National Library of Energy BETA

Sample records for determination delaware state

  1. Categorical Exclusion Determinations: Delaware | Department of...

    Office of Environmental Management (EM)

    ... August 26, 2011 CX-006578: Categorical Exclusion Determination Delaware State Energy Office Sub GranteeBridgeville Well Pump Replacement CX(s) Applied: B5.1 Date: 08262011 ...

  2. Delaware - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Delaware

  3. Delaware - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Delaware

  4. Delaware - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Delaware

  5. Clean Cities: State of Delaware Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program, which aims to increase alternative fueled vehicle deployment through rebates, helping to promote en route charging in Delaware through the Charging-Up Delaware...

  6. Delaware State Historic Preservation Programmatic Agreement | Department of

    Energy Savers [EERE]

    Delaware Community Saves with Solar Delaware Community Saves with Solar November 28, 2012 - 4:41pm Addthis With a grant from the Energy Department's Energy Efficiency and Conservation Block Grant Program, the community of Ocean View, Delaware, installed a carport-mounted solar array that is saving taxpayers money on town utility bills. | Photo courtesy of the Town of Ocean View. With a grant from the Energy Department's Energy Efficiency and Conservation Block Grant Program, the community of

  7. Delaware Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    grid to solar power and energy research. Through these investments, Delaware's businesses, universities, non-profits, and local governments are creating quality jobs today and ...

  8. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Delaware

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Delaware.

  9. Delaware State University | OSTI, US Dept of Energy, Office of Scientific

    Office of Scientific and Technical Information (OSTI)

    and Technical Information Delaware State University Spotlights Home DOE Applauds DSU Science and Technical Programs DSU Leads the Way in Better Buildings DSU is one of the first university partners in the US to join the Department of Energy's Better Buildings inititative to reduce its carbon footprint by 25% by 2015. Secretary of Energy Chu participated in the DSU kick-off program to commemorate the school's efforts in July 2012. Read more about this showcase project. Delaware State

  10. New Castle County, Delaware: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Delaware Newark, Delaware Newport, Delaware North Star, Delaware Odessa, Delaware Pike Creek, Delaware Smyrna, Delaware Townsend, Delaware Wilmington Manor, Delaware...

  11. Delaware Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the Middle School Coach page. Delaware Region Middle School Regional Delaware New Jersey Regional Middle...

  12. Delaware Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the High School Coach page. Delaware Region High School Regional Delaware New Jersey Regional High School...

  13. HUD consumer market profile for the states of Florida, Delaware and Maryland

    SciTech Connect (OSTI)

    Jack, M.C.; Denny, W.M.

    1981-01-01

    Data obtained on persons who purchased solar water heaters with HUD grants from 1977 to 1979 in the states of Florida, Delaware and Maryland are compiled. A total of more than 2600 consumers are profiled. The following variables are included in the consumer profile: type of present hot water system, site location by county, family composition and type of installation. This study represents the largest marketing profile of solar hot water system purchasers to date. It has significance both to private industry and the government for it details what type of person participated in the HUD grant program. It is found that the largest number of solar installations cluster around large metropolitan areas in neighborhoods that are predominantly white, upper-class, and less than five persons in the household.

  14. Categorical Exclusion (CX) Determinations By State | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Categorical Exclusion (CX) Determinations By State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington

  15. Sussex County, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Delaware Long Neck, Delaware Milford, Delaware Millsboro, Delaware Millville, Delaware Milton, Delaware Ocean View, Delaware Rehoboth Beach, Delaware Seaford, Delaware Selbyville,...

  16. Kent County, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Delaware Kenton, Delaware Leipsic, Delaware Little Creek, Delaware Magnolia, Delaware Milford, Delaware Rising Sun-Lebanon, Delaware Riverview, Delaware Rodney Village, Delaware...

  17. Energy Incentive Programs, Delaware | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delaware Energy Incentive Programs, Delaware Updated October 2015 What public-purpose-funded energy efficiency programs are available in my state? Delaware's 1999 restructuring legislation mandated the creation of a systems benefit charge to fund low-income, energy efficiency, and renewable energy programs. In 2007, the state created the Delaware Sustainable Energy Utility (DESEU), a non-profit corporation funded from bond issues, proceeds from the Regional Greenhouse Gas Initiative (RGGI), and

  18. Testing the Delaware sand filter's effectiveness for treating stormwater runoff

    SciTech Connect (OSTI)

    Leszczynska, D.; Dzurik, A.

    1998-07-01

    The use of the Delaware Sand Filter for treatment of ultra-urban stormwater is investigated for Florida applications. An experimental Delaware filter is designed in conjunction with a typical sand filter as part of a street improvement project in Tallahassee, Florida. The design allows for testing of different filter media in an attempt to determine the suitability of the Delaware Sand Filter in hot climates with numerous heavy rainfall episodes.

  19. Delaware County, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Capital Partners Energy Generation Facilities in Delaware County, Pennsylvania American Ref-Fuel of Delaware Valley Biomass Facility Places in Delaware County, Pennsylvania Aldan,...

  20. Delaware Municipal Electric Corporation- Green Energy Fund

    Broader source: Energy.gov [DOE]

    The Delaware Green Energy Fund was created in 1999 as the part of the deregulation of Delaware's electric utilities. Under the 2005 Delaware renewable portfolio standard (RPS) legislation,...

  1. University of Delaware Wind | Open Energy Information

    Open Energy Info (EERE)

    search Name University of Delaware Wind Facility University of Delaware Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner University of...

  2. Delaware/Incentives | Open Energy Information

    Open Energy Info (EERE)

    No DEMEC Member Utilities - Green Energy Program Incentives (8 utilities) (Delaware) Utility Rebate Program Yes Delaware Electric Cooperative - Green Energy Program Incentives...

  3. University of Delaware | CCEI Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Its Partner Institutions The Catalysis Center for Energy Innovation (CCEI) is a partnership between the University of Delaware, 8 academic institutions and 1 national laboratory. The University of Delaware is the lead institution and home to the center's administrative headquarters. Brookhaven National Laboratory California Institute of Technology Columbia University Georgia Institute of Technology Lehigh University Rutgers University University of Delaware (lead institution) University of

  4. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,389 100.0 Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - Wind 2 0.1 Wood/Wood Waste - - MSW/Landfill Gas 8 0.2 Other Biomass - - Generation (thousand megawatthours) Total Electricity Net Generation 5,628

  5. University of Delaware | Contact CCEI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information: The administrative offices of CCEI are located inside the Interdisciplinary Science and Engineering Laboratory (ISE Lab) at the University of Delaware. Address Catalysis Center for Energy Innovation University of Delaware 221 Academy Street Newark, DE 19716 Phone Number (302) 831-1628 Email efrc-info@udel.edu Visitors A downloadable PDF of the campus parking map is available. For hotel accommodations, please visit the University's visitor page.

  6. Recovery Act State Memos Delaware

    Broader source: Energy.gov (indexed) [DOE]

    ... Recovery Act Pillar Flagship Program Names & Funding Type 1 ... in order to double our supply of renewable energy and ... as wind, renewables, biofuels, etc. as well as updating ...

  7. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Primary Renewable Energy Capacity Source","Municipal Solid Waste/Landfill Gas" "Primary Renewable Energy Generation Source","Municipal Solid Waste/Landfill Gas" "Capacity (megawatts)","Value","Percent of State Total" "Total Net Summer Electricity Capacity",3389,100 "Total Net Summer Renewable Capacity",10,0.3 " Geothermal","-","-" " Hydro

  8. CX-006578: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Delaware State Energy Office Sub Grantee/Bridgeville Well Pump ReplacementCX(s) Applied: B5.1Date: 08/26/2011Location(s): Bridgeville, DelawareOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  9. American Ref-Fuel of Delaware Valley Biomass Facility | Open...

    Open Energy Info (EERE)

    Ref-Fuel of Delaware Valley Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Delaware Valley Biomass Facility Facility American Ref-Fuel of Delaware Valley...

  10. Chrome Deposit Corporation and the University of Delaware IAC...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chrome Deposit Corporation and the University of Delaware IAC: Another Energy Efficiency Success Story Chrome Deposit Corporation and the University of Delaware IAC: Another Energy ...

  11. Delaware County, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Delaware County, Ohio US Recovery Act Smart Grid Projects in Delaware County, Ohio City of Westerville, OH Smart Grid Project Columbus Southern Power Company (doing business...

  12. University of Delaware Institute of Energy Conversion | Open...

    Open Energy Info (EERE)

    Institute of Energy Conversion Jump to: navigation, search Name: University of Delaware Institute of Energy Conversion Place: Delaware Product: String representation "University...

  13. Hess Retail Natural Gas and Elec. Acctg. (Delaware) | Open Energy...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. (Delaware) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: Delaware References: EIA Form EIA-861 Final...

  14. University of Delaware | CCEI Spring Symposium Registration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Registration for CCEI's Spring Symposium Dates: April 10-11, 2016 (Sunday and Monday) Sunday's Venue: ISE Lab - University of Delaware (Newark, Delaware) Monday's Venue: Embassy Suites (Newark, Delaware) Registration for this event has closed. This event is for CCEI personnel, advisory board members and industrial consortium members exclusively. CCEI is an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Basic Sciences.

  15. DELAWARE RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Delaware are supporting a broad range of clean energy projects, from energy efficiency and the electric grid to solar power and energy research. Through these investments, Delaware's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Delaware to play an important role in

  16. ,"Delaware Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  17. ,"Delaware Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  18. University of Delaware | Open Energy Information

    Open Energy Info (EERE)

    Newark, Delaware Sector: Solar Product: University with a research department leading a solar cell development consortium. Coordinates: 44.690435, -71.951685 Show Map Loading...

  19. GEXA Corp. (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    Name: GEXA Corp. Place: Delaware Phone Number: 866.961.9399 Website: www.gexaenergy.com Twitter: @gexavoice Facebook: https:www.facebook.comGexaEnergy Outage Hotline:...

  20. Delaware/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Delaware Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  1. Delaware Electric Cooperative- Green Energy Program Incentives

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Delaware Electric Cooperative (DEC) provides incentives for solar photovoltaic (PV), solar thermal, wind, fuel cells, and geothermal installed by DEC member-owners. Eligibility is limited to ...

  2. University of Delaware Energy Institute

    SciTech Connect (OSTI)

    Klein, Michael T

    2012-09-30

    The main goal of this project funded through this DOE grant is to help in the establishment of the University of Delaware Energy Institute (UDEI) which is designed to be a long-term, on-going project. The broad mission of UDEI is to develop collaborative programs encouraging research activities in the new and emerging energy technologies and to partner with industry and government in meeting the challenges posed by the nationâ??s pressing energy needs.

  3. University of Delaware | About CCEI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Center for Energy Innovation About CCEI The Catalysis Center for Energy Innovation (CCEI) is a multi-institutional research center at the University of Delaware. It was established in 2009 by a grant from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. It is one of 46 Energy Frontier Research Centers (EFRCs) and one of very few externally funded centers on heterogeneous catalysis. The center builds upon the long tradition of novel catalytic research

  4. Alternative Fuels Data Center: Delaware Reduces Truck Idling With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electrified Parking Areas Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware

  5. Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Buses to Its Fleet Delaware Transit Corporation Adds Propane Buses to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Google Bookmark Alternative Fuels Data Center: Delaware Transit

  6. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2001-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

  7. PEPCO Energy Services (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    Place: Delaware Phone Number: 1-877-737-2662 Website: www.pepco.com Twitter: https:twitter.comPepcoConnect Facebook: https:www.facebook.comPepcoConnect Outage Hotline:...

  8. Glasgow, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Glasgow is a census-designated place in New Castle County, Delaware. It falls under...

  9. Liberty Power Corp. (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    Corp. Place: Delaware Phone Number: 1-866-769-3799 Website: www.libertypowercorp.com Twitter: https:twitter.comlibertypower Facebook: http:www.facebook.comLibertyPowerCorp...

  10. Delaware Electric Cooperative- Green Energy Fund

    Broader source: Energy.gov [DOE]

    Under the 2005 Delaware Renewable Portfolio Standard (RPS) legislation, electric cooperatives were allowed to opt out of the RPS schedule if they met certain other requirements. One such requirem...

  11. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2003-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  12. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  13. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2002-09-21

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  14. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    1999-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  15. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2000-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  16. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  17. Noble Americas Energy Solutions LLC (Delaware) | Open Energy...

    Open Energy Info (EERE)

    Delaware) Jump to: navigation, search Name: Noble Americas Energy Solutions LLC Place: Delaware Phone Number: 1 877273-6772 or 1 888896-8629 Website: www.noblesolutions.com...

  18. ,"Delaware Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:29 AM" "Back to Contents","Data 1: Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035DE3" "Date","Delaware...

  19. Chrome Deposit Corporation and the University of Delaware IAC: Another

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Efficiency Success Story | Department of Energy Chrome Deposit Corporation and the University of Delaware IAC: Another Energy Efficiency Success Story Chrome Deposit Corporation and the University of Delaware IAC: Another Energy Efficiency Success Story November 2, 2011 - 2:11pm Addthis Pictured left to right: University of Delaware students Joseph Camp and Nicole Suto; Keith Goossen, director of the Industrial Assessment Center; and Cesar Duarte, University of Delaware grad student.

  20. University of Delaware | CCEI Past Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Past Events DATE EVENT PRESENTER(S) TIME (EST) October 21, 2015 Student Seminar Tyler Josephson University of Delaware (Advisor: Dr. Stavros Caratzoulas) 12:30 p.m. - 1:30 p.m. October 13, 2015 Guest Speaker Seminar Professor John Kitchin Carnegie Mellon University "Emacs + Org-mode for Reproducible, Functional Scientific Documents" 11:30 a.m. - 12:30 p.m. September 30, 2015 Postdoc Seminar Dr. Glen Jenness University of Delaware (Advisor: Dr. Stavros Caratzoulas) 12:30 p.m. - 1:30

  1. University of Delaware | CCEI Symposium: April 10-11, 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spring Symposium Dates: April 10-11, 2016 (Sunday and Monday) Deadline to register: March 18, 2016 (registration is required) Venue (Sunday): ISE Lab, University of Delaware (Newark, Delaware) Venue (Monday): Embassy Suites Newark (Newark, Delaware) For additional information: Send email inquiry This event is for CCEI personnel, advisory board members and industrial consortium members exclusively. CCEI is an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of

  2. Delaware Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3367,3350,3344,3355,3379 " ... "Renewables",7,7,7,7,10 "Pumped Storage","-","-","-","-","-" ...

  3. NREL to Partner with University of Delaware on Offshore Wind...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    potential establishment of a test site for commercial wind turbines off the Delaware coast. ... Targett, dean of UD's College of Earth, Ocean, and Environment. "This agreement ...

  4. ,"Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  5. North Star, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Star, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7612226, -75.7191006 Show Map Loading map... "minzoom":false,"mappingservice...

  6. SEP Success Story: Delaware Company Breathes New Life into Old...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EECBG Success Story: Delaware Community Saves with Solar The Bossone Research Enterprise Center is one of six buildings on Drexel University's Philadelphia campus to undergo energy ...

  7. Demagnetization using a determined estimated magnetic state

    DOE Patents [OSTI]

    Denis, Ronald J; Makowski, Nathanael J

    2015-01-13

    A method for demagnetizing comprising positioning a core within the electromagnetic field generated by a first winding until the generated first electrical current is not substantially increasing, thereby determining a saturation current. A second voltage, having the opposite polarity, is then applied across the first winding until the generated second electrical current is approximately equal to the magnitude of the determined saturation current. The maximum magnetic flux within the core is then determined using the voltage across said first winding and the second current. A third voltage, having the opposite polarity, is then applied across the first winding until the core has a magnetic flux equal to approximately half of the determined maximum magnetic flux within the core.

  8. Think Tank: Delaware Department of Natural Resources

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Spring 2009 Number 58 UST Regulations Revision Update Jill Hall The Tank Management Branch (TMB) conducted 3 public workshops in October 2008 to roll out changes to the Delaware Regulations Governing Underground Storage Tanks (UST Regulations). The UST Regulations were completely re- vamped last year and became effective January 11, 2008. Changes were made last year for 2 reasons: (1) the UST Reg- ulations were woefully out of date with regards to technological changes, and (2) the Federal

  9. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 26.24 - W...

  10. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 28.49 - W...

  11. Delaware Company Breathes New Life into Old Post Office Building |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Company Breathes New Life into Old Post Office Building Delaware Company Breathes New Life into Old Post Office Building November 26, 2013 - 12:51pm Addthis Thanks to the Energy Department, Delaware-based Brandywine CAD Design was able to breathe new life into a local historic building while saving on its energy costs. | Photo courtesy of Brandywine CAD Design. Thanks to the Energy Department, Delaware-based Brandywine CAD Design was able to breathe new life into a local

  12. Washington Gas Energy Services (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    Washington Gas Energy Services Place: Delaware Phone Number: 1-844-427-5945 Website: www.wges.com Outage Hotline: 1-844-427-5945 References: EIA Form EIA-861 Final Data File for...

  13. Delaware County Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Delaware County Elec Coop Inc Place: New York Phone Number: (607) 746-9283 or Toll Free at (866) 436-1223 Website: www.dce.coop Facebook: https:www.facebook.compages...

  14. Consolidated Edison Sol Inc (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    Consolidated Edison Sol Inc Place: Delaware Phone Number: 1-888-320-8991 or 1-888-320-8991 or 1-800-316-8011 or 1-888-210-8899 Website: www.conedsolutions.comHome.as Twitter:...

  15. ,"Delaware Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:46 AM" "Back to Contents","Data 1: Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  16. City of Milford, Delaware (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    of Milford Place: Delaware Phone Number: 302-422-1110 Website: www.cityofmilford.com23Elect Facebook: https:www.facebook.compagesCity-of-Milford-DE-River-Town-Art-Town-Ho...

  17. Delaware Community Saves with Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Saves with Solar Delaware Community Saves with Solar November 28, 2012 - 4:41pm Addthis With a grant from the Energy Department's Energy Efficiency and Conservation Block ...

  18. Pike Creek, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike Creek is a census-designated place in New Castle County, Delaware. It falls under...

  19. Delaware County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a county in New York. Its FIPS County Code is 025. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype A. Places in Delaware County, New York...

  20. Department of Energy Official in Newark, Delaware, to Highlight $168

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Million for Solar Energy Projects | Department of Energy Official in Newark, Delaware, to Highlight $168 Million for Solar Energy Projects Department of Energy Official in Newark, Delaware, to Highlight $168 Million for Solar Energy Projects March 16, 2007 - 12:00pm Addthis Funding will help further President Bush's Solar America Initiative NEWARK, DE - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Andy Karsner today highlighted DOE's

  1. Delaware Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  2. Methods for determining the physiological state of a plant

    DOE Patents [OSTI]

    Kramer, David M.; Sacksteder, Colette

    2003-09-23

    The present invention provides methods for measuring a photosynthetic parameter. The methods of the invention include the steps of: (a) illuminating a plant leaf until steady-state photosynthesis is achieved; (b) subjecting the illuminated plant leaf to a period of darkness; (c) using a kinetic spectrophotometer or kinetic spectrophotometer/fluorimeter to collect spectral data from the plant leaf treated in accordance with steps (a) and (b); and (d) determining a photosynthetic parameter from the spectral data. In another aspect, the invention provides methods for determining the physiological state of a plant.

  3. CX-005898: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program - Renewable Energy Incentives - Fleck's ResidenceCX(s) Applied: B5.1Date: 05/17/2011Location(s): Lewes, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  4. CX-005288: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program - Renewable Energy IncentivesCX(s) Applied: B5.1Date: 02/22/2011Location(s): Rehoboth Beach, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  5. SEP Success Story: Delaware Company Breathes New Life into Old Post Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building | Department of Energy Delaware Company Breathes New Life into Old Post Office Building SEP Success Story: Delaware Company Breathes New Life into Old Post Office Building November 26, 2013 - 10:00am Addthis Thanks to the Energy Department, Delaware-based Brandywine CAD Design was able to breathe new life into a local historic building while saving on its energy costs. | Photo courtesy of Brandywine CAD Design. Thanks to the Energy Department, Delaware-based Brandywine CAD Design

  6. Delaware Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Delaware Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 980 1,255 878 1970's 602 1,463 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Withdrawals of Natural Gas from Underground Storage - All Operators Delaware

  7. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Renewable Electricity Profile 2010 Delaware profile Table 1. Summary Renewable Electric Power Industry Statistics (2010) Primary Renewable Energy Capacity Source Municipal Solid Waste/Landfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste/Landfill Gas Capacity (megawatts) Value Percent of State Total Total Net Summer Electricity Capacity 3,389 100.0 Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - Wind 2 0.1 Wood/Wood

  8. Delaware Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-",3 "Wood/Wood

  9. Metals in tissues of migrant semipalmated sandpipers (Calidris pusilla) from Delaware Bay, New Jersey

    SciTech Connect (OSTI)

    Burger, Joanna; Gochfeld, Michael; Niles, Lawrence; Dey, Amanda; Jeitner, Christian; Pittfield, Taryn; Tsipoura, Nellie

    2014-08-15

    There is an abundance of field data on levels of metals for feathers in a variety of birds, but relatively few data for tissues, especially for migrant species from one location. In this paper we examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in muscle, liver, brain, fat and breast feathers from migrant semipalmated sandpipers (Calidris pusilla) collected from Delaware Bay, New Jersey. Our primary objectives were to (1) examine variation as a function of tissue, (2) determine the relationship of metal levels among tissues, and (3) determine the selenium:mercury molar ratio in different tissues since selenium is thought to protect against mercury toxicity. We were also interested in whether the large physiological changes that occur while shorebirds are on Delaware Bay (e.g. large weight gains in 2–3 weeks) affected metal levels, especially in the brain. There were significant differences among tissues for all metals. The brain had the lowest levels of arsenic and cadmium, and was tied for the lowest levels of all other metals except lead and selenium. Correlations among metals in tissues were varied, with mercury levels being positively correlated for muscle and brain, and for liver and breast feathers. Weights vary among individuals at the Delaware Bay stopover, as they arrive light, and gain weight prior to migration north. Bird weight and levels of arsenic, cadmium, and selenium in the brain were negatively correlated, while they were positively correlated for lead. There was no positive correlation for mercury in the brain as a function of body weight. The selenium:mercury molar ratio varied significantly among tissues, with brain (ratio of 141) and fat having the highest ratios, and liver and breast feathers having the lowest. In all cases, the ratio was above 21, suggesting the potential for amelioration of mercury toxicity. - Highlights: • Metal levels were examined for migrant semipalmated sandpipers. • There were differences in metal levels among internal tissues. • Brain had the lowest levels of arsenic and cadmium. • Bird weight and arsenic, cadmium, and selenium levels in brain were negatively correlated. • Selenium:mercury molar ratio varied among tissues (21–141, suggesting protection)

  10. CCEI REU Program Application | University of Delaware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mailing Address: Street: City: State: Zip: Contact Information: Cell Phone: Email: Demographics Gender: Male Female Housing: Will you need campus housing? Yes No Citizenship:...

