B5.1 Date: 07...

258

CX-002842: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Overcoming Critical Barriers to United States Wind Power; A University-Industry Consortium CX(s) Applied: A9 Date: 07022010 Location(s):...

259

CX-004029: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination State Energy Program American Recovery and Reinvestment Act MKM Machine Tool Company, Incorporated CX(s) Applied: B5.1 Date: 10082010 Location(s):...

260

CX-008747: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Developing the Currently Existing Nuclear Instrumentation and Radiation Research Laboratories at Alcorn State University CX(s) Applied: B1.2 Date: 0521...

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

CX-002127: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination American Recovery and Reinvestment Act - State Energy Program - City of Addison Turbine Project CX(s) Applied: A9, A11 Date: 04302010 Location(s):...

262

CX-002128: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination American Recovery and Reinvestment Act - State Energy Program - City of Seadrift CX(s) Applied: A9, A11 Date: 04302010 Location(s): Seadrift, Texas...

263

CX-004348: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination State Energy Program Residential Ground Source Heat Pump Installations (6) CX(s) Applied: B5.1 Date: 10272010 Location(s): Prior Lake,...

264

CX-003986: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination State Energy Program Residential Ground Source Heat Pump Installation - Korf CX(s) Applied: B5.1 Date: 09212010 Location(s): Minnesota...

265

CX-004545: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination State Energy Program - Residential Ground Source Heat Pump Installation - Dalager CX(s) Applied: B5.1 Date: 11242010 Location(s): Minnesota...

266

CX-004539: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination State Energy Program - Residential Ground Source Heat Pump Installation - Binford, Eric CX(s) Applied: B5.1 Date: 11242010 Location(s):...

267

CX-004376: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination City of Woodward, Oklahoma Ground Source Heat Pump Project Beyond State Template CX(s) Applied: B5.1 Date: 11012010 Location(s):...

268

CX-003507: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination State Energy Program American Recovery and Reinvestment Act: Solar Power Incorporated Photovoltaic Panel Manufacturing Facility CX(s) Applied: B1.31,...

269

In pursuit of clean air: a data book of problems and strategies at the state level. Volume 2. Federal Regions I, II, and III  

SciTech Connect (OSTI)

The Clean Air Act Amendments of 1977 and EPA regulations set up stringent requirements for the control of emissions in areas where the National Ambient Air Quality Standards were being exceeded. Implementation plans have been devised by the various states for the attainment of those standards. This second volume of the five-volume series presents outlines of the plans in Federal Regions I, II, and III and maps of the nonattainment status of counties and subcounty areas in each state. Federal Region I consists of the following states: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, and Vermont. Federal Region II is made up of New Jersey and New York; Federal Region III is composed of Delaware, Maryland, Pennsylvania, Virginia, and West Virginia. (JGB)

Garvey, D.B.; Streets, D.G.

1980-02-01T23:59:59.000Z

270

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 Table 1. 2012 Summary

271

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 Table 1. 2012

272

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 Table 1. 2012Florida

273

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 Table 1.

274

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 Table 1.Hawaii

275

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 Table 1.HawaiiIdaho

276

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 Table

277

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 TableIndiana

278

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 TableIndianaIowa

279

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012 TableIndianaIowaKansas

280

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012Louisiana Electricity

282

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012Louisiana

283

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile 2012LouisianaMaryland

284

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity Profile

285

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity ProfileMichigan Electricity Profile

286

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity ProfileMichigan Electricity

287

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity ProfileMichigan

288

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity ProfileMichiganMissouri Electricity

289

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity ProfileMichiganMissouri

290

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware Electricity ProfileMichiganMissouriNebraska

291

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshire Electricity Profile 2012

292

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshire Electricity Profile

293

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshire Electricity ProfileMexico

294

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshire Electricity

295

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshire ElectricityCarolina

296

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshire ElectricityCarolinaDakota

297

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshire

298

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshireOklahoma Electricity

299

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshireOklahoma ElectricityOregon

300

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshireOklahoma

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshireOklahomaRhode Island

302

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshireOklahomaRhode

303

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelaware ElectricityHampshireOklahomaRhodeDakota

304

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012 Table 1. 2012

305

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012 Table 1.

306

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012 Table 1.Utah

307

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012 Table

308

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012 TableVirginia

309

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012

310

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012West Virginia

311

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012West

312

EIA - State Electricity Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012WestWyoming

313

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile 2012WestWyomingAlabama

314

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity Profile

315

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity ProfileArkansas Nuclear

316

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity ProfileArkansas

317

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity ProfileArkansasConnecticut

318

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas Electricity

319

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas ElectricityGeorgia Nuclear Profile 2010

320

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas ElectricityGeorgia Nuclear Profile

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas ElectricityGeorgia Nuclear ProfileIowa

322

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas ElectricityGeorgia Nuclear

323

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas ElectricityGeorgia NuclearLouisiana

324

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas ElectricityGeorgia

325

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas ElectricityGeorgiaMassachusetts Nuclear

326

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas ElectricityGeorgiaMassachusetts

327

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexas ElectricityGeorgiaMassachusettsMinnesota

328

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear Profile 2010 Missouri

329

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear Profile 2010

330

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear Profile 2010Hampshire

331

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear Profile

332

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear ProfileYork Nuclear

333

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear ProfileYork NuclearNorth

334

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear ProfileYork

335

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear ProfileYorkPennsylvania

336

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri Nuclear

337

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri NuclearTennessee profile Tennessee

338

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri NuclearTennessee profile

339

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri NuclearTennessee profileVermont

340

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri NuclearTennessee

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri NuclearTennesseeWashington profile

342

EIA - State Nuclear Profiles  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutron scatteringDelawareTexasMissouri NuclearTennesseeWashington

343

CREATING A SOLAR CITY Determining the Potential of Solar Rooftop  

E-Print Network [OSTI]

of Solar Rooftop Systems in the City of Newark Final Report Renewable Energy Applications for Delaware, AERCA Advisors ABBREVIATIONS BCR ­ Benefit Cost Ratios BIPV ­ Building Integrated Photovoltaics CEEP Portfolio Standard SREC ­ Solar Renewable Energy Credits TMY ­ Typical Meteorological Year #12;#12;TABLE

Delaware, University of

344

CX-008738: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Determination of Microstructure and Chemical State Changes in Ion-Irradiated Fuels and Structural Components with a High Kinetic Energy Electron Detector – Illinois Institute of Technology CX(s) Applied: B3.6 Date: 05/22/2012 Location(s): Idaho Offices(s): Idaho Operations Office

345

March 2014aMErIcaN METEOrOLOGIcaL SOcIETY | 1 AFFILIATIONS: Archer And Veron--University of Delaware,  

E-Print Network [OSTI]

these research needs for wind energy along the U.S. East Coast, both coastal and offshore, was the goal of a two research platforms O ffshore wind energy is just starting in the United States, with imminent offshore wind seven "Advanced Technology Demonstration" offshore wind projects to help achieve that goal. Although new

346

TIME-DEPENDENT MAXWELL'S EQUATIONS*  

E-Print Network [OSTI]

Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716. (monklath.udel. ... The plan of the paperis as follows. In 2 we .... which states that the energy in the discrete system is independent of time. This energy ...