  11. Delaware Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Delaware Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113 99 118 94 149 133 0 6 93 39 1990's 88 79 61 99 225 103 237 112 77 83 2000's 182 88 127 219 230 138 68 215 122 121 2010's 73 64 117 63 157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  12. Delaware Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 102 121 123 110 126 71 66 89 76 1990's 81 72 66 95 202 103 226 121 70 52 2000's 99 78 170 191 220 145 68 220 104 118 2010's 76 96 66 131 128 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  13. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  14. Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13 15 45 2000's 62 23 49 34 39 40 18 16 18 22 2010's 140 464 1,045 970 1,040 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Pipeline & Distribution Use

  15. Delaware Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,274 1,500 179 1970's 391 189 255 2,012 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Injections

  16. Delaware Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -294 -245 699 1970's 211 -189 -255 -549 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Net

  17. Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 0 0 0 1 1 1 21 27 33 2000's 37 46 46 56 63 9 6 5 4 1 2010's 1 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Delivered to

  18. Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113 -3 -3 -29 39 7 -71 -60 4 -38 1990's 6 7 -5 3 23 -1 11 -8 8 31 2000's 83 10 -43 -28 -10 7 -1 -6 17 3 2010's -2 -31 51 -68 29 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016

  19. Delaware Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",7182,8486,7350,4710,5489 " Coal",4969,5622,5267,2848,2568 " Petroleum",132,241,219,258,56 " Natural Gas",1171,1902,1387,1376,2865 " Other Gases",910,721,476,227,"-" "Nuclear","-","-","-","-","-" "Renewables","s",48,163,126,138 "Pumped

  20. DETERMINING THE ORIGINS OF ELECTRONIC STATES IN SEMICONDUCTOR NANOSTRUCTURES

    SciTech Connect (OSTI)

    Goldman, Rachel

    2014-12-16

    With support from this program, we have generated key results in quantum dot (QD) formation, strain/electronic coupling, measurement and modeling of confined states, and examination of the influence of QDs on thermoelectric and photovoltaic properties of nanocomposite structures. This final report contains a description of our key findings followed by a list of personnel supported and publications generated.

  1. Alaska State Historic Preservation Programmatic Agreement | Department of

    Energy Savers [EERE]

    Energy Alaska State Historic Preservation Programmatic Agreement Alaska State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. PDF icon state_historic_preservation_programmatic_agreement_ak.pdf More Documents & Publications Delaware State Historic Preservation Programmatic Agreement Florida State Historic Preservation Programmatic Agreement Louisiana

  2. Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 55 135 56 20 13 12 9 0 2 18 1990's 4,410 4,262 3,665 3,597 3,032 1 1 2 0 0 2000's 6 0 0 7 17 0 W 5 2 2 2010's 1 0 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016

  3. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  4. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 - = No Data Reported; -- = Not Applicable; NA = Not

  5. Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2.00 1.33 1980's 3.67 3.68 3.91 3.80 4.00 3.75 2.71 2.95 3.10 1990's 3.10 2.88 3.01 3.19 3.02 3.02 3.51 2.98 2.40 2.22 2000's 4.29 3.58 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  6. Delaware Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Delaware Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 46,511 40,809 56,013 2000's 48,387 50,113 52,216 46,177 48,057 46,904 43,190 48,155 48,162 50,148 2010's 54,825 79,715 101,676 95,978 100,776 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  7. Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages:

  8. CX-006153: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery State Energy Program - Renewable Energy Incentives - Schwartz Residence Closed Loop Heat Pump SystemCX(s) Applied: B5.1Date: 07/13/2011Location(s): Lewes, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  9. CX-006154: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery State Energy Program - Renewable Energy Incentives - Spencer Residence Open Loop Heat Pump SystemCX(s) Applied: B5.1Date: 07/13/2011Location(s): Lewes, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  10. CX-005073: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Efficiency and Conservation Block Grant Subgrant: Lums Pond State Park Natural Gas ConversionCX(s) Applied: B2.5Date: 01/25/2011Location(s): DelawareOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  11. CX-006152: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery State Energy Program - Renewable Energy Incentives - Osler Residence Open Loop Heat Pump SystemCX(s) Applied: B5.1Date: 07/13/2011Location(s): Lewes, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  12. CX-005650: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery State Energy Program - Renewable Energy Incentives - Gareis Residence Closed Loop Heat Pump SystemCX(s) Applied: B5.1Date: 04/28/2011Location(s): Lewes, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  13. CX-006150: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery State Energy Program - Renewable Energy Incentives - Martin Residence Closed Loop Heat Pump SystemCX(s) Applied: B5.1Date: 07/13/2011Location(s): Lewes, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  14. CX-005651: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery State Energy Program - Renewable Energy Incentives - Ennis Residence Open Loop Heat Pump SystemCX(s) Applied: B5.1Date: 04/28/2011Location(s): Greenwood, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  15. CX-006151: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Recovery State Energy Program - Renewable Energy Incentives - Ivins Residence Open Loop Heat Pump SystemCX(s) Applied: B5.1Date: 07/13/2011Location(s): Lewes, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  16. EIA - Renewable Electricity State Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  17. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  18. EIA - Renewable Electricity State Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity State Profiles Renewable Electricity State Profiles Data for 2010 | Release Date: January 21, 2012 | Next Release: January 30, 2013 Other Renewable Electricity State Profiles Choose a State: Select a State Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New

  19. Delaware Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,049 1,046 1,048 1,041 1,049 1,058 1,054 1,065 1,064 1,067 1,057 2014 1,052 1,048 1,048 1,051 1,045 1,049 1,063 1,065 1,062 1,063 1,063 1,064 2015 1,061 1,061 1,062 1,051 1,055 1,055 1,044 1,044 1,043 1,051 1,051 1,049 2016 1,055

    % of Total Residential Deliveries (Percent) Delaware Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's

  20. EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project

    Broader source: Energy.gov [DOE]

    The University of Delaware has constructed a wind turbine adjacent to its College of Earth, Ocean, and Environment campus in Lewes, Delaware. DOE proposed to provide the University a $1.43 million grant for this Wind Energy Project from funding provided in the Omnibus Appropriations Act of 2009 (Public Law 111-8) and an additional $1 million provided in the Energy and Water Development Appropriations Act of Fiscal Year 2010. This EA analyzed the potential environmental impacts of the University of Delaware’s Wind Energy Project at its Lewes campus and, for purposes of comparison, an alternative that assumes the wind turbine had not been constructed.

  1. Status of the Residential Conservation Service Program in selected states as of December 1981

    SciTech Connect (OSTI)

    Frogge, L.M.; Ehrenshaft, A.R.; Morris, L.E.

    1982-09-01

    The primary objective of the study reported was to collect information concerning Residential Conservation Service (RCS) and similar residential audit programs to determine the implementation status of the RCS programs in various parts of the country as of December 1, 1981. Common experiences, problems, and treatment of RCS and other residential audit programs are briefly overviewed, and then the interview findings are discussed on a state-by-state basis for each of the eleven states contacted. The program structure and status are described for each state, including the nonregulated utility programs, unique features, and problems and impacts. The 11 states are: California, Connecticut, Delaware, Iowa, Michigan, New Jersey, New York, Oregon, Rhode Island, South Carolina, and Texas. Appended are an interview guide and a table of program coverage. (LEW)

  2. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Standard Chlorine of Delaware Superfund Site in Delaware City, Delaware. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-06-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Standard Chlorine of Delaware site in Delaware City, Delaware, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  3. Determination of the polarization state of x rays with the help of anomalous transmission

    SciTech Connect (OSTI)

    Schulze, K. S. Uschmann, I.; Frster, E.; Marx, B.; Paulus, G. G.; Sthlker, T.

    2014-04-14

    Besides intensity and direction, the polarization of an electromagnetic wave provides characteristic information on the crossed medium. Here, we present two methods for the determination of the polarization state of x rays by polarizers based on anomalous transmission (Borrmann effect). Using a polarizer-analyzer setup, we have measured a polarization purity of less than 1.5??10{sup ?5}, three orders of magnitude better than obtained in earlier work. Using the analyzer crystal in multiple-beam case with slightly detuned azimuth, we show how the first three Stokes parameters can be determined with a single angular scan. Thus, polarization analyzers based on anomalous transmission make it possible to detect changes of the polarization in a range from degrees down to arcseconds.

  4. Delaware Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-",2 "Wood/Wood

  5. Comparison of average and point capillary pressure-saturation functions determined by steady-state centrifugation

    SciTech Connect (OSTI)

    Cropper, Clark; Perfect, Edmund; van den Berg, Dr. Elmer; Mayes, Melanie

    2010-01-01

    The capillary pressure-saturation function can be determined from centrifuge drainage experiments. In soil physics, the data resulting from such experiments are usually analyzed by the 'averaging method.' In this approach, average relative saturation, , is expressed as a function of average capillary pressure, <{psi}>, i.e., (<{psi}>). In contrast, the capillary pressure-saturation function at a physical point, i.e., S({psi}), has been extracted from similar experiments in petrophysics using the 'integral method.' The purpose of this study was to introduce the integral method applied to centrifuge experiments to a soil physics audience and to compare S({psi}) and (<{psi}>) functions, as parameterized by the Brooks-Corey and van Genuchten equations, for 18 samples drawn from a range of porous media (i.e., Berea sandstone, glass beads, and Hanford sediments). Steady-state centrifuge experiments were performed on preconsolidated samples with a URC-628 Ultra-Rock Core centrifuge. The angular velocity and outflow data sets were then analyzed using both the averaging and integral methods. The results show that the averaging method smoothes out the drainage process, yielding less steep capillary pressure-saturation functions relative to the corresponding point-based curves. Maximum deviations in saturation between the two methods ranged from 0.08 to 0.28 and generally occurred at low suctions. These discrepancies can lead to inaccurate predictions of other hydraulic properties such as the relative permeability function. Therefore, we strongly recommend use of the integral method instead of the averaging method when determining the capillary pressure-saturation function by steady-state centrifugation. This method can be successfully implemented using either the van Genuchten or Brooks-Corey functions, although the latter provides a more physically precise description of air entry at a physical point.

  6. Alternative Fuels Data Center: Delaware Transportation Data for...

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Gasoline Diesel Propane Natural Gas Transportation Fuel Consumption Source: State Energy Data System based on beta data converted to gasoline gallon equivalents of petroleum (GGEs) ...

  7. Platform, Delaware Basin, and Midland Basin, West Texas and New...

    Office of Scientific and Technical Information (OSTI)

    The two primary emphases were on: (1) delineating the temporal and spatial evolution of the regional stress state; and (2) calculating the amount of regional shortening...

  8. AREA FACTOR DETERMINATIONS FOR AN INDUSTRIAL WORKER EXPOSED TO A CONCRETE SLAB END-STATE

    SciTech Connect (OSTI)

    Jannik, T; Patricia Lee, P; Eduardo Farfan, E; Jesse Roach, J

    2007-02-08

    The U.S. Department of Energy's (DOE) Savannah River Site (SRS) is decommissioning many of its excess facilities through removal of the facility structures leaving only the concrete-slab foundations in place. Site-specific, risk-based derived concentration guideline levels (DCGLs) for radionuclides have been determined for a future industrial worker potentially exposed to residual contamination on these concrete slabs as described in Jannik [1]. These risk-based DCGLs were estimated for an exposure area of 100 m{sup 2}. During deactivation and decommissioning (D&D) operations at SRS, the need for area factors for larger and smaller contaminated areas arose. This paper compares the area factors determined for an industrial worker exposed to a concrete slab end-state for several radionuclides of concern at SRS with (1) the illustrative area factors provided in MARSSIM [2], (2) the area correction factors provided in the U.S. Environmental Protection Agency's (EPA) Soil Screening Guidance [3], and (3) the hot spot criterion for field application provided in the RESRAD User's Manual [4].

  9. Determination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of a Minimum Soiling Level to Affect Photovoltaic Devices Patrick D. Burton and Bruce H. King Sandia National Laboratories, Albuquerque, NM 87185 USA...

  10. Electronic state of Er in sputtered AlN:Er films determined by magnetic measurements

    SciTech Connect (OSTI)

    Narang, V.; Seehra, M. S.; Korakakis, D.

    2014-12-07

    The optoelectronic and piezoelectric properties of AlN:Er thin films have been of great recent interest for potential device applications. In this work, the focus is on the electronic state of Er in AlN:Er thin films prepared by reactive magnetron sputtering on (001) p-type Si substrate. X-ray diffraction shows that Er doping expands the lattice and the AlN:Er film has preferential c-plane orientation. To determine whether Er in AlN:Er is present as Er metal, Er{sub 2}O{sub 3}, or Er{sup 3+} substituting for Al{sup 3+}, detailed measurements and analysis of the temperature dependence (2 K–300 K) of the magnetization M at a fixed magnetic field H along with the M vs. H data at 2 K up to H = 90 kOe are presented. The presence of Er{sub 2}O{sub 3} and Er metal is ruled out since their characteristic magnetic transitions are not observed in the AlN:Er sample. Instead, the observed M vs. T and M vs. H variations are consistent with Er present as Er{sup 3+} substituting for Al{sup 3+} in AlN:Er at a concentration x = 1.08% in agreement with x = 0.94% ± 0.20% determined using x-ray photoelectron spectroscopy (XPS). The larger size of Er{sup 3+} vs. Al{sup 3+}explains the observed lattice expansion of AlN:Er.

  11. Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Delaware homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Delaware homeowners will save $10,409 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $616 for the 2012 IECC.

  12. Delaware Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease and Plant Fuel Consumption (Million Cubic Feet) Delaware Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1 1980's 0 0 0 0 0 0 0 0 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date: 5/31/2016 Referring Pages: Natural Gas Lease and

  13. Delaware Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3367,3350,3344,3355,3379 " Coal",1083,1083,1083,1074,1054 " Petroleum",695,698,557,557,563 " Natural Gas",1282,1262,1397,1417,1455 " Other Gases",307,307,307,307,307 "Nuclear","-","-","-","-","-" "Renewables",7,7,7,7,10 "Pumped

  14. New Whole-House Solutions Case Study: Insight Homes, Seaford, Delaware

    Energy Savers [EERE]

    Insight Homes of Bridgeville, Delaware, has worked with Building America's IBACOS team to refine its home designs to achieve HERS scores of 49 to 56 on 40 to 70 homes per year. For Insight Homes, energy efficiency sells. Marketing its homes exclusively based on energy efficiency, Insight Homes sold 38 homes in 2009, 54 in 2010, and 70 homes in 2011, and had a long backlog of orders for new homes in 2012. As a builder in humid East Coast climates, Insight Homes pays particular attention to

  15. ,"Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  16. ,"Delaware Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  17. ,"Delaware Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release Date:","5/31/2016" ,"Excel File

  18. University of Delaware | Catalysis Center for Energy Innovation | Aromatics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Thrust Green Aromatics Transition state for the Diels-Alder reaction of 2,5-dimethylfuran and ethylene in zeolite LiY Most polymers and plastics require six-carbon ring structures. Sugars (such as glucose and xylose) derived from cellulose and hemicellulose are converted into five-atom ring structures called furans, which consist of four carbons and one oxygen. In order to make the right carbon atom ring, CCEI has introduced technology for the production of aromatics from furans by

  19. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    SciTech Connect (OSTI)

    Martin, F.D.; Kendall, R.P.; Whitney, E.M.

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  20. Gas energy meter for inferential determination of thermophysical properties of a gas mixture at multiple states of the gas

    DOE Patents [OSTI]

    Morrow, Thomas B.; Kelner, Eric; Owen, Thomas E.

    2008-07-08

    A gas energy meter that acquires the data and performs the processing for an inferential determination of one or more gas properties, such as heating value, molecular weight, or density. The meter has a sensor module that acquires temperature, pressure, CO2, and speed of sound data. Data is acquired at two different states of the gas, which eliminates the need to determine the concentration of nitrogen in the gas. A processing module receives this data and uses it to perform a "two-state" inferential algorithm.

  1. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  2. CX-008587: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Replacing Traditional Electric Meters with Smart Electric Meters - City of Newark, Delaware CX(s) Applied: B1.7 Date: 07/23/2012 Location(s): Delaware Offices(s): Golden Field Office

  3. CX-011758: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    University of Delaware - Synthetic Methylotrophy to Liquid Fuel CX(s) Applied: B3.6 Date: 12/19/2013 Location(s): Delaware, New York Offices(s): Advanced Research Projects Agency-Energy

  4. Alaska - State Energy Profile Overview - U.S. Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration (EIA) Alaska - State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New

  5. Wyoming - State Energy Profile Overview - U.S. Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration (EIA) State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York

  6. Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.00 3.03 2.85 2.60 2.91 2000's 3.21 4.12 5.48 12.66 14.88 19.32 22.42 21.90 26.48 14.12 2010's 24.55 28.76 30.97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release Date:

  7. Delaware Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Delaware Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 0 0 0 0 0 0 0 75 2000's 103 97 1,285 1,450 1,561 1,399 1,833 2,178 2,611 5,438 2010's 6,117 4,879 5,647 6,146 6,389 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  8. Solar energy system demonstration project at Wilmington Swim School, New Castle, Delaware. Final report

    SciTech Connect (OSTI)

    None

    1980-07-01

    This document is the Final Report of the Solar Energy System located at the Wilmington, Swim School, New Castle, Delaware. This active solar system is composed of 2,700 square feet of Revere liquid flat plate collectors piped to a 2,800 gallon concrete storage tank located below ground near the building. A micro-computer based control system selects the optimal applications of the stored energy among space, domestic water and pool alternatives. The controlled logic is planned for serving the heat loads in the following order: space heat-new addition, domestic water-entire facility, and pool heating-entire facility. A modified trombe wall passive operation the active system will bypass the areas being served passively. The system was designed for a 40 percent heating and a 30 percent hot water solar contribution.

  9. New method of determining the current carrier concentration in a substance in the state of superconductivity

    SciTech Connect (OSTI)

    Golotyuk, F.P.

    1985-08-02

    This report proposes a fundamentally new solution to the problem of determining the current carrier concentration in a substance. The basis of the corresponding experimental method is a theory that considers the electron drift energy when considering the oscillatory processes in certain circuits.

  10. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOE Patents [OSTI]

    Asoka kumar, Palakkal P. V.; Lynn, Kelvin G.

    1993-01-01

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO.sub.2 /Si, MOS or other semiconductor devices.

  11. Determination of interfacial states in solid heterostructures using a variable-energy positron beam

    DOE Patents [OSTI]

    Asokakumar, P.P.V.; Lynn, K.G.

    1993-04-06

    A method and means is provided for characterizing interfacial electron states in solid heterostructures using a variable energy positron beam to probe the solid heterostructure. The method includes the steps of directing a positron beam having a selected energy level at a point on the solid heterostructure so that the positron beam penetrates into the solid heterostructure and causes positrons to collide with the electrons at an interface of the solid heterostructure. The number and energy of gamma rays emitted from the solid heterostructure as a result of the annihilation of positrons with electrons at the interface are detected. The data is quantified as a function of the Doppler broadening of the photopeak about the 511 keV line created by the annihilation of the positrons and electrons at the interface, preferably, as an S-parameter function; and a normalized S-parameter function of the data is obtained. The function of data obtained is compared with a corresponding function of the Doppler broadening of the annihilation photopeak about 511 keV for a positron beam having a second energy level directed at the same material making up a portion of the solid heterostructure. The comparison of these functions facilitates characterization of the interfacial states of electrons in the solid heterostructure at points corresponding to the penetration of positrons having the particular energy levels into the interface of the solid heterostructure. Accordingly, the invention provides a variable-energy non-destructive probe of solid heterostructures, such as SiO[sub 2]/Si, MOS or other semiconductor devices.

  12. EIA - Natural Gas Pipeline Network - States Dependent on Interstate

    U.S. Energy Information Administration (EIA) Indexed Site

    Pipelines Map States Dependent on Interstate Pipelines About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates States in grey which are at least 85% dependent on the interstate pipeline network for their natural gas supply are: New England - Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont Southeast - Florida, Georgia, North Carolina, South Carolina, Tennessee Northeast - Delaware, Maryland, New Jersey, New

  13. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  14. District of Columbia - State Energy Profile Overview - U.S. Energy

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration (EIA) District of Columbia - State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire

  15. State Total

    U.S. Energy Information Administration (EIA) Indexed Site

    State Total Percent of U.S. total Alabama 1,652 0.0 Alaska 152 0.0 Arizona 912,975 19.9 Arkansas 2,724 0.1 California 2,239,983 48.8 Colorado 49,903 1.1 Connecticut 33,627 0.7 Delaware 3,080 0.1 District of Columbia 1,746 0.0 Florida 22,061 0.5 Georgia 99,713 2.2 Guam 39 0.0 Hawaii 126,595 2.8 Idaho 1,423 0.0 Illinois 8,176 0.2 Indiana 12,912 0.3 Iowa 4,480 0.1 Kansas 523 0.0 Kentucky 2,356 0.1 Louisiana 27,704 0.6 Maine 993 0.0 Maryland 30,528 0.7 Massachusetts 143,539 3.1 Michigan 3,416 0.1

  16. ,"Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","2/2016" ,"Release Date:","4/29/2016" ,"Next Release

  17. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

  18. U.S. States - U.S. Energy Information Administration (EIA) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration (EIA) - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North

  19. Systematics of ground-state quadrupole moments of odd-A deformed nuclei determined with muonic M x rays

    SciTech Connect (OSTI)

    Tanaka, Y.; Steffen, R.M.; Shera, E.B.; Reuter, W.; Hoehn, M.V.; Zumbro, J.D.

    1984-05-01

    The ground-state quadrupole moments of /sup 151/Eu, /sup 153/Eu, /sup 159/Tb, /sup 163/Dy, /sup 167/Er, /sup 177/Hf, /sup 179/Hf, /sup 191/Ir, and /sup 193/Ir were determined by measuring the quadrupole hyperfine-splitting energies of muonic M x rays. The results are Q = 0.903(10) e b for /sup 151/Eu, Q = 2.412(21) e b for /sup 153/Eu, Q = 1.432(8) e b for /sup 159/Tb, Q = 2.648(21) e b for /sup 163/Dy, Q = 3.565(29) e b for /sup 167/Er, Q = 3.365(29) e b for /sup 177/Hf, Q = 3.793(33) e b for /sup 179/Hf, Q = 0.816(9) e b for /sup 191/Ir, and Q = 0.751(9) e b for /sup 193/Ir. The present quadrupole moments, compared with values obtained from electronic-atom hyperfine measurements, show that the Sternheimer correction factors used in the rare-earth electronic-atom analysis are unreliable. Systematics of deformation parameters ..beta../sub 2/ calculated from the present quadrupole moments for odd-A nuclei, and from B(E2) values of Coulomb excitation measurements for even-A nuclei, also indicate that the largest deformation change so far known exists between /sup 151/Eu and /sup 153/Eu. Except at the onset of nuclear deformation, the deformation parameters of the odd-A nuclei are quite consistent with those of the even-A neighbors.

  20. CX-001658: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    County of Delaware (Pennsylvania): Activities 2, 3, 4, and 5 - American Recovery and Reinvestment Act (ARRA) - Energy Efficiency and Conservation Block Grant (EECBG) (S)CX(s) Applied: A9, A11, B5.1Date: 04/09/2010Location(s): Delaware County, PennsylvaniaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  1. Obama Administration Awards More than $162 Million for State Energy Programs in Seven States and Territories

    Broader source: Energy.gov [DOE]

    Funding Will Speed Adoption of Efficiency and Renewable Energy Technologies in Colorado, Delaware, Indiana, Louisiana, Massachusetts, Pennsylvania, and Puerto Rico

  2. Determination of the Average Aromatic Cluster Size of Fossil Fuels by Solid-State NMR at High Magnetic Field

    SciTech Connect (OSTI)

    Mao, Kanmi; Kennedy, Gordon J.; Althaus, Stacey M.; Pruski, Marek

    2013-01-07

    We show that the average aromatic cluster size in complex carbonaceous materials can be accurately determined using fast magic-angle spinning (MAS) NMR at a high magnetic field. To accurately quantify the nonprotonated aromatic carbon, we edited the 13C spectra using the recently reported MAS-synchronized spinecho, which alleviated the problem of rotational recoupling of 1H-13C dipolar interactions associated with traditional dipolar dephasing experiments. The dependability of this approach was demonstrated on selected Argonne Premium coal standards, for which full sets of basic structural parameters were determined with high accuracy.

  3. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Enos, David George

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  4. Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; van Veenendaal, M.; Rebizant, J.; Lander, G. H.; Zhu, J. -X.; Thompson, J. D.; Bauer, E. D.

    2015-01-14

    Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M₄,₅ edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [μL = 2.8(1)μB/Pu] and spin moments [μS = –2.0(1)μB/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of Lz and Sz are in excellent agreement with the values thatmore » have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. We demonstrate that a split M₅ as well as a narrow M₄ XMCD signal may serve as a signature of 5f electron localization in actinide compounds.« less

  5. Ground-state wave function of plutonium in PuSb as determined via x-ray magnetic circular dichroism

    SciTech Connect (OSTI)

    Janoschek, M.; Haskel, D.; Fernandez-Rodriguez, J.; van Veenendaal, M.; Rebizant, J.; Lander, G. H.; Zhu, J. -X.; Thompson, J. D.; Bauer, E. D.

    2015-01-01

    Measurements of x-ray magnetic circular dichroism (XMCD) and x-ray absorption near-edge structure (XANES) spectroscopy at the Pu M?,? edges of the ferromagnet PuSb are reported. Using bulk magnetization measurements and a sum rule analysis of the XMCD spectra, we determine the individual orbital [?L = 2.8(1)?B/Pu] and spin moments [?S = ?2.0(1)?B/Pu] of the Pu 5f electrons for the first time. Atomic multiplet calculations of the XMCD and XANES spectra reproduce well the experimental data and are consistent with the experimental value of the spin moment. These measurements of ?Lz? and ?Sz? are in excellent agreement with the values that have been extracted from neutron magnetic form factor measurements, and confirm the local character of the 5f electrons in PuSb. Finally, we demonstrate that a split M? as well as a narrow M? XMCD signal may serve as a signature of 5f electron localization in actinide compounds.

  6. Determination of defect density of state distribution of amorphous silicon solar cells by temperature derivative capacitance-frequency measurement

    SciTech Connect (OSTI)

    Yang, Guangtao Swaaij, R. A. C. M. M. van; Dobrovolskiy, S.; Zeman, M.

    2014-01-21

    In this contribution, we demonstrate the application temperature dependent capacitance-frequency measurements (C-f) to n-i-p hydrogenated amorphous silicon (a-Si:H) solar cells that are forward-biased. By using a forward bias, the C-f measurement can detect the density of defect states in a particular energy range of the interface region. For this contribution, we have carried out this measurement method on n-i-p a-Si:H solar cells of which the intrinsic layer has been exposed to a H{sub 2}-plasma before p-type layer deposition. After this treatment, the open-circuit voltage and fill factor increased significantly, as well as the blue response of the solar cells as is concluded from external quantum efficiency. For single junction, n-i-p a-Si:H solar cells initial efficiency increased from 6.34% to 8.41%. This performance enhancement is believed to be mainly due to a reduction of the defect density in the i-p interface region after the H{sub 2}-plasma treatment. These results are confirmed by the C-f measurements. After H{sub 2}-plasma treatment, the defect density in the intrinsic layer near the i-p interface region is lower and peaks at an energy level deeper in the band gap. These C-f measurements therefore enable us to monitor changes in the defect density in the interface region as a result of a hydrogen plasma. The lower defect density at the i-p interface as detected by the C-f measurements is supported by dark current-voltage measurements, which indicate a lower carrier recombination rate.

  7. Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Veith, Gabriel M.; Doucet, Mathieu; Baldwin, J. K.; Sacci, Robert L.; Fears, Tyler M.; Wang, Yongqiang; Browning, Jim

    2015-01-01

    Using neutron reflectometry we have determined the thickness and chemistry of the solid-electrolyte interphase (SEI) layer grown on a silicon anode as a function of state of charge and during cycling. We show the chemistry of this SEI layer becomes more LiF like with increasing lithiation and more Li-C-O-F like with delithiation. More importantly the SEI layer thickness appears to increase (about 250 ) as the electrode becomes less lithiated and thins to 180 with increasing Li content (Li3.7Si). We attribute this breathing to the continual consumption of electrolyte with cycling.

  8. Direct determination of solid-electrolyte interphase thickness and composition as a function of state of charge on a silicon anode

    SciTech Connect (OSTI)

    Veith, Gabriel M.; Doucet, Mathieu; Baldwin, J. K.; Sacci, Robert L.; Fears, Tyler M.; Wang, Yongqiang; Browning, Jim

    2015-08-17

    Using neutron reflectometry we have determined the thickness and chemistry of the solid-electrolyte interphase (SEI) layer grown on a silicon anode as a function of state of charge and during cycling. We show the chemistry of this SEI layer becomes more LiF like with increasing lithiation and more Li-C-O-F like with delithiation. More importantly the SEI layer thickness appears to increase (about 250 ) as the electrode becomes less lithiated and thins to 180 with increasing Li content (Li3.7Si). We attribute this breathing to the continual consumption of electrolyte with cycling.

  9. The equation of state of 5-nitro-2,4-dihydro-1,2,4,-triazol-3-one determined via in-situ optical microscopy and interferometry measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; Crowhurst, Jonathan C.

    2016-04-07

    Quasi-hydrostatic high-pressure equations of state (EOS) are typically determined, for crystalline solids, by measuring unit-cell volumes using x-ray diffraction (XRD) techniques. However, when characterizing low-symmetry materials with large unit cells, conventional XRD approaches may become problematic. To overcome this issue, we examined the utility of a "direct" approach toward determining high pressure material volume by measuring surface area and sample thickness using optical microscopy and interferometry (OMI) respectively. We have validated this experimental approach by comparing results obtained for TATB (2,4,6-triamino-1,3,5-trinitrobenzene) with an EOS determined from synchrotron XRD measurements; and, a good match is observed. We have measured the highmore » pressure EOS of 5-nitro-2,4-dihydro-1,2,4-triazol-3-one (α-NTO) up to 33 GPa. No high-pressure XRD EOS data have been published on α-NTO, probably due to its complex crystal structure. Furthermore, the results of this study suggest that OMI is a reliable and versatile alternative for determining EOSs, especially when conventional methodologies are impractical.« less

  10. CX-001153: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Roll-to-Roll Solution-Processable Small-Molecule Organic Light-Emitting Diodes (Wilmington) Date: 03/11/2010Location(s): Wilmington, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  11. CX-001046: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    25A4374 - Macroalgae ButanolCX(s) Applied: B3.6Date: 01/29/2010Location(s): DelawareOffice(s): Advanced Research Projects Agency - Energy

  12. CX-000852: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    25A4800 - High Energy Permanent Magnets for Hybrid Vehicles and Alternative EnergyCX(s) Applied: B3.6Date: 01/15/2010Location(s): DelawareOffice(s): Advanced Research Projects Agency - Energy

  13. CX-005924: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Light Emitting Diode LightingCX(s) Applied: B2.5, B5.1Date: 05/13/2011Location(s): Dover, DelawareOffice(s): Energy Efficiency and Renewable Energy

  14. CX-010528: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Durability Investigation for Quarternary Phosphonium-based Polymer Hydroxide Exchange Membranes CX(s) Applied: B3.6 Date: 09/18/2012 Location(s): Delaware Offices(s): Advanced Research Projects Agency-Energy

  15. CX-003402: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Corrugated Membrane and Fuel Cell StructuresCX(s) Applied: B3.6Date: 08/16/2010Location(s): New Castle, DelawareOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  16. CX-007890: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Mid-Atlantic Offshore Wind Interconnection and Transmission (MAOWIT) CX(s) Applied: A9 Date: 02/22/2012 Location(s): Delaware, New Jersey, Maryland, Virginia Offices(s): Golden Field Office

  17. CX-008426: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Oklahoma-Tribe-Delaware Nation CX(s) Applied: A1, B2.5, B5.1 Date: 06/08/2012 Location(s): Oklahoma Offices(s): Energy Efficiency and Renewable Energy

  18. CX-003463: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Carbon Dioxide Capture by Sub-Ambient Membrane OperationCX(s) Applied: A9, B3.6Date: 08/23/2010Location(s): Newark, DelawareOffice(s): Fossil Energy, National Energy Technology Laboratory

  19. CX-007392: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Control System for Buoyancy Stabilized Offshore Wind Turbine CX(s) Applied: A9, A11 Date: 12/20/2011 Location(s): Delaware Offices(s): Golden Field Office

  20. CX-003731: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geothermal ProjectCX(s) Applied: A9, B3.1, B5.1Date: 09/13/2010Location(s): Delaware, OhioOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  1. CX-008218: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A System Design Study for Wilmington Canyon Offshore Wind Farm CX(s) Applied: A9 Date: 04/02/2012 Location(s): Delaware Offices(s): Golden Field Office

  2. NREL/University of Delaware Offshore Wind R&D Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-10-393

    SciTech Connect (OSTI)

    Musial, Walt

    2015-11-12

    Specifically, the work under this CRADA includes, but is not limited to, the development of test procedures for an offshore test site in Delaware waters; testing of installed offshore wind turbines; performance monitoring of those turbines; and a program of research and development on offshore wind turbine blades, components, coatings, foundations, installation and construction of bottom-fixed structures, environmental impacts, policies, and more generally on means to enhance the reliability, facilitate permitting, and reduce costs for offshore wind turbines. This work will be conducted both at NREL's National Wind Technology Center and participant facilities, as well as the established offshore wind test sites.

  3. Table 4. Biodiesel producers and production capacity by state, February 2016

    U.S. Energy Information Administration (EIA) Indexed Site

    Biodiesel producers and production capacity by state, February 2016" "State","Number of producers","Annual production capacity (million gallons per year)" "Alabama",1,9 "Alaska",1,0 "Arizona",1,2 "Arkansas",2,63 "California",8,64 "Colorado","-","-" "Connecticut",1,15 "Delaware","-","-" "District of

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Delaware Electricity Profile 2014 Table 1. 2014 Summary statistics (Delaware) Item Value U.S. rank Primary energy source Natural gas Net summer capacity (megawatts) 3,086 46 Electric utilities 102 46 IPP & CHP 2,984 31 Net generation (megawatthours) 7,703,584 47 Electric utilities 49,050 46 IPP & CHP 7,654,534 35 Emissions Sulfur dioxide (short tons) 824 48 Nitrogen oxide (short tons) 2,836 48 Carbon dioxide (thousand metric tons) 4,276 43 Sulfur dioxide (lbs/MWh) 0.2 45 Nitrogen oxide

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Electricity Profile 2014 Table 1. 2014 Summary statistics (Delaware) Item Value U.S. rank Primary energy source Natural gas Net summer capacity (megawatts) 3,086 46 Electric utilities 102 46 IPP & CHP 2,984 31 Net generation (megawatthours) 7,703,584 47 Electric utilities 49,050 46 IPP & CHP 7,654,534 35 Emissions Sulfur dioxide (short tons) 824 48 Nitrogen oxide (short tons) 2,836 48 Carbon dioxide (thousand metric tons) 4,276 43 Sulfur dioxide (lbs/MWh) 0.2 45 Nitrogen oxide

  6. A Minority Serving Institution Leads the Way in Better Buildings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coons, U.S. Representative John Carney, and Delaware State University President Harry Williams at Delaware State University, a Historically Black College and University (HBCU)....

  7. ,"Delaware Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 38336,6759,1509,1180,1960,,2110 38367,6870,2031,1358,2068,,1412 38398,5543,1824,1253,1465,,1001 38426,5427,1705,1198,1558,,965 38457,2696,790,572,1055,,280 ...

  8. Delaware Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    10.35 6.54 5.14 4.98 3.81 3.84 1989-2016 Residential Price 23.22 NA 14.03 11.09 10.09 9.71 1989-2016 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2016 Commercial Price 13.93 12.54 10.82 9.15 8.75 8.58 1989-2016 Percentage of Total Commercial Deliveries included in Prices 29.9 31.6 31.6 38.9 41.6 49.4 1989-2016 Industrial Price 11.40 11.15 9.62 8.32 8.14 7.98 2001-2016 Percentage of Total Industrial Deliveries included in Prices 0.5 0.2

  9. ,"Delaware Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","04292016" ,"Excel File Name:","ngprisumdcusdem.xls" ,"Available from Web Page:","http:www.eia.govdnavngngprisumdcusdem.htm" ,"Source:","Energy ...

  10. Delaware Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    78-2005 Citygate Price 5.67 9.03 7.19 5.67 5.54 NA 1984-2015 Residential Price 15.12 15.38 15.24 13.65 13.21 NA 1967-2015 Percentage of Total Residential Deliveries included in ...

  11. Delaware Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    78-2005 Citygate 5.67 9.03 7.19 5.67 5.54 NA 1984-2015 Residential 15.12 15.38 15.24 13.65 13.21 NA 1967-2015 Commercial 13.26 13.58 13.31 11.78 11.42 10.70 1967-2015 Industrial 10.18 11.69 11.61 11.24 10.95 NA 1997-2015 Vehicle Fuel 24.55 28.76 30.97 1995-2012 Electric Power W W -- -- W -- 1997-2015 Underground Storage (Million Cubic Feet) Injections 1967-1975 Withdrawals 1967-1975 Net Withdrawals 1967-1975 Liquefied Natural Gas Storage (Million Cubic Feet) Additions 73 64 117 63 157 1980-2014

  12. Delaware Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    10.35 6.54 5.14 4.98 3.81 3.84 1989-2016 Residential 23.22 NA 14.03 11.09 10.09 9.71 1989-2016 Commercial 13.93 12.54 10.82 9.15 8.75 8.58 1989-2016 Industrial 11.40 11.15 9.62 8.32 8.14 7.98 2001-2016 Electric Power -- -- -- -- -- -- 2002-2016 Consumption (Million Cubic Feet) Delivered to Consumers 7,939 6,849 6,797 7,386 9,040 8,389 2001-2016 Residential 157 378 720 978 2,084 1,879 1989-2016 Commercial 432 812 1,065 1,177 2,003 1,658 1989-2016 Industrial 2,448 2,590 2,682 3,040 2,821 2,517

  13. CX-013534: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    Location(s): Multiple Locations Offices(s): Fossil Energy Eni USA Gas Marketing, LLC, a Delaware ... in Cameron Parish, Louisiana, to any country not prohibited by U.S. law or policy. ...

  14. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, west Texas (Delaware Basin). Annual progress report, March 31, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Dutton, S.P.; Hovorka, S.D.; Cole, A.G.

    1996-08-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based field development. Reservoirs in the Delaware Mountain Group have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Detailed correlations of the Ramsey sandstone reservoirs in Geraldine Ford field suggest that lateral sandstone continuity is less than interpreted by previous studies. The degree of lateral heterogeneity in the reservoir sandstones suggests that they were deposited by eolian-derived turbidites. According to the eolian-derived turbidite model, sand dunes migrated across the exposed shelf to the shelf break during sea-level lowstands and provided well sorted sand for turbidity currents or grain flows into the deep basin.