347

The Potential Economic Impacts of a Renewable Portfolio Standard  

E-Print Network [OSTI]

prepared by the Center for Energy and Environmental Policy University of Delaware April 2005 #12;LEAVE ...................................................... 7 An RPS Policy Creates Jobs ........................................................ 9 Job Creation Studies in RPS States ........................................ 10 Job Creation in Delaware

Delaware, University of

348

4-64 Heat is lost from a piston-cylinder device that contains steam at a specified state. The initial temperature, the enthalpy change, and the final pressure and quality are to be determined.  

E-Print Network [OSTI]

4-33 4-64 Heat is lost from a piston-cylinder device that contains steam at a specified state.247 MPa5.3 1 1 1 ¿ ¾ ½ q h T P (b) The properties of steam when the piston first hits the stops are (Table

Bahrami, Majid

349

Categorical Exclusion Determinations: Energy Technology Engineering Center  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd:JuneNovember 26, 20149 CategoricalColorado CategoricalDelaware|

350

Fitting coupled potential energy surfaces for large systems: Method and construction of a 3-state representation for phenol photodissociation in the full 33 internal degrees of freedom using multireference configuration interaction determined data  

SciTech Connect (OSTI)

A recently reported algorithm for representing adiabatic states coupled by conical intersections using a quasi-diabatic state Hamiltonian in four and five atom systems is extended to treat nonadiabatic processes in considerably larger molecules. The method treats all internal degrees of freedom and uses electronic structure data from ab initio multireference configuration interaction wave functions with nuclear configuration selection based on quasi-classical surface hopping trajectories. The method is shown here to be able to treat ?30 internal degrees of freedom including dissociative and large amplitude internal motion. Two procedures are introduced which are essential to the algorithm, a null space projector which removes basis functions from the fitting process until they are needed and a partial diagonalization technique which allows for automated, but accurate, treatment of the vicinity of extended seams of conical intersections of two or more states. These procedures are described in detail. The method is illustrated using the photodissociaton of phenol, C{sub 6}H{sub 5}OH(X{sup ~1}A{sup ?}) + hv ? C{sub 6}H{sub 5}OH(A{sup ~1}A{sup ?}, B{sup ~1}A{sup ??}) ? C{sub 6}H{sub 5}O(X{sup ~2}B{sub 1}, A{sup ~2}B{sub 2}) + H as a test case. Ab initio electronic structure data for the 1,2,3{sup 1}A states of phenol, which are coupled by conical intersections, are obtained from multireference first order configuration interaction wave functions. The design of bases to simultaneously treat large amplitude motion and dissociation is described, as is the ability of the fitting procedure to smooth the irregularities in the electronic energies attributable to the orbital changes that are inherent to nonadiabatic processes.

Zhu, Xiaolei, E-mail: virtualzx@gmail.com; Yarkony, David R., E-mail: yarkony@jhu.edu [Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

2014-01-14T23:59:59.000Z

351

CX-003041: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion Determination Renewable Energy Program - State University of New York Westchester Community College Solar Thermal CX(s) Applied: A9, B2.2, B5.1 Date:...

352

CX-001090: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Energy Efficiency and Conservation Block Grant - State of New York American Recovery and Reinvestment Act (T) CX(s) Applied: A9, A11, B5.1 Date: 02...

353

CX-001994: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-001994: Categorical Exclusion Determination Energy Efficiency and Renewable Energy for State Buildings and Schools CX(s) Applied: A9, A11, B5.1 Date: 02082010...

354

CX-011379: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Solid Power, LLC--An Ultra High Energy, Safe and Low-Cost All Solid-State Rechargeable Battery for Electric Vehicles CX(s) Applied: B3.6 Date: 10222013...

355

CX-001085: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

CX-001085: Categorical Exclusion Determination Energy Efficiency and Renewable Energy for State Buildings and Schools CX(s) Applied: A9, A11, B5.1 Date: 02082010...

356

CX-002418: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Energy Retrofits for State Correctional Facilities - Mobile Work ReleaseWork Center Facility Boiler CX(s) Applied: B1.24, B1.31, B2.2, A9, B5.1...

357

CX-006022: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Exclusion Determination Oregon State University Cascades Campus Ground Source Heat Pump Project CX(s) Applied: B5.1 Date: 05262011 Location(s): Oregon Office(s): Energy...

358

CX-003413: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Energy Efficiency and Conservation Block GrantTown of Drummond Wind Turbine Project Beyond State Template CX(s) Applied: A9, B3.6, B5.1 Date: 08172010...

359

CX-008741: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Determination Revitalizing Health Physics Education for Nuclear Energy Careers - Colorado State University CX(s) Applied: B3.6 Date: 05212012 Location(s): Idaho Offices(s):...

360

4-102 Methane is heated in a rigid container. The final pressure of the methane is to be determined using the ideal gas equation and the Benedict-Webb-Rubin equation of state.  

E-Print Network [OSTI]

4-54 4-102 Methane is heated in a rigid container. The final pressure of the methane the ideal gas equation of state, Methane 100 kPa 20qC Q kPa229.7 K293 K673 kPa)100( 1 2 12 T T PP The specific molar volume of the methane is /kmolm36.24 kPa100 K)K)(293/kmolmkPa(8.314 3 3 1 1 21 P TRu vv (b

Bahrami, Majid

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Experimental and semiempirical method to determine the Pauli-limiting field in quasi-two-dimensional superconductors as applied to ?-(BEDT-TTF)2Cu(NCS)2: strong evidence of a FFLO state  

SciTech Connect (OSTI)

We present upper critical field data for {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} with the magnetic field close to parallel and parallel to the conducting layers. We show that we can eliminate the effect of vortex dynamics in these layered materials if the layers are oriented within 0.3-inch of parallel to the applied magnetic field. Eliminating vortex effects leaves one remaining feature in the data that corresponds to the Pauli paramagnetic limit (H{sub p}). We propose a semiempirical method to calculate the H{sub p} in quasi-2D superconductors. This method takes into account the energy gap of each of the quasi-2D superconductors, which is calculated from specific-heat data, and the influence of many-body effects. The calculated Pauli paramagnetic limits are then compared to critical field data for the title compound and other organic conductors. Many of the examined quasi-2D superconductors, including the above organic superconductors and CeCoIn{sub 5}, exhibit upper critical fields that exceed their calculated H{sub p} suggesting unconventional superconductivity. We show that the high-field low-temperature state in {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} is consistent with the Fulde-Ferrell-Larkin-Ovchinnikov state.

Agosta, C. C.; Jin, J.; Coniglio, W. A.; Smith, B. E.; Cho, K.; Mihut, I.; Martin, C.; Tozer, S. W.; Murphy, T. P.; Palm, E. C.; Schlueter, J. A.; Kurmoo, M. (Materials Science Division); (Clark Univ.); (Nat. High Field Magnet Lab.); (The Royal Inst.)