  15. CX-011447: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Bench-Scale Development and Testing of a Novel Adsorption Process for Post Combustion Carbon Dioxide (CO2) Capture CX(s) Applied: B3.6 Date: 11/13/2013 Location(s): Delaware Offices(s): National Energy Technology Laboratory

  16. CX-000777: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low-Cost, Highly Lambertian Reflector Composite for Improved LED (Light-Emitting Diode) Efficiency and LifetimeCX(s) Applied: B3.6Date: 02/10/2010Location(s): Newark, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  17. CX-004018: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Performance Hollow Fiber Membranes for Lubricating Fluid Dehydration and Stabilization SystemsCX(s) Applied: B3.6, B5.1Date: 09/28/2010Location(s): Newport, DelawareOffice(s): Energy Efficiency and Renewable Energy

  18. CX-005028: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Variable-Speed Drive Centrifugal Pump Efficiency Improvement at Five Wastewater Lift Stations Middletown, WashingtonCX(s) Applied: B2.5, B5.1Date: 01/10/2011Location(s): Middletown, DelawareOffice(s): Energy Efficiency and Renewable Energy

  19. CX-000089: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Milford's Replacement of?Existing Street Lighting with LED (Light-Emitting Diode) LightsCX(s) Applied: B5.1, B1.3Date: 11/19/2009Location(s): Milford, DelawareOffice(s): Energy Efficiency and Renewable Energy

  20. CX-004793: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Energy Efficiency and Conservation Block Grant Rehoboth Beach Convention Center White Roof and Insulation ProjectCX(s) Applied: B5.1Date: 12/22/2010Location(s): Rehoboth, DelawareOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  1. CX-011805: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Carbon Dioxide Capture By Cold Membrane Operation with Actual Coal-Fired Power Plant Flue Gas CX(s) Applied: A1, A9, B3.6, B5.5 Date: 01/28/2014 Location(s): CX: none, Delaware, Alabama, Pennsylvania, California Offices(s): National Energy Technology Laboratory

  2. CX-011107: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    High Efficiency Thin Film Fe2SiS4 and Fe2GeS4-based Cells Prepared from Low-Cost Solution CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Delaware Offices(s): Golden Field Office

  3. Magnetocrystalline interactions and oxidation state determination of Mn{sub (2?x)}V{sub (1+x)}O{sub 4} (x=0, 1/3 and 1) magnetorresistive spinel family

    SciTech Connect (OSTI)

    Pomiro, F.; Ceppi, S.; De Paoli, J.M.; Snchez, R.D.; Mesquita, A.; Tirao, G.; and others

    2013-09-15

    Oxidation states of transition metal cations in spinels-type oxides are sometimes extremely difficult to determine by conventional spectroscopic methods. One of the most complex cases occurs when there are different cations, each one with several possible oxidation states, as in the case of the magnetoresistant Mn{sub (2?x)}V{sub (1+x)}O{sub 4} (x=0, 1/3 and 1) spinel-type family. In this contribution we describe the determination of the oxidation state of manganese and vanadium in Mn{sub (2?x)}V{sub (1+x)}O{sub 4} (x=0, 1/3,1) spinel-type compounds by analyzing XANES and high-resolution K? X-ray fluorescence spectra. The ionic models found are Mn{sup 2+}{sub 2}V{sup 4+}O{sub 4}, Mn{sup 2+}{sub 5/3}V{sup 3.5+}{sub 4/3}O{sub 4} and Mn{sup 2+}V{sup 3+}{sub 2}O{sub 4}. Combination of the present results with previous data provided a reliable cation distribution model. For these spinels, single magnetic electron paramagnetic resonance (EPR) lines are observed at 480 K showing the interaction among the different magnetic ions. The analysis of the EPR parameters show that g-values and relative intensities are highly influenced by the concentration and the high-spin state of Mn{sup 2+}. EPR broadening linewidth is explained in terms of the bottleneck effect, which is due to the presence of the fast relaxing V{sup 3+} ion instead of the weak Mn{sup 2+} (S state) coupled to the lattice. The EPR results, at high temperature, are well explained assuming the oxidation states of the magnetic ions obtained by the other spectroscopic techniques. - Graphical abstract: View of the crystallographic structure of a spinel. It shows as an example one of the models of ion distribution determined for the spinels Mn{sub (2?x)}V{sub (1+x)}O{sub 4} (x=0, 1/3,1). Display Omitted - Highlights: Determination of oxidation state of the metallic ions in Mn{sub (2?x)}V{sub (1+x)}O{sub 4} (x=0,1/3,1) by XAS and XES techniques. The ionic models found are Mn{sup 2+}{sub 2}V{sup 4+}O{sub 4}, Mn{sup 2+}{sub 5/3}V{sup 3.5+}{sub 4/3}O{sub 4} and Mn{sup 2+}V{sup 3+}O{sub 4}. EPR spectra correspond almost exclusively to a resonance of Mn{sup 2+}.

  4. secretary of state | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    state

  5. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Table 4. 2013 state energy-related carbon dioxide emission shares by sector percent of total Shares State Commercial Electric Power Residential Industrial Transportation Alabama 1.5% 53.6% 1.8% 17.8% 25.3% Alaska 6.6% 7.3% 4.3% 48.4% 33.3% Arizona 2.5% 58.3% 2.6% 4.8% 31.8% Arkansas 4.2% 52.4% 3.3% 13.6% 26.5% California 4.5% 12.9% 7.9% 20.7% 54.0% Colorado 4.1% 42.6% 9.0% 15.3% 29.0% Connecticut 10.4% 19.8% 21.0% 6.8% 42.1% Delaware 5.7% 30.2% 7.0% 27.8% 29.3% District of Columbia 35.5% 0.0%

  6. Analysis of Dust Samples Collected from an Unused Spent Nuclear Fuel Interim Storage Container at Hope Creek, Delaware.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Enos, David

    2015-03-01

    In July, 2014, the Electric Power Research Institute and industry partners sampled dust on the surface of an unused canister that had been stored in an overpack at the Hope Creek Nuclear Generating Station for approximately one year. The foreign material exclusion (FME) cover that had been on the top of the canister during storage, and a second recently - removed FME cover, were also sampled. This report summarizes the results of analyses of dust samples collected from the unused Hope Creek canister and the FME covers. Both wet and dry samples of the dust/salts were collected, using SaltSmart(TM) sensors and Scotch - Brite(TM) abrasive pads, respectively. The SaltSmart(TM) samples were leached and the leachate analyzed chemically to determine the composition and surface load per unit area of soluble salts present on the canister surface. The dry pad samples were analyzed by X-ray fluorescence and by scanning electron microscopy to determine dust texture and mineralogy; and by leaching and chemical analysis to deter mine soluble salt compositions. The analyses showed that the dominant particles on the canister surface were stainless steel particles, generated during manufacturing of the canister. Sparse environmentally - derived silicates and aluminosilicates were also present. Salt phases were sparse, and consisted of mostly of sulfates with rare nitrates and chlorides. On the FME covers, the dusts were mostly silicates/aluminosilicates; the soluble salts were consistent with those on the canister surface, and were dominantly sulfates. It should be noted that the FME covers were w ashed by rain prior to sampling, which had an unknown effect of the measured salt loads and compositions. Sulfate salts dominated the assemblages on the canister and FME surfaces, and in cluded Ca - SO4 , but also Na - SO4 , K - SO4 , and Na - Al - SO4 . It is likely that these salts were formed by particle - gas conversion reactions, either prior to, or after, deposition. These reactions involve reaction of carbonate, chloride, or nitrate salts with at mospheric SO2, sulfuric acid, or a mmonium sulfate to form sulfate minerals. The Na - Al - SO4 phase is unusual, and may have formed by reaction of Na - Al containing phases in aluminum smelter emissions with SO2 , also present in smelter emissions. An aluminum smelter is located in Camden, NJ, 40 miles NE of the Hope Creek Site.

  7. States Government

    Office of Legacy Management (LM)

    ,.' &I ,J?5.8 = , sr; i&L:E%, 7-e;, iB 1 L Unitbd ' States Government ma.morandum DATE: $I$! 24 ml1 Department of Energy y;;;z EM-421 .- Elimination of the Landis Machine Company site SVWECT: The File TO: I have reviewed the attached site summary and elimination recommendation for the Landis Machine Company site in Waynesboro, Pennsylvania. I have determined that there is little likelihood of radioactive contamination at this site. Based' on the above, the Landis Machine Company site is

  8. Delaware City, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5778901, -75.588815 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  9. CX-001087: Categorical Exclusion Determination | Department of...

    Office of Environmental Management (EM)

    87: Categorical Exclusion Determination CX-001087: Categorical Exclusion Determination State of Nevada Energy Efficiency and Conservation Block Grant - American Recovery and...

  10. Secretary Chu Announces Nearly $38 Million in State Awards for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ice storms, and disruptions to heating supplies. "Today's awards provide crucial ... Connecticut 521,250 Delaware 280,109 District of Columbia 254,302 Florida 1,881,676 ...

  11. University of Delaware | CCEI Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI Equipment Click column headings to sort Type Equipment Details Institution / Professor {Type} {Equipment} {Details} {Institution} {Lab} BACK TO TOP

  12. University of Delaware | CCEI Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI's Upcoming Events Spring Symposium - April 10-11, 2016 CCEI personnel, advisory board members and industrial consortium members are invited to attend this 2-day symposium, which includes a short course, poster sessions, poster competition, research updates and an invited lecture by Dr. Kurt VandenBussche, R&D Director, UOP LLC, A Honeywell Company. For more information, please visit the symposium website. Seminar Series - Winter/Spring 2016 CCEI is pleased to present the following

  13. University of Delaware | CCEI Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership {Image} {Name} - {Affiliation} {Title} {Location} Phone: {Phone} {Email}

  14. University of Delaware | CCEI News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News [January 2016] Wei Fan, professor of chemical engineering at the University of Massachusetts Amherst, is among scientists highlighted in the U.S. Department of Energy's online feature article titled "Driving to Great: Science and the Journey to Waste-Free Biodiesel." The article, which discusses how scientists are overcoming obstacles in order to turn fuel waste into valued chemicals, discusses Fan's discovery of a one-pot reaction that turns glycerol into large quantities of

  15. University of Delaware | CCEI Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Undergraduate & Graduate Education CCEI provides cutting-edge research and education opportunities for both undergraduate and graduate students. Click on the links below to learn more about undergraduate and graduate education at CCEI. If you need additional information, please send an email to email. Undergraduate Graduate Resources 2012 Summer Fellowship Program ***Applications for this year's Summer Fellowship Program are no longer being accepted.*** CCEI is proud to once again host a

  16. University of Delaware | CCEI Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    K-12 Education For information about summer camps, visit the College of Engineering's outreach website. CCEI reaches out to the K-12 community by offering tours of our facilities, enriching classroom curriculum and providing out-of-school learning activities. Centered around CCEI's mission of developing advanced technologies for the biofuel industry, K-12 activities are STEM (Science, Technology, Engineering and Math) focused and integrate fundamental concepts of engineering, chemistry, and

  17. University of Delaware | CCEI Patents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patents and Patent Applications Production of Para-xylene by Catalytically Reacting 2,5-Dimethylfuran and Ethylene in a Solvent Dauenhauer, P. J.; Williams, C. L.; Vlachos, D. G.; Lobo, R. F.; Chang, C.-C.; Fan, W. Direct Carbon Fuel Cell and Stack Designs Gorte, R. J.; Oh, T.-S. Rapid Synthesis of Beta Zeolites Fan, W.; Chang, C.-C.; Dornath, P. Selective Production of Para-xylene by Catalytic Fast Pyrolysis of Biomass Huber, G.W.; Cheng, Y.-T.; Fan, W.; Wang, Z. One-Step Synthesis of

  18. University of Delaware | CCEI Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI Staff Jeff Everhart Analytical Chemist Phone: (302) 831-6066 Email: Send email Location:368 ISE Lab Cindy King Administrative Assistant Phone: (302) 831-1628 Email: Send email Location:250R ISE Lab

  19. Origin State Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Alabama Alabama W W W W W W W W W W W Alabama Georgia W W W W W W W W W W W Alabama Illinois - - - - - W W...

  20. Interim Action Determination

    Energy Savers [EERE]

    Interim Action Determination Processing of Plutonium Materials from the DOE Standard 3013 Surveillance Program in H-Canyon at the Savannah River Site The Department of Energy (DOE) is preparing the Surplus Plutonium Disposition Supplemental Environmental Impact Statement (SPD SEIS, DOE/EIS-0283-S2). DOE is evaluating alternatives for disposition of non-pit plutonium that is surplus to the national security needs of the United States. Although the Deputy Secretary of Energy approved Critical

  1. Generating Unit Additions in the United States by State and Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"RE",299.2,251,251,22,"ST","BIT","NG",9,2011 "OH","Butler",7977,"City of Hamilton - (OH)",2917,"Hamilton","GT1",,"RE",11.2,8,10,22,"GT","NG",,8,2011 "IA","Delaware",8847,"City of ...

  2. United States Government

    Office of Legacy Management (LM)

    D;F&g,8 C-r-I 3-3 .*. United States Government . memorandum DATE: JUNZO 1994 -... REPLY TO A?TN OF: EM-421 (W. A. Williams, 903-8149) Authority Determination -- Combustion Engineering Site, Windsor, SUBJECT: Connecticut To' The File The attached review, documents the basis for determining whether the Department of Energy (DOE) has authority for taking remedial action at the Combustion Engineering (CE) Site in Windsor, Connecticut, under the Formerly Utilized Sites Remedial Action Program. CE

  3. CX-006215: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-006215: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Department of Commerce Large System Application ...

  4. CX-006216: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-006216: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large System Request R ...

  5. CX-005432: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-005432: Categorical Exclusion Determination Oklahoma State Energy Program American Recovery and Reinvestment Act - Oklahoma Municipal Power Authority Large System Rebate Request ...

  6. Categorical Exclusion Determinations: Ohio | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... August 12, 2014 CX-012681: Categorical Exclusion Determination Experimental Investigation and CFD Analysis of Steam Ingress Accidents in HTGRs - Ohio State University CX(s) ...

  7. Categorical Exclusion Determinations: Vermont | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 27, 2016 CX-100465 Categorical Exclusion Determination Training for State Officials to Make Solar More Inclusive, Affordable, and Consumer Friendly Award Number: ...

  8. United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    l 0 United States Office of Research and Environmental Protection Agency Development Washington, DC 20460 EPA 600/R-94/209 January 1993 Offsite Environment itoring Report adiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS, NEVADA 89193-3478 , 702/798-2100 April 20, 1995 Dear Reader: Since 1954, the U.S.

  9. United States

    Office of Legacy Management (LM)

    - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

  10. UNITED STATES

    Office of Legacy Management (LM)

    Stephen M. Shelton General Manager Gentlemen: Enclosed is Special Nuclear Material License ... STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAR MATERIAL LlCENSE .- Pursuant to the ...

  11. Categorical Exclusion Determinations: B5.20 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    February 25, 2016 CX-100497 Categorical Exclusion Determination Placer County Biomass ... January 22, 2016 CX-100454 Categorical Exclusion Determination State Energy Program - ...

  12. United States

    Broader source: Energy.gov (indexed) [DOE]

    ... of the Senate Energy and Natural Resources Committee when ... with section 1222's requirements, referred to in the ... States v. 14.02 Acres of Land More or Less in Fresno ...

  13. Experimental and semiempirical method to determine the Pauli-limiting field in quasi-two-dimensional superconductors as applied to κ-(BEDT-TTF)2Cu(NCS)2: strong evidence of a FFLO state

    SciTech Connect (OSTI)

    Agosta, C. C.; Jin, J.; Coniglio, W. A.; Smith, B. E.; Cho, K.; Mihut, I.; Martin, C.; Tozer, S. W.; Murphy, T. P.; Palm, E. C.; Schlueter, J. A.; Kurmoo, M.

    2012-01-01

    We present upper critical field data for {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} with the magnetic field close to parallel and parallel to the conducting layers. We show that we can eliminate the effect of vortex dynamics in these layered materials if the layers are oriented within 0.3-inch of parallel to the applied magnetic field. Eliminating vortex effects leaves one remaining feature in the data that corresponds to the Pauli paramagnetic limit (H{sub p}). We propose a semiempirical method to calculate the H{sub p} in quasi-2D superconductors. This method takes into account the energy gap of each of the quasi-2D superconductors, which is calculated from specific-heat data, and the influence of many-body effects. The calculated Pauli paramagnetic limits are then compared to critical field data for the title compound and other organic conductors. Many of the examined quasi-2D superconductors, including the above organic superconductors and CeCoIn{sub 5}, exhibit upper critical fields that exceed their calculated H{sub p} suggesting unconventional superconductivity. We show that the high-field low-temperature state in {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} is consistent with the Fulde-Ferrell-Larkin-Ovchinnikov state.

  14. Decay of the 9/2{sup -} isomer in {sup 181}Tl and mass determination of low-lying states in {sup 181}Tl, {sup 177}Au, and {sup 173}Ir

    SciTech Connect (OSTI)

    Andreyev, A. N.; Antalic, S.; Saro, S.; Ackermann, D.; Comas, V. F.; Heinz, S.; Heredia, J. A.; Hessberger, F. P.; Khuyagbaatar, J.; Kojouharov, I.; Kindler, B.; Lommel, B.; Mann, R.; Cocolios, T. E.; Elseviers, J.; Huyse, M.; Van Duppen, P. Van; Venhart, M.; Franchoo, S.; Hofmann, S.

    2009-08-15

    A detailed spectroscopic study of the neutron-deficient isotope {sup 181}Tl and the daughter of its {alpha} decay, {sup 177}Au, has been performed in the complete fusion reaction {sup 40}Ca+{sup 144}Sm{yields}{sup 184}Pb* at the velocity filter SHIP (GSI). The mass excess, excitation energy, and decay scheme of the isomeric 1.40(3) ms, 9/2{sup -} intruder state in {sup 181}Tl have been established for the first time. These results solve a long-standing puzzle of the unrealistically large reduced {alpha}-decay width of this isomer. Based on this, the previously unknown masses of the long-lived isomeric states in {sup 177}Au and {sup 173}Ir have been derived. In turn, it now allows the excitation energies of previously identified bands in {sup 177}Au and {sup 173}Ir to be deduced and compared with theoretical predictions. First measurements of {alpha}-decay branching ratios for {sup 181}Tl{sup m} and {sup 177}Au{sup m,g} are also reported.

  15. Energy-Related Carbon Dioxide Emissions at the State Level, 2000-2013

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Table 3. 2013 state energy-related carbon dioxide emissions by sector million metric tons carbon dioxide State Commercial Electric Power Residential Industrial Transportation Total Alabama 1.8 64.2 2.2 21.3 30.3 119.8 Alaska 2.4 2.6 1.6 17.5 12.0 36.1 Arizona 2.4 54.7 2.4 4.5 29.8 93.8 Arkansas 2.8 35.5 2.2 9.3 18.0 67.8 California 16.0 45.7 27.7 72.9 190.8 353.1 Colorado 3.7 38.6 8.2 13.9 26.3 90.5 Connecticut 3.6 6.8 7.2 2.3 14.4 34.3 Delaware 0.8 4.1 0.9 3.7 3.9 13.4 District of Columbia

  16. Daily snow depth measurements from 195 stations in the United States

    SciTech Connect (OSTI)

    Allison, L.J.; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H.

    1997-02-01

    This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

  17. United States

    Office of Legacy Management (LM)

    onp5fGonal Ruord United States of America . I. .' - PROCEEDINGS AND DEBATES OF THE 9t?lh CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Wash!ogtm. 0.C 20402 OFFICIAL BUSINESS Penalty for pwate use. sco Congressmal Record (USPS 087-390) Postage and Fees Pad I.) s ~lJ"er"ment Prlntlng OffIce 375 SECOND CLASS NEWSPAPER -...~-- -~- -- --- H 45' 78 ' cCJ~GRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 213: Mr. BOLAND, Mr. WAXM.UG Mr. OBERSTAR.

  18. United States

    Office of Legacy Management (LM)

    onSres;eional atecord United States of America :- PROCEEDINGS AND DEBATES OF THE 981h CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washwtn. D C 20402 OFFICIAL BUSINESS Penalty for plvate use. $300 Congressmnal Record (USPS 087-390) Postage and Fees Pad U S Government Prtnttng Offlce 375 SECOND CLASS NEWSPAPER H 45' 78 * C.QvGRESSIONAL RECORD - HOUSE .-. June 28, 1983 H.J. Res. 273: Mr. BOLAND. Mr. Whxrdhr?. Mr. OBERsThx. Mi. BEDELL, Mr. BONER of

  19. United States Department of Energy

    Energy Savers [EERE]

    United States Department of Energy Office of Hearings and Appeals In the Matter of: Washington State ) Fleet Operations ) ) Filing Date: November 13, 2013 ) Case No.: EXA-13-0001 ____________________________________) Issued: February 27, 2014 _______________ Decision and Order _______________ This Decision and Order considers an Appeal filed by Washington State Fleet Operations (Washington) from a determination issued on September 25, 2013, by the Department of Energy's (DOE) Alternative Fuel

  20. CX-008738: Categorical Exclusion Determination

    Office of Energy Efficiency and Renewable Energy (EERE)

    Determination of Microstructure and Chemical State Changes in Ion-Irradiated Fuels and Structural Components with a High Kinetic Energy Electron Detector – Illinois Institute of Technology CX(s) Applied: B3.6 Date: 05/22/2012 Location(s): Idaho Offices(s): Idaho Operations Office

  1. Origin Basin Destination State STB EIA STB EIA Northern Appalachian...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Delaware W 28.49 W 131.87 21.6% 59 W 100.0% Northern Appalachian Basin Florida W - - - - - - - Northern Appalachian Basin Indiana W 20.35 W 64.82 31.4% 1,715 W 75.9% Northern...

  2. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2002-11-01

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  3. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2002-07-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts.