2012-01-01T23:59:59.000Z

362

Origin State Destination State STB EIA STB EIA Alabama  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas,095,3628,527 9,029 8,794 2011-2013DecadeDelaware

363

Landmark Center P.O. Box 15677  

E-Print Network [OSTI]

to Delaware's citizens, because clean power will virtually always be "dispatched" before power that incurs 30 and over) die each year from power plant emissions, considering all power plants in the United States. Because the deaths in Delaware are due to emissions from all power plants, not just in Delaware

Firestone, Jeremy

364

Solar Thermal Policy in the U.S.: A Review of Best Practices  

E-Print Network [OSTI]

Solar Thermal Policy in the U.S.: A Review of Best Practices in Leading States Renewable Energy Applications for Delaware Yearly (READY) Center for Energy and Environmental Policy University of Delaware Byrne, Director, CEEP Center for Energy and Environmental Policy University of Delaware Newark, DE 19716

Delaware, University of

365

Determining when NEPA applies to nonfederal activities  

SciTech Connect (OSTI)

More than a quarter century after enactment of the National Environmental Policy Act (NEPA), unresolved questions still persist regarding its applicability to state and private actions. This is particularly true when such projects are undertaken to support the needs of a federal agency. Proposed below is a paradigm for determining when NEPA applies to state or privately conducted, but federally influenced or inspired, actions. The paradigm employs a set of five sequential tests for determining if a state or privately conducted action is subject to the requirements of NEPA.

Eccleston, C.H., Westinghouse Hanford

1996-07-03T23:59:59.000Z

366

Record of Categorical Exclusion (CS) Determination, Office of...  

Broader source: Energy.gov (indexed) [DOE]

Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) StateRegional...

367

Daily snow depth measurements from 195 stations in the United States  

SciTech Connect (OSTI)

This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

Allison, L.J. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H. [National Oceanic and Atmospheric Administration, Asheville, NC (United States). National Climatic Data Center

1997-02-01T23:59:59.000Z

368

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2003-10-31T23:59:59.000Z

369

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2002-07-31T23:59:59.000Z

370

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

Kathryn Baskin

2002-11-01T23:59:59.000Z

371

December 11, 2008 UNIVERSITY OF DELAWARE  

E-Print Network [OSTI]

:10 Photoelectric Catalysis for Hydrogen Generation Ismat Shah 9:10 ­ 9:30 Fuel Cells and Batteries Ajay Prasad:00 ­ 10:10 Coupled Quantum Dots in Photovoltaic Devices Matt Doty 10:10 ­ 10:30 Morning Break 10:30 ­ 10

Firestone, Jeremy

372

Contact us at: 420 Delaware St. SE  

E-Print Network [OSTI]

or "osteoporosis". Nutrition recommendations to minimize the risk of osteoporosis are as follows: 1. Calcium

Thomas, David D.

373

Delaware Electric Cooperative- Green Energy Program Incentives  

Broader source: Energy.gov [DOE]

'''''NOTE: The Renewable Resource Program will accept requests for grant funding for calendar year 2013 beginning January 9, 2013. Applications for residential PV and geothermal systems will not...

374

Contact us at: 420 Delaware St. SE  

E-Print Network [OSTI]

and counseling patients/family during MDA clinic visits. We use a team approach in the MDA sponsored Clinic patient, situation and disease course is unique; although you can get many useful general facts from websites, patients must interpret that information based on their own situation as described by their MD

Thomas, David D.

375

Renewable Energy Facilities Revolving Loan Fund (Delaware)  

Broader source: Energy.gov [DOE]

Renewable Energy Facilities Revolving Loan Fund provides loans at market to below-market interest rates to businesses that cannot otherwise obtain capital, provided that those businesses will...

376

Clean Energy Technology Device Manufacturers' Credits (Delaware)  

Broader source: Energy.gov [DOE]

Qualified manufacturers can apply for a tax break equal to 75% of the corporation income tax. The incentive is an increase from the Investment and Employment Credit Against Corporation Income Tax,...

377

Newark, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City) Jump to: navigation, searchCalifornia:

378

Newport, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City) Jump to:Newmarket, New Hampshire:137237°,

379

Odessa, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(UtilityCounty, Michigan: Energy Resources Jump to:Ocoee,OcontoOctus EnergyOdessa,

380

Accidental Release Program (Delaware) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchThe Office ofReporting (Connecticut) |Department ofStructuralthe WasteUtility

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Greenville, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: EnergyGrasslandsGreen2V790012°, -75.5982599° Loading map...

382

Hockessin, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel JumpHoard, Wisconsin: Energy ResourcesHoboken,

383

Arden, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy InformationArcata, California: EnergyArco EnergyArctic

384

Ardencroft, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy InformationArcata, California: EnergyArcoArdencroft,

385

Ardentown, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300AlgoilEnergy InformationArcata, California:

386

Bear, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers PointEnergy Information Hot Springs Pool & SpaBear,

387

Extremely Hazardous Substances Risk Management Act (Delaware)  

Broader source: Energy.gov [DOE]

This act lays out provisions for local governments to implement regulations and standards for the management of extremely hazardous substances, which are defined and categorized as follows:

388

Bellefonte, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 EastMaine:Barbers PointEnergyJingneng861° Loading map...Isle,

389

Delaware Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar132009 2010 2011

390

Delaware Heat Content of Natural Gas Consumed  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar132009 2010

391

Delaware Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S.30Natural Gas Glossary529 633 622 56623 4623 42Year Jan Feb Mar1320097,930

392

Liberty Power Corp. (Delaware) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories on climateJuno Beach,October, 2012LeeCalifornia References:

393

Middletown, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte GmbH JumpSprings, Vermont: Energy Resources Jump

394

University of Delaware | CCEI Past Events  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption by sectorlong version)UndergroundPast Events DATE EVENT

395

Think Tank: Delaware Department of Natural Resources  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeNew YorkLouisiana Laws andDakota1A2:New England New23,Spring

396

Wilmington, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamson County, Tennessee:Willowick, Ohio:(Redirected from

397

Glasgow, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformationGilroy, California:Gladeview,Glascock

398

Delaware Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has been approvedMeasurements

399

Delaware/Geothermal | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has been

400

Delaware/Incentives | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has beenFinancial Incentive Programs for

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has beenFinancial Incentive ProgramsLoading

402

DELAWARE RECOVERY ACT SNAPSHOT | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartners with Siemens31,CanadaOTHERAFPs 1ACESEnergy

403

Wilmington, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey Flats Geothermal Area Jump

404

Delaware Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The following text09-0018-CXBasin JumpTexas Elec Coop Inc

405

GEXA Corp. (Delaware) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (TheEtelligence (SmartHomeFremont,usingGEO2 Technologies Jump to:

406

Glacial Energy Holdings (Delaware) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power BasicsGermany: Energy Resources Jump to:Connecticut References: EIA

407

Clayton, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin: Energy Resources JumpSouth Dakota: EnergyClaymont,43.

408

University of Delaware | CCEI Advisory Board  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI Advisory Board Our advisory board

409

University of Delaware | CCEI Faculty Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI Advisory Board Our

410

University of Delaware | CCEI Industrial Consortium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI Advisory Board OurCCEI Industrial

411

University of Delaware | CCEI Principal Investigators  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI Advisory BoardK-12

412

University of Delaware | CCEI Research Highlights  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI Advisory BoardK-12Research

413

University of Delaware | CCEI Visiting Scholars  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduledProductionCCEI AdvisoryVisiting Scholars Blaz

414

Edgemoor, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classified asThisEcoGrid EUEdgecombe-Martin County E M CEdgemoor,

415

Elsmere, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump37. It is classifiedProject) | OpenTexas:County is a countyElmwoodElsmere,

416

UNIVERSITY OF DELAWARE DEPARTMENT OF MECHANICAL ENGINEERING  

E-Print Network [OSTI]

for delivery. A hydrogen refueling station was also established at Air Liquide for our Fuel Cell Bus Program with the fuel cell bus program, the hydrogen refueling station, and the fuel cell bus parking and maintenance and demonstration projects with the fuel cell bus program, the hydrogen refueling station, and the fuel cell bus

Gao, Guang R.

417

Origin Basin Destination State STB EIA STB EIA Northern Appalachian...  

Gasoline and Diesel Fuel Update (EIA)

- W - W W W - W Central Appalachian Basin Alabama 26.18 26.10 -0.3% 118.06 22.1% 930 37.4% 100.0% Central Appalachian Basin Delaware 23.73 15.12 -36.3% 88.59 17.1%...

418

Categorical Exclusion Determination Form  

Broader source: Energy.gov (indexed) [DOE]

Research Projects Agency - Energy LocationCs) CCityCountyState): Nashville, TN; Oklahoma City, OK; Knoxville, TN Proposed Action Description: Funding will support efforts to...

419

NREL: News - NREL Compares State Solar Policies to Determine...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy sources by the end of the decade. Through SunShot, the Energy Department supports private companies, universities, and national laboratories working to drive down the cost...

420

Categorical Exclusion (CX) Determinations By State | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccessCO2 Injection Begins inCarmine Difiglio About(CX)

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Shear Transformation Zones: State Determined or Protocol Dependent?  

E-Print Network [OSTI]

The concept of a Shear Transformation Zone (STZ) refers to a region in an amorphous solid that undergoes a plastic event when the material is put under an external mechanical load. An important question that had accompanied the development of the theory of plasticity in amorphous solids for many years now is whether an STZ is a {\\em region} existing in the material (which can be predicted by analyzing the unloaded material), or is it an {\\em event} that depends on the loading protocol (i.e., the event cannot be predicted without following the protocol itself). In this Letter we present strong evidence that the latter is the case. Infinitesimal changes of protocol result in macroscopically big jumps in the positions of plastic events, meaning that these can never be predicted from considering the unloaded material.

Oleg Gendelman; Prabhat K. Jaiswal; Itamar Procaccia; Bhaskar Sen Gupta; Jacques Zylberg

2014-08-18T23:59:59.000Z

422

Geothermal Data via the Virginia Tech and DMME Portal to the National Geothermal Data System for the Eastern and Southeastern United States from the Regional Geophysics Laboratory of Virginia Polytechnic Institute and State University  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The former title for this record was "Geothermal Data for the Eastern and Southeastern U.S. from the Regional Geophysics Laboratory of Virginia Tech." The content originally referenced is still available. It includes geothermal maps of seven southeastern states with accompanying data tables. The seven states are: New Jersey, Maryland, Delaware, Virginia, North Carolina, South Caroline, and Georgia. Data types include geothermal data, seismic data, and magnetic and gravity data. Typical geothermal data may include tables of temperature versus depth data, plots of temperature/gradient versus depth, tables of thermal conductivity data, and tables of gamma log data. Other resources available from the RGL provide information about hot springs in the southeastern U.S., temperatures for Atlantic Coastal Plain sediments, and deep fracture permeability in crystalline rocks in the eastern and southeastern U.S. Recently, this website and its collection of geothermal data has been renamed and reorganized as a portal into the National Geothermal Data System, a move that makes far more data both available and integrated.

423

EMPOWERING DIGITAL SELF DETERMINATION  

E-Print Network [OSTI]

: Communication and Digital Media 2. Data Context and Digital Personas 3. Personal Data: Use, ReuseEMPOWERING DIGITAL SELF DETERMINATION Symposium Summary Stanford University, Summer 2012 #12;#12;EMPOWERING DIGITAL SELF DETERMINATION Symposium, Stanford University, CA Summer, 2012 210 Panama Street

Das, Rhiju

424

Determination of optimal gains for constrained controllers  

SciTech Connect (OSTI)

In this report, we consider the determination of optimal gains, with respect to a certain performance index, for state feedback controllers where some elements in the gain matrix are constrained to be zero. Two iterative schemes for systematically finding the constrained gain matrix are presented. An example is included to demonstrate the procedures.

Kwan, C.M.; Mestha, L.K.

1993-08-01T23:59:59.000Z

425

Solid state rapid thermocycling  

DOE Patents [OSTI]

The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

Beer, Neil Reginald; Spadaccini, Christopher

2014-05-13T23:59:59.000Z

426

United States  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofofOxford SiteToledoSampling at the GrandSr:s I ]Unied States- I

427

United States  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear23,Diversity part 2usingStates

428

States Government  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28SacandagaSite A/Plot3, zm State

429

Determining Reactor Neutrino Flux  

E-Print Network [OSTI]

Flux is an important source of uncertainties for a reactor neutrino experiment. It is determined from thermal power measurements, reactor core simulation, and knowledge of neutrino spectra of fuel isotopes. Past reactor neutrino experiments have determined the flux to (2-3)% precision. Precision measurements of mixing angle $\\theta_{13}$ by reactor neutrino experiments in the coming years will use near-far detector configurations. Most uncertainties from reactor will be canceled out. Understanding of the correlation of uncertainties is required for $\\theta_{13}$ experiments. Precise determination of reactor neutrino flux will also improve the sensitivity of the non-proliferation monitoring and future reactor experiments. We will discuss the flux calculation and recent progresses.

Jun Cao

2012-03-08T23:59:59.000Z

430

Microsoft Word - NERAC AGENDA.doc  

Broader source: Energy.gov (indexed) [DOE]

Laboratory Allen L. Sessoms Delaware State University Daniel C. Sullivan National Cancer Institute Charles E. Till Argonne National Laboratory (retired) Neil E. Todreas...

431

Fuel Mix Disclosure  

Broader source: Energy.gov [DOE]

Delaware's 1999 restructuring law (HB 10) authorized the state Public Service Commission (PSC) to develop environmental disclosure requirements and consumer protection standards for green power...

432

Programmable quantum state discriminators with simple programs  

E-Print Network [OSTI]

We describe a class of programmable devices that can discriminate between two quantum states. We consider two cases. In the first, both states are unknown. One copy of each of the unknown states is provided as input, or program, for the two program registers, and the data state, which is guaranteed to be prepared in one of the program states, is fed into the data register of the device. This device will then tell us, in an optimal way, which of the templates stored in the program registers the data state matches. In the second case, we know one of the states while the other is unknown. One copy of the unknown state is fed into the single program register, and the data state which is guaranteed to be prepared in either the program state or the known state, is fed into the data register. The device will then tell us, again optimally, whether the data state matches the template or is the known state. We determine two types of optimal devices. The first performs discrimination with minimum error, the second performs optimal unambiguous discrimination. In all cases we first treat the simpler problem of only one copy of the data state and then generalize the treatment to n copies. In comparison to other works we find that providing n > 1 copies of the data state yields higher success probabilities than providing n > 1 copies of the program states.