  4. United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    States Department of Agriculture Forest Service Southern Research Station General Technical Report SRS-68 Bats of the Savannah River Site and Vicinity Michael A. Menzel, Jennifer M. Menzel, John C. Kilgo, W. Mark Ford, Timothy C. Carter, and John W. Edwards Authors: Michael A. Menzel, 1 Jennifer M. Menzel, 2 John C. Kilgo, 3 W. Mark Ford, 2 Timothy C. Carter, 4 and John W. Edwards 5 1 Graduate Research Assistant, Division of Forestry, Wildlife and Fisheries, West Virginia University, Morgantown,

  5. State Overview

    Energy Savers [EERE]

    PAGE | 1 Produced by Department of Energy (DOE), Office of Electricity Delivery & Energy Reliability (OE) State Overview Population: 0.63 million (<1% total U.S.) Housing Units: 0.32 million (<1% total U.S.) Business Establishments: 0.02 million (<1% total U.S.) Annual Energy Consumption Electric Power: 5.5 TWh (<1% total U.S.) Coal: 0 MSTN (0% total U.S.) Natural Gas: 392 Bcf (2% total U.S.) Motor Gasoline: 7,800 Mbarrels (<1% total U.S.) Distillate Fuel: 3,900 Mbarrels

  6. United States

    Energy Savers [EERE]

    Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act

  7. United States

    Energy Savers [EERE]

    BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) .

  8. CX-009911: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-009911: Categorical Exclusion Determination Geothermal Retrofit of Illinois National Guard's State Headquarters Building CX(s) Applied: A9, B2.1, B5.19 Date: 01142013 ...

  9. Geothermal Data via the Virginia Tech and DMME Portal to the National Geothermal Data System for the Eastern and Southeastern United States from the Regional Geophysics Laboratory of Virginia Polytechnic Institute and State University

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The former title for this record was "Geothermal Data for the Eastern and Southeastern U.S. from the Regional Geophysics Laboratory of Virginia Tech." The content originally referenced is still available. It includes geothermal maps of seven southeastern states with accompanying data tables. The seven states are: New Jersey, Maryland, Delaware, Virginia, North Carolina, South Caroline, and Georgia. Data types include geothermal data, seismic data, and magnetic and gravity data. Typical geothermal data may include tables of temperature versus depth data, plots of temperature/gradient versus depth, tables of thermal conductivity data, and tables of gamma log data. Other resources available from the RGL provide information about hot springs in the southeastern U.S., temperatures for Atlantic Coastal Plain sediments, and deep fracture permeability in crystalline rocks in the eastern and southeastern U.S. Recently, this website and its collection of geothermal data has been renamed and reorganized as a portal into the National Geothermal Data System, a move that makes far more data both available and integrated.

  10. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    State All Alabama Alaska American Samoa Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Federal Federated States of Micronesia Florida Georgia Guam...

  11. Electrolyte Stability Determines Scaling Limits for Solid-State...

    Office of Scientific and Technical Information (OSTI)

    Number: SC0001160 Resource Type: Journal Article Resource Relation: Journal Name: Nano Lett.; Journal Volume: 12; Related Information: NEES partners with University of...

  12. NREL Compares State Solar Policies to Determine Equation for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Non-policy issues that have implications for a solar market, such as the amount of sunlight available for potential solar generation, community interest in renewable energy, and ...

  13. Delaware Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    7,939 6,849 6,797 7,386 9,040 8,389 2001-2016 Residential 157 378 720 978 2,084 1,879 1989-2016 Commercial 432 812 1,065 1,177 2,003 1,658 1989-2016 Industrial 2,448 2,590 2,682 3,040 2,821 2,517 2001-2016 Vehicle Fuel 0 0 0 0 0 0 2010-2016 Electric Power 4,903 3,068 2,330 2,190 2,132 2,335

  14. Delaware Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  15. ,"Delaware Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas Consumed",1,"Monthly","122015","01152013" ,"Release Date:","02292016" ,"Next Release Date:","03312016" ,"Excel File Name:","ngconsheatdcusdem.xls" ...

  16. Delaware Underground Natural Gas Storage - All Operators

    Gasoline and Diesel Fuel Update (EIA)

    1969 1970 1971 1973 1975 View History Net Withdrawals 699 211 -189 -255 -549 1967-1975 Injections 179 391 189 255 2,012 1967-1975 Withdrawals 878 602 1,463 1967...

  17. University of Delaware Energy Institute Inauguration | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... In particular, I would highlight the importance of offshore wind resources - often located ... Virginia Technology Council Titans' Breakfast Letter from the Wind Program Director

  18. Delaware Renewable Electric Power Industry Statistics

    Gasoline and Diesel Fuel Update (EIA)

    Gas Primary Renewable Energy Generation Source ... - - Hydro Conventional - - Solar - - Wind 2 0.1 WoodWood ... Absolute percentage less than 0.05. - No data reported. ...

  19. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional","-","-" " Solar","-","-" " Wind",2,0.1 " WoodWood Waste","-","-" " MSW... Conventional","-","-" " Solar","-","-" " Wind",3,"*" " WoodWood Waste","-","-" " MSW ...

  20. Delaware Supplemental Supplies of Natural Gas

    Gasoline and Diesel Fuel Update (EIA)

    2 1 0 * * 6 1967-2014 Propane-Air 2 1 0 0 6 1980-2014 Refinery Gas 1980-2005 Other 0 1999-2014

  1. Newark, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6837226, -75.7496572 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  2. Middletown, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.449556, -75.7163207 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  3. Hockessin, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7876112, -75.6966001 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  4. Odessa, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.457334, -75.6613184 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  5. Ardentown, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.808446, -75.4829752 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  6. Townsend, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.3951115, -75.6915973 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  7. Greenville, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7790012, -75.5982599 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  8. Arden, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8092794, -75.4865866 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  9. Ardencroft, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8051323, -75.4861752 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  10. Edgemoor, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7501139, -75.4996414 Show Map Loading map... "minzoom":false,"mappingservice":"googlem...

  11. Elsmere, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7392796, -75.5979812 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  12. Brookside, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6670561, -75.7268779 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  13. Bear, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6292788, -75.6582628 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  14. Claymont, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8006685, -75.4596404 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  15. Clayton, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2906671, -75.6343727 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  16. Bellefonte, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7663, -75.498313 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  17. University of Delaware | CCEI Advisory Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI Advisory Board Our advisory board is comprised of the following distinguished board members: {Image} {Name} {Affiliation} BACK TO TOP

  18. University of Delaware | CCEI Faculty Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Featured on the Covers JOURNAL COVER JOURNAL COVER JOURNAL COVER JOURNAL COVER JOURNAL COVER JOURNAL COVER JOURNAL COVER JOURNAL COVER JOURNAL COVER (Front) (Front) (Front) (Inside) (Inside) (Inside) (Front) (Front) (Back) JOURNAL COVER JOURNAL COVER JOURNAL COVER JOURNAL COVER JOURNAL COVER JOURNAL COVER JOURNAL COVER JOURNAL COVER JOURNAL COVER (Frontispiece) (Inside) (Front) (Front) (Back) (Front) (Front) (Front) (Front) (beginning with most recent publications) Beach, C. A.;

  19. University of Delaware | CCEI Industrial Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI Industrial Consortium & Research Opportunities: CCEI aims to develop long-term relationships with members of industry through its Industrial Members & Sponsors Program. As a multi-institutional research center, it offers a collaborative environment of faculty and expertise that creates opportunities for technology transfer, innovation and information flow. By creating cutting-edge research projects based on the shared interests and needs of our industrial members program, we

  20. University of Delaware | CCEI Press Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Press Releases DOE Funding Leads to New Technology that is Revolutionizing Chemical Analysis (November 2015) CCEI's carbon detection technology is commercialized by Activated Research Company (ARC) and is recognized as the 2015 Best New Product by the Gulf Coast Conference for its novel design and universal application to GC/FID analysis. CCEI Researchers Invent New Chemical Detector (January 2015) CCEI researchers invent the Quantitative Carbon Detector (QCD), a new device that identifies and

  1. University of Delaware | CCEI Principal Investigators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Principal Investigators {Image} {Name} - {Affiliation} {Title} {Email} Phone: {Phone} Research Interests: {Research_Interests} {Profile} {ResearchGroup_Website} BACK TO TOP

  2. University of Delaware | CCEI Research Highlights

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Highlights Discovering New Catalytic Technologies Click on the links below to learn about our exciting new discoveries impacting the scientific community. (beginning with most recent highlights) Self-Pillared, Single-Unit-Cell Sn-MFI Zeolite Nanosheets and their Use for Glucose and Lactose Isomerization Moderate Temperature Retro-Aldol Reactions of Hexoses for the Production of Lactates 2D Surface Structures in Small Zeolite Catalyst Particles Controlling Biomass Leidenfrost Liftoff and

  3. Delaware Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Status In Service Owner NextEra Energy Resources Developer American National Wind PowerOrion Energy Energy Purchaser Lower Colorado River Authority Location Culberson County TX...

  4. ,"Delaware Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    8817,1663,1627,2865,0,2661 41654,9350,2463,2128,2676,0,2083 41685,8446,2138,1696,2644,0,1968 41713,9361,1858,1502,2871,0,3129 41744,6829,825,740,2340,0,2924 41774,6637,496,615,2477...

  5. Delaware Electric Cooperative | Open Energy Information

    Open Energy Info (EERE)

    EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy Information Administration Form 8262 EIA Form 861 Data Utility Id 5070 Utility Location Yes Ownership C...

  6. Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    138,302 MWh Coal Power 2,910,909 MWh Gas Power 1,686,773 MWh Petroleum Power 268,773 MWh Nuclear Power 0 MWh Other 5,877 MWh Total Energy Production 5,010,634 MWh Percent of Total...

  7. University of Delaware | CCEI Visiting Scholars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visiting Scholars Adriano Freitas de Sousa- Visiting Student Universidade Federal do Cear Advisor: Vlachos, Dion Office: 367 ISE Lab Phone: (302) 831-4061 Email: Send email...

  8. Delaware Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,023 1,025 1,027 1,043 1,054 1,050 2007-2015

  9. Delaware Heat Content of Natural Gas Consumed

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Sep-15 Oct-15 Nov-15 Dec-15 Jan-16 Feb-16 View History Delivered to Consumers 1,043 1,051 1,051 1,049 1,055 1,050 2013-2016

  10. Steady State Dense Gas Dispersion

    Energy Science and Technology Software Center (OSTI)

    1995-03-01

    SLAB-LLNL is a steady-state one-dimensional program which calculates the atmospheric dispersion of a heavier than air gas that is continuously released at ground level. The model is based on the steady-state crosswind-averaged conservation equations of species, mass, energy, and momentum. It uses the air entrainment concept to account for the turbulent mixing of the gas cloud with the surrounding atmosphere and similarity profiles to determine the crosswind dependence.

  11. United States Government

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOEF 1325.8 {Rev 11*12-91) United States Government Department of Energy (DOE) memorandum Savannah River Operations Office (SR) DATE: OEC 19 2013 REPLY TO ATTN OF: AMMS (Hintze, 803-952-8422) suBJECT: Savannah River Remediation (SRR) Award Fee Determination for Evaluation Period October 1, 2012 to September 30, 2013 To: Charlene Smith, Contracting Officer, Contract DE-AC09-09SR22505 SRR has provided safe, timely, and cost-effective managen1ent and execution of the Liquid Waste program* at the

  12. UNITED STATES GOVERKMENT

    Office of Legacy Management (LM)

    Ojice Memornndz~nz 0 UNITED STATES GOVERKMENT By application dated ;!ay 11, 1959, as a~zen:ii:d Hay 25, 1959, the a--T+- I-r-- cant requests that its license SW-33 be amend,ed to authorizt? proced- ures for t>e CCLl-ect conversion of LT6 to '3$ and by applicaticn datzci June 29, 1959, a.3 n:odifizd July 15, 1059, the shipment of uranium rdioxide pellets. Based on our rexiew of the information finished by the applicant, it is hereby determined that the applicant is qualified, by training and

  13. United States Government

    Office of Legacy Management (LM)

    COE F r31ffs (S-89) EFG (37-90) United States Government memorandum f;' "* 5 P ,A ~4&t&y Department o F7 q;' 3 j-1 - ("J 1 [--A Q ' f ' -\' ( --_-_ -- DATE: MAY 29 l%H R' ;J$ EM-421 SUBJECT: Elimination of the Radiation Applications Incorporated Site Tc: The File I have reviewed the attached site summary and elimination recommendation for the Radiation Applications Incorporated Site in New York City. I have determined that there is little likelihood of radioactive contamination

  14. United States Government

    Office of Legacy Management (LM)

    ,. .1 ! 8-L EFi 107 39, 3 United States Government Department of Energy m e m o randum q es. F;,;4 p JAN 3 1 I991 DATE 16% 1 c N W /- e [ q$ ';;','," EM-421 2 & t, SUBJECT Elimination of the Wash-Rite Company Site from FUSRAP T O The F ile I have reviewed the attached preliminary site summary and recommendation for the Wash-Rite Company site in Indianapolis, Indiana. I have determined that there is little likelihood of contamination at this site. Based on the above, the Wash-Rite

  15. United States Government

    Office of Legacy Management (LM)

    UOEF 1325.8 (5831 , - a.. L . . L. . c ,, . . . t ,' <, .* -,. .--1^ a "-2 (J 7 , pe-;L, United States Government memorandum Departmen: of Energy DATEAUG 1 0 1984 REPLY TO Al-fN OF: NE-20 SUBJECT: Action Description Memorandum (ADM) Review: Wayne, New Jersey Proposed 1984 Remedial Actions at TO: File After reviewing all of the pertinent facts including the attached Action Description Memorandum (ADM), I have determined that the remedial action described in the subject ADM is an action

  16. * United States Government

    Office of Legacy Management (LM)

    -- DE;$r,e /q f-j * I3 - I * United States Government memorandum MAY 21 I991 DATE: REPLY TO Al-fN OF: 4ih55YhL Department of Energy JT:,i 5, f&A 0 ' - j4.~, ' -/ jl.a' \ A t -3 __..-_-. EM-421 SUBJECT: Elimination of the American Potash and Chemical Site The File TO: I have reviewed the attached site summary and elimination recommendation for the American Potash and Chemical Company Site in West Hanover, Massachusetts. I have determined that there is little likelihood of radioactive

  17. - United States Government

    Office of Legacy Management (LM)

    8 my EFG (07.90) . - United States Government . * Department of. Energy * inemorandum DATE: DEC :! ;j 1993 REPLY TO ATTN OF: EM-421 (W.'A. W illiams, 903-8149) : NY 41 I .' 41 G I? SUBJECT: Elimination of the T itanium Alloy Manufacturing Co., Niagara Falls, New York TO: The F ile I have reviewed the attached site. summary and elimination recommendation for the T itanium Alloy Manufacturing Company. I have determined that the potential for radiological contamination is low because of the lim

  18. Solid state rapid thermocycling

    DOE Patents [OSTI]

    Beer, Neil Reginald; Spadaccini, Christopher

    2014-05-13

    The rapid thermal cycling of a material is targeted. A solid state heat exchanger with a first well and second well is coupled to a power module. A thermoelectric element is coupled to the first well, the second well, and the power module, is configured to transfer thermal energy from the first well to the second well when current from the power module flows through the thermoelectric element in a first direction, and is configured to transfer thermal energy from the second well to the first well when current from the power module flows through the thermoelectric element in a second direction. A controller may be coupled to the thermoelectric elements, and may switch the direction of current flowing through the thermoelectric element in response to a determination by sensors coupled to the wells that the amount of thermal energy in the wells falls below or exceeds a pre-determined threshold.

  19. United States Department of Energy

    Energy Savers [EERE]

    Wayne C. Brunsilius, Sr. ) ) Filing Date: February 2, 2016 ) Case No.: FIA-16-0018 ) ________________________________________________) Issued: February 16, 2016 _______________ Decision and Order _______________ On February 1, 2016, Wayne C. Brunsilius, Sr., (Appellant) filed an Appeal from a determination issued to him by the Office of Legacy Management (OLM) of the Department of Energy (DOE) (Request No. HQ-2016-00059-F). In that determination, OLM stated that it had no documents responsive to

  20. U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Delaware Profile State Profile and Energy Estimates Change State/Territory Choose a U.S. State or Territory United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon

  1. Categorical Exclusion Determinations: A12 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September 29, 2011 CX-006906: Categorical Exclusion Determination Electricity Delivery and Energy Reliability Assistance to State Regulatory Utility Commissioners CX(s) Applied: ...

  2. Ballistic projectile trajectory determining system

    DOE Patents [OSTI]

    Karr, T.J.

    1997-05-20

    A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile. 8 figs.

  3. Ballistic projectile trajectory determining system

    DOE Patents [OSTI]

    Karr, Thomas J.

    1997-01-01

    A computer controlled system determines the three-dimensional trajectory of a ballistic projectile. To initialize the system, predictions of state parameters for a ballistic projectile are received at an estimator. The estimator uses the predictions of the state parameters to estimate first trajectory characteristics of the ballistic projectile. A single stationary monocular sensor then observes the actual first trajectory characteristics of the ballistic projectile. A comparator generates an error value related to the predicted state parameters by comparing the estimated first trajectory characteristics of the ballistic projectile with the observed first trajectory characteristics of the ballistic projectile. If the error value is equal to or greater than a selected limit, the predictions of the state parameters are adjusted. New estimates for the trajectory characteristics of the ballistic projectile are made and are then compared with actual observed trajectory characteristics. This process is repeated until the error value is less than the selected limit. Once the error value is less than the selected limit, a calculator calculates trajectory characteristics such a the origin and destination of the ballistic projectile.

  4. State Energy Program awards $5 million to states for State Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Energy Program awards 5 million to states for State Energy Planning and Innovative Energy Practices State Energy Program awards 5 million to states for State Energy...

  5. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2005-04-30

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  6. DEVELOPING STATE POLICIES SUPPORTIVE OF BIOENERGY DEVELOPMENT

    SciTech Connect (OSTI)

    Kathryn Baskin

    2004-10-31

    Working within the context of the Southern States Biobased Alliance (SSBA) and with officials in each state, the Southern States Energy Board (SSEB) is identifying bioenergy-related policies and programs within each state to determine their impact on the development, deployment or use of bioenergy. In addition, SSEB will determine which policies have impacted industry's efforts to develop, deploy or use biobased technologies or products. As a result, SSEB will work with the Southern States Biobased Alliance to determine how policy changes might address any negative impacts or enhance positive impacts. In addition to analysis of domestic policies and programs, this project will include the development of a U.S.-Brazil Biodiesel Pilot Project. The purpose of this effort is to promote and facilitate the commercialization of biodiesel and bioenergy production and demand in Brazil.

  7. Fluid Interface Reactions, Structures and Transport

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and seven partner universities (Delaware, Drexel, Minnesota, Penn State, Vanderbilt and the Universities of California at Davis and Riverside, and the University of Minnesota). ...

  8. National Idling Reduction Network News - December 2011

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... provider of pre- and post-production mill services for the steel industry, is set to receive a ... Delaware Iowa* Minnesota New Mexico Rhode Island Washington States in ...

  9. River Corridor Closure Contract Section J, Attachment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the Government and Washington Closure LLC (Contractor), the undersigned, Washington Group International, Inc. (Guarantor), a corporation incorporated in the State of Delaware with...

  10. DEMEC - Green Energy Fund | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    PagesGEP%20DE... State Delaware Program Type Public Benefits Fund Summary Note: The Green Energy Fund regulations are currently under revision to improve program function and...

  11. June 2015 Most Viewed Documents for Fossil Fuels | OSTI, US Dept...

    Office of Scientific and Technical Information (OSTI)

    of the Central Basin Platform, Delaware Basin, and Midland Basin, West Texas and New Mexico Hoak, T. Kestrel Geoscience, Littleton, CO (United States); Sundberg, K. Phillips ...

  12. March 2015 Most Viewed Documents for Fossil Fuels | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    of the Central Basin Platform, Delaware Basin, and Midland Basin, West Texas and New Mexico Hoak, T. Kestrel Geoscience, Littleton, CO (United States); Sundberg, K. Phillips ...

  13. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  14. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  15. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  16. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  17. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  18. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 3rd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  19. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 4th Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  20. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  1. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 3rd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  2. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 4th Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  3. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 1st Quarter 2011 Origin: Alabama (thousand short tons) Coal Destination State...

  4. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  5. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table OS-1. Domestic coal distribution, by origin State, 2nd Quarter 2010 Origin: Alabama (thousand short tons) Coal Destination State...

  6. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 1st Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  7. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2010 Destination: Alabama (thousand short tons) Coal Origin State...

  8. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Table DS-1. Domestic coal distribution, by destination State, 2nd Quarter 2011 Destination: Alabama (thousand short tons) Coal Origin State...

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    United States Electricity Profile 2014 Table 1. 2014 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,068,422 Electric ...

  10. STATE OF WASHINGTON August

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    STATE OF WASHINGTON August 29, 2012 The Honorable Stephen Chu, Secretary United States Department of Energy 1000 Independence Avenue Washington, DC 20585 Dear Secretary Chu: As you...

  11. Solid State Lighting Reliability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Key Partners: Auburn University Cree SAS Institute PPG Industries State of North Carolina ... Consortium Auburn University SAS Institute Cree Lighting PPG Industries State of North ...

  12. CX-002726: Categorical Exclusion Determination | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CX-002726: Categorical Exclusion Determination Energy Efficiency in State Buildings: Health and Human Resources CX(s) Applied: B1.24, B1.28, B1.31, B2.2, A9, B1.5, B5.1 Date: 06...

  13. Determination of optimal gains for constrained controllers

    SciTech Connect (OSTI)

    Kwan, C.M.; Mestha, L.K.

    1993-08-01

    In this report, we consider the determination of optimal gains, with respect to a certain performance index, for state feedback controllers where some elements in the gain matrix are constrained to be zero. Two iterative schemes for systematically finding the constrained gain matrix are presented. An example is included to demonstrate the procedures.

  14. Temperature determination using pyrometry

    DOE Patents [OSTI]

    Breiland, William G.; Gurary, Alexander I.; Boguslavskiy, Vadim

    2002-01-01

    A method for determining the temperature of a surface upon which a coating is grown using optical pyrometry by correcting Kirchhoff's law for errors in the emissivity or reflectance measurements associated with the growth of the coating and subsequent changes in the surface thermal emission and heat transfer characteristics. By a calibration process that can be carried out in situ in the chamber where the coating process occurs, an error calibration parameter can be determined that allows more precise determination of the temperature of the surface using optical pyrometry systems. The calibration process needs only to be carried out when the physical characteristics of the coating chamber change.

  15. NEPA Determination Complete

    Broader source: Energy.gov [DOE]

    DOE has determined that this proposed project is a major Federal action that may significantly affect the quality of the human environment. To comply with the National Environmental Policy Act ...

  16. Solids mass flow determination

    DOE Patents [OSTI]

    Macko, Joseph E.

    1981-01-01

    Method and apparatus for determining the mass flow rate of solids mixed with a transport fluid to form a flowing mixture. A temperature differential is established between the solids and fluid. The temperature of the transport fluid prior to mixing, the temperature of the solids prior to mixing, and the equilibrium temperature of the mixture are monitored and correlated in a heat balance with the heat capacities of the solids and fluid to determine the solids mass flow rate.

  17. State of the Hanford Site - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Name Average retail price (cents/kWh) Net summer capacity (MW) Net generation (MWh) Total retail sales (MWh) Alabama 9.27 31,953 149,340,447 90,493,727 Alaska 17.46 2,464 6,042,830 6,164,812 Arizona 10.18 28,249 112,257,187 76,297,685 Arkansas 7.9 14,754 61,592,137 47,080,301 California 15.15 74,646 198,807,622 262,584,786 Colorado 10.06 14,933 53,847,386 53,396,521 Connecticut 17.05 8,832 33,676,980 29,354,460 Delaware 11.22 3,086 7,703,584 11,338,477 District of Columbia 12.11 9 67,612

  18. State Energy Risk Assessment Initiative - State Energy Risk Profiles...

    Energy Savers [EERE]

    Mission Energy Infrastructure Modeling and Analysis State Energy Risk Assessment Initiative - State Energy Risk Profiles State Energy Risk Assessment Initiative - State...

  19. State Energy Program Helps States Plan and Implement Energy Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helps States Plan and Implement Energy Efficiency State Energy Program Helps States Plan and Implement Energy Efficiency The U.S. Department of Energy (DOE) State Energy Program ...

  20. Fuel Cells in the States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the Fuel Cells in the States States State and Regional State and Regional Initiatives ... Jennifer Gangi Jennifer Gangi Program Director Program Director Fuel Cells 2000 Fuel Cells ...

  1. Biomass Feedstock Availability in the United States: 1999 State Level Analysis

    SciTech Connect (OSTI)

    None

    2000-01-01

    Interest in using biomass feedstocks to produce power, liquid fuels, and chemicals in the U.S. is increasing. Central to determining the potential for these industries to develop is an understanding of the location, quantities, and prices of biomass resources. This paper describes the methodology used to estimate biomass quantities and prices for each state in the continental United States.

  2. Alternative Fuels Data Center

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Heavy-Duty Natural Gas Vehicle (NGV) Rebates As part of the Delaware Clean Transportation Incentive Program, the Delaware Department of Natural Resources and Environmental Control (DNREC) offers rebates of up to $20,000 for new or leased Class 7 or Class 8 dedicated NGVs. Eligible applicants include commercial entities, non-profits, individuals, or businesses located in Delaware or who have in-state affiliates. Applicants must submit proof of order and proof of payment to receive the rebate; a

  3. Obama Administration Announces Additional $11,072,300 for Local Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Improvements in Delaware | Department of Energy 1,072,300 for Local Energy Efficiency Improvements in Delaware Obama Administration Announces Additional $11,072,300 for Local Energy Efficiency Improvements in Delaware March 26, 2009 - 12:00am Addthis WASHINGTON - Vice President Joe Biden and Energy Secretary Steven Chu today announced plans to invest $3.2 billion in energy efficiency and conservation projects in U.S. cities, counties, states, territories, and Native American

  4. State Energy Strategic Plans

    Broader source: Energy.gov [DOE]

    Most state energy offices across the country are required to have current and long-term strategic energy management plans in place. These strategic plans help to ensure that state agencies are...

  5. Dynamic control of spin states in interacting magnetic elements

    DOE Patents [OSTI]

    Jain, Shikha; Novosad, Valentyn

    2014-10-07

    A method for the control of the magnetic states of interacting magnetic elements comprising providing a magnetic structure with a plurality of interacting magnetic elements. The magnetic structure comprises a plurality of magnetic states based on the state of each interacting magnetic element. The desired magnetic state of the magnetic structure is determined. The active resonance frequency and amplitude curve of the desired magnetic state is determined. Each magnetic element of the magnetic structure is then subjected to an alternating magnetic field or electrical current having a frequency and amplitude below the active resonance frequency and amplitude curve of said desired magnetic state and above the active resonance frequency and amplitude curve of the current state of the magnetic structure until the magnetic state of the magnetic structure is at the desired magnetic state.

  6. FY 2005 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Preliminary Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The

  7. AASG STATE GDR

    Energy Science and Technology Software Center (OSTI)

    003198MLTPL00 AASG State Geothermal Data Repository for the National Geothermal Data System. http://repository.stategeothermaldata.org/repository/

  8. AASG State Geological Survey

    Broader source: Energy.gov [DOE]

    presentation at the April 2013 peer review meeting held in Denver, Colorado.Contributions to the NGDSAASG State Geological Survey

  9. States & Emerging Energy Technologies

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), provides information on States & Emerging Energy Technologies.

  10. Categorical Exclusion Determinations: Environmental Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consolidated Business Service Center Categorical Exclusion Determinations: Environmental Management Consolidated Business Service Center Categorical Exclusion Determinations issued ...

  11. Categorical Exclusion Determinations: Minnesota | Department...

    Office of Environmental Management (EM)

    Minnesota Categorical Exclusion Determinations: Minnesota Location Categorical Exclusion Determinations issued for actions in Minnesota. DOCUMENTS AVAILABLE FOR DOWNLOAD December ...

  12. Waste Determination Equivalency - 12172

    SciTech Connect (OSTI)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposed of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)

  13. Measuring and Explaining Electricity Price Changes in Restructured States

    SciTech Connect (OSTI)

    Fagan, Mark L.

    2006-06-15

    An effort to determine the effect of restructuring on prices finds that, on average, prices for industrial customers in restructured states were lower, relative to predicted prices, than prices for industrial customers in non-restructured states. This preliminary analysis also finds that these price changes are explained primarily by high pre-restructuring prices, not whether or not a state restructured. (author)

  14. Exact axisymmetric Taylor states for shaped plasmas

    SciTech Connect (OSTI)

    Cerfon, Antoine J. O'Neil, Michael

    2014-06-15

    We present a general construction for exact analytic Taylor states in axisymmetric toroidal geometries. In this construction, the Taylor equilibria are fully determined by specifying the aspect ratio, elongation, and triangularity of the desired plasma geometry. For equilibria with a magnetic X-point, the location of the X-point must also be specified. The flexibility and simplicity of these solutions make them useful for verifying the accuracy of numerical solvers and for theoretical studies of Taylor states in laboratory experiments.

  15. CX-006209: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    209: Categorical Exclusion Determination CX-006209: Categorical Exclusion Determination Missouri Independent Energy Efficiency Program: Anheuser-Busch - Brewery Energy Efficiency Retrofits CX(s) Applied: B5.1 Date: 07/01/2011 Location(s): Saitn Louis, Missouri Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The State of Missouri, Department of Natural Resources, Division of Energy, proposes to use $750,000 in State Energy Program American Recovery and Reinvestment Act

  16. CX-100566 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    66 Categorical Exclusion Determination CX-100566 Categorical Exclusion Determination Geothermal Play-Fairway Analysis of Washington State Properties Award Number: DE-EE0006728 CX(s) Applied: A9, B3.1 Geothermal Technologies Office Date: 03/04/2016 Location(s): WA Office(s): Golden Field Offic Washington State Department of Natural Resources (WA DNR) would utilize DOE and cost share funds to address the overarching theme of uncertainty quantification and reduction for geothermal exploration,

  17. Germanium multiphase equation of state

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Crockett, Scott D.; Lorenzi-Venneri, Giulia De; Kress, Joel D.; Rudin, Sven P.

    2014-05-07

    A new SESAME multiphase germanium equation of state (EOS) has been developed using the best available experimental data and density functional theory (DFT) calculations. The equilibrium EOS includes the Ge I (diamond), the Ge II (β-Sn) and the liquid phases. The foundation of the EOS is based on density functional theory calculations which are used to determine the cold curve and the Debye temperature. Results are compared to Hugoniot data through the solid-solid and solid-liquid transitions. We propose some experiments to better understand the dynamics of this element

  18. NEPA Determination Form

    National Nuclear Security Administration (NNSA)

    LA NEPA COMPLIANCE DETERMINATION FORM PRID - 09P-0059 V2 Page 1 of 8 Project/Activity Title: TA-3 Substation Replacement Project PRID: 09P-0059 V2 Date: February 16, 2016 Purpose: The proposed demolition and replacement of the Los Alamos National Laboratory's (LANL) Technical Area (TA)-3 electrical power substation is needed to provide reliable and efficient electrical distribution systems with sufficient electrical capacity to support the national security missions. The electrical distribution

  19. Award Fee Determination Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 CH2M Hill Plateau Remediation Company Contract Number: DE-AC06-08RL14788 Final Fee Determination for Base funded Performance Measures Basis of Evaluation: Completion of Performance Measures contained in Section J, Attachment J.4, Performance Evaluation and Measurement Plan, according to the identified completion criteria. Evaluation Results: FY 2012 Base Period Fee Available Fee allocated to FY 2012* Performance Measures $10,399,033.60 Incremental Fee $4,490,000.00 Provisional Fee

  20. Award Fee Determination Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 CH2M Hill Plateau Remediation Company Contract Number: DE-AC06-08RL14788 Final Fee Determination for Base funded and American Recovery and Reinvestment Act (Recovery) funded Performance Measures Basis of Evaluation: Completion of Performance Measures contained in Section J, AttachmentJ.4, Performance Evaluation and Measurement Plan, according to the identified completion criteria. Evaluation Results: Fiscal Year 2011 (Oct 1, 2010 - Sept 30, 2011) Base Funded Fee Recovery Funded Fee Available

  1. State Technologies Advancement Collaborative

    SciTech Connect (OSTI)

    David S. Terry

    2012-01-30

    The U. S. Department of Energy (DOE), National Association of State Energy Officials (NASEO), and Association of State Energy Research and Technology Transfer Institutions (ASERTTI) signed an intergovernmental agreement on November 14, 2002, that allowed states and territories and the Federal Government to better collaborate on energy research, development, demonstration and deployment (RDD&D) projects. The agreement established the State Technologies Advancement Collaborative (STAC) which allowed the states and DOE to move RDD&D forward using an innovative competitive project selection and funding process. A cooperative agreement between DOE and NASEO served as the contracting instrument for this innovative federal-state partnership obligating funds from DOE's Office of Energy Efficiency and Renewable Energy and Office of Fossil Energy to plan, fund, and implement RDD&D projects that were consistent with the common priorities of the states and DOE. DOE's Golden Field Office provided Federal oversight and guidance for the STAC cooperative agreement. The STAC program was built on the foundation of prior Federal-State efforts to collaborate on and engage in joint planning for RDD&D. Although STAC builds on existing, successful programs, it is important to note that it was not intended to replace other successful joint DOE/State initiatives such as the State Energy Program or EERE Special Projects. Overall the STAC process was used to fund, through three competitive solicitations, 35 successful multi-state research, development, deployment, and demonstration projects with an overall average non-federal cost share of 43%. Twenty-two states were awarded at least one prime contract, and organizations in all 50 states and some territories were involved as subcontractors in at least one STAC project. Projects were funded in seven program areas: (1) Building Technologies, (2) Industrial Technologies, (3) Transportation Technologies, (4) Distributed Energy Resources, (5) Hydrogen Technology Learning Centers, (6) Fossil Energy, and (7) Rebuild America.

  2. Record of Categorical Exclusion (CS) Determination, Office of Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) State/Regional/Local Assistance for Interconnection Transmission Planning and Ana | Department of Energy State/Regional/Local Assistance for Interconnection Transmission Planning and Ana Record of Categorical Exclusion (CS) Determination, Office of Electricity Delivery and Energy Reliability (OE): American Recovery and Reinvestment Act of 2009 (Recovery Act) State/Regional/Local Assistance for

  3. United States Government Department of Energy

    Office of Legacy Management (LM)

    United States Government Department of Energy JULZ I 1992 DATE: REPLY TO EM-421 (W. Williams, 903-8149) Al-TN OF: SUBJECT: Authority Determination--Former Bliss 81 Laughlin Steel Company Site, Buffalo, New York TO: The File The attached review documents the basis for determining whether DOE has authority for taking remedial action at the former Bliss & Laughlin Steel Company site in Buffalo, New York, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Bliss &

  4. Excited state baryon spectroscopy from lattice QCD

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Robert G. Edwards; Dudek, Jozef J.; Richards, David G.; Wallace, Stephen J.

    2011-10-31

    Here, we present a calculation of the Nucleon and Delta excited state spectrum on dynamical anisotropic clover lattices. A method for operator construction is introduced that allows for the reliable identification of the continuum spins of baryon states, overcoming the reduced symmetry of the cubic lattice. Using this method, we are able to determine a spectrum of single-particle states for spins up to and including J = 7/2, of both parities, the first time this has been achieved in a lattice calculation. We find a spectrum of states identifiable as admixtures of SU(6) Ⓧ O(3) representations and a counting ofmore » levels that is consistent with the non-relativistic $qqq$ constituent quark model. This dense spectrum is incompatible with quark-diquark model solutions to the "missing resonance problem" and shows no signs of parity doubling of states.« less

  5. State and Local Code Implementation: State Energy Officials ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State and Local Code Implementation: State Energy Officials - 2014 BTO Peer Review Presenter: Chris Wagner, National Association of State Energy Officials View the Presentation PDF ...

  6. Nevada State Air Regulations and State Implementation Plan Webpage...

    Open Energy Info (EERE)

    in Nevada and its state implementation plan. Author State of Nevada Division of Environmental Protection Published State of Nevada, Date Not Provided DOI Not Provided...

  7. Solid-State Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... HomeSolid-State Lighting Permalink ECIS-Veeco: Research Driving Down the Costs of Efficient LED Lighting Energy, Energy Efficiency, Materials Science, Partnership, Research & ...

  8. United States Government

    Office of Legacy Management (LM)

    OR Ohio State Uuiversity, Columbus, OH (*) Stauffer Tenescal Co., Richmond, CA Tocco Induction Heating Division, Cleveland, OH Utica Drop Forge & Tool Co., Utica, NY Tltaniua...

  9. State Energy Strategic Planning

    Broader source: Energy.gov [DOE]

    U.S. Department of Energy (DOE) Technical Assistance Program (TAP) presentation at a TAP webinar held on April 3, 2013 and dealing with state energy strategic planning.

  10. By Coal Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California (thousand short tons) Coal Origin State Transportation Mode Electric Power Sector Coke Plants Industrial Plants (excluding Coke) Commercial & Institutional Total...

  11. Effectiveness of State-Level Policies on Solar Market Development in Different State Contexts

    SciTech Connect (OSTI)

    Steward, D.; Doris, E.; Krasko, V.; Hillman, D.

    2014-02-01

    In response to public interest in customer-sited distributed solar photovoltaics (PV), state and local policymakers have implemented policy initiatives with the goal of encouraging private investment and building a robust PV market. Policymakers face challenges, including limited budgets and incomplete information about the effectiveness of the various policy options in their specific situation, in crafting and executing policy that supports market development goals. Recent work investigated the effect of the order in which policies are implemented (referred to as 'policy stacking') and the presence of low-cost enabling policies, such as interconnection standards and net metering, can have on the success of states in promoting PV markets. Findings indicate that implementation of interconnection standards and policy related to the valuation of excess electricity (e.g., net metering), along with indicators of long term government support for a solar PV market (e.g., RPS) and a non-policy determinant (population), explain about 70% of the variation among states in new PV capacity. This paper builds on that research to determine the most effective policy strategies for different types of states, as determined by their physical, demographic and macroeconomic context. A number of researchers have investigated the effectiveness of state-level policy using various statistical methods to determine relationships between installed solar PV projects and policy initiatives. In this study, the grouping of states by non-policy factors adds dimension to these analyses by identifying how policies function in different non-policy environments.

  12. Categorical Exclusion Determinations: California | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... February 25, 2016 CX-100493 Categorical Exclusion Determination Integrated Glass Coating ... February 25, 2016 CX-100514 Categorical Exclusion Determination Crop Protection Utilizing ...

  13. Categorical Exclusion Determinations: Connecticut | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 11, 2014 CX-100033: Categorical Exclusion Determination "Smart" Matrix Development ... May 22, 2014 CX-012145: Categorical Exclusion Determination Connecticut Clean Cities ...

  14. Categorical Exclusion Determinations: Louisiana | Department...

    Office of Environmental Management (EM)

    March 4, 2016 CX-100533 Categorical Exclusion Determination Pump Station Improvements ... February 18, 2015 CX-100185 Categorical Exclusion Determination Pump Station Improvements ...

  15. Categorical Exclusion Determinations: Mississippi | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    March 30, 2015 CX-013741: Categorical Exclusion Determination Statistical Analysis of ... March 30, 2015 CX-013758: Categorical Exclusion Determination Statistical Analysis of ...

  16. Appalachian State | Open Energy Information

    Open Energy Info (EERE)

    Appalachian State Jump to: navigation, search Name Appalachian State Facility Appalachian State Sector Wind energy Facility Type Small Scale Wind Facility Status In Service...

  17. Energy Standards for State Agencies

    Broader source: Energy.gov [DOE]

    State departments and agencies are encouraged to employ the latest energy-conservation practices in the design, construction, renovation, operation and maintenance of state facilities. All state ...

  18. Solid State Division

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  19. State Fact Sheets

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy provides joint funding to university, national laboratory, and industrial partners at the state level to research, develop, and demonstrate sustainable bio-based fuels and products. Learn how these states are expanding promising bioenergy research into commercial production.

  20. Grid State Estimation Tool

    Energy Science and Technology Software Center (OSTI)

    2014-10-09

    This software code is designed to track generator state variables in real time using the Ensemble Kalman Filter method with the aid of PMU measurements. This code can also be used to calibrate dynamic model parameters by augmenting parameters in the state variable vector.

  1. Determination of ferrous and total iron in refractory spinels (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Determination of ferrous and total iron in refractory spinels Citation Details In-Document Search Title: Determination of ferrous and total iron in refractory spinels Accurate and precise determination of the redox state of iron (Fe) in spinels presents a significant challenge due to their refractory nature. The resultant extreme conditions needed to obtain complete dissolution generally oxidize some of the Fe(II) initially present and thus prevent the use of

  2. State of the States 2009: Renewable Energy Development and the...

    Open Energy Info (EERE)

    manual, Lessons learnedbest practices Website: www.nrel.govapplyingtechnologiesstatelocalactivitieswebinar2009 State of the States 2009: Renewable Energy Development and...

  3. State of the States: Fuel Cells in America 2012

    Broader source: Energy.gov [DOE]

    This report from Fuel Cells 2000 describes the state of fuel cell technologies across the United States.

  4. Determination of 3-D Cloud Ice Water Contents by Combining Multiple...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of 3-D Cloud Ice Water Contents by Combining Multiple Data Sources from Satellite, Ground Radar, and a Numerical Model Liu, Guosheng Florida State University Seo,...

  5. CX-008570: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program Formula Grant for the State of Utah CX(s) Applied: A9, A11 Date: 06/25/2012 Location(s): Utah Offices(s): Golden Field Office

  6. CX-007464: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program - State Energy Efficient Appliance Rebate Program CX(s) Applied: A1, B5.1 Date: 12/16/2011 Location(s): Alabama Offices(s): National Energy Technology Laboratory

  7. CX-004028: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program - Brevini Wind United States of America, IncorporatedCX(s) Applied: B5.1Date: 10/08/2010Location(s): Yorktown, IndianaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  8. CX-008572: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State of Washington State Energy Program CX(s) Applied: A9, A11 Date: 06/23/2012 Location(s): Washington Offices(s): Golden Field Office

  9. CX-005749: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program - Michigan State University - BioEnergyCX(s) Applied: B3.8, B5.1Date: 05/04/2011Location(s): MichiganOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  10. Major Disaster and Emergency Declarations for Specific States from Hurricane Sandy

    Broader source: Energy.gov [DOE]

    The President signed Major Disaster Declarations for New Jersey (DR 4086), New York (DR-4085), Connecticut (DR-4087), and Rhode Island (DR-4089). Additionally, the President signed Emergency Declarations for New Hampshire (EM-3360), Virginia (EM-3359), West Virginia (EM-3358), Delaware (EM-3357), Rhode Island (EM-3355), Pennsylvania (EM-3356), District of Columbia (EM-3352), Massachusetts (EM-3350), and Maryland (EM-3349). For updates please go to: http://www.fema.gov/disasters.