Janos A. Bergou; Vladimir Buzek; Edgar Feldman; Ulrike Herzog; Mark Hillery

2006-02-20T23:59:59.000Z

433

EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:City...  

Broader source: Energy.gov (indexed) [DOE]

u.s. DEPARTMENT OF ENERGY EERE PROJECT MANAGEMENT CENTER NEPA DETERMINATION RECIPIENT:City of San Antonio Page I of2 STATE : TX PROJECT TITLE: Texas Solar Collaboration to...

434

Gender determination in populus  

SciTech Connect (OSTI)

Gender, the expression of maleness or femaleness, in dioecious plants has been associated with changes in morphology, physiology, ecological position, and commercial importance of several species, including members of the Salicaceae family. Various mechanisms have been proposed to explain the expression of gender in Salicaceae, including sex chromosomes, simple Mendelian genes, quantitative genes, environment, and genotype-by-environment interactions. Published reports would favor a genetic basis for gender. The objective of this study was to identify molecular markers associated with gender in a segregating family of hybrid poplars. Bulked segregant analysis and chi-squared analysis were used to test for the occurrence of sex chromosomes, individual loci, and chromosome ratios (i.e., ploidy levels) as the mechanisms for gender determination. Examination of 2488 PCR based RAPD markers from 1219 primers revealed nine polymorphic bands between male and female bulked samples. However, linkage analysis indicated that none of these markers were significantly associated with gender. Chisquared results for difference in male-to-female ratios between diploid and triploid genotypes also revealed no significant differences. These findings suggest gender is not controlled via sex chromosomes, simple Mendelian loci or ratios of autosome to gender-determining loci. It is possible that gender is determined genetically by regions of the genome not sampled by the tested markers or by a complex of loci operating in an additive threshold manner or in an epistatic manner. It is also possible that gender is determined environmentally at an early zygote stage, canalizing gender expression.

McLetchie, D.N. [Univ. of Kentucky, Lexington, KY (United States). Dept. of Biological Sciences; Tuskan, G.A. [Oak Ridge National Lab., TN (United States)

1994-12-31T23:59:59.000Z

435

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2004-07-28T23:59:59.000Z

436

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2005-04-30T23:59:59.000Z

437

DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT  

SciTech Connect (OSTI)

Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

Kathryn Baskin

2004-10-31T23:59:59.000Z

438

United States Environmental Protection Agency Office of Water  

E-Print Network [OSTI]

United States Environmental Protection Agency Office of Water Washington, D. C. 20460 United States) OF THE CLEAN WATER ACT I. PURPOSE AND SCOPE. The United States Department of the Army (Army) and the United they determine the geographic jurisdictional scope of waters of the United States for purposes of section 404

US Army Corps of Engineers

439

Critical Issues in NPH Categorization and Limit State Selection...  

Broader source: Energy.gov (indexed) [DOE]

and the public. This step also includes defining what constitutes failure (e.g., for seismic design, determination of a Limit State associated with SSC failure) * Step 2:...

440

State Transfer and Spin Measurement  

E-Print Network [OSTI]

We present a Hamiltonian that can be used for amplifying the signal from a quantum state, enabling the measurement of a macroscopic observable to determine the state of a single spin. We prove a general mapping between this Hamiltonian and an exchange Hamiltonian for arbitrary coupling strengths and local magnetic fields. This facilitates the use of existing schemes for perfect state transfer to give perfect amplification. We further prove a link between the evolution of this fixed Hamiltonian and classical Cellular Automata, thereby unifying previous approaches to this amplification task. Finally, we show how to use the new Hamiltonian for perfect state transfer in the, to date, unique scenario where total spin is not conserved during the evolution, and demonstrate that this yields a significantly different response in the presence of decoherence.

A. Kay

2006-04-21T23:59:59.000Z

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Discrete State Estimators for Systems on a Lattice D. Del Vecchio  

E-Print Network [OSTI]

to be final state determinable are given [4]. In Alessandri et al., Luenberger-like observers are proposed

Murray, Richard M.

442

Tensor network states and geometry  

E-Print Network [OSTI]

Tensor network states are used to approximate ground states of local Hamiltonians on a lattice in D spatial dimensions. Different types of tensor network states can be seen to generate different geometries. Matrix product states (MPS) in D=1 dimensions, as well as projected entangled pair states (PEPS) in D>1 dimensions, reproduce the D-dimensional physical geometry of the lattice model; in contrast, the multi-scale entanglement renormalization ansatz (MERA) generates a (D+1)-dimensional holographic geometry. Here we focus on homogeneous tensor networks, where all the tensors in the network are copies of the same tensor, and argue that certain structural properties of the resulting many-body states are preconditioned by the geometry of the tensor network and are therefore largely independent of the choice of variational parameters. Indeed, the asymptotic decay of correlations in homogeneous MPS and MERA for D=1 systems is seen to be determined by the structure of geodesics in the physical and holographic geometries, respectively; whereas the asymptotic scaling of entanglement entropy is seen to always obey a simple boundary law -- that is, again in the relevant geometry. This geometrical interpretation offers a simple and unifying framework to understand the structural properties of, and helps clarify the relation between, different tensor network states. In addition, it has recently motivated the branching MERA, a generalization of the MERA capable of reproducing violations of the entropic boundary law in D>1 dimensions.

G. Evenbly; G. Vidal

2011-06-06T23:59:59.000Z

443

State-Machine Replication  

E-Print Network [OSTI]

State-Machine Replication #12;The Problem Clients Server #12;The Problem Clients Server #12;The (state machine) #12;The Solution 1. Make server deterministic (state machine) State machine #12;The Solution 1. Make server deterministic (state machine) 2. Replicate server State machines #12;The Solution 1

Venkataramani, Arun

444

Ultratrace determination of curium  

SciTech Connect (OSTI)

Development of a method for detection of curium at near single atom levels is being undertaken as a part of the Advanced Concepts Project at Argonne National Laboratory with funding from the US Department of Energy, Office of Arms Control and Nonproliferation. Ultratrace determination of curium, with the ability to quantify the fraction that is curium-242, provides a signature method of detecting clandestine reprocessing of recently irradiated uranium targets. Curium initially present in any of a variety of materials such as air filters, solid or liquid process waste, soil, flora, or fauna can be recovered via current chemical separations processing techniques. Using the ultratrace method being developed, such recovered curium will be quantified with thousand-fold higher sensitivity than the best currently available method which is alpha counting. This high sensitivity arises because, on average, a given trivalent curium (Cm{sup 3+}) ion can emit a very large number of fluorescence photons before alpha decay occurs.

Beitz, J.V.