  11. U.S. and India Hold the Second Meeting of the Indo-United States Civil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area: U.S. East Coast (PADD 1) New England (PADD 1A) Connecticut Maine Massachusetts New Hampshire Rhode Island Vermont Central Atlantic (PADD 1B) Delaware District of Columbia Maryland New Jersey New York Pennsylvania Lower Atlantic (PADD 1C) Florida Georgia North Carolina Virginia Midwest (PADD 2) Illinois Indiana Iowa Kansas Kentucky Michigan Minnesota Missouri Nebraska North Dakota Ohio Oklahoma South Dakota Tennessee Wisconsin Gulf Coast (PADD 3) Alabama Arkansas Mississippi Texas Rocky

  12. Multipartite secure state distribution

    SciTech Connect (OSTI)

    Duer, W.; Briegel, H.-J.; Calsamiglia, J.

    2005-04-01

    We introduce the distribution of a secret multipartite entangled state in a real-world scenario as a quantum primitive. We show that in the presence of noisy quantum channels (and noisy control operations), any state chosen from the set of two-colorable graph states (Calderbank-Shor-Steane codewords) can be created with high fidelity while it remains unknown to all parties. This is accomplished by either blind multipartite entanglement purification, which we introduce in this paper, or by multipartite entanglement purification of enlarged states, which offers advantages over an alternative scheme based on standard channel purification and teleportation. The parties are thus provided with a secret resource of their choice for distributed secure applications.

  13. By Coal Destination State

    U.S. Energy Information Administration (EIA) Indexed Site

    Destination State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama _____________________________________________________________________________________________________________________________________ Table DS-1. Domestic coal

  14. By Coal Origin State

    U.S. Energy Information Administration (EIA) Indexed Site

    Origin State ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 U.S. Energy Information Administration | Quarterly Coal Distribution Report 1st Quarter 2012 Alabama ___________________________________________________________________________________________________________________________________ Table OS-1. Domestic coal

  15. State Biomass Contacts

    Broader source: Energy.gov [DOE]

    Most state governments have designated contacts for biomass conversion programs. The following contacts used by the Bioenergy Technologies Office may also be good contacts for you to find out about...

  16. United States Government

    Office of Environmental Management (EM)

    States Government Department of Energy memorandum Carlsbad Field Office Carlsbad, New Mexico 88221 DATE: REPLY TO ATTN OF: SUBJECT: JAN 1 7 2014 CBFO:OESH:GTB:MN:14-1404:UFC...

  17. Distribution System State Estimation

    Office of Scientific and Technical Information (OSTI)

    This Notice shall be affixed to any reproductions of these data in whole or in part. Executive Summary State estimation is a key enabler for any number of "smart grid" applications ...

  18. State Nuclear Profiles 2010

    Gasoline and Diesel Fuel Update (EIA)

    Primary energy source Summer capacity (mw) Share of State total (percent) Net generation ... Station Unit 1, Unit 2 2,330 19,200 20.0 Exelon Nuclear Byron Generating Station Unit 1, ...

  19. State Nuclear Profiles 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Primary energy source Summer capacity (mw) Share of State total (percent) Net generation ... Limerick Unit 1, Unit 2 2,264 18,926 24.3 Exelon Nuclear PPL Susquehanna Unit 1, Unit 2 ...

  20. State Nuclear Profiles 2010

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Share of State total (percent) Net generation (thousand mwh) New Jersey nuclear power plants, summer capacity and net generation, 2010 Oyster Creek Unit 1 615 4,601 14.0 Exelon ...

  1. NetState

    Energy Science and Technology Software Center (OSTI)

    2005-09-01

    NetState is a distributed network monitoring system. It uses passive sensors to develop status information on a target network. Two major features provided by NetState are version and port tracking. Version tracking maintains information about software and operating systems versions. Port tracking identifies information about active TOP and UDP ports. Multiple NetState sniffers can be deployed, one at each entry point of the target network. The sniffers monitor network traffic, then send the information tomore » the NetState server. The information is stored in centralized database which can then be accessed via standard SQL database queries or this web-based GUI, for further analysis and display.« less

  2. United States Government

    Office of Legacy Management (LM)

    81278 United States Government Department of Energy memorandum - ?71 S.EP 23 F; i: 54 DATE: SEP 1 8 1991 REPLY TO ATTNOF: EM-421 (P. Blom, 3-8148) SUBJECT: Approved Categorical...

  3. FY 2006 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 State Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or

  4. FY 2007 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    state tables preliminary Department of Energy FY 2007 Congressional Budget Request February 2006 Printed with soy ink on recycled paper Office of Chief Financial Officer state tables preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other

  5. FY 2008 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer State Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments

  6. FY 2009 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE

  7. FY 2010 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the

  8. FY 2011 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 March 2010 Office of Chief Financial Officer State Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated

  9. FY 2012 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0066 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They displayed. The figures include both the discretionary and

  10. FY 2013 State Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9 Department of Energy FY 2013 Congressional Budget Request State Tables P li i Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0079 Department of Energy FY 2013 Congressional Budget Request State Tables P li i Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They displayed. The figures include both the discretionary and

  11. Solid state switch

    DOE Patents [OSTI]

    Merritt, Bernard T.; Dreifuerst, Gary R.

    1994-01-01

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1500 A peak, 1.0 .mu.s pulsewidth, and 4500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry.

  12. State of the Lab!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Conference) | SciTech Connect State of the Art for Autonomous Detection Systems using Genomic Sequencing Citation Details In-Document Search Title: State of the Art for Autonomous Detection Systems using Genomic Sequencing Authors: Detter, John C. [1] + Show Author Affiliations Los Alamos National Laboratory Publication Date: 2013-07-09 OSTI Identifier: 1087610 Report Number(s): LA-UR-13-25114 DOE Contract Number: AC52-06NA25396 Resource Type: Conference Resource Relation: Conference: DHS

  13. State Energy Finance Programs

    Office of Environmental Management (EM)

    Startup America Policy Challenge: Clean Energy Startup America Policy Challenge: Clean Energy December 15, 2011 - 12:05pm Addthis The Startup America Policy Challenge wants your ideas on how we can accelerate innovation in clean energy and position the United States to lead in this critical sector. | Photo Courtesy of JBEI. The Startup America Policy Challenge wants your ideas on how we can accelerate innovation in clean energy and position the United States to lead in this critical sector. |

  14. Stability of polarized states for diamond valleytronics

    SciTech Connect (OSTI)

    Hammersberg, J.; Majdi, S.; Kovi, K. K.; Suntornwipat, N.; Gabrysch, M.; Isberg, J.; Twitchen, D. J.

    2014-06-09

    The stability of valley polarized electron states is crucial for the development of valleytronics. A long relaxation time of the valley polarization is required to enable operations to be performed on the polarized states. Here, we investigate the stability of valley polarized states in diamond, expressed as relaxation time. We have found that the stability of the states can be extremely long when we consider the electron-phonon scattering processes allowed by symmetry considerations. We determine electron-phonon coupling constants by Time-of-Flight measurements and Monte Carlo simulations and use these data to map out the relaxation time temperature dependency. The relaxation time for diamond can be microseconds or longer below 100 K and 100 V/cm due to the strong covalent bond, which is highly encouraging for future use in valleytronic applications.

  15. Using RPS Policies to Grow the Solar Market in the United States

    SciTech Connect (OSTI)

    Wiser, Ryan H; Wiser, Ryan H.

    2007-11-20

    The market for photovoltaics in the United States remains small relative to the nation's solar resource potential. Nonetheless, annual grid-connected PV installations have grown from just 4 MW in 2000 to over 100 MW in 2006, fast enough to the catch the attention of the global solar industry. The state of California deserves much of the credit for this growth. The State's historical rebate programs resulted in roughly 75% of the nation's grid-connected PV additions from 2000 through 2006 being located in California, and the $3 billion California Solar Initiative will ensure that the State remains a mainstay of the US solar industry for years to come. But California is not the only market for solar in the US; other states have recently developed policies that may rival those of the western state in terms of future growth potential. In particular, 25 states, as well as Washington, D.C., have established renewables portfolio standards (RPS), sometimes called quota systems in Europe, requiring electricity suppliers in those states to source a minimum portion of their need from renewable electricity. (Because a national RPS is not yet in place, my focus here is on state policies). Under many of these state policies, solar is not expected to fare particularly well: PV installations simply cannot compete on cost or scale with large wind plants in the US, at least not yet. In response, an expanding list of states have established solar or distributed generation (DG) set-asides within their RPS policies, effectively requiring that some fraction of RPS-driven supply derive from solar energy. The popularity of set-asides for solar and/or DG has increased dramatically in recent years. Already, 11 states and D.C. have developed such RPS set-asides. These include states with outstanding solar resources, such as Nevada, Arizona, Colorado, and New Mexico, as well as areas where the solar resource is less robust, including North Carolina, Maryland, Pennsylvania, New Jersey, New York, New Hampshire, Delaware, and DC. Among those states with set-asides, two are restricted to PV applications, nine also allow solar-thermal electric to qualify, three allow solar heating and/or cooling to qualify, and three have broader renewable DG set-asides. The policies also differ in their targets and timeframes, whether projects must be located in-state, the application of cost caps, and the degree of oversight on how suppliers contract with solar projects. Only three of these states have more than two years of experience with solar or DG set-asides so far: Arizona, Nevada, and New Jersey. And yet, despite the embryonic stage of these policies, they have already begun to have a significant impact on the grid-connected PV market. From 2000-2006, 16% (or 48 MW) of grid-connected PV installations in the US occurred in states with such set-asides, a percentage that increases to 67% if one only considers PV additions outside of California. The importance of these programs is growing and will continue to expand. In fact, if one assumes (admittedly somewhat optimistically) that these policies will be fully achieved, then existing state solar or DG set-asides could result in 400 MW of solar capacity by 2010, 2,000 MW by 2015, and 6,500 MW by 2025. This equates to annual additions of roughly 100 MW through 2010, increasing to over 500 MW per year by 2015 and 700 MW per year by 2020. PV is not assured of all of this capacity, and will receive strong competition from solar-thermal electric facilities in the desert southwest. Nonetheless, set-asides in those states outside of the southwest will favor PV, and even some of the southwestern states have designed their RPS programs to ensure that PV fares well, relative to other forms of solar energy. Since 2000, Arizona and, more recently, New Jersey have represented the largest solar set-aside-driven PV markets. Even more-recent additions are coming from Colorado, Nevada, New York, and Pennsylvania. In the long-term, the largest markets for solar electricity are predicted to include New Jersey, Maryland, Arizona, and Pennsylvania. How do these states stack up against California, with a goal of 3,000 MW of new solar capacity by 2016? Though none of the states with solar set-asides are predicted to reach 3,000 MW of solar from their RPS policies alone, three are expected to exceed 1,000 MW (New Jersey, Maryland, and Arizona). And, if stated on a percentage-of-load basis, then the solar targets in New Mexico, Arizona, New Jersey, and Maryland all exceed California's goal. Of course, achieving these targets is not assured. States with solar set-asides have developed various types of cost caps, many of which may ultimately become binding, thereby limiting future solar growth. Penalties for lack of compliance may be insufficient. Finally, some states continue to struggle with how to encourage long-term contracting for solar generation, and to ensure continued rebate programs for smaller PV installations.

  16. State Bioenergy Primer: Information and Resources for States on Issues, Opportunities, and Options for Advancing Bioenergy

    SciTech Connect (OSTI)

    Byrnett, D. S.; Mulholland, D.; Zinsmeister, E.; Doris, E.; Milbrandt, A.; Robichaud. R.; Stanley, R.; Vimmerstedt, L.

    2009-09-01

    One renewable energy option that states frequently consider to meet their clean energy goals is the use of biomass resources to develop bioenergy. Bioenergy includes bioheat, biopower, biofuels, and bioproducts. This document provides an overview of biomass feedstocks, basic information about biomass conversion technologies, and a discussion of benefits and challenges of bioenergy options. The Primer includes a step-wise framework, resources, and tools for determining the availability of feedstocks, assessing potential markets for biomass, and identifying opportunities for action at the state level. Each chapter contains a list of selected resources and tools that states can use to explore topics in further detail.

  17. Sandia Equation of State Model Library

    Energy Science and Technology Software Center (OSTI)

    2013-08-29

    The software provides a general interface for querying thermodynamic states of material models along with implementation of both general and specific equation of state models. In particular, models are provided for the IAPWS-IF97 and IAPWS95 water standards as well as the associated water standards for viscosity, thermal conductivity, and surface tension. The interface supports implementation of models in a variety of independent variable spaces. Also, model support routines are included that allow for coupling ofmore » models and determination and representation of phase boundaries.« less

  18. CX-008984: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program CX(s) Applied: A9, A11 Date: 08/29/2012 Location(s): Florida Offices(s): Golden Field Office

  19. CX-008989: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program CX(s) Applied: A9, A11 Date: 08/27/2012 Location(s): Kansas Offices(s): Golden Field Office

  20. CX-007880: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Evergreen State Solar Partnership CX(s) Applied: A9, A11 Date: 01/27/2012 Location(s): Washington Offices(s): Golden Field Office

  1. CX-009159: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Montana Formaul State Energy Program CX(s) Applied: A9, A11 Date: 09/06/2012 Location(s): Montana Offices(s): Golden Field Office

  2. CX-008543: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Colorado State Energy Plan 2012 CX(s) Applied: A9, A11 Date: 06/25/2012 Location(s): Colorado Offices(s): Golden Field Office

  3. CX-012718: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Idaho State University Reactor Laboratory Modernization CX(s) Applied: B1.31Date: 41844 Location(s): IdahoOffices(s): Nuclear Energy

  4. CX-009018: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program - Tennessee CX(s) Applied: A9, A11 Date: 08/23/2012 Location(s): Tennessee Offices(s): Golden Field Office

  5. Solid state safety jumper cables

    DOE Patents [OSTI]

    Kronberg, James W.

    1993-01-01

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating "positive" terminals, and one has a lower voltage than the reference voltage, indicating "negative" terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  6. Solid state safety jumper cables

    DOE Patents [OSTI]

    Kronberg, J.W.

    1993-02-23

    Solid state jumper cables for connecting two batteries in parallel, having two bridge rectifiers for developing a reference voltage, a four-input decoder for determining which terminals are to be connected based on a comparison of the voltage at each of the four terminals to the reference voltage, and a pair of relays for effecting the correct connection depending on the determination of the decoder. No connection will be made unless only one terminal of each battery has a higher voltage than the reference voltage, indicating positive'' terminals, and one has a lower voltage than the reference voltage, indicating negative'' terminals, and that, therefore, the two high voltage terminals may be connected and the two lower voltage terminals may be connected. Current flows once the appropriate relay device is closed. The relay device is preferably a MOSFET (metal oxide semiconductor field effect transistor) combined with a series array of photodiodes that develop MOSFET gate-closing potential when the decoder output causes an LED to light.

  7. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the

  8. Solid state switch

    DOE Patents [OSTI]

    Merritt, B.T.; Dreifuerst, G.R.

    1994-07-19

    A solid state switch, with reverse conducting thyristors, is designed to operate at 20 kV hold-off voltage, 1,500 A peak, 1.0 [mu]s pulsewidth, and 4,500 pps, to replace thyratrons. The solid state switch is more reliable, more economical, and more easily repaired. The switch includes a stack of circuit card assemblies, a magnetic assist and a trigger chassis. Each circuit card assembly contains a reverse conducting thyristor, a resistor capacitor network, and triggering circuitry. 6 figs.

  9. United States Government

    Office of Legacy Management (LM)

    f&E F 1325.8 J ;rgy!w, United States Government m e m o randum 7-L 0 cI - 2, Department of Energy I~27 DATE: !-jEC -2 3 1293 REPLY TO ATTN OF: EM-421 (W. A. W illiams, 903-8149) SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program TO: The F ile I have reviewed the attached site summaries and elimination recommendations for the following sites: f' l M itts & Merrel Co., Saginaw, M ichigan l North Carolina State University, Raleigh, North Carolina l

  10. EIA - State Nuclear Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Vermont profile Vermont total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 620 55.0 4,782 72.2 Hydro and Pumped Storage 324 28.7 1,347 20.3 Natural Gas - - 4 0.1 Other Renewable1 84 7.5 482 7.3 Petroleum 100 8.9 5 0.1 Total 1,128 100.0 6,620 100.0 1Municipal Solid Waste net generation is allocated according to the

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    United States Electricity Profile 2014 Table 1. 2014 Summary statistics (United States) Item Value Primary energy source Coal Net summer capacity (megawatts) 1,068,422 Electric utilities 616,632 IPP & CHP 451,791 Net generation (megawatthours) 4,093,606,005 Electric utilities 2,382,473,495 IPP & CHP 1,711,132,510 Emissions Sulfur Dioxide (short tons) 3,842,005 Nitrogen Oxide (short tons) 2,400,375 Carbon Dioxide (thousand metric tons) 2,160,342 Sulfur Dioxide (lbs/MWh) 1.9 Nitrogen Oxide

  12. State Energy Program Helps States Plan and Implement Energy Efficiency |

    Energy Savers [EERE]

    Department of Energy Helps States Plan and Implement Energy Efficiency State Energy Program Helps States Plan and Implement Energy Efficiency The U.S. Department of Energy (DOE) State Energy Program (SEP) provides grants and technical assistance to states and U.S. territories to promote energy conservation and reduce the growth of energy demand in ways that are consistent with national energy goals. PDF icon 48100_weather_sep_fsr3.pdf More Documents & Publications State Energy Program

  13. State transmission infrastructure authorities: the story so far

    SciTech Connect (OSTI)

    Porter, Kevin; Fink, Sari

    2009-03-15

    State transmission infrastructure authorities offer a new tool for helping to overcome such obstacles to developing transmission as high capital investment requirements, uncertain cost allocation among multiple parties, and siting and permitting challenges. Yet to be determined is whether they can help stimulate large, multi-state regional transmission projects. (author)

  14. Spectroscopy of triply and quadruply ionized states of mercury

    SciTech Connect (OSTI)

    Huttula, M.; Huttula, S.-M.; Lablanquie, P.; Palaudoux, J.; Penent, F.; Andric, L.; Eland, J. H. D.

    2011-03-15

    Multielectron coincidence spectroscopy has been used to study multiple ionization of atomic mercury. The binding energies of triply and quadruply ionized states of Hg have been determined from three- and fourfold electron coincidences. Relativistic ab initio theory has been used to calculate the state energies and predict the experimental findings.

  15. NREL: State and Local Governments - State Solar Technical Assistance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What suite of solar PV policies and finance or incentive programs could be implemented in your state to maximize economic development opportunities? If your state agency implements ...

  16. State Energy Risk Assessment Initiative - State and Regional...

    Broader source: Energy.gov (indexed) [DOE]

    OE is leading a State Energy Risk Assessment Initiative to help States better understand risks to their energy infrastructure so they can be better prepared to make informed...

  17. State Clean Energy Policies Analysis (SCEPA): State Policy and...

    Open Energy Info (EERE)

    Analysis (SCEPA): State Policy and the Pursuit of Renewable Energy Manufacturing Jump to: navigation, search Tool Summary LAUNCH TOOL Name: State Clean Energy Policies Analysis...

  18. State of the States: Fuel Cells in America

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CELLS 2000 STATE OF THE STATES: FUEL CELLS IN AMERICA June 2011 Foreword by Connecticut ... Jennifer Gangi and Elizabeth Delmont of Fuel Cells 2000, an activity of Breakthrough ...

  19. Method for Determining Optimal Residential Energy Efficiency Retrofit Packages

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method for Determining Optimal Residential Energy Efficiency Retrofit Packages B. Polly, M. Gestwick, M. Bianchi, R. Anderson, S. Horowitz, C. Christensen, and R. Judkoff National Renewable Energy Laboratory April 2011 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

  20. Bluegrass State Getting Greener

    Broader source: Energy.gov [DOE]

    To help reduce Kentucky’s energy appetite, the state set a goal of 25-percent energy reduction by 2025 and is using Recovery Act funding from the U.S. Department of Energy to improve the energy-efficiency of its buildings.

  1. Variational transition state theory

    SciTech Connect (OSTI)

    Truhlar, D.G.

    1993-12-01

    This research program involves the development of variational transition state theory (VTST) and semiclassical tunneling methods for the calculation of gas-phase reaction rates and selected applications. The applications are selected for their fundamental interest and/or their relevance to combustion.

  2. UNITED STATES GOVERNMENT

    Office of Legacy Management (LM)

    Menxmmhmz 9 1 UNITED STATES GOVERNMENT i TO : ThcFFles . mx.f I A. B. Piccct, +3lation section : DATE: .@.eti 16, 1949 SUBJECT: VISIT To HAVY OFfDHAlfCE DEPOT, EARIZ, B.J. FmmlTo...