1995-02-01T23:59:59.000Z

445

Significant Radionuclides Determination  

SciTech Connect (OSTI)

The purpose of this calculation is to identify radionuclides that are significant to offsite doses from potential preclosure events for spent nuclear fuel (SNF) and high-level radioactive waste expected to be received at the potential Monitored Geologic Repository (MGR). In this calculation, high-level radioactive waste is included in references to DOE SNF. A previous document, ''DOE SNF DBE Offsite Dose Calculations'' (CRWMS M&O 1999b), calculated the source terms and offsite doses for Department of Energy (DOE) and Naval SNF for use in design basis event analyses. This calculation reproduces only DOE SNF work (i.e., no naval SNF work is included in this calculation) created in ''DOE SNF DBE Offsite Dose Calculations'' and expands the calculation to include DOE SNF expected to produce a high dose consequence (even though the quantity of the SNF is expected to be small) and SNF owned by commercial nuclear power producers. The calculation does not address any specific off-normal/DBE event scenarios for receiving, handling, or packaging of SNF. The results of this calculation are developed for comparative analysis to establish the important radionuclides and do not represent the final source terms to be used for license application. This calculation will be used as input to preclosure safety analyses and is performed in accordance with procedure AP-3.12Q, ''Calculations'', and is subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (DOE 2000) as determined by the activity evaluation contained in ''Technical Work Plan for: Preclosure Safety Analysis, TWP-MGR-SE-000010'' (CRWMS M&O 2000b) in accordance with procedure AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''.

Jo A. Ziegler

2001-07-31T23:59:59.000Z

446

Y{sub 2}MoSe{sub 3}O{sub 12} and Y{sub 2}MoTe{sub 3}O{sub 12}: Solid-state synthesis, structure determination, and characterization of two new quaternary mixed metal oxides containing asymmetric coordination environment  

SciTech Connect (OSTI)

Two new quaternary yttrium molybdenum selenium/tellurium oxides, Y{sub 2}MoSe{sub 3}O{sub 12} and Y{sub 2}MoTe{sub 3}O{sub 12} have been prepared by standard solid-state reactions using Y{sub 2}O{sub 3}, MoO{sub 3}, and SeO{sub 2} (or TeO{sub 2}) as reagents. Single-crystal X-ray diffraction was used to determine the crystal structures of the reported materials. Although both of the materials contain second-order Jahn–Teller (SOJT) distortive cations and are stoichiometrically similar, they reveal different structural features: while Y{sub 2}MoSe{sub 3}O{sub 12} shows a three-dimensional framework consisting of YO{sub 8}, MoO{sub 6}, and SeO{sub 3} groups, Y{sub 2}MoTe{sub 3}O{sub 12} exhibits a layered structure composed of YO{sub 8}, MoO{sub 4}, TeO{sub 3}, and TeO{sub 4} polyhedra. With the Mo{sup 6+} cations in Y{sub 2}MoSe{sub 3}O{sub 12}, a C{sub 3}-type intraoctahedral distortion toward a face is observed, in which the direction of the out-of-center distortion for Mo{sup 6+} is away from the oxide ligand linked to a Se{sup 4+} cation. The Se{sup 4+} and Te{sup 4+} cations in both materials are in asymmetric coordination environment attributed to the lone pairs. Elemental analyses, infrared spectroscopy, thermal analyses, intraoctahedral distortions, and dipole moment calculations for the compounds are also presented. - Graphical abstract: Y{sub 2}MoSe{sub 3}O{sub 12} reveals a three-dimensional framework consisting of YO{sub 8}, MoO{sub 6}, and SeO{sub 3} polyhedra, whereas Y{sub 2}MoTe{sub 3}O{sub 12} exhibits a layered structure composed of YO{sub 8}, MoO{sub 4}, TeO{sub 3}, and TeO{sub 4} groups. - Highlights: • Two new selenite and tellurite (Y{sub 2}MoQ{sub 3}O{sub 12}; Q=Se and Te) are synthesized. • Y{sub 2}MoQ{sub 3}O{sub 12} contain second-order Jahn–Teller distortive cations in asymmetric environments. • The intra-octahedral distortion of the Mo{sup 6+} is influenced by the Se{sup 4+}.

Bang, Seong-eun; Pan, Zhi; Kim, Yeong Hun; Lee, Dong Woo; Ok, Kang Min, E-mail: kmok@cau.ac.kr

2013-12-15T23:59:59.000Z

447

CX-008570: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

State Energy Program Formula Grant for the State of Utah CX(s) Applied: A9, A11 Date: 06/25/2012 Location(s): Utah Offices(s): Golden Field Office

448

Subgap states in disordered superconductors  

SciTech Connect (OSTI)

We revise the problem of the density of states in disordered superconductors. Randomness of local sample characteristics translates to the quenched spatial inhomogeneity of the spectral gap, smearing the BCS coherence peak. We show that various microscopic models of potential and magnetic disorder can be reduced to a universal phenomenological random order parameter model, whereas the details of the microscopic description are encoded in the correlation function of the order parameter fluctuations. The resulting form of the density of states is generally described by two parameters: the width {Gamma} measuring the broadening of the BCS peak and the energy scale {Gamma}{sub tail} that controls the exponential decay of the density of subgap states. We refine the existing instanton approaches for determination of {Gamma}{sub tail} and show that they appear as limiting cases of a unified theory of optimal fluctuations in a nonlinear system. The application to various types of disorder is discussed.

Skvortsov, M. A., E-mail: skvor@itp.ac.ru; Feigel'man, M. V., E-mail: feigel@landau.ac.ru [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation)

2013-09-15T23:59:59.000Z

449

State of the State's Rural Health  

E-Print Network [OSTI]

of health status, health behavior, or health- care access and Oklahomans do not compare favorablyState of the State's Rural Health 2007 Edition Produced by OSU Center for Rural Health ASnapshotof-4391 January 1, 2007 Dear Reader: Welcome to the Oklahoma State University Center for Rural Health's inaugural

Veiga, Pedro Manuel Barbosa

450

Dynamic control of spin states in interacting magnetic elements  

DOE Patents [OSTI]

A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.

Jain, Shikha; Novosad, Valentyn

2014-10-07T23:59:59.000Z

451

Direct Speciation of Phosphorus in Alum-Amended Poultry Litter  

E-Print Network [OSTI]

Direct Speciation of Phosphorus in Alum-Amended Poultry Litter: Solid-State 31 P NMR Investigation, and Department of Plant and Soil Sciences, University of Delaware, Newark, Delaware 19717 Amending poultry litter prerequisite for the assessment of the sustainability of intensive poultry operations. Both solid- state MAS

Sparks, Donald L.

452

Temperature determination from the lattice gas model  

E-Print Network [OSTI]

Determination of temperature from experimental data has become important in searches for critical phenomena in heavy ion collisions. Widely used methods are ratios of isotopes (which rely on chemical and thermal equilibrium), population ratios of excited states etc. Using the lattice gas model we propose a new observable: $n_{ch}/Z$ where $n_{ch}$ is the charge multiplicity and $Z$ is the charge of the fragmenting system. We show that the reduced multiplicity is a good measure of the average temperature of the fragmenting system.

S. Das Gupta; J. Pan; M. B. Tsang

1996-09-30T23:59:59.000Z

453

States & Emerging Energy Technologies  

Broader source: Energy.gov (indexed) [DOE]

States & Emerging Energy Technologies August 15, 2013 DOE's State and Local Technical Assistance Program 2 DOE's Technical Assistance Program * Strategic Energy Planning * Program...

454

Generalized coherent states  

E-Print Network [OSTI]

In the coherent state of the harmonic oscillator, the probability density is that of the ground state subjected to an oscillation along a classical trajectory. Senitzky and others pointed out that there are states of the harmonic oscillator corresponding to an identical oscillatory displacement of the probability density of any energy eigenstate. These generalizations of the coherent state are rarely discussed, yet they furnish an interesting set of quantum states of light that combine features of number states and coherent states. Here we give an elementary account of the quantum optics of generalized coherent states.

T. G. Philbin

2013-12-18T23:59:59.000Z

455

Linearized theory of peridynamic states.  

SciTech Connect (OSTI)

A state-based peridynamic material model describes internal forces acting on a point in terms of the collective deformation of all the material within a neighborhood of the point. In this paper, the response of a state-based peridynamic material is investigated for a small deformation superposed on a large deformation. The appropriate notion of a small deformation restricts the relative displacement between points, but it does not involve the deformation gradient (which would be undefined on a crack). The material properties that govern the linearized material response are expressed in terms of a new quantity called the modulus state. This determines the force in each bond resulting from an incremental deformation of itself or of other bonds. Conditions are derived for a linearized material model to be elastic, objective, and to satisfy balance of angular momentum. If the material is elastic, then the modulus state is obtainable from the second Frechet derivative of the strain energy density function. The equation of equilibrium with a linearized material model is a linear Fredholm integral equation of the second kind. An analogue of Poincare's theorem is proved that applies to the infinite dimensional space of all peridynamic vector states, providing a condition similar to irrotationality in vector calculus.

Silling, Stewart Andrew

2009-04-01T23:59:59.000Z

456

CX-008984: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

State Energy Program CX(s) Applied: A9, A11 Date: 08/29/2012 Location(s): Florida Offices(s): Golden Field Office

457

Exact axisymmetric Taylor states for shaped plasmas  

SciTech Connect (OSTI)

We present a general construction for exact analytic Taylor states in axisymmetric toroidal geometries. In this construction, the Taylor equilibria are fully determined by specifying the aspect ratio, elongation, and triangularity of the desired plasma geometry. For equilibria with a magnetic X-point, the location of the X-point must also be specified. The flexibility and simplicity of these solutions make them useful for verifying the accuracy of numerical solvers and for theoretical studies of Taylor states in laboratory experiments.

Cerfon, Antoine J., E-mail: cerfon@cims.nyu.edu; O'Neil, Michael, E-mail: oneil@cims.nyu.edu [Courant Institute of Mathematical Sciences, New York University, New York, New York 10012 (United States)

2014-06-15T23:59:59.000Z

458

CX-007434: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

State Energy Program- American Recovery and Reinvestment Act · Washington State University Anaerobic Digester - Nutrient Recovery Technology - Vander Haak Dairy CX(s) Applied: A9, B1.7, B3.9 Date: 12/07/2011 Location(s): Washington Offices(s): Golden Field Office

459

CX-003917: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

State Energy Program: Biggest State to Biggest SaverCX(s) Applied: A9, A11, B5.1Date: 09/24/2010Location(s): AlaskaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

460

STATE OF CALIFORNIA STATE ENERGY RESOURCES CONSERVATION  

E-Print Network [OSTI]

.5.4, 25402.8 and 25910. II. HISTORY OF THE PROCEEDING To develop the 2013 Standards, the Energy CommissionSTATE OF CALIFORNIA STATE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION ) 2013 Title 24 Building Energy Efficiency ) Docket No. 12-BSTD-1 Standards Rulemaking Proceeding ) California Code

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

STATE OF CALIFORNIA STATE ENERGY RESOURCES CONSERVATION  

E-Print Network [OSTI]

. HISTORY OF THE PROCEEDING To develop the 2013 Standards, the Energy Commission conducted an open, transpaSTATE OF CALIFORNIA STATE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION ) 2013 Title 24 Building Energy Efficiency) Docket No. 12-BSTD-1 Standards Rulemaking Proceeding ) Order No. 12

462

Colorado State University Colorado State University  

E-Print Network [OSTI]

Colorado State University _______________ 1.1 Page 1 Colorado State University In 1870, the Territorial Council and House of Representatives of the Territory of Colorado created the Colorado that same year as Colorado's land-grant college under the Morrill Act of 1862. The Morrill Act provided

Stephens, Graeme L.

463

Colorado State University Colorado State University  

E-Print Network [OSTI]

Colorado State University Colorado State University In 1870, the Territorial Council and House of Representatives of the Territory of Colorado created the Colorado Agricultural College. When the Territory became. The College admitted its first students in 1879 and received designation that same year as Colorado's land

Collett Jr., Jeffrey L.

464

Equation of state and helioseismic inversions  

E-Print Network [OSTI]

Inversions to determine the squared isothermal sound speed and density within the Sun often use the helium abundance Y as the second parameter. This requires the explicit use of the equation of state (EOS), thus potentially leading to systematic errors in the results if the equations of state of the reference model and the Sun are not the same. We demonstrate how this potential error can be suppressed. We also show that it is possible to invert for the intrinsic difference in the adiabatic exponent Gamma_1 between two equations of state. When applied to solar data such inversion rules out the EFF equation of state completely, while with existing data it is difficult to distinguish between other equations of state.

Sarbani Basu; J. Christensen-Dalsgaard

1997-02-19T23:59:59.000Z

465

Effectiveness of State-Level Policies on Solar Market Development in Different State Contexts  

SciTech Connect (OSTI)

In response to public interest in customer-sited distributed solar photovoltaics (PV), state and local policymakers have implemented policy initiatives with the goal of encouraging private investment and building a robust PV market. Policymakers face challenges, including limited budgets and incomplete information about the effectiveness of the various policy options in their specific situation, in crafting and executing policy that supports market development goals. Recent work investigated the effect of the order in which policies are implemented (referred to as 'policy stacking') and the presence of low-cost enabling policies, such as interconnection standards and net metering, can have on the success of states in promoting PV markets. Findings indicate that implementation of interconnection standards and policy related to the valuation of excess electricity (e.g., net metering), along with indicators of long term government support for a solar PV market (e.g., RPS) and a non-policy determinant (population), explain about 70% of the variation among states in new PV capacity. This paper builds on that research to determine the most effective policy strategies for different types of states, as determined by their physical, demographic and macroeconomic context. A number of researchers have investigated the effectiveness of state-level policy using various statistical methods to determine relationships between installed solar PV projects and policy initiatives. In this study, the grouping of states by non-policy factors adds dimension to these analyses by identifying how policies function in different non-policy environments.

Steward, D.; Doris, E.; Krasko, V.; Hillman, D.

2014-02-01T23:59:59.000Z

466

CX-006270: Categorical Exclusion Determination | Department of...  

Broader source: Energy.gov (indexed) [DOE]

State Energy Program for Kansas. KEO would allocate 6,875,000 in Department of Energy funding to Emporia State University Energy Efficiency Project, Kansas State University...