  3. Recovery Act State Summaries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Recovery Act State Summaries Recovery Act State Summaries Alabama Recovery Act State Memo Alaska Recovery Act State Memo American Samoa Recovery Act State Memo Arizona Recovery Act ...

  4. CX-005439: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Utah State Energy Program - Division of Facilities, Construction and Management Renewable Energy - Unified State LaboratoriesCX(s) Applied: B5.1Date: 03/09/2011Location(s): UtahOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  5. CX-000705: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Florida - Sunshine State Buildings Parking Lot Canopies - State Energy ProgramCX(s) Applied: B1.15, B1.24, B2.1, B5.1Date: 01/18/2010Location(s): Tallahassee, FloridaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  6. CX-002450: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State of Arizona State Energy Program American Recovery and Reinvestment Act EE0000106 - Manufacturers' Energy-Efficiency Grant Assistance (MEGA) ProgramCX(s) Applied: B5.1Date: 06/01/2010Location(s): ArizonaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  7. CX-005481: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Grant for State Sponsored Renewable Energy and Energy Efficiency Projects - Montclair State University Solar FarmCX(s) Applied: B5.1Date: 03/29/2011Location(s): Montclair, New JerseyOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  8. CX-013811: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Modeling and Validation of Irradiation Damage in Ni-based Alloys for Long-Term LWR Applications -Oregon State University - Oregon State University CX(s) Applied: B3.6Date: 06/25/2015 Location(s): IdahoOffices(s): Nuclear Energy

  9. CX-005992: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act/State Energy Program - State of Louisiana Community Church UnitarianCX(s) Applied: B5.1Date: 05/23/2011Location(s): New Orleans, LouisianaOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  10. CX-005448: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program American Recovery and Reinvestment Act - Washington State Ferries Biodiesel Project -Phase ICX(s) Applied: A9, A11Date: 03/16/2011Location(s): WashingtonOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  11. CX-003174: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program (SEP) State ENERGY STAR Appliance Rebate ProgramCX(s) Applied: A9, B5.1Date: 07/28/2010Location(s): GeorgiaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  12. CX-001156: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program - State Facilities Retrofit ProgramCX(s) Applied: A9, A11, B1.3, B5.1Date: 03/10/2010Location(s): GeorgiaOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  13. CX-006826: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program American Recovery and Reinvestment Act - Washington State University Anaerobic Digester - Nutrient Recovery TechnologyCX(s) Applied: A9, B1.7, B5.1Date: 09/23/2011Location(s): WashingtonOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  14. CX-100479 Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State STEP Partnership – State Solar Energy Training and Network Award Number: DE-FOA-0001329 CX(s) Applied: A9, A11 Solar Energy Technologies Office Date: 02/17/2016 Location(s): CO Office(s): Golden Field Office

  15. CX-003358: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    American Recovery and Reinvestment Act State Energy Program State of Texas Southmost College - Photovoltaic - Wind Hybrid SystemCX(s) Applied: B5.1Date: 08/11/2010Location(s): Brownsville, TexasOffice(s): Energy Efficiency and Renewable Energy, Golden Field Office

  16. CX-007434: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    State Energy Program- American Recovery and Reinvestment Act · Washington State University Anaerobic Digester - Nutrient Recovery Technology - Vander Haak Dairy CX(s) Applied: A9, B1.7, B3.9 Date: 12/07/2011 Location(s): Washington Offices(s): Golden Field Office

  17. State Clean Energy Practices: Renewable Portfolio Standards

    SciTech Connect (OSTI)

    Hurlbut, D.

    2008-07-01

    The State Clean Energy Policies Analysis (SCEPA) project is supported by the Weatherization and Intergovernmental Program within the Department of Energy's Office of Energy Efficiency and Renewable Energy. This project seeks to quantify the impacts of existing state policies, and to identify crucial policy attributes and their potential applicability to other states. The goal is to assist states in determining which clean energy policies or policy portfolios will best accomplish their environmental, economic, and security goals. For example, a renewable portfolio standard (RPS) mandates an increase in the use of wind, solar, biomass, and other alternatives to fossil and nuclear electric generation. This paper provides a summary of the policy objectives that commonly drive the establishment of an RPS, the key issues that states have encountered in implementing an RPS, and the strategies that some of the leading states have followed to address implementation challenges. The factors that help an RPS function best generally have been explored in other analyses. This study complements others by comparing empirical outcomes, and identifying the policies that appear to have the greatest impact on results.

  18. State authorization manual. Volume 1

    SciTech Connect (OSTI)

    Brugler-Jones, S.

    1990-10-01

    The State Authorization Manual (SAM) (Vol. I) provides guidance for States applying for program revisions to their authorized RCRA State program. The SAM is an updated version of the 1988 State Consolidated RCRA Authorization Manual (SCRAM). It focuses on program revision applications rather than initial applications since most States have received initial authorization for the RCRA program. The SCRAM should continue to be used to assist States not yet authorized under the RCRA program.

  19. CASL - North Carolina State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Carolina State University Raleigh, NC NC State University has a proven record of working with industry and government to advance research in support of solving nuclear...

  20. Resources for State Energy Officials

    SciTech Connect (OSTI)

    SEE Action

    2012-06-01

    Provides a summary of State and Local Energy Efficiency Action Network (SEE Action) information resources available to state energy officials, organized by topic.

  1. Fermilab Today | Kansas State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kansas State University Feb. 27, 2013 NAME: Kansas State University HOME TOWN: Manhattan, Kan. MASCOT: Willie the Wildcat COLORS: Royal purple COLLABORATING AT FERMILAB SINCE: 1993...

  2. Fermilab Today | Wayne State University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wayne State University May 29, 2013 NAME: Wayne State University HOME TOWN: Detroit, Mich. COLORS: Green and gold COLLABORATING AT FERMILAB SINCE: 1995 WORLDWIDE PARTICLE PHYSICS...

  3. CX-005779: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5779: Categorical Exclusion Determination CX-005779: Categorical Exclusion Determination Technology Development for High Efficiency Solar Cells and Modules CX(s) Applied: A9, A11, B3.6 Date: 05/11/2011 Location(s): Santa Clara, California Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The Photovoltaic (PV) Technology Incubator project represents a significant component of the United States (U.S.) Department of Energy (DOE) business strategy of partnering with U.S.

  4. CX-006006: Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Categorical Exclusion Determination CX-006006: Categorical Exclusion Determination Deployment of Innovative Energy Efficiency and Renewable Energy - Agriculture CX(s) Applied: B5.1 Date: 05/25/2011 Location(s): The Dalles, Oregon Office(s): Energy Efficiency and Renewable Energy, Golden Field Office The State of Oregon will provide $1,100,000 in Recovery Act funds to the Oregon Department of Agriculture to install improved efficiency irrigation equipment at agricultural sites throughout the

  5. CX-100599 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    99 Categorical Exclusion Determination CX-100599 Categorical Exclusion Determination Fleet Services EV Charging Station Installation, Richard H. Bryan State Office Building Award Number: DE-EE0006992 CX(s) Applied: B5.23 Weatherization & Intergovernmental Programs Office (SEP) Date: 03/31/2016 Location(s): NV Office(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide funding to the Nevada Department of Administration to construct an electric vehicle (EV)

  6. CX-100588 Categorical Exclusion Determination | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Categorical Exclusion Determination CX-100588 Categorical Exclusion Determination Fleet Services EV Charging Station, Grant Sawyer State Office Bldg Award Number: DE-EE0006992 CX(s) Applied: B5.23 Weatherization and Intergovernmental Programs Office Date: 04/04/2016 Location(s): NV Office(s): Golden Field Office The U.S. Department of Energy (DOE) is proposing to provide funding to the Nevada Department of Administration to construct an electric vehicle (EV) charging station. The proposed

  7. CX-001111: Categorical Exclusion Determination | Department of Energy

    Energy Savers [EERE]

    111: Categorical Exclusion Determination CX-001111: Categorical Exclusion Determination State of Vermont American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant Local Government Sub-Grants Request for Proposal (T) CX(s) Applied: A9, A11, B5.1 Date: 02/09/2010 Location(s): Vermont Office(s): Energy Efficiency and Renewable Energy, Golden Field Office Vermont's Department of Public Service will administer the Energy Efficiency and Conservation Block Grant (EECBG)

  8. Qualified Energy Conservation Bond State-by-State Summary Tables

    Broader source: Energy.gov [DOE]

    Provides a list of qualified energy conservation bond state summary tables. Author: Energy Programs Consortium

  9. Categorical Exclusion Determinations: Tennessee | Department...

    Energy Savers [EERE]

    February 26, 2016 CX-100506 Categorical Exclusion Determination Biofuel Micro-Refineries ... Low-Viscosity Oils for Automotive Engine and Rear Axle Lubrication for 4% Improved ...

  10. CX-012200: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Determination of Excess Real Property CX(s) Applied: B1.36 Date: 05/01/2014 Location(s): Colorado Offices(s): Legacy Management

  11. CX-010689: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Generic CX Determination for Financial Assistance Awards CX(s) Applied: Unknown Date: 07/17/2013 Location(s): Illinois Offices(s): Chicago Office

  12. Categorical Exclusion Determinations: Environmental Management...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... September 13, 2011 CX-006990: Categorical Exclusion Determination Synthesis and Characterization of Coatings by Chemical Solution Deposition Methods CX(s) Applied: B3.6 Date: 09...

  13. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alabama Nuclear Profile 2010 Alabama profile Alabama total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,043 15.6 37,941 24.9 Coal 11,441 35.3 63,050 41.4 Hydro and Pumped Storage 3,272 10.1 8,704 5.7 Natural Gas 11,936 36.8 39,235 25.8 Other1 100 0.3 643 0.4 Other Renewable1 583 1.8 2,377 1.6 Petroleum 43 0.1 200

  14. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Nuclear Profile 2010 Arizona profile Arizona total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,937 14.9 31,200 27.9 Coal 6,233 23.6 43,644 39.1 Hydro and Pumped Storage 2,937 11.1 6,831 6.1 Natural Gas 13,012 49.3 29,676 26.6 Other 1 - - 15 * Other Renewable1 181 0.7 319 0.3 Petroleum 93 0.4 66 0.1 Total

  15. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Nuclear Profile 2010 Arkansas profile Arkansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State ttal (percent) Nuclear 1,835 11.5 15,023 24.6 Coal 4,535 28.4 28,152 46.2 Hydro and Pumped Storage 1,369 8.6 3,658 6.0 Natural Gas 7,894 49.4 12,469 20.4 Other 1 - - 28 * Other Renewable1 326 2.0 1,624 2.7 Petroleum 22 0.1 45 0.1 Total

  16. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Nuclear Profile 2010 California profile California total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,390 6.5 32,201 15.8 Coal 374 0.6 2,100 1.0 Hydro and Pumped Storage 13,954 20.7 33,260 16.3 Natural Gas 41,370 61.4 107,522 52.7 Other 1 220 0.3 2,534 1.2 Other Renewable1 6,319 9.4 25,450 12.5 Petroleum

  17. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Nuclear Profile 2010 Connecticut profile Connecticut total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,103 25.4 16,750 50.2 Coal 564 6.8 2,604 7.8 Hydro and Pumped Storage 151 1.8 400 1.2 Natural Gas 2,292 27.7 11,716 35.1 Other 1 27 0.3 730 2.2 Other Renewable1 159 1.9 740 2.2 Petroleum 2,989 36.1 409

  18. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Nuclear Profile 2010 Florida profile Florida total electric power industry, summer capacity and net generation, by energy source, 2010 Primary Energy Source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,924 6.6 23,936 10.4 Coal 9,975 16.9 59,897 26.1 Hydro and Pumped Storage 55 0.1 177 0.1 Natural Gas 31,563 53.4 128,634 56.1 Other1 544 0.9 2,842 1.2 Other Renewable1 1,053 1.8 4,487 2.0 Petroleum 12,033 20.3

  19. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Nuclear Profile 2010 Georgia profile Georgia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,061 11.1 33,512 24.6 Coal 13,230 36.1 73,298 54.0 Hydro and Pumped Storage 3,851 10.5 3,044 2.7 Natural Gas 12,668 34.6 23,884 15.9 Other 1 - - 18 * Other Renewable1 637 1.7 3,181 2.2 Petroleum 2,189 6.0 641 0.5

  20. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Nuclear Profile 2010 Illinois profile Illinois total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 11,441 25.9 96,190 47.8 Coal 15,551 35.2 93,611 46.5 Hydro and Pumped Storage 34 0.1 119 0.1 Natural Gas 13,771 31.2 5,724 2.8 Other 1 145 0.3 461 0.2 Other Renewable1 2,078 4.7 5,138 2.6 Petroleum 1,106 2.5 110

  1. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Nuclear Profile 2010 Iowa profile Iowa total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 601 4.1 4,451 7.7 Coal 6,956 47.7 41,283 71.8 Hydro and Pumped Storage 144 1.0 948 1.6 Natural Gas 2,299 15.8 1,312 2.3 Other Renewable1 3,584 24.6 9,360 16.3 Petroleum 1,007 6.9 154 .0.3 Total 14,592 100.0 57,509 100

  2. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Nuclear Profile 2010 Kansas profile Kansas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,160 9.2 9,556 19.9 Coal 5,179 41.3 32,505 67.8 Hydro and Pumped Storage 3 * 13 * Natural Gas 4,573 36.5 2,287 4.8 Other Renewable1 1,079 8.6 3,459 7.2 Petroleum 550 4.4 103 0.2 Total 12,543 100.0 47,924 100

  3. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Nuclear Profile 2010 Louisiana profile Louisiana total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (nw) Share of State total (percent) Net generation (thousand nwh) Share of State total (percent) Nuclear 2,142 8.0 18,639 18.1 Coal 3,417 12.8 23,924 23.3 Hydro and Pumped Storage 192 0.7 1,109 1.1 Natural Gas 19,574 73.2 51,344 49.9 Other 1 213 0.8 2,120 2.1 Other Renewable1 325 1.2 2,468 2.4 Petroleum 881 3.3

  4. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Nuclear Profile 2010 Maryland profile Maryland total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (Percent) Nuclear 1,705 13.6 13,994 32.1 Coal 4,886 39.0 23,668 54.3 Hydro and Pumped Storage 590 4.7 1,667 3.8 Natural Gas 2,041 16.3 2,897 6.6 Other 1 152 1.2 485 1.1 Other Renewable1 209 1.7 574 1.3 Petroleum 2,933 23.4 322

  5. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Nuclear Profile 2010 Massachusetts profile Massachusetts total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 685 5.0 5,918 13.8 Coal 1,669 12.2 8,306 19.4 Hydro and Pumped Storage 1,942 14.2 659 1.5 Natural Gas 6,063 44.3 25,582 59.8 Other 1 3 * 771 1.8 Other Renewable1 304 2.2 1,274 3.0 Petroleum 3,031

  6. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Nuclear Profile 2010 Michigan profile Michigan total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,947 13.2 29,625 26.6 Coal 11,531 38.7 65,604 58.8 Hydro and Pumped Storage 2,109 7.1 228 0.2 Natural Gas 11,033 37.0 12,249 11.0 Other 1 - - 631 0.6 Other Renewable1 571 1.9 2,832 2.5 Petroleum 640 2.1 382 0.3

  7. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Nuclear Profile 2010 Minnesota profile Minnesota total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,549 10.8 13,478 25.1 Coal 4,789 32.5 28,083 52.3 Hydro and Pumped Storage 193 1.3 840 1.6 Natural Gas 4,936 33.5 4,341 8.1 Other 1 13 0.1 258 0.5 Other Renewable1 2,395 16.3 6,640 12.4 Petroleum 795 5.4 31

  8. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Nuclear Profile 2010 Mississippi profile Mississippi total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,251 8.0 9,643 17.7 Coal 2,526 16.1 13,629 25.0 Natural Gas 11,640 74.2 29,619 54.4 Other 1 4 * 10 * Other Renewable1 235 1.5 1,504 2.8 Petroleum 35 0.2 18 0.1 Total 15,691 100.0 54,487 100.0

  9. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Nuclear Profile 2010 Missouri profile Missouri total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,190 5.5 8,996 9.7 Coal 12,070 55.5 75,047 81.3 Hydro and Pumped Storage 1,221 5.6 2,427 2.6 Natural Gas 5,579 25.7 4,690 5.1 Other 1 - - 39 * Other Renewable1 466 2.1 988 1.1 Petroleum 1,212 5.6 126 0.1 Total

  10. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Nuclear Profile 2010 Nebraska profile Nebraska total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,245 15.8 11,054 30.2 Coal 3,932 50.0 23,368 63.8 Hydro and Pumped Storage 278 3.5 1,314 3.6 Natural Gas 1,864 23.5 375 1.0 Other Renewable1 165 2.1 493 1.3 Petroleum 387 4.9 31 0.1 Total 7,857 100.0 36,630

  11. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Nuclear Profile 2010 New Hampshire profile New Hampshire total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 1,247 29.8 10,910 49.2 Coal 546 13.1 3,083 13.9 Hydro and Pumped Storage 489 11.7 1,478 6.7 Natural Gas 1,215 29.1 5,365 24.2 Other 1 - - 57 0.3 Other Renewable1 182 4.4 1,232 5.6 Petroleum 501 12.0

  12. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Nuclear Profile 2010 New Jersey profile New Jersey total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,108 22.3 32,771 49.9 Coal 2,036 11.1 6,418 9.8 Hydro and Pumped Storage 404 2.2 -176 -0.3 Natural Gas 10,244 55.6 24,902 37.9 Other 1 56 0.3 682 1.0 Other Renewable1 226 1.2 850 1.3 Petroleum 1,351 7.3 235

  13. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Nuclear Profile 2010 New York profile New York total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 5,271 13.4 41,870 30.6 Coal 2,781 7.1 13,583 9.9 Hydro and Pumped Storage 5,714 14.5 24,942 18.2 Natural Gas 17,407 44.2 48,916 35.7 Other 1 45 0.1 832 0.6 Other Renewable1 1,719 4.4 4,815 3.5 Petroleum 6,421 16.3

  14. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    North Carolina Nuclear Profile 2010 North Carolina profile North Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,958 17.9 40,740 31.7 Coal 12,766 46.1 71,951 55.9 Hydro and Pumped Storage 2,042 7.4 4,757 3.7 Natural Gas 6,742 24.4 8,447 6.6 Other 1 50 0.2 407 0.3 Other Renewable1 543 2.0 2,083 1.6

  15. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Nuclear Profile 2010 Ohio profile Ohio total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 2,134 6.5 15,805 11.0 Coal 21,360 64.6 117,828 82.1 Hydro and Pumped Storage 101 0.3 429 0.3 Natural Gas 8,203 24.8 7,128 5.0 Other 1 123 0.4 266 0.2 Other Renewable1 130 0.4 700 0.5 Petroleum 1,019 3.1 1,442 1.0 Total

  16. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Nuclear Profile 2010 Pennsylvania profile Pennsylvania total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 9,540 20.9 77,828 33.9 Coal 18,481 40.6 110,369 48.0 Hydro and Pumped Storage 2,268 5.0 1,624 0.7 Natural Gas 9,415 20.7 33,718 14.7 Other 1 100 0.2 1,396 0.6 Other Renewable1 1,237 2.7 4,245 1.8

  17. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    South Carolina profile South Carolina total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 6,486 27.0 51,988 49.9 Coal 7,230 30.1 37,671 36.2 Hydro and Pumped Storage 4,006 16.7 1,442 1.4 Natural Gas 5,308 22.1 10,927 10.5 Other 1 - - 61 0.1 Other Renewable1 284 1.2 1,873 1.8 Petroleum 670 2.8 191 0.2 Total 23,982

  18. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee profile Tennessee total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,401 15.9 27,739 33.7 Coal 8,805 41.1 43,670 53.0 Hydro and Pumped Storage 4,277 20.0 7,416 9.0 Natural Gas 4,655 21.7 2,302 2.8 Other 1 - - 16 * Other Renewable1 222 1.0 988 1.2 Petroleum 58 0.3 217 0.3 Total 21,417 100.0 82,349 100.0

  19. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas profile Texas total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 4,966 4.6 41,335 10.0 Coal 22,335 20.6 150,173 36.5 Hydro and Pumped Storage 689 0.6 1,262 0.3 Natural Gas 69,291 64.0 186,882 45.4 Other 1 477 0.4 3,630 0.9 Other Renewable1 10,295 9.5 27,705 6.7 Petroleum 204 0.2 708 0.2 Total 108,258 100.0

  20. EIA - State Nuclear Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia profile Virginia total electric power industry, summer capacity and net generation, by energy source, 2010 Primary energy source Summer capacity (mw) Share of State total (percent) Net generation (thousand mwh) Share of State total (percent) Nuclear 3,501 14.5 26,572 36.4 Coal 5,868 24.3 25,459 34.9 Hydro and Pumped Storage 4,107 17.0 10 * Natural Gas 7,581 31.4 16,999 23.3 Other 1 - - 414 0.6 Other Renewable1 621 2.6 2,220 3.0 Petroleum 2,432 10.1 1,293 1.8 Total 24,109 100.0 72,966