467

CX-012316: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

United States Geological Survey (USGS) Geotechnical Drilling for USGS-142 and USGS-143 CX(s) Applied: B3.1 Date: 06/16/2014 Location(s): Idaho Offices(s): Nuclear Energy

468

CX-010769: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

United States Geological Survey (USGS) Geotechnical Drilling for USGS 139 CX(s) Applied: B3.1 Date: 08/08/2013 Location(s): Idaho Offices(s): Nuclear Energy

469

CX-002467: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Portland State University - Green Building Research Laboratory (GBRL)CX(s) Applied: A9, A11Date: 06/03/2010Location(s): Multnomah County, OregonOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

470

CX-002518: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Gadsden State Community College Green Operations PlanCX(s) Applied: B5.1Date: 05/27/2010Location(s): Gadsen, AlabamaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

471

CX-008555: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Minnesota State Energy Program, Program Year 2012 Formula Grants CX(s) Applied: A9, A11 Date: 06/26/2012 Location(s): Minnesota Offices(s): Golden Field Office

472

CX-008538: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Program Year 2012 State Energy Program Formula Grant CX(s) Applied: A9, A11 Date: 06/25/2012 Location(s): Arizona Offices(s): Golden Field Office

473

CX-009440: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

State Energy Plan Council School District Woody Biomass Project CX(s) Applied: B5.1, B5.5 Date: 07/02/2012 Location(s): Idaho Offices(s): Golden Field Office

474

CX-008561: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Nevada Program Year 2012 Formula Grants - State Energy Program CX(s) Applied: A9, A11 Date: 06/25/2012 Location(s): Nevada Offices(s): Golden Field Office

475

CX-007575: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

PY2011 State Energy Program Formula - Compressed Natural Gas Infrastructure Challenge: Madison Gas and Electric CX(s) Applied: B5.22 Date: 12/29/2011 Location(s): Wisconsin Offices(s): Golden Field Office

476

CX-008536: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Program Year 2011 State Energy Program Formula - Compressed Natural Gas Infrastructure Challenge: Madison Gas & Electric CX(s) Applied: B5.22 Date: 05/17/2012 Location(s): Wisconsin Offices(s): Golden Field Office

477

CX-008739: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Enhancement of Radiation Safety and Radiological Monitoring Systems for the Ohio State University Nuclear Reactor CX(s) Applied: B2.2 Date: 05/21/2012 Location(s): Idaho Offices(s): Idaho Operations Office

478

CX-003459: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Recovery Act - State Energy ProgramCX(s) Applied: B5.1Date: 08/16/2010Location(s): Lafayette, LouisianaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

479

CX-003480: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

State Energy Program American Recovery and Reinvestment Act EE-0000169CX(s) Applied: B5.1Date: 08/17/2010Location(s): Lafayette, IndianaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

480

CX-003539: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Recovery Act - State Energy ProgramCX(s) Applied: B5.1Date: 08/26/2010Location(s): New Iberia, LouisianaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

Note: This page contains sample records for the topic "determination delaware state" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

CX-012422: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Solid Electrolytes for Solid-State and Lithium-Sulfur Batteries CX(s) Applied: B3.6Date: 41880 Location(s): TennesseeOffices(s): National Energy Technology Laboratory

482

CX-012424: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Solid Electrolytes for Solid-State and Lithium-Sulfur Batteries CX(s) Applied: B3.6Date: 41880 Location(s): MichiganOffices(s): National Energy Technology Laboratory

483

CX-008568: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Oklahoma State Energy Program- Oklahoma Municipal Power Authority Large Systems Request AM CX(s) Applied: B5.19 Date: 06/06/2012 Location(s): Oklahoma Offices(s): Golden Field Office

484

CX-007572: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large Systems Request Y CX(s) Applied: B5.19 Date: 12/29/2011 Location(s): Oklahoma Offices(s): Golden Field Office

485

CX-007411: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

OKLAHOMA State Energy Program American Recovery and Reinvestment Act· Oklahoma Municipal Power Authority Large System Request V CX(s) Applied: B5.19 Date: 12/15/2011 Location(s): Oklahoma Offices(s): Golden Field Office

486

CX-008231: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large Systems Request AH CX(s) Applied: B5.19 Date: 04/11/2012 Location(s): Oklahoma Offices(s): Golden Field Office

487

CX-007560: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large Systems Request AB CX(s) Applied: B5.19 Date: 01/05/2012 Location(s): Oklahoma Offices(s): Golden Field Office

488

CX-007559: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large Systems Request AA CX(s) Applied: B5.19 Date: 01/05/2012 Location(s): Oklahoma Offices(s): Golden Field Office

489

CX-008564: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Oklahoma State Energy Program Annual Program Year 2012 CX(s) Applied: A9, A11 Date: 06/28/2012 Location(s): Oklahoma Offices(s): Golden Field Office

490

CX-009165: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Oklahoma State Energy Program Recovery Act- Oklahoma Municipal Power Authority Large Systems Request AR CX(s) Applied: B5.19 Date: 09/05/2012 Location(s): Oklahoma Offices(s): Golden Field Office

491

CX-009164: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Oklahoma State Energy Program Recovery Act- Oklahoma Municipal Power Authority Large Systems Request AQ CX(s) Applied: B5.19 Date: 09/05/2012 Location(s): Oklahoma Offices(s): Golden Field Office

492

CX-008209: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

United States Offshore Wind - Removing Market Barriers CX(s) Applied: A9, A11 Date: 03/22/2012 Location(s): Ohio Offices(s): Golden Field Office

493

CX-004034: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

State Energy Program Residential Ground Source Heat Pump Installation - GreggCX(s) Applied: B5.1Date: 10/08/2010Location(s): MinnesotaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

494

CX-011746: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Bettergy Corp. - Low Cost Solid State Battery for Electric Vehicle Applications CX(s) Applied: B3.6 Date: 10/25/2013 Location(s): New York Offices(s): Advanced Research Projects Agency-Energy

495

CX-011747: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Arizona State University - Advanced Cells for Transportation via Integrated Vehicle Energy CX(s) Applied: B3.6 Date: 11/18/2013 Location(s): Arizona Offices(s): Advanced Research Projects Agency-Energy

496

CX-011752: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Oregon State University - Bio-Lamina-Plates Bioreactor for Enhanced Mass and Heat Transfer CX(s) Applied: B3.6 Date: 11/14/2013 Location(s): Oregon Offices(s): Advanced Research Projects Agency-Energy

497

CX-011759: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

Pennsylvania State University - Engineering a Methane-to-Acetate Pathway for Producing Liquid Biofuels CX(s) Applied: B3.6 Date: 12/10/2013 Location(s): Pennsylvania Offices(s): Advanced Research Projects Agency-Energy

498

CX-011745: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

The Pennsylvania State University - POWERPANELS: Multifunctional Composites with Lithium-Ion Battery Cores CX(s) Applied: B3.6 Date: 11/18/2013 Location(s): Pennsylvania Offices(s): Advanced Research Projects Agency-Energy

499

CX-004712: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

State Energy Program American Recovery and Reinvestment Act - American Pellet Supply, LLCCX(s) Applied: B5.1Date: 12/14/2010Location(s): Carlisle, IndianaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

500

CX-001470: Categorical Exclusion Determination  

Broader source: Energy.gov [DOE]

State Energy Program - Industrial Energy Efficiency GrantsCX(s) Applied: B5.1Date: 04/05/2010Location(s): Augusta, GeorgiaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory